Sample records for prototype superfluid helium

  1. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  2. Detection of Charged Particles in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Bandler, Simon Richard

    1995-01-01

    At the present time the measurement of the flux of neutrinos from the sun remains a challenging experimental problem. The ideal detector would be able to detect neutrinos at high rate, in real time, with good energy resolution and would have a threshold which is low enough for investigation of the entire solar neutrino spectrum. A new detection scheme using superfluid helium as a target has been proposed which has the potential to meet most of the criteria of the ideal detector. In this scheme a neutrino would be detected when it elastically scatters off an atomic electron in superfluid helium. The electron loses energy via a number of processes eventually leading to the generation of phonons and rotons in the liquid. At low temperatures these excitations propagate ballistically through the superfluid helium. When the excitations reach the free surface some of them are able to evaporate helium atoms. These atoms can be detected by an array of calorimeters suspended above the liquid surface. In this thesis, results are presented for a small -scale prototype of this type of detector. Experiments have been performed using various radioactive sources to generate energy depositions in the liquid. The results reveal details about the processes of generation of rotons and phonons, the propagation of these excitations through the superfluid, the evaporation of helium atoms and the adsorption of helium atoms onto the wafer. Results are also presented on the detection of fluorescent photons generated in the liquid. One source of energy depositions was 241{rm Am} which produces monoenergetic 5.5 MeV alpha particles. It was found that the ratio of the energy deposited in a calorimeter to the energy deposited in liquid helium was 0.084 when alpha's are emitted parallel to the liquid surface, and 0.020 for alpha's emitted perpendicular. The difference is due to the anisotropic distribution of helium excitations generated. A 113{rm Sn} source of 360 keV electrons stopped in

  3. Optomechanics in a Levitated Droplet of Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Brown, Charles; Harris, Glen; Harris, Jack

    2017-04-01

    A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.

  4. A superfluid helium system for an LST IR experiment

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. W., Jr.; Moore, R. W., Jr.

    1975-01-01

    The results are presented of a study program directed toward evaluating the problems associated with cooling an LST instrument to 2 K for a year by using superfluid helium as the cooling means. The results include the parametric analysis of systems using helium only, and systems using helium plus a shield cryogen. A baseline system, using helium only is described. The baseline system is sized for an instrument heat leak of 50 mw. It contains 71 Kg of superfluid helium and has a total, filled weight of 217 Kg. A brief assessment of the technical problems associated with a long life, spaceborne superfluid helium storage system is also made. It is concluded that a one year life, superfluid helium cooling system is feasible, pending experimental verification of a suitable low g vent system.

  5. Realization of mechanical rotation in superfluid helium

    NASA Astrophysics Data System (ADS)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  6. Superfluid Helium Tanker (SFHT) study

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.; Dominick, Sam M.; Anderson, John E.; Gille, John P.; Martin, Tim A.; Marino, John S.; Paynter, Howard L.; Traill, R. Eric; Herzl, Alfred; Gotlib, Sam

    1988-01-01

    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997.

  7. Acquisition system testing with superfluid helium. [cryopumping for space

    NASA Technical Reports Server (NTRS)

    Anderson, John E.; Fester, Dale A.; Dipirro, Michael J.

    1988-01-01

    Minus one-g outflow tests were conducted with superfluid helium in conjunction with a thermomechanical pump setup in order to study the use of capillary acquisition systems for NASA's Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment. Results show that both fine mesh screen and porous sponge systems are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to 4 cm, fulfilling the SHOOT requirements. Sponge results were found to be reproducible, while the screen results were not.

  8. Superfluid helium on orbit transfer (SHOOT)

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.

    1987-01-01

    A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991.

  9. Superfluid helium quantum interference devices: physics and applications.

    PubMed

    Sato, Y; Packard, R E

    2012-01-01

    We present an overview of recent developments related to superfluid helium quantum interference devices (SHeQUIDs). We discuss the physics of two reservoirs of superfluid helium coupled together and describe the quantum oscillations that result from varying the coupling strength. We explain the principles behind SHeQUIDs that can be built based on these oscillations and review some techniques and applications.

  10. Electronic Spectroscopy of Phthalocyanine and Porphyrin Derivatives in Superfluid Helium Nanodroplets.

    PubMed

    Slenczka, Alkwin

    2017-07-25

    Phthalocyanine and porphyrin were among the first organic compounds investigated by means of electronic spectroscopy in superfluid helium nanodroplets. Superfluid helium nanodroplets serve as a very gentle host system for preparing cold and isolated molecules. The uniqueness of helium nanodroplets is with respect to the superfluid phase which warrants the vanishing viscosity and, thus, minimal perturbation of the dopant species at a temperature as low as 0.37 K. These are ideal conditions for the study of molecular spectra in order to analyze structures as well as dynamic processes. Besides the investigation of the dopant species itself, molecular spectroscopy in helium droplets provides information on the helium droplet and in particular on microsolvation. This article, as part of a special issue on phthalocyanines and porphyrins, reviews electronic spectroscopy of phthalocyanine and porphyrin compounds in superfluid helium nanodroplets. In addition to the wide variety of medical as well as technical and synthetical aspects, this article discusses electronic spectroscopy of phthalocyanines and porphyrins in helium droplets in order to learn about both the dopant and the helium environment.

  11. Dynamics of Superfluid Helium in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Frank, David J.

    1997-01-01

    This report summarizes the work performed under a contract entitled 'Dynamics of Superfluid Helium in Low Gravity'. This project performed verification tests, over a wide range of accelerations of two Computational Fluid Dynamics (CFD) codes of which one incorporates the two-fluid model of superfluid helium (SFHe). Helium was first liquefied in 1908 and not until the 1930s were the properties of helium below 2.2 K observed sufficiently to realize that it did not obey the ordinary physical laws of physics as applied to ordinary liquids. The term superfluidity became associated with these unique observations. The low temperature of SFHe and it's temperature unifonrmity have made it a significant cryogenic coolant for use in space applications in astronomical observations with infrared sensors and in low temperature physics. Superfluid helium has been used in instruments such as the Shuttle Infrared Astronomy Telescope (IRT), the Infrared Astronomy Satellite (IRAS), the Cosmic Background Observatory (COBE), and the Infrared Satellite Observatory (ISO). It is also used in the Space Infrared Telescope (SIRTF), Relativity Mission Satellite formally called Gravity Probe-B (GP-B), and the Test of the Equivalence Principle (STEP) presently under development. For GP-B and STEP, the use of SFHE is used to cool Superconducting Quantum Interference Detectors (SQUIDS) among other parts of the instruments. The Superfluid Helium On-Orbit Transfer (SHOOT) experiment flown in the Shuttle studied the behavior of SFHE. This experiment attempted to get low-gravity slosh data, however, the main emphasis was to study the low-gravity transfer of SFHE from tank to tank. These instruments carried tanks of SFHE of a few hundred liters to 2500 liters. The capability of modeling the behavior of SFHE is important to spacecraft control engineers who must design systems that can overcome disturbances created by the movement of the fluid. In addition instruments such as GP-B and STEP are very

  12. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  13. Resource letter SH-1: superfluid helium

    NASA Astrophysics Data System (ADS)

    Hallock, Robert B.

    1982-03-01

    The resource letter covers the general subject of superfluid helium and treats 3He and 3He-4He mixtures as well as 4He. No effort has been made to include the fascinating experiments on either solid helium or the equally fascinating work on adsorbed helium where the helium coverage is below that necessary for superfluidity. An earlier resource letter by C. T. Lane [Am. J. Phys. 35, 367 (1967)] may be consulted for additional comments on some of the cited earlier manuscripts, but the present work is self-contained and may be used independently. Many high-quality research reports have not been cited here. Rather, the author has tried in most cases to include works particularly readable or relevant. There is a relatively heavy emphasis on experimental references. The primary reason is that these works tend to be more generally readable. No doubt some works that might have been included, have not, and for this the author takes responsibility with apology. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are marked with an asterisk(*). Following each referenced work the general level of difficulty is indicated by E, I, or A for elementary, intermediate, or advanced.

  14. A quantitative experiment on the fountain effect in superfluid helium

    NASA Astrophysics Data System (ADS)

    Amigó, M. L.; Herrera, T.; Neñer, L.; Peralta Gavensky, L.; Turco, F.; Luzuriaga, J.

    2017-09-01

    Superfluid helium, a state of matter existing at low temperatures, shows many remarkable properties. One example is the so called fountain effect, where a heater can produce a jet of helium. This converts heat into mechanical motion; a machine with no moving parts, but working only below 2 K. Allen and Jones first demonstrated the effect in 1938, but their work was basically qualitative. We now present data of a quantitative version of the experiment. We have measured the heat supplied, the temperature and the height of the jet produced. We also develop equations, based on the two-fluid model of superfluid helium, that give a satisfactory fit to the data. The experiment has been performed by advanced undergraduate students in our home institution, and illustrates in a vivid way some of the striking properties of the superfluid state.

  15. Laser cooling and control of excitations in superfluid helium

    NASA Astrophysics Data System (ADS)

    Harris, G. I.; McAuslan, D. L.; Sheridan, E.; Sachkou, Y.; Baker, C.; Bowen, W. P.

    2016-08-01

    Superfluidity is a quantum state of matter that exists macroscopically in helium at low temperatures. The elementary excitations in superfluid helium have been probed with great success using techniques such as neutron and light scattering. However, measurements of phonon excitations have so far been limited to average thermodynamic properties or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of phonon excitations in real time. Furthermore, strong light-matter interactions allow both laser cooling and amplification. This represents a new tool to observe and control superfluid excitations that may provide insight into phonon-phonon interactions, quantized vortices and two-dimensional phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including the prospect of femtogram masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.

  16. Flow visualization in superfluid helium-4 using He2 molecular tracers

    NASA Astrophysics Data System (ADS)

    Guo, Wei

    Flow visualization in superfluid helium is challenging, yet crucial for attaining a detailed understanding of quantum turbulence. Two problems have impeded progress: finding and introducing suitable tracers that are small yet visible; and unambiguous interpretation of the tracer motion. We show that metastable He2 triplet molecules are outstanding tracers compared with other particles used in helium. These molecular tracers have small size and relatively simple behavior in superfluid helium: they follow the normal fluid motion at above 1 K and will bind to quantized vortex lines below about 0.6 K. A laser-induced fluorescence technique has been developed for imaging the He2 tracers. We will present our recent experimental work on studying the normal-fluid motion by tracking thin lines of He2 tracers created via femtosecond laser-field ionization in helium. We will also discuss a newly launched experiment on visualizing vortex lines in a magnetically levitated superfluid helium drop by imaging the He2 tracers trapped on the vortex cores. This experiment will enable unprecedented insight into the behavior of a rotating superfluid drop and will untangle several key issues in quantum turbulence research. We acknowledge the support from the National Science Foundation under Grant No. DMR-1507386 and the US Department of Energy under Grant No. DE-FG02 96ER40952.

  17. Light dark matter in superfluid helium: Detection with multi-excitation production

    DOE PAGES

    Knapen, Simon; Lin, Tongyan; Zurek, Kathryn M.

    2017-03-22

    We examine in depth a recent proposal to utilize superfluid helium for direct detection of sub-MeV mass dark matter. For sub-keV recoil energies, nuclear scattering events in liquid helium primarily deposit energy into long-lived phonon and roton quasiparticle excitations. If the energy thresholds of the detector can be reduced to the meV scale, then dark matter as light as ~MeV can be reached with ordinary nuclear recoils. If, on the other hand, two or more quasiparticle excitations are directly produced in the dark matter interaction, the kinematics of the scattering allows sensitivity to dark matter as light as ~keV atmore » the same energy resolution. We present in detail the theoretical framework for describing excitations in superfluid helium, using it to calculate the rate for the leading dark matter scattering interaction, where an off-shell phonon splits into two or more higher-momentum excitations. Here, we validate our analytic results against the measured and simulated dynamic response of superfluid helium. Finally, we apply this formalism to the case of a kinetically mixed hidden photon in the superfluid, both with and without an external electric field to catalyze the processes.« less

  18. Photo-electron emission directly in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zavyalov, V. V.; Pyurbeeva, E. B.; Khaldeev, S. I.

    2018-03-01

    Despite the fact that electron transport in condensed helium has been studied for over half a century [1], observations of new intriguing effects still appear [2]. Alas, the traditional methods of injecting electrons into condensed helium (radioactive-sources, electrical discharge or field emission) lead to generation of helium ions, recombination of which is accompanied by emergence of a large number of excitations. As a result, interpretation of such experiments is not simple and sometimes may be questionable. In this respect, photoelectron emitters, which operate with energies substantially smaller than the ionization energy of helium, are preferable. However, immersion of the photocathode into condensed helium suppresses electron emission. Nevertheless, we managed to achieve electron currents (>20 fA) with the In photocathode immersed directly in liquid superfluid helium. The UV light (λ=254 nm) was guided to the photocathode through a two-meter long Al-covered quartz optical fiber.

  19. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yunteng; Zhang, Jie; Li, Yang

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Usingmore » both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.« less

  20. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei

    2017-08-01

    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  1. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    NASA Astrophysics Data System (ADS)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  2. Rotons, Superfluidity, and Helium Crystals

    NASA Astrophysics Data System (ADS)

    Balibar, Sébastien

    2006-09-01

    Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous "roton" which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his "theory based on the shaky grounds of imaginary rotons". Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist. In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state.

  3. Superfluid helium leak sealant study

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1981-01-01

    Twenty-one leak specimens were fabricated in the ends of stainless steel and aluminum tubes. Eighteen of these tubes were coated with a copolymer material to seal the leak. The other three specimens were left uncoated and served as control specimens. All 21 tubes were cold shocked in liquid helium 50 times and then the leak rate was measured while the tubes were submerged in superfluid helium at 1.7 K. During the cold shocks two of the coated specimens were mechanically damaged and eliminated from the test program. Of the remaining 16 coated specimens one suffered a total coating failure and resulting high leak rate. Another three of the coated specimens suffered partial coating failures. The leak rates of the uncoated specimens were also measured and reported. The significance of various leak rates is discussed in view of the infrared astronomical satellite (IRAS) Dewar performance.

  4. Detectability of Light Dark Matter with Superfluid Helium.

    PubMed

    Schutz, Katelin; Zurek, Kathryn M

    2016-09-16

    We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100  keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.

  5. Superfluid Helium Tanker (SFHT) study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The accomplishments and recommendations of the two-phase Superfluid Helium Tanker (SFHT) study are presented. During the first phase of the study, the emphasis was on defining a comprehensive set of user requirements, establishing SFHT interface parameters and design requirements, and selecting a fluid subsystem design concept. During the second phase, an overall system design concept was constructed based on appropriate analyses and more detailed definition of requirements. Modifications needed to extend the baseline for use with cryogens other than SFHT have been determined, and technology development needs related to the recommended design have been assessed.

  6. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less

  7. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Fragner, A.; Koolstra, G.

    2016-03-01

    The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less

  8. SHOOT performance testing. [Superfluid Helium On-Orbit Transfer Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Dipirro, M. J.; Shirron, P. J.; Volz, S. M.; Schein, M. E.

    1991-01-01

    The Superfluid Helium On-Orbit Transfer (SHOOT) Flight Demonstration is a shuttle attached payload designed to demonstrate the technology necessary to resupply liquid helium dewars in space. Many SHOOT components will also have use in other aerospace cryogenic systems. The first of two SHOOT dewar systems has been fabricated. The ground performance testing of this dewar is described. The performance tests include measurements of heat leak, impedances of the two vent lines, heat pulse mass gauging accuracy, and superfluid transfer parameters such as flow rate and efficiency. A laboratory dewar was substituted for the second flight dewar for the transfer tests. These tests enable a precise analytical model of the transfer process to be verified. SHOOT performance is thus quantified, except for components such as the liquid acquisition devices and a phase separator which cannot be verified in one gravity.

  9. Phase order in superfluid helium films

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Faulkner, Michael F.; Holdsworth, Peter C. W.; Taroni, Andrea

    2015-12-01

    Classic experimental data on helium films are transformed to estimate a finite-size phase order parameter that measures the thermal degradation of the condensate fraction in the two-dimensional superfluid. The order parameter is found to evolve thermally with the exponent β = 3 π^2/128 , a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse of experimental data on helium and ferromagnetic films, and implies new experiments and theoretical protocols to explore the phase order. These results give a striking example of experimental finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids. This paper is dedicated to the memory of our friend and colleague Maxime Clusel, with whom we enjoyed many stimulating discussions on related topics.

  10. Detecting continuous gravitational waves with superfluid helium

    NASA Astrophysics Data System (ADS)

    Singh, Swati; de Lorenzo, Laura; Pikovski, Igor; Schwab, Keith

    2017-04-01

    We study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For reasonable experimental parameters, we find that strain fields on the order of h 10-23 /√{ Hz} are detectable. We show that the proposed system can significantly improve the limits on gravitational wave strain from nearby pulsars within a few months of integration time.

  11. Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-06-01

    It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.

  12. Chaotic vortex filaments in a Bose–Einstein condensate and in superfluid helium

    NASA Astrophysics Data System (ADS)

    Nemirovskii, S. K.

    2018-05-01

    A statement of the quantum turbulence problem in both a Bose–Einstein condensate (BEC) and superfluid helium is formulated. In superfluid helium use is made of a so-called vortex filament method, in which quantum vortices are represented by stringlike objects, i.e. vortex lines. The dynamics of the vortex lines is determined by deterministic equations of motion, supplemented by random reconnections. Unlike He II, the laws of the dynamics of quantum vortices in BEC are based on the nonlinear Schrödinger equation. This makes it possible to obtain a microscopic description of the collision of vortices, the structure of a vortex filament, etc. A comparative analysis of these complementary approaches is carried out. It is shown that there are some features that do not automatically transfer the results obtained for BEC to vortices in He II and vice versa.

  13. Cryogenic and thermal design for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Maa, S.; Brooks, W. F.; Ng, Y. S.

    1988-01-01

    The analysis and trade-offs of the external thermal design of the two 200-liter dewars required in the SHOOT experiment to extend space mission life by superfluid helium replenishment are discussed. Also considered are the support electronics and the optimization and prediction of the performance of the dewar and cryostat assemblies. Particular attention is given to the ground-hold and standby performance of the dewars, along with the temperature of the helium bath during high-flow-rate helium transfers.

  14. Rydberg States of Alkali Metal Atoms on Superfluid Helium Droplets - Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-06-01

    The bound states of electrons on the surface of superfluid helium have been a research topic for several decades. One of the first systems treated was an electron bound to an ionized helium cluster. Here, a similar system is considered, which consists of a helium droplet with an ionized dopant inside and an orbiting electron on the outside. In our theoretical investigation we select alkali metal atoms (AK) as central ions, stimulated by recent experimental studies of Rydberg states for Na, Rb, and Cs attached to superfluid helium nanodroplets. Experimental spectra , obtained by electronic excitation and subsequent ionization, showed blueshifts for low lying electronic states and redshifts for Rydberg states. In our theoretical treatment the diatomic AK^+-He potential energy curves are first computed with ab initio methods. These potentials are then used to calculate the solvation energy of the ion in a helium droplet as a function of the number of atoms. Additional potential terms, derived from the obtained helium density distribution, are added to the undisturbed atomic pseudopotential in order to simulate a 'modified' potential felt by the outermost electron. This allows us to compute a new set of eigenstates and eigenenergies, which we compare to the experimentally observed energy shifts for highly excited alkali metal atoms on helium nanodroplets. A. Golov and S. Sekatskii, Physica B, 1994, 194, 555-556 E. Loginov, C. Callegari, F. Ancilotto, and M. Drabbels, J. Phys. Chem. A, 2011, 115, 6779-6788 F. Lackner, G. Krois, M. Koch, and W. E. Ernst, J. Phys. Chem. Lett., 2012, 3, 1404-1408 F. Lackner, G. Krois, M. Theisen, M. Koch, and W. E. Ernst, Phys. Chem. Chem. Phys., 2011, 13, 18781-18788

  15. Experiments on the properties of superfluid helium in zero gravity

    NASA Technical Reports Server (NTRS)

    Mason, P.; Collins, D.; Petrac, D.; Yang, L.; Edeskuty, F.; Williamson, K.

    1976-01-01

    The paper describes a research program designed to study the behavior of superfluid liquid helium in low and zero gravity in order to determine the properties which are critically important to its use as a stored cryogen for cooling scientific instruments aboard spacecraft for periods up to several months. The experiment program consists of a series of flights of an experiment package on a free-fall trajectory both on an aircraft and on a rocket. The objectives are to study thickness of thin films of helium as a function of acceleration, heat transfer in thin films, heat transfer across copper-liquid helium interfaces, fluid dynamics of bulk helium in high and low accelerations and under various conditions of rotations, alternate methods of separation of liquid and vapor phases and of efficient venting of the vapor, and undesirable thermomechanical oscillations in the vent pipes. Preliminary results from aircraft tests are discussed.

  16. Superfluid-helium-cooled rocket-borne far-infrared radiometer.

    PubMed

    Blair, A G; Edeskuty, F; Hiebert, R D; Jones, D M; Shipley, J P; Williamson, K D

    1971-05-01

    A far-infrared radiometer, cooled to 1.6 K by superfluid helium, has been flown in a Terrier-Sandhawk rocket. The instrument was designed to measure night-sky radiation in three wavelength passbands between 6 mm and 0.1 mm at altitudes between 120 km and 350 km. A failure in the rocket nose cone separation system prevented the measurement of this radiation, but the performance of the instrument during flight was generally satisfactory. Design features and operational characteristics of the cryogenic, optical, detection, and electronic systems are presented.

  17. The A-B transition in superfluid helium-3 under confinement in a thin slab geometry

    PubMed Central

    Zhelev, N.; Abhilash, T. S.; Smith, E. N.; Bennett, R. G.; Rojas, X.; Levitin, L.; Saunders, J.; Parpia, J. M.

    2017-01-01

    The influence of confinement on the phases of superfluid helium-3 is studied using the torsional pendulum method. We focus on the transition between the A and B phases, where the A phase is stabilized by confinement and a spatially modulated stripe phase is predicted at the A–B phase boundary. Here we discuss results from superfluid helium-3 contained in a single 1.08-μm-thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A phase, in comparison to bulk or when confined in aerogel, with evidence for a non-monotonic pressure dependence. This suggests that an intrinsic B-phase nucleation mechanism operates under confinement. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase. PMID:28671184

  18. Analysis of dewar and transfer line cooldown in Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT)

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Lee, J. H.

    1989-01-01

    The Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT) is designed to demonstrate the techniques and components required for orbital superfluid (He II) replenishment of observatories and satellites. One of the tasks planned in the experiment is to cool a warm cryogen tank and a warm transfer line to liquid helium temperature. A math model, based on single-phase vapor flow heat transfer, has been developed to predict the cooldown time, component temperature histories, and helium consumption rate, for various initial conditions of the components and for the thermomechanical pump heater powers of 2 W and 0.5 W. This paper discusses the model and the analytical results, which can be used for planning the experiment operations and determining the pump heater power required for the cooldown operation.

  19. Characterization of quantum vortex dynamics in superfluid helium

    NASA Astrophysics Data System (ADS)

    Meichle, David P.

    Liquid helium obtains superfluid properties when cooled below the Lambda transition temperature of 2.17 K. A superfluid, which is a partial Bose Einstein condensate, has many exotic properties including free flow without friction, and ballistic instead of diffusive heat transport. A superfluid is also uniquely characterized by the presence of quantized vortices, dynamical line-like topological phase defects around which all circulation in the flow is constrained. Two vortices can undergo a violent process called reconnection when they approach, cross, and retract having exchanged tails. With a numerical examination of a local, linearized solution near reconnection we discovered a dynamically unstable stationary solution to the Gross-Pitaevskii equation, which was relaxed to a fully non-linear solution using imaginary time propagation. This investigation explored vortex reconnection in the context of the changing topology of the order parameter, a complex field governing the superfluid dynamics at zero temperature. The dynamics of the vortices can be studied experimentally by dispersing tracer particles into a superfluid flow and recording their motions with movie cameras. The pioneering work of Bewley et al. provided the first visualization technique using frozen gases to create tracer particles. Using this technique, we experimentally observed for the first time the excitation of helical traveling waves on a vortex core called Kelvin waves. Kelvin waves are thought to be a central mechanism for dissipation in this inviscid fluid, as they provide an efficient cascade mechanism for transferring energy from large to microscopic length scales. We examined the Kelvin waves in detail, and compared their dynamics in fully self-similar non-dimensional coordinates to theoretical predictions. Additionally, two experimental advances are presented. A newly invented technique for reliably dispersing robust, nanometer-scale fluorescent tracer particles directly into the

  20. Mechanical pumps for superfluid helium transfer in space

    NASA Technical Reports Server (NTRS)

    Izenson, M. G.; Swift, W. L.

    1988-01-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  1. Dynamics and Morphology of Superfluid Helium Drops in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Seidel, George M.; Maris, Humphrey J.

    2001-01-01

    We developed an apparatus that makes it possible to observe and study magnetically levitated drops of superfluid helium. The force on a diamagnetic substance in a magnetic field is proportional to the gradient of the square of the magnetic field B. For the magnetic force on helium to be equal to the gravitational force on Earth, it is necessary for the product of B with the field gradient dB/d z to be 21.5 T(exp 2)/cm. In addition, in order for the magnetic field to provide a stable trap, the value of B(exp 2) must increase in all directions in the horizontal plane that passes through the point where the field/field gradient product in the vertical direction has the critical value of 21.5 T(exp 2)/cm. A specially designed superconducting magnet that meets these specifications has been installed in a large helium dewar with optical access. Helium drops levitated by the magnet can be viewed along the axis of the solenoid. The sample chamber within the bore of the magnet is thermally isolated from the magnet and helium reservoir. Its temperature can be varied between 4 and 0.5 K, the lower part of the range being reached using a He-3 refrigerator. Liquid helium can be injected into the magnetic trap using a small capillary. Once a drop is contained in the trap it can be held there indefinitely. With this apparatus we have conducted a number of different types of experiments on helium drops so as to gain information necessary for performing experiments in space. With magnetically levitated drops we are limited to working with drops of 1 cm. or less in diameter. The shape of the drops larger than a few mm diameter can be distorted by the profile of the magnetic field. The study of phenomena such as the initial motion of the surfaces of two drops as they just make contact, requires the use large drops to resolve the behavior of interest. We have performed a detailed investigation of the shape oscillations of superfluid drops.

  2. A design and critical technology issues for on-orbit resupply of superfluid helium

    NASA Technical Reports Server (NTRS)

    Hopkins, Richard A.; Mord, Allan J.

    1990-01-01

    The issues of and the solutions to the critical design and technology areas of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment, presently under development at the NASA Goddard Spaceflight Center, are discussed. Special attention is given to the SHOOT design requirements for the 10,000-liter superfluid He resupply tanker system, the concept details of the system, and the resupply operations and their analysis. A block diagram of the SHOOT system is included along with fluid management schematic and configuration diagrams of the system and its subsystems. A summary of the dewar performance is also presented.

  3. Nonlinear dynamics of a two-dimensional Wigner solid on superfluid helium

    NASA Astrophysics Data System (ADS)

    Monarkha, Yu. P.

    2018-04-01

    Nonlinear dynamics and transport properties of a 2D Wigner solid (WS) on the free surface of superfluid helium are theoretically studied. The analysis is nonperturbative in the amplitude of the WS velocity. An anomalous nonlinear response of the liquid helium surface to the oscillating motion of the WS is shown to appear when the driving frequency is close to subharmonics of the frequency of a capillary wave (ripplon) whose wave vector coincides with a reciprocal-lattice vector. As a result, the effective mass of surface dimples formed under electrons and the kinetic friction acquire sharp anomalies in the low-frequency range, which affects the mobility and magnetoconductivity of the WS. The results obtained here explain a variety of experimental observations reported previously.

  4. Visualization study of counterflow in superfluid 4He using metastable helium molecules.

    PubMed

    Guo, W; Cahn, S B; Nikkel, J A; Vinen, W F; McKinsey, D N

    2010-07-23

    Heat is transferred in superfluid 4He via a process known as thermal counterflow. It has been known for many years that above a critical heat current the superfluid component in this counterflow becomes turbulent. It has been suspected that the normal-fluid component may become turbulent as well, but experimental verification is difficult without a technique for visualizing the flow. Here we report a series of visualization studies on the normal-fluid component in a thermal counterflow performed by imaging the motion of seeded metastable helium molecules using a laser-induced-fluorescence technique. We present evidence that the flow of the normal fluid is indeed turbulent at relatively large velocities. Thermal counterflow in which both components are turbulent presents us with a theoretically challenging type of turbulent behavior that is new to physics.

  5. A Report on Superfluid Helium Flow Through Porous Plugs for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1983-01-01

    As a background for the study of the nature of superfluid helium flow through porous plugs for other space science uses, preliminary tests on various plugs of a given material, diameter, height, and filtration grade have been performed. Two characteristics of the plugs, pore size and number of channels, have been determined by the bubble test and warm flow test of helium gas through the plugs, respectively. Tests on the flow of He II through the plugs have also been performed. An obvious feature of the results of these tests is that for isothermal measurements of pressure versus mass flow rate below approximately 2.10 K, the flow is separated into two different regimes, indicative of the occurrence of a critical phenomenon.

  6. Development of the realization of superfluid transition temperature of helium

    NASA Astrophysics Data System (ADS)

    Lin, P.; Yu, L.

    2013-09-01

    A sealed-cell technique has been developed to realize the superfluid transition temperature of helium, Tλ. With this technique, one can produce and maintain Tλ plateau for unlimited duration with no ascertained temperature drift. An extrapolation is employed to determine Tλ with zero heat flow to correct the depression of heat flow. This paper reports the study on the reproducibility of Tλ in the duration of ten years. The measurements on eight cells have been made at four laboratories with a routine procedure since 2000. RIRT 229841 is used at fifty-one measurements with the standard deviation of 0.035 mK. RIRT A34 is used at twenty-four measurements with the standard deviation of 0.022 mK. The results for the two cells sealed on 2009 are agreed well with that of the six cells sealed in 2000. There should be not a duration effect for the sealed cell because of almost no contamination problem of helium at Tλ realization. These results support that Tλ could be used as a superior thermometric fixed point.

  7. Liquid acquisition devices for superfluid helium transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, M. J.

    1990-01-01

    To transfer superfluid helium (He II) in the milli-g or micro-g environment in orbit, it is necessary to provide a reasonably steady supply of liquid to the inlet of the pump in the supply dewar. To accomplish this without providing an artificial gravity through acceleration requires a liquid acquisition device. Fluid swirl and electrostatic devices have been proposed to orientate the fluid. However, the simplest mechanisms appear to be the use of surface tension or the thermomechanical effect. This paper examines four concepts for providing He II to the inlet of a thermomechanical pump. The devices are a distributed thermomechanical pump, a distributed pump with a main thermomechanical pump, a screened channel system and a vane/sponge combination. Calculations on the efficiency of these types of liquid acquisition devices are made using laboratory data from tests involving small scale devices where applicable. These calculations show that the latter two types of liquid acquisition devices are the most efficient. Questions as to the probability of cavitation and the effect of the residual shuttle acceleration on their operation remain to be answered, however.

  8. PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-01-01

    PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.

  9. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less

  10. Shapes of rotating superfluid helium nanodroplets

    DOE PAGES

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis; ...

    2017-02-16

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  11. Shapes of rotating superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  12. Microsolvation of phthalocyanine molecules in superfluid helium nanodroplets as revealed by the optical line shape at electronic origin.

    PubMed

    Fuchs, S; Fischer, J; Slenczka, A; Karra, M; Friedrich, B

    2018-04-14

    We investigate the solvent shift of phthalocyanine (Pc) doped into superfluid helium droplets and probed by optical spectroscopy at the electronic origin. Our present work complements extant studies and provides results that in part contradict previous conclusions. In particular, the solvent shift does not increase monotonously with droplet radius all the way up to the bulk limit, but exhibits just the reverse dependence instead. Moreover, a substructure is resolved, whose characteristics depend on the droplet size. This behavior can hardly be reconciled with that of a freely rotating Pc-helium complex.

  13. Superfluid helium-4 interferometers: construction and experiments

    NASA Astrophysics Data System (ADS)

    Joshi, Aditya Ajit

    This dissertation has two main goals: to highlight some new results in the field of superfluid 4He interferometry and to provide an in-depth, "hands-on" guide to the physics, design, construction, testing and operation of a continuously operating, fluxlocked 4 He dc-SHeQUID (Superfluid Helium Quantum Interference Device). Many of these topics haven't really been addressed in writing and the hapless new experimenter seeking to develop a SHeQUID is generally forced to reinvent the wheel rather than start at the frontier and push it forward. We would like to prevent that by making this a comprehensive guide to building and operating SHeQUIDs. We have optimized the fabrication of the nanoscale aperture arrays that are the very heart of the SHeQUID and resolved long-standing issues with their durability and long-term usability. A detailed report on this should assist in avoiding the many pitfalls that await those who fabricate and use these aperture arrays. We have constructed a new, modular SHeQUID that is designed to be easily adaptable to a wide array of proposed experiments without the necessity of rebuilding and reassembling key components like the displacement transducer. We have automated its working as a continuously operating, linearized (flux-locked) interferometer by using the so-called "chemical potential battery" in conjunction with a feedback system. We have also constructed a new reorientation system that is several orders of magnitude quieter than its predecessors. Together, these developments have allowed us to measure a changing rotation field in real time, a new development for this kind of device. We have also developed a module that allows control of the reorientation stage by automated data-taking software for investigating long-term drifts (by safely sweeping the stage back and forth). We have also investigated the chemical potential battery in further detail and report some fascinating nonlinear mode locking phenomena that have important

  14. Impact, Spreading and Splashing of Superfluid Drops

    NASA Astrophysics Data System (ADS)

    Taborek, Peter; Wallace, Mattew; Mallin, David; Aguirre, Andres; Langley, Kenneth; Thoroddsen, Sigurdur

    2017-11-01

    We investigate the impact of superfluid and normal liquid helium drops onto glass plates, in a custom-made optical cryostat, over a temperature range from 1.3 - 5 K. The unusual properties of liquid helium allow us to explore ranges of parameters that are difficult to obtain in conventional systems. Even in the normal state with T >2.17K, the viscosity and surface tension of liquid helium are unusually low, so it is easy to prepare drops with Re >30,000 and We >500. We track the spreading radius of the fluid rim, which initially grows as a power law in time with an exponent of 0.5 , while transitioning to Tanner's law at later times. In the superfluid state the rim velocity can exceed 4 m/s, which is significantly higher than the superfluid critical velocity. Here we see no splashing even at Re >100,000. Our experiments take place in an atmosphere of helium gas. In conventional impact splashing the exterior air is incondensable, while our impacts in helium involve a condensable exterior phase, so the dynamics can be expected to be quite different. We study how these differences affect the splashing.

  15. Thermal conductivity and Kapitza resistance of epoxy resin fiberglass tape at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Baudouy, B.; Polinski, J.

    2009-03-01

    The system of materials composed of fiberglass epoxy resin impregnated tape constitutes in many cases the electrical insulation for "dry"-type superconducting accelerator magnet such as Nb 3Sn magnets. Nb 3Sn magnet technology is still under development in a few programs to reach higher magnetic fields than what NbTi magnets can produce. The European program, Next European Dipole (NED), is one of such programs and it aims to develop and construct a 15 T class Nb 3Sn magnet mainly for upgrading the Large Hardron Collider. Superfluid helium is considered as one possible coolant and since the magnet has been designed with a "dry" insulation, the thermal conductivity and the Kapitza resistance of the electrical insulation are the key properties that must be know for the thermal design of such a magnet. Accordingly, property measurements of the epoxy resin fiberglass tape insulation system developed for the NED project was carried out in superfluid helium. Four sheets with thicknesses varying from 40 to 300 μm have been tested in a steady-state condition. The determined thermal conductivity, k, is [(25.8 ± 2.8) · T - (12.2 ± 4.9)] × 10 -3 W m -1 K -1 and the Kapitza resistance is given by R K = (1462 ± 345) · T(-1.86 ± 0.41) × 10 -6 Km 2 W -1 in the temperature range of 1.55-2.05 K.

  16. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  17. Effective doping of low energy ions into superfluid helium droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Chen, Lei; Freund, William M.

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measuredmore » using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.« less

  18. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    NASA Astrophysics Data System (ADS)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  19. Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? lessons from the LHL

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Parma, Vittorio; Tavian, Laurent

    2014-01-01

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large projects confronted with this issue, i.e. CEBAF, SPL, ESS, LHC, TESLA, European X-FEL, ILC.

  20. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  1. Optical and Electron Spin Resonance Studies of Destruction of Porous Structures Formed by Nitrogen-Rare Gas Nanoclusters in Bulk Superfluid Helium

    NASA Astrophysics Data System (ADS)

    McColgan, Patrick T.; Meraki, Adil; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.

    2017-04-01

    We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen-rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen-rare gas-helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, α -group of nitrogen atoms, Vegard-Kaplan bands of N_2 molecules, and β -group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and β -bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.

  2. Theoretical Studies of Liquid He-4 Near the Superfluid Transition

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2002-01-01

    We performed theoretical studies of liquid helium by applying state of the art simulation and finite-size scaling techniques. We calculated universal scaling functions for the specific heat and superfluid density for various confining geometries relevant for experiments such as the confined helium experiment and other ground based studies. We also studied microscopically how the substrate imposes a boundary condition on the superfluid order parameter as the superfluid film grows layer by layer. Using path-integral Monte Carlo, a quantum Monte Carlo simulation method, we investigated the rich phase diagram of helium monolayer, bilayer and multilayer on a substrate such as graphite. We find excellent agreement with the experimental results using no free parameters. Finally, we carried out preliminary calculations of transport coefficients such as the thermal conductivity for bulk or confined helium systems and of their scaling properties. All our studies provide theoretical support for various experimental studies in microgravity.

  3. Application of time-resolved shadowgraph imaging and computer analysis to study micrometer-scale response of superfluid helium

    NASA Astrophysics Data System (ADS)

    Sajjadi, Seyed; Buelna, Xavier; Eloranta, Jussi

    2018-01-01

    Application of inexpensive light emitting diodes as backlight sources for time-resolved shadowgraph imaging is demonstrated. The two light sources tested are able to produce light pulse sequences in the nanosecond and microsecond time regimes. After determining their time response characteristics, the diodes were applied to study the gas bubble formation around laser-heated copper nanoparticles in superfluid helium at 1.7 K and to determine the local cavitation bubble dynamics around fast moving metal micro-particles in the liquid. A convolutional neural network algorithm for analyzing the shadowgraph images by a computer is presented and the method is validated against the results from manual image analysis. The second application employed the red-green-blue light emitting diode source that produces light pulse sequences of the individual colors such that three separate shadowgraph frames can be recorded onto the color pixels of a charge-coupled device camera. Such an image sequence can be used to determine the moving object geometry, local velocity, and acceleration/deceleration. These data can be used to calculate, for example, the instantaneous Reynolds number for the liquid flow around the particle. Although specifically demonstrated for superfluid helium, the technique can be used to study the dynamic response of any medium that exhibits spatial variations in the index of refraction.

  4. Oscillating-grid experiments in water and superfluid helium

    NASA Astrophysics Data System (ADS)

    Honey, Rose E.; Hershberger, Robert; Donnelly, Russell J.; Bolster, Diogo

    2014-05-01

    Passing a fluid through a grid is a well-known mechanism used to study the properties of turbulence. Oscillating a horizontal grid vertically in a tank has also been used extensively and is considered to be a source of almost homogenous isotropic turbulence. When the oscillating grid is turned on a turbulent flow is induced. A front translates into the experimental tank, behind which the flow is highly turbulent. Long predicted that the growth of such a front would grow diffusively as the square root of time (i.e., d ˜√t ) and Dickinson and Long presented experimental evidence for the diffusive result at a low mesh Reynolds number of 555. This paper revisits these experiments and attempts a set of two models for the advancing front in both square and round tanks. We do not observe significant differences between runs in square and round tanks. The experiments in water reach mesh Reynolds numbers of order 30000. Using some data from superfluid helium experiments we are able to explore mesh Reynolds numbers to about 43000. We find the power law for the advancing front decreases weakly with the mesh Reynolds number. Using a very long tank we find that the turbulent front stops completely at a certain depth and attempt a simple explanation for that behavior. We study the propagation of the turbulent front into tubes of different diameters inserted into the main tank. We show that these tubes exclude wavelengths much larger than the tube diameter. We explore the variation of the position of the steady-state boundary H on tube diameter D and find that H =cD with c ˜2. We suggest this may be explained by saturation of the energy-containing length scale ℓe. We also report on the effect of plugging up just one hole of the grid. Finally, we recall some earlier oscillating grid experiments in superfluid 4He in the light of the present results.

  5. Exact Solutions for Nonlinear Development of a Kelvin-Helmholtz Instability for the Counterflow of Superfluid and Normal Components of Helium II.

    PubMed

    Lushnikov, Pavel M; Zubarev, Nikolay M

    2018-05-18

    Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.

  6. Exact Solutions for Nonlinear Development of a Kelvin-Helmholtz Instability for the Counterflow of Superfluid and Normal Components of Helium II

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel M.; Zubarev, Nikolay M.

    2018-05-01

    Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.

  7. Design considerations for a micro-g superfluid helium fluid acquisition system

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1989-01-01

    The general description, the operation, and the design of a superfluid helium (SFHe) fluid acquisition system (FAS) for use under microgravity conditions is presented. For the type of FAS considered here, where fine-mesh woven screens are used to retain flowing SFHe within a gallery arm (flow) channel, those forces which determine the flow dynamics are the micro-g accelerations, liquid surface tension, and tensile strength and cumulative pressure drops along a flow path that begins at the bulk liquid and ends at the entrance to a pump. For this case, the dimensionless number, N(T) is written as the ratio between the pressure drop across the screen and the surface tension forces at the screen for low fluid velocities. Static Bond number measurements have bene taken for SFHe using 325 x 2300 twilled Dutch screen and have indicated a screen pore hydraulic radius of 0.00031 cm.

  8. Measurements of Thermal Conductivity of Superfluid Helium Near its Transition Temperature T(sub lambda) in a 2D Confinement

    NASA Technical Reports Server (NTRS)

    Jerebets, Sergei

    2004-01-01

    We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.

  9. Laszlo Tisza and the two-fluid model of superfluidity

    NASA Astrophysics Data System (ADS)

    Balibar, Sébastien

    2017-11-01

    The "two-fluid model" of superfluidity was first introduced by Laszlo Tisza in 1938. On that year, Tisza published the principles of his model as a brief note in Nature and two articles in French in the Comptes rendus de l'Académie des sciences, followed in 1940 by two other articles in French in the Journal de physique et le Radium. In 1941, the two-fluid model was reformulated by Lev Landau on a more rigorous basis. Successive experiments confirmed the revolutionary idea introduced by Tisza: superfluid helium is indeed a surprising mixture of two fluids with independent velocity fields. His prediction of the existence of heat waves, a consequence of his model, was also confirmed. Then, it took several decades for the superfluidity of liquid helium to be fully understood.

  10. Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Meraki, Adil; Mao, Shun; McColgan, Patrick T.; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.

    2016-11-01

    We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen-helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the α -group of nitrogen atoms, the β -group of oxygen atoms and the Vegard-Kaplan bands of N_2 molecules were observed at the beginning of destruction. At the end of destruction the M- and β -bands of NO molecules as well as bands of O_2 molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O_2 molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)_2 dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O_2 molecules.

  11. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    PubMed Central

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-01-01

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K. PMID:26233132

  12. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei; Zhang, Jie; Freund, William M.

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature,more » the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.« less

  13. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.

    PubMed

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  14. The test facility for the short prototypes of the LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-05-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  15. Observation of the spiral flow and vortex induced by a suction pump in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ohyama, K.; Obara, K.; Ishikawa, O.

    2018-03-01

    A suction flow generates a whirlpool, namely a bathtub vortex, in a classical fluid; in contrast, rotating containers, which are usually used for studies of superfluid helium, can produce only simple solid rotation. In the present work, the superfluid flow and concentrated quantized vortices induced by a cryogenic motor immersed in superfluid 4He were investigated. Using a motor with six blades in a cylinder caused the free surface of the superfluid 4He to take on a parabolic shape, indicating that the motor produces a rotating superfluid flow. To drive a suction flow in superfluid helium, the motor was mounted in a cylindrical container with a small hole at the center of the top and a slit at the side, acting as a superfluid pump. This pump was successfully used to generate a spiral flow and a vortex with a funnel-shaped core in superfluid 4He, suggesting that the resulting suction flow transports and centralizes quantized vortices to the suction hole, increasing the vortex circulation and sucking the free surface of the superfluid down.

  16. Atomic and Molecular Dynamics on and in Superfluid Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2003-03-01

    Studies of intramolecular and intermolecular dynamics is at the core of Molecular Spectroscopic research several decades. Gas phase, particularly molecular beam, studies have greatly illuminated these processes in isolated molecules, bimolecular collisions, or small covalent and van der Waals complexes. Parallel to this effort have been studies in condensed phases, but there has unfortunately been little intellectual contact between these. The recent development of Helium Nanodropet Isolation Spectroscopy is providing an intellectual bridge between gas phase and condensed phase spectroscopy. While droplets of 10,000 He atoms are effectively a condensed phase, their low temperature ( 0.4 K) and ultralow heat capacities combined with their superfluid state make them an almost ideal matrix in which to study both molecular dynamics, including solute induced relaxations. The nsec times scales for many of the relaxation events, orders of magnitude slower than in classical liquids, results in spectra with unprecedented resolution for the liquid state. In this talk, studies of the Princeton group will be highlighted, with particular emphasis on those for which a combination of theory and experiment have combined to reveal dynamics in this unique Quantum Fluid.

  17. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    NASA Astrophysics Data System (ADS)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  18. Development of a Novel Method for the Exploration of the Thermal Response of Superfluid Helium Cooled Superconducting Cables to Pulse Heat Loads

    NASA Astrophysics Data System (ADS)

    Winkler, T.; Koettig, T.; van Weelderen, R.; Bremer, J.; ter Brake, H. J. M.

    Management of transient heat deposition in superconducting magnets and its extraction from the aforementioned is becoming increasingly important to bring high energy particle accelerator performance to higher beam energies and intensities. Precise knowledge of transient heat deposition phenomena in the magnet cables will permit to push the operation of these magnets as close as possible to their current sharing limit, without unduly provoking magnet quenches. With the prospect of operating the Large Hadron Collider at CERN at higher beam energies and intensities an investigation into the response to transient heat loads of LHC magnets, operating in pressurized superfluid helium, is being performed. The more frequently used approach mimics the cable geometry by resistive wires and uses Joule-heating to deposit energy. Instead, to approximate as closely as possible the real magnet conditions, a novel method for depositing heat in cable stacks made out of superconducting magnet-cables has been developed. The goal is to measure the temperature difference as a function of time between the cable stack and the superfluid helium bath depending on heat load and heat pulse length. The heat generation in the superconducting cable and precise measurement of small temperature differences are major challenges. The functional principle and experimental set-up are presented together with proof of principle measurements.

  19. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  20. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Nihat Berker, A.

    1997-02-01

    Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.

  1. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatnikova, A.; Berker, A.N.

    1997-02-01

    Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}

  2. Towards laboratory detection of topological vortices in superfluid phases of QCD

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  3. Ultracold-neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K

    NASA Astrophysics Data System (ADS)

    Leung, K. K. H.; Ivanov, S.; Piegsa, F. M.; Simson, M.; Zimmer, O.

    2016-02-01

    Ultracold neutrons (UCNs) were produced in superfluid helium using the PF1B cold-neutron beam facility at the Institut Laue-Langevin. A 4-liter beryllium-coated converter volume with a mechanical valve and windowless stainless-steel extraction system were used to accumulate and guide UCNs to a detector at room temperature. At a converter temperature of 1.08 K the total storage time constant in the vessel was (20.3 ±1.2 )s and the number of UCNs counted after accumulated was 91 700 ±300 . From this, we derive a volumetric UCN production rate of (6.9 ±1.7 ) cm-3s-1 , which includes a correction for losses in the converter during UCN extraction caused by the short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs caused by excitations in the superfluid was studied by scanning the temperature between 1.2 K and 2.4 K . Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data, the only UCN up-scattering process found to occur was from two-phonon scattering. Our analysis for T <1.95 K rules out the contributions from roton-phonon scattering to <29 % (95% C.I.) and from one-phonon absorption to <47 % (95% C.I.) of their predicted levels.

  4. Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Borel, A.; Kono, K.

    2018-03-01

    We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.

  5. Superfluidity of 4He in dense aerogel studied using quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Okamoto, R.; Nakajima, A.; Abe, S.

    2018-03-01

    Superfluid 4He in aerogel is of interest because it has a normal component coupling to gel strand due to viscosity and a superfluid component with zero viscosity. Superfluid helium in aerogel has two sound modes, a slow critical mode and a fast one. In this study, quartz tuning fork was used in order to study acoustic properties of liquid 4He in aerogel with 90% porosity. Two pieces of aerogel were glued on both prongs of quartz tuning fork that had a resonance frequency of 33 kHz. The tuning fork was immersed in liquid 4He from 2 to 20 bar. The resonance frequency increased in the superfluid phase due to decrease in loaded mass. Temperature variation of resonance frequency was explained by that of superfluid density. Superfluid transition in aerogel was 2 mK lower than that without gel. Additional dissipation was observed in the temperature range between 1 K and transition temperature.

  6. A thermodynamic model to predict electron mobility in superfluid helium.

    PubMed

    Aitken, Frédéric; Volino, Ferdinand; Mendoza-Luna, Luis Guillermo; Haeften, Klaus von; Eloranta, Jussi

    2017-06-21

    Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.

  7. Renormalization-Group Theory Study of Superfluidity and Phase Separation of Helium Mixtures Immersed in Jungle-Gym Aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Berker, A. Nihat

    1997-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.

  8. Glass-to-Metal Seal Against Liquid Helium

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Gatewood, John R.

    1987-01-01

    Simple compression joint with indium gasket forms demountable seal for superfluids. Seal developed for metal lid on glass jar used in experiments on liquid helium. Glass container allows contents to be viewed for such purposes as calibration of liquid-level detectors and adjustments of displacement plungers. Seal contains liquid helium even when temperature drops below 2.19K. Made from inexpensive, commercially available materials and parts.

  9. Room-temperature superfluidity in a polariton condensate

    NASA Astrophysics Data System (ADS)

    Lerario, Giovanni; Fieramosca, Antonio; Barachati, Fábio; Ballarini, Dario; Daskalakis, Konstantinos S.; Dominici, Lorenzo; de Giorgi, Milena; Maier, Stefan A.; Gigli, Giuseppe; Kéna-Cohen, Stéphane; Sanvitto, Daniele

    2017-09-01

    Superfluidity--the suppression of scattering in a quantum fluid at velocities below a critical value--is one of the most striking manifestations of the collective behaviour typical of Bose-Einstein condensates. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier-Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.

  10. Test program, helium II orbital resupply coupling

    NASA Technical Reports Server (NTRS)

    Hyatt, William S.

    1991-01-01

    The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.

  11. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    DOE PAGES

    Treite, P.; Nuesslein, U.; Jia, Yi; ...

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less

  12. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  13. Critical Landau Velocity in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Brauer, Nils B.; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J.; Drabbels, Marcel

    2013-10-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  14. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.

  15. Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2010-09-15

    We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less

  16. Laser Spectroscopy of Radicals, Carbenes, and Ions in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Douberly, Gary E.

    2015-06-01

    The first beam of helium droplets was reported in the 1961 paper Strahlen aus kondensiertem Helium im Hochvakuum by Von E. W. Becker and co-workers. However, molecular spectroscopy of helium-solvated dopants wasn't realized until 30 years later in the laboratories of Scoles and Toennies. It has now been two decades since this early, seminal work on doped helium droplets, yet the field of helium droplet spectroscopy is still fresh with vast potential. Analogous in many ways to cryogenic matrix isolation spectroscopy, the helium droplet is an ideal environment to spectroscopically probe difficult to prepare molecular species, such as radicals, carbenes and ions. The quantum nature of helium at 0.35 K often results in molecular spectra that are sufficiently resolved to evoke an analysis of line shapes and fine-structure that is worthy of the International Symposium on Molecular Spectroscopy. The present talk will focus on our recent successful attempts to efficiently dope the title molecular species into helium droplets and probe their properties with infrared laser Stark and Zeeman spectroscopies. E. W. Becker, R. Klingelhöfer, P. Lohse, Z. Naturforsch. A 16A, 1259 (1961). S. Goyal, D. L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992). M. Hartmann, R. E. Miller, J. P. Toennies, A. F. Vilesov, Phys. Rev. Lett. 75, 1566, (1995).

  17. Rotational excitations of N2O in small helium clusters and the role of Bose permutation symmetry

    NASA Astrophysics Data System (ADS)

    Paesani, F.; Whaley, K. B.

    2004-09-01

    We present a detailed study of the energetics, structures, and Bose properties of small clusters of 4He containing a single nitrous oxide (N2O) molecule, from N=1 4He up to sizes corresponding to completion of the first solvation shell around N2O (N=16 4He). Ground state properties are calculated using the importance-sampled rigid-body diffusion Monte Carlo method, rotational excited state calculations are made with the projection operator imaginary time spectral evolution method, and Bose permutation exchange and associated superfluid properties are calculated with the finite temperature path integral method. For N⩽5 the helium atoms are seen to form an equatorial ring around the molecular axis, at N=6 helium density starts to occupy the second (local) minimum of the N2O-He interaction at the oxygen side of the molecule, and N=9 is the critical size at which there is onset of helium solvation all along the molecular axis. For N⩾8 six 4He atoms are distributed in a symmetric, quasirigid ring around N2O. Path integral calculations show essentially complete superfluid response to rotation about the molecular axis for N⩾5, and a rise of the perpendicular superfluid response from zero to appreciable values for N⩾8. Rotational excited states are computed for three values of the total angular momentum, J=1-3, and the energy levels fitted to obtain effective spectroscopic constants that show excellent agreement with the experimentally observed N dependence of the effective rotational constant Beff. The non-monotonic behavior of the rotational constant is seen to be due to the onset of long 4He permutation exchanges and associated perpendicular superfluid response of the clusters for N⩾8. We provide a detailed analysis of the role of the helium solvation structure and superfluid properties in determining the effective rotational constants.

  18. Study of Flow of Superfluid He-II Very Near Tau(sub lambda)

    NASA Technical Reports Server (NTRS)

    Mukharsky, Yury; Sukhatme, Kalyani; Pearson, David; Chui, Talso

    1999-01-01

    We report here, preliminary data from an experiment studying flow of superfluid helium through a slit orifice (of sub-micron width) very close to T(sub lambda). Critical supercurrent (I(sub c)) data is obtained from a step function drive to the diaphragm in a Helmholtz resonator cell. The superfluid density (rho(sub s)) data can be obtained from the resonant frequency of the Helmholtz oscillator, as determined by transfer function of the resonator or from the free ringing after the step function excitation. Preliminary data shows that I(sub c) is proportional to (rho(sub s))(exp 1.27) and rho(sub s)) is proportional to tau(exp 0.73), where tau is the reduced temperature. However, the magnitude of I(sub c) is much larger than expected, indicating a possible parallel flow path. Further investigations are in progress. Keywords: superfluid; hydrodynamics; critical exponent

  19. The numerical model of multi-layer insulation with a defined wrapping pattern immersed in superfluid helium

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Lubryka, Eliza

    2017-11-01

    The numerical model of thin layers, characterized by a defined wrapping pattern can be a crucial element of many computational problems related to engineering and science. A motivating example is found in multilayer electrical insulation, which is an important component of superconducting magnets and other cryogenic installations. The wrapping pattern of the insulation can significantly affect heat transport and the performance of the considered instruments. The major objective of this study is to develop the numerical boundary conditions (BC) needed to model the wrapping pattern of thin insulation. An example of the practical application of the proposed BC includes the heat transfer of Rutherford NbTi cables immersed in super-fluid helium (He II) across thin layers of electrical insulation. The proposed BC and a mathematical model of heat transfer in He II are implemented in the open source CFD toolbox OpenFOAM. The implemented mathematical model and the BC are compared in the experiments. The study confirms that the thermal resistance of electrical insulation can be lowered by implementing the proper wrapping pattern. The proposed BC can be useful in the study of new patterns for wrapping schemes. The work has been supported by statutory funds from Polish Ministry for Science and Higher Education for the year of 2017.

  20. Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Mantia, Marco, E-mail: lamantia@nbox.troja.mff.cuni.cz

    The motion of micrometer-sized solid hydrogen particles in thermal counterflow of superfluid helium is studied experimentally by using the particle tracking velocimetry technique. The investigated quantum flow occurs in a square channel of 25 mm sides and 100 mm length, appreciably wider than those employed in previous related experiments. Flow velocities up to 10 mm/s are obtained, corresponding to temperatures between about 1.3 K and 2.1 K, and applied heat fluxes between ca. 50 W/m{sup 2} and 500 W/m{sup 2}. The character of the obtained particle trajectories changes significantly as the imposed mean flow velocity increases. At thermal counterflow velocitiesmore » lower than approximately 1 mm/s, the particle tracks appear straighter than at larger velocities. On the basis of the current understanding of the underlying physics, it is argued that the outcome is most likely due to the transition to the turbulent state of the investigated flow as, for narrower channels, this transition was reported to occur at larger velocities. The present results confirm that, at least in the parameter ranges investigated to date, the transition to turbulence in thermal counterflow depends on the geometry of the channel where this quantum flow develops.« less

  1. Modulations of Driven Nonlinear Surface Waves on Water and Liquid Helium-4.

    DTIC Science & Technology

    1985-06-01

    loop to control drive amplitude. 63 CHAPTER III. DATA AND INTERPRETATION. Section 5. Cockscombs. 25. Cockscomb in water at f/30. 67 26. Double...annular trough, sealed and then partially filled with normal or superfluid helium, is oscillated vertically and supported 6 . . ... . . . . . 41 700...44 0 .0 0 00 loudspeaker surface wave sealed trough transducer shel oo •Figure 3. Schmatic of the helium experiment. 8 r

  2. Persistent Currents in a Rotating Superleak Partially Filled with Superfluid Helium.

    DTIC Science & Technology

    1982-12-01

    the difference in pressure of the helium bath Po and the reduced vapor pressure in the cell P. In the region from 1.0 to 0.1 the log Po-P has been seen...easily measurable quantities of temperature, T, the helium bath pressure, Po, and the cell pressure P to the film thickness d. Alpha is a measure of the...rotation is controlled by a motor and power supply. The temperature is controlled by the pumping rate and a feedback heater in the helium bath and -maybe

  3. Quenched bond randomness: Superfluidity in porous media and the strong violation of universality

    NASA Astrophysics Data System (ADS)

    Falicov, Alexis; Berker, A. Nihat

    1997-04-01

    The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for3He-4He mixtures and incomplete4He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the λ-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low4He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixtures and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized “jungle-gym” aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling—strong randomness under rescaling), there is a new “hyperuniversality” at phase transitions with asymptotic strong coupling—strong randomness behavior, for example assigning the same critical exponents to random- bond tricriticality and random- field criticality.

  4. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  5. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-06

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.

  6. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  7. Hybrid Circuit QED with Electrons on Helium

    NASA Astrophysics Data System (ADS)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  8. Quenched bond randomness: Superfluidity in porous media and the strong violation of universality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falicov, A.; Berker, A.N.

    1997-04-01

    The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for {sup 3}He-{sup 4}He mixtures and incomplete {sup 4}He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the A-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low {sup 4}He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixturesmore » and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized {open_quote}jungle-gym{close_quotes} aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling-strong randomness under resealing), there is a new {open_quotes}hyperuniversality{close_quotes} at phase transitions with asymptotic strong coupling-strong randomness behavior, for example assigning the same critical exponents to random-bond tricriticality and random-field criticality.« less

  9. Superfluidity and spin superfluidity in spinor Bose gases

    NASA Astrophysics Data System (ADS)

    Armaitis, J.; Duine, R. A.

    2017-05-01

    We show that spinor Bose gases subject to a quadratic Zeeman effect exhibit coexisting superfluidity and spin superfluidity, and study the interplay between these two distinct types of superfluidity. To illustrate that the basic principles governing these two types of superfluidity are the same, we describe the magnetization and particle-density dynamics in a single hydrodynamic framework. In this description spin and mass supercurrents are driven by their respective chemical potential gradients. As an application, we propose an experimentally accessible stationary state, where the two types of supercurrents counterflow and cancel each other, thus resulting in no mass transport. Furthermore, we propose a straightforward setup to probe spin superfluidity by measuring the in-plane magnetization angle of the whole cloud of atoms. We verify the robustness of these findings by evaluating the four-magnon collision time, and find that the time scale for coherent (superfluid) dynamics is separated from that of the slower incoherent dynamics by one order of magnitude. Comparing the atom and magnon kinetics reveals that while the former can be hydrodynamic, the latter is typically collisionless under most experimental conditions. This implies that, while our zero-temperature hydrodynamic equations are a valid description of spin transport in Bose gases, a hydrodynamic description that treats both mass and spin transport at finite temperatures may not be readily feasible.

  10. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium. [Wave functions, preliminary experimental techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.

  11. Vortices in rotating superfluid 3He

    PubMed Central

    Lounasmaa, Olli V.; Thuneberg, Erkki

    1999-01-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895

  12. Vortex Loops at the Superfluid Lambda Transition: An Exact Theory?

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    2003-01-01

    A vortex-loop theory of the superfluid lambda transition has been developed over the last decade, with many results in agreement with experiments. It is a very simple theory, consisting of just three basic equations. When it was first proposed the main uncertainty in the theory was the use Flory scaling to find the fractal dimension of the random-walking vortex loops. Recent developments in high-resolution Monte Carlo simulations have now made it possible to verify the accuracy of this Flory-scaling assumption. Although the loop theory is not yet rigorously proven to be exact, the Monte Carlo results show at the least that it is an extremely good approximation. Recent loop calculations of the critical Casimir effect in helium films in the superfluid phase T < Tc will be compared with similar perturbative RG calculations in the normal phase T > Tc; the two calculations are found to match very nicely right at Tc.

  13. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  14. Helium cluster isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Higgins, John Paul

    Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.

  15. The Observed Properties of Liquid Helium at the Saturated Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Barenghi, Carlo F.

    1998-11-01

    The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.

  16. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard Hitomi

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji

    2018-01-01

    When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to <2 μg/s, corresponding to a loss of cooling capacity of <40 μW. The design adopts the same general design as implemented for Astro-E and E2, using a vent system composed of a porous plug, combined with an orifice, a heat exchanger, and knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.

  17. Study of helium transfer technology for STICCR: Fluid management

    NASA Technical Reports Server (NTRS)

    Frank, D. J.; Yuan, S. W. K.; Grove, R. K.; Lheureux, J. M.

    1987-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate.

  18. Modeling Kelvin Wave Cascades in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Boffetta, G.; Celani, A.; Dezzani, D.; Laurie, J.; Nazarenko, S.

    2009-09-01

    We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM.

  19. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

    PubMed Central

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2–5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4–0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  20. Experimental study of nanofluidics and phase transitions of normal and superfluid 4He

    NASA Astrophysics Data System (ADS)

    Velasco, Angel Enriques

    This thesis addresses the experimental results of two different research topics. The first is the experimental work of pressure driven flows in the smallest, single nanotubes ever investigated. The nanotube boundary conditions and slip lengths from argon, nitrogen, water, and helium experiments were analyzed and compared to macroscopic boundary conditions. The second research topic discusses the work on ellipsometric and quartz microbalance measurements of the 2D superfluid phase diagram of 4He on alkali substrates. Ellipsometric results of sodium on HOPG provide the first evidence of the existence of the 2D critical point on an intermediate strength substrate. Pressure driven flows through single nanopores and microtubes were measured with a calibrated mass spectrometer with pressure drops up to 30 Atm. The nanopores were between 30 nm to 600 nm in diameter and etched in mica and PET membranes of several microns thickness. Microtubes several inches long of fused quartz and nickel material were tested with diameters between 1.8 micron and 25 micron. For 4He and argon gas we observed the flow transition between the free molecular and continuum regimes at 293 K and 77 K. No discrepancy between the macroscopic theory and the 30 nm nanopore data was found. Because of the exceptionally low viscosity of gaseous helium the laminar-turbulent transition could also be observed within these submicron channels. The small viscosity of 4He was too small to dampen inertial effects at a Reynolds number of 2000. In addition to single phase gas flows, our experimental technique also allows us to investigate flows in which the nano or micro scale pipe is either partially or completely filled with liquids. The position of the intrinsic liquid/vapor interface was important for understanding this type of flow. Strong evaporation and cooling at the liquid-vapor interface can lead to freezing for conventional fluids such as nitrogen and water, which in turn leads to complex intermittent

  1. Helium-4 Experiments near T-lambda in a Low-Gravity Simulator

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Larson, Melora; Israelsson, Ulf

    2000-01-01

    We report our studies of gravity cancellation in a liquid helium sample cell along the lambda-line using a low-gravity simulator facility. The simulator consists of a superconducting magnet capable of producing B(delta-B/delta-z) = 22squareT)/cm. We have verified experimentally that the simulator can cancel gravity to about 0.01g in a cylindrical sample volume of 0.5 cm in diameter and 0.5 cm in height. This allows us to approach more closely the superfluid transition without entering the normal-superfluid two phase region induced by gravity. We also present the measurements of T-c(Q,P): depression of the superfluid transition temperature by a heat current(Q) along the lambda-line (P). The results are consistent with the Renormalization-group theory calculation. Measurements of thermal expansion coefficient in a heat current will also be discussed. The work has been carried out by JPL, California Institute of Technology under contract to NASA.

  2. Disproportionate entrance length in superfluid flows and the puzzle of counterflow instabilities

    NASA Astrophysics Data System (ADS)

    Bertolaccini, J.; Lévêque, E.; Roche, P.-E.

    2017-12-01

    Systematic simulations of the two-fluid model of superfluid helium (He-II) encompassing the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) mutual coupling have been performed in two-dimensional pipe counterflows between 1.3 and 1.96 K. The numerical scheme relies on the lattice Boltzmann method. A Boussinesq-like hypothesis is introduced to omit temperature variations along the pipe. In return, the thermomechanical forcings of the normal and superfuid components are fueled by a pressure term related to their mass-density variations under an approximation of weak compressibility. This modeling framework reproduces the essential features of a thermally driven counterflow. A generalized definition of the entrance length is introduced to suitably compare entry effects (of different nature) at opposite ends of the pipe. This definition is related to the excess of pressure loss with respect to the developed Poiseuille-flow solution. At the heated end of the pipe, it is found that the entrance length for the normal fluid follows a classical law and increases linearly with the Reynolds number. At the cooled end, the entrance length for the superfluid is enhanced as compared to the normal fluid by up to one order of magnitude. At this end, the normal fluid flows into the cooling bath of He-II and produces large-scale superfluid vortical motions in the bath that partly re-enter the pipe along its sidewalls before being damped by mutual friction. In the superfluid entry region, the resulting frictional coupling in the superfluid boundary layer distorts the velocity profiles toward tail flattening for the normal fluid and tail raising for the superfluid. Eventually, a simple analytical model of entry effects allows us to re-examine the long-debated thresholds of T 1 and T 2 instabilities in superfluid counterflows. Inconsistencies in the T 1 thresholds reported since the 1960s disappear if an aspect-ratio criterion based on our modeling is used to discard data sets with the

  3. Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1997-01-01

    Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.

  4. Detecting continuous gravitational waves with superfluid 4He

    NASA Astrophysics Data System (ADS)

    Singh, S.; De Lorenzo, L. A.; Pikovski, I.; Schwab, K. C.

    2017-07-01

    Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For thermal noise limited sensitivity, we find that strain fields on the order of h˜ {10}-23/\\sqrt{{Hz}} are detectable. Measuring such strains is possible by implementing state of the art microwave transducer technology. We show that the proposed system can compete with interferometric detectors and potentially surpass the gravitational strain limits set by them for certain pulsar sources within a few months of integration time.

  5. Nonlinear Dynamics of the Superfluid Transition: What may We learn on orbit?

    NASA Technical Reports Server (NTRS)

    Duncan, Rob

    2003-01-01

    Linear response (specifically, Fourier's Law) in He-4 has been observed to fail in heat flow experiments near the superfluid transition. A detailed analysis of the data suggests that the hydrostatic pressure gradient across the helium column limits the divergence of the correlation length in our earth-based experiments. This is consistent with other observations, such as the surprising lack of mutual friction and hysteresis near the superfluid transition, and a 'rounding' of the transition that appears to be independent of heat flux in the low heat flux limit. I will discuss these unusual results from earth-based measurements, and will show predictions for the very different results that may result when we make our measurements on orbit as part of the M1 Mission of the Low- Temperature, Microgravity Physics Facility. This work has been funded by the Fundamental Physics Discipline within the Physical Sciences Research Office of NASA, and is conducted by the DYNAMX (UNM) and CQ (Caltech) Groups, with assistance from the Low Temperature Science and Quantum Sensors Group at JPL.

  6. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  7. When superfluids are a drag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David C

    2008-01-01

    The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.

  8. Superfluid density of states and pseudogap phenomenon in the BCS-BEC crossover regime of a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Ryota; Tsuchiya, Shunji; CREST

    2010-10-15

    We investigate single-particle excitations and strong-coupling effects in the BCS-BEC crossover regime of a superfluid Fermi gas. Including phase and amplitude fluctuations of the superfluid order parameter within a T-matrix theory, we calculate the superfluid density of states (DOS), as well as single-particle spectral weight, over the entire BCS-BEC crossover region below the superfluid transition temperature T{sub c}. We clarify how the pseudogap in the normal state evolves into the superfluid gap, as one passes through T{sub c}. While the pseudogap in DOS continuously evolves into the superfluid gap in the weak-coupling BCS regime, the superfluid gap in the crossovermore » region is shown to appear in DOS after the pseudogap disappears below T{sub c}. In the phase diagram with respect to the temperature and interaction strength, we determine the region where strong pairing fluctuations dominate over single-particle properties of the system. Our results would be useful for the study of strong-coupling phenomena in the BCS-BEC crossover regime of a superfluid Fermi gas.« less

  9. Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa

    NASA Technical Reports Server (NTRS)

    Arp, Vincent D.; Mccarty, Robert D.

    1989-01-01

    Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.

  10. Twisted complex superfluids in optical lattices

    PubMed Central

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-01-01

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721

  11. Spinning superfluid 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Pi, Martí

    2018-05-01

    We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.

  12. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Miller, Franklin K.

    2017-03-01

    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  13. Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Michel, B.; Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille; Herbert, E.

    2014-12-15

    We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow ismore » partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.« less

  14. Stabilization of He2(A(sup 3)Sigma(sub u)(+)) molecules in liquid helium by optical pumping for vacuum UV laser

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S. (Inventor)

    1978-01-01

    A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.

  15. Spin Superfluidity and Magnone BEC in He-3

    NASA Astrophysics Data System (ADS)

    Bunkov, Yury

    2011-03-01

    The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).

  16. Kinematics of the Doped Quantum Vortices in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Bernando, Charles; Vilesov, Andrey F.

    2018-05-01

    Recent observation of quantum vortices in superfluid 4He droplets measuring a few hundreds of nanometers in diameter involved decoration of vortex cores by clusters containing large numbers of Xe atoms, which served as X-ray contrast agents. Here, we report on the study of the kinematics of the combined vortex-cluster system in a cylinder and in a sphere. Equilibrium states, characterized by total angular momentum, L, were found by minimizing the total energy, E, which sums from the kinetic energy of the liquid due to the vortex and due to orbiting Xe clusters, as well as solvation energy of the cluster in the droplet. Calculations show that, at small mass of the cluster, the equilibrium displacement of the system from the rotation axis is close to that for the bare vortex. However, upon decrease in L beyond certain critical value, which is larger for heavier clusters, the displacement bifurcates toward the surface region, where the motion of the system is governed by the clusters. In addition, at even smaller L, bare orbiting clusters become energetically favorable, opening the possibility for the vortex to detach from the cluster and to annihilate at the droplet's surface.

  17. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    NASA Astrophysics Data System (ADS)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  18. Ion formation upon electron collisions with valine embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Weinberger, Nikolaus; Ralser, Stefan; Renzler, Michael; Harnisch, Martina; Kaiser, Alexander; Denifl, Stefan; Böhme, Diethard K.; Scheier, Paul

    2016-04-01

    We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 atoms that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. Ion efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of ion formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by collisions with electrons or He*- and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  19. Vortex mass in a superfluid

    NASA Astrophysics Data System (ADS)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  20. On the surface of superfluids

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Bhattacharya, Jyotirmoy; Jain, Akash; Kundu, Nilay

    2017-06-01

    Developing on a recent work on localized bubbles of ordinary relativistic fluids, we study the comparatively richer leading order surface physics of relativistic superfluids, coupled to an arbitrary stationary background metric and gauge field in 3 + 1 and 2 + 1 dimensions. The analysis is performed with the help of a Euclidean effective action in one lower dimension, written in terms of the superfluid Goldstone mode, the shape-field (characterizing the surface of the superfluid bubble) and the background fields. We find new terms in the ideal order constitutive relations of the superfluid surface, in both the parity-even and parity-odd sectors, with the corresponding transport coefficients entirely fixed in terms of the first order bulk transport coefficients. Some bulk transport coefficients even enter and modify the surface thermodynamics. In the process, we also evaluate the stationary first order parity-odd bulk currents in 2 + 1 dimensions, which follows from four independent terms in the superfluid effective action in that sector. In the second part of the paper, we extend our analysis to stationary surfaces in 3 + 1 dimensional Galilean superfluids via the null reduction of null superfluids in 4 + 1 dimensions. The ideal order constitutive relations in the Galilean case also exhibit some new terms similar to their relativistic counterparts. Finally, in the relativistic context, we turn on slow but arbitrary time dependence and answer some of the key questions regarding the time-dependent dynamics of the shape-field using the second law of thermodynamics. A linearized fluctuation analysis in 2 + 1 dimensions about a toy equilibrium configuration reveals some new surface modes, including parity-odd ones. Our framework can be easily applied to model more general interfaces between distinct fluid-phases.

  1. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huisken, Friedrich; Krasnokutski, Serge A.

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the heliummore » droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.« less

  2. Decay of grid turbulence in superfluid helium-4: Mesh dependence

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ihas, G. G.

    2018-03-01

    Temporal decay of grid turbulence is experimentally studied in superfluid 4He in a large square channel. The second sound attenuation method is used to measure the turbulent vortex line density (L) with a phase locked tracking technique to minimize frequency shift effects induced by temperature fluctuations. Two different grids (0.8 mm and 3.0 mm mesh) are pulled to generate turbulence. Different power laws for decaying behavior are predicted by a theory. According to this theory, L should decay as t‑11/10 when the length scale of energy containing eddies grows from the grid mesh size to the size of the channel. At later time, after the energy containing eddy size becomes comparable to the channel, L should follow t‑3/2. Our recent experimental data exhibit evidence for t‑11/10 during the early time and t‑2 instead of t‑3/2 for later time. Moreover, a consistent bump/plateau feature is prominent between the two decay regimes for smaller (0.8 mm) grid mesh holes but absent with a grid mesh hole of 3.0 mm. This implies that in the large channel different types of turbulence are generated, depending on mesh hole size (mesh Reynolds number) compared to channel Reynolds number.

  3. Investigation Development Plan for Reflight of the Small Helium-cooled Infrared Telescope Experiment. Volume 1: Investigation and Technical/management

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Infrared Telescope (IRT) is designed to survey extended celestial sources of infrared radiation between 4 and 120 micrometers wavelength. It will provide data regarding Space Shuttle induced environmental contamination and the zodical light. And, it will provide experience in the management of large volumes of superfluid helium in the space environment.

  4. Generation of dark-bright soliton trains in superfluid-superfluid counterflow.

    PubMed

    Hamner, C; Chang, J J; Engels, P; Hoefer, M A

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  5. Generation of Dark-Bright Soliton Trains in Superfluid-Superfluid Counterflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamner, C.; Chang, J. J.; Engels, P.

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  6. Ejection of Metal Particles into Superfluid 4He by Laser Ablation.

    PubMed

    Buelna, Xavier; Freund, Adam; Gonzalez, Daniel; Popov, Evgeny; Eloranta, Jussi

    2016-10-05

    The dynamics following laser ablation of a metal target immersed in superfluid $^4$He is studied by time-resolved shadowgraph photography. The delayed ejection of hot micrometer-sized particles from the target surface into the liquid was indirectly observed by monitoring the formation and growth of gaseous bubbles around the particles. The experimentally determined particle average velocity distribution appears similar as previously measured in vacuum but exhibits a sharp cutoff at the speed of sound of the liquid. The propagation of the subsonic particles terminates in slightly elongated non-spherical gas bubbles residing near the target whereas faster particles reveal an unusual hydrodynamic response of the liquid. Based on the previously established semi-empirical model developed for macroscopic objects, the ejected transonic particles exhibit supercavitating flow to reduce their hydrodynamic drag. Supersonic particles appear to follow a completely different propagation mechanism as they leave discrete and semi-continuous bubble trails in the liquid. The relatively low number density of the observed non-spherical gas bubbles indicates that only large micron-sized particles are visualized in the experiments. Although the unique properties of superfluid helium allow a detailed characterization of these processes, the developed technique can be used to study the hydrodynamic response of any liquid to fast propagating objects on the micrometer-scale.

  7. Superfluidity or supersolidity as a consequence of off-diagonal long-range order

    NASA Astrophysics Data System (ADS)

    Shi, Yu

    2005-07-01

    We present a general derivation of Hess-Fairbank effect or nonclassical rotational inertial (NCRI), i.e., the refusal to rotate with its container, as well as the quantization of angular momentum, as consequences of off-diagonal long-range order (ODLRO) in an interacting Bose system. Afterwards, the path integral formulation of superfluid density is rederived without ignoring the centrifugal potential. Finally and in particular, for a class of variational wave functions used for solid helium, treating the constraint of single-valuedness boundary condition carefully, we show that there is no ODLRO and, especially, demonstrate explicitly that NCRI cannot be possessed in absence of defects, even though there exist zero-point motion and exchange effect.

  8. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P

  9. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  10. Flowing holographic anyonic superfluid

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2014-10-01

    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.

  11. Quantum turbulence in superfluids with wall-clamped normal component.

    PubMed

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-03-25

    In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.

  12. Quantum turbulence in superfluids with wall-clamped normal component

    PubMed Central

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-01-01

    In Fermi superfluids, such as superfluid 3He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures. PMID:24704879

  13. Fermion Superfluidity

    NASA Technical Reports Server (NTRS)

    Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng

    2003-01-01

    Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.

  14. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    NASA Astrophysics Data System (ADS)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  15. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  16. Thermodynamic properties of superfluid helium-3 and measurements of the specific heat of helium-3 in confined geometries as a probe for effects of impurity scattering

    NASA Astrophysics Data System (ADS)

    Choi, Hyoungsoon

    Since its emergence, the Ginzburg-Landau theory has had a tremendous success in describing thermodynamic properties of superconductivity. In the case of superfluid 3He, not all five fourth-order parameters in the theory are known. Only four combinations of the five parameters have been experimentally established and theoretical attempts to calculate the parameters have had limited success as well. We present in this thesis a method to identify the five parameters independent of one another through a close inspection of the experiments and the theoretical calculation of Sauls and Serene. In an attempt to extend our understanding of the thermodynamic properties of 3He, we have also measured the specific heat of superfluid 3He. The measurements were performed on 3He confined in a high porosity silica aerogel and they served as a probe for the effects of impurity scattering. 3He in aerogel clearly shows behavior different from that of pure 3He: including suppression of the transition temperature and the order parameter. We have also looked at 3He in silver sinter. The difference in structures between the silver sinter and the aerogel are manifested in differences in the specific heat. In both cases, however, the impurity scattering creates Andreev bound states and we present evidence for them with our measurements.

  17. Optimization of Helium Vessel Design for ILC Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratangelo, Enrico

    2009-01-01

    The ILC (International Linear Collider) is a proposed new major particle accelerator. It consists of two 20 km long linear accelerators colliding electrons and positrons at an energy exceeding 500 GeV, Achieving this collision energy while keeping reasonable accelerator dimensions requires the use of high electric field superconducting cavities as the main acceleration element. These cavities are operated at l.3 GHz inside an appropriate container (He vessel) at temperatures as low as 1.4 K using superfluid Helium as the refrigerating medium. The purpose of this thesis, in the context of the ILC R&D activities currently in progress at Fermilab (Fermimore » National Accelerator Laboratory), is the mechanical study of an ILC superconducting cavity and Helium vessel prototype. The main goals of these studies are the determination of the limiting working conditions of the whole He vessel assembly, the simulation of the manufacturing process of the cavity end-caps and the assessment of the Helium vessel's efficiency. In addition this thesis studies the requirements to certify the compliance with the ASME Code of the whole cavity/vessel assembly. Several Finite Elements Analyses were performed by the candidate himself in order to perform the studies listed above and described in detail in Chapters 4 through 8. ln particular the candidate has developed an improved procedure to obtain more accurate results with lower computational times. These procedures will be accurately described in the following chapters. After an introduction that briefly describes the Fennilab and in particular the Technical Division (where all the activities concerning with this thesis were developed), the first part of this thesis (Chapters 2 and 3) explains some of the main aspects of modem particle accelerators. Moreover it describes the most important particle accelerators working at the moment and the basic features of the ILC project. Chapter 4 describes all the activities that were done to

  18. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    PubMed

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  19. Quench-induced Floquet topological p-wave superfluids.

    PubMed

    Foster, Matthew S; Gurarie, Victor; Dzero, Maxim; Yuzbashyan, Emil A

    2014-08-15

    Ultracold atomic gases in two dimensions tuned close to a p-wave Feshbach resonance were expected to exhibit topological superfluidity, but these were found to be experimentally unstable. We show that one can induce a topological Floquet superfluid if weakly interacting atoms are brought suddenly close ("quenched") to such a resonance, in the time before the instability kicks in. The resulting superfluid possesses Majorana edge modes, yet differs from a conventional Floquet system as it is not driven externally. Instead, the periodic modulation is self-generated by the dynamics.

  20. Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Bei-Bing; Yang, Xiao-Sen

    2018-02-01

    The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143

  1. Influence of Spin-Orbit Quenching on the Solvation of Indium in Helium Droplets

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Ernst, Wolfgang E.; Hauser, Andreas W.

    2017-06-01

    Recent experimental interest of the collaborating group of M. Koch on the dynamics of electronic excitations of indium in helium droplets triggered a series of computational studies on the group 13 elements Al, Ga and In and their indecisive behavior between wetting and non wetting when placed onto superfluid helium droplets. We employ a combination of multiconfigurational self consistent field calculations (MCSCF) and multireference configuration interaction (MRCI) to calculate the diatomic potentials. Particularly interesting is the case of indium with an Ancilotto parameter λ close to the threshold value of 1.9. As shown by Reho et al. the spin-orbit splitting of metal atoms solvated in helium droplets is subject to a quenching effect. This can drastically change the solvation behavior. In this work we extend the approach presented by Reho et al. to include distance dependent spin-orbit coupling. The resulting potential surfaces are used to calculate the solvation energy of the ground state and the first excited state with orbital-free helium density functional theory. F. Ancilotto, P. B. Lerner and M. W. Cole, Journal of Low Temperature Physics, 1995, 101, 1123-1146 J. H. Reho, U. Merker, M. R. Radcliff, K. K. Lehmann and G. Scoles, The Journal of Physical Chemistry A, 2000, 104, 3620-3626

  2. Solvation and Spectral Line Shifts of Chromium Atoms in Helium Droplets Based on a Density Functional Theory Approach

    PubMed Central

    2014-01-01

    The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y7P, a5S, and y5P excited states. The necessary Cr–He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z7P ← a7S, y7P ← a7S, z5P ← a5S, and y5P ← a5S are compared to recent fluorescence and photoionization experiments. PMID:24906160

  3. Solvation and spectral line shifts of chromium atoms in helium droplets based on a density functional theory approach.

    PubMed

    Ratschek, Martin; Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2014-08-21

    The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y(7)P, a(5)S, and y(5)P excited states. The necessary Cr-He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z(7)P ← a(7)S, y(7)P ← a(7)S, z(5)P ← a(5)S, and y(5)P ← a(5)S are compared to recent fluorescence and photoionization experiments.

  4. Superfluid-like turbulence in cosmology

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    A network of vortices in a superfluid system exhibits turbulent behavior. It is argued that the universe may have experienced such a phase of superfluid-like turbulence due to the existence of a coherent state with non-topological charge and a network of global strings. The unique feature of a distribution of turbulent domains is that it can yield non-gravitationally induced large-scale coherent velocities. It may be difficult, however, to relate these velocities to the observed large-scale bulk motion.

  5. Superfluid 3He—the Early Days

    NASA Astrophysics Data System (ADS)

    Lee, D. M.; Leggett, A. J.

    2011-08-01

    A history is given of liquid 3He research from the time when 3He first became available following World War II through 1972 when the discovery of the superfluid phases was made. The Fermi liquid nature was established early on, and the Landau Fermi liquid theory provided a framework for understanding the interactions between the Fermions (quasiparticles). The theory's main triumph was to predict zero sound, which was soon discovered experimentally. Experimental techniques are treated, including adiabatic demagnetization, dilution refrigerator technology, and Pomeranchuk cooling. A description of the superfluid 3He discovery experiments using the latter two of these techniques is given. While existing theories provided a basis for understanding the newly discovered superfluid phases in terms of ℓ>0 Cooper pairs, the unexpected stability of the A phase in the high- P, high- T region of the phase diagram needed for its explanation a creative leap beyond the BCS paradigm. The use of sum rules to interpret some of the unusual magnetic resonance in liquid 3He is discussed. Eventually a complete theory of the spin dynamics of superfluid 3He was developed, which predicted many of the exciting phenomena subsequently discovered.

  6. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  7. Topological superfluids confined in a nanoscale slab geometry

    NASA Astrophysics Data System (ADS)

    Saunders, John

    2013-03-01

    Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464

  8. Identifying a Superfluid Reynolds Number via Dynamical Similarity.

    PubMed

    Reeves, M T; Billam, T P; Anderson, B P; Bradley, A S

    2015-04-17

    The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Re(s), that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Re(s)≈0.7, irrespective of obstacle width.

  9. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    PubMed

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  10. Space Cryogenics Workshop, University of Wisconsin, Madison, June 22, 23, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Papers are presented on liquid helium servicing from the Space Station, performance estimates in the Superfluid Helium On-Orbit Transfer Flight Experiment, an analytical study of He II flow characteristics in the SHOOT transfer line, a Dewar to Dewar model for superfluid helium transfer, and mechanical pumps for superfluid helium transfer in space. Attention is also given to the cavitation characteristics of a small centrifugal pump in He I and He II, turbulent flow pressure drop in various He II transfer system components, slip effects associated with Knudsen transport phenomena in porous media, and an integrated fountain effect pump device for fluid management at low gravity. Other papers are on liquid/vapor phase separation in He-4 using electric fields, an enclosed capillary device for low-gravity management of He II, cavitation in flowing superfluid helium, the long-term performance of the passive thermal control systems of the IRAS spacecraft, and a novel approach to supercritical helium flight cryostat support structures.

  11. Note on zero temperature holographic superfluids

    NASA Astrophysics Data System (ADS)

    Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao

    2016-06-01

    In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.

  12. Novel cryogenic sources for liquid droplet and solid filament beams

    NASA Astrophysics Data System (ADS)

    Grams, Michael P.

    Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.

  13. Performance of the helium dewar and the cryocoolers of the Hitomi soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Fujimoto, Ryuichi; Takei, Yoh; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Tsujimoto, Masahiro; Koyama, Shu; Ishikawa, Kumi; Sugita, Hiroyuki; Sato, Yoichi; Shinozaki, Keisuke; Okamoto, Atsushi; Kitamoto, Shunji; Hoshino, Akio; Sato, Kosuke; Ezoe, Yuichiro; Ishisaki, Yoshitaka; Yamada, Shinya; Seta, Hiromi; Ohashi, Takaya; Tamagawa, Toru; Noda, Hirofumi; Sawada, Makoto; Tashiro, Makoto; Yatsu, Yoichi; Mitsuishi, Ikuyuki; Kanao, Kenichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Narasaki, Katsuhiro; DiPirro, Michael J.; Shirron, Peter J.; Sneiderman, Gary A.; Kilbourne, Caroline A.; Porter, Frederick Scott; Chiao, Meng P.; Eckart, Megan E.

    2018-01-01

    The soft x-ray spectrometer (SXS) was a cryogenic high-resolution x-ray spectrometer onboard the Hitomi (ASTRO-H) satellite that achieved energy resolution of 5 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator (ADR). The cooling chain from room temperature to the ADR heat sink was composed of two-stage Stirling cryocoolers, a He4 Joule-Thomson cryocooler, and superfluid liquid helium and was installed in a dewar. It was designed to achieve a helium lifetime of more than 3 years with a minimum of 30 L. The satellite was launched on February 17, 2016, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the helium tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and the cryocoolers.

  14. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  15. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium.

    PubMed

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik

    2018-03-14

    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol -1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  16. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium

    NASA Astrophysics Data System (ADS)

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik

    2018-03-01

    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  17. Strongly interacting Sarma superfluid near orbital Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Zou, Peng; He, Lianyi; Liu, Xia-Ji; Hu, Hui

    2018-04-01

    We investigate the nature of superfluid pairing in a strongly interacting Fermi gas near orbital Feshbach resonances with spin-population imbalance in three dimensions, which can be well described by a two-band or two-channel model. We show that a Sarma superfluid with gapless single-particle excitations is favored in the closed channel at large imbalance. It is thermodynamically stable against the formation of an inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov superfluid and features a well-defined Goldstone-Anderson-Bogoliubov phonon mode and a massive Leggett mode as collective excitations at low momentum. At large momentum, the Leggett mode disappears and the phonon mode becomes damped at zero temperature, due to the coupling to the particle-hole excitations. We discuss possible experimental observation of a strongly interacting Sarma superfluid with ultracold alkaline-earth-metal Fermi gases.

  18. Lenr:. Superfluids, Self-Trapping and Non-Self States

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot A.

    2005-12-01

    LENR ion band state models involve deuteron many-body systems resembling superfluids. The physics of atom Bose-Einstein condensates in optical lattices teaches that superfluid behavior occurs when the potential barriers between adjacent potential wells permit high tunneling rates and the well potentials are shallow. These superfluids have fractional occupation of individual wells. Well periodic symmetry is not affected by the presence of the atoms. This behavior suggests that deuterons in a lattice should be in non-self-trapping sites, which may indicate that D+Bloch occupies the Pd tetrahedral sites.

  19. Superfluid density and Berezinskii-Kosterlitz-Thouless transition of a spin-orbit-coupled Fulde-Ferrell superfluid

    DOE PAGES

    Cao, Ye; Liu, Xia -Ji; He, Lianyi; ...

    2015-02-09

    We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit-coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF, and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the x direction, the tensor component along the y direction n s,yy is generally largermore » than n s,xx in most parameter space. At zero temperature, there is always a discontinuity jump in n s,xx as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit-coupling strength, interatomic interaction strength, and in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1T F, where T F is the Fermi degenerate temperature. Furthermore, their observation is within the reach of current experimental techniques in cold-atom laboratories.« less

  20. Probing the Superfluid Response of para-Hydrogen with a Sulfur Dioxide Dopant.

    PubMed

    Zeng, Tao; Guillon, Grégoire; Cantin, Joshua T; Roy, Pierre-Nicholas

    2013-07-18

    We recently presented the first attempt at using an asymmetric top molecule (para-water) to probe the superfluidity of nanoclusters (of para-hydrogen) [ Zeng , T. ; Li , H. ; Roy , P.-N. J. Phys. Chem. Lett. 2013 , 4 , 18 - 22 ]. Unfortunately, para-water could not be used to probe the para-hydrogen superfluid response. We now report a theoretical simulation of sulfur dioxide rotating in para-hydrogen clusters and show that this asymmetric top can serve as a genuine probe of superfluidity. With this probe, we predict that as few as four para-hydrogen molecules are enough to form a superfluid cluster, the smallest superfluid system to date. We also propose the concept of "exchange superfluid fraction" as a more precise measurement. New superfluid scenarios brought about by an asymmetric top dopant and potential experimental measurements are discussed.

  1. Fermion superfluid with hybridized s- and p-wave pairings

    NASA Astrophysics Data System (ADS)

    Zhou, LiHong; Yi, Wei; Cui, XiaoLing

    2017-12-01

    Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.

  2. The entrainment matrix of a superfluid nucleon mixture at finite temperatures

    NASA Astrophysics Data System (ADS)

    Leinson, Lev B.

    2018-06-01

    It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.

  3. Superfluidity and Chaos in low dimensional circuits

    PubMed Central

    Arwas, Geva; Vardi, Amichay; Cohen, Doron

    2015-01-01

    The hallmark of superfluidity is the appearance of “vortex states” carrying a quantized metastable circulating current. Considering a unidirectional flow of particles in a ring, at first it appears that any amount of scattering will randomize the velocity, as in the Drude model, and eventually the ergodic steady state will be characterized by a vanishingly small fluctuating current. However, Landau and followers have shown that this is not always the case. If elementary excitations (e.g. phonons) have higher velocity than that of the flow, simple kinematic considerations imply metastability of the vortex state: the energy of the motion cannot dissipate into phonons. On the other hand if this Landau criterion is violated the circulating current can decay. Below we show that the standard Landau and Bogoliubov superfluidity criteria fail in low-dimensional circuits. Proper determination of the superfluidity regime-diagram must account for the crucial role of chaos, an ingredient missing from the conventional stability analysis. Accordingly, we find novel types of superfluidity, associated with irregular or chaotic or breathing vortex states. PMID:26315272

  4. Dark lump excitations in superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  5. Design of a 3-Stage ADR for the Soft X-Ray Spectrometer Instrument on the Astro-H Mission

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; Wegel, Donald C.; Canavan, Edgar R.; DiPirro, Michael J.

    2011-01-01

    The Japanese Astro-H mission will include the Soft X-ray Spectrometer (SXS) instrument, whose 36-pixel detector array of ultra-sensitive x-ray microcalorimeters requires cooling to 50 mK. This will be accomplished using a 3-stage adiabatic demagnetization refrigerator (ADR). The design is dictated by the need to operate with full redundancy with both a superfluid helium dewar at 1.3 K or below, and with a 4.5 K Joule-Thomson (JT) cooler. The ADR is configured as a 2-stage unit that is located in a well in the helium tank, and a third stage that is mounted to the top of the helium tank. The third stage is directly connected through two heat switches to the JT cooler and the helium tank, and manages heat flow between the two. When liquid helium is present, the 2-stage ADR operates in a single-shot manner using the superfluid helium as a heat sink. The third stage may be used independently to reduce the time-average heat load on the liquid to extend its lifetime. When the liquid is depleted, the 2nd and 3rd stages operate as a continuous ADR to maintain the helium tank at as low a temperature as possible - expected to be 1.2 K - and the 1st stage cools from that temperature as a single-stage, single-shot ADR. The ADR s design and operating modes are discussed, along with test results of the prototype 3-stage ADR.

  6. Probing the nature of superfluid helium-3 very near its critical temperature

    NASA Astrophysics Data System (ADS)

    Nishimori, Arito

    We have measured with high resolution the static magnetization and NMR frequency shift of bulk superfluid 3He near its critical point. The static magnetization measurements at 31.4 bars and 33.7 bars in the magnetic field of 36.1 mT show that the size of the magnetization change through the A1 region is smaller than 0.1% of the total magnetization in the normal phase. NMR frequency shifts which have the similar |Delta|2 dependency(Delta:order parameter) to that of the magnetization are measured at the melting pressure in magnetic fields from 29.6 mT to 425 mT using a new feedback technique. We find that the frequency shifts agree very well with the mean field calculations based on the spin fluctuation feedback model proposed by Brinkman, Serene and Anderson(BSA) and there is no high temperature tail above T A1 nor smearing of kinks at TA 1 and TA2 originating from critical fluctuations. From the fitting parameters, the Brinkman-Anderson parameter delta averaged over the data in 92.6 mT, 154 mT and 213 mT at the melting pressure is found to be 0.57+/-0.02. We also obtained the widths of the A1 phase at low magnetic fields. Its linear dependence on magnetic field strength is consistent with the mean field calculation.

  7. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    NASA Astrophysics Data System (ADS)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-07-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  8. Pinning down the superfluid and measuring masses using pulsar glitches

    PubMed Central

    Ho, Wynn C. G.; Espinoza, Cristóbal M.; Antonopoulou, Danai; Andersson, Nils

    2015-01-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation. PMID:26601293

  9. Pinning down the superfluid and measuring masses using pulsar glitches.

    PubMed

    Ho, Wynn C G; Espinoza, Cristóbal M; Antonopoulou, Danai; Andersson, Nils

    2015-10-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  10. Superfluid-insulator transitions of two-species bosons in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isacsson, A.; Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120; Cha, M.-C.

    2005-11-01

    We consider the two-species bosonic Hubbard model with variable interspecies interaction and hopping strength in the grand canonical ensemble with a common chemical potential. We analyze the superfluid-insulator (SI) transition for the relevant parameter regimes and compute the ground state phase diagram in the vicinity of odd filling Mott states. We find that the superfluid-insulator transition occurs with (a) simultaneous onset of superfluidity of both species or (b) coexistence of Mott insulating state of one species and superfluidity of the other or, in the case of unit filling (c) complete depopulation of one species. The superfluid-insulator transition can be firstmore » order in a large region of the phase diagram. We develop a variational mean-field method which takes into account the effect of second order quantum fluctuations on the superfluid-insulator transition and corroborate the mean-field phase diagram using a quantum Monte Carlo study.« less

  11. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  12. Persistent molecular superfluid response in doped para-hydrogen clusters.

    PubMed

    Raston, P L; Jäger, W; Li, H; Le Roy, R J; Roy, P-N

    2012-06-22

    Direct observation of superfluid response in para-hydrogen (p-H(2)) remains a challenge because of the need for a probe that would not induce localization and a resultant reduction in superfluid fraction. Earlier work [H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)] has shown that carbon dioxide can probe the effective inertia of p-H(2) although larger clusters show a lower superfluid response due to localization. It is shown here that the lighter carbon monoxide probe molecule allows one to measure the effective inertia of p-H(2) clusters while maintaining a maximum superfluid response with respect to dopant rotation. Microwave spectroscopy and a theoretical analysis based on Feynman path-integral simulations are used to support this conclusion.

  13. Propagation of Sound in Matter.

    DTIC Science & Technology

    1982-03-01

    Attenuation in Liquid Helium at 1 GHz; Technical Report No. 28, April 1969. 2. Kriss, Michael A., Size Effects in Liquid Helium II as Measured by Fourth...Helium, Technical Report No. 30, October 1969. 4. Scott, Stephen A., A Specific Heat and Fourth Sound Measurement of Size Effects in Liquid Helium...Rudnick, Superfluid Helmholtz Resonators, Phys. Rev. 174, No. 1, 326 (October 1968). 2. E. Guyon and I. Rudnick, Size Effects in Superfluid Helium II, Le

  14. Nonuniform quantum turbulence in superfluids

    NASA Astrophysics Data System (ADS)

    Nemirovskii, Sergey K.

    2018-04-01

    The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.

  15. Modeling and development of a superfluid magnetic pump with no moving parts

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir Eshraghniaye; Miller, Franklin; Nellis, Gregory

    2012-06-01

    Current state of the art sub Kelvin Superfluid Stirling Refrigerators and Pulse tube Superfluid Refrigerators use multiple bellows pistons to execute the cycle. These types of displacers can be replaced by a newly introduced pump, a Superfluid Magnetic Pump, with no moving parts. Integration of this pump in the Pulse tube Superfluid Refrigeration system will make it a sub Kelvin Stirling refrigeration system free of any moving parts that is suitable for use in space cooling applications. The Superfluid Magnetic Pump consists of a canister that contains Gadolinium Gallium Garnet particles that is surrounded by a superconducting magnetic coil. The driving mechanism of this pump is the fountain effect in He II. A qualitative description of one cycle operation of the Superfluid Magnetic Pump is presented followed by a numerical model for each process of the cycle.

  16. Development of a motorized cryovalve for the control of superfluid liquid helium

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.

    1988-01-01

    Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.

  17. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  18. Superfluid H3e in globally isotropic random media

    NASA Astrophysics Data System (ADS)

    Ikeda, Ryusuke; Aoyama, Kazushi

    2009-02-01

    Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.

  19. Development of torodial magnetic thermometry to study new phenomena associated with the superfluid transition in liquid sup 4 He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, R.V.

    1988-01-01

    A new type of paramagnetic susceptibility thermometry called toroidal magnetic thermometry (TMT) has been developed. These TMT thermometers have a thermal resolution of five nanoKelvin near the {sup 4}He superfluid transition temperature T{lambda} = 2.172K, making TMT roughly a factor of fifty times better in resolution than conventional germanium resistance thermometry which is commercially available. The dramatic improvement in thermal resolution provided by TMT has been used to observe new phenomena associated with the superfluid transition in pure liquid {sup 4}He. Such phenomena include a component of the thermal boundary (Kapitza) resistance R{sub K} which is singular at the superfluidmore » transition temperature T{lambda}. In addition to the boundary effects described above, these TMT thermometers have been used to detect the depression of T{lambda} be a heat current Q flowing through the liquid helium. When these values of {Delta}T{lambda}(Q) were used to calculate the depression of the superfluid density {Delta}{rho}{sub s}(Q) the results agreed well with a prediction based on the theory of Ginzburg and Pitaevskii. The calibration of the TMT thermometers provide high-resolution measurements of the a.c. paramagnetic susceptibility of their magnetic salt: Copper ammonium bromide (CAB). These calibration parameters, together with power dissipation data near the CAB Curie temperature {Tc} = 1.79K, provide information on the magnetic critical behavior of this nearly ideal Heisenberg ferromagnet. Throughout the detailed description of the TMT design, aspects of the CAB magnetic critical phenomena are discussed.« less

  20. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  1. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  2. Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.

  3. Superfluid phase stiffness in electron doped superconducting Gd-123

    NASA Astrophysics Data System (ADS)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  4. Observation of spin superfluidity: YIG magnetic films and beyond

    NASA Astrophysics Data System (ADS)

    Sonin, Edouard

    2018-03-01

    From topology of the order parameter of the magnon condensate observed in yttrium-iron-garnet (YIG) magnetic films one must not expect energetic barriers making spin supercurrents metastable. But we show that some barriers of dynamical origin are possible nevertheless until the gradient of the phase (angle of spin precession) does not exceed the critical value (analog of the Landau critical velocity in superfluids). On the other hand, recently published claims of experimental detection of spin superfluidity in YIG films and antiferromagnets are not justified, and spin superfluidity in magnetically ordered solids has not yet been experimentally confirmed.

  5. REVIEWS OF TOPICAL PROBLEMS: Superfluidity and the magnetic field of pulsars

    NASA Astrophysics Data System (ADS)

    Sedrakyan, D. M.; Shakhabasyan, K. M.

    1991-07-01

    The current state of the theory of superfluidity in pulsars is presented. The superfluidity of hadronic matter in neutron stars is considered. It is shown that strong interaction between the neutron and proton condensates leads to a drag current of superconducting protons and to the generation of a strong time-independent magnetic field (B = 1012 G) parallel to the axis of rotation. The strength of this field depends on the microscopic parameters of the superfluid hadrons. Models explaining the origin of glitches and postglitch relaxation are discussed. The coupling time between the neutron superfluid and the rigid crust of the neutron star is calculated.

  6. Sustained propagation and control of topological excitations in polariton superfluid

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Bramati, Alberto

    2017-09-01

    We present a simple method to compensate for losses in a polariton superfluid. Based on a weak support field, it allows for the extended propagation of a resonantly driven polariton superfluid with minimal energetic cost. Moreover, this setup is based on optical bistability and leads to the significant release of the phase constraint imposed by resonant driving. This release, together with macroscopic polariton propagation, offers a unique opportunity to study the hydrodynamics of the topological excitations of polariton superfluids such as quantized vortices and dark solitons. We numerically study how the coherent field supporting the superfluid flow interacts with the vortices and how it can be used to control them. Interestingly, we show that standard hydrodynamics does not apply for this driven-dissipative fluid and new types of behaviour are identified.

  7. Density Functional Approach to Superfluid Phonon in Inner Crust of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Inakura, Tsunenori; Matsuo, Masayuki

    We investigate superfluid phonon emerging in inner crust of neutron stars by means of the nuclear density functional theory. Adopting the Wigner-Seitz approximation and a single spherical cell, we describe low-lying collective excitation with the dipole multipolarity. It is found that the superfluid phonon standing on the low-density neutron superfluid does not penetrate into the interior of the nuclear cluster. This suggests that the coupling between the superfluid phonon and the lattice phonon could be weak, and it may affect the thermal conductivity of inner crust.

  8. Quantum Turbulence ---Another da Vinci Code---

    NASA Astrophysics Data System (ADS)

    Tsubota, M.

    Quantum turbulence comprises a tangle of quantized vorticeswhich are stable topological defects created by Bose-Einstein condensation, being realized in superfluid helium and atomic Bose-Einstein condensates. In recent years there has been a growing interest in quantum turbulence. One of the important motivations is to understand the relation between quantum and classical turbulence. Quantum turbulence is expected to be much simpler than usual classical turbulence and give a prototype of turbulence. This article reviews shortly the recent research developments on quantum turbulence.

  9. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  10. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  11. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  12. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  13. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

    NASA Astrophysics Data System (ADS)

    Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka

    We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.

  14. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  15. Galaxy clusters in the context of superfluid dark matter

    NASA Astrophysics Data System (ADS)

    Hodson, Alistair O.; Zhao, Hongsheng; Khoury, Justin; Famaey, Benoit

    2017-11-01

    Context. The mass discrepancy in the Universe has not been solved by the cold dark matter (CDM) or the modified Newtonian dynamics (MOND) paradigms so far. The problems and solutions of either scenario are mutually exclusive on large and small scales. It has recently been proposed, by assuming that dark matter is a superfluid, that MOND-like effects can be achieved on small scales whilst preserving the success of ΛCDM on large scales. Detailed models within this "superfluid dark matter" (SfDM) paradigm are yet to be constructed. Aims: Here, we aim to provide the first set of spherical models of galaxy clusters in the context of SfDM. We aim to determine whether the superfluid formulation is indeed sufficient to explain the mass discrepancy in galaxy clusters. Methods: The SfDM model is defined by two parameters. Λ can be thought of as a mass scale in the Lagrangian of the scalar field that effectively describes the phonons, and it acts as a coupling constant between the phonons and baryons. m is the mass of the DM particles. Based on these parameters, we outline the theoretical structure of the superfluid core and the surrounding "normal-phase" dark halo of quasi-particles. The latter are thought to encompass the largest part of galaxy clusters. Here, we set the SfDM transition at the radius where the density and pressure of the superfluid and normal phase coincide, neglecting the effect of phonons in the superfluid core. We then apply the formalism to a sample of galaxy clusters, and directly compare the SfDM predicted mass profiles to data. Results: We find that the superfluid formulation can reproduce the X-ray dynamical mass profile of clusters reasonably well, but with a slight under-prediction of the gravity in the central regions. This might be partly related to our neglecting of the effect of phonons in these regions. Two normal-phase halo profiles are tested, and it is found that clusters are better defined by a normal-phase halo resembling an Navarro

  16. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Mateo, David; Eloranta, Jussi; Williams, Gary A.

    2015-02-01

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.

  17. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.

    PubMed

    Mateo, David; Eloranta, Jussi; Williams, Gary A

    2015-02-14

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).

  18. Disorder and superfluid density in overdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Lee-Hone, N. R.; Dodge, J. S.; Broun, D. M.

    2017-07-01

    We calculate superfluid density for a dirty d -wave superconductor. The effects of impurity scattering are treated within the self-consistent t -matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parametrization of the Fermi surface, we find a superfluid density that is both correlated with Tc and linear in temperature, in good correspondence with recent experiments on overdoped La2 -xSrxCuO4 .

  19. Goldstone mode and pair-breaking excitations in atomic Fermi superfluids

    NASA Astrophysics Data System (ADS)

    Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.

    2017-10-01

    Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.

  20. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.

    2017-12-01

    Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.

  1. Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.; Link, Bennett

    1999-08-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.

  2. Adiabatic demagnetization refrigerator for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Dingus, Michael L.

    1988-01-01

    In this effort, a new design concept for an adiabatic demagnetization refrigerator (ADR) that is capable of operation in zero gravity has been developed. The design uses a vortex precooler to lower the initial temperature of magnetic salt from the initial space superfluid helium dewar of 1.8 K to 1.1 K. This reduces the required maximum magnetic field from 4 Tesla to 2 Tesla. The laboratory prototype vortex precooler reached a minimum temperature of 0.78 K, and had a cooling power of 1 mW at 1.1 K. A study was conducted to determine the dependence of vortex cooler performance on system element configuration. A superfluid filled capillary heat switch was used in the design. The laboratory prototype ADR reached a minimum temperature of 0.107 K, and maintained temperatures below 0.125 K for 90 minutes. Demagnetization was carried out from a maximum field of 2 T. A soft iron shield was developed that reduced the radial central field to 1 gauss at 0.25 meters.

  3. Molecular Spectra of RbSr: Helium Droplet Assisted Preparation of a Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Buchsteiner, Thomas; Pototschnig, Johann V.; Ernst, Wolfgang E.

    2014-06-01

    We report on the first spectroscopic investigation of the ground and excited states of RbSr. The molecules are prepared in their vibronic ground state (X^2Σ^+1/2, ν" = 0) in a sequential pickup process on the surface of helium nanodroplets, confined in a cold (0.38 K) and weakly perturbing superfluid environment. Utilizing resonance-enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy our investigations cover the spectral regime of 11500 cm-1 - 23000 cm-1. The weak interaction between molecules and helium droplets causes a broadening of the observed transitions. For spectrally resolved band systems the helium droplet isolation approach facilitates the determination of molecular constants. Our assignment is assisted by theoretical calculations of potential energy curves based on a multireference configuration interaction (MRCI) approach. Several strong transitions could be identified; the most prominent spectral feature is a vibrational resolved band system at 14000 cm-1. In contrast to the excitation spectra, dispersed fluorescence (DF) spectra are not influenced by the helium environment, because the molecules leave the droplets upon photoexcitation, revealing detailed insights into the electronic structure of the free RbSr molecule. G. Krois, J.V. Pototschnig, F. Lackner and W.E. Ernst, J. Phys. Chem. A, 117 (50), 13719-13731 (2013) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) P.S. Żuchowski, R. Guerout, and O. Dulieu, arXiv preprint arXiv:1402.0702 (2014) B. Pasquiou, A. Bayerle, S.M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 88 (2), 023601 (2013).

  4. High-resolution nuclear magnetic resonance of superfluid 3B

    NASA Astrophysics Data System (ADS)

    Kycia, J. B.; Haard, T. M.; Rand, M. R.; Hensley, H. H.; Moores, G. F.; Lee, Y.; Hamot, P. J.; Sprague, D. T.; Halperin, W. P.; Thuneberg, E. V.

    1994-02-01

    High-resolution nuclear magnetic resonance measurements of bulk superfluid 3B have been performed at temperatures above 0.5 mK and at pressures from 0.3 to 21.7 bars. We have found that the resonance frequency is shifted from the Larmor frequency of the normal fluid. According to the theory of Greaves the shift at the superfluid transition determines a specific combination, β345, of the 5 fourth-order coefficients of the order parameter invariants used in the Ginzburg-Landau description of superfluid 3He. We found that β345 approaches the weak coupling limit at low pressure, and decreases at higher pressures qualitatively consistent with the theory of Sauls and Serene but in disagreement with the results of Tang et al.

  5. Superfluid response in heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  6. On Sound Reflection in Superfluid

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-02-01

    We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.

  7. Observation of a new superfluid phase for 3He embedded in nematically ordered aerogel

    PubMed Central

    Zhelev, N.; Reichl, M.; Abhilash, T. S.; Smith, E. N.; Nguyen, K. X.; Mueller, E. J.; Parpia, J. M.

    2016-01-01

    In bulk superfluid 3He at zero magnetic field, two phases emerge with the B-phase stable everywhere except at high pressures and temperatures, where the A-phase is favoured. Aerogels with nanostructure smaller than the superfluid coherence length are the only means to introduce disorder into the superfluid. Here we use a torsion pendulum to study 3He confined in an extremely anisotropic, nematically ordered aerogel consisting of ∼10 nm-thick alumina strands, spaced by ∼100 nm, and aligned parallel to the pendulum axis. Kinks in the development of the superfluid fraction (at various pressures) as the temperature is varied correspond to phase transitions. Two such transitions are seen in the superfluid state, and we identify the superfluid phase closest to Tc at low pressure as the polar state, a phase that is not seen in bulk 3He. PMID:27669660

  8. Evidence for a π-junction in Nb/F/Nb' trilayers from superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Hinton, Michael; Steers, Stanley; Peters, Bryan; Yang, Fengyuan

    Two-coil measurements of the sheet superfluid density of Nb/NiV/Nb' trilayers reveal the transition temperatures and volume superfluid densities of both Nb layers, as functions of the thickness, dF, of the intervening ferromagnetic (F) Ni0.96V0.04 layer. The upper transition occurs when the thicker Nb layer goes superconducting and superfluid first appears. Fitting the high-temperature superfluid density to an appropriate functional form reveals the presence of a lower ``transition'' where additional superfluid appears. This event is really a crossover, but the difference is irrelevant here. There is a surprising minimum in superfluid densities of both Nb layers at dF ~ 30 Å, followed by a slow rise. This behavior suggests that a π phase difference between the Nb layers develops at dF ~ 30 Å and continues to larger F thickness. Supported in part by NSF Grant DMR-0805227.

  9. Probing Chirality in Superfluid 3He-A: Free surface as an ideal boundary condition

    NASA Astrophysics Data System (ADS)

    Kono, Kimitoshi

    2013-03-01

    Superfluid 3He is known as a typical topological superfluid. A recent theoretical investigation suggests Majorana surface states at the free surface of superfluid 3He-B phase. On the other hand, superfluid 3He-A is known as a chiral superfluid. The scattering of quasiparticle from small object is predicted to be skew with respect to an anisotropy axis. We have developed an experimental technique to study transport properties of ions under the free surface of superfluid 3He. By using this technique, we can investigate interaction between elementary excitations in superfluid 3He and small objects under well-controlled conditions. For example, in 3He-B interaction with Majorana surface states, although no interaction is expected, will be investigated, whereas in 3He-A skew scattering of quasiparticle from electron bubbles will be probed. In this paper, we present the recent results of transport properties of electron bubbles trapped below the free surface of superfluid 3He. In particular, experimental evidences of the skew scattering and chirality of superfluid 3He-A will be presented. The skew scattering of quasiparticle in 3He-A from electron bubble results in a bubble transport analogous to the Hall effect, where the anisotropy vector of 3He-A behaves as if it was a magnetic field in the Hall effect. Under experimental conditions, the effect is observed as an analogue of edge magnetoplasmon effect. After the analysis of data, we obtained a reasonable qualitative agreement with the theory. This work is done in collaboration with Hiroki Ikegami.

  10. Pairing states of superfluid 3He in uniaxially anisotropic aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2006-02-01

    Stable pairing states of superfluid 3He in aerogel are examined in the case with a global uniaxial anisotropy which may be created by applying a uniaxial stress to the aerogel. Due to such a global anisotropy, the stability region of an Anderson-Brinkman-Morel (ABM) pairing state becomes wider. In a uniaxially stretched aerogel, the pure polar pairing state with a horizontal line node is predicted to occur, as a three-dimensional superfluid phase, over a measurable width just below the superfluid transition at Tc (P) . A possible relevance of the present results to the case with no global anisotropy is also discussed.

  11. Sloshing of Cryogenic Helium Driven by Lateral Impulse/Gravity Gradient-Dominated/or g-Jitter-Dominated Accelerations and Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.; Zu, G. J.

    1996-01-01

    The coupling of slosh dynamics within a partially filled rotating dewar of superfluid helium 11 with spacecraft orbital dynamics is investigated in response to the environmental disturbances of (a) lateral impulses, (b) gravity gradients and (c) g-jitter forces. The purpose of this study is to investigate how the coupling of helium 11 fluid slosh dynamics driven by three cases of environmental force with spacecraft dynamics can affect the bubble deformations and their associated fluid and spacecraft mass centre fluctuations. The numerical computation of slosh dynamics is based on a rotational frame, while the spacecraft dynamics is associated with a non-rotational frame. Results show that the major contribution of orbital dynamics is driven by coupling with slosh dynamics. Neglecting the effect of slosh dynamics acting on the spacecraft may lead to the wrong results for the development of orbital and attitude control techniques.

  12. Molecular rotation and dynamics in superfluid helium-4 nanodroplets

    NASA Astrophysics Data System (ADS)

    Callegari, Carlo

    2000-11-01

    Cavity-enhanced laser radiation, coupled to molecular- beam bolometric detection has been used to study the spectroscopy of acetylenic molecules embedded in helium nanodroplets. The 2ν1 transition (CH stretch overtone) of HCN, DCCH, NCCCH, CH3CCH, CF3CCH, (CH 3)3CCCH, (CH3)3SiCCH, has been investigated in the 1.5 μm spectral region by means of a color center laser coupled to a resonant build-up cavity, which enhances the laser power experienced by the molecules in the beam by up to a factor of 400, thus overcoming the weakness of the (dipole forbidden) transitions. All molecules are observed to rotate freely in the liquid cluster environment, with strongly enhanced moments of inertia, but with negligible matrix induced shifts (less than 1 cm-1). We show that this enhancement is largely accounted for by hydrodynamic effects, which we have modeled and numerically calculated. While in the gas phase the rotational lines have instrument-limited widths (a few MHZ), in the droplets we have observed linewidths ranging from 600 MHz for (CH3)3SiCCH to 2.8GHz for (CH3) 3CCCH. To investigate the nature of the broadening (which was widely believed to be homogeneous), we have performed a series of infrared (IR) saturation experiments on the 2ν1 transition. We have also thoroughly investigated NCCCH by means of microwave (MW) single-resonance experiments (on rotational transitions) and double-resonance (MW-MW and MW-IR) experiments. The results demonstrate that the spectral features of molecules in He droplets are inhomogeneously broadened, and allow an estimate of the importance of the different broadening contributions. In particular, MW-IR measurements show that the size of the cluster greatly affects the way rotational energy is relaxed. Large clusters seem to follow a ``strong collision model'' where memory of the initial rotational state is completely lost after each ``relaxation'' event, while for smaller clusters relaxation rates are probably affected by the lower

  13. Magnetoacoustic Spectroscopy in Superfluid He3-B

    NASA Astrophysics Data System (ADS)

    Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.

    2008-01-01

    We have used the acoustic Faraday effect in superfluid He3 to perform high resolution spectroscopy of an excited state of the superfluid condensate, called the imaginary squashing mode. With acoustic cavity interferometry we measure the rotation of the plane of polarization of a transverse sound wave propagating in the direction of the magnetic field from which we determine the Zeeman energy of the mode. We interpret the Landé g factor, combined with the zero-field energies of this excited state, using the theory of Sauls and Serene, to calculate the strength of f-wave interactions in He3.

  14. Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin

    2004-01-01

    A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.

  15. A cosmic superfluid phase

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    The universe may have undergone a superfluid-like phase during its evolution, resulting from the injection of nontopological charge into the spontaneously broken vacuum. In the presence of vortices this charge is identified with angular momentum. This leads to turbulent domains on the scale of the correlation length. By restoring the symmetry at low temperatures, the vortices dissociate and push the charges to the boundaries of these domains. The model can be scaled (phenomenologically) to very low energies, it can be incorporated in a late time phase transition and form large scale structure in the boundary layers of the correlation volumes. The novel feature of the model lies in the fact that the dark matter is endowed with coherent motion. The possibilities of identifying this flow around superfluid vortices with the observed large scale bulk motion is discussed. If this identification is possible, then the definite prediction can be made that a more extended map of peculiar velocities would have to reveal large scale circulations in the flow pattern.

  16. Decoupling of Solid 4He Layers under the Superfluid Overlayer

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru

    2018-03-01

    It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.

  17. {pi} junction and spontaneous current state in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2011-07-15

    We discuss an idea to realize a spontaneous current in a superfluid Fermi gas. When a polarized Fermi superfluid (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms in the hyperfine state described by pseudospin {sigma}={up_arrow},{down_arrow}) is loaded onto a ring-shaped trap with a weak potential barrier, some excess atoms ({Delta}N=N{sub {up_arrow}}-N{sub {down_arrow}}) are localized around the barrier. As shown in our previous paper [T. Kashimura, S. Tsuchiya, and Y. Ohashi, Phys. Rev. A 82, 033617 (2010)], this polarized potential barrier works as a {pi} junction in the sense that the superfluid order parameter changes its sign acrossmore » the barrier. Because of this, the phase of the superfluid order parameter outside the junction is shown to be twisted by {pi} along the ring, which naturally leads to a circulating supercurrent. While the ordinary supercurrent state is obtained as a metastable state, this spontaneous current state is shown to be more stable than the case with no current. Our results indicate that localized excess atoms would be useful for the manipulation of the superfluid order parameter in cold Fermi gases.« less

  18. Superfluid turbulence in a nonuniform circular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.J.

    The excess dissipation due to the presence of quantized vorticity in flowing helium has been studied extensively. The success of the microscopic theory proposed by Schwarz in describing many properties of this dissipation led to a belief that the major aspects of the problem had been understood at the microscopic level. The experiment of Kafkalidis and Tough demonstrated that a weak one dimensional nonuniformity in the flow field led to a dramatic departure between the observed behavior and the predictions of the Schwarz theory using the local uniformity approximation (LUA). The research presented in this thesis was undertaken to measuremore » the dissipative states for thermal counterflow with a weak two dimensional nonuniformity. The experiment of Kafkalidis and Tough used a flow channel with a high aspect ratio. Such channels are known to exhibit only one state of superfluid turbulence. In this research the channel is circular in cross section and shows two distinct turbulent states (T-I and T-II). This experiment demonstrates that there is no difference in the excess dissipation for flows that are either converging or diverging. The T-I state is described by the same parameters as the T-I state in uniform channels. The turbulence exhibits front behavior at the transition between states. These conclusions are consistent with the LUA. The T-II state is at variance with the LUA, but is consistent with the results found in the Kafkalidis and Tough experiment.« less

  19. Weyl Superfluidity in a Three-dimensional Dipolar Fermi Gas

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W. Vincent

    2015-03-01

    Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. Work supported in part by U.S. ARO, AFOSR, DARPA-OLE-ARO, Charles E. Kaufman Foundation and The Pittsburgh Foundation, JQI-NSF-PFC, ARO-Atomtronics-MURI, and NSF of China.

  20. Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Pashaee, F.

    The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.

  1. Holographic anyonic superfluidity

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  2. Development of a New Generation of Stable, Tunable, and Catalytically Active Nanoparticles Produced by the Helium Nanodroplet Deposition Method

    DOE PAGES

    Wu, Qiyuan; Ridge, Claron J.; Zhao, Shen; ...

    2016-07-13

    Nanoparticles (NPs) are revolutionizing many areas of science and technology, often delivering unprecedented improvements to properties of the conventional materials. However, despite important advances in NPs synthesis and applications, numerous challenges still remain. Development of alternative synthetic method capable of producing very uniform, extremely clean and very stable NPs is urgently needed. If successful, such method can potentially transform several areas of nanoscience, including environmental and energy related catalysis. Here we present the first experimental demonstration of catalytically active NPs synthesis achieved by the helium nanodroplet isolation method. This alternative method of NPs fabrication and deposition produces narrowly distributed, clean,more » and remarkably stable NPs. The fabrication is achieved inside ultra-low temperature, superfluid helium nanodroplets, which can be subsequently deposited onto any substrate. Lastly, this technique is universal enough to be applied to nearly any element, while achieving high deposition rates for single element as well as composite core-shell NPs.« less

  3. Transverse effects in nonlinear optics: Toward the photon superfluid

    NASA Astrophysics Data System (ADS)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  4. Observation of `third sound' in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Schechter, A. M. R.; Simmonds, R. W.; Packard, R. E.; Davis, J. C.

    1998-12-01

    Waves on the surface of a fluid provide a powerful tool for studying the fluid itself and the surrounding physical environment. For example, the wave speed is determined by the force per unit mass at the surface, and by the depth of the fluid: the decreasing speed of ocean waves as they approach the shore reveals the changing depth of the sea and the strength of gravity. Other examples include propagating waves in neutron-star oceans and on the surface of levitating liquid drops. Although gravity is a common restoring force, others exist, including the electrostatic force which causes a thin liquid film to adhere to a solid. Usually surface waves cannot occur on such thin films because viscosity inhibits their motion. However, in the special case of thin films of superfluid 4He, surface waves do exist and are called `third sound'. Here we report the detection of similar surface waves in thin films of superfluid 3He. We describe studies of the speed of these waves, the properties of the surface force, and the film's superfluid density.

  5. REVIEWS OF TOPICAL PROBLEMS: Cooling of neutron stars and superfluidity in their cores

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitrii G.; Levenfish, Kseniya P.; Shibanov, Yurii A.

    1999-08-01

    We study the heat capacity and neutrino emission reactions (direct and modified Urca processes, nucleon-nucleon bremsstrahlung, Cooper pairing of nucleons) in the supranuclear density matter of neutron star cores with superfluid neutrons and protons. Various superfluidity types are analysed (singlet-state pairing and two types of triplet-state pairing, without and with gap nodes at the nucleon Fermi surface). The results are used for cooling simulations of isolated neutron stars. Both the standard cooling and the cooling enhanced by the direct Urca process are strongly affected by nucleon superfluidity. Comparison of the cooling theory of isolated neutron stars with observations of their thermal radiation may give stringent constraints on the critical temperatures of the neutron and proton superfluidities in the neutron star cores.

  6. Rydberg-Ritz analysis and quantum defects for Rb and Cs atoms on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2013-08-01

    A Rydberg-Ritz approach is used for the interpretation of Rb-He? and Cs-He? Rydberg states and Rydberg series. Variations of the quantum defects within a Rydberg series give insight into the interaction between the alkali atom's valence electron and the superfluid helium droplet. A screening of the valence electron from the alkali atom core by the helium droplet is observed for high Rydberg states. For states with lower principal quantum number, the effect decreases and the quantum defects are found to lie closer to free atom values, indicating an increased probability for the electron to be found inside the alkali atom core. An investigation of the spin-orbit splitting of the Cs-He? nP(2Π) components reveals that the splitting of the lowest 2Π states is more atom-like [Hund's case (c) coupling] than at higher n states [Hund's case (a) coupling]. In addition, we report a detailed study of the droplet size dependence of Ak-He? Rydberg series on the example of the Rb-He? D(Δ) series. Higher Rydberg states of this series are strongly redshifted, which is also related to the screening effect.

  7. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  8. Examining empirical evidence of the effect of superfluidity on the fusion barrier

    NASA Astrophysics Data System (ADS)

    Scamps, Guillaume

    2018-04-01

    Background: Recent time-dependent Hartree-Fock-Bogoliubov (TDHFB) calculations predict that superfluidity enhances fluctuations of the fusion barrier. This effect is not fully understood and not yet experimentally revealed. Purpose: The goal of this study is to empirically investigate the effect of superfluidity on the distribution width of the fusion barrier. Method: Two new methods are proposed in the present study. First, the local regression method is introduced and used to determine the barrier distribution. The second method, which requires only the calculation of an integral of the cross section, is developed to determine accurately the fluctuations of the barrier. This integral method, showing the best performance, is systematically applied to 115 fusion reactions. Results: Fluctuations of the barrier for open-shell systems are, on average, larger than those for magic or semimagic nuclei. This is due to the deformation and the superfluidity. To disentangle these two effects, a comparison is made between the experimental width and the width estimated from a model that takes into account the tunneling, the deformation, and the vibration effect. This study reveals that superfluidity enhances the fusion barrier width. Conclusions: This analysis shows that the predicted effect of superfluidity on the width of the barrier is real and is of the order of 1 MeV.

  9. A Short History of the Theory and Experimental Discovery of Superfluidity in 3He

    NASA Astrophysics Data System (ADS)

    Brinkman, W. F.

    I discuss the development of the theory and experiments on superfluid 3He. After the discovery of superfluidity in 3He by Osheroff, Richardson and Lee, Phil Anderson quickly recruited Doug Osheroff to come to Bell Labs and set up a dilution fridge to continue his experiments. One of the mysteries at that time was how the high-temperature A-phase, which has a gapless excitation spectrum, could be stabilized relative to the fully gapped, lower temperature B-phase. I explain how Phil Anderson and I developed the spin fluctuation theory of the A-phase of superfluid 3He which accounted for its stability, leading to the Anderson-Brinkman-Morel (ABM) theory of the superfluid A-phase...

  10. Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids.

    PubMed

    Burchianti, A; Scazza, F; Amico, A; Valtolina, G; Seman, J A; Fort, C; Zaccanti, M; Inguscio, M; Roati, G

    2018-01-12

    We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.

  11. Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids

    NASA Astrophysics Data System (ADS)

    Burchianti, A.; Scazza, F.; Amico, A.; Valtolina, G.; Seman, J. A.; Fort, C.; Zaccanti, M.; Inguscio, M.; Roati, G.

    2018-01-01

    We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.

  12. Disorder effects in the evolution from BCS to BEC superfluidity

    NASA Astrophysics Data System (ADS)

    Han, Li; de Melo, Carlos A. R. Sa

    2009-03-01

    We discuss the effects of disorder on the critical temperature of superfluids during the evolution from BCS to BEC. For s-wave superfluids we find that the critical temperature is weakly affected by disorder in the BCS regime as described in Anderson’s theorem, even less affected by disorder at zero chemical potential (near unitarity), but strongly affected by disorder in the BEC regime, where Anderson's theorem does not apply. This suggests that the superfluid is more robust to the effects of disorder at the interaction parameter where the chemical potential vanishes (close to unitarity). We construct a three dimensional phase diagram of critical temperature, disorder and interaction parameter [1], and show that there are regions of localized superfluidity, as well as insulating regions due to Anderson localization of fermions (BCS regime) and molecular bosons (BEC regime). The phase diagram for higher angular momentum (e.g. p-wave and d-wave) is also analyzed, where the effects of disorder are much more dramatic in the BCS regime in comparison to the s-wave case because pair breaking is strong, while the disorder effects in BEC regime are similar to what occurs in the s-wave case. [1] Li Han, C. A. R. Sa de Melo, arXiv:0812.xxxx

  13. From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems

    NASA Astrophysics Data System (ADS)

    He, Wen-Yu; Xu, Dong-Hui; Zhou, Benjamin T.; Zhou, Qi; Law, K. T.

    2018-04-01

    In this work, we consider a three-dimensional (3D) cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s -wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the ring nodal degeneracies in the bulk, and supports a large number of surface Majorana zero-energy modes. The large number of surface Majorana modes remain at zero energy even in the presence of disorder due to the protection from a chiral symmetry. When the chiral symmetry is broken, the system becomes a Weyl topological superfluid with Majorana arcs. With 3D spin-orbit coupling, the Weyl superfluid becomes a gapless phase with spiral Majorana modes on the surface. A spatial-resolved radio-frequency spectroscopy is suggested to detect this nodal-ring topological superfluid phase.

  14. Anisotropic phases of superfluid ^{3}he in compressed aerogel.

    PubMed

    Li, J I A; Zimmerman, A M; Pollanen, J; Collett, C A; Halperin, W P

    2015-03-13

    It has been shown that the relative stabilities of various superfluid states of ^{3}He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on ^{3}He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase.

  15. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  16. Superfluid Black Holes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson

    2017-01-01

    We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  17. Superfluid Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  18. Magnon Bose-Einstein condensation and spin superfluidity.

    PubMed

    Bunkov, Yuriy M; Volovik, Grigory E

    2010-04-28

    Bose-Einstein condensation (BEC) is a quantum phenomenon of formation of a collective quantum state in which a macroscopic number of particles occupy the lowest energy state and thus is governed by a single wavefunction. Here we highlight the BEC in a magnetic subsystem--the BEC of magnons, elementary magnetic excitations. The magnon BEC is manifested as the spontaneously emerging state of the precessing spins, in which all spins precess with the same frequency and phase even in an inhomogeneous magnetic field. The coherent spin precession was observed first in superfluid (3)He-B and this domain was called the homogeneously precessing domain (HPD). The main feature of the HPD is the induction decay signal, which ranges over many orders of magnitude longer than is prescribed by the inhomogeneity of magnetic field. This means that spins precess not with a local Larmor frequency, but coherently with a common frequency and phase. This BEC can also be created and stabilized by continuous NMR pumping. In this case the NMR frequency plays the role of a magnon chemical potential, which determines the density of the magnon condensate. The interference between two condensates has also been demonstrated. It was shown that HPD exhibits all the properties of spin superfluidity. The main property is the existence of a spin supercurrent. This spin supercurrent flows separately from the mass current. Transfer of magnetization by the spin supercurrent by a distance of more than 1 cm has been observed. Also related phenomena have been observed: the spin current Josephson effect; the phase-slip processes at the critical current; and the spin current vortex--a topological defect which is the analog of a quantized vortex in superfluids and of an Abrikosov vortex in superconductors; and so on. It is important to mention that the spin supercurrent is a magnetic phenomenon, which is not directly related to the mass superfluidity of (3)He: it is the consequence of a specific

  19. Onset of Superfluidity in ^{3}He Films.

    PubMed

    Saitoh, Masamichi; Ikegami, Hiroki; Kono, Kimitoshi

    2016-11-11

    We elucidate, for the first time, the overall behavior of the onset temperature of superfluidity in ^{3}He films for a wide range of film thicknesses d between 0.06 and 10  μm by taking advantage of the tunability of d implemented using microfabricated devices. We observe a suppression of the onset temperature of superfluidity T_{c}^{f} in a film from the bulk transition temperature as d decreases. In particular, T_{c}^{f} is strongly suppressed when d approaches the coherence length (∼77  nm). The observed T_{c}^{f} as a function of d is similar to that expected from the quasiclassical theory, but it unexpectedly deviates from the theoretical value by several percent when 0.5≲d≲5  μm.

  20. Studies of Nonconventional Superfluids: Ultrasound Propagation in HELIUM-3-BORON and the Microwave Surface Impedance of the Heavy-Fermion Superconductor Uranium PLATINUM(3)

    NASA Astrophysics Data System (ADS)

    Zhao, Zuyu

    1990-06-01

    Two nonconventional superfluids, superfluid ^3He-B and the heavy fermion superconductor UPt_3 have been studied using different techniques: (1) A study of ^3He -B was performed in an acoustic sound cell with a path length of 381mum using the single-ended, c.w., acoustic impedance technique. The fundamental frequency of the x-cut quartz transducer employed in the experiments was 12.80 MHz. The following studies were performed: (a) A systematic measurement was made on the pair-breaking edge in zero magnetic field with ultrasonic frequencies of 64.3 MHz, 90.1 MHz, 141.6 MHz and 167.4 MHz, in the pressure range from 3 bar to 28 bar. The results of our measurements indirectly support the temperature scale of Greywall and the weak coupling plus (WCP) model of Rainer and Serene for the gap function. The pair-breaking edge was also measured in magnetic fields up to 1.36 kG perpendicular to the sound propagation direction and the predicted shift of the effective pair-breaking threshold (from 2 Delta(T) in zero field) by Omega = {gamma Hover 1+{1 over3}F_sp{o}{a}(2+Y) }(the renormalized Larmor frequency) has been observed. (b) The (imaginary) squashing mode was excited with sound frequencies of 141.6 MHz and 115.8 MHz. A doublet splitting (of about 0.3 MHz) of this mode was observed. This doublet splitting was found to be strongly pressure and frequency dependent, but independent of the magnetic field (at the low fields studied). Possible causes of this splitting include superfluid flow induced texture effects and finite wavevector (dispersion) effects. (c) Structure was observed with a sound frequency of 64.3 MHz in the vicinity of 2Delta(T) in a magnetic field of about 580 Gauss which is thought to be J_{z} = -1 component of the J = 1^- collective mode. (2) A surface impedance study of heavy Fermion superconductor UPt_3 was performed with an X-band microwave spectrometer (f ~eq 11.42 GHz) integrated with an Oxford 400 TLE dilution refrigerator so as to have top

  1. Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Hu, Hui; Liu, Xia-Ji

    2018-01-01

    We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of K 40 or Li 6 atoms by optically tuning their magnetic Feshbach resonances via the creation of a closed-channel dark state with a Doppler-shifted Stark effect. In this scheme, two counterpropagating optical fields are applied to couple two molecular states in the closed channel to an excited molecular state, leading to a significant violation of Galilean invariance in the dark-state regime and hence to the possibility of Fulde-Ferrell superfluidity. We develop a field theoretical formulation for both two-body and many-body problems and predict that the Fulde-Ferrell state has remarkable properties, such as anisotropic single-particle dispersion relation, suppressed superfluid density at zero temperature, anisotropic sound velocity, and rotonic collective mode. The latter two features can be experimentally probed using Bragg spectroscopy, providing a smoking-gun proof of Fulde-Ferrell superfluidity.

  2. Critical behavior and dimension crossover of pion superfluidity

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2016-09-01

    We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.

  3. Statefinder analysis of the superfluid Chaplygin gas model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, V.A., E-mail: vladipopov@mail.ru

    2011-10-01

    The statefinder indices are employed to test the superfluid Chaplygin gas (SCG) model describing the dark sector of the universe. The model involves Bose-Einstein condensate (BEC) as dark energy (DE) and an excited state above it as dark matter (DM). The condensate is assumed to have a negative pressure and is embodied as an exotic fluid with the Chaplygin equation of state. Excitations forms the normal component of superfluid. The statefinder diagrams show the discrimination between the SCG scenario and other models with the Chaplygin gas and indicates a pronounced effect of the DM equation of state and an indirectmore » interaction between their two components on statefinder trajectories and a current statefinder location.« less

  4. Statefinder analysis of the superfluid Chaplygin gas model

    NASA Astrophysics Data System (ADS)

    Popov, V. A.

    2011-10-01

    The statefinder indices are employed to test the superfluid Chaplygin gas (SCG) model describing the dark sector of the universe. The model involves Bose-Einstein condensate (BEC) as dark energy (DE) and an excited state above it as dark matter (DM). The condensate is assumed to have a negative pressure and is embodied as an exotic fluid with the Chaplygin equation of state. Excitations forms the normal component of superfluid. The statefinder diagrams show the discrimination between the SCG scenario and other models with the Chaplygin gas and indicates a pronounced effect of the DM equation of state and an indirect interaction between their two components on statefinder trajectories and a current statefinder location.

  5. Construction of an ultra low temperature cryostat and transverse acoustic spectroscopy in superfluid helium-3 in compressed aerogels

    NASA Astrophysics Data System (ADS)

    Bhupathi, Pradeep

    An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We

  6. High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.

    PubMed

    Illuminati, Fabrizio; Albus, Alexander

    2004-08-27

    We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.

  7. Propagation of second sound in a superfluid Fermi gas in the unitary limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arahata, Emiko; Nikuni, Tetsuro

    2009-10-15

    We study sound propagation in a uniform superfluid gas of Fermi atoms in the unitary limit. The existence of normal and superfluid components leads to appearance of two sound modes in the collisional regime, referred to as first and second sounds. The second sound is of particular interest as it is a clear signal of a superfluid component. Using Landau's two-fluid hydrodynamic theory, we calculate hydrodynamic sound velocities and these weights in the density response function. The latter is used to calculate the response to a sudden modification of the external potential generating pulse propagation. The amplitude of a pulsemore » which is proportional to the weight in the response function is calculated, the basis of the approach of Nozieres and Schmitt-Rink for the BCS-BEC. We show that, in a superfluid Fermi gas at unitarity, the second-sound pulse is excited with an appreciate amplitude by density perturbations.« less

  8. Infrared laser spectroscopy of the helium-solvated allyl and allyl peroxy radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, Christopher M.; Moradi, Christopher P.; Acrey, Bradley W.

    2013-12-16

    Infrared spectra in the C–H stretch region are reported for the allyl (CH 2CHCH 2) and allyl peroxy (CH 2=CH–CH 2OO·) radicals solvated in superfluid helium nanodroplets. Nine bands in the spectrum of the allyl radical have resolved rotational substructure. We have assigned three of these to the ν 1 (a 1), ν 3 (a 1), and ν 13 (b 2) C–H stretch bands and four others to the ν 14/(ν 15+2ν 11) (b 2) and ν 2/(ν 4+2ν 11) (a 1) Fermi dyads, and an unassigned resonant polyad is observed in the vicinity of the ν 1 band. Experimentalmore » coupling constants associated with Fermi dyads are consistent with quartic force constants obtained from density functional theory computations. The peroxy radical was formed within the He droplet via the reaction between allyl and O 2 following the sequential pick-up of the reactants. Five stable conformers are predicted for the allyl peroxy radical, and a computed two-dimensional potential surface for rotation about the CC–OO and CC–CO bonds reveals multiple isomerization barriers greater than ≈300 cm –1. Furthermore, the C–H stretch infrared spectrum is consistent with the presence of a single conformer following the allyl + O 2 reaction within helium droplets.« less

  9. Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2016-10-01

    Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.

  10. Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules

    NASA Astrophysics Data System (ADS)

    Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.

    2018-02-01

    In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.

  11. Modelling Pulsar Glitches: The Hydrodynamics of Superfluid Vortex Avalanches in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Khomenko, V.; Haskell, B.

    2018-05-01

    The dynamics of quantised vorticity in neutron star interiors is at the heart of most pulsar glitch models. However, the large number of vortices (up to ≈1013) involved in a glitch and the huge disparity in scales between the femtometre scale of vortex cores and the kilometre scale of the star makes quantum dynamical simulations of the problem computationally intractable. In this paper, we take a first step towards developing a mean field prescription to include the dynamics of vortices in large-scale hydrodynamical simulations of superfluid neutron stars. We consider a one-dimensional setup and show that vortex accumulation and differential rotation in the neutron superfluid lead to propagating waves, or `avalanches', as solutions for the equations of motion for the superfluid velocities. We introduce an additional variable, the fraction of free vortices, and test different prescriptions for its advection with the superfluid flow. We find that the new terms lead to solutions with a linear component in the rise of a glitch, and that, in specific setups, they can give rise to glitch precursors and even to decreases in frequency, or `anti-glitches'.

  12. Asymmetric Top Rotors in Superfluid Para-Hydrogen Nano-Clusters

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Li, Hui; Roy, Pierre-Nicholas

    2012-06-01

    We present the first simulation study of bosonic clusters doped with an asymmetric top molecule. A variation of the path-integral Monte Carlo method is developed to study a para-water (pH_2O) impurity in para-hydrogen (pH_2) clusters. The growth pattern of the doped clusters is similar in nature to that of the pure clusters. The pH_2O molecule appears to rotate freely in the cluster due to its large rotational constants and the lack of adiabatic following. The presence of pH_2O substantially quenches the superfluid response of pH_2 with respect to the space fixed frame. We also study the behaviour of a sulphur dioxide (32S16O_2) dopant in the pH_2 clusters. For such a heavy rotor, the adiabatic following of the pH_2 molecules is established and the superfluid renormalization of the rotational constants is observed. The rotational structure of the SO_2-p(H_2)_N clusters' ro-vibrational spectra is predicted. The connection between the superfluid response respect to the external boundary rotation and the dopant rotation is discussed.

  13. Cooling a band insulator with a metal: fermionic superfluid in a dimerized holographic lattice.

    PubMed

    Haldar, Arijit; Shenoy, Vijay B

    2014-10-17

    A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal "cools" the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states.

  14. Qualification and cryogenic performance of cryomodule components at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, J.; Macha, K.; Fischer, J.

    1996-12-31

    At CEBAF an electron beam is accelerated by superconducting resonant niobium cavities which are operated submerged in superfluid helium. The accelerator has 42 1/4 cryomodules, each containing eight cavities. The qualification and design of components for the cryomodules under went stringent testing and evaluation for acceptance. Indium wire seals are used between the cavity and helium vessel interface to make a superfluid helium leak tight seal. Each cavity is equipped with a mechanical tuner assembly designed to stretch and compress the cavities. Two rotary feedthroughs are used to operate each mechanical tuner assembly. Ceramic feedthroughs not designed for super-fluid weremore » qualified for tuner and cryogenic instrumentation. To ensure long term integrity of the machine special attention is required for material specifications and machine processes. The following is to share the qualification methods, design and performance of the cryogenic cryomodule components.« less

  15. Evidence for intertwined superfluid and density wave order in two dimensional 4He

    NASA Astrophysics Data System (ADS)

    Saunders, John

    2015-03-01

    We report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the response of the second atomic layer of 4He adsorbed on the surface of graphite over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and collapsing towards a quantum critical point, near to layer completion where a Mott insulating phase is predicted to form. The unusual temperature dependence of the superfluid density in the T --> 0 limit and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry. In collaboration with Jan Nyeki, Anastasia Phillis, Andrew Ho, Derek Lee, Piers Coleman, Jeevak Parpia, Brian Cowan. Supported by EPSRC (U.K) EP/H048375/1.

  16. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.

    2018-05-01

    Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

  17. A 1.8K refrigeration cryostat with 100 hours continuous cooling

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Li, Jian; Huang, Rongjin; Li, Laifeng

    2017-02-01

    A refrigeration cryostat has been developed to produce continuous cooling to a sample below 1.8 K over 100 hours by using a cryocooler. A two-stage 4K G-M cryocooler is used to liquefy helium gas from evacuated vapor and cylinder helium bottle which can be replaced during the cooling process. The liquid helium transfer into superfluid helium in a Joule-Thomson valve in connection with a 1000 m3/h pumping unit. The pressure of evacuated helium vapor is controlled by air bag and valves. A copper decompression chamber, which is designed as a cooling station to control the superfluid helium, is used to cool the sample attached on it uniformly. The sample connects to the copper chamber in cryostat with screw thread. The cryostat can reach the temperature of 1.7 K without load and the continuous working time is more than 100 hours.

  18. Gap Solitons of Superfluid Fermi Gas in FS Optical Lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Ke-Zhi; He, Yong-Lin; Liu, Zhen-Lai; Zhu, Liao

    2018-01-01

    By employing the mean-field theory and hydrodynamic scheme, we study the gap solitons of superfluid Fermi gas in Fourier-Synthesized(FS) optical lattices. By means of numerical methods and variational approximation, the atomic interaction, the chemical potential, the potential depth of the lattice and relative phase of the Fermi system are derived along the Bose-Enstein condensation(BEC)side to the Bardeen-Cooper-Schrieffer (BCS)side. It means that the condition exciting gap solitons is obtained. Moreover, we analyze the fundamental gap soltions of the superfluid Fermi gas. It is found that the relative phase α impacts greatly on the properties of fundamental gap solitons for superfluid Fermi gas. Especially, the nonlinearity interaction term g decreases with α. Add, due to Fermi pressure, curvature changes of g in the BEC limit( γ = 1, here, γ is a function of an interaction parameter) is larger than that at unitary ( γ = 2/3). Spatial distribution of gap solitons exhibit very obvious different when the system transit from the BEC side to BCS side.

  19. The influence of antikaon condensations on nucleon 1S0 superfluidity in neutron star matter

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Huang, Xiu Lin; Zhang, Xiao Jun; Yu, Zi; Fan, Cun Bo; Ding, Wen Bo; Liu, Cheng Zhi

    2018-03-01

    The properties of neutron and proton 1S0 superfluidity are studied within the relativistic mean field and the Bardeen-Cooper-Schrieffer theories by taking the effects of K- and \\bar{K}0 condensations into account in neutron star matter without the hyperon degrees of freedom. It is found that antikaon condensations change the Fermi momenta, the effective masses and the single particle energies of nucleons in neutron star matter. These changes lead to a strong suppression of the neutron 1S0 superfluidity and an obvious enhancement of the proton 1S0 superfluidity in neutron star matter, respectively. In particular, the neutron and proton 1S0 pairing gaps are gradually shrinking with the optical potential of antikaons from -80 to -130 MeV. And antikaon condensations have little influence on the neutron 1S0 superfluid range, however, they have been markedly downsized the proton 1S0 superfluid range as the deepening of the optical potential of antikaons in neutron star matter. We also found that the nucleon 1S0 superfluidity and K- condensations within the scope of above optical potential of antikaons can occur in the core of PSR J1614-2230 and PSR J0348+0432 at the same time. Whereas \\bar{K}0 condensations only occur in the two pulsars when the range of optical potential of antikaons is from -100 to -130 MeV.

  20. Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Yamashita, Koichi

    2001-01-01

    Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].

  1. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  2. Second sound and the density response function in uniform superfluid atomic gases

    NASA Astrophysics Data System (ADS)

    Hu, H.; Taylor, E.; Liu, X.-J.; Stringari, S.; Griffin, A.

    2010-04-01

    Recently, there has been renewed interest in second sound in superfluid Bose and Fermi gases. By using two-fluid hydrodynamic theory, we review the density response χnn(q, ω) of these systems as a tool to identify second sound in experiments based on density probes. Our work generalizes the well-known studies of the dynamic structure factor S(q, ω) in superfluid 4He in the critical region. We show that, in the unitary limit of uniform superfluid Fermi gases, the relative weight of second versus first sound in the compressibility sum rule is given by the Landau-Placzek ratio \\epsilon_{\\mathrm{LP}}\\equiv (\\bar{c}_p-\\bar{c}_v)/\\bar{c}_v for all temperatures below Tc. In contrast to superfluid 4He, epsilonLP is much larger in strongly interacting Fermi gases, being already of order unity for T~0.8Tc, thereby providing promising opportunities to excite second sound with density probes. The relative weights of first and second sound are quite different in S(q, ω) (measured in pulse propagation studies) as compared with Imχnn(q, ω) (measured in two-photon Bragg scattering). We show that first and second sound in S(q, ω) in a strongly interacting Bose-condensed gas are similar to those in a Fermi gas at unitarity. However, in a weakly interacting Bose gas, first and second sound are mainly uncoupled oscillations of the thermal cloud and condensate, respectively, and second sound has most of the spectral weight in S(q, ω). We also discuss the behaviour of the superfluid and normal fluid velocity fields involved in first and second sound.

  3. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    DOE PAGES

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...

    2017-01-05

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less

  4. Novel Role of Superfluidity in Low-Energy Nuclear Reactions.

    PubMed

    Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel

    2017-07-28

    We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.

  5. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  6. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  7. Color superfluidity of neutral ultracold fermions in the presence of color-flip and color-orbit fields

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Doga Murat; Sá de Melo, C. A. R.

    2018-02-01

    We describe how color superfluidity is modified in the presence of color-flip and color-orbit fields in the context of ultracold atoms and discuss connections between this problem and that of color superconductivity in quantum chromodynamics. We study the case of s -wave contact interactions between different colors and we identify several superfluid phases, with five being nodal and one being fully gapped. When our system is described in a mixed-color basis, the superfluid order parameter tensor is characterized by six independent components with explicit momentum dependence induced by color-orbit coupling. The nodal superfluid phases are topological in nature and the low-temperature phase diagram of the color-flip field versus the interaction parameter exhibits a pentacritical point, where all five nodal color superfluid phases converge. These results are in sharp contrast to the case of zero color-flip and color-orbit fields, where the system has perfect U(3) symmetry and possesses a superfluid phase that is characterized by fully gapped quasiparticle excitations with a single complex order parameter with no momentum dependence and by inert unpaired fermions representing a nonsuperfluid component. In the latter case, just a crossover between a Bardeen-Cooper-Schrieffer and a Bose-Einstein-condensation superfluid occurs. Furthermore, we analyze the order parameter tensor in a total pseudospin basis, investigate its momentum dependence in the singlet, triplet, and quintet sectors, and compare the results with the simpler case of spin-1/2 fermions in the presence of spin-flip and spin-orbit fields, where only singlet and triplet channels arise. Finally, we analyze in detail spectroscopic properties of color superfluids in the presence of color-flip and color-orbit fields, such as the quasiparticle excitation spectrum, momentum distribution, and density of states to help characterize all the encountered topological quantum phases, which can be realized in fermionic

  8. Cavity optomechanics in a levitated helium drop

    NASA Astrophysics Data System (ADS)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  9. Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.

    2004-12-01

    We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theorymore » developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance.« less

  10. Critical exponents of the disorder-driven superfluid-insulator transition in one-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.

    2011-11-15

    We investigate the nature of the superfluid-insulator quantum phase transition driven by disorder for noninteracting ultracold atoms on one-dimensional lattices. We consider two different cases: Anderson-type disorder, with local energies randomly distributed, and pseudodisorder due to a potential incommensurate with the lattice, which is usually called the Aubry-Andre model. A scaling analysis of numerical data for the superfluid fraction for different lattice sizes allows us to determine quantum critical exponents characterizing the disorder-driven superfluid-insulator transition. We also briefly discuss the effect of interactions close to the noninteracting quantum critical point of the Aubry-Andre model.

  11. In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Ezoe, Yuichiro; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michael; Shirron, Peter

    2018-04-01

    ASTRO-H was an X-ray astronomy satellite that the Japan Aerospace Exploration Agency (JAXA) developed to study the evolution of the universe and physical phenomena yet to be discovered. The primary scientific instrument of ASTRO-H was the Soft X-ray Spectrometer (SXS). Its detectors were to be cooled to 50 m K using a complex cryogenic system with a multistage adiabatic demagnetization refrigerator (ADR) developed by the National Aeronautics and Space Administration (NASA), and a cryogenic system developed by Sumitomo Heavy Industries, Ltd. (SHI). SHI's cryogenic system was required to cool the ADR's heatsink to 1.3 K or less in orbit for three years or longer. To meet these requirements, SHI developed a hybrid cryogenic system consisting of a liquid helium tank, a 4 K Joule-Thomson cooler, and two two-stage Stirling coolers. ASTRO-H was launched from Tanegashima Space Center on February 17, 2016. The initial operation of the SXS cryogenic system in orbit was completed successfully. The cooling performance was as expected and could have exceeded the lifetime requirement of three years. This paper describes results of ground tests, results of top-off filling of superfluid liquid helium just before launch, and cooling performance in orbit.

  12. Prospects of detecting baryon and quark superfluidity from cooling neutron stars

    PubMed

    Page; Prakash; Lattimer; Steiner

    2000-09-04

    Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.

  13. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  14. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  15. Direct Lattice Shaking of Bose Condensates: Finite Momentum Superfluids

    DOE PAGES

    Anderson, Brandon M.; Clark, Logan W.; Crawford, J

    2017-05-31

    Here, we address band engineering in the presence of periodic driving by numerically shaking a lattice containing a bosonic condensate. By not restricting to simplified band structure models we are able to address arbitrary values of the shaking frequency, amplitude, and interaction strengths g. For "near-resonant" shaking frequencies with moderate g, a quantum phase transition to a finite momentum superfluid is obtained with Kibble-Zurek scaling and quantitative agreement with experiment. We use this successful calibration as a platform to support a more general investigation of the interplay between (one particle) Floquet theory and the effects associated with arbitrary g. Bandmore » crossings lead to superfluid destabilization, but where this occurs depends on g in a complicated fashion.« less

  16. Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Iaia, Vito; Menachekanian, Emin; Williams, Gary

    2014-03-01

    A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.

  17. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se; Kotzias, Bernhard

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) andmore » H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.« less

  18. Observation of a superfluid Hall effect

    PubMed Central

    Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.

    2012-01-01

    Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494

  19. Strong coupling corrections to the Ginzburg-Landau theory of superfluid He3

    NASA Astrophysics Data System (ADS)

    Choi, H.; Davis, J. P.; Pollanen, J.; Haard, T. M.; Halperin, W. P.

    2007-05-01

    In the Ginzburg-Landau theory of superfluid He3 , the free energy is expressed as an expansion of invariants of a complex order parameter. Strong coupling effects, which increase with increasing pressure, are embodied in the set of coefficients of these order-parameter invariants [A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975); E. V. Thuneberg, Phys. Rev. B 36, 3583 (1987); J. Low Temp. Phys. 122, 657 (2001)]. Experiments can be used to determine four independent combinations of the coefficients of the five fourth-order invariants. This leaves the phenomenological description of the thermodynamics near Tc incomplete. Theoretical understanding of these coefficients is also quite limited. We analyze our measurements of the magnetic susceptibility and the NMR frequency shift in the B phase which refine the four experimental inputs to the phenomenological theory. We propose a model based on existing experiments, combined with calculations by Sauls and Serene [Phys. Rev. B 24, 183 (1981)] of the pressure dependence of these coefficients, in order to determine all five fourth-order terms. This model leads us to a better understanding of the thermodynamics of superfluid He3 in its various states. We discuss the surface tension of bulk superfluid He3 and predictions for novel states of the superfluid such as those that are stabilized by elastic scattering of quasiparticles from a highly porous silica aerogel.

  20. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  1. Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, N.; Ohashi, Y.; Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

    2007-03-15

    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density {rho}{sub s} in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter {delta} and Fermi chemical potential {mu}, using the Nozieres-Schmitt-Rink approximation. This treatment is shown to be necessary for consistent treatment of {rho}{sub s} over themore » entire BCS-BEC crossover. We also calculate the condensate fraction N{sub c} as a function of the temperature, a quantity which is quite different from the superfluid density {rho}{sub s}. We show that the mean-field expression for the condensate fraction N{sub c} is a good approximation even in the strong-coupling BEC regime. Our numerical results show how {rho}{sub s} and N{sub c} depend on temperature, from the weak-coupling BCS region to the BEC region of tightly bound Cooper pair molecules. In a companion paper [Phys. Rev. A 74, 063626 (2006)], we derive an equivalent expression for {rho}{sub s} from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.« less

  2. Localized excitations at the Mott insulator-superfluid interfaces for confined Bose-Einstein condensates.

    PubMed

    Mariani, Eros; Stern, Ady

    2005-12-31

    In this Letter, we derive the dispersion relation of the surface waves at the interfaces between Mott-insulating and superfluid domains for a two-dimensional Bose-Einstein condensate in an optical lattice subjected to a confining potential. We then calculate their contribution to the heat capacity of the system and show how its low-temperature scaling allows an experimental test of the existence and properties of Mott insulator-superfluid domains.

  3. Slow dynamics at Re =108 in turbulent Helium flows

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Roche, Philippe; Rousset, Bernard

    2014-11-01

    The presence of slow dynamics is a recurrent feature of many turbulent flows. This behaviour can be created by instabilities of the mean flow or by other mechanisms. In this work we analyze the behavior of a highly turbulent flow (maximum Reynolds number Re =108 , with a Reynolds based on the Taylor microscale Reλ = 2000). The experimental cell consists on a closed cavity filled with liquid Helium (330 liters) close to the lambda point (between 1.8 and 2.5 K) where two inhomogeneous and strongly turbulent flows collide in a thin region. The cylindrical cavity has a diameter of 78cm and two impellers rotate in opposite directions with rotation frequencies up to 2 Hz. The distance between the propellers is 70 cm. Different experimental runs have been performed, both in the normal and superfluid phases. We have performed velocity measurements using home-made Pitot tubes. Here we would like to present preliminary results on this configuration. The analysis of the data series reveals that below the injection frequencies there are different dynamical regimes with time scales two orders of magnitude below the injection scale. We acknowledge support from the EuHIT network and the SHREK Collaboration.

  4. Superfluid drag in the two-component Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  5. The THz/FIR Spectrum of Small Water Clusters in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Schwaab, Gerhard; Schwan, Raffael; Mani, Devendra; Pal, Nitish; Dey, Arghya; Redlich, Britta; van der Meer, Lex; Havenith, Martina

    2017-06-01

    The microscopic properties of water that are relevant for bulk solvation processes are still not fully understood. Here, we combine mass selective Helium nanodroplet spectroscopy with the powerful Terahertz (THz) and far-infrared (FIR) capabilities of the free electron laser facility FELIX to study the fingerprint of small neutral water clusters in the wavelength range from 90-900\\wn. Helium nanodroplets are a gentle, superfluid matrix and allow aggregation of pre-cooled moieties at ultra-cold temperatures (0.37 K). The fast cooling rate allows in some cases to stabilize not only the global minimum structure but also local minimum structures. The FELIX facility in Nijmegen provides narrowband (Δν / ν=0.5%) pulsed radation covering the frequency range from 80-3300 \\wn. We used a repetition rate of 10 Hz and typical pulse energies from 10 mJ at the 90\\wn and 40 mJ at 900\\wn. This corresponds to average powers of 100-400 mW far beyond those available using other radiation sources in this frequency range. The observed spectrum is exceptionally rich and includes lines that are close to or below our resolution limit. By mass selective detection and by varying the pickup pressure, we were able to identify contributions from dimer, trimer, tetramer and pentamer. The number of resonances indicates stabilization of at least two trimer structures in He nanodroplets. A comparison with theoretical predictions is on the way. We are confident that our experiments will contribute to understand the very special behavior of water in a bottom up approach.

  6. Pairing fluctuations and the superfluid density through the BCS-BEC crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, E.; Griffin, A.; Fukushima, N.

    2006-12-15

    We derive an expression for the superfluid density of a uniform two-component Fermi gas through the BCS-BEC crossover in terms of the thermodynamic potential in the presence of an imposed superfluid flow. Treating the pairing fluctuations in a Gaussian approximation following the approach of Nozieres and Schmitt-Rink, we use this definition of {rho}{sub s} to obtain an explicit result which is valid at finite temperatures and over the full BCS-BEC crossover. It is crucial that the BCS gap {delta}, the chemical potential {mu}, and {rho}{sub s} all include the effect of fluctuations at the same level in a self-consistent manner.more » We show that the normal fluid density {rho}{sub n}{identical_to}n-{rho}{sub s} naturally separates into a sum of contributions from Fermi BCS quasiparticles ({rho}{sub n}{sup F}) and Bose collective modes ({rho}{sub n}{sup B}). The expression for {rho}{sub n}{sup F} is just Landau's formula for a BCS Fermi superfluid but now calculated over the BCS-BEC crossover. The expression for the Bose contribution {rho}{sub n}{sup B} is more complicated and only reduces to Landau's formula for a Bose superfluid in the extreme BEC limit, where all the fermions have formed stable Bose pairs and the Bogoliubov excitations of the associated molecular Bose condensate are undamped. In a companion paper, we present numerical calculations of {rho}{sub s} using an expression equivalent to the one derived in this paper, over the BCS-BEC crossover, including unitarity, and at finite temperatures.« less

  7. Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes

    NASA Astrophysics Data System (ADS)

    Mongiovì, Maria Stella; Restuccia, Liliana

    2018-02-01

    This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.

  8. A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A report describes a pulse tube refrigerator that uses a mixture of He-3 and superfluid He-4 to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the He-3 He-4 mixture without the need for moving parts. The refrigerator consists of a reversible thermal magnetic pump module, two warm heat exchangers, a recuperative heat exchanger, two cold heat exchangers, two pulse tubes, and an orifice. It is two superfluid pulse tubes that run 180 out of phase. All components of this machine except the reversible thermal pump have been demonstrated at least as proof-of-concept physical models in previous superfluid Stirling cycle machines. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters.

  9. Electron Bubbles in Superfluid (3) 3 He-A: Exploring the Quasiparticle-Ion Interaction

    NASA Astrophysics Data System (ADS)

    Shevtsov, Oleksii; Sauls, J. A.

    2017-06-01

    When an electron is forced into liquid ^3He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3, where m_3 is the mass of a ^3He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3He-A.

  10. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  11. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    PubMed

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  12. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.

    PubMed

    Boese, A Daniel; Forbert, Harald; Masia, Marco; Tekin, Adem; Marx, Dominik; Jansen, Georg

    2011-08-28

    The infrared spectroscopy of molecules, complexes, and molecular aggregates dissolved in superfluid helium clusters, commonly called HElium NanoDroplet Isolation (HENDI) spectroscopy, is an established, powerful experimental technique for extracting high resolution ro-vibrational spectra at ultra-low temperatures. Realistic quantum simulations of such systems, in particular in cases where the solute is undergoing a chemical reaction, require accurate solute-helium potentials which are also simple enough to be efficiently evaluated over the vast number of steps required in typical Monte Carlo or molecular dynamics sampling. This precludes using global potential energy surfaces as often parameterized for small complexes in the realm of high-resolution spectroscopic investigations that, in view of the computational effort imposed, are focused on the intermolecular interaction of rigid molecules with helium. Simple Lennard-Jones-like pair potentials, on the other hand, fall short in providing the required flexibility and accuracy in order to account for chemical reactions of the solute molecule. Here, a general scheme of constructing sufficiently accurate site-site potentials for use in typical quantum simulations is presented. This scheme employs atom-based grids, accounts for local and global minima, and is applied to the special case of a HCl(H(2)O)(4) cluster solvated by helium. As a first step, accurate interaction energies of a helium atom with a set of representative configurations sampled from a trajectory following the dissociation of the HCl(H(2)O)(4) cluster were computed using an efficient combination of density functional theory and symmetry-adapted perturbation theory, i.e. the DFT-SAPT approach. For each of the sampled cluster configurations, a helium atom was placed at several hundred positions distributed in space, leading to an overall number of about 400,000 such quantum chemical calculations. The resulting total interaction energies, decomposed into

  13. Performance Characterization of the Production Facility Prototype Helium Flow System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less

  14. Spectroscopy of LiCa and RbSr Molecules on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Gunter; Ernst, Wolfgang E.

    2013-06-01

    We report on the investigation of mixed alkali metal (Ak) - alkaline earth metal (Ake) molecules on the surface of helium nanodroplets (He_{N}). These molecules have recently attracted considerable attention as candidates for the formation of ultracold molecules with a magnetic and an electronic dipole moment. In our experiments, LiCa and RbSr molecules are formed in a sequential pick-up process in their X^{2}Σ^{+} ground state and cool down rapidly to the droplet temperature of 0.38 K. Excitation spectra of LiCa and RbSr were recorded by using resonance enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy. On the helium droplet, vibronic transitions in Ak-Ake molecules are broadened and show a characteristic asymmetric peak form, which is caused by the interaction between the molecule and the superfluid He_{N} environment. For the lower electronic transitions in LiCa and RbSr progressions of vibrational bands excited from the X^{2}Σ^{+} (ν'' = 0) state are observed. The LiCa spectra can be compared to molecular beam experiments, which enables the assignment of three band systems near 15260 cm^{-1}, 19300 cm^{-1} and 22120 cm^{-1} as ^{2}Σ^{+}, ^{2}Π_{Ω} and ^{2}Π band, respectively. In the RbSr excitation spectrum we observe a vibrationally resolved band system near 14020 cm^{-1}. Upon electronic excitation, a fraction of the molecules desorb from the droplet surface and dispersed fluorescence spectra allow to study the X^{2}Σ^{+} ground state and excited states of free Ak-Ake molecules. H. Hara, Y. Takasu, Y. Yamaoka, J.M. Doyle, Y. Takahashi, Phys. Rev. Lett. 106, 205304 (2011) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) L. M. Russon, G. K. Rothschopf, M. D. Morse, A. I

  15. Initial test results from a prototype, 20 kW helium charged Stirling engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, M.A.; Taylor, D.R.

    An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.

  16. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    DOE PAGES

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; ...

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  17. Description of the prototype diagnostic residual gas analyzer for ITER.

    PubMed

    Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C

    2014-11-01

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  18. Space shuttle prototype check valve development

    NASA Technical Reports Server (NTRS)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  19. Spatial Relevancies of Hybrid Systems Relates to Superfluid

    NASA Astrophysics Data System (ADS)

    Hidajatullah-Widastra, Fatahillah

    2015-05-01

    After S/F hybrid system from Martin Lange, of spatial modulation Superconductor-Electromagnet hybrids superconductor producing studies conclusion, for superconductor at large Hand/or T(i.e close to the phase transitionline), when the superfluid densitiy tends to 0. Further as for He3-B superfluid ``testing ground'', after sought extensometer for every materials testing application from , in K Matsumoto:``Flux pinning Engineering for Application of HTS'', 2013 quote Higgs boson , whereas it plays role as similar phenomena of Meissner effect, both involves magnet levitating. Accompanying Gosowong vein, US 16. 3 Million costed study-report who said the toxic waste also endangering biodiversity[Dini Septanti: ``The BUYAT Case: Straddling between Environmental Securitization & De-securitization'', herewith proposed the ``complexity systems'' comparison comprises also phase transition & ``directed polymer'' notions of JP Bouchaud et al: ``Wealth condensation in a simple model of economy''. Incredibles acknowledgment to HE. Mr. Drs. P. SWANTORO & HE.Mr.Ir. H. ABURIZAL BAKRIE.

  20. Gaussian impurity moving through a Bose-Einstein superfluid

    NASA Astrophysics Data System (ADS)

    Pinsker, Florian

    2017-09-01

    In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.

  1. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  2. Operation of an ADR using helium exchange gas as a substitute for a failed heat switch

    NASA Astrophysics Data System (ADS)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; Mitsuda, K.

    2014-11-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 × 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  3. Operation of an ADR Using Helium Exchange Gas as a Substitute for a Failed Heat Switch

    NASA Technical Reports Server (NTRS)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; hide

    2014-01-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  4. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  5. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes

    2008-03-16

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transportmore » properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.« less

  6. Fluids that Defy the Law.

    ERIC Educational Resources Information Center

    Gwynne, Peter

    1983-01-01

    Astronomers are using aspects of the fundamentals gleaned by the study of the dynamics of superfluids to help understand what happens inside the intensely hot, collapsed, neutron stars that spin and radiate as pulsars. Current research, focusing on the puzzling behavior of helium in its superfluid state, is discussed. (JN)

  7. Generic equilibration dynamics of planar defects in trapped atomic superfluids

    DOE PAGES

    Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...

    2015-03-18

    Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less

  8. Domain-area distribution anomaly in segregating multicomponent superfluids

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu

    2018-01-01

    The domain-area distribution in the phase transition dynamics of Z2 symmetry breaking is studied theoretically and numerically for segregating binary Bose-Einstein condensates in quasi-two-dimensional systems. Due to the dynamic-scaling law of the phase ordering kinetics, the domain-area distribution is described by a universal function of the domain area, rescaled by the mean distance between domain walls. The scaling theory for general coarsening dynamics in two dimensions hypothesizes that the distribution during the coarsening dynamics has a hierarchy with the two scaling regimes, the microscopic and macroscopic regimes with distinct power-law exponents. The power law in the macroscopic regime, where the domain size is larger than the mean distance, is universally represented with the Fisher's exponent of the percolation theory in two dimensions. On the other hand, the power-law exponent in the microscopic regime is sensitive to the microscopic dynamics of the system. This conjecture is confirmed by large-scale numerical simulations of the coupled Gross-Pitaevskii equation for binary condensates. In the numerical experiments of the superfluid system, the exponent in the microscopic regime anomalously reaches to its theoretical upper limit of the general scaling theory. The anomaly comes from the quantum-fluid effect in the presence of circular vortex sheets, described by the hydrodynamic approximation neglecting the fluid compressibility. It is also found that the distribution of superfluid circulation along vortex sheets obeys a dynamic-scaling law with different power-law exponents in the two regimes. An analogy to quantum turbulence on the hierarchy of vorticity distribution and the applicability to chiral superfluid 3He in a slab are also discussed.

  9. Small helium-cooled infrared telescope experiment for Spacelab-2 (IRT)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    The Infrared Telescope (IRT) experiment, flown on Spacelab-2, was used to make infrared measurements between 2 and 120 microns. The objectives were multidisciplinary in nature with astrophysical goals of mapping the diffuse cosmic emission and extended infrared sources and technical goals of measuring the induced Shuttle environment, studying properties of superfluid helium in space, and testing various infrared telescope system designs. Astrophysically, new data were obtained on the structure of the Galaxy at near-infrared wavelengths. A summary of the large scale diffuse near-infrared observations of the Galaxy by the IRT is presented, as well as a summary of the preliminary results obtained from this data on the structure of the galactic disk and bulge. The importance of combining CO and near-infrared maps of similar resolution to determine a 3-D model of galactic extinction is demonstrated. The IRT data are used, in conjunction with a proposed galactic model, to make preliminary measurements of the global scale parameters of the Galaxy. During the mission substantial amounts of data were obtained concerning the induced Shuttle environment. An experiment was also performed to measure spacecraft glow in the IR.

  10. Thermal transport properties in helium near the superfluid transition. I.4He in the normal phase

    NASA Astrophysics Data System (ADS)

    Dingus, M.; Zhong, F.; Meyer, H.

    1986-11-01

    The thermal conductivity κ and the associated relaxation time τ to reach steady-state conditions are reported for the normal phase of several very dilute mixtures of3He in4He ( X<4 × 10-6) at saturated vapor pressure near Tλ. The measurements were made over the reduced temperature range 2.5 × 10-6<ɛ<2×10-1, where ɛ ≡ (T-Tλ)/Tλ, and are representative for pure4He. The spacing between the cell plates was 0.147 cm. The systematic uncertainty in the conductivity data is estimated to increase from ˜2% for ɛ=0.2 to ˜4% for ɛ=3 × 10-6. The random scatter due to finite temperature resolution increases to ˜7% at the smallest ɛ. The data are in agreement within the combined uncertainty with recent ones by Tam and Ahlers (cell F, spacing 0.20 cm) and with previous ones in this laboratory taken with a different plate spacing. The thermal diffusivity coefficient D T = κ / ϱ C p obtained from τ is found to agree within better than 15% with the calculated one using data for κ, the density ϱ, and the specific heat C p . Measurements of the effective boundary resistivity R b in the superfluid phase are described. R b is found to depend on the thermal history of the cell when cycled up to 77 K and above. Also, R b shows the beginning of an anomalous increase for ¦ɛ¦≲10-4. The possible reasons for this anomaly are discussed, and their impact on the analysis of conductivity data in the normal phase is appraised.

  11. Sloshing dynamics on rotating helium dewar tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1993-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.

  12. Imprints of superfluidity on magnetoelastic quasiperiodic oscillations of soft gamma-ray repeaters.

    PubMed

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A; Müller, Ewald

    2013-11-22

    Our numerical simulations show that axisymmetric, torsional, magnetoelastic oscillations of magnetars with a superfluid core can explain the whole range of observed quasiperiodic oscillations (QPOs) in the giant flares of soft gamma-ray repeaters. There exist constant phase QPOs at f is < or approximately equal to 150 Hz and resonantly excited high-frequency QPOs (f>500 Hz), in good agreement with observations. The range of magnetic field strengths required to match the observed QPO frequencies agrees with that from spin-down estimates. These results suggest that there is at least one superfluid species in magnetar cores.

  13. Apker Award Recipient: Renormalization-Group Study of Helium Mixtures Immersed in a Porous Medium

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna

    1998-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in aerogel are studied by renormalization-group theory. Firstly, the theory is applied to jungle-gym (non-random) aerogel.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 55, 3798 (1997).) This calculation is conducted via the coupled renormalization-group mappings of interactions near and away from aerogel. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfludity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. Secondly, the theory is applied to true aerogel, which has quenched disorder at both atomic and geometric levels.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 56, 11865 (1997).) This calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of quenched probability distributions of random interactions. Random-bond effects on superfluidity onset and random-field effects on superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general prediction and experiments. Based on these studies, the experimentally observed(S.B. Kim, J. Ma, and M.H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993); N. Mulders and M.H.W. Chan, Phys. Rev. Lett. 75, 3705 (1995).) distinctive characteristics of ^3He-^4He mixtures in aerogel are related to the aerogel properties of connectivity, tenuousness, and atomic and geometric randomness.

  14. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Pethick, C. J.

    2017-08-01

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  15. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.

    PubMed

    Watanabe, Gentaro; Pethick, C J

    2017-08-11

    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)PRVCAN0556-2813] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.

  16. Second sound experiments in superfluid 3He-A1 phase in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Bastea, Marina

    The Asb1 phase of sp3He is the first observed magnetic superfluid, stable only in the presence of an external magnetic field. Due to the broken relative gauge and spin rotational symmetry, the two associated collective modes, the second sound and the longitudinal spin waves are expected to appear as a single mode which we call the spin-entropy wave. Our work is focused on consistently mapping the behavior of the spin-entropy wave in the superfluid Asb{1} phase of sp3He, under a wide range of experimental conditions. Our results address fundamental questions such as the identification of the order parameter symmetry in the superfluid states, the nature of the pairing state in the Asb1 phase and the superfluid density anisotropy. We extensively investigated the propagation of the spin-entropy wave as a function of temperature, magnetic field between 1 and 8 Tesla and liquid pressure up to 30 bar. Our results show that the superfluid density is directly proportional to the magnitude of the external field in the specified range, as predicted by theory. We discovered that in the vicinity of the transition to the Asb2 phase, over a fairly large temperature range, the spin-entropy wave suffers a divergent attenuation. The observed effects were suggested as evidence for the presence of a minority condensate population, "down spin" pairs, specific for the Asb2 phase, as predicted by Monien and Tewordt. We measured the superfluid density dependence on the pressure between 10 and 30 bar and directly related it to the fourth order coefficients of the Ginzburg-Landau free energy expansion. The pressure dependence of three of these coefficients and their strong coupling corrections was found to be consistent with the theoretical predictions of Sauls and Serene. Our results support the identification of the A phase as the Anderson-Brinkman-Morel axial state and provide an important consistency check for the phase diagram carried out by groups at USC and Cornell. We performed

  17. Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iskin, M.; Sa de Melo, C. A. R.

    2007-08-24

    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid-excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly themore » FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.« less

  18. Probing the critical exponent of the superfluid fraction in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Liu, Xia-Ji

    2013-11-01

    We theoretically investigate the critical behavior of a second-sound mode in a harmonically trapped ultracold atomic Fermi gas with resonant interactions. Near the superfluid phase transition with critical temperature Tc, the frequency or the sound velocity of the second-sound mode crucially depends on the critical exponent β of the superfluid fraction. In an isotropic harmonic trap, we predict that the mode frequency diverges like (1-T/Tc)β-1/2 when β<1/2. In a highly elongated trap, the speed of the second sound reduces by a factor of 1/2β+1 from that in a homogeneous three-dimensional superfluid. Our prediction could readily be tested by measurements of second-sound wave propagation in a setup, such as that exploited by Sidorenkov [Nature (London)NATUAS0028-083610.1038/nature12136 498, 78 (2013)] for resonantly interacting lithium-6 atoms, once the experimental precision is improved.

  19. Vortex Chain in a Resonantly Pumped Polariton Superfluid

    PubMed Central

    Boulier, T.; Terças, H.; Solnyshkov, D. D.; Glorieux, Q.; Giacobino, E.; Malpuech, G.; Bramati, A.

    2015-01-01

    Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system. PMID:25784592

  20. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  1. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  2. Topological superfluids with finite-momentum pairing and Majorana fermions.

    PubMed

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  3. Strong-coupling effects in superfluid He3 in aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2007-09-01

    Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid He3 are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid He3 in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally.

  4. Effects of magnetic impurity scattering on superfluid 3He in aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    We investigate impurity effects on superfluid 3He in aerogel whose surface is not coated with 4He, different from most experimental situations. In systems with no 4He coating, spins of solid 3He absorbed on the aerogel surface are active and interact with spins of quasiparticles relevant to superfluidity and, for this reason, such an aerogel is treated as magnetic scatterers. It is found that, in the ABM pairing state affected by magnetic scatterings, not only the l-vector but also the d-vector has no long-ranged orientational order, and that the strong-coupling correction due to impurity scatterings is less suppressed than that in the nonmagnetic case, implying an expansion of the A-like phase region.

  5. Critical behavior of a chiral superfluid in a bipartite square lattice

    NASA Astrophysics Data System (ADS)

    Okamoto, Junichi; Huang, Wen-Min; Höppner, Robert; Mathey, Ludwig

    2018-01-01

    We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.

  6. Superfluid Densities in Superconducting/Ferromagnetic (Nb/NiV/Nb) Heterostructures

    NASA Astrophysics Data System (ADS)

    Hinton, Michael; Peters, Brian; Hauser, Adam; Meyer, Julia; Yang, Fengyuan; Lemberger, Thomas

    2011-03-01

    Superfluid density measurements allow us to probe the superconducting structure of thin films below Tc with remarkable detail. They yield information not only of the inherent robustness of the superconducting state, but also about the homogeneity of the sample and possible ``hidden'' transitions at temperatures lower than the initial Tc . For this reason multiple transitions in superconducting heterostructures are revealed to us. We use superfluid density measurements on Nb/ Ni 0.95 V0.05 /Nb trilayers to study the interplay between two superconducting films separated by the destructive proximity effects of a ferromagnet. We show there are trilayers with strong coupling, which produces a single transition, that become decoupled to the point of separation into two transitions as the ferromagnetic layer thickness increases. We discuss the difficulties in observing the second transition in σ1 , while obvious in λ-2 .

  7. Superfluid in a shaken optical lattice: quantum critical dynamics and topological defect engineering

    NASA Astrophysics Data System (ADS)

    Gaj, Anita; Feng, Lei; Clark, Logan W.; Chin, Cheng

    2017-04-01

    We present our recent studies of non-equilibrium dynamics in Bose-Einstein condensates using the shaken optical lattice. By increasing the shaking amplitude we observe a quantum phase transition from an ordinary superfluid to an effectively ferromagnetic superfluid composed of discrete domains with different quasi-momentum. We investigate the critical dynamics during which the domain structure and domain walls emerge. We demonstrate the use of a digital micromirror device to deterministically create desired domain structure. Using this technique we develop a clearer picture of the quantum critical dynamics at early times and its impact on the domain structure long after the transition.

  8. Bose Condensation at He-4 Interfaces

    NASA Technical Reports Server (NTRS)

    Draeger, E. W.; Ceperley, D. M.

    2003-01-01

    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.

  9. High accuracy thermal conductivity measurements near the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbank, William M.; Lipa, John A.

    1989-01-01

    Over the past few years extensive thermal conductivity measurements near the lambda point of helium were made. The original goal of measuring the thermal conductivity with a resolution of t = T/T sub lambda -1 of 3 x 10(-8) was reached, but with somewhat less accuracy than was hoped. Subtle effects in the apparatus near the transition were observed which reduced the ability to interpret the results. Nevertheless, for resolution of t is greater than or equal to 10(-7) reliable data was obtained, extending previous measurements by more than an order of magnitude. Deviations from theoretical predictions were observed for t is less than or equal to 3 x 10(-6) leading to the question of the validity of the present renormalization group analysis of transport properties, at least for the case of helium. This anomaly led to closer examination of the boundary effects in the measurements. During the experiments a totally unexpected effect in the very dilute He-3 - He-4 mixtures was observed which led to the explanation of the anomalous results. The concentration dependence of the thermal conductivity near T sub lambda in the superfluid phase was found to deviate strongly from the predictions. The results gave an independent verification of this behavior and caused reanalysis of the Khalatnikov theory of hydrodynamics of the mixtures. An alternative solution was found which is in better agreement with the experiment.

  10. Turbulent statistics and intermittency enhancement in coflowing superfluid 4He

    NASA Astrophysics Data System (ADS)

    Biferale, L.; Khomenko, D.; L'vov, V.; Pomyalov, A.; Procaccia, I.; Sahoo, G.

    2018-02-01

    The large-scale turbulent statistics of mechanically driven superfluid 4He was shown experimentally to follow the classical counterpart. In this paper, we use direct numerical simulations to study the whole range of scales in a range of temperatures T ∈[1.3 ,2.1 ] K. The numerics employ self-consistent and nonlinearly coupled normal and superfluid components. The main results are that (i) the velocity fluctuations of normal and super components are well correlated in the inertial range of scales, but decorrelate at small scales. (ii) The energy transfer by mutual friction between components is particulary efficient in the temperature range between 1.8 and 2 K, leading to enhancement of small-scale intermittency for these temperatures. (iii) At low T and close to Tλ, the scaling properties of the energy spectra and structure functions of the two components are approaching those of classical hydrodynamic turbulence.

  11. Self-driven cooling loop for a large superconducting magnet in space

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Snyder, H. A.

    1992-01-01

    Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.

  12. Observation of dynamic atom-atom correlation in liquid helium in real space

    DOE PAGES

    Dmowski, W.; Diallo, S. O.; Lokshin, K.; ...

    2017-05-04

    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom–atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose–Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDFmore » peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom–atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.« less

  13. Observation of dynamic atom-atom correlation in liquid helium in real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Diallo, S. O.; Lokshin, K.

    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom–atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose–Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDFmore » peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom–atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.« less

  14. Observation of dynamic atom-atom correlation in liquid helium in real space.

    PubMed

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  15. Gravitational wave as probe of superfluid dark matter

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Liu, Tong-Bo; Wang, Shao-Jiang

    2018-02-01

    In recent years, superfluid dark matter (SfDM) has become a competitive model of emergent modified Newtonian dynamics (MOND) scenario: MOND phenomenons naturally emerge as a derived concept due to an extra force mediated between baryons by phonons as a result of axionlike particles condensed as superfluid at galactic scales; Beyond galactic scales, these axionlike particles behave as normal fluid without phonon-mediated MOND-like force between baryons, therefore SfDM also maintains the usual success of Λ CDM at cosmological scales. In this paper, we use gravitational waves (GWs) to probe the relevant parameter space of SfDM. GWs through Bose-Einstein condensate (BEC) could propagate with a speed slightly deviation from the speed-of-light due to the change in the effective refractive index, which depends on the SfDM parameters and GW-source properties. We find that Five hundred meter Aperture Spherical Telescope (FAST), Square Kilometre Array (SKA) and International Pulsar Timing Array (IPTA) are the most promising means as GW probe of relevant parameter space of SfDM. Future space-based GW detectors are also capable of probing SfDM if a multimessenger approach is adopted.

  16. Quantum Monte Carlo studies of superfluid Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.Y.; Pandharipande, V.R.; Carlson, J.

    2004-10-01

    We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak{sub F}. We report results for the ground-state energy, the pairing gap {delta}, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak{sub F}<-1, we obtain Bardeen-Cooper-Schrieffer (BCS) superfluid and the energy gap {delta} is much smaller than the Fermi gas energy E{sub FG}. When a>0, the interaction is strong enough tomore » form bound molecules with energy E{sub mol}. For 1/ak{sub F} > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with {delta} and gas energy per particle approaching E{sub mol}/2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5<1/ak{sub F}<0.5, is discussed.« less

  17. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobyakov, D. N.; Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that themore » nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.« less

  18. Chemical Bonding and Thermodynamics in Superconductivity and Superfluidity

    NASA Astrophysics Data System (ADS)

    Love, Peter

    2012-05-01

    Superconductivity and superfluidity are physical states that occur in a variety of chemical and physical systems. These physical states share a common type of real, or virtual, chemical bonding. Each of the systems discussed herein contain at least one real, or effective, coordinate covalent bond. This is formed from an electron pair donor species and an electron pair acceptor species. When the electronegativity difference between the electron pair donor and acceptor species is sufficiently small, the resultant coordinate covalent bond density can be substantial. If delocalized, this bond density can result in a significant increase in the electron pair orbital volume relative to that of the parent species, and an increase in the valence shell orbital entropy. In terms of the normalized Gibbs-Helmholtz equation, this results in a concomitant decrease in free energy of the delocalized electronic system. A decrease in free energy to negative values can support a boson state, and superconductivity. A clear example of these principles is the occurrence of superconductivity in the ceramic material, MgB2. These generalizations apply to superconducting elements, high temperature superconductors, superconducting alloys, and equivalently to superfluid 4He.

  19. A Focus on Cryogenic Engineering for the Primordial Inflation Polarization Explorer (PIPER) Mission

    NASA Technical Reports Server (NTRS)

    Rosas, Rogelio; Weston, Amy

    2011-01-01

    Cryogenic engineering involves design and modification of equipment that is used under boiling point of nitrogen which is 77 K. The focus of this paper will be on the design of hardware for cryogenic use and a retrofit that was done to the main laboratory cryostat used to test flight components for the Primordial Inflation Polarization Explorer balloon-borne mission. Data from prior tests showed that there was a superfluid helium leak and a total disassemble of the cryostat was conducted in order to localize and fix the leak. To improve efficiency new fill tubes and clamps with modifications were added to the helium tank. Upon removal of the tank, corrosion was found on the flange face that connects to the helium cold plate and therefore had to be fully replaced and copper plated to prevent future corrosion. Indium seals were also replaced for the four fill tubes, a helium level sensor, and the nitrogen and helium tanks. Four additional shielded twisted pairs of cryogenic wire and a wire harness for the Superconducting Quantum Interference Devices (SQUIDs) were added. Finally, there was also design work done for multiple pieces that went inside the cryostat and a separate probe used to test the SQUIDs. Upon successful completion of the cryostat upgrade, tests were run to check the effectiveness and stability of the upgrades. The post-retrofit tests showed minor leaks were still present and due to this, superfluidity has still not been attained. As such there could still be a possibility of a superfluid leak appearing in the future. Regardless, the copper plating on the helium tank has elongated the need to service it by three to five years.

  20. Upgrade of the cryogenic CERN RF test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirotte, O.; Benda, V.; Brunner, O.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less

  1. Superfluid density and carrier concentration across a superconducting dome: The case of strontium titanate

    NASA Astrophysics Data System (ADS)

    Collignon, Clément; Fauqué, Benoît; Cavanna, Antonella; Gennser, Ulf; Mailly, Dominique; Behnia, Kamran

    2017-12-01

    We present a study of the lower critical field, Hc 1, of SrTi1 -xNbxO3 as a function of carrier concentration with the aim of quantifying the superfluid density. At low carrier concentration (i.e., the underdoped side), superfluid density and the carrier concentration in the normal state are equal within experimental margin. A significant deviation between the two numbers starts at optimal doping and gradually increases with doping. The inverse of the penetration depth and the critical temperature follow parallel evolutions as in the case of cuprate superconductors. In the overdoped regime, the zero-temperature superfluid density becomes much lower than the normal-state carrier density before vanishing all together. We show that the density mismatch and the clean-to-dirty crossover are concomitant. Our results imply that the discrepancy between normal and superconducting densities is expected whenever the superconducting gap becomes small enough to put the system in the dirty limit. A quantitative test of the dirty BCS theory is not straightforward, due to the multiplicity of the bands in superconducting strontium titanate.

  2. Coherent and dissipative transport in a Josephson junction between fermionic superfluids of 6Li atoms

    NASA Astrophysics Data System (ADS)

    Neri, Elettra; Scazza, Francesco; Roati, Giacomo

    2018-04-01

    Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.

  3. Anisotropic strong-coupling effects on superfluid 3He in aerogels: Conventional spin-fluctuation approach

    NASA Astrophysics Data System (ADS)

    Ikeda, Ryusuke

    2015-05-01

    Motivated by recent experiments on liquid 3He reporting emergence of novel superfluid phases in globally anisotropic aerogels, our previous theory on superfluid 3He in globally anisotropic aerogels is extended to incorporate the effects of anisotropy of the quasiparticle scattering cross section on the strong-coupling (SC) contributions to the Ginzburg-Landau (GL) free energy on the basis of the spin-fluctuation (paramagnon) approach to the SC contributions developed by Brinkman et al. [Phys. Rev. A 10, 2386 (1974), 10.1103/PhysRevA.10.2386]. In the globally isotropic case, impurity effects on the SC correction destabilize the A phase even at higher pressures of about 30 bar and make the B phase the only state in equilibrium, while SC contributions accompanied by a global stretched anisotropy to the GL quartic terms generally tend to broaden the stability region of the A phase compared with that of the B phase. In particular, in contrast to the cases in bulk and in the isotropic aerogel, the SC corrections to the GL quadratic terms are not negligible in the globally anisotropic case but may change the sign of the apparent anisotropy depending on the magnitude of the frequency cutoff of the normal paramagnon propagator. Based on this sign change of the apparent anisotropy, we discuss different strange observations on superfluid 3He in porous media such as the disappearance of the polar superfluid phase at higher pressures seen in nematically ordered aerogels and the absence of B and A phases with planar l ̂ vector in a stretched aerogel.

  4. Superfluid state of atomic 6Li in a magnetic trap

    NASA Astrophysics Data System (ADS)

    Houbiers, M.; Ferwerda, R.; Stoof, H. T. C.; McAlexander, W. I.; Sackett, C. A.; Hulet, R. G.

    1997-12-01

    We report on a study of the superfluid state of spin-polarized atomic 6Li confined in a magnetic trap. Density profiles of this degenerate Fermi gas and the spatial distribution of the BCS order parameter are calculated in the local-density approximation. The critical temperature is determined as a function of the number of particles in the trap. Furthermore, we consider the mechanical stability of an interacting two-component Fermi gas, in the case of both attractive and repulsive interatomic interactions. For spin-polarized 6Li we also calculate the decay rate of the gas and show that within the mechanically stable regime of phase space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of the system might signal the presence of the superfluid state.

  5. Liquid?solid helium interface: some conceptual questions

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-12-01

    I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.

  6. Fluids, superfluids and supersolids: dynamics and cosmology of self-gravitating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celoria, Marco; Comelli, Denis; Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: comelli@fe.infn.it, E-mail: luigi.pilo@aquila.infn.it

    We compute cosmological perturbations for a generic self-gravitating media described by four derivatively-coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle σ. While perfect fluids and solids are adiabatic with σ constant in time, superfluids and supersolids feature a non-trivial dynamics for σ. Special classes of isentropic media with zero σ can also be found. Tensormore » modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.« less

  7. Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We study formation and superfluidity of dipolar excitons in double layer heterostructures formed by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential, the analytical expressions for the exciton energy spectrum and the mean field critical temperature Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than for B excitons. The mean field critical temperature for a two-component dilute exciton system in a TMDC double layer is analyzed and shown that the latter is an increasing function of the factor Q , determined by the effective masses of A and B excitons and their reduced mass. Comparison of the calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates the importance of screening effects in TMDC.

  8. Superfluid-insulator transition in a disordered two-dimensional quantum rotor model with random on-site interactions

    NASA Astrophysics Data System (ADS)

    An, Taeyang; Cha, Min-Chul

    2013-03-01

    We study the superfluid-insulator quantum phase transition in a disordered two-dimensional quantum rotor model with random on-site interactions in the presence of particle-hole symmetry. Via worm-algorithm Monte Carlo calculations of superfluid density and compressibility, we find the dynamical critical exponent z ~ 1 . 13 (2) and the correlation length critical exponent 1 / ν ~ 1 . 1 (1) . These exponents suggest that the insulating phase is a incompressible Mott glass rather than a Bose glass.

  9. Mathematical Model of Bubble Sloshing Dynamics for Cryogenic Liquid Helium in Orbital Spacecraft Dewar Container

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.

  10. A portable helium sniffer

    USGS Publications Warehouse

    Friedman, Irving; Denton, E.H.

    1976-01-01

    A portable helium sniffer has been developed for field use. The instrument is mounted in a four-wheel-drive pickup truck and can detect 50 parts per billion of helium in soil gas. The usefulness of helium sniffing in soil is being investigated as a prospecting tool in gas, oil, uranium, and geothermal prospecting as well as in earthquake prediction.

  11. Prediction of Pulsar Glitch Frequency Based on the Hard Superfluid Model

    NASA Astrophysics Data System (ADS)

    Itoh, N.

    1983-01-01

    Prediction of the pulsar glitch frequency is made on the basis of the hard superfluid model for pulsar glitches. It is likely that further superglitches will be observed in some of the most rapidly decelerating pulsars in the near future.

  12. Helium in inert matrix dispersion fuels

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Konings, R. J. M.; Fedorov, A. V.

    2003-07-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.

  13. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  14. Quantized vortices in arbitrary dimensions and the normal-to-superfluid phase transition

    NASA Astrophysics Data System (ADS)

    Bora, Florin

    The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of co-dimension two, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between vortical superflow and Ampere-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension four and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors. Extending these results to systems containing multiple vortices is elementary due to the linearity of the theory. The energy for multiple vortices is thus a sum of self-energies and power-law interaction terms. The statistical mechanics of a system containing vortices is addressed via the grand canonical partition function. A renormalization-group analysis in which the low energy excitations are integrated approximately, is used to compute certain critical coefficients. The exponents obtained via this approximate procedure are compared with values obtained previously by other means. For dimensions higher

  15. Heat transfer in a liquid helium cooled vacuum tube following sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, R. C.; Van Sciver, S. W.

    2015-12-01

    Condensation of nitrogen gas rapidly flowing into a liquid helium (LHe) cooled vacuum tube is studied. This study aims to examine the heat transfer in geometries such as the superconducting RF cavity string of a particle accelerator following a sudden loss of vacuum to atmosphere. In a simplified experiment, the flow is generated by quickly venting a large reservoir of nitrogen gas to a straight long vacuum tube immersed in LHe. Normal LHe (LHe I) and superfluid He II are used in separate experiments. The rate of condensation heat transfer is determined from the temperature of the tube measured at several locations along the gas flow. Instantaneous heat deposition rates in excess of 200 kW/m2 result from condensation of the flowing gas. The gas flow is then arrested in its path to pressurize the tube to atmosphere and estimate the heat transfer rate to LHe. A steady LHe I heat load of ≈25 kW/m2 is obtained in this scenario. Observations from the He II experiment are briefly discussed. An upper bound for the LHe I heat load is derived based on the thermodynamics of phase change of nitrogen.

  16. Ultra-cold 4He atom beams

    NASA Astrophysics Data System (ADS)

    Mulders, N.; Wyatt, A. F. G.

    1994-02-01

    It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.

  17. Applied superconductivity and superfluidity for the exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Chui, Talso C P.; Hahn, Inseob; Penanen, Konstantin; Zhong, Fang; Strayer, Donald

    2005-01-01

    We discuss how superconductivity and superfluidity can be applied to solve the challenges in the exploration of the Moon and Mars. High sensitivity instruments using phenomena of superconductivity and superfluidity can potentially make significant contributions to the fields of navigation, automation, habitation, and resource location. Using the quantum nature of superconductivity, lightweight and very sensitive diagnostic tools can be made to monitor the health of astronauts. Moreover, the Moon and Mars offer a unique environment for scientific exploration. We also discuss how powerful superconducting instruments may enable scientists to seek answers to several profound questions about nature. These answers will not only deepen our appreciation of the universe, they may also open the door to paradigm-shifting technologies. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Applied superconductivity and superfluidity for the exploration of the Moon and Mars.

    PubMed

    Chui, Talso C P; Hahn, Inseob; Penanen, Konstantin; Zhong, Fang; Strayer, Donald

    2005-01-01

    We discuss how superconductivity and superfluidity can be applied to solve the challenges in the exploration of the Moon and Mars. High sensitivity instruments using phenomena of superconductivity and superfluidity can potentially make significant contributions to the fields of navigation, automation, habitation, and resource location. Using the quantum nature of superconductivity, lightweight and very sensitive diagnostic tools can be made to monitor the health of astronauts. Moreover, the Moon and Mars offer a unique environment for scientific exploration. We also discuss how powerful superconducting instruments may enable scientists to seek answers to several profound questions about nature. These answers will not only deepen our appreciation of the universe, they may also open the door to paradigm-shifting technologies. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-01

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  20. Equilibration dynamics of a many-body quantum system across the superfluid to Mott insulator phase transition

    NASA Astrophysics Data System (ADS)

    Mullers, Andreas; Baals, Christian; Santra, Bodhaditya; Labouvie, Ralf; Mertz, Thomas; Dhar, Arya; Vasic, Ivana; Cichy, Agnieszka; Hofstetter, Walter; Ott, Herwig

    2017-04-01

    We report on the center-of-mass motion of ultracold 87Rb atoms on displacing an underlying potential. The atoms are adiabatically loaded into an optical lattice superimposed onto an optical dipole trap. The CO2 laser beam forming the dipole trap is then shifted by 1 μm which forces the system out of equilibrium. The subsequent motion of the atoms center-of mass is imaged with a scanning electron microscope for various depths of the optical lattice spanning the superfluid to Mott-insulator phase transition. The observed dynamics range from fast oscillations in the superfluid regime to a steady exponential movement towards the new equilibrium position for higher lattice depths. By piecewise analysis of the system, we can also identify a thermal phase at the edges which moves with velocities in between those of the superfluid and the insulating phase. We will present the experiment and the results of theoretical modelling currently in progress.

  1. Development of a transferline connecting a helium liquefier coldbox and a liquid helium Dewar

    NASA Astrophysics Data System (ADS)

    Menon, Rajendran S.; Rane, Tejas; Chakravarty, Anindya; Joemon, V.

    2017-02-01

    A helium liquefier with demonstrated capacity of 32 1/hr has been developed by BARC. Mumbai. A transferline for two way flow of helium between the helium liquefier coldbox and receiver Dewar has been developed in-house at BARC. Further, a functionally similar, but structurally improved transferline has been developed through a local fabricator. This paper describes and discusses issues related to the development of these cryogenic transferlines. The developed transferlines have been tested with a flow of liquid nitrogen and successfully utilised later in the helium liquefier plant.

  2. Effects of helium concentration and radiation temperature on interaction of helium atoms with displacement cascades in bcc iron

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2018-03-01

    In fusion applications, helium, implanted or created by transmutation, plays an important role in the response of reduced-activation ferritic/martensitic steels to neutron radiation damage. The effects of helium concentration and radiation temperature on interaction of interstitial helium atoms with displacement cascades have been studied in Fe-He system using molecular dynamics with recently developed Fe-He potential. Results indicate that interstitial helium atoms produce no additional defects at peak time and promote recombination of Frenkel pairs at lower helium concentrations, but suppress recombination of Frenkel pairs at larger helium concentrations. Moreover, large helium concentrations promote the production of defects at the end of cascades. The number of substitutional helium atoms increases with helium concentration at peak time and the end of cascades, but the number of substitutional helium atoms at peak time is smaller than that at the end of displacement cascades. High radiation temperatures promote the production at peak time and the recombination of defects at the end of cascades. The number of substitutional helium atoms increases with radiation temperature, but that at peak time is smaller than that at the end of cascades.

  3. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  4. Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2011-10-01

    We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the real-space Bogoliubov-de Gennes equations on a square lattice within the Swiss-cheese model in the presence of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one correspondence between the local maps of the density of states, superconducting order parameter, and superfluid density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp=4% gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old) and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T2 dependence of the low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5, but follows the same trend of short-coherence-length high-Tc cuprate superconductors.

  5. Three-Dimensional Coupled Dynamics of The Two-Fluid Model in Superfluid 4He: Deformed Velocity Profile of Normal Fluid in Thermal Counterflow

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi

    2018-04-01

    The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

  6. The multiuniverse transition in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Bunkov, Yury

    2013-10-01

    The symmetry-breaking phase transitions of the universe and of superfluid 3He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using 3He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states.

  7. The multiuniverse transition in superfluid 3He.

    PubMed

    Bunkov, Yury

    2013-10-09

    The symmetry-breaking phase transitions of the universe and of superfluid (3)He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using (3)He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states.

  8. Effects of Magnetic Field and Rotation on 3P2 Superfluidity in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Nitta, Muneto

    2014-09-01

    It is believed that an anisotropic 3P2 superfluid state is realized in the core of neutron stars. Historically, a lot of works (Anderson et al. (1961), Hoffberg et al. (1970) and Tamagaki (1970)) discussed the properties of 3P2 superfluid state. Ginzburg-Landau (GL) equation was derived by Fujita, Tsuneto (1972) and Richardson (1972). After that, Mermin (1974) solved the problem of minimizing GL free energy density for d-wave pairing and showed what ground states are realized. By using these results, Sauls and Serene (1978) concluded that the unitary phase is realized in BCS limit, and Sauls et al. (1982) showed 3P2 vortices have a spontaneous magnetization. In this presentation, we firstly introduce GL equation and show some analogy to that of spin2-BEC. In BCS limit, degenerate ground states are parameterized by one parameter. We show effects of gradient terms, magnetic field and rotation on ground states and half-quantized 3P2 vortices are the most stable states under certain conditions. Next, by using an anisotropic GL equation, we discuss a spontaneous magnetization caused by half-quantized 3P2 vortices and compare results with that of integer vortices. Finally, we comment on possible effects of 3P2 superfluid state on neutron star observables. It is believed that an anisotropic 3P2 superfluid state is realized in the core of neutron stars. Historically, a lot of works (Anderson et al. (1961), Hoffberg et al. (1970) and Tamagaki (1970)) discussed the properties of 3P2 superfluid state. Ginzburg-Landau (GL) equation was derived by Fujita, Tsuneto (1972) and Richardson (1972). After that, Mermin (1974) solved the problem of minimizing GL free energy density for d-wave pairing and showed what ground states are realized. By using these results, Sauls and Serene (1978) concluded that the unitary phase is realized in BCS limit, and Sauls et al. (1982) showed 3P2 vortices have a spontaneous magnetization. In this presentation, we firstly introduce GL equation and

  9. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    NASA Astrophysics Data System (ADS)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  10. Photon Counting as a Probe of Superfluidity in a Two-Band Bose-Hubbard System Coupled to a Cavity Field

    NASA Astrophysics Data System (ADS)

    Rajaram, Sara; Trivedi, Nandini

    2013-12-01

    We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field’s quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.

  11. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  12. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  13. Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Huang, Beibing

    2018-01-01

    In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.

  14. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  15. Second-sound studies of coflow and counterflow of superfluid {sup 4}He in channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Emil; Skrbek, L.; Babuin, Simone, E-mail: babuin@fzu.cz

    2015-06-15

    We report a comprehensive study of turbulent superfluid {sup 4}He flow through a channel of square cross section. We study for the first time two distinct flow configurations with the same apparatus: coflow (normal and superfluid components move in the same direction), and counterflow (normal and superfluid components move in opposite directions). We realise also a variation of counterflow with the same relative velocity, but where the superfluid component moves while there is no net flow of the normal component through the channel, i.e., pure superflow. We use the second-sound attenuation technique to measure the density of quantised vortex linesmore » in the temperature range 1.2 K ≲ T ≲ T{sub λ} ≈ 2.18 K and for flow velocities from about 1 mm/s up to almost 1 m/s in fully developed turbulence. We find that both the steady-state and temporal decay of the turbulence significantly differ in the three flow configurations, yielding an interesting insight into two-fluid hydrodynamics. In both pure superflow and counterflow, the same scaling of vortex line density with counterflow velocity is observed, L∝V{sub cf}{sup 2}, with a pronounced temperature dependence; in coflow instead, the vortex line density scales with velocity as L ∝ V{sup 3/2} and is temperature independent; we provide theoretical explanations for these observations. Further, we develop a new promising technique to use different second-sound resonant modes to probe the spatial distribution of quantised vortices in the direction perpendicular to the flow. Preliminary measurements indicate that coflow is less homogeneous than counterflow/superflow, with a denser concentration of vortices between the centre of the channel and its walls.« less

  16. 30 CFR 256.11 - Helium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the manner required by the United States to such plants or reduction works as the United States may provide. (c) The extraction of helium shall not cause a reduction in the value of the lessee's gas or any... necessary for the extraction of helium. The extraction of helium shall not cause substantial delays in the...

  17. 30 CFR 256.11 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Delivery shall be made in the manner required by the United States to such plants or reduction works as the United States may provide. (c) The extraction of helium shall not cause a reduction in the value of the... and other equipment necessary for the extraction of helium. The extraction of helium shall not cause...

  18. Instability of superfluid Fermi gases induced by a rotonlike density mode in optical lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunomae, Yoshihiro; Yamamoto, Daisuke; Danshita, Ippei

    2009-12-15

    We study the stability of superfluid Fermi gases in deep optical lattices in the BCS-Bose-Einstein condensation (BEC) crossover at zero temperature. Within the tight-binding attractive Hubbard model, we calculate the spectrum of the low-energy Anderson-Bogoliubov (AB) mode as well as the single-particle excitations in the presence of superfluid flow in order to determine the critical velocities. To obtain the spectrum of the AB mode, we calculate the density response function in the generalized random-phase approximation applying the Green's function formalism developed by Cote and Griffin to the Hubbard model. We find that the spectrum of the AB mode is separatedmore » from the particle-hole continuum having the characteristic rotonlike minimum at short wavelength due to the strong charge-density-wave fluctuations. The energy of the rotonlike minimum decreases with increasing the lattice velocity and it reaches zero at the critical velocity which is smaller than the pair-breaking velocity. This indicates that the superfluid state is energetically unstable due to the spontaneous emission of the short-wavelength rotonlike excitations of the AB mode instead due to pair breaking. We determine the critical velocities as functions of the interaction strength across the BCS-BEC crossover regime.« less

  19. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald

    2015-02-01

    The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Recent Progress in Studies of Nanostructured Impurity Helium Solids

    NASA Astrophysics Data System (ADS)

    Khmelenko, V. V.; Kunttu, H.; Lee, D. M.

    2007-07-01

    Impurity helium (Im He) solids are porous materials formed inside superfluid 4He by nanoclusters of impurities injected from the gas phase. The results of studies of these materials have relevance to soft condensed matter physics, matrix isolation of free radicals and low temperature chemistry. Recent studies by a variety of experimental techniques, including CW and pulse ESR, X-ray diffraction, ultrasound and Raman spectroscopy allow a better characterization of the properties of Im He solids. The structure of Im He solids, the trapping sites of stabilized atoms and the possible energy content of the samples are analyzed on the basis of experimental data. The kinetics of exchange tunneling reactions of hydrogen isotopes in nanoclusters and the changes of environment of the atoms during the course of these reactions are reviewed. Analysis of the ESR data shows that very large fraction of the stabilized atoms in Im He solids reside on the surfaces of impurity nanoclusters. The future directions for studying Im He solids are described. Among the most attractive are the studies of Im He solids with high concentrations of stabilized atoms at ultralow (10 20 mK) temperature for the observation of new collective quantum phenomena, the studies of practical application of Im He solids as a medium in neutron moderator for efficient production of ultracold (˜1 mK) neutrons, and the possibilities of obtaining high concentration of atomic nitrogen embedded in N2 clusters for energy storage.

  1. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-11-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  2. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  3. Vortex filament method as a tool for computational visualization of quantum turbulence

    PubMed Central

    Hänninen, Risto; Baggaley, Andrew W.

    2014-01-01

    The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; He, Yunteng; Kong, Wei, E-mail: wei.kong@oregonstate.edu

    We report electron diffraction of ferrocene doped in superfluid helium droplets. By taking advantage of the velocity slip in our pulsed droplet beam using a pulsed electron gun, and by doping with a high concentration of ferrocene delivered via a pulsed valve, we can obtain high quality diffraction images from singly doped droplets. Under the optimal doping conditions, 80% of the droplets sampled in the electron beam are doped with just one ferrocene molecule. Extension of this size selection method to dopant clusters has also been demonstrated. However, incomplete separation of dopant clusters might require deconvolution and modeling of themore » doping process. This method can be used for studies of nucleation processes in superfluid helium droplets.« less

  5. Positive Ion Induced Solidification of He4

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Lebedev, V.; Weis, A.

    2009-03-01

    We have observed bulk solidification of He4 induced by nucleation on positive alkali ions in pressurized superfluid helium. The ions are extracted into the liquid from alkali-doped solid He by a static electric field. The experiments prove the existence of charged particles in a solid structure composed of doped He that was recently shown to coexist with superfluid helium below the He solidification pressure. This supports our earlier suggestion that the Coulomb interaction of positive ions surrounded by a solid He shell (snowballs) and electrons trapped in spherical cavities (electron bubbles), together with surface tension, is responsible for the stability of that structure against melting. We have determined the density of charges in the sample by two independent methods.

  6. Space shuttle OMS helium regulator design and development

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  7. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  8. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  9. Helium release during shale deformation: Experimental validation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This paper describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measuredmore » using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.« less

  10. Helium-induced hardening effect in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  11. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    NASA Astrophysics Data System (ADS)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  12. Gas propagation following a sudden loss of vacuum in a pipe cooled by He I and He II.

    NASA Astrophysics Data System (ADS)

    Garceau, N.; Guo, W.; Dodamead, T.

    2017-12-01

    Many cryogenic systems around the world are concerned with the sudden catastrophic loss of vacuum for cost, preventative damage, safety or other reasons. The experiments in this paper were designed to simulate the sudden vacuum break in the beam-line pipe of a liquid helium cooled superconducting particle accelerator. This paper expands previous research conducted at the National High Magnetic Field Laboratory and evaluates the differences between normal helium (He I) and superfluid helium (He II). For the experiments, a straight pipe and was evacuated and immersed in liquid helium at 4.2 K and below 2.17 K. Vacuum loss was simulated by opening a solenoid valve on a buffer tank filled nitrogen gas. Gas front arrival was observed by a temperature rise of the tube. Preliminary results suggested that the speed of the gas front through the experiment decreased exponentially along the tube for both normal liquid helium and super-fluid helium. The system was modified to a helical pipe system to increase propagation length. Testing and analysis on these two systems revealed there was minor difference between He I and He II despite the difference between the two distinct helium phases heat transfer mechanisms: convection vs thermal counterflow. Furthermore, the results indicated that the temperature of the tube wall above the LHe bath also plays a significant role in the initial front propagation. More systematic measurements are planned in with the helical tube system to further verify the results.

  13. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a gas...

  14. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a gas...

  15. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal.

    PubMed

    Autti, S; Eltsov, V B; Volovik, G E

    2018-05-25

    We report experimental realization of a quantum time quasicrystal and its transformation to a quantum time crystal. We study Bose-Einstein condensation of magnons, associated with coherent spin precession, created in a flexible trap in superfluid ^{3}He-B. Under a periodic drive with an oscillating magnetic field, the coherent spin precession is stabilized at a frequency smaller than that of the drive, demonstrating spontaneous breaking of discrete time translation symmetry. The induced precession frequency is incommensurate with the drive, and hence, the obtained state is a time quasicrystal. When the drive is turned off, the self-sustained coherent precession lives a macroscopically long time, now representing a time crystal with broken symmetry with respect to continuous time translations. Additionally, the magnon condensate manifests spin superfluidity, justifying calling the obtained state a time supersolid or a time supercrystal.

  16. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal

    NASA Astrophysics Data System (ADS)

    Autti, S.; Eltsov, V. B.; Volovik, G. E.

    2018-05-01

    We report experimental realization of a quantum time quasicrystal and its transformation to a quantum time crystal. We study Bose-Einstein condensation of magnons, associated with coherent spin precession, created in a flexible trap in superfluid 3He-B . Under a periodic drive with an oscillating magnetic field, the coherent spin precession is stabilized at a frequency smaller than that of the drive, demonstrating spontaneous breaking of discrete time translation symmetry. The induced precession frequency is incommensurate with the drive, and hence, the obtained state is a time quasicrystal. When the drive is turned off, the self-sustained coherent precession lives a macroscopically long time, now representing a time crystal with broken symmetry with respect to continuous time translations. Additionally, the magnon condensate manifests spin superfluidity, justifying calling the obtained state a time supersolid or a time supercrystal.

  17. Distribution of Circles on a Circle and Correlation Between Vortex Rings of Superfluids

    NASA Astrophysics Data System (ADS)

    Onur Fen, Mehmet; Erkoç, Šakír

    2007-05-01

    Superfluids are characterized by absence of viscosity. When superfluids are rotated, differently from normal fluids, they form more than one vortex in the containers where they are placed. The number of vortices change as the rotation velocity changes, but this change is not linear. M.W. Zwierlein et al. observed the vortices in experiments, observing up to a number of 80. Experiments also showed that the vortex distributions cannot include large spaces. By using experimental data, we noticed that when we think of vortices as vortex rings, their centers are at the same geometric location and these geometric locations are concentric circles. We generalized the distribution of these geometric places and formulized it. Our formula includes the magic circle numbers. When the number of vortices reach these magic numbers, the number of geometric locations increase by 1.

  18. Quantum-metric contribution to the pair mass in spin-orbit-coupled Fermi superfluids

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-03-01

    As a measure of the quantum distance between Bloch states in the Hilbert space, the quantum metric was introduced to solid-state physics through the real part of the so-called geometric Fubini-Study tensor, the imaginary part of which corresponds to the Berry curvature measuring the emergent gauge field in momentum space. Here, we first derive the Ginzburg-Landau theory near the critical superfluid transition temperature and then identify and analyze the geometric effects on the effective mass tensor of the Cooper pairs. By showing that the quantum-metric contribution accounts for a sizable fraction of the pair mass in a surprisingly large parameter regime throughout the BCS-Bose-Einstein condensate crossover, we not only reveal the physical origin of its governing role in the superfluid density tensor but also hint at its plausible roles in many other observables.

  19. Drude Weight, Meissner Weight, Rotational Inertia of Bosonic Superfluids: How Are They Distinguished?

    NASA Astrophysics Data System (ADS)

    Hetényi, Balázs

    2014-03-01

    The Drude weight, the quantity which distinguishes metals from insulators, is proportional to the second derivative of the ground state energy with respect to a flux at zero flux. The same expression also appears in the definition of the Meissner weight, the quantity which indicates superconductivity, as well as in the definition of non-classical rotational inertia of bosonic superfluids. It is shown that the difference between these quantities depends on the interpretation of the average momentum term, which can be understood as the expectation value of the total momentum (Drude weight), the sum of the expectation values of single momenta (rotational inertia of a superfluid), or the sum over expectation values of momentum pairs (Meissner weight). This distinction appears naturally when the current from which the particular transport quantity is derived is cast in terms of shift operators.

  20. Cryogenic techniques for large superconducting magnets in space

    NASA Technical Reports Server (NTRS)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  1. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  2. Frequency Dependent Ultrasonic Attenuation in Superfluid ^3He at Ultralow Temperatures.

    NASA Astrophysics Data System (ADS)

    Ihas, G. G.; Granroth, G. E.; Genio, E. B.; Xu, J.-W.; Meisel, M. W.

    1996-03-01

    Sound attenuation measurements have revealed much about the superfluid states of ^3He, providing quantitative data which is used to motivate and refine theory. Usually, resonant transducers are used, limiting studies to widely spaced harmonics in frequency and requiring temperature sweeps to map attenuation features. Using non-resonant, broadband transducers(P.N. Fraenkel, R. Keolian, and J.D. Reppy, Phys. Rev. Lett. \\underline62) (1989) 1126. in the 9 to 150 MHz regime, frequency sweeps have been performed at nearly-constant-temperature below 250 μ K at about 1 bar. The energies of the squashing mode and 2Δ pair-breaking edge have been measured in this T arrow 0 limit. These measurements, performed as a function of pressure, will be used to test the validity of the weak-coupling-plus model(J.W. Serene and D. Rainer, Phys. Rep. \\underline101) (1983) 211. of the superfluid. *Supported, in part, by the NSF: DMR-9200671 (GEG, JWX, MWM), DMR-9216785 (of N.S. Sullivan for EBG), and DMR 8419267 (UF Microkelvin Research Laboratory).

  3. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  4. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  5. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  6. Detecting π-phase superfluids with p-wave symmetry in a quasi-1D optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Hulet, Randall G.; Liu, W. Vincent

    2016-05-01

    We propose an experimental protocol to create a p-wave superfluid in a spin-polarized cold Fermi gas tuned by an s-wave Feshbach resonance. A crucial ingredient is to add an anisotropic 3D optical lattice and tune the fillings of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p-wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected π-phase modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions, density of states and spatial densities for a realistic experimental setup. The π-phase p-wave superfluid is reminiscent of the π-state in superconductor-ferromagnet heterostructures but differs in symmetry and physical origin. The spatially-varying phases of the superfluid gap provide a novel approach to synthetic magnetic fields for neutral atoms. It would represent another example of p-wave pairing, first discovered in He-3 liquids. Work supported in part by U.S. ARO, AFOSR, NSF, ONR, Charles E. Kaufman Foundation, and The Pittsburgh Foundation, LPS-MPO-CMTC, JQI-NSF-PFC, ARO-Atomtronics-MURI, the Welch Foundation, ARO-MURI and NSF of China.

  7. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma

    NASA Astrophysics Data System (ADS)

    Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi

    2018-04-01

    A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.

  8. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  9. The SHOOT cryogenic components - Testing and applicability to other flight programs

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.; Schein, Michael E.; Boyle, Robert F.; Figueroa, Orlando; Lindauer, David A.; Mchugh, Daniel C.; Shirron, P. J.

    1990-01-01

    Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.

  10. Charge order-superfluidity transition in a two-dimensional system of hard-core bosons and emerging domain structures

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.

    2017-11-01

    We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.

  11. Thermal and cryogenic design study for space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Urbach, A. R.; Kelly, T.; Poley, R.

    1984-01-01

    A study was conducted to determine the ability of an all superfluid helium design to meet the performance requirements of background limited to 200 micrometer, and a two year lifetime for a one meter class free flying infrared observatory. Both a 98 deg and 28.5 deg inclination orbits were examined, and aperture shade designs were developed for both orbits. A unique forebaffle cooling design significantly reduces the sensitivity to aperture heat loads. With certain restrictions on observing modes, the study determined that an all superfluid helium Dewar will meet the temperature and lifetime requirements. A dual cryogen SFHe/SH2 system was also investigated for the 28.5 deg orbit and found to provide a more constant forebaffle temperature but with only a slight improvement in lifetime.

  12. Heat operated cryogenic electrical generator

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of the rotor cell was employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of the cell. An electrical conductor was placed in surrounding proximity to the cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement was provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively.

  13. Chladni solitons and the onset of the snaking instability for dark solitons in confined superfluids.

    PubMed

    Muñoz Mateo, A; Brand, J

    2014-12-19

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ, and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  14. Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids

    NASA Astrophysics Data System (ADS)

    Muñoz Mateo, A.; Brand, J.

    2014-12-01

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  15. Transverse forces on a vortex in lattice models of superfluids

    NASA Astrophysics Data System (ADS)

    Sonin, E. B.

    2013-12-01

    The paper derives the transverse forces (the Magnus and the Lorentz forces) in the lattice models of superfluids in the continuous approximation. The continuous approximation restores translational invariance absent in the original lattice model, but the theory is not Galilean invariant. As a result, calculation of the two transverse forces on the vortex, Magnus force and Lorentz force, requires the analysis of two balances, for the true momentum of particles in the lattice (Magnus force) and for the quasimomentum (Lorentz force) known from the Bloch theory of particles in the periodic potential. While the developed theory yields the same Lorentz force, which was well known before, a new general expression for the Magnus force was obtained. The theory demonstrates how a small Magnus force emerges in the Josephson-junction array if the particle-hole symmetry is broken. The continuous approximation for the Bose-Hubbard model close to the superfluid-insulator transition was developed, which was used for calculation of the Magnus force. The theory shows that there is an area in the phase diagram for the Bose-Hubbard model, where the Magnus force has an inverse sign with respect to that which is expected from the sign of velocity circulation.

  16. Specific heat of normal and superfluid3He

    NASA Astrophysics Data System (ADS)

    Alvesalo, T. A.; Haavasoja, T.; Manninen, M. T.

    1981-11-01

    Extensive measurements of the heat capacity of liquid 3 He in the normal and superfluid phases are reported. The experiments range from 0.8 to 10 mK and cover pressures from 0 to 32.5 bar in zero magnetic field. The phase diagram of 3 He, based on the platinum NMR temperature scale, is presented. In the normal liquid at low pressures and near the superfluid transition T c an excess specific heat is found. The effective mass m* of3He is at all pressures about 30% smaller than the values reported earlier. The calculated Fermi liquid parameters F0 and F1 are reduced as m*/m, while the spin alignment factor (1 + Z0/4)-1 is enhanced from 3.1 3.8 to 4.3 5.3, depending on pressure. The specific heat discontinuity ΔC/C at T c is for P = 0 close to the BCS value 1.43, whereas at 32.5 bar ΔC/C is 1.90±0.03 in the B phase and 2.04±0.03 in the A phase, revealing distinctly the pressure dependence of strong coupling effects. The temperature dependence of the specific heat in the B phase agrees with a model calculation of Serene and Rainer. The latent heat L at the AB transition is 1.14±0.02 µJ/mole for P = 32.5 bar and decreases quickly as the polycritical point is approached; at 23.0 bar, L = 0.03 ± 0.02 µJ/mole.

  17. Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications

    NASA Astrophysics Data System (ADS)

    van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.

    2015-02-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.

  18. Superfluid transition in the attractive Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Iskin, M.

    2016-08-01

    We consider a Fermi gas that is loaded onto a square optical lattice and subjected to a perpendicular artificial magnetic field, and determine its superfluid transition boundary by adopting a BCS-like mean-field approach in momentum space. The multiband structure of the single-particle Hofstadter spectrum is taken explicitly into account while deriving a generalized pairing equation. We present the numerical solutions as functions of the artificial magnetic flux, interaction strength, Zeeman field, chemical potential, and temperature, with a special emphasis on the roles played by the density of single-particle states and center-of-mass momentum of Cooper pairs.

  19. Large-scale structure in superfluid Chaplygin gas cosmology

    NASA Astrophysics Data System (ADS)

    Yang, Rongjia

    2014-03-01

    We investigate the growth of the large-scale structure in the superfluid Chaplygin gas (SCG) model. Both linear and nonlinear growth, such as σ8 and the skewness S3, are discussed. We find the growth factor of SCG reduces to the Einstein-de Sitter case at early times while it differs from the cosmological constant model (ΛCDM) case in the large a limit. We also find there will be more stricture growth on large scales in the SCG scenario than in ΛCDM and the variations of σ8 and S3 between SCG and ΛCDM cannot be discriminated.

  20. Chiral gravitational waves and baryon superfluid dark matter

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  1. Interaction of Kelvin waves and nonlocality of energy transfer in superfluids

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; L'Vov, Victor S.; Nazarenko, Sergey; Rudenko, Oleksii

    2010-03-01

    We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.

  2. Onset of nanoscale dissipation in superfluid 4He at zero temperature: Role of vortex shedding and cavitation

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Eloranta, Jussi; Pi, Martí

    2017-08-01

    Two-dimensional flow past an infinitely long cylinder of nanoscopic radius in superfluid 4He at zero temperature is studied using time-dependent density-functional theory. The calculations reveal two distinct critical phenomena for the onset of dissipation: (i) vortex-antivortex pair shedding from the periphery of the moving cylinder, and (ii) the appearance of cavitation in the wake, which possesses similar geometry to that observed experimentally for fast-moving micrometer-scale particles in superfluid 4He. The formation of cavitation bubbles behind the cylinder is accompanied by a sudden jump in the drag exerted on the moving cylinder by the fluid. Vortex pairs with the same circulation are occasionally emitted in the form of dimers, which constitute the building blocks for the Benard-von Karman vortex street structure observed in classical turbulent fluids and Bose-Einstein condensates. The cavitation-induced dissipation mechanism should be common to all superfluids that are self-bound and have a finite surface tension, which include the recently discovered self-bound droplets in ultracold Bose gases. These systems would provide an ideal testing ground for further exploration of this mechanism experimentally.

  3. Commercial helium reserves, continental rifting and volcanism

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  4. Development and Dissemination of a Nationwide Helium Database for a National Assessment of Helium Resources.

    NASA Astrophysics Data System (ADS)

    Brennan, S. T.; East, J. A., II; Garrity, C. P.

    2015-12-01

    In 2013, Congress passed the Helium Stewardship Act requiring the U.S. Geological Survey (USGS) to undertake a national helium gas resource assessment to determine the nation's helium resources. An important initial component necessary to complete this assessment was the development of a comprehensive database of Helium (He) concentrations from petroleum exploration wells. Because Helium is often used as the carrier gas for compositional analyses for commercial and exploratory oil and gas wells, this limits the available helium concentration data. A literature search in peer-reviewed publications, state geologic survey databases, USGS energy geochemical databases, and the Bureau of Land Management databases provided approximately 16,000 data points from wells that had measurable He concentrations in the gas composition analyses. The data from these wells includes, date of sample collection, American Petroleum Institute well number, formation name, field name, depth of sample collection, and location. The gas compositional analyses, some performed as far back as 1934, do not all have the same level of precision and accuracy, therefore the date of the analysis is critical to the assessment as it indicates the relative amount of uncertainty in the analytical results. Non-proprietary data was used to create a GIS based interactive web interface that allows users to visualize, inspect, interact, and download our most current He data. The user can click on individual locations to see the available data at that location, as well as zoom in and out on a data density map. Concentrations on the map range from .04 mol% (lowest concentration of economic value) to 12% (highest naturally occurring values). This visual interface will allow users to develop a rapid appreciation of the areas with the highest potential for high helium concentrations within oil and gas fields.

  5. Superfluid-Mott insulator transition of spin-1 bosons in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7; Kurihara, Susumu

    2004-10-01

    We study the superfluid-Mott insulator (SF-MI) transition of spin-1 bosons interacting antiferromagnetically in an optical lattice. Starting from a Bose-Hubbard tight-binding model for spin-1 bosons, we obtain the zero-temperature phase diagram by a mean-field approximation. We find that the MI phase with an even number of atoms per site is a spin singlet state, while the MI phase with an odd number of atoms per site has spin 1 at each site in the limit of t=0, where t is the hopping matrix element. We also show that the superfluid phase is a polar state as in the case formore » a spin-1 Bose condensate in a harmonic trap. It is found that the MI phase is strongly stabilized against the SF-MI transition when the number of atoms per site is even, due to the formation of singlet pairs. We derive the effective spin Hamiltonian for the MI phase with one atom per site and briefly discuss the spin order in the MI phase.« less

  6. BASD: SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) study

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Urbach, A. R.; Poyer, M. E.; Andreozzi, L. C.; Hermanson, L. A.; Snyder, H. A.; Blalock, W. R.; Haight, R. P.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 micrometer to 700 miocrometers currently under study by NASA-ARC, and planned for launch in approximately the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. The telescope changes required to allow in-space replenishment of the 2,000 liter superfluid helium tank are investigated. A preliminary design for the space services equipment is also developed. The impacts of basing the equipment and servicing on the space station are investigated. Space replenishment and changeout of instruments requires changes to the telescope design and preliminary concepts are presented.

  7. SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) Study

    NASA Technical Reports Server (NTRS)

    Nast, T. C.; Frank, D.; Liu, C. K.; Parmley, R. T.; Jaekle, D.; Builteman, H.; Schmidt, J.; Frederking, T. H. K.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 to 700 micrometers. SIRTF is currently under study by NASA-ARC (Reference AP) and planned for launch in approximately the mid 1990s. SIRTF will operate as a multiuser facility, initially carrying three instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and baseline is currently to be 2 years. The telescope changes required to allow in-space replenishment of the 4,000-L superfluid helium tank was investigated. A preliminary design for the space services equipment was also developed. The impacts of basing the equipment and servicing on the space station were investigated. Space replenishment and changeout of instruments required changes to the telescope design. Preliminary concepts are presented.

  8. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schloesser, M.; Pakari, O.; Rupp, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  9. Growth and characterization of high quality UPt(3) single crystals and high resolution NMR study of superfluid He-3-B

    NASA Astrophysics Data System (ADS)

    Kycia, Jan Bronislaw

    An ultra-high-vacuum crystal growth facility using the electron beam float zone refining method was designed and built. High quality single crystals of UPtsb3 were grown. Material quality was characterized by mass spectrometry and x-ray scattering techniques. Low temperature resistivity, AC susceptibility and specific heat measurements were also conducted. We find that the transition temperature of the material can be varied systematically by annealing. The suppression of the superconducting transition from defects is consistent with a modified Abrikosov-Gorkov formula that includes anisotropic pairing, Fermi surface anisotropy and anisotropic scattering by defects. High resolution nuclear magnetic resonance (NMR) measurements of bulk superfluid sp3He-B were performed at temperatures above 0.5 mK and at pressures from 0.3 to 28.8 bar. The resonance frequency of the bulk superfluid sp3He-B is shifted from the Larmor frequency of the normal fluid. According to the theory of Greaves the frequency shift at the superfluid transition determines a specific combination, betasb{345}, of the five fourth-order coefficients of the order parameter invariants used in the Ginzburg-Landau description of superfluid sp3He. NMR measurements were performed to determine the coefficient betasb{345} and its dependence on pressure. The results are in agreement with the theoretical calculations of Sauls and Serene that are based on strong coupling contributions which are enhanced at higher pressures.

  10. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  11. Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde-Ferrell superfluid.

    PubMed

    Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei

    2014-04-04

    Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.

  12. Global helium particle balance in LHD

    NASA Astrophysics Data System (ADS)

    Motojima, G.; Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T.; Ohno, N.; Mutoh, T.; Yamada, H.; LHD Experiment Group

    2015-08-01

    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 1022 He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  13. Dynamic Simulation of a Helium Liquefier

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Ooba, K.; Nobutoki, M.; Mito, T.

    2004-06-01

    Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time.

  14. Superfluidity, Bose-Einstein condensation, and structure in one-dimensional Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Vranješ Markić, L.; Vrcan, H.; Zuhrianda, Z.; Glyde, H. R.

    2018-01-01

    We report diffusion Monte Carlo (DMC) and path integral Monte Carlo (PIMC) calculations of the properties of a one-dimensional (1D) Bose quantum fluid. The equation of state, the superfluid fraction ρS/ρ0 , the one-body density matrix n (x ) , the pair distribution function g (x ) , and the static structure factor S (q ) are evaluated. The aim is to test Luttinger liquid (LL) predictions for 1D fluids over a wide range of fluid density and LL parameter K . The 1D Bose fluid examined is a single chain of 4He atoms confined to a line in the center of a narrow nanopore. The atoms cannot exchange positions in the nanopore, the criterion for 1D. The fluid density is varied from the spinodal density where the 1D liquid is unstable to droplet formation to the density of bulk liquid 4He. In this range, K varies from K >2 at low density, where a robust superfluid is predicted, to K <0.5 , where fragile 1D superflow and solidlike peaks in S (q ) are predicted. For uniform pore walls, the ρS/ρ0 scales as predicted by LL theory. The n (x ) and g (x ) show long range oscillations and decay with x as predicted by LL theory. The amplitude of the oscillations is large at high density (small K ) and small at low density (large K ). The K values obtained from different properties agree well verifying the internal structure of LL theory. In the presence of disorder, the ρS/ρ0 does not scale as predicted by LL theory. A single vJ parameter in the LL theory that recovers LL scaling was not found. The one body density matrix (OBDM) in disorder is well predicted by LL theory. The "dynamical" superfluid fraction, ρSD/ρ0 , is determined. The physics of the deviation from LL theory in disorder and the "dynamical" ρSD/ρ0 are discussed.

  15. Self-Organization Phenomena in a Cryogenic Gas Discharge Plasma: Formation of a Nanoparticle Cloud and Dust-Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boltnev, R. E.; Vasiliev, M. M.; Kononov, E. A.; Petrov, O. F.

    2018-04-01

    The dusty plasma structures in a glow discharge of helium in a tube cooled by superfluid helium at a temperature of 1.6 K and higher have been studied experimentally. The bimodal dust plasma formed by clouds of polydisperse cerium dioxide particles and polymer nanoparticles has been analyzed. We have observed wave oscillations in the cloud of polymer nanoparticles (with a size up to 100 nm), which existed in a narrow temperature range from 1.6 to 2.17 K. Vortices have been observed in the dusty plasma structures at helium temperatures.

  16. Helium as a Dynamical Tracer in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Liu, X.; Wang, W.; Burns, A. G.

    2014-12-01

    Helium has been a missing constituent in current thermosphere general circulation models. Although typically a minor gas relative to the more abundant major gasses, its unique properties of being chemically inert and light make it an excellent tracer of thermosphere dynamics. Studying helium can help simplify understanding of transport effects. This understanding can then be projected to other gasses whose overall structure and behavior are complex but, by contrasting with helium, can be evaluated for its transport dependencies. The dynamical influences on composition impact estimates of thermosphere mass density, where helium during solar minima can have a direct contribution, as well as ionosphere electron density. Furthermore, helium estimates in the upper thermosphere during solar minima have not been observed since the 1976 minimum. Indirect estimates of helium in the upper thermosphere during the recent extreme solar minimum indicates winter-time helium concentrations exceeded NRL-MSISE00 estimates by 30%-70% during periods of quiet geomagnetic activity. For times of active geomagnetic conditions, helium concentrations near ~450 km altitude are estimated to decrease while oxygen concentrations increase. An investigation of the altitude structure in thermosphere mass density storm-time perturbations reveal the important effects of composition change with maximum perturbation occurring near the He/O transition region and a much weaker maximum occurring near the O/N2 transition region. However, evaluating helium behavior and its role as a dynamical tracer is not straightforward and model development is necessary to adequately establish the connection to specific dynamical processes. Fortunately recent efforts have led to the implementation of helium modules in the NCAR TIEGCM and TIME-GCM. In this invited talk, the simulated helium behavior and structure will be shown to reproduce observations (such as the wintertime helium bulge and storm-time response) and its

  17. Helium Evolution from the Transfer of Helium Saturated Propellant in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.

    2000-01-01

    Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.

  18. Experimental investigations of helium cryotrapping by argon frost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, A.; Perinic, D.; Murdoch, D.

    1992-03-01

    At the Karlsruhe Nuclear Research Centre (KfK) cryopumping techniques are being investigated by which the gaseous exhausts from the NET/ITER reactor can be pumped out during the burn-and dwell-times. Cryosorption and cryotrapping are techniques which are suitable for this task. It is the target of the investigations to test the techniques under NET/ITER conditions and to determine optimum design data for a prototype. They involve measurement of the pumping speed as a function of the gas composition, gas flow and loading condition of the pump surfaces. The following parameters are subjected to variations: Ar/He ratio, specific helium volume flow rate,more » cryosurface temperature, process gas composition, impurities in argon trapping gas, three-stage operation and two-stage operation. This paper is a description of the experiments on argon trapping techniques started in 1990. Eleven tests as well as the results derived from them are described.« less

  19. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  20. A new helium gas bearing turboexpander

    NASA Astrophysics Data System (ADS)

    Xiong, L. Y.; Chen, C. Z.; Liu, L. Q.; Hou, Y.; Wang, J.; Lin, M. F.

    2002-05-01

    A new helium gas bearing turboexpander of a helium refrigeration system used for space environment simulation experiments is described in this paper. The main design parameters and construction type of some key parts are presented. An improved calculation of thermodynamic efficiency and instability speed of this turboexpander has been obtained by a multiple objects optimization program. Experiments of examining mechanical and thermodynamic performance have been repeatedly conducted in the laboratory by using air at ambient and liquid nitrogen temperature, respectively. In order to predict the helium turboexpander performance, a similarity principles study has been developed. According to the laboratory and on-the-spot experiments, the mechanical and thermodynamic performances of this helium turboexpander are excellent.

  1. Nanofabrication with a helium ion microscope

    NASA Astrophysics Data System (ADS)

    Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul

    2010-03-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.

  2. Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.

    State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.

  3. Adaption of the LHC cold mass cooling system to the requirements of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.; Brenn, G.

    2017-12-01

    The cooling of the superconducting magnet cold masses with superfluid helium (He II) is a well-established concept successfully in operation for years in the LHC. Consequently, its application for the cooling of FCC magnets is an obvious option. The 12-kW heat loads distributed over 10-km long sectors not only require an adaption of the magnet bayonet heat exchangers but also present new challenges to the cryogenic plants, the distribution system and the control strategy. This paper recalls the basic LHC cooling concept with superfluid helium and defines the main parameters for the adaption to the FCC requirements. Pressure drop and hydrostatic head are developed in the distribution and pumping systems; their impact on the magnet temperature profile and the corresponding cooling efficiency is presented and compared for different distribution and pumping schemes.

  4. Qualifying the Sunpower M-87N Cryocooler for Operation in the AMS-02 Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Banks, Stuart; Shirey, Kimberly; Warner, Brent; Leidecker, Henning; Breon, Susan; Boyle, Rob

    2003-01-01

    The Alpha Magnetic Spectrometer-02 (AMs-02) experiment consists of a superfluid helium dewar. The outer vapor cooled shields of the dewar are to be held at 77 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87N are being tested at NASA Goddard Space Flight in order to qualify them to operate in a magnetic environment similar to the AMS-02 magnetic environment. AMS-02 will be a space station based particle detector studying the properties and origin of cosmic particles including antimatter and dark matter. It uses a superconducting magnet that is cooled by the superfluid helium dewar. Highly sensitive detector plates inside the magnet will measure a particle's momentum and charge.

  5. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  6. Experimental setup for investigation of nanoclusters at cryogenic temperatures by electron spin resonance and optical spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, S., E-mail: maoshunghost@tamu.edu; Meraki, A.; McColgan, P. T.

    2014-07-15

    We present the design and performance of an experimental setup for simultaneous electron spin resonance (ESR) and optical studies of nanoclusters with stabilized free radicals at cryogenic temperatures. A gas mixture of impurities and helium after passing through a RF discharge for dissociation of molecules is directed onto the surface of superfluid helium to form the nanoclusters of impurities. A specially designed ESR cavity operated in the TE{sub 011} mode allows optical access to the sample. The cavity is incorporated into a homemade insert which is placed inside a variable temperature insert of a Janis {sup 4}He cryostat. The temperaturemore » range for sample investigation is 1.25–300 K. A Bruker EPR 300E and Andor 500i optical spectrograph incorporated with a Newton EMCCD camera are used for ESR and optical registration, respectively. The current experimental system makes it possible to study the ESR and optical spectra of impurity-helium condensates simultaneously. The setup allows a broad range of research at low temperatures including optically detected magnetic resonance, studies of chemical processes of the active species produced by photolysis in solid matrices, and investigations of nanoclusters produced by laser ablation in superfluid helium.« less

  7. Molecular dynamics modeling of helium bubbles in austenitic steels

    NASA Astrophysics Data System (ADS)

    Jelea, A.

    2018-06-01

    The austenitic steel devices from pressurized water reactors are continuously subjected to neutron irradiation that produces crystalline point defects and helium atoms in the steel matrix. These species evolve into large defects such as dislocation loops and helium filled bubbles. This paper analyzes, through molecular dynamics simulations with recently developed interatomic potentials, the impact of the helium/steel interface on the helium behavior in nanosize bubbles trapped in an austenitic steel matrix. It is shown that the repulsive helium-steel interactions induce higher pressures in the bubble compared to bulk helium at the same temperature and average density. A new equation of state for helium is proposed in order to take into account these interface effects.

  8. The adsorption of helium atoms on coronene cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less

  9. Helium sell-off risks future supply

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-03-01

    The US must stop selling off its helium reserves so that the country has enough of the gas to meet the needs of researchers and medical programmes, warns a report by the National Academy of Sciences (NAS). The report, entitled "Selling the Nation's Helium Reserve", says that failure to halt the sale of helium could lead to a drop in supply of the gas, which is vital for research into magnetic resonance imaging (MRI) techniques and low-temperature physics.

  10. Approximating the Helium Wavefunction in Positronium-Helium Scattering

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.

    2003-01-01

    In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.

  11. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  12. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  13. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  14. Helium-Shrouded Planets Artist Concept

    NASA Image and Video Library

    2015-06-11

    Planets having atmospheres rich in helium may be common in our galaxy, according to a new theory based on data from NASA's Spitzer Space Telescope. These planets would be around the mass of Neptune, or lighter, and would orbit close to their stars, basking in their searing heat. According to the new theory, radiation from the stars would boil off hydrogen in the planets' atmospheres. Both hydrogen and helium are common ingredients of gas planets like these. Hydrogen is lighter than helium and thus more likely to escape. After billions of years of losing hydrogen, the planet's atmosphere would become enriched with helium. Scientists predict the planets would appear covered in white or gray clouds. This is in contrast to our own Neptune, which is blue due to the presence of methane. Methane absorbs the color red, leaving blue. Neptune is far from our sun and hasn't lost its hydrogen. The hydrogen bonds with carbon to form methane. This artist's concept depicts a proposed helium-atmosphere planet called GJ 436b, which was found by Spitzer to lack in methane -- a first clue about its lack of hydrogen. The planet orbits every 2.6 days around its star, which is cooler than our sun and thus appears more yellow-orange in color. http://photojournal.jpl.nasa.gov/catalog/PIA19344

  15. Thermal performance evaluation of the infrared telescope dewar subsystem

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1986-01-01

    Thermal performance evaluations (TPE) were conducted with the superfluid helium dewar of the Infrared Telescope (IRT) experiment from November 1981 to August 1982. Test included measuring key operating parameters, simulating operations with an attached instrument cryostat and validating servicing, operating and safety procedures. Test activities and results are summarized. All objectives are satisfied except for those involving transfer of low pressure liquid helium (LHe) from a supply dewar into the dewar subsystem.

  16. Dissipation in quantum turbulence in superfluid 4He above 1 K

    NASA Astrophysics Data System (ADS)

    Gao, J.; Guo, W.; Yui, S.; Tsubota, M.; Vinen, W. F.

    2018-05-01

    There are two commonly discussed forms of quantum turbulence in superfluid 4He above 1 K: in one there is a random tangle of quantized vortex lines, existing in the presence of a nonturbulent normal fluid; in the second there is a coupled turbulent motion of the two fluids, often exhibiting quasiclassical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, L , in the former case is often described by the equation d L /d t =-χ2(κ /2 π ) L2 , where κ is the quantum of circulation and χ2 is a dimensionless parameter of order unity. The decay of total turbulent energy, E , in the second case is often characterized by an effective kinematic viscosity, ν', such that d E /d t =-ν'κ2L2 . We present values of χ2 derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarize what is presently known about the values of ν' from experiment, and we present a brief introductory discussion of the relationship between χ2 and ν', leaving a more detailed discussion to a later paper.

  17. Analytical modeling of helium turbomachinery using FORTRAN 77

    NASA Astrophysics Data System (ADS)

    Balaji, Purushotham

    Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.

  18. Influence of Au ions irradiation damage on helium implanted tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Cao, Xingzhong; Peng, Shixiang; Zhang, Ailin; Xue, Jianming; Wang, Yugang; Zhang, Peng; Wang, Baoyi

    2017-10-01

    The damages of implanted helium ions together with energetic neutrons in tungsten is concerned under the background of nuclear fusion related materials research. Helium is lowly soluble in tungsten and has high binding energy with vacancy. In present work, noble metal Au ions were used to study the synergistic effect of radiation damage and helium implantation. Nano indenter and the Doppler broaden energy spectrum of positron annihilation analysis measurements were used to research the synergy of radiation damage and helium implantation in tungsten. In the helium fluence range of 4.8 × 1015 cm-2-4.8 × 1016 cm-2, vacancies played a role of trappers only at the very beginning of bubble nucleation. The size and density is not determined by vacancies, but the effective capture radius between helium bubbles and scattered helium atoms. Vacancies were occupied by helium bubbles even at the lowest helium fluence, leaving dislocations and helium bubbles co-exist in tungsten materials.

  19. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  20. 'Heat from Above' Heat Capacity Measurements in Liquid He-4

    NASA Technical Reports Server (NTRS)

    Lee, R. A. M.; Chatto, A.; Sergatskov, D. A.; Babkin, A. V.; Boyd, S. T. P.; Churilov, A. M.; McCarson, T. D.; Chui, T. C. P.; Day, P. K.; Dunca, R. V.

    2003-01-01

    We have made heat capacity measurements of superfluid He-4 at temperatures very close to the lambda point, T(sub lambda) , in a constant heat flux, Q, when the helium sample is heated from above. In this configuration the helium enters a self-organized (SOC) heat transport state at a temperature T(sub SOC)(Q), which for Q greater than or = 100 nW/sq cm lies below T(sub lambda). At low Q we observe little or no deviation from the bulk Q = 0 heat capacity up to T(sub SOC)(Q); beyond this temperature the heat capacity appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple model. The excellent agreement between data and model serves as an independent confirmation of the existence of the SOC state. As Q is increased (up to 6 micron W/sq cm) we observe a Q dependant depression in the heat capacity that occurs just below T(sub SOC)(Q), when the entire sample is still superfluid. This is due to the emergence of a large thermal resistance in the sample, which we have measured and used to model the observed heat capacity depression. Our measurements of the superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et al.

  1. Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids

    NASA Astrophysics Data System (ADS)

    Boué, Laurent; Dasgupta, Ratul; Laurie, Jason; L'Vov, Victor; Nazarenko, Sergey; Procaccia, Itamar

    2011-08-01

    We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett.JTPLA20021-364010.1134/S002136401008014X 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.

  2. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  3. Understanding Superfluid ^3He by Determining β-Coefficients of Ginzburg-Landau Theory

    NASA Astrophysics Data System (ADS)

    Choi, H.; Davis, J. P.; Pollanen, J.; Halperin, W. P.

    2007-03-01

    The Ginzburg-Landau (GL) theory is a phenomenological theory that is used to characterize thermodynamic properties of a system near a phase transition. The free energy is expressed as an expansion of the order parameter and for superfluid ^3He there is one second order term and five fourth order terms. Since the GL theory is a phenomenological theory, one can determine the coefficients to these terms empirically; however, existing experiments are unable to determine all five fourth order coefficients, the β's. To date, only four different combinations of β's are known [1]. In the case of supeprfluid ^3He, using quasiclassical theory, the coefficients have been calculated [2]. We used the calculation as a guide to construct a model to define all five β's independently. The model provides us with the full understanding of the GL theory for ^3He, which is useful in understanding various superfluid phases of both bulk ^3He and disordered ^3He in aerogel. [1] H. Choi et al., J. Low Temp. Phys., submitted; http://arxiv.org/abs/cond-mat/0606786. [2] J.A. Sauls and J.W. Serene, Phys. Rev. B 24, 183 (1981).

  4. Why are para-hydrogen clusters superfluid? A quantum theorem of corresponding states study.

    PubMed

    Sevryuk, Mikhail B; Toennies, J Peter; Ceperley, David M

    2010-08-14

    The quantum theorem of corresponding states is applied to N=13 and N=26 cold quantum fluid clusters to establish where para-hydrogen clusters lie in relation to more and less quantum delocalized systems. Path integral Monte Carlo calculations of the energies, densities, radial and pair distributions, and superfluid fractions are reported at T=0.5 K for a Lennard-Jones (LJ) (12,6) potential using six different de Boer parameters including the accepted value for hydrogen. The results indicate that the hydrogen clusters are on the borderline to being a nonsuperfluid solid but that the molecules are sufficiently delocalized to be superfluid. A general phase diagram for the total and kinetic energies of LJ (12,6) clusters encompassing all sizes from N=2 to N=infinity and for the entire range of de Boer parameters is presented. Finally the limiting de Boer parameters for quantum delocalization induced unbinding ("quantum unbinding") are estimated and the new results are found to agree with previous calculations for the bulk and smaller clusters.

  5. Helium diffusion in the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-01-01

    We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.

  6. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  7. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  8. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  9. Application of superconducting coils to the NASA prototype magnetic balance

    NASA Technical Reports Server (NTRS)

    Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.

    1981-01-01

    Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.

  10. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  11. Sonic Helium Detectors in the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  12. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  13. Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.; Institute of Physics, University of Tsukuba, Ibaraki 305; Griffin, A.

    2003-03-01

    We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy 2{nu} of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS state to a Bose-Einstein condensate (BEC) of the Nozieres and Schmitt-Rink kind, in which the BCS-type superfluid phasemore » transition continuously changes into the BEC type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local-density approximation. We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase-transition temperature T{sub c}, reflecting the change of the dominant particles going from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear well above T{sub c}. We also discuss the 'phase diagram' above T{sub c} as a function of the tunable threshold energy 2{nu}. We introduce a characteristic temperature T*(2{nu}) describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.« less

  14. Cascade of Solitonic Excitations in a Superfluid Fermi Gas: From Solitons and Vortex Rings to Solitonic Vortices

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.

  15. Comparison of SIRTF dewar performance in the 900 km and 100,000 km orbits

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Maa, S. S.; Ng, Y. S.

    1990-01-01

    Feasibility studies showed that the Space Infrared Telescope Facility (SIRTF) can be launched into a 100,000-km high earth orbit (HEO) using a Titan/Centaur launch vehicle. This paper compares the performance of an all-superfluid helium dewar system for SIRTF under conditions of the LEO (900-km) and the HEO missions. Results show that the SIRTF all-superfluid He dewar can achieve a 5-yr lifetime for the 100,000 km HEO mission, with 20 percent margin. Methods to achieve further enhancement of dewar lifetime for the HEO mission are suggested.

  16. T(sub lambda) Depression by a Heat Current Along the lambda-Line

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Larson, Melora; Iraelsson, Ulf E.

    1999-01-01

    We report measurements of the depression of the superfluid transition temperature by a heat current (1 less than or = Q less than or = 100 microW/sq cm) along the lambda-line (SVP less than or = P less than or = 21.6 bar). At P = 21.6 bar, measurements were also performed in a reduced gravity (0.2g). Experimental results show that the pressure dependence of the depression and the gravity effect on the measurements are small, in qualitative agreement with theoretical predictions. Keywords: superfluid helium; Lambda transition; heat current

  17. Magnon condensation and spin superfluidity

    NASA Astrophysics Data System (ADS)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  18. LRO-LAMP Observations of Lunar Exospheric Helium

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.

    2015-11-01

    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  19. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  20. Quasiparticle Approach to Molecules Interacting with Quantum Solvents.

    PubMed

    Lemeshko, Mikhail

    2017-03-03

    Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.