Science.gov

Sample records for protozoan phylum apicomplexa

  1. Dynamic organization of microtubules and microtubule-organizing centers during the sexual phase of a parasitic protozoan, Lecudina tuzetae (Gregarine, Apicomplexa).

    PubMed

    Kuriyama, Ryoko; Besse, Colette; Gèze, Marc; Omoto, Charlotte K; Schrével, Joseph

    2005-12-01

    Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a marine polychaete annelid, Nereis diversicolor. Using electron and fluorescence microscopy, we have characterized the dynamic changes in microtubule organization during the sexual phase of the life cycle. The gametocyst excreted from the host worm into seawater consists of two (one male and one female) gamonts in which cortical microtubule arrays are discernible. Each gamont undergoes multiple nuclear divisions without cytokinesis, resulting in the formation of large multinucleate haploid cells. After cellularization, approximately 1000 individual gametes are produced from each gamont within 24 h. Female gametes are spherical and contain interphase cytoplasmic microtubule arrays emanating from a gamma-tubulin-containing site. In male gametes, both interphase microtubules and a flagellum with "6 + 0" axonemal microtubules extend from the same microtubule-organizing site. At the beginning of spore formation, each zygote secretes a wall to form a sporocyst. Following meiotic and mitotic divisions, each sporocyst gives rise to eight haploid cells that ultimately differentiate into sporozoites. The ovoid shaped sporocyst is asymmetric and forms at least two distinctive microtubule arrays: spindle microtubules and microtubule bundles originating from the protruding apical end corresponding to the dehiscence pole of the sporocyst. Because antibodies raised against mammalian centrosome components, such as gamma-tubulin, pericentrin, Cep135, and mitosis-specific phosphoproteins, react strongly with the microtubule-nucleating sites of Lecudina, this protozoan is likely to share common centrosomal antigens with higher eukaryotes. PMID:16240430

  2. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E; Lewis, Rhodri

    2016-06-01

    Monophyly of protozoan phylum Amoebozoa, and subdivision into subphyla Conosa and Lobosa each with different cytoskeletons, are well established. However early diversification of non-ciliate lobose amoebae (Lobosa) is poorly understood. To clarify it we used recently available transcriptomes to construct a 187-gene amoebozoan tree for 30 species, the most comprehensive yet. This robustly places new genus Atrichosa (formerly lumped with Trichosphaerium) within lobosan class Tubulinea, not Discosea as previously supposed. We identified an earliest diverging lobosan clade comprising marine amoebae armoured by porose scaliform cell-envelopes, here made a novel class Cutosea with two pseudopodially distinct new families. Cutosea comprise Sapocribrum, ATCC PRA-29 misidentified as 'Pessonella', plus from other evidence Squamamoeba. We confirm that Acanthamoeba and ATCC 50982 misidentified as Stereomyxa ramosa are closely related. Discosea have a strongly supported major subclade comprising Thecamoebida plus Glycostylida (suborders Dactylopodina, Stygamoebina; Vannellina) phylogenetically distinct from Centramoebida. Stygamoeba is sister to Dactylopodina. Himatismenida are either sister to Centramoebida or deeper branching. Discosea usually appear holophyletic (rarely paraphyletic). Paramoeba transcriptomes include prokinetoplastid Perkinsela-like endosymbiont sequences. Cunea, misidentified as Mayorella, is closer to Paramoeba than Vexillifera within holophyletic Dactylopodina. Taxon-rich site-heterogeneous rDNA trees confirm cutosan distinctiveness, allow improved conosan taxonomy, and reveal previous dictyostelid tree misrooting. PMID:27001604

  3. Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)?

    PubMed

    Teles-Grilo, M Leonor; Tato-Costa, Joana; Duarte, Sérgio M; Maia, Alexandre; Casal, Graça; Azevedo, Carlos

    2007-06-01

    Perkinsus atlanticus is a pathogenic protist that infects the clam Ruditapes decussatus. The recent proposal for the inclusion of the genus Perkinsus in a new phylum, Perkinsozoa, in the infra-kingdom Alveolata, gave rise to controversies whether this genus should form a phylum on its own. Molecular analysis of some conserved nuclear genes shows a closer proximity of the genus Perkinsus to the dinoflagellates than to the apicomplexans. Studies on extranuclear genomes, however, could also be very helpful for a more precise definition of those phyla. In Perkinsozoa, there have been until now no reports about the isolation of mitochondria as well as no conclusive results about the presence of any plastids, therefore a comparison with the data already obtained in Apicomplexa and Dinoflagellata has not yet been possible. In this work, we identify a plastid in Perkinsus atlanticus, using ultrastructural techniques and inhibition growth tests. It will be important to analyze the plastid genome at a molecular level, in order to confirm if the plastid in Perkinsus is more similar to those of Dinoflagellata or Apicomplexa. Such information will doubtless contribute to a more precise determination of the phylogenetic position of the genus Perkinsus. PMID:17498932

  4. Lateral Gene Transfer of Family A DNA Polymerases between Thermophilic Viruses, Aquificae, and Apicomplexa

    PubMed Central

    Schoenfeld, Thomas W.; Murugapiran, Senthil K.; Dodsworth, Jeremy A.; Floyd, Sally; Lodes, Michael; Mead, David A.; Hedlund, Brian P.

    2013-01-01

    Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa. PMID:23608703

  5. Lateral gene transfer of family A DNA polymerases between thermophilic viruses, aquificae, and apicomplexa.

    PubMed

    Schoenfeld, Thomas W; Murugapiran, Senthil K; Dodsworth, Jeremy A; Floyd, Sally; Lodes, Michael; Mead, David A; Hedlund, Brian P

    2013-07-01

    Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa. PMID:23608703

  6. Crystalloid body, refractile body and virus-like particles in Apicomplexa: what is in there?

    PubMed

    Lemgruber, Leandro; Lupetti, Pietro

    2012-03-01

    The phylum of Apicomplexa comprises parasitic protozoa that share distinctive features such as the apical complex, the apicoplast, specialized cytoskeletal components and secretory organelles. Other unique cytoplasmic inclusions sharing similar features have been described in some representatives of Apicomplexa, although under different denominations. These are the crystalloid body, present for example in Cryptosporidium, Plasmodium and Cystoisospora; the refractile body in Eimeria and Lankesterella; and virus-like particles, also present in Eimeria and Cryptosporidium. Yet, the specific role of these cytoplasmic inclusions in the cell cycle of these protozoa is still unknown. Here, we discuss their morphology, possible inter-relatedness and speculate upon their function to bring these organelles back to the attention of the scientific community and promote new interest towards original research on these elusive structures. PMID:22217113

  7. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    PubMed

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology. PMID:27071116

  8. Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi-gene and multi-genome approach.

    PubMed

    Ogedengbe, Joseph D; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2015-11-01

    Coccidia possess three distinct genomes: nuclear, mitochondrial, and plastid. Sequences from five genes located on these three genomes were used to reconstruct the phylogenetic relationships of members of the phylum Apicomplexa: 18S rDNA sequences from the nuclear (nu) genome, partial cytochrome c oxidase subunit I sequences from the mitochondrial (mt) genome, and partial 16S and 23S rDNA sequences and RNA polymerase B sequences from plastid (pl) genomes. Maximum parsimony, maximum likelihood, and Bayesian inference were used in conjunction with nuclear substitution models generated from data subsets in the analyses. Major groups within the Apicomplexa were well supported with the mitochondrial, nuclear, and a combination of mitochondrial, nuclear and concatenated plastid gene sequences. However, the genus Eimeria was paraphyletic in phylogenetic trees based on the nuclear gene. Analyses using the individual genes (18S rDNA and cytochrome c oxidase subunit I) resolved the various apicomplexan groups with high Bayesian posterior probabilities. The multi-gene, multi-genome analyses based on concatenated nu 18S rDNA, pl 16S, pl 23S, pl rPoB, pl rPoB1, and mt COI sequences appeared useful in resolving phylogenetic relationships within the phylum Apicomplexa. Genus-level relationships, or higher, appear best supported by 18S rDNA analyses, and species-level analyses are best investigated using mt COI sequences; for parasites for which both loci are available, nuclear 18S rDNA sequences combined with mitochondrial COI sequences provide a compact and informative molecular dataset for inferring the evolutionary relationships taxa in the Apicomplexa. PMID:26319519

  9. Effects of Artemisia annua and Foeniculum vulgare on chickens highly infected with Eimeria tenella (Phylum Apicomplexa)

    PubMed Central

    2014-01-01

    Background Intensive poultry production systems depend on chemoprophylaxis with anticoccidial drugs to combat infection. A floor-pen study was conducted to evaluate the anticoccidial effect of Artemisia annua and Foeniculum vulgare on Eimeria tenella infection. Five experimental groups were established: negative control (untreated, unchallenged); positive control (untreated, challenged); a group medicated with 125 ppm lasalocid and challenged; a group medicated with A. annua leaf powder at 1.5% in feed and challenged; and a group treated with the mixed oils of A. annua and Foeniculum vulgare in equal parts, 7.5% in water and challenged. The effects of A. annua and oil extract of A. annua + F. vulgare on E. tenella infection were assessed by clinical signs, mortality, fecal oocyst output, faeces, lesion score, weight gain, and feed conversion. Results Clinical signs were noticed only in three chickens from the lasalocid group, six from the A. annua group, and nine from the A. annua + F. vulgare group, but were present in 19 infected chickens from the positive control group. Bloody diarrhea was registered in only two chickens from A. annua group, but in 17 chickens from the positive control group. Mortality also occurred in the positive control group (7/20). Chickens treated with A. annua had a significant reduction in faecal oocysts (95.6%; P = 0.027) and in lesion score (56.3%; P = 0.005) when compared to the positive control. At the end of experiment, chickens treated with A. annua leaf powder had the highest body weight gain (68.2 g/day), after the negative control group, and the best feed conversion (1.85) among all experimental groups. Conclusions Our results suggest that A. annua leaf powder (Aa-p), at 1.5% of the daily diet post-infection, can be a valuable alternative for synthetic coccidiostats, such as lasalocid. PMID:24731599

  10. Waterborne protozoan pathogens.

    PubMed Central

    Marshall, M M; Naumovitz, D; Ortega, Y; Sterling, C R

    1997-01-01

    Protozoan parasites were the most frequently identified etiologic agents in waterborne disease outbreak from 1991 to 1994. The waterborne parasites Giardia lamblia, Naegleria fowleri, Acanthamoeba spp., Entamoeba histolytica, Cryptosporidium parvum, Cyclospora cayetanesis, Isospora belli, and the microsporidia are reviewed. For each parasite, the review includes history, life cycle, incidence, symptoms, and therapy. Clinical detection methods are compared, and emerging technologies are discussed. Information on the association of these parasites with waterborne outbreaks is reviewed. Current information on protozoan parasites identified as etiological agents in waterborne outbreaks is discussed. Water industry issues related to recent disease outbreaks are examined in the context of water quality testing regulations for G. lamblia and those proposed for C. parvum. The review identifies the limitations of the American Society of Testing and Materials water-testing method for these parasites. An overview of federal regulations affecting the water industry and laboratories that test for water quality is also provided. The article highlights the importance of the clinical laboratory as a frontline defense for the detection of infectious organisms. The review points to the need for clinical laboratories, physicians, and public health personnel to cooperatively plan and assess the challenge of meeting this potential public health threat. PMID:8993859

  11. Zoonotic waterborne protozoan in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterborne protozoan diseases have a worldwide distribution affecting both developed and developing countries. In developing countries, contamination of drinking water with protozoan pathogens poses a serious threat to millions of people that live without access to healthy water. In developed countr...

  12. Gene Discovery in the Apicomplexa as Revealed by EST Sequencing and Assembly of a Comparative Gene Database

    PubMed Central

    Li, Li; Brunk, Brian P.; Kissinger, Jessica C.; Pape, Deana; Tang, Keliang; Cole, Robert H.; Martin, John; Wylie, Todd; Dante, Mike; Fogarty, Steven J.; Howe, Daniel K.; Liberator, Paul; Diaz, Carmen; Anderson, Jennifer; White, Michael; Jerome, Maria E.; Johnson, Emily A.; Radke, Jay A.; Stoeckert, Christian J.; Waterston, Robert H.; Clifton, Sandra W.; Roos, David S.; Sibley, L. David

    2003-01-01

    Large-scale EST sequencing projects for several important parasites within the phylum Apicomplexa were undertaken for the purpose of gene discovery. Included were several parasites of medical importance (Plasmodium falciparum, Toxoplasma gondii) and others of veterinary importance (Eimeria tenella, Sarcocystis neurona, and Neospora caninum). A total of 55,192 ESTs, deposited into dbEST/GenBank, were included in the analyses. The resulting sequences have been clustered into nonredundant gene assemblies and deposited into a relational database that supports a variety of sequence and text searches. This database has been used to compare the gene assemblies using BLAST similarity comparisons to the public protein databases to identify putative genes. Of these new entries, ∼15%–20% represent putative homologs with a conservative cutoff of p < 10−9, thus identifying many conserved genes that are likely to share common functions with other well-studied organisms. Gene assemblies were also used to identify strain polymorphisms, examine stage-specific expression, and identify gene families. An interesting class of genes that are confined to members of this phylum and not shared by plants, animals, or fungi, was identified. These genes likely mediate the novel biological features of members of the Apicomplexa and hence offer great potential for biological investigation and as possible therapeutic targets. [The sequence data from this study have been submitted to dbEST division of GenBank under accession nos.: Toxoplasma gondii: –, –, –, –, – , –, –, –, –. Plasmodium falciparum: –, –, –, –. Sarcocystis neurona: , , , , , , , , , , , , , –, –, –, –, –. Eimeria tenella: –, –, –, –, –, –, –, –, – , –, –, –, –, –, –, –, –, –, –, –. Neospora caninum: –, –, , – , –, –.] PMID:12618375

  13. The Ciliate Colpoda: "Instant" Protozoan

    ERIC Educational Resources Information Center

    Smith, Anne Muller; Giese, Arthur C.

    1973-01-01

    Describes the characteristics of Colpoda, a ciliated protozoan which is able to survive in a dry, encysted state for long periods of time. Outlines the procedures for culturing the organism and producing cyst preparations, and recommends its use in the high school biology laboratory. (JR)

  14. Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa.

    PubMed

    Reid, Adam J

    2015-02-01

    The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host-parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species. PMID:25257746

  15. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E; Snell, Elizabeth A; Berney, Cdric; Fiore-Donno, Anna Maria; Lewis, Rhodri

    2014-12-01

    Animals and fungi independently evolved from the protozoan phylum Choanozoa, these three groups constituting a major branch of the eukaryotic evolutionary tree known as opisthokonts. Opisthokonts and the protozoan phylum Amoebozoa (amoebae plus slime moulds) were previously argued to have evolved independently from the little-studied, largely flagellate, protozoan phylum, Sulcozoa. Sulcozoa are a likely evolutionary link between opisthokonts and the more primitive excavate flagellates that have ventral feeding grooves and the most primitive known mitochondria. To extend earlier sparse evidence for the ancestral (paraphyletic) nature of Sulcozoa, we sequenced transcriptomes from six gliding flagellates (two apusomonads; three planomonads; Mantamonas). Phylogenetic analyses of 173-192 genes and 73-122 eukaryote-wide taxa show Sulcozoa as deeply paraphyletic, confirming that opisthokonts and Amoebozoa independently evolved from sulcozoans by losing their ancestral ventral groove and dorsal pellicle: Apusozoa (apusomonads plus anaerobic breviate amoebae) are robustly sisters to opisthokonts and probably paraphyletic, breviates diverging before apusomonads; Varisulca (planomonads, Mantamonas, and non-gliding flagellate Collodictyon) are sisters to opisthokonts plus Apusozoa and Amoebozoa, and possibly holophyletic; Glissodiscea (planomonads, Mantamonas) may be holophyletic, but Mantamonas sometimes groups with Collodictyon instead. Taxon and gene sampling slightly affects tree topology; for the closest branches in Sulcozoa and opisthokonts, proportionally reducing missing data eliminates conflicts between homogeneous-model maximum-likelihood trees and evolutionarily more realistic site-heterogeneous trees. Sulcozoa, opisthokonts, and Amoebozoa constitute an often-pseudopodial 'podiate' clade, one of only three eukaryotic 'supergroups'. Our trees indicate that evolution of sulcozoan dorsal pellicle, ventral pseudopodia, and ciliary gliding (probably simultaneously) generated podiate eukaryotes from Malawimonas-like excavate flagellates. PMID:25152275

  16. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  17. Effects of Artemisia annua and Foeniculum vulgare on on chickens highly infected with Eimeria tenella (Phylum Apicomplexa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Intensive poultry production systems depend on chemoprophylaxis with anticoccidial drugs to combat infection. A floor-pen study was conducted to evaluate the anticoccidial effect of Artemisia annua and Foeniculum vulgare on Eimeria tenella infection. Five experimental groups were establi...

  18. Photoacoustic spectroscopy of man infecting protozoans

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Vargas, H.

    1998-08-01

    In this paper the fundamentals of photothermal spectroscopy are presented, special emphasis is done in the obtention of the optical absorption spectra. It is shown that this spectroscopy can be used successfully for the monitoring of protozoans that could infect the human. The usefulness of the technique is illustrated in the special case of Leishmania, where it is possible to find that the stage when the protozoan infect vertebrate cells show important differences in relation to the protozoans infecting insects.

  19. Photoacoustic spectroscopy of man infecting protozoans

    SciTech Connect

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Vargas, H.

    1998-08-28

    In this paper the fundamentals of photothermal spectroscopy are presented, special emphasis is done in the obtention of the optical absorption spectra. It is shown that this spectroscopy can be used successfully for the monitoring of protozoans that could infect the human. The usefulness of the technique is illustrated in the special case of Leishmania, where it is possible to find that the stage when the protozoan infect vertebrate cells show important differences in relation to the protozoans infecting insects.

  20. Apoptotic markers in protozoan parasites

    PubMed Central

    2010-01-01

    The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities. PMID:21062457

  1. Characterization and role of protozoan parasite proteasomes.

    PubMed

    Paugam, André; Bulteau, Anne Laure; Dupouy-Camet, Jean; Creuzet, Claudine; Friguet, Bertrand

    2003-02-01

    The proteasome, a large non-lysosomal multi-subunit protease complex, is ubiquitous in eukaryotic cells. In protozoan parasites, the proteasome is involved in cell differentiation and replication, and could therefore be a promising therapeutic target. This article reviews the present knowledge of proteasomes in protozoan parasites of medical importance such as Giardia, Entamoeba, Leishmania, Trypanosoma, Plasmodium and Toxoplasma spp. PMID:12586468

  2. Interferon effects on protozoan infections

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Wirth, J.; Kierszenbaum, F.; Degee, A. L. W.; Mansfield, J. M.

    1985-01-01

    The effects of interferon (IFN) on mice infected with two different parasitic protozoans, Trypanosoma cruzi and Trypanosoma brucei rhodesiense, are investigated experimentally. The preparation of the cell cultures, IFN and assays, antibody, and the experimental procedures are described. It is observed that in cells treated with IFN-gamma there is an increased association of T. cruzi with murine macrophages and an increase in the killing of T. cruzi by IFN-gamma-treated murine macrophages. For spleen cells infected with T.b. rhodesiense in vitro, it is detected that live trypanosomes cannot induce IFN in cells from normal mice, but can in cells from immunized mice; and that trypanosome-lysates induce IFN in vitro in cells from normal mice. The data suggest that there is a two-step mechanism for mice against T. cruzi and T.b. rhodesiense.

  3. Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One result of the recent phylogenetically based rejection of the phylum Zygomycota was the description of the subphylum Entomophthoromycotina (not assigned to any phylum) for fungi traditionally treated in the order Entomophthorales. More extensive gene-based analyses of these fungi suggest that the...

  4. Using the Ciliate Protozoan Vorticella in Teaching.

    ERIC Educational Resources Information Center

    Jones, Alick R.

    1980-01-01

    Describes methods for collection, culture, observation, and making permanent stained preparations of the protozoan vorticella. Suggestions are made for experiments to investigate growth, reproduction, settlement, ecology, feeding, and osmoregulation. (CS)

  5. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum.

    PubMed

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-06-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  6. A Phylogenomic Analysis of the Bacterial Phylum Fibrobacteres

    PubMed Central

    Abdul Rahman, Nurdyana; Parks, Donovan H.; Vanwonterghem, Inka; Morrison, Mark; Tyson, Gene W.; Hugenholtz, Philip

    2016-01-01

    The Fibrobacteres has been recognized as a bacterial phylum for over a decade, but little is known about the group beyond its environmental distribution, and characterization of its sole cultured representative genus, Fibrobacter, after which the phylum was named. Based on these incomplete data, it is thought that cellulose hydrolysis, anaerobic metabolism, and lack of motility are unifying features of the phylum. There are also contradicting views as to whether an uncultured sister lineage, candidate phylum TG3, should be included in the Fibrobacteres. Recently, chitin-degrading cultured representatives of TG3 were isolated from a hypersaline soda lake, and the genome of one species, Chitinivibrio alkaliphilus, sequenced and described in detail. Here, we performed a comparative analysis of Fibrobacter succinogenes, C. alkaliphilus and eight near or substantially complete Fibrobacteres/TG3 genomes of environmental populations recovered from termite gut, anaerobic digester, and sheep rumen metagenomes. We propose that TG3 should be amalgamated with the Fibrobacteres phylum based on robust monophyly of the two lineages and shared character traits. Polymer hydrolysis, using a distinctive set of glycoside hydrolases and binding domains, appears to be a prominent feature of members of the Fibrobacteres. Not all members of this phylum are strictly anaerobic as some termite gut Fibrobacteres have respiratory chains adapted to the microaerophilic conditions found in this habitat. Contrary to expectations, flagella-based motility is predicted to be an ancestral and common trait in this phylum and has only recently been lost in F. succinogenes and its relatives based on phylogenetic distribution of flagellar genes. Our findings extend current understanding of the Fibrobacteres and provide an improved basis for further investigation of this phylum. PMID:26779135

  7. Detection of antibodies against Brucella abortus, Leptospira spp., and Apicomplexa protozoa in water buffaloes in the Northeast of Argentina.

    PubMed

    Konrad, José L; Campero, Lucía M; Caspe, Gastón S; Brihuega, Bibiana; Draghi, Graciela; Moore, Dadin P; Crudeli, Gustavo A; Venturini, María C; Campero, Carlos M

    2013-11-01

    Water buffalo industry has become a profitable activity worldwide, including the Northeast of Argentina (NEA). However, research on diseases affecting this species is scarce. The aim of the present study was to detect antibodies against Brucella abortus, Leptospira spp., Neospora caninum, Toxoplasma gondii, and Sarcocystis spp. in 500 water buffalo cows from five ranches (100 animals each) in the NEA. Serum samples were tested for B. abortus by fluorescence polarization assay, Leptospira spp. by microagglutination test, and N. caninum, T. gondii, and Sarcocystis spp. by indirect fluorescent antibody tests. Overall, the proportion of seropositive animals was 6.4, 22.2, 42.2, 25.4, and 50.8 % for brucellosis, leptospirosis, neosporosis, toxoplasmosis, and sarcocystosis, respectively. The proportion of seropositive animals for all diseases was statistically different among herds (p < 0.05). Statistical differences were also detected among age groups for brucellosis and neosporosis (p < 0.05). The detection of specific antibodies to B. abortus, Leptospira spp., and several Apicomplexa protozoans in water buffaloes in the NEA is reported in this study. PMID:23765549

  8. Phylogeny of Fish-Infecting Calyptospora species (Apicomplexa: Eimeriorina)

    EPA Science Inventory

    There are numerous species of apicomplexans that infect poikilothermic vertebrates such as fishes, and possess unique morphological features that provide insight into the evolution of this important phylum of parasites. Here the relationship of the fish-infecting Calyptospora spe...

  9. The zooflagellates Stephanopogon and Percolomonas are a clade (class Percolatea: Phylum Percolozoa).

    PubMed

    Cavalier-Smith, Thomas; Nikolaev, Sergey

    2008-01-01

    The enigmatic marine protozoan Stephanopogon was first classified with ciliate protozoa because its pellicle also has rows of cilia. As ciliates have nuclear dimorphism with separate germline and somatic nuclei, Stephanopogon with several identical nuclei was regarded as a model for a hypothetical homokaryotic ancestor of ciliates. When electron microscopy revealed radical differences from ciliates this idea was abandoned, but its evolutionary position remains controversial, affinities with three other phyla being suggested. We sequenced 18S rDNA from Stephanopogon aff. minuta and actin genes from it and Stephanopogon apogon to clarify their evolutionary position. Phylogenetic analyses of 18S rRNA nest S. aff. minuta and Stephanopogon minuta securely within the protozoan phylum Percolozoa with zooflagellates of the genus Percolomonas, their closest relatives, comprising the clade Percolatea. This supports a previous grouping of Stephanopogon (order Pseudociliatida) with Percolomonas (order Percolomonadida) as a purely zooflagellate class Percolatea within Percolozoa, in contrast to the fundamentally amoeboid Heterolobosea, which are probably ancestral to Percolatea. Stephanopogon actins evolve exceptionally fast: actin trees place them as a long branch within bikont eukaryotes without revealing their sisters. We establish Percolomonadidae fam. n. for Percolomonas, excluding Pharyngomonas kirbyi g., sp. n. and Pharyngomonas (=Tetramastix=Percolomonas) salina comb. n., which unlike Percolomonas have two anterior and two posterior cilia and a pocket-like pharynx, like "Macropharyngomonas", now grouped with Pharyngomonas as a new purely zooflagellate class Pharyngomonadea, within a new subphylum Pharyngomonada; this contrasts them with the revised ancestrally amoeboflagellate subphylum Tetramitia. We discuss evolution of the percolozoan cytoskeleton and different body forms. PMID:19120795

  10. Detection and surveillance of waterborne protozoan parasites.

    PubMed

    Bouzid, Maha; Steverding, Dietmar; Tyler, Kevin M

    2008-06-01

    The majority of the world's population still live without access to healthy water and the contamination of drinking water with protozoan pathogens poses a serious threat to millions of people in the developing world. Even in the developed world periodic outbreaks of diarrhoeal diseases are caused by the protozoan parasites Cryptosporidium sp., Giardia duodenalis and Entamoeba histolytica. Thus, surveillance of drinking water is imperative to minimize such contaminations and ensure continuous supplies of healthy water world-wide. This article reviews the progress in technology for detection and surveillance of these important waterborne parasites. PMID:18524569

  11. Culturing and Using Protozoans in the Laboratory.

    ERIC Educational Resources Information Center

    Hummer, Paul J., Jr.

    1993-01-01

    Provides instructions for teachers and students to culture protozoans for use in science laboratories. Sections include setting up a culture area, basic culture media, amoeba culture technique, powdered milk-wheat-rice medium, alfalfa medium, and uses of the protozoa in the laboratory. (PR)

  12. INFLUENCE OF PROTOZOAN GRAZING ON CONTAMINANT BIODEGRADATION. (R825418)

    EPA Science Inventory

    The influence of protozoan grazing on biodegradation rates in samples from contaminated aquifer sediment was evaluated under aerobic and anaerobic conditions. Predatorprey biomass ratios suggested that protozoan grazing might be influencing bacterial populations....

  13. Sarcocystosis of animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of Sarcocystosis, single-celled protozoan parasites in the Phylum Apicomplexa, are widespread in warm-blooded animals. Completion of the life cycle requires two host species: an intermediate (or prey) host and a definitive (or predator) host. Hosts can harbor more than one species of Sarcocy...

  14. Vertebrate Cells Express Protozoan Antigen after Hybridization

    NASA Astrophysics Data System (ADS)

    Crane, Mark St. J.; Dvorak, James A.

    1980-04-01

    Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.

  15. The protozoan diseases of hatchery fish

    USGS Publications Warehouse

    Fish, F.F.

    1935-01-01

    Following the somewhat bleak picture painted in the consideration of the bacterial diseases of hatchery fish in the last number of The Progressive Fish Culturist, it is a relief to turn to another large group of fish diseases caused by small, single-celled parasitic animals known as the protozoa. To the hatcheryman, the protozoan diseases of fish are just as important as the bacterial diseases for they are equally destructive if allowed to run unchecked. The protozoan diseases are just as common as those caused by bacteria, particularly at those hatcheries which depend upon lakes or streams for their water supplies. However, a very cheery point of difference exists between these two groups of diseases—the protozoan diseases are easier to recognize and, for the most part, they are exceedingly easy to eradicate. To the hatcheryman who has struggled day and night for weeks in an attempt to combat an epidemic wherein he is rewarded immediately by the satisfying sight of a complete recovery of his infected fish as the direct result of his labors.

  16. Neuroparasitic Infections: Cestodes, Trematodes, and Protozoans

    PubMed Central

    Walker, M.D.; Zunt, J.R.

    2009-01-01

    Parasitic infection of the nervous system can produce a variety of symptoms and signs. Because symptoms of infection are often mild or nonspecific, diagnosis can be difficult. Familiarity with basic epidemiological characteristics and distinguishing radiographic findings can increase the likelihood of detection and proper treatment of parasitic infection of the nervous system. This article discusses the clinical presentation, diagnosis, and treatment for some of the more common infections of the nervous system caused by cestodes, trematodes and protozoans: Echinococcus spp., Spirometra spp. (sparganosis), Paragonimus spp., Schistosoma spp., Trypanosoma spp., Naegleria fowlerii, Acanthamoeba histolytica, and Balamuthia mandrillaris. PMID:16170739

  17. Chapter A7. Section 7.3. Protozoan Pathogens

    USGS Publications Warehouse

    Bushon, Rebecca N.; Francy, Donna S.

    2003-01-01

    Protozoan pathogens are widely distributed in the aquatic environment. Cryptosporidium and Giardia are the principal protozoan pathogens that are known to affect the acceptability of water supplies for public use within the United States. A sampling program for protozoan pathogens should be conducted over an extended period of time because of cyclical and seasonal variations in their concentrations in the environment. This report provides information on the equipment, sampling protocols, and laboratory method that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on protozoan pathogens.

  18. An Expanded Genomic Representation of the Phylum Cyanobacteria

    PubMed Central

    Soo, Rochelle M.; Skennerton, Connor T.; Sekiguchi, Yuji; Imelfort, Michael; Paech, Samuel J.; Dennis, Paul G.; Steen, Jason A.; Parks, Donovan H.; Tyson, Gene W.; Hugenholtz, Philip

    2014-01-01

    Molecular surveys of aphotic habitats have indicated the presence of major uncultured lineages phylogenetically classified as members of the Cyanobacteria. One of these lineages has recently been proposed as a nonphotosynthetic sister phylum to the Cyanobacteria, the Melainabacteria, based on recovery of population genomes from human gut and groundwater samples. Here, we expand the phylogenomic representation of the Melainabacteria through sequencing of six diverse population genomes from gut and bioreactor samples supporting the inference that this lineage is nonphotosynthetic, but not the assertion that they are strictly fermentative. We propose that the Melainabacteria is a class within the phylogenetically defined Cyanobacteria based on robust monophyly and shared ancestral traits with photosynthetic representatives. Our findings are consistent with theories that photosynthesis occurred late in the Cyanobacteria and involved extensive lateral gene transfer and extends the recognized functionality of members of this phylum. PMID:24709563

  19. Validation and justification of the phylum name Cryptomycota phyl. nov.

    PubMed

    Jones, Meredith D M; Richards, Thomas A; Hawksworth, David L; Bass, David

    2011-12-01

    The recently proposed new phylum name Cryptomycota phyl. nov. is validly published in order to facilitate its use in future discussions of the ecology, biology, and phylogenetic relationships of the constituent organisms. This name is preferred over the previously tentatively proposed "Rozellida" as new data suggest that the life-style and morphology of Rozella is not representative of the large radiation to which it and other Cryptomycota belong. Furthermore, taxa at higher ranks such as phylum are considered better not based on individual names of included genera, but rather on some special characteristics - in this case the cryptic nature of this group and that they were initially revealed by molecular methods rather than morphological discovery. If the group were later viewed as a member of a different kingdom, the name should be retained to indicate its fungal affinities, as is the practice for other fungal-like protist groups. PMID:22679602

  20. Inflammasomes in host response to protozoan parasites.

    PubMed

    Zamboni, Dario S; Lima-Junior, Djalma S

    2015-05-01

    Inflammasomes are multimeric complexes of proteins that are assembled in the host cell cytoplasm in response to specific stress signals or contamination of the cytoplasm by microbial molecules. The canonical inflammasomes are composed of at least three main components: an inflammatory caspase (caspase-1, caspase-11), an adapter molecule (such as ASC), and a sensor protein (such as NLRP1, NLRP3, NLRP12, NAIP1, NAIP2, NAIP5, or AIM2). The sensor molecule determines the inflammasome specificity by detecting specific microbial products or cell stress signals. Upon activation, these molecular platforms facilitate restriction of microbial replication and trigger an inflammatory form of cell death called pyroptosis, thus accounting for the genesis of inflammatory processes. Inflammasome activation has been widely reported in response to pathogenic bacteria. However, recent reports have highlighted the important role of the inflammasomes in the host response to the pathogenesis of infections caused by intracellular protozoan parasites. Herein, we review the activation and specific roles of inflammasomes in recognition and host responses to intracellular protozoan parasites such as Trypanosoma cruzi, Toxoplasma gondii, Plasmodium spp., and Leishmania spp. PMID:25879291

  1. Histones and histone modifications in protozoan parasites.

    PubMed

    Sullivan, William J; Naguleswaran, Arunasalam; Angel, Sergio O

    2006-12-01

    Protozoan parasites are early branching eukaryotes causing significant morbidity and mortality in humans and livestock. Single-celled parasites have evolved complex life cycles, which may involve multiple host organisms, and strategies to evade host immune responses. Consequently, two key aspects of virulence that underlie pathogenesis are parasite differentiation and antigenic variation, both of which require changes in the expressed genome. Complicating these requisite alterations in the parasite transcriptome is chromatin, which serves as a formidable barrier to DNA processes including transcription, repair, replication and recombination. Considerable progress has been made in the study of chromatin dynamics in other eukaryotes, and there is much to be gained in extending these analyses to protozoan parasites. Much of the work completed to date has focused on histone acetylation and methylation in the apicomplexans and trypanosomatids. As we describe in this review, such studies provide a unique vantage point of the evolutionary picture of eukaryotic cell development, and reveal unique phenomena that could be exploited pharmacologically to treat protozoal diseases. PMID:17026479

  2. Protozoan and viral infections of feral cats.

    PubMed

    Coman, B J; Jones, E H; Westbury, H A

    1981-07-01

    Identification of protozoan oocysts and serological tests were used to determine the prevalence of infections among 300 mainly adult feral cats in three different habitat types in south-eastern Australia. Oocysts of Isospora rivolta and Isospora felis were recovered from 3% and 4% respectively of 300 feral cat samples. Haemagglutination inhibition antibody to Toxoplasma gondii was detected in 20% of 75 cat sera tested. A high prevalence of specific antibody to feline panleukopaenia virus (79%) and feline calici virus (77%) was demonstrated but the prevalence of antibody to feline herpes virus was low (11%). 15 strains of feline calici virus were isolated from pharyngeal swabs. There were no other virus isolations from the 60 pharyngeal and rectal swabs taken. These viral and protozoan infections could not be linked with any obvious pathological conditions. Most cats were in good condition with light to moderate fat stores in depot areas. Limb fractures and other skeletal abnormalities occurred infrequently. Major tooth damage or absence of important teeth was evident in about 20% of 164 animals examined. There was no correlation between major tooth damage and poor body condition. PMID:6280665

  3. Criteria For Evaluation of Proposed Protozoan Detection Methods

    EPA Science Inventory

    Currently, the only EPA approved method for detection and quantitation of protozoan cysts and ocysts in source and drinking water, is the ICR Protozoan Method for Detecting Giardia Cysts and Cryptosporidium Ocysts in Water by a Fluorescent Antibody Procedure (ICR Microbial La...

  4. OYSTER SERUM AGGLUTININS AND RESISTANCE TO PROTOZOAN PARASITES

    EPA Science Inventory

    Serum agglutinins or lectins are reported to be induced in marine molluscs by exposure to bacteria and may enhance bacterial clearance from the host; however, there is a little information on possible relationships between lectins and protozoan parasites of molluscs. wo protozoan...

  5. Criteria For Evaluation of Proposed Protozoan Detection Methods

    EPA Science Inventory

    Currently, the only EPA approved method for detection and quantitation of protozoan cysts and oöcysts in source and drinking water, is the “ICR Protozoan Method for Detecting Giardia Cysts and Cryptosporidium Oöcysts in Water by a Fluorescent Antibody Procedure (ICR Microbial La...

  6. Drug repurposing and human parasitic protozoan diseases

    PubMed Central

    Andrews, Katherine T.; Fisher, Gillian; Skinner-Adams, Tina S.

    2014-01-01

    Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis. PMID:25057459

  7. Kinetoplastids: related protozoan pathogens, different diseases

    PubMed Central

    Stuart, Ken; Brun, Reto; Croft, Simon; Fairlamb, Alan; Gürtler, Ricardo E.; McKerrow, Jim; Reed, Steve; Tarleton, Rick

    2008-01-01

    Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better. PMID:18382742

  8. Chordate evolution and the three-phylum system

    PubMed Central

    Satoh, Noriyuki; Rokhsar, Daniel; Nishikawa, Teruaki

    2014-01-01

    Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics. PMID:25232138

  9. Invasion mechanisms among emerging food-borne protozoan parasites.

    PubMed

    Yoshida, Nobuko; Tyler, Kevin M; Llewellyn, Martin S

    2011-10-01

    Food-borne parasitic diseases, many known to be more prevalent in poor countries with deficient sanitary conditions, are becoming common worldwide. Among the emerging protozoan parasites, the most prominent is Trypanosoma cruzi, rarely reported in the past to be transmitted by the oral route but currently responsible for frequent outbreaks of acute cases of Chagas disease contracted orally and characterized by high mortality. Several other food-borne protozoans considered emerging include the apicomplexans Toxoplasma gondii and Cryptosporidium, as well as Giardia and Entamoeba histolytica. Here, the interactions of these protozoans with the mucosal epithelia of the host are discussed. PMID:21840261

  10. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  11. Role of Leukotrienes on Protozoan and Helminth Infections

    PubMed Central

    Rogerio, Alexandre P.; Anibal, Fernanda F.

    2012-01-01

    Leukotrienes (LTs), formed by the 5-lipoxygenase-(5-LO-) catalyzed oxidation of arachidonic acid, are lipid mediators that have potent proinflammatory activities. Pharmacologic or genetic inhibition of 5-LO biosynthesis in animals is associated with increased mortality and impaired clearance of bacteria, fungi, and parasites. LTs play a role in the control of helminth and protozoan infections by modulating the immune system and/or through direct cytotoxicity to parasites; however, LTs may also be associated with pathogenesis, such as in cerebral malaria and schistosomal granuloma. Interestingly, some proteins from the saliva of insect vectors that transmit protozoans and secreted protein from helminth could bind LTs and may consequently modulate the course of infection or pathogenesis. In addition, the decreased production of LTs in immunocompromised individuals might modulate the pathophysiology of helminth and protozoan infections. Herein, in this paper, we showed the immunomodulatory and pathogenic roles of LTs during the helminth and protozoan infections. PMID:22577251

  12. Diversity and Habitat Niche Modeling of Candidate Archaeal Phylum Aigarchaeota

    NASA Astrophysics Data System (ADS)

    Alba, T. W.; Goertz, G.; Williams, A. J.; Cole, J. K.; Murugapiran, S. K.; Dodsworth, J. A.; Hedlund, B. P.

    2013-12-01

    ';Aigarchaeota' (formerly known as pSL4 and Hot Water Crenarchaeotic Group I (HWCGI)) is a candidate phylum of Archaea known only by 16S rRNA gene fragments from cultivation-independent microbial surveys and a single composite genome from Candidatus ';Caldiarchaeum subterraneum', an inhabitant of a subterranean gold mine in Japan. Sequences reported in various publications are found exclusively in geothermal settings, but a comprehensive assessment has not yet been performed. We mined public databases for 16S rRNA gene sequences related to known ';Aigarchaeota' and used a combination of approaches to rigorously define the phylogenetic boundaries of the phylum. The analyses supported the proposed relationship between ';Aigarchaeota', Thaumarchaeota, Crenarchaeota, and Korarchaeota in the so-called 'TACK superphylum' and identified ~200 16S rRNA genes and gene fragments belonging to ';Aigarchaeota', including those recovered from terrestrial geothermal systems on several continents (North America, Asia, Africa, Europe, and Oceania) and marine geothermal and subsurface samples in both the Atlantic and Pacific. ';Aigarchaeota' belonged to at least three family- to order-level groups and at least seven genus-level groups. All genus-level groups were recovered from geographically distant locations, suggesting a global distribution within amenable habitats. ';Aigarchaeota'-specific primers for the polymerase chain reaction (PCR) amplification of 16S rRNA genes were designed using SP-Designer and reviewed using the Ribosomal Database Project Probe Match tool. The primers will be used to determine the presence and abundance of ';Aigarchaeota' in a wide variety of samples from terrestrial geothermal systems in the western U.S. and Asia. These phylogenetic data, along with a large geochemical database, will be analyzed using multivariate statistics to develop biogeographic and habitat niche models for ';Aigarchaeota'. This study offers the first coherent view of the distribution and diversity of the ';Aigarchaeota' and lays the groundwork for further inquiry into how environmental factors might control the presence and abundance of this candidate phylum in geothermal environments.

  13. Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy.

    PubMed

    Pedersen, Annette L; Winding, Anne; Altenburger, Andreas; Ekelund, Flemming

    2011-03-01

    Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabolite-producing bacteria, and examine whether different bacterial secondary metabolites affect protozoa similarly. We investigated the growth of nine different soil protozoa on six different Pseudomonas strains, including the four secondary-metabolite-producing Pseudomonas fluorescens DR54 and CHA0, Pseudomonas chlororaphis MA342 and Pseudomonas sp. DSS73, as well as the two nonproducers P. fluorescens DSM50090(T) and P. chlororaphis ATCC43928. Secondary metabolite producers affected protozoan growth differently. In particular, bacteria with extracellular secondary metabolites seemed more inhibiting than bacteria with membrane-bound metabolites. Interestingly, protozoan response seemed to correlate with high-level protozoan taxonomy, and amoeboid taxa tolerated a broader range of Pseudomonas strains than did the non-amoeboid taxa. This stresses the importance of studying both protozoan and bacterial characteristics in order to understand bacterial defence mechanisms and potentially improve survival of bacteria introduced into the environment, for example for biocontrol purposes. PMID:21204921

  14. Comparative analysis of 35 basidiomycete genomes reveals diversity and uniqueness of the phylum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37% of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this ...

  15. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum

    PubMed Central

    McLean, Jeffrey S.; Lombardo, Mary-Jane; Badger, Jonathan H.; Edlund, Anna; Novotny, Mark; Yee-Greenbaum, Joyclyn; Vyahhi, Nikolay; Hall, Adam P.; Yang, Youngik; Dupont, Christopher L.; Ziegler, Michael G.; Chitsaz, Hamidreza; Allen, Andrew E.; Yooseph, Shibu; Tesler, Glenn; Pevzner, Pavel A.; Friedman, Robert M.; Nealson, Kenneth H.; Venter, J. Craig; Lasken, Roger S.

    2013-01-01

    The “dark matter of life” describes microbes and even entire divisions of bacterial phyla that have evaded cultivation and have yet to be sequenced. We present a genome from the globally distributed but elusive candidate phylum TM6 and uncover its metabolic potential. TM6 was detected in a biofilm from a sink drain within a hospital restroom by analyzing cells using a highly automated single-cell genomics platform. We developed an approach for increasing throughput and effectively improving the likelihood of sampling rare events based on forming small random pools of single-flow–sorted cells, amplifying their DNA by multiple displacement amplification and sequencing all cells in the pool, creating a “mini-metagenome.” A recently developed single-cell assembler, SPAdes, in combination with contig binning methods, allowed the reconstruction of genomes from these mini-metagenomes. A total of 1.07 Mb was recovered in seven contigs for this member of TM6 (JCVI TM6SC1), estimated to represent 90% of its genome. High nucleotide identity between a total of three TM6 genome drafts generated from pools that were independently captured, amplified, and assembled provided strong confirmation of a correct genomic sequence. TM6 is likely a Gram-negative organism and possibly a symbiont of an unknown host (nonfree living) in part based on its small genome, low-GC content, and lack of biosynthesis pathways for most amino acids and vitamins. Phylogenomic analysis of conserved single-copy genes confirms that TM6SC1 is a deeply branching phylum. PMID:23754396

  16. Ycf93 (Orf105), a Small Apicoplast-Encoded Membrane Protein in the Relict Plastid of the Malaria Parasite Plasmodium falciparum That Is Conserved in Apicomplexa

    PubMed Central

    Goodman, Christopher D.; McFadden, Geoffrey I.

    2014-01-01

    Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor shared with dinoflagellate algae. The apicoplast is a useful drug target; blocking housekeeping pathways such as genome replication and translation in the organelle kills parasites and protects against malaria. The apicoplast of Plasmodium falciparum encodes 30 proteins and a suite of rRNAs and tRNAs that facilitate their expression. orf105 is a hypothetical apicoplast gene that would encode a small protein (PfOrf105) with a predicted C-terminal transmembrane domain. We produced antisera to a predicted peptide within PfOrf105. Western blot analysis confirmed expression of orf105 and immunofluorescence localised the gene product to the apicoplast. Pforf105 encodes a membrane protein that has an apparent mass of 17.5 kDa and undergoes substantial turnover during the 48-hour asexual life cycle of the parasite in blood stages. The effect of actinonin, an antimalarial with a putative impact on post-translational modification of apicoplast proteins like PfOrf105, was examined. Unlike other drugs perturbing apicoplast housekeeping that induce delayed death, actinonin kills parasites immediately and has an identical drug exposure phenotype to the isopentenyl diphosphate synthesis blocker fosmidomycin. Open reading frames of similar size to PfOrf105, which also have predicted C-terminal trans membrane domains, occur in syntenic positions in all sequenced apicoplast genomes from Phylum Apicomplexa. We therefore propose to name these genes ycf93 (hypothetical chloroplast reading frame 93) according to plastid gene nomenclature convention for conserved proteins of unknown function. PMID:24705170

  17. Pan-phylum Comparison of Nematode Metabolic Potential

    PubMed Central

    Tyagi, Rahul; Rosa, Bruce A.; Lewis, Warren G.; Mitreva, Makedonka

    2015-01-01

    Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in C. elegans and the human hookworm Necator americanus. We illustrate how analyzing and comparing metabolism at the level of pathway modules can improve existing knowledge of nematode metabolic potential and can provide parasitism related insights. Our reconstruction and comparison of nematode metabolic pathways at a pan-phylum and inter-phylum level enabled determination of phylogenetic restrictions and differential expression of pathways. A visualization of our results is available at http://nematode.net and the program for identification of module completeness (modDFS) is freely available at SourceForge. The methods reported will help biologists to predict biochemical potential of any organism with available deduced proteome, to direct experiments and test hypotheses. PMID:26000881

  18. Tractable Mammalian Cell Infections with Protozoan-primed Bacteria

    PubMed Central

    Drennan, Samuel L.; Lama, Amrita; Doron, Ben; Cambronne, Eric D.

    2013-01-01

    Many intracellular bacterial pathogens use freshwater protozoans as a natural reservoir for proliferation in the environment. Legionella pneumophila, the causative agent of Legionnaires' pneumonia, gains a pathogenic advantage over in vitro cultured bacteria when first harvested from protozoan cells prior to infection of mammalian macrophages. This suggests that important virulence factors may not be properly expressed in vitro. We have developed a tractable system for priming L. pneumophila through its natural protozoan host Acanthamoeba castellanii prior to mammalian cell infection. The contribution of any virulence factor can be examined by comparing intracellular growth of a mutant strain to wild-type bacteria after protozoan priming. GFP-expressing wild-type and mutant L. pneumophila strains are used to infect protozoan monolayers in a priming step and allowed to reach late stages of intracellular growth. Fluorescent bacteria are then harvested from these infected cells and normalized by spectrophotometry to generate comparable numbers of bacteria for a subsequent infection into mammalian macrophages. For quantification, live bacteria are monitored after infection using fluorescence microscopy, flow cytometry, and by colony plating. This technique highlights and relies on the contribution of host cell-dependent gene expression by mimicking the environment that would be encountered in a natural acquisition route. This approach can be modified to accommodate any bacterium that uses an intermediary host as a means for gaining a pathogenic advantage. PMID:23609210

  19. The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).

    PubMed

    Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert

    2016-07-01

    The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa. PMID:26099978

  20. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes.

    PubMed Central

    Escalante, A A; Ayala, F J

    1995-01-01

    We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa. PMID:7597031

  1. Discovery of multiple neuropeptide families in the phylum Platyhelminthes

    PubMed Central

    McVeigh, Paul; Mair, Gunnar R.; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J.; Day, Tim A.; Maule, Aaron G.

    2009-01-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era. PMID:19361512

  2. Telonemia, a new protist phylum with affinity to chromist lineages

    PubMed Central

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M.A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H.A; Jakobsen, K.S

    2006-01-01

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  3. Telonemia, a new protist phylum with affinity to chromist lineages.

    PubMed

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H A; Jakobsen, K S

    2006-07-22

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  4. A novel report of hatching plasticity in the phylum Echinodermata.

    PubMed

    Armstrong, A Frances; Blackburn, Holly N; Allen, Jonathan D

    2013-02-01

    Hatching plasticity occurs in response to a wide range of stimuli across many animal taxa, including annelids, arthropods, mollusks, and chordates. Despite the prominence of echinoderms in developmental biology and more than 100 years of detailed examination of their development under a variety of conditions, environmentally cued hatching plasticity has never been reported in the phylum Echinodermata. Here we report plasticity in the timing and stage of hatching of embryos of the sand dollar Echinarachnius parma in response to reductions in salinity. Embryos of E. parma increased their time to hatching more than twofold in response to ecologically relevant salinity reductions, while maintaining an otherwise normal developmental schedule. Embryos that experienced the greatest delay in hatching time emerged from the fertilization envelope as four-arm pluteus larvae rather than hatching as blastulae or early gastrulae. Salinity manipulations across multiple male-female pairs indicated high variability in hatching time both within and among clutches, suggesting significant intraspecific variation in developmental responses to salinity. PMID:23348780

  5. Monitoring of stream pollution using protozoan communities on artificial substrates

    SciTech Connect

    Henebry, M.S.; Cairns, J. Jr.

    1980-01-01

    Monitoring of stream pollution using protozoan communities on artificial substrates. Protozoan communities were sampled in 1978 from the South River near Waynesboro, Virginia, and compared with a study carried out in 1972. Five study stations were located above and below sources of pollution. Species richness followed the same pattern as in the 1972 study except at Station 2 (just below a major source of pollution) where a marked improvement in water quality occurred. Numbers of species increased significantly downstream from a source of pollution. This study provides evidence that protozoan communities may be used effectively in the assessment of water pollution and that results compare favorably with those based on macroinvertebrates which are more expensive to collect.

  6. Necrotizing lung infection caused by the protozoan Balantidium coli

    PubMed Central

    Sharma, Sat; Harding, Godfrey

    2003-01-01

    Balantidium coli, a ciliated protozoan, is well known to cause intestinal infection in humans. Extraintestinal spread to the peritoneal cavity and genitourinary tract has rarely been reported. There have also been a few cases of lung involvement from this parasite. A case of B coli causing a thick-walled right upper lobe cavity in an organic farmer who had contact with aerosolized pig manure is reported. Bronchoalveolar lavage fluid examined for ova and parasite revealed trophozoites of B coli in large numbers. Treatment with doxycycline hyclate led to marked improvement. Necrotizing lung infection caused by the protozoan B coli should be considered in individuals who report contact with pigs. PMID:18159451

  7. [Biology, epidemiology and diagnostics of pathogenic waterborne protozoan parasites].

    PubMed

    Leońska-Duniec, Agata; Adamska, Małgorzata

    2010-01-01

    Cryptosporidium, Giardia intestinalis, Cyclospora cayetanensis, Isosopra belli and micropsoridia are the most important and common pathogens found in humans and many other species of vertebrates. In humans, mainly in immunocompromised patients, children, pregnant women and elderly people, they are the most frequently identified protozoan parasites causing gastrointestinal disease worldwide. These pathogens have several transmission routes, including anthroponotic and zoonotic transmission. What is more, in many cases of epidemics caused by mentioned pathogens the major cause of infection was contaminated with these organisms water and food. In spite of many existing regulations of clearing and making use of drinking water supplies and recreational water, cosmopolitan protozoan parasites are still the danger of public health. These organisms are responsible for many waterborne outbreaks worldwide. Light microscopy and immunofluorescence assay have been used to identify these organisms in most laboratories. However, these traditional techniques have major limitations in the specific diagnosis, these methods are not sensitive enough to detect cysts or oocysts in environmental samples, so the new molecular tools must be applied. Recently, PCR-based techniques have been developed for detection and genetic characterization of the different species and population variants of protozoan parasites is central to the prevention, surveillance and control of gastrointestinal diseases. In this review were characterized biology, epidemiology and the progress in technology for detection and surveillance of the most important waterborne protozoan parasites. PMID:20707296

  8. B-Cell Response during Protozoan Parasite Infections.

    PubMed

    Amezcua Vesely, María C; Bermejo, Daniela A; Montes, Carolina L; Acosta-Rodríguez, Eva V; Gruppi, Adriana

    2012-01-01

    In this review, we discuss how protozoan parasites alter immature and mature B cell compartment. B1 and marginal zone (MZ) B cells, considered innate like B cells, are activated during protozoan parasite infections, and they generate short lived plasma cells providing a prompt antibody source. In addition, protozoan infections induce massive B cell response with polyclonal activation that leads to hypergammaglobulnemia with serum antibodies specific for the parasites and self and/or non related antigens. To protect themselves, the parasites have evolved unique ways to evade B cell immune responses inducing apoptosis of MZ and conventional mature B cells. As a consequence of the parasite induced-apoptosis, the early IgM response and an already establish humoral immunity are affected during the protozoan parasite infection. Moreover, some trypanosomatides trigger bone marrow immature B cell apoptosis, influencing the generation of new mature B cells. Simultaneously with their ability to release antibodies, B cells produce cytokines/quemokines that influence the characteristic of cellular immune response and consequently the progression of parasite infections. PMID:22315659

  9. B-Cell Response during Protozoan Parasite Infections

    PubMed Central

    Amezcua Vesely, María C.; Bermejo, Daniela A.; Montes, Carolina L.; Acosta-Rodríguez, Eva V.; Gruppi, Adriana

    2012-01-01

    In this review, we discuss how protozoan parasites alter immature and mature B cell compartment. B1 and marginal zone (MZ) B cells, considered innate like B cells, are activated during protozoan parasite infections, and they generate short lived plasma cells providing a prompt antibody source. In addition, protozoan infections induce massive B cell response with polyclonal activation that leads to hypergammaglobulnemia with serum antibodies specific for the parasites and self and/or non related antigens. To protect themselves, the parasites have evolved unique ways to evade B cell immune responses inducing apoptosis of MZ and conventional mature B cells. As a consequence of the parasite induced-apoptosis, the early IgM response and an already establish humoral immunity are affected during the protozoan parasite infection. Moreover, some trypanosomatides trigger bone marrow immature B cell apoptosis, influencing the generation of new mature B cells. Simultaneously with their ability to release antibodies, B cells produce cytokines/quemokines that influence the characteristic of cellular immune response and consequently the progression of parasite infections. PMID:22315659

  10. Number and regulation of protozoan aquaporins reflect environmental complexity.

    PubMed

    Von Bülow, Julia; Beitz, Eric

    2015-08-01

    Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship. PMID:26338868

  11. CRITERIA FOR EVALUATION OF PROPOSED PROTOZOAN DETECTION METHODS

    EPA Science Inventory

    There has been a proliferation of techniques and methods reported for analysis of water samples to determine the presence of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Many of the proposed methods are presented as complete procedures, which include sampli...

  12. CRITERIA FOR EVALUATION OF PROPOSED PROTOZOAN DETECTION METHODS.

    EPA Science Inventory

    There has been a proliferation of techniques and methods reported for analysis of water samples to determine the presence of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Many of the proposed methods are presented as complete procedures, which include sampli...

  13. Biomass control in waste air biotrickling filters by protozoan predation

    SciTech Connect

    Cox, H.H.J.; Deshusses, M.A.

    1999-01-20

    Two protozoan species as well as an uncharacterized protozoan consortium were added to a toluene-degrading biotrickling filter to investigate protozoan predation as a means of biomass control. Wet biomass formation in 23.6-L reactors over a 77-day period was reduced from 13.875 kg in a control biotrickling filter to 11.795 kg in a biotrickling filter enriched with protozoa. The average toluene vapor elimination capacity at 1 g/m{sup 3} toluene and 64 m{sup 3}/(m{sup 3} {center_dot} h) was 31.1 g(m{sup 3} {center_dot} h) in the control and 32.2 g(m{sup 3} {center_dot} h) in the biotrickling filter enriched with protozoa. At higher toluene inlet concentrations, toluene degradation rates increased and were slightly higher in the biotrickling filter enriched with protozoa. The lower rate of biomass accumulation after the addition of protozoa was due to an increase of carbon mineralization. Apparent biomass yield coefficients in the control and enriched trickling filter were 0.72 and 0.59 g dry biomass/g toluene, respectively. The results show that protozoan predation may be a useful tool to control biomass in biotrickling filters, however, further stimulation of predation of the biomass immobilized in the reactor is required to ensure long-term stability of biotrickling filters.

  14. Grazing of acidophilic bacteria by a flagellated protozoan.

    PubMed

    McGinness, S; Johnson, D B

    1992-01-01

    A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of "acid streamer" bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed. PMID:24192830

  15. Human parasitic protozoan infection to infertility: a systematic review.

    PubMed

    Nourollahpour Shiadeh, Malihe; Niyyati, Maryam; Fallahi, Shirzad; Rostami, Ali

    2016-02-01

    Protozoan parasitic diseases are endemic in many countries worldwide, especially in developing countries, where infertility is a major burden. It has been reported that such infections may cause infertility through impairment in male and female reproductive systems. We searched Medline, PubMed, and Scopus databases and Google scholar to identify the potentially relevant studies on protozoan parasitic infections and their implications in human and animal model infertility. Literature described that some of the protozoan parasites such as Trichomonas vaginalis may cause deformities of the genital tract, cervical neoplasia, and tubal and atypical pelvic inflammations in women and also non-gonoccocal urethritis, asthenozoospermia, and teratozoospermia in men. Toxopalasma gondii could cause endometritis, impaired folliculogenesis, ovarian and uterine atrophy, adrenal hypertrophy, vasculitis, and cessation of estrus cycling in female and also decrease in semen quality, concentration, and motility in male. Trypanosoma cruzi inhibits cell division in embryos and impairs normal implantation and development of placenta. Decrease in gestation rate, infection of hormone-producing glands, parasite invasion of the placenta, and overproduction of inflammatory cytokines in the oviducts and uterine horns are other possible mechanisms induced by Trypanosoma cruzi to infertility. Plasmodium spp. and Trypanosoma brucei spp. cause damage in pituitary gland, hormonal disorders, and decreased semen quality. Entamoeba histolytica infection leads to pelvic pain, salpingitis, tubo-ovarian abscess, and genital ulcers. Cutaneous and visceral leishmaniasis can induce genital lesion, testicular amyloidosis, inflammation of epididymis, prostatitis, and sperm abnormality in human and animals. In addition, some epidemiological studies have reported that rates of protozoan infections in infertile patients are higher than healthy controls. The current review indicates that protozoan parasitic infections may be an important cause of infertility. Given the widespread prevalence of parasitic protozoa diseases worldwide, we suggest further studies to better understanding of relationship between such infections and infertility. PMID:26573517

  16. Membrane action of chloramphenicol measured by protozoan motility inhibition.

    PubMed

    Wu, C; Clift, P; Fry, C H; Henry, J A

    1996-01-01

    The mechanism of the grey baby syndrome produced by chloramphenicol overdose is poorly understood. The present study assessed the membrane toxicity of this agent by means of its depressant effect on excitable tissues. The inhibition by drugs of protozoan motility was used as a toxicity endpoint, measured by the swimming speed of Tetrahymena pyriformis using an image analysis system. The n-octanol/water partition coefficient at pH 7.4, 37 degrees C was determined as a measure of the hydrophobicity of the drugs. Chloramphenicol dose-dependently depressed the motility of the test organism with an IC50 value (the concentration reducing the mean swimming speed to 50% of control) of 2.95 +/- 0.25 mM, in contrast to a significantly weaker effect of its succinate salt with an IC50 of 28.2 +/- 1.93 mM. Thiamphenicol, a drug with similar properties to chloramphenicol, produced little effect on protozoan motility. Several other antibiotics either in free or salt forms were also ineffective. A series of agents known to possess membrane stabilising action also tested for comparison showed that chloramphenicol possesses the ability to reduce protozoan motility. Measurement of the n-octanol/water partition coefficient revealed a value for chloramphenicol of 11.9 +/- 0.66. This property was correlated with protozoan immobilising potency among a series of heterogeneous compounds, suggesting that the mechanism involved a hydrophobic interaction with the excitable membrane. These results show that chloramphenicol has a depressant effect on protozoan motility comparable to agents with known toxicity effects on cell membranes. This suggests that chloramphenicol has the potential to cause membrane-mediated toxic effects, a mode of action that may underlie its acute toxicity to excitable tissues. PMID:8911644

  17. BIOMASS CONTROL IN WASTE AIR BIOTRICKLING FILTERS BY PROTOZOAN PREDATION. (R825392)

    EPA Science Inventory

    Two protozoan species as well as an uncharacterized protozoan consortium were added to a toluene-degrading biotrickling filter to investigate protozoan predation as a means of biomass control. Wet biomass formation in 23.6-L reactors over a 77-day period was reduced from 13.875 k...

  18. Record of a gregarine (Apicomplexa: Neogregarinida) in the abdomen of the termite Coptotermes gestroi (Isoptera, Rhinotermitidae).

    PubMed

    Costa-Leonardo, Ana Maria; Casarin, Fabiana E; Constantini, Joice P

    2008-02-01

    Coptotermes gestroi is an exotic species of termite that is a pest of great economical importance in Brazil. This paper relates the occurrence of a coelomic gregarine (Apicomplexa: Neogregarinida) in the abdomen of the foraging workers recently collected from field colonies of this termite. The termite hosts presented large, white abdomens because they carried 1 up to 3 cysts of gregarines filled with numerous lemon-shaped spores. Earlier developmental stages of this gregarine were not observed in the scanning microscope preparations nor in the histological slides of the infected termites. However, the lemon-shaped spores suggest a parasite gregarine of Mattesia genus, family Lipotrophidae. PMID:17888946

  19. Protozoan grazing reduces the current output of microbial fuel cells.

    PubMed

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells. PMID:26115527

  20. Reproductive clonality in protozoan pathogens--truth or artefact?

    PubMed

    Ramírez, Juan David; Llewellyn, Martin S

    2014-09-01

    The debate around the frequency and importance of genetic exchange in parasitic protozoa is now several decades old. Recently, fresh assertions have been made that predominant clonal evolution explains the population structures of several key protozoan pathogens. Here, we present an alternative perspective. On the assumption that much apparent clonality may be an artefact of inadequate sampling and study design, we review current research to define why sex might be so difficult to detect in protozoan parasite populations. In doing so, we contrast laboratory models of genetic exchange in parasitic protozoa with natural patterns of genetic diversity and consider the fitness advantage of sex at different evolutionary scales. We discuss approaches to improve the accuracy of efforts to characterize genetic exchange in the field. We also examine the implications of the first population genomic studies for the debate around sex and clonality in parasitic protozoa and discuss caveats for the future. PMID:25060834

  1. Intestinal protozoan parasites with zoonotic potential in birds.

    PubMed

    Marietto-Gonçalves, G A; Fernandes, T M; Silva, R J; Lopes, R S; Andreatti Filho, R L

    2008-10-01

    The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus. PMID:18663476

  2. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria

    PubMed Central

    Polkade, Ashish V.; Mantri, Shailesh S.; Patwekar, Umera J.; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  3. Comparative Genomic Analysis of Multi-Subunit Tethering Complexes Demonstrates an Ancient Pan-Eukaryotic Complement and Sculpting in Apicomplexa

    PubMed Central

    Klinger, Christen M.; Klute, Mary J.; Dacks, Joel B.

    2013-01-01

    Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs), factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during, and possibly pre-dating, the move from free-living marine algae to deadly human parasites. PMID:24086721

  4. Electing a candidate: a speculative history of the bacterial phylum OP10.

    PubMed

    Dunfield, Peter F; Tamas, Ivica; Lee, Kevin C; Morgan, Xochitl C; McDonald, Ian R; Stott, Matthew B

    2012-12-01

    In 1998, a cultivation-independent survey of the microbial community in Obsidian Pool, Yellowstone National Park, detected 12 new phyla within the Domain Bacteria. These were dubbed 'candidate divisions' OP1 to OP12. Since that time the OP10 candidate division has been commonly detected in various environments, usually as part of the rare biosphere, but occasionally as a predominant community component. Based on 16S rRNA gene phylogeny, OP10 comprises at least 12 class-level subdivisions. However, despite this broad ecological and evolutionary diversity, all OP10 bacteria have eluded cultivation until recently. In 2011, two reference species of OP10 were taxonomically validated, removing the phylum from its 'candidate' status. Construction of a highly resolved phylogeny based on 29 universally conserved genes verifies its standing as a unique bacterial phylum. In the following paper we summarize what is known and what is suspected about the newest described bacterial phylum, the Armatimonadetes. PMID:22497633

  5. Molecular karyotype analysis of Perkinsus atlanticus (Phylum Perkinsozoa) by pulsed field gel electrophoresis.

    PubMed

    Leonor Teles-Grilo, M; Duarte, Sérgio M; Tato-Costa, Joana; Gaspar-Maia, Alexandre; Oliveira, Carla; Rocha, António A; Marques, Américo; Cordeiro-da-Silva, Anabela; Azevedo, Carlos

    2007-11-01

    Perkinsus atlanticus is a pathogenic protist that infects the clam Ruditapes decussatus. Although it was recently proposed that the genus Perkinsus belongs to a new phylum, Perkinsozoa, in the infra-kingdom Alveolata, there remain different opinions about whether this genus should form a phylum on its own and consequently divergent views about its taxonomic characterization. In this work, we have identified nine chromosomes by pulsed field gel electrophoresis (PFGE) combined with densitometry analysis. The obtained karyotype of Perkinsus atlanticus, like that of other early branches of the dinoflagellate lineage, displays a more conventional chromosome organization, different from that of most dinoflagellates. PMID:17822886

  6. A Taxonomic Catalogue of the Nemerteans (Phylum Nemertea) of Spain and Portugal.

    PubMed

    Herrera-Bachiller, Alfonso; Fernández-Álvarez, Fernando Ángel; Junoy, Juan

    2015-12-01

    A literature-based taxonomic catalogue of nemerteans (phylum Nemertea) from Spain and Portugal is provided, listing 75 species (12 Palaeonemertea, 24 Pilidiophora, and 39 Hoplonemertea) belonging to 34 genera. This is a low species number compared with the approximately 400 species listed in Europe. This lack of knowledge is mainly due to the low number of researchers interested in the phylum and the well-known taxonomic difficulties of its study. Geographic records are indicated for each species, and for some, comments are included on certain biological and taxonomic aspects. PMID:26654034

  7. RNA Interference in Protozoan Parasites: Achievements and Challenges ▿

    PubMed Central

    Kolev, Nikolay G.; Tschudi, Christian; Ullu, Elisabetta

    2011-01-01

    Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool. PMID:21764910

  8. Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites

    NASA Astrophysics Data System (ADS)

    Dvorak, James A.; Crane, Mark St. J.

    1981-11-01

    Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.

  9. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives

    PubMed Central

    Croken, Matthew M.; Nardelli, Sheila C.; Kim, Kami

    2012-01-01

    Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts parasite virulence, differentiation and cell cycle control. Recent work in many laboratories has elucidated the functions of histone modifying proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been characterizing post-translational modifications (PTM) of histones and identifying the enzymes that are responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology. PMID:22480826

  10. Disseminated granulomas caused by an unidentified protozoan in sandhill cranes

    USGS Publications Warehouse

    Carpenter, J.W.; Spraker, T.R.; Gardiner, C.H.; Novilla, M.N.

    1979-01-01

    Oral granulomas were observed in 31 (33%) of 95 captive sandhill cranes (Grus canadensis) at the Patuxent Wildlife Research Center. Necropsy of six of the afflicted cranes revealed granulomatous nodules throughout many of their organ systems. Intracellular protozoan organisms morphologically resembling schizogonic stages were observed within the granulomas by light and electron microscopy. Sexual and asexual stages of coccidia were seen in sections of the intestines of 4 of 5 cranes examined microscopically, and Eimerian oocysts were seen in fecal flotation specimens from 3 of 4 birds.

  11. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  12. Draft Genome Sequence of Kocuria sp. Strain UCD-OTCP (Phylum Actinobacteria)

    PubMed Central

    Coil, David A.; Doctor, Jessica I.; Lang, Jenna M.; Darling, Aaron E.

    2013-01-01

    Here, we present the draft genome of Kocuria sp. strain UCD-OTCP, a member of the phylum Actinobacteria, isolated from a restaurant chair cushion. The assembly contains 3,791,485 bp (G+C content of 73%) and is contained in 68 scaffolds. PMID:23661474

  13. Draft Genome Sequence of Planomicrobium glaciei UCD-HAM (Phylum Firmicutes)

    PubMed Central

    Betts, Makayla N.; Jospin, Guillaume; Coil, David A.

    2015-01-01

    Here, we present the draft genome of Planomicrobium glaciei, a member of the phylum Firmicutes, found at the University of California Davis. Paired-end, 300-bp reads were generated on an Illumina MiSeq. The assembly consists of 3,925,122 bp, contained in 109 contigs, with a G+C content of 46.7%. PMID:26472846

  14. MYST family histone acetyltransferases in the protozoan parasite Toxoplasma gondii.

    PubMed

    Smith, Aaron T; Tucker-Samaras, Samantha D; Fairlamb, Alan H; Sullivan, William J

    2005-12-01

    The restructuring of chromatin precedes tightly regulated events such as DNA transcription, replication, and repair. One type of chromatin remodeling involves the covalent modification of nucleosomes by histone acetyltransferase (HAT) complexes. The observation that apicidin exerts antiprotozoal activity by targeting a histone deacetyltransferase has prompted our search for more components of the histone modifying machinery in parasitic protozoa. We have previously identified GNAT family HATs in the opportunistic pathogen Toxoplasma gondii and now describe the first MYST (named for members MOZ, Ybf2/Sas3, Sas2, and Tip60) family HATs in apicomplexa (TgMYST-A and -B). The TgMYST-A genomic locus is singular and generates a approximately 3.5-kb transcript that can encode two proteins of 411 or 471 amino acids. TgMYST-B mRNA is approximately 7.0 kb and encodes a second MYST homologue. In addition to the canonical MYST HAT catalytic domain, both TgMYST-A and -B possess an atypical C2HC zinc finger and a chromodomain. Recombinant TgMYST-A exhibits a predilection to acetylate histone H4 in vitro at lysines 5, 8, 12, and 16. Antibody generated to TgMYST-A reveals that both the long and short (predominant) versions are present in the nucleus and are also plentiful in the cytoplasm. Moreover, both TgMYST-A forms are far more abundant in rapidly replicating parasites (tachyzoites) than encysted parasites (bradyzoites). A bioinformatics survey of the Toxoplasma genome reveals numerous homologues known to operate in native MYST complexes. The characterization of TgMYST HATs represents another important step toward understanding the regulation of gene expression in pathogenic protozoa and provides evolutionary insight into how these processes operate in eukaryotic cells in general. PMID:16339723

  15. The roles of intramembrane proteases in protozoan parasites☆

    PubMed Central

    Sibley, L. David

    2013-01-01

    Intramembrane proteolysis is widely conserved throughout different forms of life, with three major types of proteases being known for their ability to cleave peptide bonds directly within the transmembrane domains of their substrates. Although intramembrane proteases have been extensively studied in humans and model organisms, they have only more recently been investigated in protozoan parasites, where they turn out to play important and sometimes unexpected roles. Signal peptide peptidases are involved in endoplasmic reticulum (ER) quality control and signal peptide degradation from exported proteins. Recent studies suggest that repurposing inhibitors developed for blocking presenilins may be useful for inhibiting the growth of Plasmodium, and possibly other protozoan parasites, by blocking signal peptide peptidases. Rhomboid proteases, originally described in the fly, are also widespread in parasites, and are especially expanded in apicomplexans. Their study in parasites has revealed novel roles that expand our understanding of how these proteases function. Within this diverse group of parasites, rhomboid proteases contribute to processing of adhesins involved in attachment, invasion, intracellular replication, phagocytosis, and immune evasion, placing them at the vertex of host–parasite interactions. This article is part of a Special Issue entitled: Intramembrane Proteases. PMID:24099008

  16. Estimating the growth potential of the soil protozoan community.

    PubMed

    Finlay, B J; Black, H I; Brown, S; Clarke, K J; Esteban, G F; Hindle, R M; Olmo, J L; Rollett, A; Vickerman, K

    2000-05-01

    We have developed a method for determining the potential abundance of free-living protozoa in soil. The method permits enumeration of four major functional groups (flagellates, naked amoebae, testate amoebae, and ciliates) and it overcomes some limitations and problems of the usual 'direct' and 'most probable number' methods. Potential abundance is determined using light microscopy, at specific time intervals, after quantitative re-wetting of air-dried soil with rain water. No exogenous carbon substrates or mineral nutrients are employed, so the protozoan community that develops is a function of the resources and inhibitors present in the original field sample. The method was applied to 100 soil samples (25 plots x 4 seasons) from an upland grassland (Sourhope, Southern Scotland) in the UK. Median abundances for all four functional groups lie close to those derived from the literature on protozoa living in diverse soil types. Flagellates are the most abundant group in soil, followed by the naked amoebae, then the testate amoebae and ciliates. This order is inversely related to typical organism size in each group. Moreover, preliminary evidence indicates that each functional group contains roughly the same number of species. All of these observations would be consistent with soil having fractal structure across the size-scale perceived by protozoa. The method described will be useful for comparing the effects on the soil protozoan community of different soil treatments (e.g. liming and biocides). PMID:10896134

  17. Impact and control of protozoan parasites in maricultured fishes.

    PubMed

    Buchmann, Kurt

    2015-01-01

    Aquaculture, including both freshwater and marine production, has on a world scale exhibited one of the highest growth rates within animal protein production during recent decades and is expected to expand further at the same rate within the next 10 years. Control of diseases is one of the most prominent challenges if this production goal is to be reached. Apart from viral, bacterial, fungal and metazoan infections it has been documented that protozoan parasites affect health and welfare and thereby production of fish in marine aquaculture. Representatives within the main protozoan groups such as amoebae, dinoflagellates, kinetoplastid flagellates, diplomonadid flagellates, apicomplexans, microsporidians and ciliates have been shown to cause severe morbidity and mortality among farmed fish. Well studied examples are Neoparamoeba perurans, Amyloodinium ocellatum, Spironucleus salmonicida, Ichthyobodo necator, Cryptobia salmositica, Loma salmonae, Cryptocaryon irritans, Miamiensis avidus and Trichodina jadranica. The present report provides details on the parasites' biology and impact on productivity and evaluates tools for diagnosis, control and management. Special emphasis is placed on antiprotozoan immune responses in fish and a strategy for development of vaccines is presented. PMID:23448656

  18. Phylogenomics-Based Reconstruction of Protozoan Species Tree

    PubMed Central

    Ocaa, Kary A.C.S.; Dvila, Alberto M.R.

    2011-01-01

    We have developed a semi-automatic methodology to reconstruct the phylogenetic species tree in Protozoa, integrating different phylogenetic algorithms and programs, and demonstrating the utility of a supermatrix approach to construct phylogenomics-based trees using 31 universal orthologs (UO). The species tree obtained was formed by three major clades that were related to three groups of data: i) Species containing at least 80% of UO (25/31) in the concatenated multiple alignment or supermatrix, this clade was called C1, ii) Species containing between 50%79% (1524/31) of UO called C2, and iii) Species containing less than 50% (114/31) of UO called C3. C1 was composed by only protozoan species, C2 was composed by species related to Protozoa, and C3 was composed by some species of C1 (Protozoa) and C2 (related to Protozoa). Our phylogenomics-based methodology using a supermatrix approach proved to be reliable with protozoan genome data and using at least 25 UO, suggesting that (a) the more UO used the better, (b) using the entire UO sequence or just a conserved block of it for the supermatrix produced similar phylogenomic trees. PMID:21863127

  19. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii

    PubMed Central

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J.

    2015-01-01

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias. PMID:26195778

  20. Epizootiology of protozoans in farmed salmonids at northern latitudes.

    PubMed

    Rintamäki-Kinnunen, P; Valtonen, E T

    1997-01-01

    Protozoan ectoparasites were examined in a northern salmonid fish farm over a 10-year period, June 1984-May 1994, by the same researcher, with similar catching and sampling procedures throughout. Husbandry procedures remained constant during the study, e.g., fingerlings were kept in steel tanks and yearlings in both steel tanks and earth ponds. Ichthyobodo necator, Chilodonella hexasticha and Ichthyophthirius multifiliis infections were treated with formalin, salt and malachite green-formalin baths, respectively, whenever any parasites were found. Altogether 10,790 randomly sampled salmon (Salmo solar), sea trout (S. trutta m. trutta) and brown trout (S. trutta m. lacustris) were studied. Higher prevalences were found in yearlings than in fingerlings, except in I. necator infections, which were higher in fingerlings (e.g., 26% vs 6% in sea trout). C. hexasticha occurred less often and was found most commonly on brown trout fingerlings. Trichodina nigra occurred more often in salmon of both age groups and Riboscyphidia arctic in trout. The results show that the occurrence of protozoan parasites in a fish farm is predictable and is influenced by the fish species, the age group of the fish, the season and the tank type. Parasite burden increased up to 7 species per brown trout, e.g., when fish were studied from hatching until stocking at the age of 2 years. PMID:9076534

  1. Protozoan HSP90-heterocomplex: molecular interaction network and biological significance.

    PubMed

    Figueras, Maria J; Echeverria, Pablo C; Angel, Sergio O

    2014-05-01

    The HSP90 chaperone is a highly conserved protein from bacteria to higher eukaryotes. In eukaryotes, this chaperone participates in different large complexes, such as the HSP90 heterocomplex, which has important biological roles in cell homeostasis and differentiation. The HSP90-heterocomplex is also named the HSP90/HSP70 cycle because different co-chaperones (HIP, HSP40, HOP, p23, AHA1, immunophilins, PP5) participate in this complex by assembling sequentially, from the early to the mature complex. In this review, we analyze the conservation and relevance of HSP90 and the HSP90-heterocomplex in several protozoan parasites, with emphasis in Plasmodium spp., Toxoplasma spp., Leishmania spp. and Trypanosoma spp. In the last years, there has been an outburst of studies based on yeast two-hybrid methodology, co-immunoprecipitation-mass spectrometry and bioinformatics, which have generated a most comprehensive protein-protein interaction (PPI) network of HSP90 and its co-chaperones. This review analyzes the existing PPI networks of HSP90 and its co-chaperones of some protozoan parasites and discusses the usefulness of these powerful tools to analyze the biological role of the HSP90-heterocomplex in these parasites. The generation of a T. gondii HSP90 heterocomplex PPI network based on experimental data and a recent Plasmodium HSP90 heterocomplex PPI network are also included and discussed. As an example, the putative implication of nuclear transport and chromatin (histones and Sir2) as HSP90-heterocomplex interactors is here discussed. PMID:24694366

  2. Attenuated reproduction of Strombus gigas by an Apicomplexa: Emeriidae-like parasite in the digestive gland.

    PubMed

    Baqueiro Cardenas, Erick; Montero, Jorge; Frenkiel, Liliane; Aldana Aranda, Dalila

    2012-07-01

    An intense and generalized sporozoan infection was detected in every population of the queen conch, Strombus gigas through the Caribbean. In this contribution we establish the relationship between occurrences of an Apicomplexa: Emeriidae-like organism and reproductive activity at San Andres archipelago, Colombia. Occurrence of the parasites was estimated counting the feeding stage Merozoites and cysts Sporozoites at 40× magnification. Nonmetric multidimensional scaling analysis (NMDS) was made to correlate the parasites stages abundance with frequency of the reproductive stages. Gametogenesis and spawning were always low coinciding with high numbers of Merozoites, a positive correlation was established between parasite abundance with reabsorption and undifferentiated stages, and negative correlation was observed between parasite abundance with maturity and spawning stages. The nonmetric multidimensional scaling (NMDS) shows that gametogenesis, maturity and spawning increase as the number of parasites decrease, factor that could be threatening reproduction of S. gigas through the Caribbean. PMID:22484565

  3. Besnoitia neotomofelis n. sp. (Protozoa: Apicomplexa) from the southern plains woodrat (Neotoma micropus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain species of the protozoan genus Besnoitia cause clinical disease in livestock and wildlife. In the present paper a new species, Besnoitia neotomofelis is described from the southern planes woodrat (Neotoma micropus). The parasite was detected by bioassay of woodrat tissues in out bred Swiss W...

  4. Interferon in resistance to bacterial and protozoan infections

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  5. Protozoan Parasites of Bivalve Molluscs: Literature Follows Culture

    PubMed Central

    Fernández Robledo, José A.; Vasta, Gerardo R.; Record, Nicholas R.

    2014-01-01

    Bivalve molluscs are key components of the estuarine environments as contributors to the trophic chain, and as filter –feeders, for maintaining ecosystem integrity. Further, clams, oysters, and scallops are commercially exploited around the world both as traditional local shellfisheries, and as intensive or semi–intensive farming systems. During the past decades, populations of those species deemed of environmental or commercial interest have been subject to close monitoring given the realization that these can suffer significant decline, sometimes irreversible, due to overharvesting, environmental pollution, or disease. Protozoans of the genera Perkinsus, Haplosporidium, Marteilia, and Bonamia are currently recognized as major threats for natural and farmed bivalve populations. Since their identification, however, the variable publication rates of research studies addressing these parasitic diseases do not always appear to reflect their highly significant environmental and economic impact. Here we analyzed the peer– reviewed literature since the initial description of these parasites with the goal of identifying potential milestone discoveries or achievements that may have driven the intensity of the research in subsequent years, and significantly increased publication rates. Our analysis revealed that after initial description of the parasite as the etiological agent of a given disease, there is a time lag before a maximal number of yearly publications are reached. This has already taken place for most of them and has been followed by a decrease in publication rates over the last decade (20– to 30– year lifetime in the literature). Autocorrelation analyses, however, suggested that advances in parasite purification and culture methodologies positively drive publication rates, most likely because they usually lead to novel molecular tools and resources, promoting mechanistic studies. Understanding these trends should help researchers in prioritizing research efforts for these and other protozoan parasites, together with their development as model systems for further basic and translational research in parasitic diseases. PMID:24955977

  6. A partial phylogenetic analysis of the "flavobacter-bacteroides" phylum: basis for taxonomic restructuring

    NASA Technical Reports Server (NTRS)

    Gherna, R.; Woese, C. R.

    1992-01-01

    On the basis of small subunit rRNA sequence analyses five major subgroups within the flavobacteria-bacteroides phylum have been defined. These are tentatively designated the cytophaga subgroup (comprising largely Cytophaga species), the flavobacter subgroup (comprising the true flavobacteria and the polyphyletic genus Weeksella), the bacteroides subgroup (comprising the bacteroides and certain cytophaga-like bacteria), the sphingobacter subgroup (which contains the known sphingolipid-producing members of the phylum), and the saprospira subgroup (comprising particular species of Flexibacter, Flavobacterium, Haliscomenobacter, and, of course, the genus Saprospira). These groupings are given not only by evolutionary distance analysis, but can be defined and distinguished on the basis of a simple small subunit rRNA signatures.

  7. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.

    PubMed

    Evans, Paul N; Parks, Donovan H; Chadwick, Grayson L; Robbins, Steven J; Orphan, Victoria J; Golding, Suzanne D; Tyson, Gene W

    2015-10-23

    Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota. PMID:26494757

  8. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  9. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes

    PubMed Central

    2013-01-01

    Background The phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives. Results Firstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and ‘Turbellaria’) contain methylated cytosines within their genome compartments. Conclusions Collectively, these findings provide the first direct evidence for a functionally conserved and enzymatically active DNA methylation system throughout the Platyhelminthes. Defining how this epigenetic feature shapes phenotypic diversity and development within the phylum represents an exciting new area of metazoan biology. PMID:23837670

  10. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing.

    PubMed

    Shih, Patrick M; Wu, Dongying; Latifi, Amel; Axen, Seth D; Fewer, David P; Talla, Emmanuel; Calteau, Alexandra; Cai, Fei; Tandeau de Marsac, Nicole; Rippka, Rosmarie; Herdman, Michael; Sivonen, Kaarina; Coursin, Therese; Laurent, Thierry; Goodwin, Lynne; Nolan, Matt; Davenport, Karen W; Han, Cliff S; Rubin, Edward M; Eisen, Jonathan A; Woyke, Tanja; Gugger, Muriel; Kerfeld, Cheryl A

    2013-01-15

    The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it. PMID:23277585

  11. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing

    PubMed Central

    Shih, Patrick M.; Wu, Dongying; Latifi, Amel; Axen, Seth D.; Fewer, David P.; Talla, Emmanuel; Calteau, Alexandra; Cai, Fei; Tandeau de Marsac, Nicole; Rippka, Rosmarie; Herdman, Michael; Sivonen, Kaarina; Coursin, Therese; Laurent, Thierry; Goodwin, Lynne; Nolan, Matt; Davenport, Karen W.; Han, Cliff S.; Rubin, Edward M.; Eisen, Jonathan A.; Woyke, Tanja; Gugger, Muriel; Kerfeld, Cheryl A.

    2013-01-01

    The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for “green” biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it. PMID:23277585

  12. Assessing the global phylum level diversity within the bacterial domain: A review

    PubMed Central

    Youssef, Noha H.; Couger, M.B.; McCully, Alexandra L.; Criado, Andrés Eduardo Guerrero; Elshahed, Mostafa S.

    2014-01-01

    Microbial ecology is the study of microbes in the natural environment and their interactions with each other. Investigating the nature of microorganisms residing within a specific habitat is an extremely important component of microbial ecology. Such microbial diversity surveys aim to determine the identity, physiological preferences, metabolic capabilities, and genomic features of microbial taxa within a specific ecosystem. A comprehensive review of various aspects of microbial diversity (phylogenetic, functional, and genomic diversities) in the microbial (bacterial, archaeal, and microeukaryotic) world is clearly a daunting task that could not be aptly summarized in a single review. Here, we focus on one aspect of diversity (phylogenetic diversity) in one microbial domain (the Bacteria). We restrict our analysis to the highest taxonomic rank (phylum) and attempt to investigate the extent of global phylum level diversity within the Bacteria. We present a brief historical perspective on the subject and highlight how the adaptation of molecular biological and phylogenetic approaches has greatly expanded our view of global bacterial diversity. We also summarize recent progress toward the discovery of novel bacterial phyla, present evidences that the scope of phylum level diversity in nature has hardly been exhausted, and propose novel approaches that could greatly facilitate the discovery process of novel bacterial phyla within various ecosystems. PMID:26257925

  13. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum.

    PubMed

    Li, Jinhua; Menguy, Nicolas; Gatel, Christophe; Boureau, Victor; Snoeck, Etienne; Patriarche, Gilles; Leroy, Eric; Pan, Yongxin

    2015-02-01

    Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum. PMID:25566884

  14. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum

    PubMed Central

    Li, Jinhua; Menguy, Nicolas; Gatel, Christophe; Boureau, Victor; Snoeck, Etienne; Patriarche, Gilles; Leroy, Eric; Pan, Yongxin

    2015-01-01

    Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral–octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum. PMID:25566884

  15. Impact of water column acidification on protozoan bacterivory at the lake sediment-water interface

    SciTech Connect

    Tremaine, S.C.; Mills, A.L. )

    1991-03-01

    Although the impact of acidification on planktonic grazer food webs has been extensively studied, little is known about microbial food webs either in the water column or in the sediments. Protozoan-bacterium interactions were investigated in a chronically acidified (acid mine drainage) portion of a lake in Virginia. The authors determined the distribution, abundance, apparent specific grazing rate, and growth rate of protozoa over a pH range of 3.6 to 6.5. Protozoan abundance was lower at the most acidified site, while abundance, in general, was high compared with other systems. Specific grazing rates were uncorrelated with pH and ranged between 0.02 and 0.23 h{sup {minus}1}, values similar to those in unacidified systems. The protozoan community from an acidified station was not better adapted to low-pH conditions than a community from an unacidified site (multivariate analysis of variance on growth rates for each community incubated at pHs 4, 5, and 6). Both communities had significantly lower growth rates at pHs 4 and 5 than at pH 6. Reduced protozoan growth rates coupled with high grazing rates and relatively higher bacterial yields (ratio of bacterial-protozoan standing stock) at low pH indicate reduced net protozoan growth efficiency and a metabolic cost of acidification to the protozoan community. However, the presence of an abundant, neutrophilic protozoan community and high bacterial grazing rates indicates that acidification of Lake Anna has not inhibited the bacterium-protozoan link of the sediment microbial food web.

  16. Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species.

    PubMed

    Libusová, L; Dráber, P

    2006-05-01

    Tetrahymena and Paramecium species are widely used representatives of the phylum Ciliata. Ciliates are particularly suitable model organisms for studying the functional heterogeneity of tubulins, since they provide a wide range of different microtubular structures in a single cell. Sequencing projects of the genomes of members of these two genera are in progress. Nearly all members of the tubulin superfamily (alpha-, beta-, gamma-, delta-, epsilon-, eta-, theta-, iota-, and kappa-tubulins) have been identified in Paramecium tetraurelia. In Tetrahymena spp., the functional consequences of different posttranslational tubulin modifications (acetylation, tyrosination and detyrosination, phosphorylation, glutamylation, and glycylation) have been studied by different approaches. These model organisms provide the opportunity to determine the function of tubulins found in ciliates, as well as in humans, but absent in some other model organisms. They also give us an opportunity to explore the mechanisms underlying microtubule diversity. Here we review current knowledge concerning the diversity of microtubular structures, tubulin genes, and posttranslational modifications in Tetrahymena and Paramecium species. PMID:16736248

  17. Recent highlights in anti-protozoan drug development and resistance research

    PubMed Central

    Buckner, Frederick S.; Waters, Norman C.; Avery, Vicky M.

    2012-01-01

    This article summarizes the highlights of research presented in January, 2012, at the Keystone Symposium on “Drug Discovery for Protozoan Parasites” held in Santa Fe, New Mexico. This symposium which convenes approximately every 2 years provides a forum for leading investigators around the world to present data covering basic sciences to clinical trials relating to anti-protozoan drug development and drug resistance. Many talks focused on malaria, but other protozoan diseases receiving attention included African sleeping sickness, Chagas disease, leishmaniasis, cryptosporidiosis, and amoebiasis. The new research, most of it unpublished, provided insights into the latest developments in the field. PMID:24533285

  18. Recent highlights in anti-protozoan drug development and resistance research.

    PubMed

    Buckner, Frederick S; Waters, Norman C; Avery, Vicky M

    2012-12-01

    This article summarizes the highlights of research presented in January, 2012, at the Keystone Symposium on "Drug Discovery for Protozoan Parasites" held in Santa Fe, New Mexico. This symposium which convenes approximately every 2 years provides a forum for leading investigators around the world to present data covering basic sciences to clinical trials relating to anti-protozoan drug development and drug resistance. Many talks focused on malaria, but other protozoan diseases receiving attention included African sleeping sickness, Chagas disease, leishmaniasis, cryptosporidiosis, and amoebiasis. The new research, most of it unpublished, provided insights into the latest developments in the field. PMID:24533285

  19. Applications of biotechnological methods to studies of protozoan parasites.

    PubMed

    Dusanic, D G

    1988-03-01

    Biotechnology applies and extends the concepts and techniques of molecular biology. An overview of the applications and potential uses of the technology is presented for selected protozoan parasites. The areas reviewed include the characterization of protozoa, the production of their antigens, and the uses of hybridomas for studies of the antigens and host responses. In addition to the traditional methods of classification, parasitic protozoa are identified and characterized according to stable molecular markers. Peptidemes, zymodemes, antigens, schizodemes, and chromosomal complements define isolates and correlate with biological activities of the parasites. While antigens are typically extracted from parasites obtained from infected hosts or grown in vitro, they may be produced with in vitro translation systems, recombinant procedures with bacteria, or more recently developed techniques such as co-transformation and electroporation with eucaryotic cells. Monoclonal antibodies produced by B-cell hybridomas are used to identify parasites, antigens, epitopes, and the locations and functions of specific antigens. T-cell hybridomas may provide insights into cell-mediated immunity and interactions with the parasites. PMID:3043695

  20. HIV Protease Inhibitors: Effect on the Opportunistic Protozoan Parasites

    PubMed Central

    Alfonso, Yenisey; Monzote, Lianet

    2011-01-01

    The impact of highly active antiretroviral therapy (HAART) in the natural history of AIDS disease has been allowed to prolong the survival of people with HIV infection, particularly whose with increased HIV viral load. Additionally, the antiretroviral therapy could exert a certain degree of protection against parasitic diseases. A number of studies have been evidenced a decrease in the incidence of opportunistic parasitic infections in the era of HAART. Although these changes have been attributed to the restoration of cell-mediated immunity, induced by either non-nucleoside reverse transcriptase inhibitors or HIV protease inhibitors, in combination with at least two nucleoside reverse transcriptase inhibitors included in HAART, there are evidence that the control of these parasitic infections in HIV-positive persons under HAART, is also induced by the inhibition of the proteases of the parasites. This review focuses on the principal available data related with therapeutic HIV-protease inhibitors and their in vitro and in vivo effects on the opportunistic protozoan parasites. PMID:21629510

  1. Current Developments in the Therapy of Protozoan Infections

    PubMed Central

    Zucca, Mario; Savoia, Dianella

    2011-01-01

    Protozoan parasites cause serious human and zoonotic infections, including life-threatening diseases such as malaria, African and American trypanosomiasis, and leishmaniasis. These diseases are no more common in the developed world, but together they still threaten about 40% of the world population (WHO estimates). Mortality and morbidity are high in developing countries, and the lack of vaccines makes chemotherapy the only suitable option. However, available antiparasitic drugs are hampered by more or less marked toxic side effects and by the emergence of drug resistance. As the main prevalence of parasitic diseases occurs in the poorest areas of the world, the interest of the pharmaceutical companies in the development of new drugs has been traditionally scarce. The establishment of public-private partnerships focused on tropical diseases is changing this situation, allowing the exploitation of the technological advances that took place during the past decade related to genomics, proteomics, and in silico drug discovery approaches. These techniques allowed the identification of new molecular targets that in some cases are shared by different parasites. In this review we outline the recent developments in the fields of protease and topoisomerase inhibitors, antimicrobial and cell-penetrating peptides, and RNA interference. We also report on the rapidly developing field of new vectors (micro and nano particles, mesoporous materials) that in some cases can cross host or parasite natural barriers and, by selectively delivering new or already in use drugs to the target site, minimize dosage and side effects. PMID:21629507

  2. Hormonal actions in the Protozoan stress: A review.

    PubMed

    Csaba, György

    2015-12-01

    In the higher ranked animals the alteration of the environment can provoke a uniform reaction named general adaptation system (GAS), which is a manifestation of stress, caused by different stressors. During GAS certain organs show typical reactions and two members of the hormonal system are activated: epinephine and glucocorticoids. As the unicellular ciliate Tetrahymena also synthesize most of the mammalian-like hormones (except steroids), it can respond to stress by a hormonal reaction. The main differences, related to the mammalian GAS hormonal reaction are, that 1) in Tetrahymena the level of all of the hormones studied significantly elevates under the effect of heat, osmotic or chemical stress and 2) the single stress effect is durable. It is manifested at least to the 100th generations, which means that it is inherited epigenetically. Not only hormone synthesis but the receptorial hormone binding is also elevated, which means that the whole hormonal system is activated. The stress reaction (GAS) phylogenetically can be deduced to a unicellular (Protozoan) level however, prokaryotes - which are also stress-reactive - are using another mechanisms. PMID:26689872

  3. Toxoplasma gondii: the model apicomplexan

    PubMed Central

    Kim, Kami; Weiss, Louis M.

    2011-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites. PMID:15003501

  4. Distribution and culturability of the uncultivated 'AGG58 cluster' of the Bacteroidetes phylum in aquatic environments.

    PubMed

    O'Sullivan, Louise A; Fuller, Katherine E; Thomas, Ellen M; Turley, Carol M; Fry, John C; Weightman, Andrew J

    2004-03-01

    Members of the Bacteroidetes phylum are abundant in aquatic habitats when assessed by fluorescent in situ hybridisation and in some 16S rRNA gene libraries. In this study 16S rRNA gene clone libraries were constructed with bacterial primers that amplify Bacteroidetes sequences well (27F, 1492R) from coastal seawater near Plymouth (UK) during a phytoplankton bloom. Most of the clones (66%, 106/160) affiliated with the Bacteroidetes phylum, and of these 62% (66/106; or 41% 66/160 of the entire library) clustered with marine bacterioplankton clones env.agg58, Arctic97A-17, CF17, CF96 and CF101. This phylogenetic branch of Bacteroidetes was designated the 'AGG58 cluster', and its presence in various aquatic environments was investigated. Two pairs of AGG58-specific 16S rRNA-gene-targeted polymerase chain reaction (PCR) primers were designed and successfully used to detect the cluster in DNA extracts from three UK coastal seawater sites, and from freshwater River Taff epilithon. In addition, 600 putative Bacteroidetes strains were isolated from these sites on relatively high-nutrient agar media. AGG58 cluster specific probes were used to screen the amplified 16S rRNA gene products from the isolates, but no members of the AGG58 cluster were discovered. The least specific probe hybridised with one River Taff water isolate (RW262 NCIMB 13979) which formed a monophyletic group with the genera Crocinitomix, Brumimicrobium and Cryomorpha of the family Cryomorphaceae in the Bacteroidetes phylum. RW262 probably represents the first isolate of a new genus within this family. This study provides new evidence that the uncultivated AGG58 group is abundant, globally distributed, and can be rapidly detected with the new PCR primers described. PMID:19712324

  5. Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs.

    PubMed

    Ransom-Jones, Emma; Jones, David L; Edwards, Arwyn; McDonald, James E

    2014-10-01

    The Fibrobacteres phylum contains two described species, Fibrobacter succinogenes and Fibrobacter intestinalis, both of which are prolific degraders of cellulosic plant biomass in the herbivore gut. However, recent 16S rRNA gene sequencing studies have identified novel Fibrobacteres in landfill sites, freshwater lakes and the termite hindgut, suggesting that members of the Fibrobacteres occupy a broader ecological range than previously appreciated. In this study, the ecology and diversity of Fibrobacteres was evaluated in 64 samples from contrasting environments where cellulose degradation occurred. Fibrobacters were detected in 23 of the 64 samples using Fibrobacter genus-specific 16S rRNA gene PCR, which provided their first targeted detection in marine and estuarine sediments, cryoconite from Arctic glaciers, as well as a broader range of environmental samples. To determine the phylogenetic diversity of the Fibrobacteres phylum, Fibrobacter-specific 16S rRNA gene clone libraries derived from 17 samples were sequenced (384 clones) and compared with all available Fibrobacteres sequences in the Ribosomal Database Project repository. Phylogenetic analysis revealed 63 lineages of Fibrobacteres (95% OTUs), with many representing as yet unclassified species. Of these, 24 OTUs were exclusively comprised of fibrobacters derived from environmental (non-gut) samples, 17 were exclusive to the mammalian gut, 15 to the termite hindgut, and 7 comprised both environmental and mammalian strains, thus establishing Fibrobacter spp. as indigenous members of microbial communities beyond the gut ecosystem. The data highlighted significant taxonomic and ecological diversity within the Fibrobacteres, a phylum circumscribed by potent cellulolytic activity, suggesting considerable functional importance in the conversion of lignocellulosic biomass in the biosphere. PMID:25154048

  6. Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes

    PubMed Central

    Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910

  7. Occurrence of Apicomplexa-like structures in the digestive gland of Strombus gigas throughout the Caribbean.

    PubMed

    Aranda, Dalila Aldana; Frenkiel, Liliane; Brulé, Thierry; Montero, Jorge; Cárdenas, Erick Baqueiro

    2011-02-01

    The queen conch, Strombus gigas, is a marine resource of ecological and economical importance in the Caribbean region. Given its importance in this region, and the critical status of most populations, the reproductive biology of this species has been studied to support management decisions. It was from these studies that a generalized sporozoan infection was detected. This study describes the geographic distribution of a coccidian (Apicomplexa) parasite infecting the digestive gland of S. gigas throughout the Caribbean. The parasite was present in every location sampled. Based on histological analysis, the parasites from all locations are similar and appear to complete their life cycle within the digestive gland. The highest occurrence of the parasites was registered in samples from Puerto Rico (54 parasites per field) and Martinique (45 parasites per field). The lowest incidence was registered on the Mexican coast of Yucatan peninsula, at Alacranes and Chinchorro with 17 parasites per field. Data showed significant differences among sites (Kruskal Wallis H=106.957; p ≤ 0.05). The abundance of parasites found in the digestive ducts and in the faeces suggests the liberation of parasites to the environment. A gradual decrease in abundance was found from East to West of the Caribbean sea. PMID:20851703

  8. Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches

    PubMed Central

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  9. Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches.

    PubMed

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  10. Mitochondrial genome of Micrura bella (Nemertea: Heteronemertea), the largest mitochondrial genome known to phylum Nemertea.

    PubMed

    Shen, Chunyang; Shi-Chun, Sun

    2016-07-01

    The complete mitochondrial genome (mitogenome) of Micrura bella was sequenced and analyzed. Being the largest mitogenome known to phylum Nemertea, the genome is 16 847 bp in length. It encodes 37 genes typical to metazoan mitogenomes and has the same gene arrangement with the other Heteronemertea mitogenomes sequenced to date. The genome has the maximal number of non-coding nucleotides (2037 bp at 25 sites) in Nemertea mitogenomes, among which two large non-coding regions were found (507 and 508 bp, respectively). PMID:26155969

  11. Behavioural resistance against a protozoan parasite in the monarch butterfly.

    PubMed

    Lefèvre, Thierry; Chiang, Allen; Kelavkar, Mangala; Li, Hui; Li, James; de Castillejo, Carlos Lopez Fernandez; Oliver, Lindsay; Potini, Yamini; Hunter, Mark D; de Roode, Jacobus C

    2012-01-01

    1. As parasites can dramatically reduce the fitness of their hosts, there should be strong selection for hosts to evolve and maintain defence mechanisms against their parasites. One way in which hosts may protect themselves against parasitism is through altered behaviours, but such defences have been much less studied than other forms of parasite resistance. 2. We studied whether monarch butterflies (Danaus plexippus L.) use altered behaviours to protect themselves and their offspring against the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers (1970), Journal of Protozoology, 17, p. 300). In particular, we studied whether (i) monarch larvae can avoid contact with infectious parasite spores; (ii) infected larvae preferentially consume therapeutic food plants when given a choice or increase the intake of such plants in the absence of choice; and (iii) infected female butterflies preferentially lay their eggs on medicinal plants that make their offspring less sick. 3. We found that monarch larvae were unable to avoid infectious parasite spores. Larvae were also not able to preferentially feed on therapeutic food plants or increase the ingestion of such plants. However, infected female butterflies preferentially laid their eggs on food plants that reduce parasite growth in their offspring. 4. Our results suggest that animals may use altered behaviours as a protection against parasites and that such behaviours may be limited to a single stage in the host-parasite life cycle. Our results also suggest that animals may use altered behaviours to protect their offspring instead of themselves. Thus, our study indicates that an inclusive fitness approach should be adopted to study behavioural defences against parasites. PMID:21939438

  12. The phylum Cnidaria and investigations of its toxins and venoms until 1990.

    PubMed

    Turk, Tom; Kem, William R

    2009-12-15

    Cnidarians are the largest phylum of generally toxic animals, yet their toxins and venoms have not received as much scientific attention as those of many terrestrial (snakes, scorpions, spiders, etc.) and even some marine animals (i.e. cone snails). Approximately 13,000 living cnidarian species have been described by systematists. A major rationale for their study in the past, besides scientific curiosity, was to better treat victims of their envenomation. While that goal remains a high priority, it is now appreciated that the toxins of these mostly marine animals can be very useful molecular probes for the analysis of ion channels involved in electrical signaling, immune responses and other signal transduction processes of biomedical interest. For instance, anaphylaxis was discovered by Richet (1905) during experiments with sea anemone and hydrozoan tentacular extracts. Similarly, it has recently been shown that a toxin from another sea anemone is able to potently inhibit T-lymphocyte proliferation in models of certain autoimmune diseases. Thus, these natural substances continue to be of relevance for understanding and treating human diseases. In addition to introducing phylum Cnidaria (Coelenterata), we provide a short history of early (until about 1990) research on cnidarian toxins and venoms, to provide a perspective for appreciating the scientific advances of the past two decades that are summarized in the ensuing 19 papers in this special Toxicon issue. PMID:19576920

  13. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs.

    PubMed

    Eloe-Fadrosh, Emiley A; Paez-Espino, David; Jarett, Jessica; Dunfield, Peter F; Hedlund, Brian P; Dekas, Anne E; Grasby, Stephen E; Brady, Allyson L; Dong, Hailiang; Briggs, Brandon R; Li, Wen-Jun; Goudeau, Danielle; Malmstrom, Rex; Pati, Amrita; Pett-Ridge, Jennifer; Rubin, Edward M; Woyke, Tanja; Kyrpides, Nikos C; Ivanova, Natalia N

    2016-01-01

    Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum ('Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic 'blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. PMID:26814032

  14. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs

    PubMed Central

    Eloe-Fadrosh, Emiley A.; Paez-Espino, David; Jarett, Jessica; Dunfield, Peter F.; Hedlund, Brian P.; Dekas, Anne E.; Grasby, Stephen E.; Brady, Allyson L.; Dong, Hailiang; Briggs, Brandon R.; Li, Wen-Jun; Goudeau, Danielle; Malmstrom, Rex; Pati, Amrita; Pett-Ridge, Jennifer; Rubin, Edward M.; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2016-01-01

    Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. PMID:26814032

  15. Molecular phylogeny of the phylum Gastrotricha: new data brings together molecules and morphology.

    PubMed

    Paps, Jordi; Riutort, Marta

    2012-04-01

    Gastrotricha is a species-rich phylum of microscopical animals that contains two main orders, Chaetonotida and Macrodasyida. Gastrotrichs are important members of the aquatic environment and significant players in the study of animal evolution. In spite of their ecological and evolutionary importance, their internal relationships are not yet well understood. We have produced new sequences for the 18S rDNA gene to improve both the quality and quantity of taxon sampling for the gastrotrichs. Our phylogeny recovers the monophyly of the two main Gastrotricha clades, in contrast to recent studies with similar sampling, but in agreement with morphology based analyses. However, our topology is not able to resolve the first branches of the macrodasyidans or settle the position of the puzzling Neodasys, a controversial genus classified as a chaetonotidan on morphological grounds but placed within macrodasyidans by molecular studies. This analysis is the most exhaustive molecular phylogeny of the phylum to date, and significantly increases our knowledge of gastrotrich evolution. PMID:22198640

  16. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential.

    PubMed

    Gruninger, Robert J; Puniya, Anil K; Callaghan, Tony M; Edwards, Joan E; Youssef, Noha; Dagar, Sumit S; Fliegerova, Katerina; Griffith, Gareth W; Forster, Robert; Tsang, Adrian; McAllister, Tim; Elshahed, Mostafa S

    2014-10-01

    Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota. PMID:25046344

  17. Distribution and Evolution of Nitrogen Fixation Genes in the Phylum Bacteroidetes

    PubMed Central

    Inoue, Jun-ichi; Oshima, Kenshiro; Suda, Wataru; Sakamoto, Mitsuo; Iino, Takao; Noda, Satoko; Hongoh, Yuichi; Hattori, Masahira; Ohkuma, Moriya

    2015-01-01

    Diazotrophs had not previously been identified among bacterial species in the phylum Bacteroidetes until the rapid expansion of bacterial genome sequences, which revealed the presence of nitrogen fixation (nif) genes in this phylum. We herein determined the draft genome sequences of Bacteroides graminisolvens JCM 15093T and Geofilum rubicundum JCM 15548T. In addition to these and previously reported ‘Candidatus Azobacteroides pseudotrichonymphae’ and Paludibacter propionicigenes, an extensive survey of the genome sequences of diverse Bacteroidetes members revealed the presence of a set of nif genes (nifHDKENB) in strains of Dysgonomonas gadei, Dysgonomonas capnocytophagoides, Saccharicrinis fermentans, and Alkaliflexus imshenetskii. These eight species belonged to and were distributed sporadically within the order Bacteroidales. Acetylene reduction activity was detected in the five species examined, strongly suggesting their diazotrophic nature. Phylogenetic analyses showed monophyletic clustering of the six Nif protein sequences in the eight Bacteroidales species, implying that nitrogen fixation is ancestral to Bacteroidales and has been retained in these species, but lost in many other lineages. The identification of nif genes in Bacteroidales facilitates the prediction of the organismal origins of related sequences directly obtained from various environments. PMID:25736980

  18. The First Complete Genome Sequence of the Class Fimbriimonadia in the Phylum Armatimonadetes

    PubMed Central

    Im, Wan-Taek; Wang, Sheng-Yue; Zhao, Guo-Ping; Zheng, Hua-Jun; Quan, Zhe-Xue

    2014-01-01

    In this study, we present the complete genome of Fimbriimonas ginsengisoli Gsoil 348T belonging to the class Fimbriimonadia of the phylum Armatimonadetes, formerly called as candidate phylum OP10. The complete genome contains a single circular chromosome of 5.23 Mb including a 45.5 kb prophage. Of the 4820 open reading frames (ORFs), 3,000 (62.2%) genes could be classified into Clusters of Orthologous Groups (COG) families. With the split of rRNA genes, strain Gsoil 348T had no typical 16S-23S-5S ribosomal RNA operon. In this genome, the GC skew inversion which was usually observed in archaea was found. The predicted gene functions suggest that the organism lacks the ability to synthesize histidine, and the TCA cycle is incomplete. Phylogenetic analyses based on ribosomal proteins indicated that strain Gsoil 348T represents a deeply branching lineage of sufficient divergence with other phyla, but also strongly involved in superphylum Terrabacteria. PMID:24967843

  19. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    PubMed Central

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  20. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

    PubMed Central

    Zeng, Yonghui; Feng, Fuying; Medová, Hana; Dean, Jason; Koblížek, Michal

    2014-01-01

    Photosynthetic bacteria emerged on Earth more than 3 Gyr ago. To date, despite a long evolutionary history, species containing (bacterio)chlorophyll-based reaction centers have been reported in only 6 out of more than 30 formally described bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, and Acidobacteria. Here we describe a bacteriochlorophyll a-producing isolate AP64 that belongs to the poorly characterized phylum Gemmatimonadetes. This red-pigmented semiaerobic strain was isolated from a freshwater lake in the western Gobi Desert. It contains fully functional type 2 (pheophytin-quinone) photosynthetic reaction centers but does not assimilate inorganic carbon, suggesting that it performs a photoheterotrophic lifestyle. Full genome sequencing revealed the presence of a 42.3-kb–long photosynthesis gene cluster (PGC) in its genome. The organization and phylogeny of its photosynthesis genes suggests an ancient acquisition of PGC via horizontal transfer from purple phototrophic bacteria. The data presented here document that Gemmatimonadetes is the seventh bacterial phylum containing (bacterio)chlorophyll-based phototrophic species. To our knowledge, these data provide the first evidence that (bacterio)chlorophyll-based phototrophy can be transferred between distant bacterial phyla, providing new insights into the evolution of bacterial photosynthesis. PMID:24821787

  1. FROM INCIPIENT TO SUBSTANTIAL: EVOLUTION OF PLACENTOTROPHY IN A PHYLUM OF AQUATIC COLONIAL INVERTEBRATES

    PubMed Central

    Ostrovsky, Andrew N; Fairbairn, D

    2013-01-01

    Matrotrophy has long been known in invertebrates, but it is still poorly understood and has never been reviewed. A striking example of matrotrophy (namely, placentotrophy) is provided by the Bryozoa, a medium-sized phylum of the aquatic colonial filter feeders. Here I report on an extensive anatomical study of placental analogues in 21 species of the bryozoan order Cheilostomata, offering the first review on matrotrophy among aquatic invertebrates. The first anatomical description of incipient placentotrophy in invertebrates is presented together with the evidence for multiple independent origins of placental analogues in this order. The combinations of contrasting oocytic types (macrolecithal or microlecithal) and various degrees of placental development and embryonic enlargement during incubation, found in different bryozoan species, are suggestive of a transitional series from the incipient to the substantial placentotrophy accompanied by an inverse change in oogenesis, a situation reminiscent of some vertebrates. It seems that matrotrophy could trigger the evolution of sexual zooidal polymorphism in some clades. The results of this study show that this phylum, with its wide variety of reproductive patterns, incubation devices, and types of the simple placenta-like systems, offers a promising model for studying parallel evolution of placentotrophy in particular, and matrotrophy in general. PMID:23617914

  2. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs

    DOE PAGESBeta

    Eloe-Fadrosh, Emiley A.; Paez-Espino, David; Jarett, Jessica; Dunfield, Peter F.; Hedlund, Brian P.; Dekas, Anne E.; Grasby, Stephen E.; Brady, Allyson L.; Dong, Hailiang; Briggs, Brandon R.; et al

    2016-01-27

    We analyse the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle withmore » conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery.« less

  3. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria

    DOE PAGESBeta

    Calteau, Alexandra; Fewer, David P.; Latifi, Amel; Coursin, Thérèse; Laurent, Thierry; Jokela, Jouni; Kerfeld, Cheryl A.; Sivonen, Kaarina; Piel, Jörn; Gugger, Muriel

    2014-11-18

    Cyanobacteria are an ancient lineage of photosynthetic bacteria from which hundreds of natural products have been described, including many notorious toxins but also potent natural products of interest to the pharmaceutical and biotechnological industries. Many of these compounds are the products of non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways. However, current understanding of the diversification of these pathways is largely based on the chemical structure of the bioactive compounds, while the evolutionary forces driving their remarkable chemical diversity are poorly understood. We carried out a phylum-wide investigation of genetic diversification of the cyanobacterial NRPS and PKS pathways formore » the production of bioactive compounds. 452 NRPS and PKS gene clusters were identified from 89 cyanobacterial genomes, revealing a clear burst in late-branching lineages. Our genomic analysis further grouped the clusters into 286 highly diversified cluster families (CF) of pathways. Some CFs appeared vertically inherited, while others presented a more complex evolutionary history. Only a few horizontal gene transfers were evidenced amongst strongly conserved CFs in the phylum, while several others have undergone drastic gene shuffling events, which could result in the observed diversification of the pathways. In addition to toxin production, several NRPS and PKS gene clusters are devoted to important cellular processes of these bacteria such as nitrogen fixation and iron uptake. The majority of the biosynthetic clusters identified here have unknown end products, highlighting the power of genome mining for the discovery of new natural products.« less

  4. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria

    SciTech Connect

    Calteau, Alexandra; Fewer, David P.; Latifi, Amel; Coursin, Thérèse; Laurent, Thierry; Jokela, Jouni; Kerfeld, Cheryl A.; Sivonen, Kaarina; Piel, Jörn; Gugger, Muriel

    2014-11-18

    Cyanobacteria are an ancient lineage of photosynthetic bacteria from which hundreds of natural products have been described, including many notorious toxins but also potent natural products of interest to the pharmaceutical and biotechnological industries. Many of these compounds are the products of non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways. However, current understanding of the diversification of these pathways is largely based on the chemical structure of the bioactive compounds, while the evolutionary forces driving their remarkable chemical diversity are poorly understood. We carried out a phylum-wide investigation of genetic diversification of the cyanobacterial NRPS and PKS pathways for the production of bioactive compounds. 452 NRPS and PKS gene clusters were identified from 89 cyanobacterial genomes, revealing a clear burst in late-branching lineages. Our genomic analysis further grouped the clusters into 286 highly diversified cluster families (CF) of pathways. Some CFs appeared vertically inherited, while others presented a more complex evolutionary history. Only a few horizontal gene transfers were evidenced amongst strongly conserved CFs in the phylum, while several others have undergone drastic gene shuffling events, which could result in the observed diversification of the pathways. In addition to toxin production, several NRPS and PKS gene clusters are devoted to important cellular processes of these bacteria such as nitrogen fixation and iron uptake. The majority of the biosynthetic clusters identified here have unknown end products, highlighting the power of genome mining for the discovery of new natural products.

  5. From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates.

    PubMed

    Ostrovsky, Andrew N

    2013-05-01

    Matrotrophy has long been known in invertebrates, but it is still poorly understood and has never been reviewed. A striking example of matrotrophy (namely, placentotrophy) is provided by the Bryozoa, a medium-sized phylum of the aquatic colonial filter feeders. Here I report on an extensive anatomical study of placental analogues in 21 species of the bryozoan order Cheilostomata, offering the first review on matrotrophy among aquatic invertebrates. The first anatomical description of incipient placentotrophy in invertebrates is presented together with the evidence for multiple independent origins of placental analogues in this order. The combinations of contrasting oocytic types (macrolecithal or microlecithal) and various degrees of placental development and embryonic enlargement during incubation, found in different bryozoan species, are suggestive of a transitional series from the incipient to the substantial placentotrophy accompanied by an inverse change in oogenesis, a situation reminiscent of some vertebrates. It seems that matrotrophy could trigger the evolution of sexual zooidal polymorphism in some clades. The results of this study show that this phylum, with its wide variety of reproductive patterns, incubation devices, and types of the simple placenta-like systems, offers a promising model for studying parallel evolution of placentotrophy in particular, and matrotrophy in general. PMID:23617914

  6. Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum

    PubMed Central

    Anantharaman, Karthik; Burstein, David; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Williams, Kenneth H.

    2016-01-01

    Five closely related populations of bacteria from the Candidate Phylum (CP) Peregrinibacteria, part of the bacterial Candidate Phyla Radiation (CPR), were sampled from filtered groundwater obtained from an aquifer adjacent to the Colorado River near the town of Rifle, CO, USA. Here, we present the first complete genome sequences for organisms from this phylum. These bacteria have small genomes and, unlike most organisms from other lineages in the CPR, have the capacity for nucleotide synthesis. They invest significantly in biosynthesis of cell wall and cell envelope components, including peptidoglycan, isoprenoids via the mevalonate pathway, and a variety of amino sugars including perosamine and rhamnose. The genomes encode an intriguing set of large extracellular proteins, some of which are very cysteine-rich and may function in attachment, possibly to other cells. Strain variation in these proteins is an important source of genotypic variety. Overall, the cell envelope features, combined with the lack of biosynthesis capacities for many required cofactors, fatty acids, and most amino acids point to a symbiotic lifestyle. Phylogenetic analyses indicate that these bacteria likely represent a new class within the Peregrinibacteria phylum, although they ultimately may be recognized as members of a separate phylum. We propose the provisional taxonomic assignment as ‘Candidatus Peribacter riflensis’, Genus Peribacter, Family Peribacteraceae, Order Peribacterales, Class Peribacteria in the phylum Peregrinibacteria. PMID:26844018

  7. Impact of Water Column Acidification on Protozoan Bacterivory at the Lake Sediment-Water Interface

    PubMed Central

    Tremaine, Sarah C.; Mills, Aaron L.

    1991-01-01

    Although the impact of acidification on planktonic grazer food webs has been extensively studied, little is known about microbial food webs either in the water column or in the sediments. Protozoon-bacterium interactions were investigated in a chronically acidified (acid mine drainage) portion of a lake in Virginia. We determined the distribution, abundance, apparent specific grazing rate, and growth rate of protozoa over a pH range of 3.6 to 6.5. Protozoan abundance was lower at the most acidified site, while abundance, in general, was high compared with other systems. Specific grazing rates were uncorrelated with pH and ranged between 0.02 and 0.23 h-1, values similar to those in unacidified systems. The protozoan community from an acidified station was not better adapted (P = 0.95) to low-pH conditions than a community from an unacidified site (multivariate analysis of variance on growth rates for each community incubated at pHs 4, 5, and 6). Both communities had significantly lower (P < 0.05) growth rates at pHs 4 and 5 than at pH 6. Reduced protozoan growth rates coupled with high grazing rates and relatively higher bacterial yields (ratio of bacterial-protozoan standing stock) at low pH indicate reduced net protozoan growth efficiency and a metabolic cost of acidification to the protozoan community. However, the presence of an abundant, neutrophilic protozoan community and high bacterial grazing rates indicates that acidification of Lake Anna has not inhibited the bacterium-protozoon link of the sediment microbial food web. PMID:16348443

  8. Sophisticated Adaptations of Gregarina cuneata (Apicomplexa) Feeding Stages for Epicellular Parasitism

    PubMed Central

    Valigurová, Andrea

    2012-01-01

    Background Gregarines represent a very diverse group of early emerging apicomplexans, parasitising numerous invertebrates and urochordates, and are considered of little practical significance. Recently, they have gained more attention since some analyses showed that cryptosporidia are more closely related to the gregarines than to coccidia. Methodology/Principal Findings Using a combined microscopic approach, this study points out the spectacular strategy of Gregarina cuneata for attachment to host tissue and nutrient acquisition while parasitising the intestine of yellow mealworm larvae, and reveals the unusual dynamics of cellular interactions between the host epithelium and parasite feeding stages. Trophozoites of G. cuneata develop epicellularly, attached to the luminal side of the host epithelial cell by an epimerite exhibiting a high degree of morphological variability. The presence of contractile elements in the apical region of feeding stages indicates that trophozoite detachment from host tissue is an active process self-regulated by the parasite. A detailed discussion is provided on the possibility of reversible retraction and protraction of the eugregarine apical end, facilitating eventual reattachment to another host cell in better physiological conditions. The gamonts, found in contact with host tissue via a modified protomerite top, indicate further adaptation of parasite for nutrient acquisition via epicellular parasitism while keeping their host healthy. The presence of eugregarines in mealworm larvae even seems to increase the host growth rate and to reduce the death rate despite often heavy parasitisation. Conclusions/Significance Improved knowledge about the formation of host-parasite interactions in deep-branching apicomplexans, including gregarines, would offer significant insights into the fascinating biology and evolutionary strategy of Apicomplexa. Gregarines exhibit an enormous diversity in cell architecture and dimensions, depending on their parasitic strategy and the surrounding environment. They seem to be a perfect example of a coevolution between a group of parasites and their hosts. PMID:22900033

  9. Use of Monodispersed, Fluorescently Labeled Bacteria to Estimate In Situ Protozoan Bacterivory †

    PubMed Central

    Sherr, Barry F.; Sherr, Evelyn B.; Fallon, Robert D.

    1987-01-01

    We have developed a procedure for preparing monodispersed, fluorescently labeled bacteria (FLB), which may be used to measure virtually instantaneous rates of protozoan bacterivory in natural waters. FLB can be prepared both from natural bacterioplankton assemblages and from clonal isolates and can be stored in frozen suspension or freeze-dried without apparent loss of fluorescence intensity. They are not toxic to protozoa and can be metabolized to support bacterivorous protozoan growth rates equal to those on the same strain of unstained, viable bacteria. In experiments comparing uptake of FLB with uptake of fluorescent latex microspheres by protozoan assemblages in a salt marsh tidal creek, we found that both pelagic oligotrichous ciliates and phagotrophic flagellates ingested FLB with a frequency 4- to 10-fold greater than they ingested the microspheres. Consequently, it appears that the use of latex microspheres leads to underestimation of protozoan bacterivory and that the FLB technique is superior for estimating instantaneous rates of in situ protozoan grazing on bacterioplankton. Images PMID:16347355

  10. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential.

    PubMed

    Badawi, Nora; Johnsen, Anders R; Brandt, Kristian K; Sørensen, Jan; Aamand, Jens

    2012-11-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this "slurry effect" on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, (14)C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in "intact" soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. PMID:22763328

  11. Comparative study of protozoan communities in full-scale MWTPs in Beijing related to treatment processes.

    PubMed

    Liu, Juan; Yang, Min; Qi, Rong; An, Wei; Zhou, Jun

    2008-04-01

    The potential influence of process principles and system conditions on shaping protozoan community structures in eight full-scale municipal wastewater treatment systems in Beijing, including four process types, i.e., anaerobic/anoxic/aerobic or anoxic/anaerobic/aerobic process (A2O), anoxic/aerobic or anaerobic/aerobic process (AO), oxidation ditch (OD) and sequencing batch reactor (SBR), was evaluated with the aid of cluster analysis and principal components analysis (PCA). The species richness and abundance distribution of protozoa varied significantly with the process types: the A2O ecosystems harbored more diverse protozoan communities with higher relative abundance of crawling and sessile ciliates than the other systems. Cluster analysis revealed that the protozoan community structures were in high coordination with the process types, i.e., different systems with the same process principles exhibited similar community structures. The A2O processes displayed a distinctively higher similarity of protozoan community structures than the AO processes, suggesting that the A2O ecosystems were more stable than those of AO. The PCA analyses demonstrated that swimming and carnivorous ciliates were correlated with poor settleability of sludge, and that amoebae were sensitive to DO level. We therefore concluded that protozoan community structures were primarily shaped by treatment process principles, whilst they were also modified by system conditions in terms of operational properties and water quality. PMID:18155267

  12. Protozoan grazing on bacteria at the sediment-water interface of an acidified lake

    SciTech Connect

    Tremaine, S.C.

    1988-01-01

    Protozoan grazing on bacteria has been hypothesized to link the detrital and grazer food chains in aquatic ecosystems. The current study of protozoan bacterivory, evaluated methods, quantified bacterivory, and evaluated the role of protozoa at the sediment-water interface of an acidified lake ecosystem, Lake Anna, Virginia. Three limnetic methods for determining protozoan bacterivory were tested for applicability at the sediment-water interface. The eucaryote inhibitor, cycloheximide, was found unsatisfactory because it did not uniformly inhibit growth of target eucaryotes, and because it inhibited non-target anaerobic procaryotes. The filtration method was found to have limited application in sediment systems due to filtrational loss of particle-associated bacteria. The dilution method was tested for violations of its critical assumptions: bacterial growth is exponential; grazing mortality is proportional to the dilution factor; and bacterial growth rates are unaltered under experimental conditions. These assumptions were found not to be violated, and this method was used in subsequent grazing experiments. Carbon loading to the acidified arm of Lake Anna was 41 {times} 10{sup 6} g C {times} y{sup {minus}1}. This appears to be adequate carbon loading to support bacterial production and, in turn, protozoan bacterivory and production. Though there is no direct evidence that zooplankton graze on protozoa in this system, however, there is sufficient protozoan production to support an additional trophic level.

  13. The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa.

    PubMed

    Cavalier-Smith, T

    2003-11-01

    It is argued here that the anaerobic protozoan zooflagellate Parabasalia, Carpediemonas and Eopharyngia (diplomonads, enteromonads, retortamonads) constitute a holophyletic group, for which the existing name Trichozoa is adopted as a new subphylum. Ancestrally, Trichozoa probably had hydrogenosomes, stacked Golgi dictyosomes, three anterior centrioles and one posterior centriole: the typical tetrakont pattern. It is also argued that the closest relatives of Trichozoa are Anaeromonada (Trimastix, oxymonads), and the two groups are classified as subphyla of a revised phylum Metamonada. Returning Parabasalia and Anaeromonadea to Metamonada, as in Grassé's original classification, simplifies classification of the kingdom Protozoa by reducing the number of phyla within infrakingdom Excavata from five to four. Percolozoa (Heterolobosea plus Percolatea classis nov.) and Metamonada are probably both ancestrally quadriciliate with a kinetid of four centrioles attached to the nucleus; the few biciliates among them are probably secondarily derived. Metamonada ancestrally probably had two divergent centriole pairs, whereas, in Percolozoa, all four centrioles are parallel. It is suggested that Discicristata (Percolozoa, Euglenozoa) are holophyletic, ancestrally with two parallel centrioles. In the phylum Loukozoa, Malawimonadea classis nov. is established for Malawimonas (with a new family and order also) and Diphyllatea classis nov., for Diphylleida (Diphylleia, Collodictyon), is transferred back to Apusozoa. A new class, order and family are established for the anaerobic, biciliate, tricentriolar Carpediemonas, transferring it from Loukozoa to Trichozoa because of its triply flanged cilia; like Retortamonas, it may be secondarily biciliate--its unique combination of putative hydrogenosomes and flanged cilia agree with molecular evidence that Carpediemonas is sister to Eopharyngia, diverging before their ancestor lost hydrogenosomes and acquired a cytopharynx. Removal of anaeromonads and Carpediemonas makes Loukozoa more homogeneous, being basically biciliate, aerobic and free-living, in contrast to Metamonada. A new taxon-rich rRNA tree supports holophyly of Discicristata and Trichozoa strongly, holophyly of Metamonada and Excavata and paraphyly of Loukozoa weakly. Mitochondria were probably transformed into hydrogenosomes independently in the ancestors of lyromonad Percolozoa and Metamonada and further reduced in the ancestral eopharyngian. Evidence is briefly discussed that Metamonada and all other excavates share a photosynthetic ancestry with Euglenozoa and are secondarily non-photosynthetic, as predicted by the cabozoan hypothesis for a single secondary symbiogenetic acquisition of green algal plastids by the last common ancestor of Euglenozoa and Cercozoa. Excavata plus core Rhizaria (Cercozoa, Retaria) probably form an ancestrally photophagotrophic clade. The origin from a benthic loukozoan ancestor of the characteristic cellular features of Percolozoa and Euglenozoa through divergent adaptations for feeding on or close to surfaces is also discussed. PMID:14657102

  14. "Endomicrobia": cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes.

    PubMed

    Stingl, Ulrich; Radek, Renate; Yang, Hong; Brune, Andreas

    2005-03-01

    Lignocellulose digestion by wood-feeding termites depends on the mutualistic interaction of unusual, flagellate protists located in their hindgut. Most of the flagellates harbor numerous prokaryotic endosymbionts of so-far-unknown identity and function. Using a full-cycle molecular approach, we show here that the endosymbionts of the larger gut flagellates of Reticulitermes santonensis belong to the so-called termite group 1 (TG-1) bacteria, a group of clones previously obtained exclusively from gut homogenates of Reticulitermes speratus that are only distantly related to other bacteria and are considered a novel bacterial phylum based on their 16S rRNA gene sequences. Fluorescence in situ hybridization with specifically designed oligonucleotide probes confirmed that TG-1 bacteria are indeed located within the flagellate cells and demonstrated that Trichonympha agilis (Hypermastigida) and Pyrsonympha vertens (Oxymonadida) harbor phylogenetically distinct populations of symbionts (<95% sequence similarity). Transmission electron microscopy revealed that the symbionts are small, spindle-shaped cells (0.6 microm in length and 0.3 microm in diameter) surrounded by two membranes and located within the cytoplasm of their hosts. The symbionts of the two flagellates are described as candidate species in the candidate genus "Endomicrobium." Moreover, we provide evidence that the members of the TG-1 phylum, for which we propose the candidate name "Endomicrobia," are phylogenetically extremely diverse and are present in and also restricted to the guts of all lower termites and wood-feeding cockroaches of the genus Cryptocercus, the only insects that are in an exclusive, obligately mutualistic association with such unique cellulose-fermenting protists. PMID:15746350

  15. Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes

    PubMed Central

    Lee, Kevin C-Y; Morgan, Xochitl C; Dunfield, Peter F; Tamas, Ivica; McDonald, Ian R; Stott, Matthew B

    2014-01-01

    Most of the lineages of bacteria have remained unknown beyond environmental surveys using molecular markers. Until the recent characterisation of several strains, the phylum Armatimonadetes (formerly known as ‘candidate division OP10') was a dominant and globally-distributed lineage within this ‘uncultured majority'. Here we report the first Armatimonadetes genome from the thermophile Chthonomonas calidirosea T49T and its role as a saccharide scavenger in a geothermal steam-affected soil environment. Phylogenomic analysis indicates T49T to be related closely to the phylum Chloroflexi. The predicted genes encoding for carbohydrate transporters (27 carbohydrate ATP-binding cassette transporter-related genes) and carbohydrate-metabolising enzymes (including at least 55 putative enzymes with glycosyl hydrolase domains) within the 3.43 Mb genome help explain its ability to utilise a wide range of carbohydrates as well as its inability to break down extracellular cellulose. The presence of only a single class of branched amino acid transporter appears to be the causative step for the requirement of isoleucine for growth. The genome lacks many commonly conserved operons (for example, lac and trp). Potential causes for this, such as dispersion of functionally related genes via horizontal gene transfer from distant taxa or recent genome recombination, were rejected. Evidence suggests T49T relies on the relatively abundant σ-factors, instead of operonic organisation, as the primary means of transcriptional regulation. Examination of the genome with physiological data and environmental dynamics (including interspecific interactions) reveals ecological factors behind the apparent elusiveness of T49T to cultivation and, by extension, the remaining ‘uncultured majority' that have so far evaded conventional microbiological techniques. PMID:24477196

  16. Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes.

    PubMed

    Lee, Kevin C-Y; Morgan, Xochitl C; Dunfield, Peter F; Tamas, Ivica; McDonald, Ian R; Stott, Matthew B

    2014-07-01

    Most of the lineages of bacteria have remained unknown beyond environmental surveys using molecular markers. Until the recent characterisation of several strains, the phylum Armatimonadetes (formerly known as 'candidate division OP10') was a dominant and globally-distributed lineage within this 'uncultured majority'. Here we report the first Armatimonadetes genome from the thermophile Chthonomonas calidirosea T49(T) and its role as a saccharide scavenger in a geothermal steam-affected soil environment. Phylogenomic analysis indicates T49(T) to be related closely to the phylum Chloroflexi. The predicted genes encoding for carbohydrate transporters (27 carbohydrate ATP-binding cassette transporter-related genes) and carbohydrate-metabolising enzymes (including at least 55 putative enzymes with glycosyl hydrolase domains) within the 3.43 Mb genome help explain its ability to utilise a wide range of carbohydrates as well as its inability to break down extracellular cellulose. The presence of only a single class of branched amino acid transporter appears to be the causative step for the requirement of isoleucine for growth. The genome lacks many commonly conserved operons (for example, lac and trp). Potential causes for this, such as dispersion of functionally related genes via horizontal gene transfer from distant taxa or recent genome recombination, were rejected. Evidence suggests T49(T) relies on the relatively abundant σ-factors, instead of operonic organisation, as the primary means of transcriptional regulation. Examination of the genome with physiological data and environmental dynamics (including interspecific interactions) reveals ecological factors behind the apparent elusiveness of T49(T) to cultivation and, by extension, the remaining 'uncultured majority' that have so far evaded conventional microbiological techniques. PMID:24477196

  17. Endomicrobia: Cytoplasmic Symbionts of Termite Gut Protozoa Form a Separate Phylum of Prokaryotes

    PubMed Central

    Stingl, Ulrich; Radek, Renate; Yang, Hong; Brune, Andreas

    2005-01-01

    Lignocellulose digestion by wood-feeding termites depends on the mutualistic interaction of unusual, flagellate protists located in their hindgut. Most of the flagellates harbor numerous prokaryotic endosymbionts of so-far-unknown identity and function. Using a full-cycle molecular approach, we show here that the endosymbionts of the larger gut flagellates of Reticulitermes santonensis belong to the so-called termite group 1 (TG-1) bacteria, a group of clones previously obtained exclusively from gut homogenates of Reticulitermes speratus that are only distantly related to other bacteria and are considered a novel bacterial phylum based on their 16S rRNA gene sequences. Fluorescence in situ hybridization with specifically designed oligonucleotide probes confirmed that TG-1 bacteria are indeed located within the flagellate cells and demonstrated that Trichonympha agilis (Hypermastigida) and Pyrsonympha vertens (Oxymonadida) harbor phylogenetically distinct populations of symbionts (<95% sequence similarity). Transmission electron microscopy revealed that the symbionts are small, spindle-shaped cells (0.6 ?m in length and 0.3 ?m in diameter) surrounded by two membranes and located within the cytoplasm of their hosts. The symbionts of the two flagellates are described as candidate species in the candidate genus Endomicrobium. Moreover, we provide evidence that the members of the TG-1 phylum, for which we propose the candidate name Endomicrobia, are phylogenetically extremely diverse and are present in and also restricted to the guts of all lower termites and wood-feeding cockroaches of the genus Cryptocercus, the only insects that are in an exclusive, obligately mutualistic association with such unique cellulose-fermenting protists. PMID:15746350

  18. A review of recent patents on the protozoan parasite HSP90 as a drug target.

    PubMed

    Angel, Sergio O; Matrajt, Mariana; Echeverria, Pablo C

    2013-04-01

    Diseases caused by protozoan parasites are still an important health problem. These parasites can cause a wide spectrum of diseases, some of which are severe and have high morbidity or mortality if untreated. Since they are still uncontrolled, it is important to find novel drug targets and develop new therapies to decrease their remarkable social and economic impact on human societies. In the past years, human HSP90 has become an interesting drug target that has led to a large number of investigations both at state organizations and pharmaceutical companies, followed by clinical trials. The finding that HSP90 has important biological roles in some protozoan parasites like Plasmodium spp, Toxoplasma gondii and trypanosomatids has allowed the expansion of the results obtained in human cancer to these infections. This review summarizes the latest important findings showing protozoan HSP90 as a drug target and presents three patents targeting T. gondii, P. falciparum and trypanosomatids HSP90. PMID:23002958

  19. A Review of Recent Patents on the Protozoan Parasite HSP90 as a Drug Target

    PubMed Central

    Angel, Sergio O; Matrajt, Mariana; Echeverria, Pablo C

    2013-01-01

    Diseases caused by protozoan parasites are still an important health problem. These parasites can cause a wide spectrum of diseases, some of which are severe and have high morbidity or mortality if untreated. Since they are still uncontrolled, it is important to find novel drug targets and develop new therapies to decrease their remarkable social and economic impact on human societies. In the past years, human HSP90 has become an interesting drug target that has led to a large number of investigations both at state organizations and pharmaceutical companies, followed by clinical trials. The finding that HSP90 has important biological roles in some protozoan parasites like Plasmodium spp, Toxoplasma gondii and trypanosomatids has allowed the expansion of the results obtained in human cancer to these infections. This review summarizes the latest important findings showing protozoan HSP90 as a drug target and presents three patents targeting T. gondii, P. falciparum and trypanosomatids HSP90. PMID:23002958

  20. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    SciTech Connect

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Sims, David; Detter, J. Chris; Han, Cliff; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ovchinnikova, Galina; Richardson, Paul; De Vos, Willem M.; Smidt, Hauke; Zoetendal, Erwin G.

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  1. Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage.

    PubMed

    Yeoh, Yun Kit; Sekiguchi, Yuji; Parks, Donovan H; Hugenholtz, Philip

    2016-04-01

    Candidate phylum TM6 is a major bacterial lineage recognized through culture-independent rRNA surveys to be low abundance members in a wide range of habitats; however, they are poorly characterized due to a lack of pure culture representatives. Two recent genomic studies of TM6 bacteria revealed small genomes and limited gene repertoire, consistent with known or inferred dependence on eukaryotic hosts for their metabolic needs. Here, we obtained additional near-complete genomes of TM6 populations from agricultural soil and upflow anaerobic sludge blanket reactor metagenomes which, together with the two publicly available TM6 genomes, represent seven distinct family level lineages in the TM6 phylum. Genome-based phylogenetic analysis confirms that TM6 is an independent phylum level lineage in the bacterial domain, possibly affiliated with the Patescibacteria superphylum. All seven genomes are small (1.0-1.5 Mb) and lack complete biosynthetic pathways for various essential cellular building blocks including amino acids, lipids, and nucleotides. These and other features identified in the TM6 genomes such as a degenerated cell envelope, ATP/ADP translocases for parasitizing host ATP pools, and protein motifs to facilitate eukaryotic host interactions indicate that parasitism is widespread in this phylum. Phylogenetic analysis of ATP/ADP translocase genes suggests that the ancestral TM6 lineage was also parasitic. We propose the name Dependentiae (phyl. nov.) to reflect dependence of TM6 bacteria on host organisms. PMID:26615204

  2. Evaluating the Utility of Single-Locus DNA Barcoding for the Identification of Ribbon Worms (Phylum Nemertea)

    PubMed Central

    Sundberg, Per; Strand, Malin

    2016-01-01

    Whereas many nemerteans (ribbon worms; phylum Nemertea) can be identified from external characters if observed alive, many are still problematic. When it comes to preserved specimens (as in e.g. marine inventories), there is a particular need for specimen identifier alternatives. Here, we evaluate the utility of COI (cytochrome c oxidase subunit I) as a single-locus barcoding gene. We sequenced, data mined, and compared gene fragments of COI for 915 individuals representing 161 unique taxonomic labels for 71 genera, and subjected different constellations of these to both distance-based and character-based DNA barcoding approaches, as well as species delimitation analyses. We searched for the presence or absence of a barcoding gap at different taxonomic levels (phylum, subclass, family and genus) in an attempt to understand at what level a putative barcoding gap presents itself. This was performed both using the taxonomic labels as species predictors and using objectively inferred species boundaries recovered from our species delimitation analyses. Our data suggest that COI works as a species identifier for most groups within the phylum, but also that COI data are obscured by misidentifications in sequence databases. Further, our results suggest that the number of predicted species within the dataset is (in some cases substantially) higher than the number of unique taxonomic labels—this highlights the presence of several cryptic lineages within well-established taxa and underscores the urgency of an updated taxonomic backbone for the phylum. PMID:27171471

  3. Evaluating the Utility of Single-Locus DNA Barcoding for the Identification of Ribbon Worms (Phylum Nemertea).

    PubMed

    Sundberg, Per; Kvist, Sebastian; Strand, Malin

    2016-01-01

    Whereas many nemerteans (ribbon worms; phylum Nemertea) can be identified from external characters if observed alive, many are still problematic. When it comes to preserved specimens (as in e.g. marine inventories), there is a particular need for specimen identifier alternatives. Here, we evaluate the utility of COI (cytochrome c oxidase subunit I) as a single-locus barcoding gene. We sequenced, data mined, and compared gene fragments of COI for 915 individuals representing 161 unique taxonomic labels for 71 genera, and subjected different constellations of these to both distance-based and character-based DNA barcoding approaches, as well as species delimitation analyses. We searched for the presence or absence of a barcoding gap at different taxonomic levels (phylum, subclass, family and genus) in an attempt to understand at what level a putative barcoding gap presents itself. This was performed both using the taxonomic labels as species predictors and using objectively inferred species boundaries recovered from our species delimitation analyses. Our data suggest that COI works as a species identifier for most groups within the phylum, but also that COI data are obscured by misidentifications in sequence databases. Further, our results suggest that the number of predicted species within the dataset is (in some cases substantially) higher than the number of unique taxonomic labels-this highlights the presence of several cryptic lineages within well-established taxa and underscores the urgency of an updated taxonomic backbone for the phylum. PMID:27171471

  4. Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage

    PubMed Central

    Yeoh, Yun Kit; Sekiguchi, Yuji; Parks, Donovan H.; Hugenholtz, Philip

    2016-01-01

    Candidate phylum TM6 is a major bacterial lineage recognized through culture-independent rRNA surveys to be low abundance members in a wide range of habitats; however, they are poorly characterized due to a lack of pure culture representatives. Two recent genomic studies of TM6 bacteria revealed small genomes and limited gene repertoire, consistent with known or inferred dependence on eukaryotic hosts for their metabolic needs. Here, we obtained additional near-complete genomes of TM6 populations from agricultural soil and upflow anaerobic sludge blanket reactor metagenomes which, together with the two publicly available TM6 genomes, represent seven distinct family level lineages in the TM6 phylum. Genome-based phylogenetic analysis confirms that TM6 is an independent phylum level lineage in the bacterial domain, possibly affiliated with the Patescibacteria superphylum. All seven genomes are small (1.0–1.5 Mb) and lack complete biosynthetic pathways for various essential cellular building blocks including amino acids, lipids, and nucleotides. These and other features identified in the TM6 genomes such as a degenerated cell envelope, ATP/ADP translocases for parasitizing host ATP pools, and protein motifs to facilitate eukaryotic host interactions indicate that parasitism is widespread in this phylum. Phylogenetic analysis of ATP/ADP translocase genes suggests that the ancestral TM6 lineage was also parasitic. We propose the name Dependentiae (phyl. nov.) to reflect dependence of TM6 bacteria on host organisms. PMID:26615204

  5. Spring distribution of larger (>64 ?m) protozoans in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Klaas, Christine

    2001-07-01

    Distribution of larger protozoans (armoured dinoflagellates, tintinnids, heliozoans, radiolarians and foraminiferans >64 ?m) is presented for three major water masses of the Southern Ocean: the Polar Front region (PFr), the southern Antarctic Circumpolar Current (southern ACC) and the northern Weddell Gyre. Sampling took place during the SO-JGOFS cruise ANT X/6 of R/V Polarstern (October-November 1992) along a meridional transect at 6W between 4800'S and 5930'S. Multinet samples (64 ?m mesh size) were taken at six stations from the surface down to 500 m depth at five different depth intervals. In the upper 100 m of the water column abundances of larger protozoans varied between 94 and 10,930 ind. m -3, with highest abundances in the PFr, where phytoplankton blooms occurred, and lowest values in the Antarctic Circumpolar Current-Weddell Gyre Boundary (AWB). Foraminiferans and polycystine and smaller (<300 ?m) phaeodarian radiolarians dominated larger protozoan assemblages in the PFr. In open water of the southern ACC, tintinnids, armoured dinoflagellates, foraminiferans and smaller (<300 ?m) phaeodarian radiolarians were equally important. The heliozoans Sticholonche spp. and nassellarian radiolarians dominated assemblages in the Weddell Gyre and AWB. Larger protozoan biomasses ranged between 2 and 674 ?g C m -3 and were always dominated by larger (>300 ?m) phaeodarians. Highest biomasses were found in the AWB between 200 and 500 m depth. Standing stocks of larger protozoans constituted a negligible fraction of zooplankton biomass in the upper 200 m of the water column. In deeper layers of the ice-covered Weddell Gyre and AWB their biomasses, dominated by larger (>300 ?m) phaeodarians, was significant contributing up to 45% to total larger protozoan and metazoan biomass. Analysis of correlation between distribution patterns and environmental conditions at the stations sampled indicate that spring distribution patterns of heterotrophic armoured dinoflagellates, polycystine radiolarians and foraminiferans follow productivity in the water column. Of the protozoan groups studied the smaller (<300 ?m) phaeodarian radiolarians also showed a significant correlation with productivity during spring, however, results from previous studies do not suggest a consistent pattern. Spring distribution patterns of other larger protozoans were not related to differences in productivity in the water column, and effects such as ice-cover, grazing or silica limitation might be determining. Dead radiolarian skeletons constituted on average 27, 8 and 11% of the population of nassellarians, spumellarians and smaller (<300 ?m) phaeodarians, respectively. The contribution of dead radiolarian skeletons to total radiolarian stocks varied with depth and water mass. Differences between live and skeleton assemblages composition were observed. These differences should be taken into consideration when interpreting the geological record.

  6. [Gastrointestinal complaints associated to helminth and protozoan: management by the general practitioner].

    PubMed

    Senn, Nicolas; Fasel, Emilie; de Vallire, Serge; Genton, Blaise

    2010-12-01

    Protozoan and helminthes are frequently associated with persistent digestive complaints, not only in returning travelers from the tropics, but also in industrialized countries. The symptoms are often more vague than those associated to bacterial or viral infections and diarrhea is not always a key feature of the clinical presentation. Three stool examinations and a full blood cells count looking for eosinophilia is the comer stone of the investigations looking for digestive parasites. This article reviews the epidemiology, clinical presentation, diagnostic and management of digestive protozoans and helminthes. PMID:21207722

  7. Activity-Based Metagenomic Screening and Biochemical Characterization of Bovine Ruminal Protozoan Glycoside Hydrolases▿†

    PubMed Central

    Findley, Seth D.; Mormile, Melanie R.; Sommer-Hurley, Andrea; Zhang, Xue-Cheng; Tipton, Peter; Arnett, Krista; Porter, James H.; Kerley, Monty; Stacey, Gary

    2011-01-01

    The rumen, the foregut of herbivorous ruminant animals such as cattle, functions as a bioreactor to process complex plant material. Among the numerous and diverse microbes involved in ruminal digestion are the ruminal protozoans, which are single-celled, ciliated eukaryotic organisms. An activity-based screen was executed to identify genes encoding fibrolytic enzymes present in the metatranscriptome of a bovine ruminal protozoan-enriched cDNA expression library. Of the four novel genes identified, two were characterized in biochemical assays. Our results provide evidence for the effective use of functional metagenomics to retrieve novel enzymes from microbial populations that cannot be maintained in axenic cultures. PMID:21948825

  8. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage.

    PubMed

    Hiras, Jennifer; Wu, Yu-Wei; Eichorst, Stephanie A; Simmons, Blake A; Singer, Steven W

    2016-04-01

    Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes. PMID:26325358

  9. Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity

    PubMed Central

    Kleschenko, Yuliya; Pow-Sang, Luis; Brumeanu, Teodor D.; Villasante, Eileen Franke; Vasta, Gerardo R.; Fernández-Robledo, José-Antonio; Casares, Sofia

    2014-01-01

    Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA0) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA0 mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents. PMID:24498105

  10. Effects of temporally persistent ant nests of soil protozoan communities and the abundance of morphological types of amoeba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared soil protozoan communities near ant nests with soil protozoans in reference soils 5m from the edge of any mounds. We sampled three species of Chihuahuan Desert ants that construct nests that persist for more than a decade: a seed harvester, Pogonomymex rugosus, a liquid feeding honey-po...

  11. DETECTION OF PROTOZOAN PARASITES IN SOURCE AND FINISHED WATER - 3RD EDITION ASM'S METHODS IN ENVIRONMENTAL MICROBIOLOGY

    EPA Science Inventory

    Protozoans are eukaryotic organisms which can live either a free-living or parasitic existence. Some free-living forms, under the right conditions, can become opportunistic parasites. Enteric pathogenic protozoans, like Giardia and Cryptosporidium, which are now known to be tra...

  12. A new species of Isospora Schneider, 1881 (Apicomplexa: Eimeriidae) from Morafka's desert tortoise Gopherus morafkai (Testudines: Testudinidae).

    PubMed

    Hnida, John A

    2015-11-01

    Isospora gopheri n. sp. (Apicomplexa: Eimeriidae) is described from 5 of 28 (18%) Morafka's desert tortoise Gopherus morafkai Murphy, Berry, Edwards, Leviton, Lathrop & Readle, housed by the Phoenix Herpetological Society, Maricopa County, Arizona, USA. Sporulated oöcysts of this new species were spheroidal to subspheroidal, 20-27 × 19-27 (23.0 × 21.7) µm, with a smooth, bi-layered wall and 1-3 polar granules; an oöcyst residuum was absent. Sporocysts were elongate-ovoidal to ellipsoidal, 13-18 × 9-12 (15.9 × 10.2) µm, with a Stieda body, sub-Stieda body and sporocyst residuum; sporozoites were banana-shaped with an ellipsoidal posterior refractile body and a spheroidal anterior refractile body. This is both the first coccidian to be described from this host species and only the second reported from the host genus. PMID:26446544

  13. A Database of Plastid Protein Families from Red Algae and Apicomplexa and Expression Regulation of the moeB Gene

    PubMed Central

    2015-01-01

    We report the database of plastid protein families from red algae, secondary and tertiary rhodophyte-derived plastids, and Apicomplexa constructed with the novel method to infer orthology. The families contain proteins with maximal sequence similarity and minimal paralogous content. The database contains 6509 protein entries, 513 families and 278 nonsingletons (from which 230 are paralog-free, and among the remaining 48, 46 contain at maximum two proteins per species, and 2 contain at maximum three proteins per species). The method is compared with other approaches. Expression regulation of the moeB gene is studied using this database and the model of RNA polymerase competition. An analogous database obtained for green algae and their symbiotic descendants, and applications based on it are published earlier. PMID:26114108

  14. Isospora celata n. sp. (Apicomplexa: Eimeriidae) from the orange-crowned warbler Oreothlypis celata (Say) (Passeriformes: Parulidae) in Mexico.

    PubMed

    Berto, Bruno Pereira; Medina, Juan Pablo; Salgado-Miranda, Celene; García-Conejo, Michele; Janczur, Mariusz Krzysztof; Lopes, Carlos Wilson Gomes; Soriano-Vargas, Edgardo

    2014-11-01

    A new coccidian species (Protista: Apicomplexa: Eimeriidae) is described from the orange-crowned warbler Oreothlypis celata (Say) collected in the Nevado de Toluca National Park, Mexico at 3,000 metres above sea level. Isospora celata n. sp. has subspheroidal oöcysts, measuring 28.4 × 26.4 μm, with smooth, bi-layered wall c.1.2 μm thick. Micropyle and polar granule are absent, but oöcyst residuum is present as a compact mass. Sporocysts are ovoidal, 18.2 × 12.8 µm. Stieda body knob-like and sub-Stieda body irregular and barely discernible. Sporocyst residuum is composed of granules of different sizes. Sporozoites are vermiform with one refractile body and a nucleus. This is the third description of an isosporoid coccidian infecting a New World warbler. PMID:25301514

  15. Eimeria pileata n. sp. (Apicomplexa: Eimeriidae) from the rufous-capped brush finch Atlapetes pileatus Wagler (Passeriformes: Emberizidae) in Mexico.

    PubMed

    Soriano-Vargas, Edgardo; Medina, Juan Pablo; Salgado-Miranda, Celene; García-Conejo, Michele; Galindo-Sánchez, Karla Patrícia; Janczur, Mariusz Krzysztof; Berto, Bruno Pereira; Lopes, Carlos Wilson Gomes

    2015-11-01

    A new coccidian species (Protista: Apicomplexa: Eimeriidae) collected from the rufous-capped brush finch Atlapetes pileatus Wagler in the Nevado de Toluca Natural Protected Area, Mexico. Oöcysts of Eimeria pileata n. sp. are ellipsoidal, measuring on average 16.5 × 14.1 μm, with a smooth, bi-layered wall. Micropyle and oöcyst residuum are absent, but a polar granule is present. Sporocysts are ellipsoidal, measuring on average 9.0 × 5.4 μm. Stieda and sub-Stieda bodies are both present. A sporocyst residuum is present as a compact mass of granules. This is the third description of an eimeriid coccidian infecting passerines. PMID:26446548

  16. A new isosporoid coccidia (Apicomplexa: Eimeriidae)from the southern house wren Troglodytes musculus Naumann, 1823 (Passeriformes: Troglodytidae) from Brazil.

    PubMed

    doBomfim Lopes, Bruno; Rodrigues, Mariana Borges; da Silva, Lidiane Maria; Berto, Bruno Pereira; Luz, Hermes Ribeiro; Ferreira, Ildemar; Lopes, Carlos Wilson Gomes

    2016-06-01

    A new isosporoid coccidian species (Protozoa: Apicomplexa: Eimeriidae) is reported from the southern house wren Troglodytes musculus, a very well distributed species in South and Central America. Isospora corruirae sp. nov. oocysts are subspherical to ovoidal, 24.1 × 21.4 μm, with smooth, bilayered wall. Micropyle and oocyst residuum are absent, but small spherules and splinter-like granules are frequently present. Sporocysts are ovoidal to piriform, 14.0 × 9.5 μm. Stieda body is prominent knob-like and substieda body is delicate. Sporocyst residuum is composed of scattered fragments of different sizes. Sporozoites are vermiform with posterior refractile bodies, anterior striations and a nucleus. This is the second description of an isosporoid coccidium infecting a New World wren. PMID:27078670

  17. Persistence of free-living protozoan communities across rearing cycles in commercial poultry houses.

    PubMed

    Baré, Julie; Houf, Kurt; Verstraete, Tine; Vaerewijck, Mario; Sabbe, Koen

    2011-03-01

    The introduction and survival of zoonotic bacterial pathogens in poultry farming have been linked to bacterial association with free-living protozoa. To date, however, no information is available on the persistence of protozoan communities in these environments across consecutive rearing cycles and how it is affected by farm- and habitat-specific characteristics and management strategies. We therefore investigated the spatial and temporal dynamics of free-living protozoa in three habitats (pipeline, water, and miscellaneous samples) in three commercial poultry houses across three rearing cycles by using the molecular fingerprinting technique denaturing gradient gel electrophoresis (DGGE). Our study provides strong evidence for the long-term (ca. 6-month) persistence of protozoa in broiler houses across consecutive rearing cycles. Various free-living protozoa (flagellates, ciliates, and amoebae), including known vectors of bacterial pathogens, were observed during the down periods in between rearing cycles. In addition, multivariate analysis and variation partitioning showed that the protozoan community structure in the broiler houses showed almost no change across rearing cycles and remained highly habitat and farm specific. Unlike in natural environments, protozoan communities inside broiler houses are therefore not seasonal. Our results imply that currently used biosecurity measures (cleaning and disinfection) applied during the down periods are not effective against many protozoans and therefore cannot prevent potential cross-contamination of bacterial pathogens via free-living protozoa between rearing cycles. PMID:21239551

  18. Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ciliate protozoan Ichthyophthirius multifiliis (Ich) is an important parasite of freshwater fish that causes 'white spot disease' leading to significant losses. A genomic resource for large-scale studies of this parasite has been lacking. To study gene expression involved in Ich pathogenesis and...

  19. ANTIOXIDANT ENZYMES, POTENTIAL VIRULENT FACTORS, IN DIFFERENT STRAINS OF THE OYSTER PROTOZOAN PARASITE, PERKINSUS MARINUS

    EPA Science Inventory

    The oyster protozoan parasite, Perkinsus marinus, is one of the two important parasites causing severe mortality in the eastern oysters (Crassostrea virginica) on the US east coast. Our recent study suggests that P. marinus cells and its extracellular products (ECP) could scaveng...

  20. Parasitism by protozoan Ichthyophthirius enhanced invasion of Aeromonas hydrophila in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In aquaculture production mortality resulting from a single pathogen is rare. More likely, multiple disease agents are present and responsible for disease losses. The ciliated protozoan Ichthyophthirius multifiliis is a common parasite of freshwater fish and frequently causes mass kills of culture...

  1. Entorrhizomycota: A New Fungal Phylum Reveals New Perspectives on the Evolution of Fungi

    PubMed Central

    Garnica, Sigisfredo; Oberwinkler, Franz; Riess, Kai; Weiß, Michael; Begerow, Dominik

    2015-01-01

    Entorrhiza is a small fungal genus comprising 14 species that all cause galls on roots of Cyperaceae and Juncaceae. Although this genus was established 130 years ago, crucial questions on the phylogenetic relationships and biology of this enigmatic taxon are still unanswered. In order to infer a robust hypothesis about the phylogenetic position of Entorrhiza and to evaluate evolutionary trends, multiple gene sequences and morphological characteristics of Entorrhiza were analyzed and compared with respective findings in Fungi. In our comprehensive five-gene analyses Entorrhiza appeared as a highly supported monophyletic lineage representing the sister group to the rest of the Dikarya, a phylogenetic placement that received but moderate maximum likelihood and maximum parsimony bootstrap support. An alternative maximum likelihood tree with the constraint that Entorrhiza forms a monophyletic group with Basidiomycota could not be rejected. According to the first phylogenetic hypothesis, the teliospore tetrads of Entorrhiza represent the prototype of the dikaryan meiosporangium. The alternative hypothesis is supported by similarities in septal pore structure, cell wall and spindle pole bodies. Based on the isolated phylogenetic position of Entorrhiza and its peculiar combination of features related to ultrastructure and reproduction mode, we propose a new phylum Entorrhizomycota, for the genus Entorrhiza, which represents an apparently widespread group of inconspicuous fungi. PMID:26200112

  2. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge.

    PubMed

    Kindaichi, Tomonori; Yamaoka, Shiro; Uehara, Ryohei; Ozaki, Noriatsu; Ohashi, Akiyoshi; Albertsen, Mads; Nielsen, Per Halkjær; Nielsen, Jeppe Lund

    2016-06-01

    Candidate phylum Saccharibacteria (former TM7) are abundant and widespread in nature, but little is known about their ecophysiology and detailed phylogeny. In this study phylogeny, morphology and ecophysiology of Saccharibacteria were investigated in activated sludge from nine wastewater treatment plants (WWTPs) from Japan and Denmark using the full-cycle 16S rRNA approach in combination with microautoradiography (MAR) and fluorescence in situ hybridization (FISH). Phylogenetic analysis showed that Saccharibacteria from all WWTPs were evenly distributed within subdivision 1 and 3 and in a distinct phylogenetic clade. Three probes were designed for the distinct saccharibacterial groups, and revealed morphotypes representing thin filaments, thick filaments and rods/cocci. MAR-FISH results showed that most probe-defined Saccharibacteria utilized glucose under aerobic-, nitrate reducing- and anaerobic conditions. Some Saccharibacteria also utilized N-acetylglucosamine, oleic acid, amino acids and butyrate, which are not predicted from available genomes so far. In addition, some filamentous Saccharibacteria exhibited β-galactosidase and lipase activities determined using a combination of enzyme-labeled fluorescence and FISH (ELF-FISH). No uptake of acetate, propionate, pyruvate, glycerol and ethanol was observed. These results indicate that Saccharibacteria is a phylogenetically diverse group and play a role in the degradation of various organic compounds as well as sugar compounds under aerobic-, nitrate reducing- and anaerobic conditions. PMID:27090759

  3. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa.

    PubMed

    Paknia, Omid; Schierwater, Bernd

    2015-01-01

    The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55N to 44S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing "no biogeography." PMID:26580806

  4. Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium' in the phylum Nitrospirae

    PubMed Central

    Lin, Wei; Deng, Aihua; Wang, Zhang; Li, Ying; Wen, Tingyi; Wu, Long-Fei; Wu, Martin; Pan, Yongxin

    2014-01-01

    Magnetotactic bacteria (MTB) of the genus ‘Candidatus Magnetobacterium' in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magnetosomes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named ‘Ca. Magnetobacterium casensis' isolated from Lake Miyun, China. The genome sequence indicates an autotrophic lifestyle using the Wood–Ljungdahl pathway for CO2 fixation, which has not been described in any previously known MTB or Nitrospirae organisms. Pathways involved in the denitrification, sulfur oxidation and sulfate reduction have been predicted, indicating its considerable capacity for adaptation to variable geochemical conditions and roles in local biogeochemical cycles. Moreover, we have identified a complete magnetosome gene island containing mam, mad and a set of novel genes (named as man genes) putatively responsible for the formation of bullet-shaped magnetite magnetosomes and the arrangement of multiple magnetosome chains. This first comprehensive genomic analysis sheds light on the physiology, ecology and biomineralization of the poorly understood ‘Ca. Magnetobacterium' genus. PMID:24914800

  5. Characterization of taxonomically restricted genes in a phylum-restricted cell type

    PubMed Central

    Milde, Sabine; Hemmrich, Georg; Anton-Erxleben, Friederike; Khalturin, Konstantin; Wittlieb, Jörg; Bosch, Thomas CG

    2009-01-01

    Background Despite decades of research, the molecular mechanisms responsible for the evolution of morphological diversity remain poorly understood. While current models assume that species-specific morphologies are governed by differential use of conserved genetic regulatory circuits, it is debated whether non-conserved taxonomically restricted genes are also involved in making taxonomically relevant structures. The genomic resources available in Hydra, a member of the early branching animal phylum Cnidaria, provide a unique opportunity to study the molecular evolution of morphological novelties such as the nematocyte, a cell type characteristic of, and unique to, Cnidaria. Results We have identified nematocyte-specific genes by suppression subtractive hybridization and find that a considerable portion has no homologues to any sequences in animals outside Hydra. By analyzing the transcripts of these taxonomically restricted genes and mining of the Hydra magnipapillata genome, we find unexpected complexity in gene structure and transcript processing. Transgenic Hydra expressing the green fluorescent protein reporter under control of one of the taxonomically restricted gene promoters recapitulate faithfully the described expression pattern, indicating that promoters of taxonomically restricted genes contain all elements essential for spatial and temporal control mechanisms. Surprisingly, phylogenetic footprinting of this promoter did not reveal any conserved cis-regulatory elements. Conclusions Our findings suggest that taxonomically restricted genes are involved in the evolution of morphological novelties such as the cnidarian nematocyte. The transcriptional regulatory network controlling taxonomically restricted gene expression may contain not yet characterized transcription factors or cis-regulatory elements. PMID:19161630

  6. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  7. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils.

    PubMed

    Ranjan, Kshitij; Paula, Fabiana S; Mueller, Rebecca C; Jesus, Ederson da C; Cenciani, Karina; Bohannan, Brendan J M; Nüsslein, Klaus; Rodrigues, Jorge L M

    2015-01-01

    The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils. PMID:26284056

  8. Global Patterns of Abundance, Diversity and Community Structure of the Aminicenantes (Candidate Phylum OP8)

    PubMed Central

    Farag, Ibrahim F.; Davis, James P.; Youssef, Noha H.; Elshahed, Mostafa S.

    2014-01-01

    We investigated the global patterns of abundance, diversity, and community structure of members of the Aminicenantes (candidate phylum OP8). Our aim was to identify the putative ecological role(s) played by members of this poorly characterized bacterial lineages in various ecosystems. Analysis of near full-length 16S rRNA genes identified four classes and eight orders within the Aminicenantes. Within 3,134 datasets comprising ∼1.8 billion high throughput-generated partial 16S rRNA genes, 47,351 Aminicenantes-affiliated sequences were identified in 913 datasets. The Aminicenantes exhibited the highest relative abundance in hydrocarbon-impacted environments, followed by marine habitats (especially hydrothermal vents and coral-associated microbiome samples), and aquatic, non-marine habitats (especially in terrestrial springs and groundwater samples). While the overall abundance of the Aminicenantes was higher in low oxygen tension as well as non-saline and low salinity habitats, it was encountered in a wide range of oxygen tension, salinities, and temperatures. Analysis of the community structure of the Aminicenantes showed distinct patterns across various datasets that appear to be, mostly, driven by habitat variations rather than prevalent environmental parameters. We argue that the detection of the Aminicenantes across environmental extremes and the observed distinct community structure patterns reflect a high level of intraphylum metabolic diversity and adaptive capabilities that enable its survival and growth in a wide range of habitats and environmental conditions. PMID:24637619

  9. Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the phylum Nitrospirae.

    PubMed

    Lin, Wei; Deng, Aihua; Wang, Zhang; Li, Ying; Wen, Tingyi; Wu, Long-Fei; Wu, Martin; Pan, Yongxin

    2014-12-01

    Magnetotactic bacteria (MTB) of the genus 'Candidatus Magnetobacterium' in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magnetosomes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named 'Ca. Magnetobacterium casensis' isolated from Lake Miyun, China. The genome sequence indicates an autotrophic lifestyle using the Wood-Ljungdahl pathway for CO2 fixation, which has not been described in any previously known MTB or Nitrospirae organisms. Pathways involved in the denitrification, sulfur oxidation and sulfate reduction have been predicted, indicating its considerable capacity for adaptation to variable geochemical conditions and roles in local biogeochemical cycles. Moreover, we have identified a complete magnetosome gene island containing mam, mad and a set of novel genes (named as man genes) putatively responsible for the formation of bullet-shaped magnetite magnetosomes and the arrangement of multiple magnetosome chains. This first comprehensive genomic analysis sheds light on the physiology, ecology and biomineralization of the poorly understood 'Ca. Magnetobacterium' genus. PMID:24914800

  10. Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees.

    PubMed

    Kwong, Waldan K; Moran, Nancy A

    2016-03-01

    Honey bees and bumble bees harbour a small, defined set of gut bacterial associates. Strains matching sequences from 16S rRNA gene surveys of bee gut microbiotas were isolated from two honey bee species from East Asia. These isolates were mesophlic, non-pigmented, catalase-positive and oxidase-negative. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 0 and C16 : 0 3-OH. The DNA G+C content was 29-31 mol%. They had ∼87 % 16S rRNA gene sequence identity to the closest relatives described. Phylogenetic reconstruction using 20 protein-coding genes showed that these bee-derived strains formed a highly supported monophyletic clade, sister to the clade containing species of the genera Chryseobacterium and Elizabethkingia within the family Flavobacteriaceae of the phylum Bacteroidetes. On the basis of phenotypic and genotypic characteristics, we propose placing these strains in a novel genus and species: Apibacter adventoris gen. nov., sp. nov. The type strain of Apibacter adventoris is wkB301T ( = NRRL B-65307T = NCIMB 14986T). PMID:26743158

  11. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.

    PubMed

    Greening, Chris; Carere, Carlo R; Rushton-Green, Rowena; Harold, Liam K; Hards, Kiel; Taylor, Matthew C; Morales, Sergio E; Stott, Matthew B; Cook, Gregory M

    2015-08-18

    The majority of microbial cells in global soils exist in a spectrum of dormant states. However, the metabolic processes that enable them to survive environmental challenges, such as nutrient-limitation, remain to be elucidated. In this work, we demonstrate that energy-starved cultures of Pyrinomonas methylaliphatogenes, an aerobic heterotrophic acidobacterium isolated from New Zealand volcanic soils, persist by scavenging the picomolar concentrations of H2 distributed throughout the atmosphere. Following the transition from exponential to stationary phase due to glucose limitation, the bacterium up-regulates by fourfold the expression of an eight-gene operon encoding an actinobacteria-type H2-uptake [NiFe]-hydrogenase. Whole-cells of the organism consume atmospheric H2 in a first-order kinetic process. Hydrogen oxidation occurred most rapidly under oxic conditions and was weakly associated with the cell membrane. We propose that atmospheric H2 scavenging serves as a mechanism to sustain the respiratory chain of P. methylaliphatogenes when organic electron donors are scarce. As the first observation of H2 oxidation to our knowledge in the Acidobacteria, the second most dominant soil phylum, this work identifies new sinks in the biogeochemical H2 cycle and suggests that trace gas oxidation may be a general mechanism for microbial persistence. PMID:26240343

  12. A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota.

    PubMed

    Stürmer, Sidney Luiz

    2012-05-01

    Arbuscular mycorrhizal fungi (AMF) are grouped in a monophyletic group, the phylum Glomeromycota. In this review, the history and complexity of the taxonomy and systematics of these obligate biotrophs is addressed by recognizing four periods. The initial discovery period (1845-1974) is characterized by description mainly of sporocarp-forming species and the proposal of a classification for these fungi. The following alpha taxonomy period (1975-1989) established a solid morphological basis for species identification and classification, resulting in a profuse description of new species and a need to standardize the nomenclature of spore subcellular structures. The cladistics period from 1990 to 2000 saw the first cladistic classification of AMF based on phenotypic characters only. At the end of this period, genetic characters played a role in defining taxa and elucidating evolutionary relationships within the group. The most recent phylogenetic synthesis period (2001 to present) started with the proposal of a new classification based on genetic characters using sequences of the multicopy rRNA genes. PMID:22391803

  13. Diversity of freshwater Thioploca species and their specific association with filamentous bacteria of the phylum Chloroflexi.

    PubMed

    Nemoto, Fumiko; Kojima, Hisaya; Fukui, Manabu

    2011-11-01

    Phylogenetic diversity among filamentous sulfur-oxidizing bacteria of the genus Thioploca inhabiting freshwater/brackish environments was analyzed in detail. The 16S rRNA gene sequence of Thioploca found in a freshwater lake in Japan, Lake Okotanpe, was identical to that of Thioploca from Lake Ogawara, a brackish lake. The samples of the two lakes could be differentiated by the sequences of their 23S rRNA genes and 16S-23S rRNA internal transcribed spacer (ITS) regions. The 23S rRNA-based phylogenetic relationships between Thioploca samples from four lakes (Lake Okotanpe, Lake Ogawara, Lake Biwa, and Lake Constance) were similar to those based on the 16S rRNA gene sequences. In addition, multiple types of the ITS sequences were obtained from Thioploca inhabiting Lake Okotanpe and Lake Constance. Variations within respective Thioploca populations were also observed in the analysis of the soxB gene, involved in sulfur oxidation. As major members of the sheath-associated microbial community, bacteria of the phylum Chloroflexi were consistently detected in the samples from different lakes. Fluorescence in situ hybridization revealed that they were filamentous and abundantly distributed within the sheaths of Thioploca. PMID:21800088

  14. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa

    PubMed Central

    Paknia, Omid; Schierwater, Bernd

    2015-01-01

    The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55°N to 44°S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing “no biogeography.” PMID:26580806

  15. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking

    PubMed Central

    Ohashi, Akiko; Parks, Donovan H.; Yamauchi, Toshihiro; Tyson, Gene W.

    2015-01-01

    Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking. PMID:25650158

  16. Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism

    PubMed Central

    Goto, Ryutaro; Okamoto, Tomoko; Ishikawa, Hiroshi; Hamamura, Yoichi; Kato, Makoto

    2013-01-01

    The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid-like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bonelliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms. PMID:23457618

  17. 'Candidatus Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics.

    PubMed

    Liu, Zhenfeng; Klatt, Christian G; Ludwig, Marcus; Rusch, Douglas B; Jensen, Sheila I; Kühl, Michael; Ward, David M; Bryant, Donald A

    2012-10-01

    An uncultured member of the phylum Chlorobi, provisionally named 'Candidatus Thermochlorobacter aerophilum', occurs in the microbial mats of alkaline siliceous hot springs at the Yellowstone National Park. 'Ca. T. aerophilum' was investigated through metagenomic and metatranscriptomic approaches. 'Ca. T. aerophilum' is a member of a novel, family-level lineage of Chlorobi, a chlorophototroph that synthesizes type-1 reaction centers and chlorosomes similar to cultivated relatives among the green sulfur bacteria, but is otherwise very different physiologically. 'Ca. T. aerophilum' is proposed to be an aerobic photoheterotroph that cannot oxidize sulfur compounds, cannot fix N(2), and does not fix CO(2) autotrophically. Metagenomic analyses suggest that 'Ca. T. aerophilum' depends on other mat organisms for fixed carbon and nitrogen, several amino acids, and other important nutrients. The failure to detect bchU suggests that 'Ca. T. aerophilum' synthesizes bacteriochlorophyll (BChl) d, and thus it occupies a different ecological niche than other chlorosome-containing chlorophototrophs in the mat. Transcription profiling throughout a diel cycle revealed distinctive gene expression patterns. Although 'Ca. T. aerophilum' probably photoassimilates organic carbon sources and synthesizes most of its cell materials during the day, it mainly transcribes genes for BChl synthesis during late afternoon and early morning, and it synthesizes and assembles its photosynthetic apparatus during the night. PMID:22456447

  18. Entorrhizomycota: A New Fungal Phylum Reveals New Perspectives on the Evolution of Fungi.

    PubMed

    Bauer, Robert; Garnica, Sigisfredo; Oberwinkler, Franz; Riess, Kai; Weiß, Michael; Begerow, Dominik

    2015-01-01

    Entorrhiza is a small fungal genus comprising 14 species that all cause galls on roots of Cyperaceae and Juncaceae. Although this genus was established 130 years ago, crucial questions on the phylogenetic relationships and biology of this enigmatic taxon are still unanswered. In order to infer a robust hypothesis about the phylogenetic position of Entorrhiza and to evaluate evolutionary trends, multiple gene sequences and morphological characteristics of Entorrhiza were analyzed and compared with respective findings in Fungi. In our comprehensive five-gene analyses Entorrhiza appeared as a highly supported monophyletic lineage representing the sister group to the rest of the Dikarya, a phylogenetic placement that received but moderate maximum likelihood and maximum parsimony bootstrap support. An alternative maximum likelihood tree with the constraint that Entorrhiza forms a monophyletic group with Basidiomycota could not be rejected. According to the first phylogenetic hypothesis, the teliospore tetrads of Entorrhiza represent the prototype of the dikaryan meiosporangium. The alternative hypothesis is supported by similarities in septal pore structure, cell wall and spindle pole bodies. Based on the isolated phylogenetic position of Entorrhiza and its peculiar combination of features related to ultrastructure and reproduction mode, we propose a new phylum Entorrhizomycota, for the genus Entorrhiza, which represents an apparently widespread group of inconspicuous fungi. PMID:26200112

  19. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging

    PubMed Central

    Greening, Chris; Carere, Carlo R.; Rushton-Green, Rowena; Harold, Liam K.; Hards, Kiel; Taylor, Matthew C.; Morales, Sergio E.; Stott, Matthew B.; Cook, Gregory M.

    2015-01-01

    The majority of microbial cells in global soils exist in a spectrum of dormant states. However, the metabolic processes that enable them to survive environmental challenges, such as nutrient-limitation, remain to be elucidated. In this work, we demonstrate that energy-starved cultures of Pyrinomonas methylaliphatogenes, an aerobic heterotrophic acidobacterium isolated from New Zealand volcanic soils, persist by scavenging the picomolar concentrations of H2 distributed throughout the atmosphere. Following the transition from exponential to stationary phase due to glucose limitation, the bacterium up-regulates by fourfold the expression of an eight-gene operon encoding an actinobacteria-type H2-uptake [NiFe]-hydrogenase. Whole-cells of the organism consume atmospheric H2 in a first-order kinetic process. Hydrogen oxidation occurred most rapidly under oxic conditions and was weakly associated with the cell membrane. We propose that atmospheric H2 scavenging serves as a mechanism to sustain the respiratory chain of P. methylaliphatogenes when organic electron donors are scarce. As the first observation of H2 oxidation to our knowledge in the Acidobacteria, the second most dominant soil phylum, this work identifies new sinks in the biogeochemical H2 cycle and suggests that trace gas oxidation may be a general mechanism for microbial persistence. PMID:26240343

  20. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils

    PubMed Central

    Ranjan, Kshitij; Paula, Fabiana S.; Mueller, Rebecca C.; Jesus, Ederson da C.; Cenciani, Karina; Bohannan, Brendan J. M.; Nüsslein, Klaus; Rodrigues, Jorge L. M.

    2015-01-01

    The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils. PMID:26284056

  1. A unique mitovirus from Glomeromycota, the phylum of arbuscular mycorrhizal fungi.

    PubMed

    Kitahara, Ryoko; Ikeda, Yoji; Shimura, Hanako; Masuta, Chikara; Ezawa, Tatsuhiro

    2014-08-01

    Arbuscular mycorrhizal (AM) fungi that belong to the phylum Glomeromycota associate with most land plants and supply mineral nutrients to the host plants. One of the four viral segments found by deep-sequencing of dsRNA in the AM fungus Rhizophagus clarus strain RF1 showed similarity to mitoviruses and is characterized in this report. The genome segment is 2,895 nucleotides in length, and the largest ORF was predicted by applying either the mold mitochondrial or the universal genetic code. The ORF encodes a polypeptide of 820 amino acids with a molecular mass of 91.2 kDa and conserves the domain of the mitovirus RdRp superfamily. Accordingly, the dsRNA was designated as R. clarus mitovirus 1 strain RF1 (RcMV1-RF1). Mitoviruses are localized exclusively in mitochondria and thus generally employ the mold mitochondrial genetic code. The distinct codon usage of RcMV1-RF1, however, suggests that the virus is potentially able to replicate not only in mitochondria but also in the cytoplasm. RcMV1-RF1 RdRp showed the highest similarity to the putative RdRp of a mitovirus-like ssRNA found in another AM fungus, followed by RdRp of a mitovirus in an ascomycotan ectomycorrhizal fungus. The three mitoviruses found in the three mycorrhizal fungi formed a deeply branching clade that is distinct from the two major clades in the genus Mitovirus. PMID:24532299

  2. Genomic Analysis of Elusimicrobium minutum, the First Cultivated Representative of the Phylum Elusimicrobia (Formerly Termite Group 1)?

    PubMed Central

    Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A.

    2009-01-01

    Organisms of the candidate phylum termite group 1 (TG1) are regularly encountered in termite hindguts but are present also in many other habitats. Here, we report the complete genome sequence (1.64 Mbp) of Elusimicrobium minutum strain Pei191T, the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut, and we discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, nonribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of Elusimicrobia (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis. PMID:19270133

  3. Genome analysis of Elusimicrobium minutum, the first cultivated representative of the Elusimicrobia phylum (formerly Termite Group 1)

    SciTech Connect

    Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A.

    2009-02-01

    The candidate phylum Termite group 1 (TG1), is regularly 1 encountered in termite hindguts but is present also in many other habitats. Here we report the complete genome sequence (1.64 Mbp) of Elusimicrobium minutum strain Pei191{sup T}, the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut and discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a Gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, non-ribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of Elusimicrobia (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.

  4. Isolation and Characterization of Soil Bacteria That Define Terriglobus gen. nov., in the Phylum Acidobacteria▿

    PubMed Central

    Eichorst, Stephanie A.; Breznak, John A.; Schmidt, Thomas M.

    2007-01-01

    Bacteria in the phylum Acidobacteria are widely distributed and abundant in soils, but their ecological roles are poorly understood, owing in part to a paucity of cultured representatives. In a molecular survey of acidobacterial diversity at the Michigan State University Kellogg Biological Station Long-Term Ecological Research site, 27% of acidobacterial 16S rRNA gene clones in a never-tilled, successional plant community belonged to subdivision 1, whose relative abundance varied inversely with soil pH. Strains of subdivision 1 were isolated from these never-tilled soils using low-nutrient medium incubated for 3 to 4 weeks under elevated levels of carbon dioxide, which resulted in a slightly acidified medium that matched the pH optima of the strains (between 5 and 6). Colonies were approximately 1 mm in diameter and either white or pink, the latter due to a carotenoid(s) that was synthesized preferentially under 20% instead of 2% oxygen. Strains were gram-negative, aerobic, chemo-organotrophic, nonmotile rods that produced an extracellular matrix. All strains contained either one or two copies of the 16S rRNA encoding gene, which along with a relatively slow doubling time (10 to 15 h at ca. 23°C) is suggestive of an oligotrophic lifestyle. Six of the strains are sufficiently similar to one another, but distinct from previously named Acidobacteria, to warrant creation of a new genus, Terriglobus, with Terriglobus roseus defined as the type species. The physiological and nutritional characteristics of Terriglobus are consistent with its potential widespread distribution in soil. PMID:17293520

  5. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi

    PubMed Central

    Wasmund, Kenneth; Schreiber, Lars; Lloyd, Karen G; Petersen, Dorthe G; Schramm, Andreas; Stepanauskas, Ramunas; Jørgensen, Bo Barker; Adrian, Lorenz

    2014-01-01

    Bacteria of the class Dehalococcoidia (DEH), phylum Chloroflexi, are widely distributed in the marine subsurface, yet metabolic properties of the many uncultivated lineages are completely unknown. This study therefore analysed genomic content from a single DEH cell designated ‘DEH-J10' obtained from the sediments of Aarhus Bay, Denmark. Real-time PCR showed the DEH-J10 phylotype was abundant in upper sediments but was absent below 160 cm below sea floor. A 1.44 Mbp assembly was obtained and was estimated to represent up to 60.8% of the full genome. The predicted genome is much larger than genomes of cultivated DEH and appears to confer metabolic versatility. Numerous genes encoding enzymes of core and auxiliary beta-oxidation pathways were identified, suggesting that this organism is capable of oxidising various fatty acids and/or structurally related substrates. Additional substrate versatility was indicated by genes, which may enable the bacterium to oxidise aromatic compounds. Genes encoding enzymes of the reductive acetyl-CoA pathway were identified, which may also enable the fixation of CO2 or oxidation of organics completely to CO2. Genes encoding a putative dimethylsulphoxide reductase were the only evidence for a respiratory terminal reductase. No evidence for reductive dehalogenase genes was found. Genetic evidence also suggests that the organism could synthesise ATP by converting acetyl-CoA to acetate by substrate-level phosphorylation. Other encoded enzymes putatively conferring marine adaptations such as salt tolerance and organo-sulphate sulfohydrolysis were identified. Together, these analyses provide the first insights into the potential metabolic traits that may enable members of the DEH to occupy an ecological niche in marine sediments. PMID:23966099

  6. In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3).

    PubMed

    Youssef, Noha H; Farag, Ibrahim F; Rinke, Christian; Hallam, Steven J; Woyke, Tanja; Elshahed, Mostafa S

    2015-01-01

    The "Latescibacteria" (formerly WS3), member of the Fibrobacteres-Chlorobi-Bacteroidetes (FCB) superphylum, represents a ubiquitous candidate phylum found in terrestrial, aquatic, and marine ecosystems. Recently, single-cell amplified genomes (SAGs) representing the "Latescibacteria" were obtained from the anoxic monimolimnion layers of Sakinaw Lake (British Columbia, Canada), and anoxic sediments of a coastal lagoon (Etoliko lagoon, Western Greece). Here, we present a detailed in-silico analysis of the four SAGs to gain some insights on their metabolic potential and apparent ecological roles. Metabolic reconstruction suggests an anaerobic fermentative mode of metabolism, as well as the capability to degrade multiple polysaccharides and glycoproteins that represent integral components of green (Charophyta and Chlorophyta) and brown (Phaeophycaea) algae cell walls (pectin, alginate, ulvan, fucan, hydroxyproline-rich glycoproteins), storage molecules (starch and trehalose), and extracellular polymeric substances (EPSs). The analyzed SAGs also encode dedicated transporters for the uptake of produced sugars and amino acids/oligopeptides, as well as an extensive machinery for the catabolism of all transported sugars, including the production of a bacterial microcompartment (BMC) to sequester propionaldehyde, a toxic intermediate produced during fucose and rhamnose metabolism. Finally, genes for the formation of gas vesicles, flagella, type IV pili, and oxidative stress response were found, features that could aid in cellular association with algal detritus. Collectively, these results indicate that the analyzed "Latescibacteria" mediate the turnover of multiple complex organic polymers of algal origin that reach deeper anoxic/microoxic habitats in lakes and lagoons. The implications of such process on our understanding of niche specialization in microbial communities mediating organic carbon turnover in stratified water bodies are discussed. PMID:26039074

  7. On the Extent and Origins of Genic Novelty in the Phylum Nematoda

    PubMed Central

    Wasmuth, James; Schmid, Ralf; Hedley, Ann; Blaxter, Mark

    2008-01-01

    Background The phylum Nematoda is biologically diverse, including parasites of plants and animals as well as free-living taxa. Underpinning this diversity will be commensurate diversity in expressed genes, including gene sets associated specifically with evolution of parasitism. Methods and Findings Here we have analyzed the extensive expressed sequence tag data (available for 37 nematode species, most of which are parasites) and define over 120,000 distinct putative genes from which we have derived robust protein translations. Combined with the complete proteomes of Caenorhabditis elegans and Caenorhabditis briggsae, these proteins have been grouped into 65,000 protein families that in turn contain 40,000 distinct protein domains. We have mapped the occurrence of domains and families across the Nematoda and compared the nematode data to that available for other phyla. Gene loss is common, and in particular we identify nearly 5,000 genes that may have been lost from the lineage leading to the model nematode C. elegans. We find a preponderance of novelty, including 56,000 nematode-restricted protein families and 26,000 nematode-restricted domains. Mapping of the latest time-of-origin of these new families and domains across the nematode phylogeny revealed ongoing evolution of novelty. A number of genes from parasitic species had signatures of horizontal transfer from their host organisms, and parasitic species had a greater proportion of novel, secreted proteins than did free-living ones. Conclusions These classes of genes may underpin parasitic phenotypes, and thus may be targets for development of effective control measures. PMID:18596977

  8. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria

    PubMed Central

    2008-01-01

    Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa. PMID:18471296

  9. In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3)

    PubMed Central

    Youssef, Noha H.; Farag, Ibrahim F.; Rinke, Christian; Hallam, Steven J.; Woyke, Tanja; Elshahed, Mostafa S.

    2015-01-01

    The “Latescibacteria” (formerly WS3), member of the Fibrobacteres–Chlorobi–Bacteroidetes (FCB) superphylum, represents a ubiquitous candidate phylum found in terrestrial, aquatic, and marine ecosystems. Recently, single-cell amplified genomes (SAGs) representing the “Latescibacteria” were obtained from the anoxic monimolimnion layers of Sakinaw Lake (British Columbia, Canada), and anoxic sediments of a coastal lagoon (Etoliko lagoon, Western Greece). Here, we present a detailed in-silico analysis of the four SAGs to gain some insights on their metabolic potential and apparent ecological roles. Metabolic reconstruction suggests an anaerobic fermentative mode of metabolism, as well as the capability to degrade multiple polysaccharides and glycoproteins that represent integral components of green (Charophyta and Chlorophyta) and brown (Phaeophycaea) algae cell walls (pectin, alginate, ulvan, fucan, hydroxyproline-rich glycoproteins), storage molecules (starch and trehalose), and extracellular polymeric substances (EPSs). The analyzed SAGs also encode dedicated transporters for the uptake of produced sugars and amino acids/oligopeptides, as well as an extensive machinery for the catabolism of all transported sugars, including the production of a bacterial microcompartment (BMC) to sequester propionaldehyde, a toxic intermediate produced during fucose and rhamnose metabolism. Finally, genes for the formation of gas vesicles, flagella, type IV pili, and oxidative stress response were found, features that could aid in cellular association with algal detritus. Collectively, these results indicate that the analyzed “Latescibacteria” mediate the turnover of multiple complex organic polymers of algal origin that reach deeper anoxic/microoxic habitats in lakes and lagoons. The implications of such process on our understanding of niche specialization in microbial communities mediating organic carbon turnover in stratified water bodies are discussed. PMID:26039074

  10. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi

    PubMed Central

    Sorokin, Dimitry Y; Lücker, Sebastian; Vejmelkova, Dana; Kostrikina, Nadezhda A; Kleerebezem, Robbert; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Le Paslier, Denis; Muyzer, Gerard; Wagner, Michael; van Loosdrecht, Mark C M; Daims, Holger

    2012-01-01

    Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, a major process of the biogeochemical nitrogen cycle, but the recognized diversity of this guild is surprisingly low and only two bacterial phyla contain known NOB. Here, we report on the discovery of a chemolithoautotrophic nitrite oxidizer that belongs to the widespread phylum Chloroflexi not previously known to contain any nitrifying organism. This organism, named Nitrolancetus hollandicus, was isolated from a nitrifying reactor. Its tolerance to a broad temperature range (25–63 °C) and low affinity for nitrite (Ks=1 mℳ), a complex layered cell envelope that stains Gram positive, and uncommon membrane lipids composed of 1,2-diols distinguish N. hollandicus from all other known nitrite oxidizers. N. hollandicus grows on nitrite and CO2, and is able to use formate as a source of energy and carbon. Genome sequencing and analysis of N. hollandicus revealed the presence of all genes required for CO2 fixation by the Calvin cycle and a nitrite oxidoreductase (NXR) similar to the NXR forms of the proteobacterial nitrite oxidizers, Nitrobacter and Nitrococcus. Comparative genomic analysis of the nxr loci unexpectedly indicated functionally important lateral gene transfer events between Nitrolancetus and other NOB carrying a cytoplasmic NXR, suggesting that horizontal transfer of the NXR module was a major driver for the spread of the capability to gain energy from nitrite oxidation during bacterial evolution. The surprising discovery of N. hollandicus significantly extends the known diversity of nitrifying organisms and likely will have implications for future research on nitrification in natural and engineered ecosystems. PMID:22763649

  11. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi.

    PubMed

    Sorokin, Dimitry Y; Lücker, Sebastian; Vejmelkova, Dana; Kostrikina, Nadezhda A; Kleerebezem, Robbert; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Le Paslier, Denis; Muyzer, Gerard; Wagner, Michael; van Loosdrecht, Mark C M; Daims, Holger

    2012-12-01

    Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, a major process of the biogeochemical nitrogen cycle, but the recognized diversity of this guild is surprisingly low and only two bacterial phyla contain known NOB. Here, we report on the discovery of a chemolithoautotrophic nitrite oxidizer that belongs to the widespread phylum Chloroflexi not previously known to contain any nitrifying organism. This organism, named Nitrolancetus hollandicus, was isolated from a nitrifying reactor. Its tolerance to a broad temperature range (25-63 °C) and low affinity for nitrite (K(s)=1 mM), a complex layered cell envelope that stains Gram positive, and uncommon membrane lipids composed of 1,2-diols distinguish N. hollandicus from all other known nitrite oxidizers. N. hollandicus grows on nitrite and CO(2), and is able to use formate as a source of energy and carbon. Genome sequencing and analysis of N. hollandicus revealed the presence of all genes required for CO(2) fixation by the Calvin cycle and a nitrite oxidoreductase (NXR) similar to the NXR forms of the proteobacterial nitrite oxidizers, Nitrobacter and Nitrococcus. Comparative genomic analysis of the nxr loci unexpectedly indicated functionally important lateral gene transfer events between Nitrolancetus and other NOB carrying a cytoplasmic NXR, suggesting that horizontal transfer of the NXR module was a major driver for the spread of the capability to gain energy from nitrite oxidation during bacterial evolution. The surprising discovery of N. hollandicus significantly extends the known diversity of nitrifying organisms and likely will have implications for future research on nitrification in natural and engineered ecosystems. PMID:22763649

  12. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria.

    PubMed

    Caro-Quintero, Alejandro; Konstantinidis, Konstantinos T

    2015-04-01

    Genome sequencing has revealed that horizontal gene transfer (HGT) is a major evolutionary process in bacteria. Although it is generally assumed that closely related organisms engage in genetic exchange more frequently than distantly related ones, the frequency of HGT among distantly related organisms and the effect of ecological relatedness on the frequency has not been rigorously assessed. Here, we devised a novel bioinformatic pipeline, which minimized the effect of over-representation of specific taxa in the available databases and other limitations of homology-based approaches by analyzing genomes in standardized triplets, to quantify gene exchange between bacterial genomes representing different phyla. Our analysis revealed the existence of networks of genetic exchange between organisms with overlapping ecological niches, with mesophilic anaerobic organisms showing the highest frequency of exchange and engaging in HGT twice as frequently as their aerobic counterparts. Examination of individual cases suggested that inter-phylum HGT is more pronounced than previously thought, affecting up to ∼ 16% of the total genes and ∼ 35% of the metabolic genes in some genomes (conservative estimation). In contrast, ribosomal and other universal protein-coding genes were subjected to HGT at least 150 times less frequently than genes encoding the most promiscuous metabolic functions (for example, various dehydrogenases and ABC transport systems), suggesting that the species tree based on the former genes may be reliable. These results indicated that the metabolic diversity of microbial communities within most habitats has been largely assembled from preexisting genetic diversity through HGT and that HGT accounts for the functional redundancy among phyla. PMID:25314320

  13. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'.

    PubMed

    Youssef, Noha H; Rinke, Christian; Stepanauskas, Ramunas; Farag, Ibrahim; Woyke, Tanja; Elshahed, Mostafa S

    2015-02-01

    The archaeal phylum 'Diapherotrites' was recently proposed based on phylogenomic analysis of genomes recovered from an underground water seep in an abandoned gold mine (Homestake mine in Lead, SD, USA). Here we present a detailed analysis of the metabolic capabilities and genomic features of three single amplified genomes (SAGs) belonging to the 'Diapherotrites'. The most complete of the SAGs, Candidatus 'Iainarchaeum andersonii' (Cand. IA), had a small genome (∼1.24 Mb), short average gene length (822 bp), one ribosomal RNA operon, high coding density (∼90.4%), high percentage of overlapping genes (27.6%) and low incidence of gene duplication (2.16%). Cand. IA genome possesses limited catabolic capacities that, nevertheless, could theoretically support a free-living lifestyle by channeling a narrow range of substrates such as ribose, polyhydroxybutyrate and several amino acids to acetyl-coenzyme A. On the other hand, Cand. IA possesses relatively well-developed anabolic capabilities, although it remains auxotrophic for several amino acids and cofactors. Phylogenetic analysis suggests that the majority of Cand. IA anabolic genes were acquired from bacterial donors via horizontal gene transfer. We thus propose that members of the 'Diapherotrites' have evolved from an obligate symbiotic ancestor by acquiring anabolic genes from bacteria that enabled independent biosynthesis of biological molecules previously acquired from symbiotic hosts. 'Diapherotrites' 16S rRNA genes exhibit multiple mismatches with the majority of archaeal 16S rRNA primers, a fact that could be responsible for their observed rarity in amplicon-generated data sets. The limited substrate range, complex growth requirements and slow growth rate predicted could be responsible for its refraction to isolation. PMID:25083931

  14. Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria

    PubMed Central

    Brutinel, Evan D.; Dean, Antony M.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. PMID:24097946

  15. Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites

    SciTech Connect

    Odelson, D.A.; Breznak, J.A.

    1985-03-01

    Crude extracts of the anaerobic, cellulolytic protozoan Trichomitopsis termopsidis possessed endo-..beta..-1,4-glucanase and cellobiase activities, as evidenced by hydrolytic action on carboxymethyl cellulose and cellobiose, respectively. Cell extracts also hydrolyzed microcrystalline cellulose. Hydrolysis of microcrystalline cellulose displayed optima at pH 5 and at 30 degrees C, and glucose was the sole product liberated. Cellulolytic activities of T. termopsidis appeared to be entirely cell associated. Hydrolytic activity was also detected against Douglas fir wood powder, xylan, starch, and protein, but not chitin. The importance of these enyzmes in the nutrition of T. termopsidis is discussed in terms of the natural habitat of this protozoan (the hindgut of wood-eating termites). 31 references.

  16. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans

    PubMed Central

    Nadhman, Akhtar; Nazir, Samina; Khan, Malik Ihsanullah; Ayub, Attiya; Muhammad, Bakhtiar; Khan, Momin; Shams, Dilawar Farhan; Yasinzai, Masoom

    2015-01-01

    Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment. PMID:26604755

  17. Protozoan pulses unveil their pivotal position within the soil food web.

    PubMed

    Crotty, Felicity V; Adl, Sina M; Blackshaw, Rod P; Murray, Philip J

    2012-05-01

    Protozoa are one of the most abundant groups of bacterivores within the soil and are responsible for mineralisation of bacterial biomass, having a large impact on C and N cycling. Little is known of their contribution to soil nutrient transfers or the identity of their consumers. Here, for the first time indigenous flagellates and ciliates, enriched to 83 atom% for (13)C and 10 atom% for (15)N, were introduced to soil cores from two different land managements, grassland and woodland with the same soil type, to trace the flow of protozoan C and N through the soil food web. Nematodes, Collembola, earthworms and insect larvae obtained the greatest amounts of C and N of protozoan origin, either through direct consumption or uptake of biomass post-cell death. Our results show that changes in management, affect the functioning of the soil food web and the utilisation of protozoa as a food source. PMID:21990016

  18. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans.

    PubMed

    Nadhman, Akhtar; Nazir, Samina; Khan, Malik Ihsanullah; Ayub, Attiya; Muhammad, Bakhtiar; Khan, Momin; Shams, Dilawar Farhan; Yasinzai, Masoom

    2015-01-01

    Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment. PMID:26604755

  19. Effect of Nutrient/Carbon Supplements on Biological Phosphate and Nitrate Uptake by Protozoan Isolates

    NASA Astrophysics Data System (ADS)

    Akpor, O. B.; Momba, M. N. B.; Okonkwo, J.

    This study was aimed at investigating the effect of nine different nutrient/carbon supplements in mixed liquor on nutrient uptake ability of three wastewater protozoan isolates, which have previously been screened for phosphate and nitrate uptake efficiency. The results revealed that over 50% of phosphate was removed in the presence of sodium acetate, glucose or sucrose. Similarly, nitrate uptake of over 60% was observed in the presence of sodium acetate, sodium succinate, glucose or sucrose. These trends were common in all the isolates. Chemical Oxygen Demand (COD) removal in the mixed liquor was only found to be significantly removed in mixed liquors that were supplemented with glucose, sucrose or sodium succinate. In the presence of sodium acetate, COD was observed to increase. The findings of this investigation have revealed that nutrient uptake and COD removal by the test protozoan isolates may be dependent primarily on the initial nutrient supplement in mixed liquor.

  20. Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections

    USGS Publications Warehouse

    Bruno, D.W.; Nowak, B.; Elliott, D.G.

    2006-01-01

    The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tissue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species affecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy.

  1. Protozoan parasites in cultured mussels Mytilus galloprovincialis in the Thermaikos Gulf (north Aegean Sea, Greece).

    PubMed

    Rayyan, Abdalnasser; Damianidis, Panagiotis; Antoniadou, Chryssanthi; Chintiroglou, Chariton C

    2006-06-23

    The protozoans Ancistrum mytili (Oligohymenophorea: Ancistridae) and Marteilia refringens/maurini (Marteiliidea: Marteiliidae) were found parasitizing cultured mussels Mytilus galloprovincialis L. in the Thermaikos Gulf (north Aegean Sea, Greece). The former did not affect the condition index of infected mussels, in contrast to the latter, which did so and which also induced hemocyte infiltration in the affected digestive epithelium. The prevalence of both parasites was relatively high in a polluted area. PMID:16903237

  2. Molecular characterization of a protozoan parasite target antigen recognized by nonspecific cytotoxic cells.

    PubMed

    Jaso-Friedmann, L; Leary, J H; Warren, J; McGraw, R A; Evans, D L

    1997-03-15

    The target cell antigen(s) on tumor cells and on protozoan parasites recognized by NK and nonspecific cytotoxic cells (NCC) has not yet been specifically identified. NCC may be the teleost equivalent of NK cells and IL-2-activated NK cells. A ligand recognized by NCC has been identified. It is expressed on both protozoan parasites and mammalian tumor target cells. In the present study, a protozoan parasite antigen (NK target antigen/NKTag/p46) was purified from Tetrahymena pyriformis and the entire amino acid sequence was deduced from cDNA. Soluble and purified NKTag inhibited NCC lysis of human and mouse transformed target cells. Homology comparisons using Swissprot database revealed that NKTag is a novel protein. Molecular weight computation of the deduced sequence demonstrated that NKTag is a 48.17-kDa protein containing 422 amino acids with relatively high percentages of tyrosine and serine residues. Expression of NKTag on various mammalian tumor target cells, normal tissue, and T. pyriformis was determined using anti-multiple antigenic peptide (MAP) monoclonal antibody (mab) 22A12 [generated against an N-terminal 20-mer (aa 61-80) of p46]. This mab bound to tissue-cultured and tumor cells (YAC-1, IM-9, NC-37, MOLT-4, and U937) with low levels of binding to fish, mouse, and equine cells. Studies were also done to determine if purified and iodinated NKTag bound specifically to NCC. Binding was saturable and specific. These data provide evidence that NCC recognize a target cell ligand which is found on both protozoan and tumor cells. This may provide an explanation as to how NCC (including activated NK cells) recognize a vast array of targets in the absence of haplotype recognition and in spite of a diverse species of origin. PMID:9073381

  3. Correlation between the autotrophic index and protozoan colonization rates as indicators of pollution stress

    SciTech Connect

    Cairns, J.; Buikema, A.L.; Yongue, W.H.

    1981-10-01

    The advantages of using microbial communities or multispecies in pollution assessment are discussed. Laboratory and field research assessing the effects of pollution on microbial community structure and function (that is, a ratio of autotrophy to total biomass, protozoan colonization rates, and species richness) indicates that the results are sensitive measures of pollution. The results of one test confirm the results of other tests. All the tests are quick, inexpensive, and reproducible.

  4. Effect of protozoan predation on relative abundance of fast- and slow-growing bacteria

    SciTech Connect

    Sinclair, J.L.; Alexander, M.

    1989-01-01

    Survival of six bacterial species with different growth rates was tested in raw sewage and sewage rendered free of protozoa. When the six species were inoculated at the same densities into sewage containing protozoa, the three slow-growing species were rapidly eliminated, and two of the three fast-growing species survived in detectable numbers. It is suggested that in environments with intense protozoan predation, protozoa may alter composition of bacterial communities by eliminating slow-growing bacteria.

  5. Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites.

    PubMed

    Ali, Vahab; Nozaki, Tomoyoshi

    2013-01-01

    Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections. PMID:23876871

  6. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites

    PubMed Central

    Toledo, Daniel A. M.; D’Avila, Heloísa; Melo, Rossana C. N.

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival. PMID:27199996

  7. Prevalence and age-dependent occurrence of intestinal protozoan infections in suckling piglets.

    PubMed

    Damriyasa, I Made; Bauer, Christian

    2006-01-01

    A cross-sectional survey was performed on 20 pig breeding farms in southern Hesse, central Germany, to evaluate the prevalence and age-dependent occurrence of intestinal protozoan parasites in unweaned piglets. Faecal samples of 514 clinically unaffected piglets of different age (< 1 to 5-7 weeks) were examined using the sodium acetate-acetic acid-formalin (SAF) concentration technique. Infections with the following protozoan species were detected: Balantidium coli (16 of 20 farms), Entamoeba sp. (15), Jodamoeba sp. (14), Isospora (I.) suis (9), Chilomastix sp. (6) and Eimeria spp. (6). The protozoan species differed in the start and course of (oo)cyst excretion. I. suis oocysts and Jodamoeba cysts were detected already in the first week of life whereas shedding of the other parasites started later on. The prevalence of Isospora oocyst excretion increased to a maximum (18%) in 2-3 weeks old animals followed by a sharp decline. The proportion of Balantidium, Entamoeba or Jodamoeba positive suckling piglets continously increased until the age of 5-7 weeks to 60%, 52% and 22%, respectively, whereas that of Chilomastix positive animals remained on a low level of 8-12% independent of the age. Eimeria oocysts were found transiently in the faeces of 1-4 weeks old piglets. PMID:17009710

  8. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites.

    PubMed

    Morin-Adeline, Victoria; Šlapeta, Jan

    2016-03-01

    The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist. PMID:26653973

  9. Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum

    PubMed Central

    Huang, Xiaoluo; Pinto, Daniela; Fritz, Georg

    2015-01-01

    ABSTRACT Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function σ factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCE In the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify, classify, and describe numerous novel and conserved signaling devices. Hence, our work serves as an important resource for any researcher interested in signal transduction of this important bacterial phylum, which contains organisms of ecological, biotechnological, and medical relevance. PMID:25986905

  10. Fatty Acids of Chthonomonas calidirosea, of a novel class Chthonomonadetes from a recently described phylum Armatimonadetes.

    PubMed

    Vyssotski, M; Lee, K C-Y; Lagutin, K; Ryan, J; Morgan, X C; Stott, M B

    2011-12-01

    A Gram-negative, aerobic, pink-pigmented, rod-shaped bacterium Chthonomonas calidirosea (strain T49(T)) with an optimal temperature for growth of 68 °C, isolated from soil samples from Hell's Gate in the Tikitere geothermal system (New Zealand), was the first cultivated bacterium of the novel phylum Armatimonadetes (formerly candidate division OP10). The lipid composition of C. calidirosea presents a number of unusual features both in the fatty acids and polar lipids. This contribution reports on the fatty acid profile of C. calidirosea. Transmethylation of bacterial biomass yielded fatty acid methyl esters and hydrocarbons, including squalene, partially hydrogenated squalenes, and diploptene. The only type of unsaturation found in C. calidirosea fatty acids was cis-Δ5, as revealed by GCMS of dimethyl disulfide (DMDS) adducts, and the lack of trans-unsaturation absorbance at 960-980 cm(-1) in the IR spectrum of fatty acids methyl esters. An unidentified component X with ECL 16.86 (BP1) and ECL 17.27 (BP20) was also observed, with molecular ion at m/z 282 ("17:1"). X did not form DMDS adducts, nor was affected by mild hydrogenation conditions, indicating the likely presence of a ring rather than unsaturation. The presence of a cyclopropane ring with cis-stereochemistry was confirmed by the (1)H-NMR spectrum. Hydrogenation of X in acetic acid resulted in formation of straight chain 17:0, 5-methyl- and 6-methyl-16:0 fatty acid methyl esters, thus confirming the structure of a novel 5,6-methylene hexadecanoic acid. The major fatty acids of a solid media-grown C. calidirosea were as follows (in weight % of total fatty acids): 16:0 (25.8), i17:0 (19.3), ai17:0 (13.5), 16:1∆5 (8.8), i17:1∆5 (6.8), 5,6-methylene 16:0 (5.2), i16:0 (4.4), 18:0 (3.6), 18:1∆5 (3.2). PMID:21805326

  11. A new coccidian (Apicomplexa: Eimeriidae), from midland brown snake, Storeria dekayi wrightorum Trapido (Ophidia: Colubridae) from Arkansas, USA.

    PubMed

    McAllister, Chris T; Seville, R Scott; Connior, Matthew B

    2016-01-01

    A new species of coccidian (Protista: Apicomplexa: Eimeriidae) collected from the faeces of a midland brown snake Storeria dekayi wrightorum Trapido (Ophidia: Colubridae) in Arkansas, USA, is described. Oöcysts of Isospora holbrooki n. sp. are subspherical to ovoidal with a smooth, colourless, bi-layered wall, measure on average 27.1 × 24.0 µm, and have a length/width (L/W) ratio of 1.1; both micropyle and oöcyst residuum are absent, but a polar granule is present. Sporocysts are ovoidal, 14.8 × 10.0 µm on average (L/W 1.5); the Stieda body is nipple-like, the sub-Stieda body is ellipsoidal and the sporocyst residuum is composed of coarse granules in a cluster. Sporozoites have a spheroidal anterior refractile body, a subspheroidal posterior refractile body, and one centrally-located nucleus. This is the first description of an isosporan from the snake genus Storeria Baird & Girard as well as the largest oöcysts and sporocysts of any previous snake isosporan to date. PMID:26739289

  12. A new species of Eimeria Schneider, 1875 (Apicomplexa: Eimeriidae) from Alectoris barbara (Aves: Phasianidae) from the Canary Islands (Spain).

    PubMed

    Fernández-Alvarez, A; Modry, D; Foronda, P

    2016-05-01

    The present study was conducted with the objective of identifying the species of Eimeria present in a cynegetic farm. A new coccidian (Apicomplexa: Eimeriidae) species is described from Barbary partridge, Alectoris barbara, from the Canary Islands. Experimental infections were carried out in order to determine the prepatent period, sporulation time, site of infection, and morphology of endogenous stages. One species is described as new. Eimeria barbarae n. sp. has ellipsoidal oocysts, 20.0 × 14.4 (16-23 × 13-16) μm, with a shape-index (SI) of 1.39. Sporocysts are almond-shaped, 9.0 × 5.4 (6.5-11 × 4.5-6) μm, SI = 1.56. The endogenous development takes place along the intestine. The present study showed that E. barbarae causes severe pathologies in A. barbara chickens, with impact on their health condition. Control strategies needs to be implemented to reduce the loss due to coccidiosis at studied farm. PMID:26792431

  13. Evidence of Intraflagellar Transport and Apical Complex Formation in a Free-Living Relative of the Apicomplexa

    PubMed Central

    Portman, Neil; Foster, Christie; Walker, Giselle

    2014-01-01

    Since its first description, Chromera velia has attracted keen interest as the closest free-living relative of parasitic Apicomplexa. The life cycle of this unicellular alga is complex and involves a motile biflagellate form. Flagella are thought to be formed in the cytoplasm, a rare phenomenon shared with Plasmodium in which the canonical mode of flagellar assembly, intraflagellar transport, is dispensed with. Here we demonstrate the expression of intraflagellar transport components in C. velia, answering the question of whether this organism has the potential to assemble flagella via the canonical route. We have developed and characterized a culturing protocol that favors the generation of flagellate forms. From this, we have determined a marked shift in the mode of daughter cell production from two to four daughter cells per division as a function of time after passage. We conduct an ultrastructural examination of the C. velia flagellate form by using serial TEM and show that flagellar biogenesis in C. velia occurs prior to cytokinesis. We demonstrate a close association of the flagellar apparatus with a complex system of apical structures, including a micropore, a conoid, and a complex endomembrane system reminiscent of the apical complex of parasitic apicomplexans. Recent work has begun to elucidate the possible flagellar origins of the apical complex, and we show that in C. velia these structures are contemporaneous within a single cell and share multiple connections. We propose that C. velia therefore represents a vital piece in the puzzle of the origins of the apical complex. PMID:24058169

  14. [Formation and diversity of parasitophorous vacuoles in parasitic protozoa. The Coccidia (Sporozoa, Apicomplexa)].

    PubMed

    Beĭer, T V; Svezhova, N V; Radchenko, A I; Sidorenko, N V

    2003-01-01

    Data on parasitophorous vacuole (PV) formation in host cells (HC) harbouring different intracellular protozoan parasites have been reviewed and critically analysed, with special reference to the main representatives of the Coccidia. The vacuole membrane (PVM) is the interface between host and parasite, playing a role in nutrient acquisition by the parasite from the HC. The PV phenomenon is regarded as a generalized HC response to the introduction of alien bodies (microorganisms), which eventually reflects the evolutionary established host-parasite relationships at cellular, subcellular and molecular levels. Special attention has been paid to the existing morpho-functional diversity of the PVs within the same genera and species of parasites, and even at different stages of the parasite life cycle. The PVM is generally considered to derive from the HC plasmalemma, whose biochemical composition undergoes significant changes as the intravacuolar parasite grows. The original HC proteins are selectively excluded from the PVM, while those of the parasite are incorporated. As the result, the changed PVM becomes not fusigenic for HC lysosomes. For Toxoplasma gondii and other cyst-forming coccidia (Isospora, Sarcocystis), a definite correlation has been noticed between the extent of rhoptry and dense granule secrets released by a zoite during HC internalization, on the one hand, and the pattern of the PV that forms, on the other one. In T. gondii, tachyzoites, known to discharge abundant secrets, commonly force the development of PVs limited with a single unit membrane and equipped with a tubulovesicular network in the lumen. Unlike, bradyzoites known to be deficient in secretory materials trigger the formation of PVs with a three-membrane lining composed of the changed invaginated plasmalemma in addition to two membranes of endoplasmic reticulum. The two different types of PV harbour, respectively, exoenteric and enteric stages of T. gondii, the latter being confined to the cat intestine only. Unlike, all endogenous stages of the classic intestinal coccidia (Eimeria spp.) develop within PVs limited with a single membrane, with some invaginations extending into the PV lumen. Unusual PV patterns are characteristic of the extracytoplasmic eimerian coccidia (Cryptosporidium, Epieimeria) and adeleid haemogreagarines (Karyolysus). In cyst-forming coccidia, the PVM is actively involved in tissue cyst wall formation, thus protecting the encysted parasites from recognition by the host immune system. All this strongly suggests that the PV is far from being an indifferent membraneous vesicle containing a parasite, but represents a metabolically active compartment in infected cells. Since all the coccidia are obligate intracellular parasites, the mode of their intimate interaction with the HC, largely accomplished via the PV and its membrane, is vital for their survival as biological species. PMID:14520865

  15. Measurement of the effects of cadmium stress on protozoan grazing of bacteria (bacterivory) in activated sludge by fluorescence microscopy

    SciTech Connect

    Hoffman, R.L.; Atlas, R.M.

    1987-10-01

    The effect of cadmium stress on protozoan bacterivory in sewage sludge was measured by experimentally exposing sludge communities to 0 to 150 mg of Cd per liter for up to 6 h and then determining the rates of protozoan grazing on bacteria, using a double-staining technique and epifluorescence microscopy. Bacterivory was measured by incubating the sludge with fluorescently labeled bacterium-sized latex beads and directly observing ingestion of the beads and bacterial cells in the sludge by epifluorescence microscopy of preserved samples. Staining with 4',6-diamidino-2-phenylindole and acridine orange permitted the simultaneous determination of protozoan numbers and bacterivory activity as estimated by the number of bacterial cells and bacterium-sized latex beads ingested by the representative ciliate Aspidisca costata. Enumeration with latex beads proved to be an effective way of estimating bacterivory in sludges subjected to heavy-metal stress. This technique should prove useful for determining the effects of other chemical stresses on protozoan numbers and bacterivory in organic-rich environments. Although the number of protozoa declined significantly only after exposure to 100 mg of Cd per liter for 4 h, grazing, as indicated by bead ingestion, was significantly inhibited by Cd concentrations of > 25 mg/liter in < 1 h, and exposure to 100 mg of Cd per liter effectively stopped protozoan grazing within 1 h of exposure. Protozoan ingestion of latex beads and bacteria was inversely correlated to Cd concentration and exposure time. The reduction of protozoan bacterivory by Cd provides a possible explanation for the increase in suspended bacteria in the effluents of metal-stressed treatment facilities.

  16. Foodborne Protozoans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of the human pathogens Cryptosporidium and Giardia can be grouped into general morphology by microscopy, chemical and immunofluorescent staining methods aiding microscopy, and biochemical and molecular tests. Microscopic observations can be made using brightfield with or without spec...

  17. Protozoan Parasites.

    PubMed

    Custodio, Haidee

    2016-02-01

    • Stool antigen detection for Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica are now commercially available, have better sensitivity and specificity than the traditional stool microscopy, and are less dependent on personnel skill. Tests employing newer techniques with faster turnaround time are also available for diagnosing trichomoniasis.• Nitazoxanide, the only U.S. Food and Drug Administration-approved medication for therapy of cryptosporidiosis, is effective among immunocompetent patients. However, on the basis of strong evidence from multiple clinical trials, nitazoxanide is considered ineffective among immunocompromised patients. (14) • Giardiasis can be asymptomatic or have a chronic course leading to malabsorption and failure to thrive. It can be treated with metronidazole, tinidazole, or nitazoxanide. On the basis of growing observational studies, postinfectious and extraintestinal manifestations of giardiasis occur, but the mechanisms are unclear. Given the high prevalence of giardiasis, public health implications need to be defined. (16) • Eradicating E histolytica from the gastrointestinal tract requires only intraluminal agent therapy. Therapy for invasive illnesses requires use of imidazole followed by intraluminal agents to eliminate persistent intraluminal parasites. • Malaria is considered the most lethal parasitic infection, with Plasmodium falciparum as the predominant cause of mortality. P vivax and P ovale can be dormant in the liver, and primaquine is necessary to resolve infection by P vivax and P ovale. • Among immunocompetent patients, infection with Toxoplasma gondii may be asymptomatic, involve localized lymphadenopathy, or cause ocular infection. In immunocompromised patients, reactivation or severe infection is not uncommon. On the basis of limited observational studies (there are no well-controlled randomized trials), therapy is recommended for acute infection during pregnancy to prevent transmission to the fetus/infant or decrease infectious sequelae to the fetus. (2) • On the basis of growing research evidence as well as consensus, trichomoniasis is associated with many health-related concerns, including adverse pregnancy outcomes and increased risk of acquisition and transmission of human immunodeficiency virus. (3)(25) Similar to toxoplasmosis,many infections are asymptomatic, and the true public health impact of trichomoniasis is difficult to define. Further research is warranted. PMID:26834225

  18. Effect of nickel on nutrient removal by selected indigenous protozoan species in wastewater systems.

    PubMed

    Kamika, Ilunga; Momba, Maggy N B

    2015-03-01

    Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni(2+) on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni(2+) at concentrations ranging between 66.4-99.36%, 56.19-99.88% and 45.98-85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni(2+) at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni(2+) but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N(2+)/L followed by an inhibition of nutrient removal at Ni(2+) concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (r = 0.806/0.799, p < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni(2+)/L, an increase in Ni(2+) concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni(2+) appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni(2+)/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni(2+) and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems. PMID:25737645

  19. Developing vaccines to control protozoan parasites in ruminants: dead or alive?

    PubMed

    Innes, Elisabeth A; Bartley, Paul M; Rocchi, Mara; Benavidas-Silvan, Julio; Burrells, Alison; Hotchkiss, Emily; Chianini, Francesca; Canton, German; Katzer, Frank

    2011-08-01

    Protozoan parasites are among some of the most successful organisms worldwide, being able to live and multiply within a very wide range of hosts. The diseases caused by these parasites cause significant production losses in the livestock sector involving reproductive failure, impaired weight gain, contaminated meat, reduced milk yields and in severe cases, loss of the animal. In addition, some protozoan parasites affecting livestock such as Toxoplasma gondii and Cryptosporidium parvum may also be transmitted to humans where they can cause serious disease. Data derived from experimental models of infection in ruminant species enables the study of the interactions between parasite and host. How the parasite initiates infection, becomes established and multiplies within the host and the critical pathways that may lead to a disease outcome are all important to enable the rational design of appropriate intervention strategies. Once the parasites invade the hosts they induce both innate and adaptive immune responses and the induction and function of these immune responses are critical in determining the outcome of the infection. Vaccines offer green solutions to control disease as they are sustainable, reducing reliance on pharmacological drugs and pesticides. The use of vaccines has multiple benefits such as improving animal health and welfare by controlling animal infections and infestations; improving public health by controlling zoonoses and food borne pathogens in animals; solving problems associated with resistance to acaricides, antibiotics and anthelmintics; keeping animals and the environment free of chemical residues and maintaining biodiversity. All of these attributes should lead to improved sustainability of animal production and economic benefit. Using different protozoan parasitic diseases as examples this paper will discuss various approaches used to develop vaccines to protect against disease in livestock and discuss the relative merits of using live versus killed vaccine preparations. A range of different vaccination targets and strategies will be discussed to help protect against: acute disease, congenital infection and abortion, persistence of zoonotic pathogens in tissues of food animals and passive transfer of immunity to neonates. PMID:21680094

  20. Recycling and uptake of Si(OH)4 when protozoan grazers feed on diatoms.

    PubMed

    Schultes, Sabine; Lambert, Christophe; Pondaven, Philippe; Corvaisier, Rudolph; Jansen, Sandra; Ragueneau, Olivier

    2010-04-01

    Herbivory of microzooplankton is an emerging key factor of diatom mortality in the ocean. As part of the microbial loop, protozoan grazers also feed on bacteria that accelerate the degradation of diatom detritus. The potentially pivotal effect of microzooplankton grazing on Si(OH)(4) recycling was investigated with cultures of single-celled diatoms, Thalassiosira pseudonana and Chaetoceros gracilis, and heterotrophic protozoans, the dinoflagellate Oxyrrhis marina and the ciliate Strombidium sp. Both grazers ingested diatoms and the bacteria in the non-axenic cultures. C. gracilis, whose frustule is "armed" with setae, was less suitable as a prey than T. pseudonana. Ingestion rates of T. pseudonana were comparable for O. marina and Strombidium, but the dinoflagellate produced two orders of magnitude more detrital bSiO(2) than the ciliate, due to the higher abundance reached by O. marina. Total net release of Si(OH)(4) was lower in the grazing treatments compared to the control possibly due to the reduced bacterial growth by microzooplankton bacterivory, and to the transient protection of detrital bSiO(2) in discarded feeding vacuoles. Over the first 24h, microzooplankton grazing even led to enhanced uptake of Si(OH)(4) by diatoms, confirming the potential of grazing to influence the silicification of diatom frustules. Subsequently however, the Si dynamics in bottles with grazers turned rapidly from net uptake to net Si(OH)(4) release. Protozoan grazers hence tie Si(OH)(4) recycling into the microbial loop by producing detrital bSiO(2). PMID:20022558

  1. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans

    PubMed Central

    2014-01-01

    Background Despite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species. Methods Here, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver. Results We verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations. Conclusions These investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in proteomics and genomics databases, but will also suggest novel targets for drugs against parasites. PMID:24447594

  2. The epidemiology of soil-transmitted helminth and protozoan infections in south-west Cameroon.

    PubMed

    Mbuh, J V; Ntonifor, N H; Ojong, J

    2012-03-01

    A cross-sectional study of the prevalence, intensity and effects of soil-transmitted helminth and protozoan infections was undertaken among patients at the Buea Hospital Annex located in Buea sub-division of Cameroon. Stool samples from 356 subjects (174 males and 182 females) were collected and processed using standard concentration methods. Our results showed that 31.0% of subjects were infected with intestinal helminths and the prevalence was higher in females (32.4%) than in males (30.5%). A significantly higher prevalence was observed in rural (47.2%) than in urban areas (21.0%); significance < 0.1%. Prevalence was highest among those aged between 6 and 12 years (41.4%). The total prevalence of intestinal helminth infections were 19.3% for Ascaris lumbricoides, 14.0% for hookworm and 11.8% for Trichuris trichiura. The intensity of infection was unevenly distributed, with very heavy loads concentrated in a few individuals. Data also showed that 28.1% (100/356) of the subjects were infected with protozoans. Females showed a higher prevalence (28.6%; 52/182) than males (20.7%; 36/174). Also, there was a significantly higher prevalence in rural (34.0%; 49/144) than urban areas (18.4%; 39/212); significance < 0.1%. The age group 6-12 years again had a higher prevalence (37.1%; 26/70). The total prevalence of intestinal protozoans was: Entamoeba histolytica (24.4%), Entamoeba coli (11.2%) and Giardia lamblia (0.6%). These relatively heavy prevalences in patients may be reduced by appropriate medication and maintaining strict personal hygiene. Health education, clean water supply, good sewage management and a congenial environment will all help to minimize infection. PMID:21281528

  3. Effect of nickel on nutrient removal by selected indigenous protozoan species in wastewater systems

    PubMed Central

    Kamika, Ilunga; Momba, Maggy N.B.

    2014-01-01

    Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni2+ on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni2+ at concentrations ranging between 66.4–99.36%, 56.19–99.88% and 45.98–85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni2+ at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni2+ but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N2+/L followed by an inhibition of nutrient removal at Ni2+ concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (r = 0.806/0.799, p < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni2+/L, an increase in Ni2+ concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni2+ appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni2+/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni2+ and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems. PMID:25737645

  4. Composition of benthic protozoan communities along a depth transect in the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Hausmann, K.; Hlsmann, N.; Polianski, I.; Schade, S.; Weitere, M.

    2002-11-01

    The benthic protozoans were investigated along a transect in the eastern Mediterranean Sea from the Ionian to the Levantine Sea. Sediment samples were taken during Meteor cruise 25/1 in May and June 1993 at water depths of between 156 and 4617 m with a box corer and a multiple corer. A semi-quantitative cultivation technique was applied by placing sediment in petri dishes and diluting with sterile biotope water. Microscopic analyses of the protozoan taxa were conducted immediately after sampling, and then daily after enrichment with organic substrate. A total of 134 protozoan morphospecies were recorded, including 87 flagellates, 12 naked amoebae and 35 ciliates. 58% of the species could be attributed to genera known from shallow waters, demonstrating the wide distribution of these taxa. The number of recorded species per location ranged from 0 to 35 and decreased with increasing water depth. At stations deeper 1300 m very low species numbers as well as low potential abundances were recorded. Qualitative changes in the taxonomic composition with increasing depth were recorded as a decrease in the proportion of amoebae and euglenid flagellates and as an increase in the proportion of dinoflagellates. Ciliates were found down to a depth of 4260 m. The number of species was also dependent on the chloroplastic pigment equivalent (CPE), indicating a dependency on sedimented phytodetritus. The observed species included picophagous species, which feed mostly on bacteria, as well as nano- and microphagous species, which generally feed on protists, suggesting the existence of several trophic levels within the deep sea microbial food web.

  5. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats

    PubMed Central

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Liu, Xu; Li, Ji

    2016-01-01

    Methane oxidation coupled to nitrite reduction is mediated by ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4–2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 106 and 3.2 × 107 copies g−1 sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats. PMID:27157928

  6. In vitro assembly of the bacterial actin protein MamK from ' Candidatus Magnetobacterium casensis' in the phylum Nitrospirae.

    PubMed

    Deng, Aihua; Lin, Wei; Shi, Nana; Wu, Jie; Sun, Zhaopeng; Sun, Qinyun; Bai, Hua; Pan, Yongxin; Wen, Tingyi

    2016-04-01

    Magnetotactic bacteria (MTB), a group of phylogenetically diverse organisms that use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field, play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have revealed that the bacterial actin protein MamK plays essential roles in the linear arrangement of magnetosomes in MTB cells belonging to the Proteobacteria phylum. However, the molecular mechanisms of multiple-magnetosome-chain arrangements in MTB remain largely unknown. Here, we report that the MamK filaments from the uncultivated 'Candidatus Magnetobacterium casensis' (Mcas) within the phylum Nitrospirae polymerized in the presence of ATP alone and were stable without obvious ATP hydrolysis-mediated disassembly. MamK in Mcas can convert NTP to NDP and NDP to NMP, showing the highest preference to ATP. Unlike its Magnetospirillum counterparts, which form a single magnetosome chain, or other bacterial actins such as MreB and ParM, the polymerized MamK from Mcas is independent of metal ions and nucleotides except for ATP, and is assembled into well-ordered filamentous bundles consisted of multiple filaments. Our results suggest a dynamically stable assembly of MamK from the uncultivated Nitrospirae MTB that synthesizes multiple magnetosome chains per cell. These findings further improve the current knowledge of biomineralization and organelle biogenesis in prokaryotic systems. PMID:26960409

  7. A Unique Pool of Compatible Solutes on Rhodopirellula baltica, Member of the Deep-Branching Phylum Planctomycetes

    PubMed Central

    Mingote, Ana; Lamosa, Pedro; da Costa, Milton S.; Costa, Joana

    2013-01-01

    The intracellular accumulation of small organic solutes was described in the marine bacterium Rhodopirellula baltica, which belongs to the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. Sucrose, α-glutamate, trehalose and mannosylglucosylglycerate (MGG) are the main solutes involved in the osmoadaptation of R. baltica. The ratio and total intracellular organic solutes varied significantly in response to an increase in salinity, temperature and nitrogen content. R. baltica displayed an initial response to both osmotic and thermal stresses that includes α-glutamate accumulation. This trend was followed by a rather unique and complex osmoadaptation mechanism characterized by a dual response to sub-optimal and supra-optimal salinities. A reduction in the salinity to sub-optimal conditions led primarily to the accumulation of trehalose. In contrast, R. baltica responded to salt stress mostly by increasing the intracellular levels of sucrose. The switch between the accumulation of trehalose and sucrose was by far the most significant effect caused by increasing the salt levels of the medium. Additionally, MGG accumulation was found to be salt- as well as nitrogen-dependent. MGG accumulation was regulated by nitrogen levels replacing α-glutamate as a K+ counterion in nitrogen-poor environments. This is the first report of the accumulation of compatible solutes in the phylum Planctomycetes and of the MGG accumulation in a mesophilic organism. PMID:23826385

  8. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats.

    PubMed

    Shen, Li-Dong; Wu, Hong-Sheng; Gao, Zhi-Qiu; Liu, Xu; Li, Ji

    2016-01-01

    Methane oxidation coupled to nitrite reduction is mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4-2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 10(6) and 3.2 × 10(7) copies g(-1) sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats. PMID:27157928

  9. Mannosylglucosylglycerate biosynthesis in the deep-branching phylum Planctomycetes: characterization of the uncommon enzymes from Rhodopirellula baltica

    PubMed Central

    Cunha, Sofia; d'Avó, Ana Filipa; Mingote, Ana; Lamosa, Pedro; da Costa, Milton S.; Costa, Joana

    2013-01-01

    The biosynthetic pathway for the rare compatible solute mannosylglucosylglycerate (MGG) accumulated by Rhodopirellula baltica, a marine member of the phylum Planctomycetes, has been elucidated. Like one of the pathways used in the thermophilic bacterium Petrotoga mobilis, it has genes coding for glucosyl-3-phosphoglycerate synthase (GpgS) and mannosylglucosyl-3-phosphoglycerate (MGPG) synthase (MggA). However, unlike Ptg. mobilis, the mesophilic R. baltica uses a novel and very specific MGPG phosphatase (MggB). It also lacks a key enzyme of the alternative pathway in Ptg. mobilis – the mannosylglucosylglycerate synthase (MggS) that catalyses the condensation of glucosylglycerate with GDP-mannose to produce MGG. The R. baltica enzymes GpgS, MggA, and MggB were expressed in E. coli and characterized in terms of kinetic parameters, substrate specificity, temperature and pH dependence. This is the first characterization of genes and enzymes for the synthesis of compatible solutes in the phylum Planctomycetes and for the synthesis of MGG in a mesophile. PMID:23921581

  10. Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class

    NASA Astrophysics Data System (ADS)

    Lefèvre, Christopher T.; Pósfai, Mihály; Abreu, Fernanda; Lins, Ulysses; Frankel, Richard B.; Bazylinski, Dennis A.

    2011-12-01

    High resolution transmission electron microscopy was used to study the crystallographic habits of the elongated magnetite crystals, variously described as bullet-, tooth- or arrowhead-shaped, in two recently described, uncultured, magnetotactic bacteria belonging to the Nitrospirae phylum designated Candidatus Magnetoovum mohavensis strain LO-1, and Candidatus Thermomagnetovibrio paiutensis strain HSMV-1; and a cultured sulfate-reducing magnetotactic bacterium of the Deltaproteobacteria class of the Proteobacteria phylum designated strain AV-1. The elongation axes of the magnetosomes do not coincide with the easy magnetization axis (which is [111]) but they are parallel to [100] in LO-1 and AV-1 and parallel to [110] in HSMV-1. In all three strains, magnetosome magnetite crystals appear to elongate at constant width, resulting in asymmetric shapes. Idealized crystal morphologies are proposed. Neither the control mechanism over crystal growth, nor the adaptiveness, if any, of such unusual crystal habits are known at the moment. Since similar elongated and asymmetric morphologies are unknown in inorganically-formed magnetite crystals, these forms of magnetosome magnetite appear to be excellent biomarkers.

  11. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria

    PubMed Central

    Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T; Spector, Timothy D; Banfield, Jillian F; Ley, Ruth E

    2013-01-01

    Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation ‘Melainabacteria’. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI: http://dx.doi.org/10.7554/eLife.01102.001 PMID:24137540

  12. An immunofluorescence technique for staining ciliated protozoans: highlighting cytoplasmic microtubular arrays and stages of micronuclear meiosis.

    PubMed

    Santangelo, G; Bruno, P

    2001-02-01

    Ciliated protozoans represent useful organisms for studying the processes involved in the induction and progression of meiosis. In this short report we describe a technique that has allowed us to examine different meiosis phases during the sexual reproduction of Blepharisma japonicum. In order to visualize the phases of meiosis, sexually reproducing pairs were stained by an enhanced technique of anti-tubuline indirect immunofluorescence. Meiotic micronuclei, particularly those showing metaphase spindles, were clearly highlighted. The technique also heavily decorates the main microtubular cytoplasmic arrays in Blepharisma. PMID:10936463

  13. Trichodina xenopodus, a Ciliated Protozoan, in a Laboratory-Maintained Xenopus laevis

    PubMed Central

    Collymore, Chereen; White, Julie R; Lieggi, Christine

    2013-01-01

    A postmortem evaluation of a domestically bred, adult, female Xenopus laevis revealed the presence of a urinary bladder protozoan consistent with Trichodina xenopodus. T. xenopodus is considered an incidental finding, as its presence in the urinary bladder in frogs has not been correlated with disease or with urinary bladder epithelial lesions. Trichodina spp. are ciliated protozoa known to colonize many species of amphibians and fish. These protozoa frequently inhabit the skin and gills, but may also be present in the urinary bladder of infected animals. Their presence on the skin and gills in low numbers is not related to disease; however, large numbers may indicate poor water quality and overcrowding. PMID:24209965

  14. The use of cytoenzymological changes in certain parasitic protozoans for screening the carcinogenicity of chemicals.

    PubMed

    el-Mofty, M M; Abdelmeguid, N; Michael, A E; el-Marhoumi, K M

    1989-01-01

    Cytoenzymological changes were observed in parasitic ciliates (Nyctotheroides puytoraci) and flagellates (Opalina sudafricana and Protoopalina sp.) after injection of their host, Bufo regularis, with a single dose of 0.5 mg beta-naphthylamine (BNA) per toad. The experiment was carried out during the host's pre-breeding season. Trophozoites of the given parasites were examined 21 days after the injection. The localization of the mitochondria and the relative intensity of succinic dehydrogenase (SDH) and deoxyribonucleic acid (DNA) activity in the control and BNA-treated trophozoites were compared. The results could prove useful for screening the carcinogenicity of chemicals by means of these parasitic protozoans. PMID:2759500

  15. Macrophage Migration Inhibitory Factor (MIF): A Key Player in Protozoan Infections

    PubMed Central

    de Dios Rosado, Juan; Rodriguez-Sosa, Miriam

    2011-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by the pituitary gland and multiple cell types, including macrophages (Mø), dendritic cells (DC) and T-cells. Upon releases MIF modulates the expression of several inflammatory molecules, such as TNF-α, nitric oxide and cyclooxygenase 2 (COX-2). These important MIF characteristics have prompted investigators to study its role in parasite infections. Several reports have demonstrated that MIF plays either a protective or deleterious role in the immune response to different pathogens. Here, we review the role of MIF in the host defense response to some important protozoan infections. PMID:22110378

  16. The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila.

    PubMed

    Klobutcher, Lawrence A; Ragkousi, Katerina; Setlow, Peter

    2006-01-01

    Bacillus spores are highly resistant to many environmental stresses, owing in part to the presence of multiple "extracellular" layers. Although the role of some of these extracellular layers in resistance to particular stresses is known, the function of one of the outermost layers, the spore coat, is not completely understood. This study sought to determine whether the spore coat plays a role in resistance to predation by the ciliated protozoan Tetrahymena, which uses phagocytosis to ingest and degrade other microorganisms. Wild-type dormant spores of Bacillus subtilis were efficiently ingested by the protozoan Tetrahymena thermophila but were neither digested nor killed. However, spores with various coat defects were killed and digested, leaving only an outer shell termed a rind, and supporting the growth of Tetrahymena. A similar rind was generated when coat-defective spores were treated with lysozyme alone. The sensitivity of spores with different coat defects to predation by T. thermophila paralleled the spores' sensitivities to lysozyme. Spore killing by T. thermophila was by means of lytic enzymes within the protozoal phagosome, not by initial spore germination followed by killing. These findings suggest that a major function of the coat of spores of Bacillus species is to protect spores against predation. We also found that indigestible rinds were generated even from spores in which cross-linking of coat proteins was greatly reduced, implying the existence of a coat structure that is highly resistant to degradative enzymes. PMID:16371471

  17. Assessing protozoan risks for surface drinking water supplies in Nova Scotia, Canada.

    PubMed

    Krkosek, Wendy; Reed, Victoria; Gagnon, Graham A

    2016-02-01

    Protozoa, such as Cryptosporidium parvum and Giardia lamblia, pose a human health risk when present in drinking water. To minimize health risks, the Nova Scotia Treatment Standards for surface water and groundwater under the direct influence of surface water require a 3-log reduction for Giardia cysts and Cryptosporidium oocysts. This study determined the protozoan risk of municipal surface source waters in Nova Scotia, through the use of a pre-screening risk analysis of water supplies, followed by subsequent water quality analysis of the seven highest risk supplies. The water supplies were monitored monthly for 1 year to obtain baseline data that could be used for a quantitative microbial risk assessment (QMRA). The QMRA model outcomes were compared to the Health Canada health target of 10(-6) disability-adjusted life years/person/year. QMRA modeling shows that the treatment facilities meet the required log reductions and disability-adjusted life year target standards under current conditions. Furthermore, based on the results of this work, Nova Scotia should maintain the current 3-log reduction standard for Giardia cysts and Cryptosporidium oocysts. The results of this study show that a pre-screening step can help to inform water sources that are particularly vulnerable to protozoan contamination, which can lead to more focused, cost-effective sampling, and monitoring programs. PMID:26837839

  18. Prevalence and distribution of three protozoan symbionts in blue crab (Callinectes sapidus) populations across Louisiana, USA.

    PubMed

    Rogers, Holly A; Taylor, Sabrina S; Hawke, John P; Anderson Lively, Julie A

    2015-05-11

    Louisiana has one of the largest blue crab (Callinectes sapidus) fisheries in the USA, but little is known about blue crab diseases, parasites, and symbionts in this area. In 2013-2014, large juvenile and adult blue crabs were collected at 4 diverse sites to determine the prevalence of the protozoan symbionts associated with black gill disease (Lagenophrys callinectes), buckshot crabs (Urosporidium crescens), and bitter crab disease (Hematodinium perezi). A high aggregate prevalence of L. callinectes (93.2%) was identified across all seasons at all 4 collection sites regardless of salinity. A moderately low aggregate prevalence of U. crescens (22.4%) was identified across all seasons and sites. Prevalence of U. crescens depended on site salinity, with only 10% of infections detected at sites with <6.3 ppt salinity, and no infections detected at the low salinity site. While L. callinectes and U. crescens are commensal parasites of blue crabs, infections can result in unmarketable and unappealing meat. In the Louisiana fishery, H. perezi has been blamed circumstantially for adult mortalities in the low salinity nearshore fishing grounds. Despite this, H. perezi was not detected in any of the large crabs sampled, even from the low salinity sites. The prevalence data reported here for these 3 protozoans are the first to include blue crabs sampled seasonally at multiple locations along the Louisiana coast over the period of a year. PMID:25958802

  19. Protozoan predation as a mechanism for the removal of cryptosporidium oocysts from wastewaters in constructed wetlands.

    PubMed

    Stott, R; May, E; Matsushita, E; Warren, A

    2001-01-01

    The removal of the protozoan parasite, Cryptosporidium parvum, from wastewaters is becoming of increasing importance in the UK, especially since contamination of raw waters by sewage effluents has been implicated in major waterborne outbreaks of cryptosporidiosis in recent years. Compared to conventional wastewater-treatment processes, constructed wetlands have demonstrated favourable removal rates for Cryptosporidium oocysts. The removal mechanisms, however, remain unknown. Predation by free-living ciliated protozoa, which are commonly found in constructed wetlands, was investigated as a possible mechanism for oocyst removal. In laboratory feeding experiments, ciliates (Euplotes patella, Stylonychia mytilus, Paramecium caudatum and an unidentified wetland ciliate species), were exposed to doses ranging from 10 to 10(6) oocysts/ml for between 5 and 60 minutes. Ciliate predatory activities were assessed by enumerating fluorescently labelled ingested oocysts using epifluorescence microscopy. Oocysts were found to be ingested by all species investigated. Paramecium demonstrated the highest mean ingestion rates (up to 170 oocysts/hr) followed by Stylonychia (up to 60 oocysts/hour). Euplotes and the wetland ciliate had lower mean grazing rates (4 and 10 oocysts/hr respectively). These results indicate that protozoan predation may be an important factor in the removal of Cryptosporidium oocysts from wastewaters in constructed wetlands. PMID:11804094

  20. Effect of anaerobic digestion on oocysts of the protozoan Eimeria tenella.

    PubMed Central

    Lee, M R; Shih, J C

    1988-01-01

    The effect of anaerobic digestion of poultry waste on oocysts of the protozoan Eimeria tenella, a common enteric pathogen that causes coccidiosis in poultry, was investigated in this study. Thermophilic (50 degrees C) and mesophilic (35 degrees C) anaerobic digestors, with poultry manure as the substrate, were inoculated with the oocysts. The oocysts were damaged during anaerobic digestion, as determined by morphological change and loss of their ability to sporulate. The recovered oocysts were tested for their infectivity in young chicks, as measured by body weight gain, mortality, and cecal lesions. Oocysts lost all their infectivity during thermophilic digestion, while oocysts subjected to mesophilic digestion remained moderately infective in comparison with untreated oocysts, which produced severe coccidiosis, high mortality, and low body weight gain in chicks. Oocysts were inactivated at 50 degrees C when they were suspended in digestor fluid or saline. Inactivation at 35 degrees C was significantly stronger in the digestor fluid than in the saline, which implied that factors other than temperature were involved in the lethal effect of anaerobic digestion on protozoan oocysts. In this study we demonstrated that the treatment of animal waste by anaerobic digestion, especially at a thermophilic temperature, has the benefits of pathogen control and protection of human and animal health in a farm environment. Images PMID:3202626

  1. Identification of a New Rhoptry Neck Complex RON9/RON10 in the Apicomplexa Parasite Toxoplasma gondii

    PubMed Central

    Lamarque, Mauld H.; Papoin, Julien; Finizio, Anne-Laure; Lentini, Gaelle; Pfaff, Alexander W.; Candolfi, Ermanno; Dubremetz, Jean-François; Lebrun, Maryse

    2012-01-01

    Apicomplexan parasites secrete and inject into the host cell the content of specialized secretory organelles called rhoptries, which take part into critical processes such as host cell invasion and modulation of the host cell immune response. The rhoptries are structurally and functionally divided into two compartments. The apical duct contains rhoptry neck (RON) proteins that are conserved in Apicomplexa and are involved in formation of the moving junction (MJ) driving parasite invasion. The posterior bulb contains rhoptry proteins (ROPs) unique to an individual genus and, once injected in the host cell act as effector proteins to co-opt host processes and modulate parasite growth and virulence. We describe here two new RON proteins of Toxoplasma gondii, RON9 and RON10, which form a high molecular mass complex. In contrast to the other RONs described to date, this complex was not detected at the MJ during invasion and therefore was not associated to the MJ complex RON2/4/5/8. Disruptions of either RON9 or RON10 gene leads to the retention of the partner in the ER followed by subsequent degradation, suggesting that the RON9/RON10 complex formation is required for proper sorting to the rhoptries. Finally, we show that the absence of RON9/RON10 has no significant impact on the morphology of rhoptry, on the invasion and growth in fibroblasts in vitro or on virulence in vivo. The conservation of RON9 and RON10 in Coccidia and Cryptosporidia suggests a specific relation with development in intestinal epithelial cells. PMID:22427839

  2. Phylogenetic Diversity, Localization, and Cell Morphologies of Members of the Candidate Phylum TG3 and a Subphylum in the Phylum Fibrobacteres, Recently Discovered Bacterial Groups Dominant in Termite Guts▿ †

    PubMed Central

    Hongoh, Yuichi; Deevong, Pinsurang; Hattori, Satoshi; Inoue, Tetsushi; Noda, Satoko; Noparatnaraporn, Napavarn; Kudo, Toshiaki; Ohkuma, Moriya

    2006-01-01

    Recently we discovered two novel, deeply branching lineages in the domain Bacteria from termite guts by PCR-based analyses of 16S rRNA (Y. Hongoh, P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo, Appl. Environ. Microbiol. 71:6590-6599, 2005). Here, we report on the specific detection of these bacteria, the candidate phylum TG3 (Termite Group 3) and a subphylum in the phylum Fibrobacteres, by fluorescence in situ hybridization in the guts of the wood-feeding termites Microcerotermes sp. and Nasutitermes takasagoensis. Both bacterial groups were detected almost exclusively from the luminal fluid of the dilated portion in the hindgut. Each accounted for approximately 10% of the total prokaryotic cells, constituting the second-most dominant groups in the whole-gut microbiota. The detected cells of both groups were in undulate or vibroid forms and apparently resembled small spirochetes. The cell sizes were 0.2 to 0.4 by 1.3 to 6.0 μm and 0.2 to 0.3 by 1.3 to 4.9 μm in the TG3 and Fibrobacteres, respectively. Using PCR screenings with specific primers, we found that both groups are distributed among various termites. The obtained clones formed monophyletic clusters that were delineated by the host genus rather than by the geographic distance, implying a robust association between these bacteria and host termites. TG3 clones were also obtained from a cockroach gut, lake sediment, rice paddy soil, and deep-sea sediments. Our results suggest that the TG3 and Fibrobacteres bacteria are autochthonous gut symbionts of various termites and that the TG3 members are also widely distributed among various other environments. PMID:17021231

  3. Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon

    PubMed Central

    Benamrouz, Sadia; Nourrisson, Céline; Poirier, Philippe; Pereira, Bruno; Razakandrainibe, Romy; Pinon, Anthony; Lambert, Céline; Wawrzyniak, Ivan; Dabboussi, Fouad; Delbac, Frederic; Favennec, Loïc; Hamze, Monzer; Viscogliosi, Eric; Certad, Gabriela

    2016-01-01

    Background Intestinal protozoan infections are confirmed as major causes of diarrhea, particularly in children, and represent a significant, but often neglected, threat to public health. No recent data were available in Lebanon concerning the molecular epidemiology of protozoan infections in children, a vulnerable population at high risk of infection. Methodology and Principal Findings In order to improve our understanding of the epidemiology of intestinal pathogenic protozoa, a cross-sectional study was conducted in a general pediatric population including both symptomatic and asymptomatic subjects. After obtaining informed consent from the parents or legal guardians, stool samples were collected in January 2013 from 249 children in 2 schools in Tripoli, Lebanon. Information obtained from a standard questionnaire included demographic characteristics, current symptoms, socioeconomic status, source of drinking water, and personal hygiene habits. After fecal examination by both microscopy and molecular tools, the overall prevalence of parasitic infections was recorded as 85%. Blastocystis spp. presented the highest infection rate (63%), followed by Dientamoeba fragilis (60.6%), Giardia duodenalis (28.5%) and Cryptosporidium spp. (10.4%). PCR was also performed to identify species and genotypes of Cryptosporidium, subtypes of Blastocystis, and assemblages of Giardia. Statistical analysis using a logistic regression model showed that contact with family members presenting gastrointestinal disorders was the primary risk factor for transmission of these protozoa. Conclusions This is the first study performed in Lebanon reporting the prevalence and the clinical and molecular epidemiological data associated with intestinal protozoan infections among schoolchildren in Tripoli. A high prevalence of protozoan parasites was found, with Blastocystis spp. being the most predominant protozoans. Although only 50% of children reported digestive symptoms, asymptomatic infection was observed, and these children may act as unidentified carriers. This survey provides necessary information for designing prevention and control strategies to reduce the burden of these protozoan infections, especially in children. PMID:26974335

  4. Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays.

    PubMed

    Marquis, Nicholas D; Record, Nicholas R; Robledo, José A Fernández

    2015-10-01

    Protozoan pathogens represent a serious threat to oyster aquaculture, since they can lead to significant production loses. Moreover, oysters can concentrate human pathogens through filter feeding, thus putting at risk raw oyster consumers' health. Using PCR-based assays in oysters (Crassostrea virginica) from Maine, we expand the Northeast range in the USA for the protozoans Perkinsus marinus, Perkinsus chesapeaki, and Haplosporidium nelsoni, and report for the first time the detection of the human pathogens Toxoplasma gondii and Cryptosporidium parvum. Oysters hosting both P. marinus and P. chesapeaki were more than three times as likely to be infected by a non-Perkinsus than those free of Perkinsus infections. PMID:25889457

  5. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction

    NASA Technical Reports Server (NTRS)

    Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.

    1989-01-01

    Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.

  6. Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics.

    PubMed

    Nobu, Masaru K; Dodsworth, Jeremy A; Murugapiran, Senthil K; Rinke, Christian; Gies, Esther A; Webster, Gordon; Schwientek, Patrick; Kille, Peter; Parkes, R John; Sass, Henrik; Jørgensen, Bo B; Weightman, Andrew J; Liu, Wen-Tso; Hallam, Steven J; Tsiamis, George; Woyke, Tanja; Hedlund, Brian P

    2016-02-01

    The 'Atribacteria' is a candidate phylum in the Bacteria recently proposed to include members of the OP9 and JS1 lineages. OP9 and JS1 are globally distributed, and in some cases abundant, in anaerobic marine sediments, geothermal environments, anaerobic digesters and reactors and petroleum reservoirs. However, the monophyly of OP9 and JS1 has been questioned and their physiology and ecology remain largely enigmatic due to a lack of cultivated representatives. Here cultivation-independent genomic approaches were used to provide a first comprehensive view of the phylogeny, conserved genomic features and metabolic potential of members of this ubiquitous candidate phylum. Previously available and heretofore unpublished OP9 and JS1 single-cell genomic data sets were used as recruitment platforms for the reconstruction of atribacterial metagenome bins from a terephthalate-degrading reactor biofilm and from the monimolimnion of meromictic Sakinaw Lake. The single-cell genomes and metagenome bins together comprise six species- to genus-level groups that represent most major lineages within OP9 and JS1. Phylogenomic analyses of these combined data sets confirmed the monophyly of the 'Atribacteria' inclusive of OP9 and JS1. Additional conserved features within the 'Atribacteria' were identified, including a gene cluster encoding putative bacterial microcompartments that may be involved in aldehyde and sugar metabolism, energy conservation and carbon storage. Comparative analysis of the metabolic potential inferred from these data sets revealed that members of the 'Atribacteria' are likely to be heterotrophic anaerobes that lack respiratory capacity, with some lineages predicted to specialize in either primary fermentation of carbohydrates or secondary fermentation of organic acids, such as propionate. PMID:26090992

  7. Evidence of Carbon Fixation Pathway in a Bacterium from Candidate Phylum SBR1093 Revealed with Genomic Analysis

    PubMed Central

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere. PMID:25310003

  8. Draft Genome Sequence of “Candidatus Bacteroides periocalifornicus,” a New Member of the Bacteriodetes Phylum Found within the Oral Microbiome of Periodontitis Patients

    PubMed Central

    Liu, Quanhui; Thompson, John; Edlund, Anna

    2015-01-01

    Here we present the draft genome of a distantly related member within the phylum Bacteriodetes, “Candidatus Bacteroides periocalifornicus.” The draft genome sequence was assembled with metagenomic data from a patient with periodontitis. The closest relative has less than 68% average nucleic identity, supporting a novel family within Bacteriodetes. PMID:26701081

  9. Draft Genome Sequence of "Candidatus Bacteroides periocalifornicus," a New Member of the Bacteriodetes Phylum Found within the Oral Microbiome of Periodontitis Patients.

    PubMed

    McLean, Jeffrey S; Liu, Quanhui; Thompson, John; Edlund, Anna; Kelley, Scott

    2015-01-01

    Here we present the draft genome of a distantly related member within the phylum Bacteriodetes, "Candidatus Bacteroides periocalifornicus." The draft genome sequence was assembled with metagenomic data from a patient with periodontitis. The closest relative has less than 68% average nucleic identity, supporting a novel family within Bacteriodetes. PMID:26701081

  10. Effect of Cypermethrin on the Growth of Ciliate Protozoan Paramecium caudatum

    PubMed Central

    Dutta, Joydeep

    2015-01-01

    Objective: The objective of this study is to assess the effect of cypermethrin on the growth of ciliate protozoan Paramecium caudatum. Materials and Methods: Monoxenic culture of P. caudatum, were exposed to different doses (0.01, 0.05, 0.1, 0.15, and 0.2 µg/L) of cypermethrin along with control for 24, 48, 72, and 96 h time interval. The total numbers of live and dead cells were counted after trypan blue staining in Neubauer hemocytometer. Results: Marked decrease in the number of living cells with the increase in the concentration of cypermethrin and with increasing exposure time intervals was recorded. Conclusion: The results indicate that cypermethrin is toxic to P. caudatum even at low concentrations when it enters in the aquatic system through runoff. PMID:26862268

  11. Role of the Gut Microbiota of Children in Diarrhea Due to the Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Gilchrist, Carol A.; Petri, Sarah E.; Schneider, Brittany N.; Reichman, Daniel J.; Jiang, Nona; Begum, Sharmin; Watanabe, Koji; Jansen, Caroline S.; Elliott, K. Pamela; Burgess, Stacey L.; Ma, Jennie Z.; Alam, Masud; Kabir, Mamun; Haque, Rashidul; Petri, William A.

    2016-01-01

    Background. An estimated 1 million children die each year before their fifth birthday from diarrhea. Previous population-based surveys of pediatric diarrheal diseases have identified the protozoan parasite Entamoeba histolytica, the etiological agent of amebiasis, as one of the causes of moderate-to-severe diarrhea in sub-Saharan Africa and South Asia. Methods. We prospectively studied the natural history of E. histolytica colonization and diarrhea among infants in an urban slum of Dhaka, Bangladesh. Results. Approximately 80% of children were infected with E. histolytica by the age of 2 years. Fecal anti-galactose/N-acetylgalactosamine lectin immunoglobulin A was associated with protection from reinfection, while a high parasite burden and expansion of the Prevotella copri level was associated with diarrhea. Conclusions. E. histolytica infection was prevalent in this population, with most infections asymptomatic and diarrhea associated with both the amount of parasite and the composition of the microbiota. PMID:26712950

  12. Changes in trophic structure of a freshwater protozoan community subjected to cadmium.

    PubMed

    Fernández-Leborans, G; Novillo-Villajos, A

    1993-06-01

    The development of protozoan communities in laboratory microecosystems has been studied in order to observe the effect of cadmium on the trophic structure and dynamics of these communities. The effect of cadmium was evident on the species richness, density, and biomass. The most sensitive parameters seem to be biomass and species richness. In the controls, the trophic structure of the community was defined for bacterivore-detritivore, photautotroph, algivore, and in low proportion for nonselective species. In the fractions with cadmium there was a decrease in diversity in each trophic group; the bacterivore-detritivore and photosynthetic species were the most affected. Also, there was an appearance of saprotroph species. Species belonging to the control and others exclusively pertaining to microecosystems with cadmium were observed. PMID:7691521

  13. Rapid Simultaneous Detection of Anti-protozoan Drugs Using a Lateral-Flow Immunoassay Format.

    PubMed

    Fitzgerald, Jenny; Leonard, Paul; Danaher, Martin; O'Kennedy, Richard

    2015-05-01

    This research describes the development of a multi-analyte lateral-flow immunoassay intended for the simultaneous detection of three anti-protozoan drugs (coccidiostats). These drugs, namely, halofuginone, toltrazuril and diclazuril, are used in the treatment of Eimeria spp. infections in cattle, pigs, chickens and turkeys. Coloured carboxylated microspheres were coated with each of the detection antibodies and employed in a lateral-flow assay format for detection of these residues in eggs. Using this approach, halofuginone was detectable at a limit of 10 ng/mL or greater, toltrazuril at 100 ng/mL and, similarly, diclazuril had a detection limit of 100 ng/mL, which is below the maximum allowed residue limit for all three as outlined by EU regulation. This simple cost-efficient assay and analysis method could pave the way for more efficient simultaneous monitoring of small-molecule residues in the future. PMID:25832180

  14. Relative migration rates and local adaptation in a mosquito-protozoan interaction.

    PubMed

    Ganz, H H; Washburn, J O

    2006-05-01

    Theory predicts that the direction of local adaptation depends on the relative migration rates of hosts and parasites. Here we measured relative migration rates and tested for local adaptation in the interaction between a tree hole mosquito (Ochlerotatus sierrensis) and a protozoan parasite (Lambornella clarki). We found strong support for the hypothesis that the host migrates more than its parasite. Hosts colonized artificial tree holes in the field at a much higher rate than the parasite. Field releases of the parasite demonstrated that it colonizes and persists in natural tree holes where it was previously absent, suggesting that parasite distribution is limited by its migratory ability. Although the host migrates more than its parasite, we found no evidence for local adaptation by hosts and some evidence for local adaptation by parasites. Other life history traits of the host and parasite may also influence patterns in local adaptation, particularly parasite virulence and host dormancy. PMID:16674578

  15. Silencing genes by RNA interference in the protozoan parasite Entamoeba histolytica.

    PubMed

    Solis, Carlos F; Guillén, Nancy

    2008-01-01

    Experimental procedures using the RNA interference (RNAi) approach have recently emerged as a powerful tool for gene silencing in eukaryotic microbes for which gene replacement techniques have not yet been developed. Our group has recently explored RNAi to knock down gene-specific expression in the protozoan parasite Entamoeba histolytica, through delivery of small interfering RNA (siRNA) oligonucleotides by the soaking approach. Standardized conditions for the soaking of E. histolytica trophozoites with siRNAs result in highly specific and significant silencing of parasite cognate genes. Real-time PCR analysis indicates that a 16-hour treatment with siRNAs usually results in half-extinction of target messenger RNA. Furthermore, Western blot analysis of trophozoite crude extracts with the use of specific antibodies shows a similar reduction of cognate protein levels after siRNA treatment. PMID:18369782

  16. Ultrastructural modification of the ciliate protozoan, Colpidium colpoda following chronic exposure to partially degraded crude oil

    SciTech Connect

    Rogerson, A.; Berger, J.

    1982-06-01

    Protozoa are important consumers of the microflora that biodegrade oil spills. In the study presented, the ultrastructural effects induced by chronic oil stress in the ciliate protozoan, Colpidium colpoda are discussed. Colpidia were grown in control cultures containing a dilute organic medium and a dense suspension of prey bacteria. After 20 days' oil exposure, C. colpoda contained more stained cytoplasmic inclusions than ciliates grown in the control media. Although the extent of Sudan Black staining in the oil-stressed cells indicates the presence of lipids, these droplets are better termed lipid-hydrocarbon (LH) inclusions until their definitive composition is known. C. colpoda accumulated significant quantities of lipid-hydrocarbons accounting for up to 20% of their cellular volume. Studies are currently being conducted to characterized these inclusions and to evaluate the effects of feeding these ''oil-labeled'' prey to predators, an important issue with the increasing concern about the biomagnification of environmental pollutants. (JMT)

  17. Adaptation-induced collective dynamics of a single-cell protozoan

    NASA Astrophysics Data System (ADS)

    Ogata, Maiko; Hondou, Tsuyoshi; Hayakawa, Yoshinori; Hayashi, Yoshikatsu; Sugawara, Ken

    2008-01-01

    We investigate the behavior of a single-cell protozoan in a narrow tubular ring. This environment forces them to swim under a one-dimensional periodic boundary condition. Above a critical density, single-cell protozoa aggregate spontaneously without external stimulation. The high-density zone of swimming cells exhibits a characteristic collective dynamics including translation and boundary fluctuation. We analyzed the velocity distribution and turn rate of swimming cells and found that the regulation of the turing rate leads to a stable aggregation and that acceleration of velocity triggers instability of aggregation. These two opposing effects may help to explain the spontaneous dynamics of collective behavior. We also propose a stochastic model for the mechanism underlying the collective behavior of swimming cells.

  18. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation.

    PubMed

    Cairns, Johannes; Jalasvuori, Matti; Ojala, Ville; Brockhurst, Michael; Hiltunen, Teppo

    2016-02-01

    Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes. PMID:26843557

  19. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater.

    PubMed

    Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R

    2013-07-01

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies. PMID:23446832

  20. Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis

    PubMed Central

    Abernathy, Jason W; Xu, Peng; Li, Ping; Xu, De-Hai; Kucuktas, Huseyin; Klesius, Phillip; Arias, Covadonga; Liu, Zhanjiang

    2007-01-01

    Background The ciliate protozoan Ichthyophthirius multifiliis (Ich) is an important parasite of freshwater fish that causes 'white spot disease' leading to significant losses. A genomic resource for large-scale studies of this parasite has been lacking. To study gene expression involved in Ich pathogenesis and virulence, our goal was to generate expressed sequence tags (ESTs) for the development of a powerful microarray platform for the analysis of global gene expression in this species. Here, we initiated a project to sequence and analyze over 10,000 ESTs. Results We sequenced 10,368 EST clones using a normalized cDNA library made from pooled samples of the trophont, tomont, and theront life-cycle stages, and generated 9,769 sequences (94.2% success rate). Post-sequencing processing led to 8,432 high quality sequences. Clustering analysis of these ESTs allowed identification of 4,706 unique sequences containing 976 contigs and 3,730 singletons. These unique sequences represent over two million base pairs (~10% of Plasmodium falciparum genome, a phylogenetically related protozoan). BLASTX searches produced 2,518 significant (E-value < 10-5) hits and further Gene Ontology (GO) analysis annotated 1,008 of these genes. The ESTs were analyzed comparatively against the genomes of the related protozoa Tetrahymena thermophila and P. falciparum, allowing putative identification of additional genes. All the EST sequences were deposited by dbEST in GenBank (GenBank: EG957858–EG966289). Gene discovery and annotations are presented and discussed. Conclusion This set of ESTs represents a significant proportion of the Ich transcriptome, and provides a material basis for the development of microarrays useful for gene expression studies concerning Ich development, pathogenesis, and virulence. PMID:17577414

  1. Structure of a Protozoan Virus from the Human Genitourinary Parasite Trichomonas vaginalis

    PubMed Central

    Parent, Kristin N.; Takagi, Yuko; Cardone, Giovanni; Olson, Norman H.; Ericsson, Maria; Yang, May; Lee, Yujin; Asara, John M.; Fichorova, Raina N.; Baker, Timothy S.; Nibert, Max L.

    2013-01-01

    ABSTRACT The flagellated protozoan Trichomonas vaginalis is an obligate human genitourinary parasite and the most frequent cause of sexually transmitted disease worldwide. Most clinical isolates of T. vaginalis are persistently infected with one or more double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae, which appear to influence not only protozoan biology but also human disease. Here we describe the three-dimensional structure of Trichomonas vaginalis virus 1 (TVV1) virions, as determined by electron cryomicroscopy and icosahedral image reconstruction. The structure reveals a T = 1 capsid comprising 120 subunits, 60 in each of two nonequivalent positions, designated A and B, as previously observed for fungal Totiviridae family members. The putative protomer is identified as an asymmetric AB dimer consistent with either decamer or tetramer assembly intermediates. The capsid surface is notable for raised plateaus around the icosahedral 5-fold axes, with canyons connecting the 2- and 3-fold axes. Capsid-spanning channels at the 5-fold axes are unusually wide and may facilitate release of the viral genome, promoting dsRNA-dependent immunoinflammatory responses, as recently shown upon the exposure of human cervicovaginal epithelial cells to either TVV-infected T. vaginalis or purified TVV1 virions. Despite extensive sequence divergence, conservative features of the capsid reveal a helix-rich fold probably derived from an ancestor shared with fungal Totiviridae family members. Also notable are mass spectrometry results assessing the virion proteins as a complement to structure determination, which suggest that translation of the TVV1 RNA-dependent RNA polymerase in fusion with its capsid protein involves −2, and not +1, ribosomal frameshifting, an uncommonly found mechanism to date. PMID:23549915

  2. Benthic bacterial production and protozoan predation in a silty freshwater environment.

    PubMed

    Wieltschnig, C; Fischer, U R; Kirschner, A K T; Velimirov, B

    2003-07-01

    The interrelation of heterotrophic bacteria with bacterivorous protists has been widely studied in pelagic environments, but data on benthic habitats, especially in freshwater systems, are still scarce. We present a seasonal study focusing on bacterivory by heterotrophic nanoflagellates (HNF) and ciliates in the silty sediment of a temperate macrophyte-dominated oxbow lake. From January 2001 to February 2002 we monitored the standing stock of bacteria and protozoa, bacterial secondary production (BSP, (3)H-thymidine, and (14)C-leucine incorporation), and grazing rates of HNF and ciliates on bacteria (FLB uptake) in the oxic sediment of the investigated system. BSP ranged from 470 to 4050 micro g C L(-1) wet sediment h(-1). The bacterial compartment turned out to be highly dynamic, indicated by population doubling times (0.6-10.0 d), which were comparable to those in the water column of the investigated system. Yet, the control mechanisms acting upon the bacterial population led to a relative constancy of bacterial standing stock during a year. Ingestion rates of protozoan grazers were 0-20.0 bacteria HNF(-1) h(-1) and 0-97.6 bacteria ciliate(-1) h(-1). HNF and ciliates together cropped 0-14 (mean 4)% of BSP, indicating that they did not significantly contribute to benthic bacterial mortality during any period of the year. The low impact of protozoan grazing was due to the low numbers of HNF and ciliates in relation to bacteria (1.8-3.5 x 10(4) bacteria HNF(-1), 0.9-3.1 x 10(6) bacteria ciliate(-1)). Thus, grazing by HNF and ciliates could be ruled out as a parameter regulating bacterial standing stock or production in the sediment of the investigated system, but the factors responsible for the limitation of benthic protistan densities and the fate of benthic BSP remained unclear. PMID:12739079

  3. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    PubMed Central

    Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R

    2013-01-01

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies. PMID:23446832

  4. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect

    Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek

    2013-07-28

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growth of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

  5. Synthesis and in vitro Screening of 29, 30-Dibromo-28-oxoallobetulin against Parasitic Protozoans, Leishmania donovani and Leishmania Major

    PubMed Central

    Ghosh, P.; Mandal, A.; Dey, S.; Pal, C.

    2015-01-01

    A simple synthesis and in vitro antileishmanial activity of 29,30-dibromo-28-oxoallobetulin against the parasitic protozoans, Leishmania donovani and Leishmania major is described. The structure of the compound is established on the basis of spectral data (IR, NMR, MS). Both the antiproliferative effect and the cell cycle progression were studied. PMID:26009654

  6. Enteric Protozoan Parasites in Rural Areas of Bandar-Abbas, Southern Iran: Comparison of Past and Present Situation

    PubMed Central

    Kuzehkanani, A Bairami; Rezaei, S; Babaei, Z; Niyyati, M; Hashemi, SN; Rezaeian, M

    2011-01-01

    Background: The main goal was to address the prevalence of enteric protozoan parasites in rural areas of Bandar-Abbas, southern Iran and to compare the results with the only conducted study in 1978. Methods: This descriptive study was performed from 2009 through 2010 on the 565 fecal samples. Formalin-ether concentration technique was performed and the analysis was carried out using Chi-square test in SPSS software version 13.5. Finally, the comparison of our results with the only previous study which was accomplished by Sheiban and Rezaeian in 1978 was done. Results: The overall prevalence of the protozoan parasites was 48.8%. However, the prevalence of pathogen parasites was 23%. Previous research in 1978 showed 80.4% infectivity. The most protozoan parasites were Blastocystis hominis (25.53%), Giardia lamblia (17.2%) and Entamoeba coli (15.95%). Previous study in 1978 found Entamoeba coli as the most common protozoa. Our finding revealed that the rate of single infectivity was much higher compared to previous research. The most frequency of infection was in children. Conclusion: The remarkable decrease of protozoan parasites is mainly due to progress in health care in the villages; however more effort should be done with the goal of eradicating infectious agents. PMID:23113059

  7. Molecular characteristics of an immobilization antigen gene of the fish-parasitic protozoan Ichthyophthirius multifiliis strain ARS-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyophthirius multifiliis, a ciliated protozoan parasite of fish, expresses surface antigens (i-antigens), which react with host antibodies that render them immobile. The nucleotide sequence of an i-antigen gene of Ichthyophthirius multifiliis strain ARS-6 was deduced. The predicted protein of 47...

  8. Factors Associated with High Prevalence of Intestinal Protozoan Infections among Patients in Sana'a City, Yemen

    PubMed Central

    Alyousefi, Naelah A.; Mahdy, Mohammed A. K.; Mahmud, Rohela; Lim, Yvonne A. L.

    2011-01-01

    Background Intestinal protozoan diseases in Yemen are a significant health problem with prevalence ranging from 18% to 27%. The present study is a cross-sectional study aimed at determining the factors associated with the high prevalence of intestinal protozoan infections among patients seeking health care in Sana'a City, the capital of Yemen. Methodology/Principal Findings Stool samples were collected from 503 patients aged between 1 and 80 years old; 219 were males and 284 females. Biodata were collected via pretested standard questionnaire. Faecal samples were processed and examined for (oo)cysts or ova using a wet mount preparation after formal-ether concentration technique. Cryptosporidium oocysts were detected using the Ziehl-Neelsen staining technique. The overall prevalence of intestinal protozoan infections was 30.9%. Infection rates of Giardia duodenalis, Entamoeba histolytica/dispar and Cryptosporidium were 17.7%, 17.1% and 1%, respectively. Other parasites detected included Ascaris lumbricoides (2.4%), Schistosoma mansoni (0.3%), Hymenolepis nana (1.4%) and Enterobius vermicularis (0.4%). Multivariate analysis using forward stepwise logistic regression based on intestinal protozoan infections showed that contact with animals (OR?=?1.748, 95% CI?=?1.1682.617) and taking bath less than twice a week (OR?=?1.820, 95% CI?=?1.1922.779) were significant risk factors of protozoan infections. Conclusions/Significance This present study indicated that intestinal protozoan infections are still a public health problem in Yemen, with Giardia and Entamoeba infections being most common. Statistical analysis indicated that low personal hygiene and contact with animals were important predictors for intestinal protozoan infections. As highlighted in this study, in order to effectively reduce these infections, a multi-sectoral effort is needed. Preventive measures should include good hygienic practices, good animal husbandry practices, heightened provision of educational health programs, health services in all governorates including rural areas. Furthermore, it is also essential to find radical solutions to the recent water crises in Yemen. PMID:21789210

  9. Isospora serinuse n. sp. (Apicomplexa: Eimeriidae) from a domestic canary (Serinus canaria forma domestica) (Passeriformes: Fringillidae) in Western Australia.

    PubMed

    Yang, Rongchang; Brice, Belinda; Elliot, Aileen; Ryan, Una

    2015-12-01

    A new species, Isospora serinuse n. sp., (Apicomplexa:Eimeriidae) is described from a single domestic canary (Serinus canaria forma domestica) (subspecies S. c. domestica) in Western Australia. Sporulated oocysts of Isospora serinuse n. sp. are spherical or subspherical, 25.5 (24.4-27.0) × 23.5 (22.0-24.8) μm, with a shape index (length/width) of 1.09; and a smooth bilayered oocyst wall, 1.2 μm thick (outer layer 0.9 μm, inner 0.3 μm). A polar granule is present, but a micropyle and oocyst residuum are absent. The sporocysts are lemon-shaped, 18.9 (17.8-20.2) × 11.8 (10.6-13.0) μm, with a shape index of 1.6. Stieda and substieda bodies are present, the Stieda body being a small crescent shape and the substieda being indistinct. Each sporocyst with four vermiform sporozoites arranged head to tail. A sporocyst residuum is present and composed of numerous granules of different sizes that are scattered among the sporozoites. Morphologically, the oocysts of Isospora serinuse n. sp. were different from those of all known valid Isospora spp. Molecular analysis was conducted at 3 loci: the 18S and 28S ribosomal RNA and two separate regions of subunit I of the mitochondrial cytochrome oxidase (COI) gene (designated COIa and COIb). At the 18S locus, Isospora serinuse n. sp. exhibited 97.5% similarity to Isospora sp. Tokyo from a domestic pigeon (Columba livia domestica) in Japan. At the 28S locus, I. serinuse n. sp. exhibited 94.9% similarity to Isospora anthochaerae n. sp. from a red wattlebird (Anthochaera carunculata) in Australia. At the COIa locus, I. serinuse n. sp. exhibited 95.7% similarity to Isospora sospora sp. ex Apodemus flavicollis from a yellow-necked mouse and Isospora gryphoni from an American goldfinch (Carduelis tristis) respectively. At the COIb locus, I. serinuse n. sp. exhibited 96.7% similarity to an Isospora (iSAT4) from a European pied flycatcher (Ficedula hypoleuca). Based on morphological and molecular data, this isolate is a new species of Isospora, which is named Isospora serinuse n. sp. after its host, the domestic canary (S. canaria forma domestica). PMID:26325434

  10. Isospora streperae n. sp. (Apicomplexa: Eimeriidae) from a grey currawong (Strepera versicolour plumbea) (Passeriformes: Artamidae) in Western Australia.

    PubMed

    Yang, Rongchang; Brice, Belinda; Habsi, Khalid Al; Elliot, Aileen; Ryan, Una

    2015-01-01

    A new species, Isospora streperae n. sp., (Apicomplexa: Eimeriidae) is described from a single grey currawong bird (Strepera versicolour) (subspecies S. v. plumbea) in Western Australia. Sporulated oocysts (n = 32) are spherical to subspherical, with smooth colourless bilayered oocyst wall, 1.0 µm thick (outer layer 0⋅8 µm, inner 0.2 µm thick). Oocyst with a polar granule, an oocyst residuum and two spheroidal to subspheroidal sporocysts. Oocyst length, 23.8 (20.4-25.0) µm; oocyst width, 22.5 (20.0-24.6) µm; a shape index of 1.06, with Stieda, substieda bodies. Micropyle is absent. Sporocysts with compressed sporocyst residuum and four sporozoites. Sporocyst length, 14.4 (12.5-15.2) µm; sporocyst width, 11.2 (10.6-14.0) µm, sporocyst L/W ratio, 1.29. Necropsy of the bird identified haemorrhaging along the ileum and jejunum, which is where Isospora oocysts were also mostly detected. Molecular analysis was conducted at three loci; the 18S, 28S ribosomal RNA and the mitochondrial cytochrome oxidase (COI) gene. At the 18S locus, I. streperae n. sp. exhibited 99.5% and 99.4% similarity respectively to an Isospora sp. (MS-2003) from a Southern cape sparrow (Passer melanurus melanurus) and Isospora dovati from a domestic pigeon (Columba livia domestica). At the 28S locus, I. streperae n. sp. exhibited 96.9% similarity to an Isospora sp. (MS-2003) from a grosbeak starling (Scissirostrum dubium) and 95.8% similarity with the Isospora sp. (MS-2003) from a Southern cape sparrow. At the COI locus, I. streperae n. sp. exhibited 95.0% similarity to Isospora sp. from a yellow-necked mouse (Apodemus flavicollis) from the Czech Republic. Based on morphological and molecular data, this isolate is a new species of Isospora, which is named Isospora streperae n. sp. after its host, the grey currawong (Strepera versicolour plumbea). PMID:25620542

  11. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms.

    PubMed

    Fischer, Ulrike R; Wieltschnig, Claudia; Kirschner, Alexander K T; Velimirov, Branko

    2006-08-01

    In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h(-1) (average, 0.033 h(-1)), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF(-1) h(-1)) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate(-1) h(-1)). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5-19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers. PMID:16872403

  12. Aggregata (Protozoa: Apicomplexa) infection in the common octopus Octopus vulgaris from the West Mediterranean Sea: The infection rates and possible effect of faunistic, environmental and ecological factors

    NASA Astrophysics Data System (ADS)

    Mayo-Hernández, E.; Barcala, E.; Berriatua, E.; García-Ayala, A.; Muñoz, P.

    2013-10-01

    Prevalence and distribution of the coccidian parasite Aggregata octopiana (Protozoa: Apicomplexa) in common octopus (Octopus vulgaris) in the Mediterranean Spanish coasts were studied. A total of 114 octopuses were sampled from 30 geographic sectors by trawl fleet, and whitish macroscopic oocysts typical of A. octopiana infection were recorded in 96% of octopuses in the digestive tract and mainly in intestine and spiral caecum. The univariate analysis showed that lesion extension varied according to specific octopus, environmental and faunistic variables. A subsequent multivariable analysis indicated that the risk of macroscopic lesions in the caecum was greater in males compared to females, in octopuses living in deeper compared to shallower waters and in hauls where the crustacean Pagurus excavatus was present. The study provides further evidence of the abundance of A. octopiana in octopus ecosystems urging for further studies to evaluate its health impact. The combined abundance of infected octopuses and P. excavatus merits attention.

  13. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    PubMed Central

    Hou, Shaobin; Makarova, Kira S; Saw, Jimmy HW; Senin, Pavel; Ly, Benjamin V; Zhou, Zhemin; Ren, Yan; Wang, Jianmei; Galperin, Michael Y; Omelchenko, Marina V; Wolf, Yuri I; Yutin, Natalya; Koonin, Eugene V; Stott, Matthew B; Mountain, Bruce W; Crowe, Michelle A; Smirnova, Angela V; Dunfield, Peter F; Feng, Lu; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins. Conclusion The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria. Reviewers This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta. PMID:18593465

  14. A Comparative Study of the Common Protozoan Parasites of Clarias gariepinus from the Wild and Cultured Environments in Benue State, Nigeria

    PubMed Central

    Omeji, S.; Solomon, S. G.; Idoga, E. S.

    2011-01-01

    A total of one hundred and twenty Clarias gariepinus comprising 30 dead and 30 live fishes were examined for protozoan parasites infestation, sixty each from the wild and a pond (cultured environment) over a period of six months. Ichthyophthirius multifiliis was the most common protozoan parasites found in C. gariepinus from the wild (River Benue) and cultured (pond) environments. These protozoan parasites constitute 37.08% of the total parasites encountered for fishes in the pond and 42.51% of fishes in the wild. Among the body parts of the sampled fishes from the pond, the gills had the highest parasite load (38.86%). Also, the gills had the highest parasite load (40.54%) among the body parts of the fishes sampled from the wild. Fishes not infested with any protozoan parasites from the pond constituted 36.70% of the total fish sampled. On the other hand, fishes not infested with any protozoan parasites from the wild constituted 31.65% of the total fish sampled. Female fishes had more protozoan parasites than the male fishes. Bigger fishes of total length (25–48 cm) had more parasite load than the smaller ones (19–24 cm). Also, fishes between 150–750 g had more parasite load than the smaller ones of less than 150 g. Protozoan parasite load of fish from the cultured environment (pond) did not differ significantly (P < 0.05) from those from River Benue (wild). PMID:22028952

  15. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

    USGS Publications Warehouse

    Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse; Isaacs, Natasha M.

    2013-01-01

    The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfbO157) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but notCryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfbO157, STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2, stx1, and rfbO157 genes, but no genes were related exclusively to an individual MST marker. The human source pharmaceuticals (HSPs) acetaminophen and caffeine were correlated with Giardia, and the presence of HSPs proved to be more useful than MST markers in distinguishing the occurrence of Giardia. The HSPs caffeine and carbamazepine were correlated with the sum total of pathogen genes detected in a sample, demonstrating the value of using HSPs as an indicator of fecally derived pathogens. Sites influenced by urban land use with less forest were more likely to have greater FIB and Giardia densities and sum of the array of pathogen genes. Sites dominated by shallow carbonate bedrock in the upstream catchment were likely to have greater FIB densities and higher sum totals of pathogen genes but no correlation with Giardia detection. Our study provides a range of specific environmental, chemical, geologic, and land-use variables related to occurrence and distribution of FIB and selected bacterial and protozoan pathogens in Pennsylvania streams. The information presented could be useful for resource managers in understanding bacterial and protozoan pathogen occurrence and their relation to fecal indicator bacteria in similar settings.

  16. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    PubMed

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today. PMID:23151644

  17. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    PubMed

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2015-01-01

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. PMID:26637598

  18. The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata).

    PubMed

    Gao, Feng; Warren, Alan; Zhang, Qianqian; Gong, Jun; Miao, Miao; Sun, Ping; Xu, Dapeng; Huang, Jie; Yi, Zhenzhen; Song, Weibo

    2016-01-01

    The phylum Ciliophora plays important roles in a wide range of biological studies. However, the evolutionary relationships of many groups remain unclear due to a lack of sufficient molecular data. In this study, molecular dataset was expanded with representatives from 55 orders and all major lineages. The main findings are: (1) 14 classes were recovered including one new class, Protocruziea n. cl.; (2) in addition to the two main branches, Postciliodesmatophora and Intramacronucleata, a third branch, the Mesodiniea, is identified as being basal to the other two subphyla; (3) the newly defined order Discocephalida is revealed to be a sister clade to the euplotids, strongly suggesting the separation of discocephalids from the hypotrichs; (4) the separation of mobilids from the peritrichs is not supported; (5) Loxocephalida is basal to the main scuticociliate assemblage, whereas the thigmotrichs are placed within the order Pleuronematida; (6) the monophyly of classes Phyllopharyngea, Karyorelictea, Armophorea, Prostomatea, Plagiopylea, Colpodea and Heterotrichea are confirmed; (7) ambiguous genera Askenasia, CyclotrichiumParaspathidium and Plagiocampa show close affiliation to the well known plagiopyleans; (8) validity of the subclass Rhynchostomatia is supported, and (9) the systematic positions of Halteriida and Linconophoria remain unresolved and are thus regarded as incertae sedis within Spirotrichea. PMID:27126745

  19. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    SciTech Connect

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  20. The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    PubMed Central

    Gao, Feng; Warren, Alan; Zhang, Qianqian; Gong, Jun; Miao, Miao; Sun, Ping; Xu, Dapeng; Huang, Jie; Yi, Zhenzhen; Song, Weibo

    2016-01-01

    The phylum Ciliophora plays important roles in a wide range of biological studies. However, the evolutionary relationships of many groups remain unclear due to a lack of sufficient molecular data. In this study, molecular dataset was expanded with representatives from 55 orders and all major lineages. The main findings are: (1) 14 classes were recovered including one new class, Protocruziea n. cl.; (2) in addition to the two main branches, Postciliodesmatophora and Intramacronucleata, a third branch, the Mesodiniea, is identified as being basal to the other two subphyla; (3) the newly defined order Discocephalida is revealed to be a sister clade to the euplotids, strongly suggesting the separation of discocephalids from the hypotrichs; (4) the separation of mobilids from the peritrichs is not supported; (5) Loxocephalida is basal to the main scuticociliate assemblage, whereas the thigmotrichs are placed within the order Pleuronematida; (6) the monophyly of classes Phyllopharyngea, Karyorelictea, Armophorea, Prostomatea, Plagiopylea, Colpodea and Heterotrichea are confirmed; (7) ambiguous genera Askenasia, CyclotrichiumParaspathidium and Plagiocampa show close affiliation to the well known plagiopyleans; (8) validity of the subclass Rhynchostomatia is supported, and (9) the systematic positions of Halteriida and Linconophoria remain unresolved and are thus regarded as incertae sedis within Spirotrichea. PMID:27126745

  1. Seasonal dominance of CL500-11 bacterioplankton (phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan.

    PubMed

    Okazaki, Yusuke; Hodoki, Yoshikuni; Nakano, Shin-ichi

    2013-01-01

    Uncultured bacteria affiliated with the CL500-11 cluster (phylum Chloroflexi) were first reported from the oxygenated hypolimnion of Crater Lake (USA) as a predominant bacterioplankton, although this dominance has not been reported in other environments. In this study, we showed that CL500-11 is also dominant in the oxygenated hypolimnion of Lake Biwa (Japan) and followed its spatiotemporal succession using fluorescent in situ hybridization. CL500-11 cells were almost absent [< 1% of 4',6-diamidino-2-phenylindole (DAPI)-stained cells] at the beginning of the stratification period, dominated (> 10% of DAPI-stained cells; maximum = 16.5%) in the hypolimnion during the stratification period, and decreased to below the detection limit with the collapse of the thermocline. This pattern was observed over two annual cycles. A longitudinal assessment also showed that CL500-11 was the dominant bacterium in the hypolimnion over the whole lake, but was generally undetectable in the stratified epilimnion. These data suggest that CL500-11 is acclimated to the oxygenated hypolimnion and is a potentially important component of the pelagic biogeochemical cycling of the lake. A comparative analysis of 16S rRNA gene sequences revealed that almost all CL500-11 sequences previously deposited in the database were detected from hypolimnion or holomictic water in deep oxic freshwater lakes, suggesting that the bacteria may form one of the common lineages residing in an aerobic hypolimnetic niche. PMID:22809435

  2. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    PubMed Central

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  3. Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum ‘Synergistetes’ isolated from the human oral cavity

    PubMed Central

    Downes, Julia; Vartoukian, Sonia R.; Dewhirst, Floyd E.; Izard, Jacques; Chen, Tsute; Yu, Wen-Han; Sutcliffe, Iain C.; Wade, William G.

    2009-01-01

    Four strains of anaerobic, Gram-negative bacilli isolated from the human oral cavity were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise a homogeneous group distinct from any species with validly published names. 16S rRNA and 23S rRNA gene sequence analyses and DNA–DNA reassociation data revealed that the strains constituted a novel group within the phylum ‘Synergistetes’ and were most closely related to Jonquetella anthropi. Two libraries of randomly cloned DNA were prepared from strain W5455T and were sequenced to provide a genome survey as a resource for metagenomic studies. A new genus and novel species, Pyramidobacter piscolens gen. nov., sp. nov., is proposed to accommodate these strains. The genus Pyramidobacter comprises strains that are anaerobic, non-motile, asaccharolytic bacilli that produce acetic and isovaleric acids and minor to trace amounts of propionic, isobutyric, succinic and phenylacetic acids as end products of metabolism. P. piscolens gen. nov., sp. nov. produced hydrogen sulphide but was otherwise largely biochemically unreactive. Growth was stimulated by the addition of glycine to broth media. The G+C content of the DNA of the type strain was 59 mol%. The type strain of Pyramidobacter piscolens sp. nov. is W5455T (=DSM 21147T=CCUG 55836T). PMID:19406777

  4. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum

    SciTech Connect

    Rodionova, Irina A.; Li, Xiaoqing; Plymale, Andrew E.; Motamedchaboki, Khatereh; Konopka, Allan; Romine, Margaret F.; Fredrickson, Jim K.; Osterman, Andrei; Rodionov, Dmitry A.

    2015-04-01

    Bacteria from the Chloroflexi phylum are dominant members of phototrophic microbial mat communities in terrestrial thermal environments. Vitamins of B-group are key intermediates (precursors) in the biosynthesis of indispensable enzyme cofactors driving numerous metabolic processes in all forms of life. A genomics-based reconstruction and comparative analysis of respective biosynthetic and salvage pathways and riboswitch regulons in over 20 representative Chloroflexi genomes revealed a widespread auxotrophy for some of the vitamins. The most prominent predicted phenotypic signature, auxotrophy for vitamins B1 and B7 was experimentally confirmed for the best studied model organism Chloroflexus aurantiacus. These observations along with identified candidate genes for the respective uptake transporters pointed to B vitamin exchange as an important aspect of syntrophic metabolism in microbial communities. Inferred specificities of homologous substrate-binding components of ABC transporters for vitamins B1 (ThiY) and B2 (RibY) were verified by thermofluorescent shift approach. A functional activity of the thiamine-specific transporter ThiXYZ from C. aurantiacus was experimentally verified by genetic complementation in E. coli. Expanding the integrative approach, which was applied here for a comprehensive analysis of B-vitamin metabolism in Chloroflexi would allow reconstruction of metabolic interdependencies in microbial communities.

  5. Recurrent wheezing is associated with intestinal protozoan infections in Warao Amerindian children in Venezuela: a cross-sectional survey

    PubMed Central

    2014-01-01

    Background While in developed countries the prevalence of allergic diseases is rising, inflammatory diseases are relatively uncommon in rural developing areas. High prevalence rates of helminth and protozoan infections are commonly found in children living in rural settings and several studies suggest an inverse association between helminth infections and allergies. No studies investigating the relationship between parasitic infections and atopic diseases in rural children of developing countries under the age of 2 years have been published so far. We performed a cross-sectional survey to investigate the association of helminth and protozoan infections and malnutrition with recurrent wheezing and atopic eczema in Warao Amerindian children in Venezuela. Methods From August to November 2012, 229 children aged 0 to 2 years residing in the Orinoco Delta in Venezuela were enrolled. Data were collected through standardized questionnaires and physical examination, including inspection of the skin and anthropometric measurements. A stool sample was requested from all participants and detection of different parasites was performed using microscopy and real time polymerase chain reaction (PCR). Results We observed high prevalence rates of atopic eczema and recurrent wheezing, respectively 19% and 23%. The prevalence of helminth infections was 26% and the prevalence of protozoan infections was 59%. Atopic eczema and recurrent wheezing were more frequently observed in stunted compared with non-stunted children in multivariable analysis (OR 4.3, 95% CI 1.3 – 13.6, p = 0.015 and OR 4.5, 95% CI 0.97 – 21.2, p = 0.055). Furthermore, recurrent wheezing was significantly more often observed in children with protozoan infections than in children without protozoan infections (OR 6.7, 95% CI 1.5 – 30.5). Conclusions High prevalence rates of atopic eczema and recurrent wheezing in Warao Amerindian children under 2 years of age were related to stunting and intestinal protozoan infections respectively. Helminth infections were not significantly associated with either atopic eczema or recurrent wheezing. PMID:24885094

  6. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems

    PubMed Central

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations. PMID:9435076

  7. First record of protozoan parasites in cyprinid fish, Schizothorax niger Heckel, 1838 from Dal lake in Kashmir Himalayas with study on their pathogenesis.

    PubMed

    Dar, Shoaib Ali; Kaur, Harpreet; Chishti, M Z; Ahmad, Fayaz; Tak, Irfan Ur Rauf; Dar, Gowhar Hamid

    2016-04-01

    Trichodina heterodentata Duncan, 1977 and Ichthyophthirius multifiliis Fouquet, 1876 obtained from gills during a parasitological survey conducted for the protozoan parasitic fauna of Schizothorax niger a snow trout in Dal Lake, Kashmir, India during the period October 2013 and March 2015. Thirty out of 180 fish were found infected with protozoan parasites. During the study of their pathogenecity the most common deteriorating signs observed in gill tissue were necrosis, hypertrophy, hyperplasia and fusion of secondary lamellae. Prevalence of infection was found to be 16.66%. This is the first record of the protozoan fauna of the schizothoracines from Kashmir valley, India. PMID:26802521

  8. Experimental transmission of Sarcocystis muris (Apicomplexa: Sarcocystidae) sporocysts from a naturally infected cat (Felis catus) to immunocompetent and immunocompromised mice.

    PubMed

    Al-Kappany, Y M; Abu-Elwafa, S A; Hilali, M; Rosenthal, B M; Dunams, D B; Dubey, J P

    2013-12-01

    Cats serve as definitive hosts for zoonotic Toxoplasma gondii , a protozoan that threatens human reproductive health, but they also excrete sporocysts of related protozoan that pose no known human health risk. Here we provide the first definitive evidence for natural infection with the enzootic parasite Sarcocystis muris, one such enzootic parasite. Sporulated Sarcocystis sp. sporocysts were found in rectal contents of an adult feral cat ( Felis catus ) in Giza, Egypt. After these sporocysts were orally inoculated into 2 Swiss Webster mice, sarcocysts were found to have developed in skeletal muscles 114 days later. As observed through transmission electron microscopy, the cyst wall corresponded to Type 1, and the parasitophorous vacuolar membrane had tiny outpocketing of blebs (<200 nm thick) that were not invaginated into the interior of the cyst; these structures were identical to the sarcocyst wall described for a Costa Rican isolate of S. muris that has served as an experimental model for nearly 4 decades. Two parasite-free cats fed sarcocyst-infected muscles developed patent infections; fully sporulated sporocysts (10-11 × 7.0 μm) were found in the lamina propria of small intestines of cats killed 6 and 7 days postinoculation (PI). Interferon gamma gene knockout (KO) mice were orally inoculated with sporocysts from experimentally infected cats, and their tissues were examined histologically; sarcocysts were found in 5 KO mice killed 87, 115, 196, 196, 196 days PI, but no stages were seen in 5 KO mice 10, 14, 14, 18, and 39 days PI. Bradyzoites were released from intramuscular sarcocysts of a KO mouse killed 115 days PI and orally inoculated into 5 KO mice. No stage of Sarcocystis was found in any organ (including intestinal lamina propria) of KO mice killed 4, 8, 81, 190, and 190 days PI, confirming that the definitive host is required to complete the life cycle even in the case of immunodeficient mice. This is the first confirmation of S. muris infection in a naturally infected cat anywhere. PMID:23758571

  9. Development of an Aeromonas hydrophila  infection model using the protozoan Tetrahymena thermophila.

    PubMed

    Li, Jing; Zhang, Xiao-Lu; Liu, Yong-Jie; Lu, Cheng-Ping

    2011-03-01

    Aeromonas hydrophila is a motile bacterium present in numerous freshwater habitats worldwide and is frequently the cause of infections in fish and numerous terrestrial vertebrates including humans. Because A. hydrophila is also a component of the normal intestinal flora of healthy fish, virulence mechanisms are not well understood. Considering that fish models used for the examination of A. hydrophila genes associated with virulence have not been well defined, we established an infection model using the free-living, ciliate protozoa Tetrahymena thermophila. The expression of A. hydrophila virulence genes following infection of T. thermophila was assessed by reverse transcription-PCR and demonstrated that the aerolysin (aerA) and Ahe2 serine protease (ahe2) genes (not present in the avirulent A. hydrophila NJ-4 strain) in the virulent J-1 strain were upregulated 4-h postinfection. Furthermore, the presence of intact A. hydrophila J-1 within T. thermophila suggested that these bacteria could interfere with phagocytosis, resulting in the death of the infected protozoan 48-h postinfection. Conversely, A. hydrophila NJ-4-infected T. thermophila survived the infection. This study established a novel T. thermophila infection model that will provide a novel means of examining virulence mechanisms of A. hydrophila. PMID:21204941

  10. Cytotoxicity of certain organic solvents and organophosphorus insecticides to the ciliated protozoan Paramecium caudatum.

    PubMed

    Rajini, P S; Krishnakumari, M K; Majumder, S K

    1989-01-01

    Responses of Paramecium caudatum, a ciliated protozoan, to acute exposures of certain organic solvents and organophosphorus insecticides (OPI) were studied by determining their lethal concentration (10 min-LC100) and median lethal concentration (4 h-LC50). The solvents and OPI evoked a distinct sequence of responses. Among the five solvents tested, acetone proved most toxic [LC-2.9% and LC50-0.68% (v/v)], while dimethyl sulphoxide (DMSO) showed least toxicity [LC-11.0% and LC50-3.16% (v/v)]. The order of toxicity of solvents was: acetone greater than ethanol greater than methanol greater than N, N-dimethylformamide greater than dimethylsulphoxide. The LC values of six OPI dissolved in either acetone or DMSO indicated that they were more toxic when dissolved in acetone and least toxic in DMSO. Among the OPI, bromophos proved most toxic (LC-10 ppm) while malathion showed least toxicity (LC-200 ppm) in DMSO. The order of toxicity of OPI was: bromophos greater than pirimiphos-methyl greater than parathion methyl greater than dichlorvos greater than fenitrothion greater than malathion. The 4 h-LC50 values computed for bromophos and malathion (dissolved in DMSO) were 575 ppb and 19.9 ppm, respectively, indicating the high susceptibility of P. caudatum to bromophos. The results indicate that the Paramecium toxicity assay could be used as a complementary system to rapidly elucidate the cytotoxic potential of compounds. PMID:2593868

  11. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus

    PubMed Central

    Cold, Emma R.; Freyria, Nastasia J.; Martínez Martínez, Joaquín; Fernández Robledo, José A.

    2016-01-01

    The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham’s F12–5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham’s F12–5% FBS– 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham’s F12–5% FBS– 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications. PMID:27149378

  12. Involvement of TatD nuclease during programmed cell death in the protozoan parasite Trypanosoma brucei.

    PubMed

    Gannavaram, Sreenivas; Debrabant, Alain

    2012-03-01

    In this report, we describe the involvement of TatD nuclease during programmed cell death (PCD) in the human protozoan parasite Trypanosoma brucei. T. brucei TatD nuclease showed intrinsic DNase activity, was localized in the cytoplasm and translocated to the nucleus when cells were treated with inducers previously demonstrated to cause PCD in T. brucei. Overexpression of TatD nuclease resulted in elevated PCD and conversely, loss of TatD expression by RNAi conferred significant resistance to the induction of PCD in T. brucei. Co-immunoprecipitation studies revealed that TatD nuclease interacts with endonucleaseG suggesting that these two nucleases could form a DNA degradation complex in the nucleus. Together, biochemical activity, RNAi and subcellular localization results demonstrate the role of TatD nuclease activity in DNA degradation during PCD in these evolutionarily ancient eukaryotic organisms. Further, in conjunction with endonucleaseG, TatD may represent a critical nuclease in a caspase-independent PCD pathway in trypanosomatid parasites since caspases have not been identified in these organisms. PMID:22288397

  13. A transposon toolkit for gene transfer and mutagenesis in protozoan parasites

    PubMed Central

    Damasceno, Jeziel D.; Beverley, Stephen M.; Tosi, Luiz R. O.

    2009-01-01

    Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms. PMID:19763844

  14. Molecular techniques to detect and identify protozoan parasites in the environment.

    PubMed

    Cacciò, Simone M

    2003-01-01

    The environmental route of transmission is important for many protozoan and helminth parasites, with water, soil and food being particularly significant. Both the potential for producing large numbers of transmissive stages and their environmental robustness pose persistent threats to public and veterinary health. The introduction of molecular techniques, in particular those based on the amplification of nucleic acids, has provided researchers with highly sensitive and specific assays for the detection and identification of these pathogens. The application of these techniques to clinical, environmental, and food samples is instrumental for a thorough understanding of the epidemiology of the infection and for the implementation of control measures. Here, the advantages and drawbacks of some molecular techniques (Polymerase Chain Reaction--PCR; Reverse-Transcriptase PCR--RT-PCR; Real-time PCR--qPCR; Nucleic Acid Sequence-Based Amplification--NASBA) will be briefly reviewed. Some application of these techniques will be illustrated with reference to two important and widespread human parasites, the apicomplexan Cryptosporidium and the flagellate Giardia. PMID:15058811

  15. Inferring host range dynamics from comparative data: the protozoan parasites of new world monkeys.

    PubMed

    Waxman, David; Weinert, Lucy A; Welch, John J

    2014-07-01

    Uncovering the ecological determinants of parasite host range is a central goal of comparative parasitology and infectious disease ecology. But while parasites are often distributed nonrandomly across the host phylogeny, such patterns are difficult to interpret without a genealogy for the parasite samples and without knowing what sorts of ecological dynamics might lead to what sorts of nonrandomness. We investigated inferences from comparative data, using presence/absence records from protozoan parasites of the New World monkeys. We first demonstrate several distinct types of phylogenetic signal in these data, showing, for example, that parasite species are clustered on the host tree and that closely related host species harbor similar numbers of parasite species. We then show that all of these patterns can be generated by a single, simple dynamical model, in which parasite host range changes more rapidly than host speciation/extinction and parasites preferentially colonize uninfected host species that are closely related to their existing hosts. Fitting this model to data, we then estimate its parameters. Finally, we caution that quite different ecological processes can lead to similar signatures but show how phylogenetic variation in host susceptibility can be distinguished from a tendency for parasites to colonize closely related hosts. Our new process-based analyses, which estimate meaningful parameters, should be useful for inferring the determinants of parasite host range and transmission success. PMID:24921601

  16. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep.

    PubMed

    Craig, B H; Tempest, L J; Pilkington, J G; Pemberton, J M

    2008-04-01

    For hundreds of years, the unmanaged Soay sheep population on St Kilda has survived despite enduring presumably deleterious co-infections of helminth, protozoan and arthropod parasites and intermittent periods of starvation. Important parasite taxa in young Soay sheep are strongyles (Trichostrongylus axei, Trichostrongylus vitrinus and Teladorsagia circumcincta), coccidia (11 Eimeria species) and keds (Melophagus ovinus) and in older animals, Teladorsagia circumcincta. In this research, associations between the intensity of different parasite taxa were investigated. Secondly, the intensities of different parasite taxa were tested for associations with variation in host weight, which is itself a determinant of over-winter survival in the host population. In lambs, the intensity of strongyle eggs was positively correlated with that of Nematodirus spp. eggs, while in yearlings and adults strongyle eggs and coccidia oocysts were positively correlated. In lambs and yearlings, of the parasite taxa tested, only strongyle eggs were significantly and negatively associated with host weight. However, in adult hosts, strongyles and coccidia were independently and negatively associated with host weight. These results are consistent with the idea that strongyles and coccidia are exerting independent selection on Soay sheep. PMID:18215336

  17. Epidemiology of parasitic protozoan infections in Soay sheep (Ovis aries L.) on St Kilda.

    PubMed

    Craig, B H; Pilkington, J G; Kruuk, L E B; Pemberton, J M

    2007-01-01

    The feral Soay sheep (Ovis aries L.) population on Hirta, St Kilda, is host to a diverse component parasite community, but previous parasitological studies of the population have only focussed on the metazoan species. This paper reports the first epidemiological study of the protozoan species comprising Cryptosporidium parvum, Giardia duodenalis and 11 species of Eimeria in Soay sheep across 3 years of varying host population density. Prevalence and intensity of almost all species of protozoa significantly decreased with host age, with the exception of E. granulosa, which increased in prevalence with host age. The prevalence of C. parvum appeared to vary positively with host population density but that of G. duodenalis did not vary significantly with density. Most species of Eimeria showed a distinct lag in infection level following the host population crash of 2002, taking up to 2 years to decrease. Mixed Eimeria species intensity and diversity were highest in 2002, a year of low host density. Parasite diversity decreased with host age and was higher in males. There were 5 positive pair-wise associations between protozoa species in terms of prevalence. The results of this study highlight the potential for protozoal infection to shape the evolution of parasite resistance in wild host populations harbouring diverse parasite species. PMID:16978448

  18. Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites

    PubMed Central

    Ng, Lai Guan; Hsu, Alice; Mandell, Michael A.; Roediger, Ben; Hoeller, Christoph; Mrass, Paulus; Iparraguirre, Amaya; Cavanagh, Lois L.; Triccas, James A.; Beverley, Stephen M.; Scott, Phillip; Weninger, Wolfgang

    2008-01-01

    Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens. PMID:19043558

  19. Global Distribution, Public Health and Clinical Impact of the Protozoan Pathogen Cryptosporidium

    PubMed Central

    Putignani, Lorenza; Menichella, Donato

    2010-01-01

    Cryptosporidium spp. are coccidians, oocysts-forming apicomplexan protozoa, which complete their life cycle both in humans and animals, through zoonotic and anthroponotic transmission, causing cryptosporidiosis. The global burden of this disease is still underascertained, due to a conundrum transmission modality, only partially unveiled, and on a plethora of detection systems still inadequate or only partially applied for worldwide surveillance. In children, cryptosporidiosis encumber is even less recorded and often misidentified due to physiological reasons such as early-age unpaired immunological response. Furthermore, malnutrition in underdeveloped countries or clinical underestimation of protozoan etiology in developed countries contribute to the underestimation of the worldwide burden. Principal key indicators of the parasite distribution were associated to environmental (e.g., geographic and temporal clusters, etc.) and host determinants of the infection (e.g., age, immunological status, travels, community behaviours). The distribution was geographically mapped to provide an updated picture of the global parasite ecosystems. The present paper aims to provide, by a critical analysis of existing literature, a link between observational epidemiological records and new insights on public health, and diagnostic and clinical impact of cryptosporidiosis. PMID:20706669

  20. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites.

    PubMed

    Muñoz, Christian; San Francisco, Juan; Gutiérrez, Bessy; González, Jorge

    2015-01-01

    In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target. PMID:26090380

  1. Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly.

    PubMed

    Lefèvre, Thierry; Williams, Amanda Jo; de Roode, Jacobus C

    2011-03-01

    Natural selection should strongly favour hosts that can protect themselves against parasites. Most studies on animals so far have focused on resistance, a series of mechanisms through which hosts prevent infection, reduce parasite growth or clear infection. However, animals may instead evolve tolerance, a defence mechanism by which hosts do not reduce parasite infection or growth, but instead alleviate the negative fitness consequences of such infection and growth. Here, we studied genetic variation in resistance and tolerance in the monarch butterfly (Danaus plexippus) to its naturally occurring protozoan parasite, Ophryocystis elektroscirrha. We exposed 560 monarch larvae of 19 different family lines to one of five different parasite inoculation doses (0, 1, 5, 10 and 100 infective spores) to create a range of parasite loads in infected butterflies. We then used two proxies of host fitness (adult lifespan and body mass) to quantify: (i) qualitative resistance (the ability to prevent infection; also known as avoidance or anti-infection resistance); (ii) quantitative resistance (the ability to limit parasite growth upon infection; also known as control or anti-growth resistance); and (iii) tolerance (the ability to maintain fitness with increasing parasite infection intensity). We found significant differences among host families in qualitative and quantitative resistance, indicating genetic variation in resistance. However, we found no genetic variation in tolerance. This may indicate that all butterflies in our studied population have evolved maximum tolerance, as predicted by some theoretical models. PMID:20843849

  2. The Meaning of Death: Evolution and Ecology of Apoptosis in Protozoan Parasites

    PubMed Central

    Reece, Sarah E.; Pollitt, Laura C.; Colegrave, Nick; Gardner, Andy

    2011-01-01

    The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of “survival of the fittest”, parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to “altruistically” self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites “commit suicide”. We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution. PMID:22174671

  3. New drug target in protozoan parasites: the role of thioredoxin reductase.

    PubMed

    Andrade, Rosa M; Reed, Sharon L

    2015-01-01

    Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin's anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E. histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E. histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden. PMID:26483758

  4. Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly

    PubMed Central

    Lefèvre, Thierry; Williams, Amanda Jo; de Roode, Jacobus C.

    2011-01-01

    Natural selection should strongly favour hosts that can protect themselves against parasites. Most studies on animals so far have focused on resistance, a series of mechanisms through which hosts prevent infection, reduce parasite growth or clear infection. However, animals may instead evolve tolerance, a defence mechanism by which hosts do not reduce parasite infection or growth, but instead alleviate the negative fitness consequences of such infection and growth. Here, we studied genetic variation in resistance and tolerance in the monarch butterfly (Danaus plexippus) to its naturally occurring protozoan parasite, Ophryocystis elektroscirrha. We exposed 560 monarch larvae of 19 different family lines to one of five different parasite inoculation doses (0, 1, 5, 10 and 100 infective spores) to create a range of parasite loads in infected butterflies. We then used two proxies of host fitness (adult lifespan and body mass) to quantify: (i) qualitative resistance (the ability to prevent infection; also known as avoidance or anti-infection resistance); (ii) quantitative resistance (the ability to limit parasite growth upon infection; also known as control or anti-growth resistance); and (iii) tolerance (the ability to maintain fitness with increasing parasite infection intensity). We found significant differences among host families in qualitative and quantitative resistance, indicating genetic variation in resistance. However, we found no genetic variation in tolerance. This may indicate that all butterflies in our studied population have evolved maximum tolerance, as predicted by some theoretical models. PMID:20843849

  5. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila.

    PubMed

    Fukuda, Yasuhiro; Akematsu, Takahiko; Attiq, Rizwan; Tada, Chika; Nakai, Yutaka; Pearlman, Ronald E

    2015-01-01

    Heat shock protein 70 (Hsp70) is a member of a family of conserved chaperone proteins whose function is well investigated in many model organisms. Here we focus on an Hsp70 called Ssa5 in the ciliate protozoan Tetrahymena thermophila, and reveal that its translation is heat inducible as for general Hsps. Moreover, the protein is abundantly expressed in the cytoplasm during sexual reproduction (conjugation) as well as in response to heat-stress. Knocking out of SSA5 (ΔSSA5) does not affect the survival of the cell under heat-stress, likely due to other Hsp70 paralogs compensating for the defect. During conjugation, ΔSSA5 leads to a fertilization defect in which the two pronuclei are in close proximity but never fuse. The unfertilized pronuclei differentiate, resulting in a heterokaryon with developed haploid germline and somatic nuclei. In addition, degeneration of the parental somatic nucleus is not affected. These results suggest a specific involvement of Ssa5 in pronuclear fusion and fertilization. PMID:25586926

  6. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi.

    PubMed Central

    Peña-Díaz, J; Montalvetti, A; Camacho, A; Gallego, C; Ruiz-Perez, L M; Gonzalez-Pacanowska, D

    1997-01-01

    We report the isolation and characterization of a genomic clone containing the open reading frame sequence for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. The protozoan gene encoded for a smaller polypeptide than the rest of the genes described from eukaryotic organisms and the deduced amino acid sequence could be aligned with the C-terminal half of animal and plant reductases exhibiting pronounced similarity to other eukaryotic counterparts. Further examination of the 5' flanking region by cDNA analysis and establishment of the splice acceptor sites clearly indicated that the corresponding mRNA apparently lacks sequences encoding a membrane N-terminal domain. The reductase gene is a single copy and is located on a chromosome of 1.36 Mb as determined by contour-clamped homogeneous electric field electrophoresis. The overall cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly sensitive to proteolytic inactivation. Furthermore the enzyme can be efficiently overexpressed in a highly active form by using the expression vector pET-11c. Thus Trypanosoma cruzi HMG-CoA reductase is unique in the sense that it totally lacks the membrane-spanning sequences present in all eukaryotic HMG-CoA reductases so far characterized. PMID:9182726

  7. Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt.

    PubMed

    Karanis, Panagiotis; Kourenti, Christina; Smith, Huw

    2007-03-01

    At least 325 water-associated outbreaks of parasitic protozoan disease have been reported. North American and European outbreaks accounted for 93% of all reports and nearly two-thirds of outbreaks occurred in North America. Over 30% of all outbreaks were documented from Europe, with the UK accounting for 24% of outbreaks, worldwide. Giardia duodenalis and Cryptosporidium parvum account for the majority of outbreaks (132; 40.6% and 165; 50.8%, respectively), Entamoeba histolytica and Cyclospora cayetanensis have been the aetiological agents in nine (2.8%) and six (1.8%) outbreaks, respectively, while Toxoplasma gondii and Isospora belli have been responsible for three outbreaks each (0.9%) and Blastocystis hominis for two outbreaks (0.6%). Balantidium coli, the microsporidia, Acanthamoeba and Naegleria fowleri were responsible for one outbreak, each (0.3%). Their presence in aquatic ecosystems makes it imperative to develop prevention strategies for water and food safety. Human incidence and prevalence-based studies provide baseline data against which risk factors associated with waterborne and foodborne transmission can be identified. Standardized methods are required to maximize public health surveillance, while reporting lessons learned from outbreaks will provide better insight into the public health impact of waterborne pathogenic protozoa. PMID:17402277

  8. Assembly-History Dynamics of a Pitcher-Plant Protozoan Community in Experimental Microcosms

    PubMed Central

    Kadowaki, Kohmei; Inouye, Brian D.; Miller, Thomas E.

    2012-01-01

    Background History drives community assembly through differences both in density (density effects) and in the sequence in which species arrive (sequence effects). Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency) alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly. Methods/Findings We varied density and sequence effects independently in a two-way factorial design to follow community assembly in a three-species aquatic protozoan community. A superior competitor, Colpoda steinii, mediated alternative community states; early arrival or high introduction density allowed this species to outcompete or suppress the other competitors (Poterioochromonas malhamensis and Eimeriidae gen. sp.). Multivariate analysis showed that density effects caused greater variation in community states, whereas sequence effects altered the mean community composition. Conclusions A significant interaction between density and sequence effects suggests that we should refine our understanding of priority effects. These results highlight a practical need to understand not only the “ingredients” (species) in ecological communities but their “recipes” as well. PMID:22880069

  9. Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments

    PubMed Central

    Holmes, Dawn E.; Giloteaux, Ludovic; Orellana, Roberto; Williams, Kenneth H.; Robbins, Mark J.; Lovley, Derek R.

    2014-01-01

    Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane. PMID:25147543

  10. Prevalence of protozoan infections in darkling beetles from poultry houses in North Carolina.

    PubMed

    Apuya, L C; Stringham, S M; Arends, J J; Brooks, W M

    1994-05-01

    A study was conducted from November 1990 to February 1992 on the prevalence of protozoan infections in the darkling beetle, Alphitobius diaperinus (Coleoptera, Tenebrionidae), from turkey and broiler houses in the southeastern, northeastern, and central Piedmont regions of North Carolina. Darkling beetles were commonly infected with the eugregarine Gregarina alphitobii, an undescribed species of Gregarina (Eugregarinorida, Gregarinidae) and the neogregarine Farinocystis tribolii (Neogregarinorida, Lipotrophidae). Both eugregarine and neogregarine parasites were present throughout the sampling period. A decreasing trend in percentage infection by eugregarines in darkling beetles from broiler houses was observed through time while percentage infection in turkey houses showed a variable trend. Percentage neogregarine infection exhibited a variable trend with a significant difference in the overall rate of infection in the two types of production houses. Neogregarine infection was higher in the broiler houses than in the turkey houses. Both adult and larval stages of the beetle were infected with the gregarines with higher levels of infection observed in the larval stages. Mixed infections with both types of gregarines were highest in the smallest larvae. PMID:8021524

  11. The ultrastructure of the extrusomes in Pseudourostyla cristata, a hypotrichous ciliated protozoan.

    PubMed

    Zhang, Jun; Sheng, Chun; Tang, Lei; Ni, Bing; Gu, Fukang

    2011-07-01

    By using scanning and transmission electron microscopy, the present study demonstrates a great number of trichocyst-like extrusomes distributed in the cortical cytoplasm of the protozoan Pseudourostyla cristata, a hypotrichous ciliate. Of these, the mature organelles are rod-shaped with a cap consisting of tubular structures, a tip located at the apex of the cap, a body consisting of strateform structures of uneven electron density and an elongated shaft located along the longitudinal central axis of the body. The electron microscopic observations suggest that the extrusive organelles in P. cristata might undergo a morphogenetic process including the following sequential events: the occurrence of the vesicles in the cytoplasm, the condensation of the fibrous substances within the vesicles, the appearance of the electron-dense shaft, and the formation of the cap. In contrast with a large quantity of extrusomes in trophozoit P. cristata, there are no such extrusive organelles in the encysted cells of the ciliate. The phenomena that P. cristata ciliates can readily enter physiological reorganization or encysting phases and discharge a great number of their extrusomes when prepared for SEM and TEM observation suggest that the extrusive process of the extrusomes in P. cristata might have an important influence on the life activity of the ciliate and could be one of the causes leading to the physiological reorganization and the encysting of the ciliate. These reactions of P. cristata might be a protective or defensive response to the environmental changes. PMID:20676704

  12. Seasonal and Successional Influences on Bacterial Community Composition Exceed That of Protozoan Grazing in River Biofilms

    PubMed Central

    Jürgens, Klaus; Weitere, Markus

    2012-01-01

    The effects of protozoa (heterotrophic flagellates and ciliates) on the morphology and community composition of bacterial biofilms were tested under natural background conditions by applying size fractionation in a river bypass system. Confocal laser scanning microscopy (CLSM) was used to monitor the morphological structure of the biofilm, and fingerprinting methods (single-stranded conformation polymorphism [SSCP] and denaturing gradient gel electrophoresis [DGGE]) were utilized to assess changes in bacterial community composition. Season and internal population dynamics had a greater influence on the bacterial biofilm than the presence of protozoa. Within this general framework, bacterial area coverage and microcolony abundance were nevertheless enhanced by the presence of ciliates (but not by the presence of flagellates). We also found that the richness of bacterial operational taxonomic units was much higher in planktonic founder communities than in the ones establishing the biofilm. Within the first 2 h of colonization of an empty substrate by bacteria, the presence of flagellates additionally altered their biofilm community composition. As the biofilms matured, the number of bacterial operational taxonomic units increased when flagellates were present in high abundances. The additional presence of ciliates tended to at first reduce (days 2 to 7) and later increase (days 14 to 29) bacterial operational taxonomic unit richness. Altogether, the response of the bacterial community to protozoan grazing pressure was small compared to that reported in planktonic studies, but our findings contradict the assumption of a general grazing resistance of bacterial biofilms toward protozoa. PMID:22247162

  13. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors

    PubMed Central

    2013-01-01

    It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings. PMID:23597031

  14. New drug target in protozoan parasites: the role of thioredoxin reductase

    PubMed Central

    Andrade, Rosa M.; Reed, Sharon L.

    2015-01-01

    Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin's anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E. histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E. histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden. PMID:26483758

  15. Water used to moisten vegetables is a source of Escherichia coli and protozoan parasite contamination at markets in Hanoi, Vietnam.

    PubMed

    Tram, Nguyen Thuy; Dalsgaard, Anders

    2014-12-01

    The study was done to assess the level of fecal (Escherichia coli) and protozoan parasite (Cryptosporidium spp. and Giardia spp.) contamination in water used by traders to moisten vegetables at markets in Hanoi, Vietnam. A total of 200 splashing water samples from markets located within eight districts were analyzed for E. coli and Cryptosporidium spp. and Giardia spp. (oo)cysts. Giardia cysts were found in 17 splashing water samples and Cryptosporidium oocysts in nine samples, with median values of 20 cysts ml(-1) and 10 oocysts ml(-1), respectively. E. coli was found with a median concentration of 636 cfu ml(-1) and its occurrence was negatively correlated with the numbers of protozoan parasites. The splashing water was kept in buckets that were rarely cleaned and often used for handwashing. The finding of these pathogens in splashing water is likely to represent real food safety hazards. PMID:25473999

  16. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae.

    PubMed

    Podosokorskaya, Olga A; Kadnikov, Vitaly V; Gavrilov, Sergey N; Mardanov, Andrey V; Merkel, Alexander Y; Karnachuk, Olga V; Ravin, Nikolay V; Bonch-Osmolovskaya, Elizaveta A; Kublanov, Ilya V

    2013-06-01

    A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically. PMID:23297868

  17. Draft Genome Sequence of Thermodesulfovibrio aggregans TGE-P1T, an Obligately Anaerobic, Thermophilic, Sulfate-Reducing Bacterium in the Phylum Nitrospirae.

    PubMed

    Matsuura, Norihisa; Ohashi, Akiko; Tourlousse, Dieter M; Sekiguchi, Yuji

    2016-01-01

    We report a high-quality draft genome sequence of the type strain (TGE-P1(T)) of Thermodesulfovibrio aggregans, an obligately anaerobic, thermophilic, sulfate-reducing bacterium in the phylum Nitrospirae. The genome comprises 2.00 Mb in 16 contigs (3 scaffolds), has a G+C content of 34.5%, and contains 1,998 predicted protein-encoding genes. PMID:26966200

  18. Draft Genome Sequence of Thermodesulfovibrio aggregans TGE-P1T, an Obligately Anaerobic, Thermophilic, Sulfate-Reducing Bacterium in the Phylum Nitrospirae

    PubMed Central

    Matsuura, Norihisa; Ohashi, Akiko; Tourlousse, Dieter M.

    2016-01-01

    We report a high-quality draft genome sequence of the type strain (TGE-P1T) of Thermodesulfovibrio aggregans, an obligately anaerobic, thermophilic, sulfate-reducing bacterium in the phylum Nitrospirae. The genome comprises 2.00 Mb in 16 contigs (3 scaffolds), has a G+C content of 34.5%, and contains 1,998 predicted protein-encoding genes. PMID:26966200

  19. First record of an epibiont protozoan Epistylis sp. (Ciliophora, Peritrichia) attached to Ergasilus chelangulatus (Ergasilidae) in Brazil.

    PubMed

    Azevedo, R K; Brandão, H; Abdallah, V D; Silva, R J

    2014-05-01

    In the present paper, we described the first record of an epibiont protozoan Epistylis sp. Ehrenberg, 1830 (Ciliophora, Peritrichia) attached to Ergasilus chelangulatus Thatcher and Brasil-Sato, 2008, parasite of Pimelodus maculatus Lacépède, 1803 in Brazil, with electron microscope observations. Fish were collected in Veados River, state of São Paulo and the crustacean Ergasilus chelangulatus being registered for the first time in this river, expanding its geographical distribution in Brazil. PMID:25166331

  20. Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans

    PubMed Central

    Dumesic, Phillip A.; Rosenblad, Magnus A.; Samuelsson, Tore; Nguyen, Tiffany; Moresco, James J.; Yates, John R.; Madhani, Hiten D.

    2015-01-01

    Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features—SRP RNA helix 8 and Srp54—in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development. PMID:26275773

  1. [Protozoans in superficial waters and faecal samples of individuals of rural populations of the Montes municipality, Sucre state, Venezuela].

    PubMed

    Mora, Leonor; Martínez, Indira; Figuera, Lourdes; Segura, Merlyn; Del Valle, Guilarte

    2010-12-01

    In Sucre state, the Manzanares river is threatened by domestic, agricultural and industrial activities, becoming an environmental risk factor for its inhabitants. In this sense, the presence of protozoans in superficial waters of tributaries of the Manzanares river (Orinoco river, Quebrada Seca, San Juan river), Montes municipality, Sucre state, as well as the analysis of faecal samples from inhabitants of towns bordering these tributaries were evaluated. We collected faecal and water samples from may 2006 through april 2007. The superficial water samples were processed after centrifugation by the direct examination and floculation, using lugol, modified Kinyoun and trichromic colorations. Fecal samples where analyzed by direct examination with physiological saline solution and the modified Ritchie concentration method and using the other colorations techniques above mentioned. The most frequently observed protozoans in superficial waters in the three tributaries were: Amoebas, Blastocystis sp, Endolimax sp., Chilomastix sp. and Giardia sp. Whereas in faecal samples, Blastocystis hominis, Endolimax nana and Entaomeba coli had the greatest frequencies in the three communities. The inhabitants of Orinoco La Peña turned out to be most susceptible to these parasitic infections (77.60%), followed by San Juan River (46.63%) and Quebrada Seca (39.49%). The presence of pathogenic and nonpathogenic protozoans in superficial waters demonstrates the faecal contamination of the tributaries, representing a constant focus of infection for their inhabitants, inferred by the observation of the same species in both types of samples. PMID:21365874

  2. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases.

    PubMed

    Br, Ann-Katrein; Phukan, Niha; Pinheiro, Jully; Simoes-Barbosa, Augusto

    2015-12-01

    Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host-parasite-microbiota relationships, instead of the classic reductionist approach, which considers host-parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context. PMID:26658061

  3. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases

    PubMed Central

    Pinheiro, Jully; Simoes-Barbosa, Augusto

    2015-01-01

    Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host–parasite–microbiota relationships, instead of the classic reductionist approach, which considers host–parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context. PMID:26658061

  4. Occurrence, removal and accumulation in sludge of protozoan cysts and helminth eggs in a full-scale anaerobic pond in Burkina Faso.

    PubMed

    Konaté, Yacouba; Maiga, Amadou Hama; Basset, Didier; Picot, Bernadette; Casellas, Claude

    2013-01-01

    The present paper investigates the occurrence, removal, and accumulation of protozoan cysts and helminth eggs in a large anaerobic pond treating municipal wastewater of Ouagadougou (Burkina Faso). With a hydraulic retention time of 6.5 days, the anaerobic pond achieved 100% removal of helminth eggs and protozoan cysts most of the time, except during the hot period. The average residual concentrations of helminth eggs and protozoan cysts in the effluent were respectively 0.45 eggs/L (minimum 0 and maximum 3), and 5.4 cysts/L (minimum 0 and maximum 26). Protozoan cysts accumulation in sludge averaged 1,613 cysts/g total solids. Ancylostoma duodenale, Ascaris lumbricoides and Hymenolepis nana were the main helminth species found in the sludge. After 7 years of operation, the sludge in the pond still contained a high level of viable helminth eggs evaluated at 42%. PMID:23128639

  5. Molecular and parasitological survey of Hepatozoon canis (Apicomplexa: Hepatozoidae) in dogs from rural area of Sao Paulo state, Brazil.

    PubMed

    Rubini, Adriano Stefani; dos Santos Paduan, Karina; Von Ah Lopes, Viviane; O'Dwyer, Lucia Helena

    2008-04-01

    Hepatozoon canis is a protozoan that infects dogs and is transmitted by the ingestion of the brown dog tick, Rhipicephalus sanguineus. Two distinct species of Hepatozoon genus can infect dogs, H. canis and H. americanum. Routine tests to detect the disease are based on direct examination of gametocytes on Giemsa-stained blood smears. The objectives of this study were the investigation of infection prevalence in rural area dogs, the comparison of diagnostics by blood smear examination and polymerase chain reaction (PCR), and the association of infection with tick infestation. Blood smears, collected by puncture of the cephalic vein and ear margin capillary bed from 150 dogs, were examined. This technique detected 17 positive animals (11.3%), with 14 (9.3%) in peripheral blood and seven (4.7%) in cephalic vein blood. PCR tests detected 80 (53.3%) positive animals. R. sanguineus and Amblyomma spp. were found in 36 of the dogs (24%), in equal proportions. The identified species for Amblyomma genus were A. cajennense and A. ovale. Data analysis showed that PCR was much more sensitive when compared to blood smear examination. Hepatozoon species was previously identified as closely related to H. canis. PMID:18188597

  6. Screening of antiangiogenic potential of twenty two marine invertebrate extracts of phylum Mollusca from South East Coast of India

    PubMed Central

    Gupta, Pankaj; Arumugam, Muthuvel; Azad, Raj Vardhan; Saxena, Rohit; Ghose, Supriyo; Biswas, Nihar Ranjan; Velpandian, Thirumurthy

    2014-01-01

    Objective To evaluate the antiangiogenic potential of twenty two marine invertebrate species of Phylum Mollusca from south east coast of India. Methods Live specimens of molluscan species were collected and their methanolic extracts were evaluated for preliminary antiangiogenic activity using the in ovo chick chorio-allantoic membrane assay. The extracts were further evaluated for in vivo antiangiogenic activity using chemical cautery induced corneal neovascularization assay in rats and oxygen induced retinopathy assay in rat pups. Results In the chick chorio-allantoic membrane assay, four methanolic extracts of marine molluscan species viz. Meretrix meretrix, Meretrix casta, Telescopium telescopium and Bursa crumena methanolic extracts exhibited noticeable antiangiogenic activity at the tested concentration of 200 µg whereby they significantly inhibited the VEGF induced proliferation of new blood vessels. Among these four extracts, the methanolic extract of Meretrix casta exhibited relatively higher degree of antiangiogenic activity with an inhibitiory percentage (64.63%) of the VEGF induced neovascularization followed by the methanolic extracts of Telescopium telescopium (62.02%), Bursa crumena (60.48%) and Meretrix meretrix (47.01%). These four methanolic extracts were further evaluated for in vivo antiangiogenic activity whereby the methanolic extract of Telescopium telescopium exhibited most noticeable inhibition (42.58%) of the corneal neovascularization in rats in comparison to the sham treated group, and also exhibited most noticeable inhibition (31.31%) of the oxygen induced retinal neovascularization in rat pups in comparison to the hyperoxia group that was observed for considerable retinal neovascularization. Conclusions The significant antiangiogenic activity evinced by the extract of Telescopium telescopium merits further investigation for ocular neovascular diseases. PMID:25183067

  7. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    PubMed Central

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-01-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as ‘Geoarchaeota' or ‘novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today. PMID:23151644

  8. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling

    PubMed Central

    2013-01-01

    Background Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. Results We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. Conclusions Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond organohalide respiration to include respiration of sugars, fermentation, CO2 fixation, and acetogenesis with ATP formation by substrate-level phosphorylation. PMID:24450983

  9. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diapherotrites'

    PubMed Central

    Youssef, Noha H; Rinke, Christian; Stepanauskas, Ramunas; Farag, Ibrahim; Woyke, Tanja; Elshahed, Mostafa S

    2015-01-01

    The archaeal phylum ‘Diapherotrites' was recently proposed based on phylogenomic analysis of genomes recovered from an underground water seep in an abandoned gold mine (Homestake mine in Lead, SD, USA). Here we present a detailed analysis of the metabolic capabilities and genomic features of three single amplified genomes (SAGs) belonging to the ‘Diapherotrites'. The most complete of the SAGs, Candidatus ‘Iainarchaeum andersonii' (Cand. IA), had a small genome (∼1.24 Mb), short average gene length (822 bp), one ribosomal RNA operon, high coding density (∼90.4%), high percentage of overlapping genes (27.6%) and low incidence of gene duplication (2.16%). Cand. IA genome possesses limited catabolic capacities that, nevertheless, could theoretically support a free-living lifestyle by channeling a narrow range of substrates such as ribose, polyhydroxybutyrate and several amino acids to acetyl-coenzyme A. On the other hand, Cand. IA possesses relatively well-developed anabolic capabilities, although it remains auxotrophic for several amino acids and cofactors. Phylogenetic analysis suggests that the majority of Cand. IA anabolic genes were acquired from bacterial donors via horizontal gene transfer. We thus propose that members of the ‘Diapherotrites' have evolved from an obligate symbiotic ancestor by acquiring anabolic genes from bacteria that enabled independent biosynthesis of biological molecules previously acquired from symbiotic hosts. ‘Diapherotrites' 16S rRNA genes exhibit multiple mismatches with the majority of archaeal 16S rRNA primers, a fact that could be responsible for their observed rarity in amplicon-generated data sets. The limited substrate range, complex growth requirements and slow growth rate predicted could be responsible for its refraction to isolation. PMID:25083931

  10. Exploring the potential of small RNA subunit and ITS sequences for resolving phylogenetic relationships within the phylum Ctenophora.

    PubMed

    Simion, Paul; Bekkouche, Nicolas; Jager, Muriel; Quéinnec, Eric; Manuel, Michaël

    2015-04-01

    Ctenophores are a phylum of non-bilaterian marine (mostly planktonic) animals, characterised by several unique synapomorphies (e.g., comb rows, apical organ). Relationships between and within the nine recognised ctenophore orders are far from understood, notably due to a paucity of phylogenetically informative anatomical characters. Previous attempts to address ctenophore phylogeny using molecular data (18S rRNA) led to poorly resolved trees but demonstrated the paraphyly of the order Cydippida. Here we compiled an updated 18S rRNA data set, notably including a few newly sequenced species representing previously unsampled families (Lampeidae, Euryhamphaeidae), and we constructed an additional more rapidly evolving ITS1 + 5.8S rRNA + ITS2 alignment. These data sets were analysed separately and in combination under a probabilistic framework, using different methods (maximum likelihood, Bayesian inference) and models (e.g., doublet model to accommodate secondary structure; data partitioning). An important lesson from our exploration of these datasets is that the fast-evolving internal transcribed spacer (ITS) regions are useful markers for reconstructing high-level relationships within ctenophores. Our results confirm the paraphyly of the order Cydippida (and thus a "cydippid-like" ctenophore common ancestor) and suggest that the family Mertensiidae could be the sister group of all other ctenophores. The family Lampeidae (also part of the former "Cydippida") is probably the sister group of the order Platyctenida (benthic ctenophores). The order Beroida might not be monophyletic, due to the position of Beroe abyssicola outside of a clade grouping the other Beroe species and members of the "Cydippida" family Haeckeliidae. Many relationships (e.g. between Pleurobrachiidae, Beroida, Cestida, Lobata, Thalassocalycida) remain unresolved. Future progress in understanding ctenophore phylogeny will come from the use of additional rapidly evolving markers and improvement of taxonomic sampling. PMID:25440713

  11. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)). PMID:25896307

  12. Field Application of a Subunit Vaccine against an Enteric Protozoan Disease

    PubMed Central

    Wallach, Michael G.; Ashash, Udi; Michael, Amnon; Smith, Nicholas C.

    2008-01-01

    Background Coccidiosis is a major global veterinary health problem in intensively reared chickens. It is caused by apicomplexan parasites of the genus Eimeria. Principal Findings A subunit vaccine composed of purified antigens from the gametocytes of Eimeria maxima was used to stimulate the production and transfer of maternal antibodies between breeding hens and their hatchlings. The vaccine was injected into hens twice before they began laying eggs. Immunization had no adverse affects on egg laying or health of the hens and resulted in high antibody levels throughout the life of the hens. Progeny of immunized hens excreted significantly less oocysts of various species of Eimeria in their faeces than chicks from unvaccinated hens. Furthermore, the offspring of vaccinated hens developed stronger natural immunity to Eimeria, so that they were resistant to challenge infection even at 8 weeks of age, well after all maternal antibodies had left their circulation. Field trials were conducted in South Africa, Brazil and Thailand, involving at least 1 million progeny of vaccinated hens and at least 1 million positive control birds (raised on feed containing anticoccidial drugs or immunized with a live vaccine) in each country. Additionally, trials were carried out in Israel involving 60 million progeny of vaccinated hens and 112 million positive control birds. There were no significant differences in growth rate, feed conversion ratios or mortality in the offspring of vaccinated hens compared with the positive control chickens in any of these countries regardless of different management practices, different breeds of chickens or climate. Conclusions These results demonstrate that a vaccine composed of antigens purified from the gametocytes of Eimeria can be used safely and effectively to prevent the deleterious effects of coccidiosis. It is the first subunit vaccine against any protozoan parasite to be successfully applied on a commercial scale. PMID:19079606

  13. Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing

    PubMed Central

    Xiong, Jie; Lu, Xingyi; Zhou, Zhemin; Chang, Yue; Yuan, Dongxia; Tian, Miao; Zhou, Zhigang; Wang, Lei; Fu, Chengjie; Orias, Eduardo; Miao, Wei

    2012-01-01

    Background The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. Methodology/Principal Findings This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. Conclusions/Significance RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular model eukaryote in which to investigate mechanisms of alternative splicing. PMID:22347391

  14. Transcriptional regulation of two stage-specifically expressed genes in the protozoan parasite Toxoplasma gondii

    PubMed Central

    Kibe, Michael K.; Coppin, Alexandra; Dendouga, Najoua; Oria, Gabrielle; Meurice, Edwige; Mortuaire, Marlène; Madec, Edwige; Tomavo, Stanislas

    2005-01-01

    The protozoan parasite Toxoplasma gondii differentially expresses two distinct enolase isoenzymes known as ENO1 and ENO2, respectively. To understand differential gene expression during tachyzoite to bradyzoite conversion, we have characterized the two T.gondii enolase promoters. No homology could be found between these sequences and no TATA or CCAAT boxes were evident. The differential activation of the ENO1 and ENO2 promoters during tachyzoite to bradyzoite differentiation was investigated by deletion analysis of 5′-flanking regions fused to the chloramphenicol acetyltransferase reporter followed by transient transfection. Our data indicate that in proliferating tachyzoites, the repression of ENO1 involves a negative distal regulatory region (nucleotides −1245 to −625) in the promoter whereas a proximal regulatory region in the ENO2 promoter directs expression at a low level. In contrast, the promoter activity of ENO1 is highly induced following the conversion of tachyzoites into resting bradyzoites. The ENO2 promoter analysis in bradyzoites showed that there are two upstream repression sites (nucleotides −1929 to −1067 and −456 to −222). Furthermore, electrophoresis mobility shift assays demonstrated the presence of DNA-binding proteins in tachyzoite and bradyzoite nuclear lysates that bound to stress response elements (STRE), heat shock-like elements (HSE) and other cis-regulatory elements in the upstream regulatory regions of ENO1 and ENO2. Mutation of the consensus AGGGG sequence, completely abolished protein binding to an oligonucleotide containing this element. This study defines the first characterization of cis-regulatory elements and putative transcription factors involved in gene regulation of the important pathogen T.gondii. PMID:15784612

  15. The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance.

    PubMed

    Perea, Ana; Manzano, José Ignacio; Castanys, Santiago; Gamarro, Francisco

    2016-06-01

    Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket. PMID:27021316

  16. Protozoan predation is differentially affected by motility of enteric pathogens in water vs. sediments.

    PubMed

    Wanjugi, Pauline; Harwood, Valerie J

    2014-11-01

    Survival of enteric bacteria in aquatic habitats varies depending upon species, strain, and environmental pressures, but the mechanisms governing their fate are poorly understood. Although predation by protozoa is a known, top-down control mechanism on bacterial populations, its influence on the survival of fecal-derived pathogens has not been systematically studied. We hypothesized that motility, a variable trait among pathogens, can influence predation rates and bacterial survival. We compared the survival of two motile pathogens of fecal origin by culturing Escherichia coli O157 and Salmonella enterica Typhimurium. Each species had a motile and non-motile counterpart and was cultured in outdoor microcosms with protozoan predators (Tetrahymena pyriformis) present or absent. Motility had a significant, positive effect on S. enterica levels in water and sediment in the presence or absence of predators. In contrast, motility had a significant negative effect on E. coli O157 levels in sediment, but did not affect water column levels. The presence/absence of protozoa consistently accounted for a greater proportion of the variability in bacterial levels (>95 %) than in bacterial motility (<4 %) in the water column. In sediments, however, motility was more important than predation for both bacteria. Calculations of total CFU/microcosm showed decreasing bacterial concentrations over time under all conditions except for S. enterica in the absence of predation, which increased ?0.5-1.0 log over 5 days. These findings underscore the complexity of predicting the survival of enteric microorganisms in aquatic habitats, which has implications for the accuracy of risk assessment and modeling of water quality. PMID:24952019

  17. DNA Extraction from Protozoan Oocysts/Cysts in Feces for Diagnostic PCR

    PubMed Central

    2014-01-01

    PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer's protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit's protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis. PMID:25031466

  18. Comparative physiology of two protozoan parasites, Leishmania donovani and Trypanosoma brucei, grown in chemostats.

    PubMed

    ter Kuile, B H; Opperdoes, F R

    1992-05-01

    Cultures of the insect stage of the protozoan parasites Leishmania donovani and Trypanosoma brucei were grown in chemostats with glucose as the growth rate-limiting substrate. L. donovani has a maximum specific growth rate (mu max) of 1.96 day-1 and a Ks for glucose of 0.1 mM; the mu max of T. brucei is 1.06 day-1 and the Ks is 0.06 mM. At each steady state (specific growth rate, mu, equals D, the dilution rate), the following parameters were measured: external glucose concentration (Glcout), cell density, dry weight, protein, internal glucose concentration (Glcin), cellular ATP level, and hexokinase activity. L. donovani shows a relationship between mu and yield that allows an estimation of the maintenance requirement (ms) and the yield per mole of ATP (YATP). Both the ms and the YATP are on the higher margin of the range found for prokaryotes grown on glucose in a complex medium. L. donovani maintains the Glcin at a constant level of about 50 mM as long as it is not energy depleted. T. brucei has a decreasing yield with increasing mu, suggesting that it oxidizes its substrate to a lesser extent at higher growth rates. Glucose is not concentrated internally but is taken up by facilitated diffusion, while phosphorylation by hexokinase is probably the rate-limiting step for glucose metabolism. The Ks is constant as long as glucose is the rate-limiting substrate. The results of this study demonstrate that L. donovani and T. brucei have widely different metabolic strategies for dealing with varying external conditions, which reflect the conditions they are likely to encounter in their respective insect hosts. PMID:1569022

  19. Drug repurposing: mining protozoan proteomes for targets of known bioactive compounds

    PubMed Central

    Sateriale, Adam; Bessoff, Kovi; Sarkar, Indra Neil; Huston, Christopher D

    2014-01-01

    Objective To identify potential opportunities for drug repurposing by developing an automated approach to pre-screen the predicted proteomes of any organism against databases of known drug targets using only freely available resources. Materials and methods We employed a combination of Ruby scripts that leverage data from the DrugBank and ChEMBL databases, MySQL, and BLAST to predict potential drugs and their targets from 13 published genomes. Results from a previous cell-based screen to identify inhibitors of Cryptosporidium parvum growth were used to validate our in-silico prediction method. Results In-vitro validation of these results, using a cell-based C parvum growth assay, showed that the predicted inhibitors were significantly more likely than expected by chance to have confirmed activity, with 8.9–15.6% of predicted inhibitors confirmed depending on the drug target database used. This method was then used to predict inhibitors for the following 13 disease-causing protozoan parasites, including: C parvum, Entamoeba histolytica, Giardia intestinalis, Leishmania braziliensis, Leishmania donovani, Leishmania major, Naegleria gruberi (in proxy of Naegleria fowleri), Plasmodium falciparum, Plasmodium vivax, Toxoplasma gondii, Trichomonas vaginalis, Trypanosoma brucei and Trypanosoma cruzi. Conclusions Although proteome-wide screens for drug targets have disadvantages, in-silico methods can be developed that are fast, broad, inexpensive, and effective. In-vitro validation of our results for C parvum indicate that the method presented here can be used to construct a library for more directed small molecule screening, or pipelined into structural modeling and docking programs to facilitate target-based drug development. PMID:23757409

  20. Significantly Diverged Did2/Vps46 Orthologues from the Protozoan Parasite Giardia lamblia.

    PubMed

    Dutta, Somnath; Saha, Nabanita; Ray, Atrayee; Sarkar, Srimonti

    2015-09-01

    The endosomal compartment performs extensive sorting functions in most eukaryotes, some of which are accomplished with the help of the multivesicular body (MVB) sorting pathway. This pathway depends on the sequential action of complexes, termed the endosomal sorting complex required for transport (ESCRT). After successful sorting, the crucial step of recycling of the ESCRT complex components requires the activation of the AAA ATPase Vps4, and Did2/Vps46 plays an important role in this activation event. The endolysosomal system of the protozoan parasite Giardia lamblia appears to lack complexity, for instead of having distinct early endosomes, late endosomes and lysosomes, there are only peripheral vesicles (PVs) that are located close to the cell periphery. Additionally, comparative genomics studies predict the presence of only a subset of the ESCRT components in G. lamblia. Thus, it is possible that the MVB pathway is not functional in G. lamblia. To address this issue, the present study focused on the two putative orthologues of Did2/Vps46 of G. lamblia as their function is likely to be pivotal for a functional MVB sorting pathway. In spite of considerable sequence divergence, compared to other eukaryotic orthologues, the proteins encoded by both these genes have the ability to function as Did2/Vps46 in the context of the yeast ESCRT pathway. Furthermore, they also localized to the cellular periphery, where PVs are also located. Thus, this report is the first to provide experimental evidence indicating the presence of a functional ESCRT component in G. lamblia by characterizing the putative Did2/Vps46 orthologues. PMID:26068593

  1. Helminths and protozoans of aquatic organisms as bioindicators of chemical pollution.

    PubMed

    Vidal Martínez, V M

    2007-09-01

    There is no doubt that the aquatic environments receive large quantities of chemicals as consequence of human activities and that those substances have a detrimental effect on human health. Despite the obvious need for effective disposal of these substances, we need to understand and prevent the outcome of harmful environmental exposures. Thus, we need biomarkers and bioindicators to advance our understanding to these harmful exposures and their biological effects. In the last three decades a large number of publications has suggested that aquatic organisms and their parasites (mainly helminths and ciliate protozoans) are useful bioindicators of chemical pollution. However, the main weakness of this approach is that after exposure the population size of these parasites can increase or decrease without a consistent pattern. I suggest that this is in part due to the lack of focus on the correct spatial or temporal scales at which the environment is acting over our study object. Thus, I propose to use spatially explicit (= georeferenced) data for determining whether there is spatial structure in our study area. Spatial structure is the tendency of nearby samples to have attribute values more similar than those farther apart. These attributes are shaped by environmental variables acting at specific spatial and temporal scales. Thus, I suggest to consider these tools for determining the correct spatial or temporal scales of study, but also to record pollutant concentrations, bioindicators, biomarkers and parasites at individual host level. Combining this information with long-term monitoring programs is likely to improve our understanding of the effects of chemical pollutants over the aquatic environments. PMID:18410077

  2. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  3. Functional characterization of peroxiredoxins from the human protozoan parasite Giardia intestinalis.

    PubMed

    Mastronicola, Daniela; Falabella, Micol; Testa, Fabrizio; Pucillo, Leopoldo Paolo; Teixeira, Miguel; Sarti, Paolo; Saraiva, Lígia M; Giuffrè, Alessandro

    2014-01-01

    The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 (-•)) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO(-)). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO(-) rapidly (k = 4×10(5) M(-1) s(-1) and 2×10(5) M(-1) s(-1) at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis. PMID:24416465

  4. Molecular identification of Sarcocystis hominis in native cattle of central Iran: a case report.

    PubMed

    Hajimohammadi, B; Eslami, G; Oryan, A; Zohourtabar, A; Pourmirzaei Tafti, H; Moghaddam Ahmadi, M

    2014-03-01

    Sarcocystis spp. are two-host protozoan parasites belonging to the phylum Apicomplexa. Among different known species of Sarcocystis in cattle, only Sarcocystis hominis is important from the public health viewpoint, because of its zoonotic characteristics. This study presents the first molecular identification of S. hominis in native cattle in central Iran. A sample of diaphragm muscle from a 6-year-old native cow slaughtered at Yazd Slaughterhouse, Yazd, central Iran, was collected in May 2013. DNA extraction was performed, using the salting-out method. DNA purification and precipitation were performed consecutively. The amplicon and digestion results were analyzed using agarose gel electrophoresis. A PCR product with 926 bp in length was obtained after amplification, and 376 bp and 550 bp in length after digestion that identified S. hominis. To the best of our knowledge, this study is the first of its kind to be reported from Iran. PMID:24862059

  5. Functional Analyses of the Toxoplasma gondii DNA Gyrase Holoenzyme: A Janus Topoisomerase with Supercoiling and Decatenation Abilities

    PubMed Central

    Lin, Ting-Yu; Nagano, Soshichiro; Gardiner Heddle, Jonathan

    2015-01-01

    A number of important protozoan parasites including those responsible for toxoplasmosis and malaria belong to the phylum Apicomplexa and are characterised by their possession of a relict plastid, the apicoplast. Being required for survival, apicoplasts are potentially useful drug targets and their attractiveness is increased by the fact that they contain “bacterial” gyrase, a well-established antibacterial drug target. We have cloned and purified the gyrase proteins from the apicoplast of Toxoplasma gondii (the cause of toxoplasmosis), reconstituted the functional enzyme and succeeded in characterising it. We discovered that the enzyme is inhibited by known gyrase inhibitors and that, as well as the expected supercoiling activity, it is also able to decatenate DNA with high efficiency. This unusual dual functionality may be related to the apparent lack of topoisomerase IV in the apicoplast. PMID:26412236

  6. Cytoskeleton assembly in Toxoplasma gondii cell division

    PubMed Central

    Anderson-White, Brooke; Beck, Josh R.; Chen, Chun-Ti; Meissner, Markus; Bradley, Peter J.; Gubbels, Marc-Jan

    2014-01-01

    Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation. PMID:22878103

  7. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    PubMed Central

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes. PMID:21317311

  8. Toxoplasma gondii infection in humans in China

    PubMed Central

    2011-01-01

    Toxoplasmosis is a zoonotic infection of humans and animals, caused by the opportunistic protozoan Toxoplasma gondii, a parasite belonging to the phylum Apicomplexa. Infection in pregnant women may lead to abortion, stillbirth or other serious consequences in newborns. Infection in immunocompromised patients can be fatal if not treated. On average, one third of people are chronically infected worldwide. Although very limited information from China has been published in the English journals, T. gondii infection is actually a significant human health problem in China. In the present article, we reviewed the clinical features, transmission, prevalence of T. gondii infection in humans in China, and summarized genetic characterizations of reported T. gondii isolates. Educating the public about the risks associated with unhealthy food and life style habits, tracking serological examinations to special populations, and measures to strengthen food and occupational safety are discussed. PMID:21864327

  9. Lytic Cycle of Toxoplasma gondii

    PubMed Central

    Black, Michael W.; Boothroyd, John C.

    2000-01-01

    Toxoplasma gondii is an obligate intracellular pathogen within the phylum Apicomplexa. This protozoan parasite is one of the most widespread, with a broad host range including many birds and mammals and a geographic range that is nearly worldwide. While infection of healthy adults is usually relatively mild, serious disease can result in utero or when the host is immunocompromised. This sophisticated eukaryote has many specialized features that make it well suited to its intracellular lifestyle. In this review, we describe the current knowledge of how the asexual tachyzoite stage of Toxoplasma attaches to, invades, replicates in, and exits the host cell. Since this process is closely analogous to the way in which viruses reproduce, we refer to it as the Toxoplasma “lytic cycle.” PMID:10974128

  10. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    PubMed Central

    2009-01-01

    Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp) and highly compact (~1 gene/kb) genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (<7 nts). Most of the E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae) and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs) had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore, 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation. PMID:20003517

  11. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran

    PubMed Central

    Seifollahi, Zeinab; Motazedian, Mohammad Hossein; Asgari, Qasem; Ranjbar, Mohammad Javad; Abdolahi Khabisi, Samaneh

    2016-01-01

    Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT). DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%). From 52 rodents, 19 (36.5%) were infected with Trichomonas, 10 (19.2%) with Giardia muris, and 11 (21.2%) with Entamoeba spp. Also, 10 cases (19.2%) were infected with Blastocystis, 3 (5.8%) were infected with Chilomastix, 7 (13.5%) were infected with Endolimax, 1 (1.9%) was infected with Retortamonas, 3 (5.77%) were infected with T. gondii, and 6 (11.54%) were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61%) cases. Results of the molecular study showed T. gondii infection in 3 (5.77%) of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region. PMID:26998380

  12. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran.

    PubMed

    Seifollahi, Zeinab; Sarkari, Bahador; Motazedian, Mohammad Hossein; Asgari, Qasem; Ranjbar, Mohammad Javad; Abdolahi Khabisi, Samaneh

    2016-01-01

    Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT). DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%). From 52 rodents, 19 (36.5%) were infected with Trichomonas, 10 (19.2%) with Giardia muris, and 11 (21.2%) with Entamoeba spp. Also, 10 cases (19.2%) were infected with Blastocystis, 3 (5.8%) were infected with Chilomastix, 7 (13.5%) were infected with Endolimax, 1 (1.9%) was infected with Retortamonas, 3 (5.77%) were infected with T. gondii, and 6 (11.54%) were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61%) cases. Results of the molecular study showed T. gondii infection in 3 (5.77%) of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region. PMID:26998380

  13. Epidemiology and Geographical Distribution of Enteric Protozoan Infections in Sydney, Australia

    PubMed Central

    Fletcher, Stephanie; Caprarelli, Graziella; Merif, Juan; Andresen, David; Hal, Sebastian Van; Stark, Damien; Ellis, John

    2014-01-01

    Background Enteric protozoa are associated with diarrhoeal illnesses in humans; however there are no recent studies on their epidemiology and geographical distribution in Australia. This study describes the epidemiology of enteric protozoa in the state of New South Wales and incorporates spatial analysis to describe their distribution. Design and methods Laboratory and clinical records from four public hospitals in Sydney for 910 patients, who tested positive for enteric protozoa over the period January 2007 - December 2010, were identified, examined and analysed. We selected 580 cases which had residence post code data available, enabling us to examine the geographic distribution of patients, and reviewed the clinical data of 252 patients to examine possible links between protozoa, demographic and clinical features. Results Frequently detected protozoa were Blastocystis spp. (57%), Giardia intestinalis (27%) and Dientamoeba fragilis (12%). The age distribution showed that the prevalence of protozoa decreased with age up to 24 years but increasing with age from 25 years onwards. The geographic provenance of the patients indicates that the majority of cases of Blastocystis (53.1%) are clustered in and around the Sydney City Business District, while pockets of giardiasis were identified in regional/rural areas. The distribution of cases suggests higher risk of protozoan infection may exist for some communities. Conclusions These findings provide useful information for policy makers to design and tailor interventions to target high risk communities. Follow-up investigation into the risk factors for giardiasis in regional/rural areas is needed. Significance for public health This research is significant since it provides the most recent epidemiological update on the common enteric protozoa affecting Australians. It reveals that enteric protozoa cause considerable disease burden in high risk city dwellers, and provides the evidence base for development of targeted interventions for their prevention and control in high risk populations. The prevalence of enteric protozoa in this metropolitan setting underscores that microorganisms do not respect borders and that a collaborative approach is needed to contain the global spread of infectious diseases. Incorporating spatial analysis is valuable in providing a compelling picture of the geographical distribution of these often neglected diseases. Local and State Public Health departments can use this information to support further inves- PMID:25343139

  14. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase

    PubMed Central

    Arakaki, Tracy L; Gillespie, Robert; Napuli, Alberto J; Kim, Jessica E; Buckner, Frederick S; Van Voorhis, Wesley C; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Hol, Wim G J

    2011-01-01

    Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNATrp molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNATrp after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4 Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8 Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0 Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNATrp recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual TrpRS from Giardia, these protozoan structures broaden our perspective on the extent of structural variation found in eukaryotic TrpRS homologs. PMID:21255615

  15. The elimination of helminth ova, faecal coliforms, Salmonella and protozoan cysts by various physicochemical processes in wastewater and sludge.

    PubMed

    Jiménez-Cisneros, B E; Maya-Rendón, C; Salgado-Velázquez, G

    2001-01-01

    The removal of helminth ova, faecal coliforms, Salmonella and protozoan cysts by the application of physicochemical treatment processes to municipal wastewater and sludge was studied. In the first case, the advanced primary treatment (APT) process was studied, as well as filtration of the APT effluent. The APT sludge was treated with either lime or acid. The initial values of helminth ova, faecal coliforms, Salmonella and protozoan cysts in the wastewater were 23-27 eggs/L, 7.8 x 10(7)-6.5 x 10(8) MPN/100 mL, 4.5 x 10(5)-2.4 x 10(6) MPN/100 mL, and 1,007-1,814 cysts/L respectively. After APT treatment, 96% of the helminth ova, 1 log of faecal coliforms and Salmonella, and 67% of the protozoan cysts were eliminated. To reduce the concentration of helminth ova from values > 1.2 ova/L to < 1 ova/L an additional filtration step was required. In the sludge, the initial values of helminth ova, faecal coliforms and Salmonella were 65-120 ova/g TS, 8.3 x 10(7)-1.4 x 10(11) MPN/g TS and 3.6 x 10(6)-2.4 x 10(10) MPN/g TS respectively. A 97% reduction of the helminth and an 8.5 log reduction of faecal coliforms and Salmonella was achieved by alkaline stabilisation, compared with a 98% and 4.5 log reduction by acid treatment. PMID:11464750

  16. Strain Differences in Fitness of Escherichia coli O157:H7 to Resist Protozoan Predation and Survival in Soil

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2014-01-01

    Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C? cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (rs?=??0.683; P?=?0.036), Vorticella (rs?=??0.465; P?=?0.05) or Colpoda (rs?=??0.750; P?=?0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, rs?=?0.730, P?=?0.0004; Colpoda, rs?=?0.625, P?=?0.006) suggesting a preference for consumption of C+ cells, although they grew on C? strains also. We speculate that the C? phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments. PMID:25019377

  17. Circadian variation in shedding of the oocysts of Isospora turdi (Apicomplexa) in blackbirds (Turdusmerula): an adaptative trait against desiccation and ultraviolet radiation.

    PubMed

    Martinaud, G; Billaudelle, M; Moreau, J

    2009-05-01

    Many parasite species spend part of their life cycle in the external environment waiting for a new host. Emergence of parasites often occurs once a day, which may help to minimise mortality in an inhospitable environment and increase transition rates. Many intestinal parasites in birds are released in faeces only in the late afternoon. However, the adaptative significance of this pattern is unclear. One hypothesis is that a particular time of emergence may prevent parasite desiccation and therefore increase the parasite's life expectancy in the external environment. We tested this hypothesis experimentally using the blackbird (Turdus merula) infected with Isospora turdi (Protozoa: Apicomplexa). We found that short exposure of faeces to natural sunlight has a dramatic effect on oocyst survival. This appears to be due to the effect of warmth and ultraviolet (UV) radiation with UVB waves being more damaging than UVA. Oocysts contained in faeces shed in water are protected from the effect of sunlight. Together, these results suggest that the release of oocysts in the late afternoon is an adaptative trait to avoid desiccation and UV radiation, thus reducing mortality of the oocysts in the external environment. PMID:19100268

  18. Coccidia of New World psittaciform birds (Aves: Psittaciformes): Eimeria ararae n. sp. (Apicomplexa: Eimeriidae) from the blue-and-yellow macaw Ara ararauna (Linnaeus).

    PubMed

    do Bomfim Lopes, Bruno; Berto, Bruno Pereira; de Carvalho Balthazar, Lianna Maria; Coelho, Cleide Domingues; Neves, Daniel Medeiros; Lopes, Carlos Wilson Gomes

    2014-06-01

    In the New World, the avian order Psittaciformes comprises 142 species, yet to date only 3 (2%) of the species have been examined for coccidia, and from these only four species of Eimeria Schneider, 1875 have been described. In this study, a new coccidian species (Protozoa: Apicomplexa: Eimeriidae) obtained from the blue-and-yellow macaw Ara ararauna (Linnaeus) is reported from Brazil. Oöcysts of Eimeria ararae n. sp. are ovoidal, measure 28.7 × 20.2 μm and have a smooth, bi-layered wall c.1.1 μm thick. Both micropyle and oöcyst residuum are absent, but polar granules are present. Sporocysts are ovoidal and measure 17.0 × 8.3 µm, with knob-like, prominent Stieda body and sporocyst residuum is composed of granules; sub-Stieda body is absent. Sporozoites are vermiform with one refractile body and a nucleus. This is the fifth description of an eimerid coccidian infecting a New World psittaciform bird. PMID:24832188

  19. A new coccidian, Isospora parnaitatiaiensis n. sp. (Apicomplexa, Eimeriidae), from the white-shouldered fire-eye Pyriglena leucoptera (Passeriformes, Thamnophilidae) from South America.

    PubMed

    da Silva, Lidiane Maria; Rodrigues, Mariana Borges; do Bomfim Lopes, Bruno; Berto, Bruno Pereira; Luz, Hermes Ribeiro; Ferreira, Ildemar; Lopes, Carlos Wilson Gomes

    2016-02-01

    A new coccidian species (Protozoa: Apicomplexa: Isospora) parasitizing the white-shouldered fire-eye Pyriglena leucoptera (Vieillot, 1818) is described in the Parque Nacional do Itatiaia. This park is a protected area in southeastern Brazil with a high degree of vulnerability, representing a "conservation island" of biodiversity. Isospora parnaitatiaiensis n. sp. has oocysts that are ellipsoidal, 23.8 × 19.4 μm, with smooth, bilayered wall, ~1.1 μm thick. Micropyle and oocyst residuum are absent, but one or two polar granules are present. Sporocysts are ellipsoidal, 14.6 × 9.3 μm. The Stieda body is nipple- to knob-like and sub-Stieda body rounded to rectangular. Sporocyst residuum is present, usually as a cluster of numerous granules. Sporozoites are vermiform with two refractile bodies and a nucleus. This is the second isosporoid coccidian described from antbirds (Thamnophilidae). PMID:26508009

  20. Elongation Factor-1a is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum*

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess a unique complex of organelles at the anterior end, referred to as the apical complex, which is involved in host cell invasion. Previously, we generated the chicken m...

  1. Enteric protozoan parasites in stray cats in Kuwait with special references to toxoplasmosis and risk factors affecting its occurrence.

    PubMed

    Abdou, Nadra-Elwgoud M I; Al-Batel, Maha K; El-Azazy, Osama M E; Sami, Attia M; Majeed, Qais A H

    2013-08-01

    In Kuwait, stray cats were surveyed for enteric protozoan infection using fecal examination and their sera were tested for Toxoplasma gondii IgG using indirect hemagglutination test (IHAT) as well as for feline immunodeficiency virus (FIV) antibodies and feline leukaemia virus (FeLV) antibodies using ELISA. Out of 240 fecal samples examined 22 (9.2%) were found to be infected with oocysts of four species of coccidian protozoa. Isopspora felis was the most predominant enteric protozoan parasite (7.1%), followed by T. gondii (2.1%), I. rivolta (1.6), Sarcocystis was only found in one case (0.4%). Juvenile cats ( 6 months old) had higher infection rate with oocyst of enteric protozoa than older cats (p-value 0.001). Sero-survey of 240 stray cats revealed that 19.6% were positive to T. gondii IgG. Toxoplasma sero-positivity was observed in higher number of adults compared to young cats suggests that with age the risk of exposure to T. gondii increases. While concurrent retroviral infections were not found to be associated with increased risk for developing T. gondii antibodies. PMID:24260809

  2. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila

    PubMed Central

    Klobutcher, Lawrence A.; Ragkousi, Katerina; Setlow, Peter

    2006-01-01

    Bacillus spores are highly resistant to many environmental stresses, owing in part to the presence of multiple “extracellular” layers. Although the role of some of these extracellular layers in resistance to particular stresses is known, the function of one of the outermost layers, the spore coat, is not completely understood. This study sought to determine whether the spore coat plays a role in resistance to predation by the ciliated protozoan Tetrahymena, which uses phagocytosis to ingest and degrade other microorganisms. Wild-type dormant spores of Bacillus subtilis were efficiently ingested by the protozoan Tetrahymena thermophila but were neither digested nor killed. However, spores with various coat defects were killed and digested, leaving only an outer shell termed a rind, and supporting the growth of Tetrahymena. A similar rind was generated when coat-defective spores were treated with lysozyme alone. The sensitivity of spores with different coat defects to predation by T. thermophila paralleled the spores' sensitivities to lysozyme. Spore killing by T. thermophila was by means of lytic enzymes within the protozoal phagosome, not by initial spore germination followed by killing. These findings suggest that a major function of the coat of spores of Bacillus species is to protect spores against predation. We also found that indigestible rinds were generated even from spores in which cross-linking of coat proteins was greatly reduced, implying the existence of a coat structure that is highly resistant to degradative enzymes. PMID:16371471

  3. Effects of DNA damage induced by UV irradiation on gene expression in the protozoan parasite Entamoeba histolytica.

    PubMed

    Weber, Christian; Marchat, Laurence A; Guillen, Nancy; López-Camarillo, César

    2009-04-01

    Previously, we provided evidence for the role of E. histolytica RAD52 epistasis group genes and the EhRAD51 recombinase in DNA damage response. To identify other genes participating in DNA repair in this protozoan parasite, here we analyzed the transcriptional response to genetic damage induced by ultraviolet light (UV) using cDNA microarrays. We found that 11.6% (350 ORFs) and 17.2% (522 ORFs) of genes were modulated at 5 min and 3h after UV irradiation, respectively. Most genes were less than 2-fold changed evidencing a weak transcriptional activation. The genes encoding so-called "classical" DNA repair proteins were slightly regulated in trophozoites submitted to UV irradiation. We also observed the over-expression of genes encoding for Fe-S clusters-containing proteins, potentially involved in the stress adaptation in response to DNA damage. Several genes encoding cytoskeleton proteins were repressed suggesting that actin dynamics was impaired after UV irradiation. Our analysis highlights novel genes potentially involved in DNA damage response, and these data will contribute to further elucidation of mechanisms regulating genome integrity in this early branch protozoan. PMID:19138709

  4. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria.

    PubMed

    Pereira, Sara B; Mota, Rita; Vieira, Cristina P; Vieira, Jorge; Tamagnini, Paula

    2015-01-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to. PMID:26437902

  5. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-10-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.

  6. Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3.

    PubMed

    Sorokin, Dimitry Y; Gumerov, Vadim M; Rakitin, Andrey L; Beletsky, Alexey V; Damsté, J S Sinninghe; Muyzer, Gerard; Mardanov, Andrey V; Ravin, Nikolai V

    2014-06-01

    Anaerobic enrichments from hypersaline soda lakes with chitin as substrate yielded five closely related anaerobic haloalkaliphilic isolates growing on insoluble chitin by fermentation at pH 10 and salinities up to 3.5 M. The chitinolytic activity was exclusively cell associated. To better understand the biology and evolutionary history of this novel bacterial lineage, the genome of the type strain ACht1 was sequenced. Analysis of the 2.6 Mb draft genome revealed enzymes of chitin-degradation pathways, including secreted cell-bound chitinases. The reconstructed central metabolism revealed pathways enabling the fermentation of polysaccharides, while it lacks the genes needed for aerobic or anaerobic respiration. The Rnf-type complex, oxaloacetate decarboxylase and sodium-transporting V-type adenosine triphosphatase were identified among putative membrane-bound ion pumps. According to 16S ribosomal RNA analysis, the isolates belong to the candidate phylum Termite Group 3, representing its first culturable members. Phylogenetic analysis using ribosomal proteins and taxonomic distribution analysis of the whole proteome supported a class-level classification of ACht1 most probably affiliated to the phylum Fibribacteres. Based on phylogenetic, phenotypic and genomic analyses, the novel bacteria are proposed to be classified as Chitinivibrio alkaliphilus gen. nov., sp. nov., within a novel class Chitinivibrione. PMID:24112708

  7. Development of Single-Nucleotide Polymorphism- Based Phylum-Specific PCR Amplification Technique: Application to the Community Analysis Using Ciliates as a Reference Organism

    PubMed Central

    Jung, Jae-Ho; Kim, Sanghee; Ryu, Seongho; Kim, Min-Seok; Baek, Ye-Seul; Kim, Se-Joo; Choi, Joong- Ki; Park, Joong-Ki; Min, Gi-Sik

    2012-01-01

    Despite recent advance in mass sequencing technologies such as pyrosequencing, assessment of culture-independent microbial eukaryote community structures using universal primers remains very difficult due to the tremendous richness and complexity of organisms in these communities. Use of a specific PCR marker targeting a particular group would provide enhanced sensitivity and more in-depth evaluation of microbial eukaryote communities compared to what can be achieved with universal primers. We discovered that many phylum- or group-specific single-nucleotide polymorphisms (SNPs) exist in small subunit ribosomal RNA (SSU rRNA) genes from diverse eukaryote groups. By applying this discovery to a known simple allele-discriminating (SAP) PCR method, we developed a technique that enables the identification of organisms belonging to a specific higher taxonomic group (or phylum) among diverse types of eukaryotes. We performed an assay using two complementary methods, pyrosequencing and clone library screening. In doing this, specificities for the group (ciliates) targeted in this study in bulked environmental samples were 94.6% for the clone library and 99.2% for pyrosequencing, respectively. In particular, our novel technique showed high selectivity for rare species, a feature that may be more important than the ability to identify quantitatively predominant species in community structure analyses. Additionally, our data revealed that a target-specific library (or ciliate-specific one for the present study) can better explain the ecological features of a sampling locality than a universal library. PMID:22965748

  8. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    PubMed Central

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-01-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to. PMID:26437902

  9. Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in sheep and goats: recent advances.

    PubMed

    Buxton, D

    1998-01-01

    The protozoan parasite Toxoplasma gondii is a serious cause of fetal mortality in sheep and goats. Oocysts, the parasite stage responsible for initiating infection, are produced following a primary infection in cats. A primary infection in pregnant sheep and goats can establish a placental and fetal infection which may result in fetal death and resorption, abortion or stillbirth. Diagnosis is aided by the clinical picture, the presence of characteristic small white necrotic foci in placental cotyledons, the possible presence of a mummified fetus and on fetal serology and histopathology. Development of the polymerase chain reaction (PCR) specific for T. gondii may also provide a valuable diagnostic tool. Measures to control abortion include improved management of farm cats, fodder and water. Vaccination of sheep with the live vaccine is an effective preventive measure and the use of decoquinate in feed may be useful in some situations. Neospora caninum is related to T. gondii and while its asexual life cycle is similar to that of the latter it is currently not known whether it has a similar sexual life cycle in a definitive host. Neospora is an important cause of fetal loss in cattle and parallels that of T. gondii infection in sheep and goats. While it does not appear to cause frequent losses in these latter animals, experimental infection is readily induced in them and if initiated during pregnancy provides a very good model of the bovine infection. Furthermore clinical signs and pathological lesions in sheep and goats are similar to those induced in them by T. gondii, although there are subtle histopathological differences. These changes will aid possible diagnosis as will specific serological tests such as the indirect immunofluorescent antibody test and the enzyme linked immunosorbent assay and the PCR. Sarcocystis, which exists as numerous species, undergoes a coccidian-like life cycle with each having a distinctive definitive (usually carnivore) host which excretes sporocysts into the environment. Clinical sarcocystiosis is much less commonly diagnosed than toxoplasmosis and neither is it normally associated with fetal infection or abortion in either sheep or goats. However, infection is extremely common throughout the world and follows ingestion of food or water contaminated with sporocysts. Clinical signs, when seen, include fever, anaemia, inappetance and weight loss or reduced weight gain. Central nervous signs (hind limb weakness, ataxia, paresis), acute myopathy and death may occur. Diagnosis is difficult as infection is so common and clinical signs absent, mild or non-specific. Serology may be useful in some situations and histopathology/immunohistochemistry is valuable for confirming the cause of death. Control relies on preventing contamination of pasture and water with faeces of dogs, foxes and cats or by controlling access of young susceptible stock to contaminated land. Relatively little is known of the immunity induced by infection with Sarcocystis spp. but research indicates that protective immunity does develop and that cell-mediated mechanisms are probably important. It is likely that sarcocystiosis is underdiagnosed as a problem and that better diagnostic methods are needed to show the true extent of the losses caused. Neosporosis on the other hand would appear not to be so common in sheep and goats. The value of experimental infections in these animals may be to provide a comparative model of the infection in cattle in the same way that our understanding of toxoplasmosis in sheep provides a superior model of human toxoplasmosis. PMID:9689743

  10. Protozoan Fauna and Abundance in Aeration Tanks of Three Municipal Wastewater Treatment Plants in the Eastern Cape Province of South Africa

    NASA Astrophysics Data System (ADS)

    Sibewu, M.; Momba, M. N. B.; Okoh, A. L.

    This study focuses on the assessment of the protozoan fauna and abundance in the mixed liquors of aeration tanks of the three municipal wastewater treatment plants located in Fort Beaufort, Dimbaza and East London in the Eastern Cape Province of South Africa and their implication to the production of effluents of good quality. The samples were collected between September and December 2005 and protozoa species were identified by direct microscopic observations at x400 magnification by comparison with existing protozoa gallery collections. A total of 68 protozoan genera made up of 44 ciliates, 16 flagellates and 8 others were identified in wastewater treatment plants. Although in all aerobic zones the average density of ciliates was 104 cells mL-1, which indicated that these plants were able to produce clear effluent of good quality, a better performance was found in Dimbaza and East London, which had total protozoan genera of 27 and 26, respectively.

  11. Separation and Identification of Odd Chain Triacylglycerols of the Protozoan Khawkinea quartana and the Mold Mortierella alpina Using LC-MS.

    PubMed

    Řezanka, Tomáš; Vítová, Milada; Nováková, Alena; Sigler, Karel

    2015-08-01

    Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-MS/APCI) with reversed- and chiral phases was used for separation of triacylglycerols (TAG) from protozoan and mold. This study describes the separation and identification of odd numbered chains of regioisomers and enantiomers of triacylglycerols from different natural sources, i.e., the protozoan Khawkinea quartana and the mold Mortierella alpina. Using the above-mentioned separation methods and the synthesis of appropriate standards of TAG, we identified regioisomers and enantiomers of both even and odd numbered TAG. The biosynthesis of odd numbered TAG was found to be strictly stereospecific and to depend on the production microorganism, one enantiomer predominating in the protozoan and the other in the mold. It was proved that even numbered TAG are synthesized in a higher optical purity, which can be explained by a higher affinity of acyltransferases to the respective substrate, i.e., to even chain PUFA. PMID:26123693

  12. Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements

    PubMed Central

    2014-01-01

    Vector-borne protozoan diseases represent a serious public health challenge, especially in the tropics where poverty together with vector-favorable climates are the aggravating factors. Each of the various strategies currently employed to face these scourges is seriously inadequate. Despite enormous efforts, vaccines—which represent the ideal weapon against these parasitic diseases—are yet to be sufficiently developed and implemented. Chemotherapy and vector control are therefore the sole effective attempts to minimize the disease burden. Nowadays, both strategies are also highly challenged by the phenomenon of drug and insecticide resistance, which affects virtually all interventions currently used. The recently growing support from international organizations and governments of some endemic countries is warmly welcome, and should be optimally exploited in the various approaches to drug and insecticide research and development to overcome the burden of these prevalent diseases, especially malaria, leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease. PMID:24401663

  13. Protozoan and myxozoan infections in wild gilthead seabream (Sparus aurata L.) from North Lake of Tunis, Tunisia.

    PubMed

    Bahri, Sihem

    2012-06-01

    A total of 150 gilthead seabream Sparus aurata L., from North Lake of Tunis, Tunisia, were studied for protozoan and myxozoan parasites. The parasitological survey revealed the presence of ectoparasites (Amyloodinium ocellatum Brown, 1931, Trichodina lepsii Lom, 1962 on the gills) and endoparasites (Ceratomyxa sparusaurati Sitj-Bobadilla, Palenzuela et Alvarez-Pellitero, 1995 infecting the gallbladder, and Eimeria sparis Sitj-Bobadilla, Palenzuela et Alvarez-Pellitero, 1996 parasitizing the intestine). This is the first record of Amyloodinium ocellatum, Trichodina lepsii, Ceratomyxa sparusaurati, and Eimeria sparis in S. aurata from Tunisian waters. Data on prevalence and intensity of infection are provided. A comparison of the present species with previously described species in cultured gilthead seabream from other Mediterranean countries is also presented. In this study Trichodina lepsii is identified for the first time in Sparus aurata. A taxonomic description of this species based on silver nitrate method is provided. PMID:22807047

  14. A complex of iron and nucleic acid catabolites is a signal that triggers differentiation in a freshwater protozoan

    PubMed Central

    Smith-Somerville, Harriett E.; Hardman, John K.; Timkovich, Russell; Ray, William J.; Rose, Karen E.; Ryals, Phillip E.; Gibbons, Sandra H.; Buhse, Howard E.

    2000-01-01

    The polymorphic ciliated protozoan Tetrahymena vorax can undergo differentiation from the microstomal form, which normally feeds on bacteria and other particulate matter, into the macrostomal cell type, which is capable of ingesting prey ciliates. The process is triggered by exposure of the microstome to an inducer contained in stomatin, an exudate of the prey. To establish the identity of the signal, stomatin was fractionated by combinations of cation exchange, HPLC, and TLC, and the fractions were assayed for biological activity. Although no single active fraction of purified inducer was obtained, all fractions with activity contained ferrous iron and the nucleic acid catabolites hypoxanthine (6-oxypurine) and uracil (2,4-dioxopyrimidine), probably in a chelated form. The activity of synthetic complexes containing these three components is equivalent to stomatin. These results indicate a role for ferrous iron and its potential in chelated form to signal differentiation in certain protozoa and, perhaps, in other organisms as well. PMID:10860998

  15. Herbicides to curb human parasitic infections: in vitro and in vivo effects of trifluralin on the trypanosomatid protozoans.

    PubMed Central

    Chan, M M; Grogl, M; Chen, C C; Bienen, E J; Fong, D

    1993-01-01

    Leishmaniasis is a major tropical disease for which current chemotherapies, pentavalent antimonials, are inadequate and cause severe side effects. It has been reported that trifluralin, a microtubule-disrupting herbicide, is inhibitory to Leishmania amazonensis. In this study, the in vitro effect of trifluralin on different species of trypanosomatid protozoans was determined. In addition to L. amazonensis, trifluralin is effective against Leishmania major and Leishmania tropica, which cause cutaneous infections, Leishmania donovani, which causes visceral disease, Leishmania panamensis, which may cause mucocutaneous infection, and Trypanosoma brucei, an important human and veterinary pathogen. Moreover, most encouragingly, trifluralin is effective in vivo as a topical ointment against L. major and Leishmania mexicana murine cutaneous leishmaniasis. Thus, trifluralin is a promising lead drug for several related, prevalent tropical diseases: leishmaniasis, trypanosomiasis of animals, and, possibly, African trypanosomiasis in humans. Images Fig. 4 PMID:8516314

  16. Studies on synergistic toxic effects of copper and dithiocarbamate pesticides with the ciliate protozoan Colpidium campylum (Stokes).

    PubMed

    Bonnemain, H; Dive, D

    1990-06-01

    The toxicity of seven dithiocarbamates and interactions occurring with copper were studied with the ciliate protozoan Colpidium campylum. No product was toxic at 0.1 mg liter-1. Thiram and mancozeb are the most toxic products (lethal at 1 mg liter-1) and ziram and propineb the least toxic. Concerning interactions with copper, no or slight interactions were observed with propineb and mancozeb, although a strong synergistic toxic effect was observed in a previous work with two structurally related products, maneb and zineb. On the contrary, the responses observed with alkyl-related dithiocarbamates (ferbam and ziram) and ethylene bis-related dithiocarbamates (nabam, thiram, and metiram) are in correlation with the results known in the literature. The synergistic toxic effect of copper and dithiocarbamates thus seems to be related mainly to the alkyl- or the ethylene bis-dithiocarbamate structure, but is not constant for molecules associated with metals (propineb, mancozeb, maneb, and zineb). PMID:2114279

  17. Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction.

    PubMed

    Evans-Osses, Ingrid; Reichembach, Luis H; Ramirez, Marcel I

    2015-10-01

    Parasite-host cell interaction can be modulated by a dynamic communication between extracellular vesicles (EVs). They should play key roles in cell-cell communications transferring biomolecules (miRNA, proteins, soluble factors) from one cell to another cell. While many names have been used to denominate EVs, a better comprehension to understand these vesicles is raised when we classify it according to biogenesis: originated from multivesicular bodies, named exosomes, and from plasmatic membranes, denominated microvesicles. Here, we have reviewed EV participation during the protozoan-host cell interaction and reinforced the differences and similarities between exosomes and microvesicles, suggesting different intracellular routes and functions. We also discussed perspectives to study EVs and the role of EVs in diagnosis and chemotherapies of infectious diseases. PMID:26272631

  18. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages.

    PubMed

    Schmidt, Carrie E; Shringi, Smriti; Besser, Thomas E

    2016-01-01

    Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1-3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli. PMID:26824472

  19. Detection of Protozoan Hosts for Legionella pneumophila in Engineered Water Systems by Using a Biofilm Batch Test▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; van der Kooij, Dick

    2010-01-01

    Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C. PMID:20851993

  20. Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors.

    PubMed

    Martín-Cereceda, M; Pérez-Uz, B; Serrano, S; Guinea, A

    2001-01-01

    Performance of a full-scale wastewater treatment plant by rotating biological contactors (RBC) system was monitored during a year by physico-chemical and microbial characterisation. Six points along wastewater treatment were selected in the plant: three points along the water line (influent, sedimentation tank and effluent) and three points along RBC system (RBC1, RBC2 and RBC3). Although a large seasonal change in the values of physico-chemical parameters was observed, operation of the plant was optimal during all year (90% of removal in BOD5 and SS influent content). Microbial characterisation was approached by determining the structure and dynamics of protozoan and metazoan communities. Protozoa were the most abundant in all stages in the plant, heterotrophic flagellates being the most representative group in the water line and ciliates in the RBC system. The same seasonal preference was only observed for heterotrophic flagellates in the water line and green flagellates in the RBC system, both groups having highest abundances in summer and spring, respectively. Identification of ciliated protozoa populations rendered 58 species of ciliates in the plant. Most of these species are typical of aerobic wastewater treatment systems except three of them, which are cited for the first time in this type of ecosystems: Chaenea stricta, Holosticha mancoidea and Oxytricha lanceolata. Along the water line 34 species were identified, and half of them only appeared occasionally (once in all the study), while along the RBC system biofilms 55 species were observed, and the majority appeared permanently in this system. Our results indicate that the type of habitat, rather than the physico-chemical water parameters, was the primary factor in determining the different distribution of protozoan and metazoan communities in the plant. In RBC biofilms, the structure of ciliate protozoa community was found to be quite sensitive to changes in physico-chemical parameters, mainly to organic loading (BOD5) variations. PMID:11716211

  1. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages

    PubMed Central

    Schmidt, Carrie E.; Shringi, Smriti; Besser, Thomas E.

    2016-01-01

    Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1–3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli. PMID:26824472

  2. Physiology and phylogeny of the candidate phylum "Atribacteria" (formerly OP9/JS1) inferred from single-cell genomics and metagenomics

    NASA Astrophysics Data System (ADS)

    Dodsworth, J. A.; Murugapiran, S.; Blainey, P. C.; Nobu, M.; Rinke, C.; Schwientek, P.; Gies, E.; Webster, G.; Kille, P.; Weightman, A.; Liu, W. T.; Hallam, S.; Tsiamis, G.; Swingley, W.; Ross, C.; Tringe, S. G.; Chain, P. S.; Scholz, M. B.; Lo, C. C.; Raymond, J.; Quake, S. R.; Woyke, T.; Hedlund, B. P.

    2014-12-01

    Single-cell sequencing and metagenomics have extended the genomics revolution to yet-uncultivated microorganisms and provided insights into the coding potential of this so-called "microbial dark matter", including microbes belonging candidate phyla with no cultivated representatives. As more datasets emerge, comparison of individual genomes from different lineages and habitats can provide insight into the phylogeny, conserved features, and potential metabolic diversity of candidate phyla. The candidate bacterial phylum OP9 was originally found in Obsidian Pool, Yellowstone National Park, and it has since been detected in geothermal springs, petroleum reservoirs, and engineered thermal environments worldwide. JS1, another uncultivated bacterial lineage affiliated with OP9, is often abundant in marine sediments associated with methane hydrates, hydrocarbon seeps, and on continental margins and shelves, and is found in other non-thermal marine and subsurface environments. The phylogenetic relationship between OP9, JS1, and other Bacteria has not been fully resolved, and to date no axenic cultures from these lineages have been reported. Recently, 31 single amplified genomes (SAGs) from six distinct OP9 and JS1 lineages have been obtained using flow cytometric and microfluidic techniques. These SAGs were used to inform metagenome binning techniques that identified OP9/JS1 sequences in several metagenomes, extending genomic coverage in three of the OP9 and JS1 lineages. Phylogenomic analyses of these SAG and metagenome bin datasets suggest that OP9 and JS1 constitute a single, deeply branching phylum, for which the name "Atribacteria" has recently been proposed. Overall, members of the "Atribacteria" are predicted to be heterotrophic anaerobes without the capacity for respiration, with some lineages potentially specializing in secondary fermentation of organic acids. A set of signature "Atribacteria" genes was tentatively identified, including components of a bacterial microcompartments gene cluster that may be involved in carbohydrate catabolism. The "Atribacteria" may play important roles in biomass processing in anaerobic geothermal and subsurface environments.

  3. Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae).

    PubMed

    Gigliolli, Adriana A Sinópolis; Lapenta, Ana Silva; Ruvolo-Takasusuki, Maria Claudia Colla; Abrahão, Josielle; Conte, Hélio

    2015-09-01

    Tribolium castaneum (Coleoptera: Tenebrionidae) is a common pest of stored grains and byproducts and is normally infected by Gregarina cuneata (Apicomplexa: Eugregarinidae). The life cycle of this parasite includes the sporozoite, trophozoite, gamont, gametocyte, and oocyst stages, which occur between the epithelium and lumen of the host's midgut. This study aims to describe the morphofunctional alterations in the midgut and determine the esterase patterns in T. castaneum when parasitized by gregarines. To achieve this purpose, midguts of adult insects were isolated, processed, and analysed using light and electron microscopy. We determined total protein content, amylase activity, and the expression and related activities of the esterases by using polyacrylamide gel electrophoresis (PAGE). The midgut of T. castaneum is formed by digestive, regenerative, and endocrine cells. The effects of parasitism on the digestive cells are severe, because the gregarines remain attached to these cells to absorb all the nutrients they need throughout their development. In these cells, the most common alterations observed include expansion and fragmentation of the rough endoplasmic reticulum, development of the smooth endoplasmic reticulum, changes in mitochondrial cristae, cytoplasmic vacuolization, formation of myelin structures, spherites, large intercellular spaces, autophagic vesicles, expansion of the basal labyrinth, and cytoplasmic protrusions. Deposits of glycogen granules were also observed. Amylase activity was reduced in parasitized insects. Regenerative cells were found in disorganized crypts and did not differentiate into new cells, thus, compromising the restoration of the damaged epithelium. Though few morphological alterations were observed in the endocrine cells, results suggest that the synthesis and/or release of hormones might be impaired. Nine esterases (EST-1 to 9) were identified in the midgut of T. castaneum and were expressed in varying levels in response to parasitism. Two additional isoforms of esterases were exclusively identified in the parasitized insects. The results of this study suggest that gregarines alter the morphology and physiology of the midgut. The changes may result in nutritional depletion and the impairment of other physiological processes, such as reproduction and development of the host. Thus, further studies are needed to uncover the possibility of utilizing gregarines as biological controllers of the insect pest population. PMID:26072335

  4. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers.

    PubMed

    Pascual, Javier; García-López, Marina; Bills, Gerald F; Genilloud, Olga

    2016-05-01

    A novel chemo-organoheterotroph bacterium, strain CB-286315T, was isolated from a Mediterranean forest soil sampled at the Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, by using the diffusion sandwich system, a device with 384 miniature diffusion chambers. 16S rRNA gene sequence analyses identified the isolate as a member of the under-represented phylum Gemmatimonadetes, where 'Gemmatirosa kalamazoonensis' KBS708, Gemmatimonas aurantiaca T-27T and Gemmatimonas phototrophica AP64T were the closest relatives, with respective similarities of 84.4, 83.6 and 83.3 %. Strain CB-286315T was characterized as a Gram-negative, non-motile, short to long rod-shaped bacterium. Occasionally, some cells attained an unusual length, up to 35-40 μm. The strain showed positive responses for catalase and cytochrome-c oxidase and division by binary fission, and exhibited an aerobic metabolism, showing optimal growth under normal atmospheric conditions. Strain CB-286315T was also able to grow under micro-oxic atmospheres, but not under anoxic conditions. The strain is a slowly growing bacterium able to grow under low nutrient concentrations. Major fatty acids included iso-C17 : 1ω9c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and iso-C17 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified glycolipids and three phospholipids. The major isoprenoid quinone was MK-8 and the diagnostic diamino acid was meso-diaminopimelic acid. The DNA G+C content was 67.0 mol%. Based on a polyphasic taxonomic characterization, strain CB-286315T represents a novel genus and species, Longimicrobium terrae gen. nov., sp. nov., within the phylum Gemmatimonadetes. The type strain of Longimicrobium terrae is strain CB-286315T ( = DSM 29007T = CECT 8660T). In order to classify the novel taxon within the existing taxonomic framework, the family Longimicrobiaceae fam. nov., order Longimicrobiales ord. nov. and class Longimicrobia classis nov. are also proposed. PMID:26873585

  5. Lipidomic Analysis Reveals That Phosphatidylglycerol and Phosphatidylethanolamine are Newly Generated Phospholipids in an Early-Divergent Protozoan, Giardia lamblia

    PubMed Central

    Yichoy, Mayte; Nakayasu, Ernesto S.; Shpak, Max; Aguilar, Clemente; Aley, Stephen B.; Almeida, Igor C.; Das, Siddhartha

    2009-01-01

    The pathogenic protozoan Giardia lamblia is known to not synthesize membrane lipids de novo. Therefore, it is possible that lipids in the small intestine, where trophozoites colonize, play key roles in regulating the growth and differentiation of this important pathogen. The focus of the current study is to conduct a complete lipidomic analysis and to test the hypothesis that Giardia has some ability to generate new phospholipids (PLs). Using mass spectrometry, now we show that phosphatidylglycerols (PGs) are major PLs followed by phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in non-encysting and encysting trophozoites, as well in cysts. The fatty acids attached to these PLs consist mostly of palmitate, palmitoleate, oleate, and linoleate. Results also indicate that PGs and PEs, unlike PCs, are not present in bovine bile and serum, the major sources of lipids of the culture medium, and that they could therefore be produced by fatty acid and headgroup remodeling reactions, circumventing the synthesis of entirely new PLs via de novo pathways. Genomic and transcriptional analyses show the presence of giardial phosphatidylglycerolphosphate synthase (gpgs) and phosphatidylserine decarboxylase (gpsd) genes, which are expressed throughout the life cycle. Bioinformatic and phylogenetic analyses further indicated that both genes are of prokaryotic origin and that they have undergone duplication in the course of the evolution. Our studies suggest that the abundance of PG in Giardia is unique among eukaryotes and that its synthesis thus could serve as a potential target for developing new therapies against this waterborne parasite. PMID:19393163

  6. Multiplex screening for blood-borne viral, bacterial, and protozoan parasites using an OpenArray platform.

    PubMed

    Grigorenko, Elena; Fisher, Carolyn; Patel, Sunali; Chancey, Caren; Rios, Maria; Nakhasi, Hira L; Duncan, Robert C

    2014-01-01

    The use of nucleic acid tests for detection of pathogens has improved the safety of blood products. However, ongoing pathogen emergence demonstrates a need for development of devices testing for multiple pathogens simultaneously. One approach combines two proven technologies: Taqman chemistry for target identification and quantification and the OpenArray nanofluidic real-time PCR platform for spatial multiplexing of assays. A panel of Taqman assays was developed to detect nine blood-borne pathogens (BBPs): four viral, two bacterial, and three protozoan parasites. The custom BBP OpenArray plate with 18 assays was tested for specificity and analytical sensitivity for nucleic acid from each purified pathogen and with pathogen-spiked human blood and plasma samples. For most targets, the limits of detection (10 to 10,000 copies/mL) were comparable with existing real-time platforms. The testing of the BBP OpenArray with pathogen-spiked coded human plasma or blood samples and negative control specimens demonstrated no false-positive results among the samples tested and correctly identified pathogens with the lowest concentration detected ranging from 10 cells/mL (Trypanosoma cruzi) to 10,000 cells/mL (Escherichia coli). These results represent a proof of concept that indicated the BBP OpenArray platform in combination with Taqman chemistry may provide a multiplex real-time PCR pathogen detection method that points the way for a next-generation platform for infectious disease testing in blood. PMID:24184228

  7. In Silico Elucidation and Inhibition Studies of Selected Phytoligands Against Mitogen-Activated Protein Kinases of Protozoan Parasites.

    PubMed

    Gupta, Chhedi Lal; Akhtar, Salman; Kumar, Nilesh; Ali, Jasarat; Pathak, Neelam; Bajpai, Preeti

    2016-03-01

    Parasitic MAPKs exhibiting significant divergence with humans and playing an imperative role in parasitic metabolic activities have been exploited from several years as important targets for development of novel therapeutics. In addition, the emergence of the drug-resistant variants of parasitic diseases in the recent years has aroused a great need for the development of potent inhibitors against them. In the present study, we selected the metabolically active MAPKs LmxMPK4, PfMAP2 and TbMAPK5 of the three parasitic protozoans Leishmania mexicana, Plasmodium falciparum and Trypanosoma brucei, respectively. The homology modeling technique was used to develop the 3D structures of these proteins, and the same was validated by PROCHECK, ERRAT, ProQ and ProSA web servers to check the reliability. Ten phytoligands were employed for molecular docking studies with these proteins to search for potent phytoligand as a broad spectrum inhibitor. In this regard, two phytoligands (aspidocarpine for LmxMPK4 and TbMAPK5 and cubebin for PfMAP2) were found to be more effective inhibitors, in terms of robust binding energy, strong inhibition constant and better interactions between protein-ligand complexes. Furthermore, predicted ADME and toxicity properties suggested that these identified phytoligands exhibited comparable results to control drugs potentiating them as persuasive therapeutic agents for Leishmania, Trypanosoma and Plasmodium sp. PMID:26264054

  8. Passive immunization of channel catfish (Ictalurus punctatus) against the ciliated protozoan parasite Ichthyophthirius multifiliis by use of murine monoclonal antibodies.

    PubMed Central

    Lin, T L; Clark, T G; Dickerson, H

    1996-01-01

    Fish acquire immunity against the ciliated protozoan parasite Ichthyophthirius multifiliis following sublethal infection. The immune response includes the elaboration of humoral antibodies against a class of abundant surface membrane proteins referred to as immobilization antigens (i-antigens). Antibodies against these proteins immobilize the parasite in vitro, suggesting a potential role for the i-antigens in protective immunity. To test this hypothesis, passive immunization experiments were carried out with naive channel catfish, Ictalurus punctatus, using immobilizing murine monoclonal antibodies (MAbs). Fish were completely protected against lethal challenge following intraperitoneal injection of 20 to 200 micrograms of MAb. Although fish succumbed to infection at lower doses, palliative effects were observed with as little as 2 micrograms of antibody. In experiments in which animals were challenged at various times following inoculation, an inverse relationship between parasite load and serum immobilizing activity was seen. Of seven MAbs which conferred protection, all were immunoglobulin G class antibodies. The only immobilizing MAb that failed to protect was an immunoglobulin M antibody that was absent from surface mucosa as determined by enzyme-linked immunosorbent assay. The implications of these findings for the development of a vaccine against I. multifiliis and immunity against surface pathogens of fish are discussed. PMID:8926073

  9. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season

    PubMed Central

    Hisatugo, Karina F.; Mansano, Adrislaine S.; Seleghim, Mirna H.R.

    2014-01-01

    In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF) in a subtropical freshwater reservoir (Monjolinho reservoir - São Carlos - Brazil) during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl) aminofluorescein (DTAF). Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h−1 mL−1) when compared to ciliates (mean of 492 bacteria h−1 mL−1). The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 μm) population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir. PMID:24948925

  10. Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus).

    PubMed

    de Roode, Jacobus C; Chi, Jean; Rarick, Rachel M; Altizer, Sonia

    2009-08-01

    Parasites often produce large numbers of offspring within their hosts. High parasite burdens are thought to be important for parasite transmission, but can also lower host fitness. We studied the protozoan Ophryocystis elektroscirrha, a common parasite of monarch butterflies (Danaus plexippus), to quantify the benefits of high parasite burdens for parasite transmission. This parasite is transmitted vertically when females scatter spores onto eggs and host plant leaves during oviposition; spores can also be transmitted between mating adults. Monarch larvae were experimentally infected and emerging adult females were mated and monitored in individual outdoor field cages. We provided females with fresh host plant material daily and quantified their lifespan and lifetime fecundity. Parasite transmission was measured by counting the numbers of parasite spores transferred to eggs and host plant leaves. We also quantified spores transferred from infected females to their mating partners. Infected monarchs had shorter lifespans and lower lifetime fecundity than uninfected monarchs. Among infected females, those with higher parasite loads transmitted more parasite spores to their eggs and to host plant leaves. There was also a trend for females with greater parasite loads to transmit more spores to their mating partners. These results demonstrate that high parasite loads on infected butterflies confer a strong fitness advantage to the parasite by increasing between-host transmission. PMID:19418070

  11. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common

    USGS Publications Warehouse

    Thomas, Frédéric; Lafferty, Kevin D.; Brodeur, Jacques; Elguero, Eric; Gauthier-Clerc, Michel; Missé, Dorothée

    2012-01-01

    We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product because wealth probably increases the ability to detect cancer. We also included gender, cell phone use and latitude as variables in our initial models. Prevalence of T. gondii explained 19 per cent of the residual variance in brain cancer incidence after controlling for the positive effects of gross domestic product and latitude among nations. Infection with T. gondii was associated with a 1.8-fold increase in the risk of brain cancers across the range of T. gondii prevalence in our dataset (4–67%). These results, though correlational, suggest that T. gondii should be investigated further as a possible oncogenic pathogen of humans.

  12. Glycosylinositol-phosphoceramide in the free-living protozoan Paramecium primaurelia: modification of core glycans by mannosyl phosphate.

    PubMed Central

    Azzouz, N; Striepen, B; Gerold, P; Capdeville, Y; Schwarz, R T

    1995-01-01

    Glycolipids synthesized in a cell-free system prepared from the free-living protozoan Paramecium primaurelia and labelled with [3H]mannose and [3H]glucosamine using GDP-[3H]mannose and UDP-[3H]N-acetyl glucosamine, respectively, were identified and structurally characterized as glycosylinositol-phosphoceramides (GIP-ceramides). The ceramide-based lipid was also found in the GIP membrane anchor of the G surface antigen of P.primaurelia, strain 156. Using a combination of in vitro labelling with GDP-[3H]mannose and in vivo labelling with 33P, we found that the core glycans of the P.primaurelia GIP-ceramides were substituted with an acid-labile modification identified as mannosyl phosphate. The modification of the glycosylinositol-phospholipid core glycan by mannosyl phosphate has not been described to date in other organisms. The biosynthesis of GIP-ceramide intermediates in P.primaurelia was studied by a pulse-chase analysis. Their structural characterization is reported. We propose the following structure for the putative GIP-ceramide membrane anchor precursor of P.primaurelia surface proteins: ethanolamine phosphate-6Man-alpha 1-2Man-alpha 1-6Man-(mannosyl phosphate)-alpha 1-4glucosamine-inositol-phosphoceramide. PMID:7556085

  13. The water-born protein pheromones of the polar protozoan ciliate, Euplotes nobilii: Coding genes and molecular structures

    NASA Astrophysics Data System (ADS)

    Vallesi, Adriana; Alimenti, Claudio; Di Giuseppe, Graziano; Dini, Fernando; Pedrini, Bill; Wüthrich, Kurt; Luporini, Pierangelo

    2010-08-01

    The protozoan ciliate Euplotes nobilii found in Antarctic and Arctic coastal waters relies on secretion of water-soluble cell type-specific signal proteins (pheromones) to regulate its vegetative growth and sexual mating. For three of these psychrophilic pheromones we previously determined the three-dimensional structures by nuclear magnetic resonance (NMR) spectroscopy with protein solutions purified from the natural sources, which led to evidence that their adaptation to cold is primarily achieved by increased flexibility through an extension of regions free of regular secondary structures, and by increased exposure of negative charges on the protein surface. Then we cloned the coding genes of these E. nobilii pheromones from the transcriptionally active cell somatic nucleus (macronucleus) and characterized the full-length sequences. These sequences all contain an open reading frame of 252-285 nucleotides, which is specific for a cytoplasmic pheromone precursor that requires two proteolytic cleavages to remove a signal peptide and a pro segment before release of the mature protein into the extracellular environment. The 5‧ and 3‧ non-coding regions are two- to three-fold longer than the coding region and appear to be tightly conserved, probably in relation to the inclusion of intron sequences destined to be alternatively removed to play key regulatory roles in the mechanism of the pheromone gene expression.

  14. Glycoproteins, antigens, and regulation of complement activation on the surface of the protozoan parasite Trypanosoma lewisi: implications for immune evasion

    SciTech Connect

    Sturtevant, J.E.

    1985-01-01

    The surface antigens and glycoproteins of the rat parasitic protozoan, Trypanosoma lewisi were characterized. Radioiodination with /sup 125/I identified 10 out of more 40 polypeptides separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis. All of these components were identified as glycoproteins by peroxidase-conjugated Conconavalin A (HR-Con A) lectin affinoblotting. This analysis detected that quantitative but not qualitative changes occurred during infection. Localization of most of the reactive determinants was indicated by immunoblotting extracts of radioiodinated T. lewisi. Changes in the antigenicity as related to survival in the host are discussed. The presence of IgG and IgM on the surface of T. lewisi isolated from intact and ..gamma..-irradiated rats (irr.) and that determinants bind Ig from uninfected rat sera (NRS) was indicated by flow cytometric analysis. Immunoblotting identified the major NRS IgG binding component as the 74 kd surface glycoprotein. Complement component C3 deposition during infection was indicated by flow cytometric analysis and immunoblotting. Incubation of intact T. lewisi with normal human sera indicated that C3, C5, and factor B deposition was Mg/sup 2 +/ dependent, Ca/sup 2 +/ independent and deposited C3 was rapidly processed to hemolytically inactive fragments. Radioiodination of intact and protease T. lewisi after cultivation identified three components which correlate with resistance to lysis. This suggests that surface moieties on intact T. lewisi modulate host complement activity by restricting C3/C5 convertase activity.

  15. Temporal population dynamics of dinoflagellate Prorocentrum minimum in a semi-enclosed mariculture pond and its relationship to environmental factors and protozoan grazers

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Min, Gi-Sik; Choi, Joong-Ki; Zhu, Mingzhuang; Jiang, Yong; Al-Rasheid, Khaled A. S.

    2010-01-01

    The ecological processes and interrelationships between protists, either autotrophic or heterotrophic, and environmental factors in mariculture ponds are largely unknown. This study investigated the temporal dynamics of potentially harmful dinoflagellate, Prorocentrum minimum (Pavillard) Schiller, and its relationship to physico-chemical factors and protozoan grazers over a complete cycle in a semi-enclosed shrimp-farming pond near Qingdao, Northern China. P. minimum occurred frequently in low numbers from June to August, followed by a sharp increase from the middle of August, reaching a single maximum peak value of 2.2×105 cells L-1 in October. Temporal variation in abundance was positively correlated with dissolved nitrogen, but showed a significant inverse relationship to abundance of the dominant ciliates, Tintinnopsis lohmanni and Askenasia stellaris. The results provide statistical evidence that the number of P. minimum increased with increasing nitrogen, and the suppression or shortening of algal bloom may be associated with protozoan grazers, such as Tintinnopsis lohmanni, in mariculture ponds.

  16. Involvement of a putative intercellular signal-recognizing G protein-coupled receptor in the engulfment of Salmonella by the protozoan Tetrahymena

    PubMed Central

    Agbedanu, P.N.; Brewer, M.T.; Day, T.A.; Kimber, M.J.; Anderson, K.L.; Rasmussen, S.K.; Rasmussen, M.A.; Carlson, S.A.

    2013-01-01

    In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of Salmonella in cattle, we evaluated protozoan G protein-coupled receptors (GPCRs) as transducers of Salmonella engulfment by the model protozoan Tetrahymena. Our laboratory previously demonstrated that non-pathogenic protozoa (including Tetrahymena) engulf Salmonella and then exacerbate its virulence in cattle, but the mechanistic details of the phenomenon are not fully understood. GPCRs were investigated since these receptors facilitate phagocytosis of particulates by Tetrahymena, and a GPCR apparently modulates bacterial engulfment for the pathogenic protozoan Entamoeba histolytica. A database search identified three putative Tetrahymena GPCRs, based on sequence homologies and predicted transmembrane domains, that were the focus of this study. Salmonella engulfment by Tetrahymena was assessed in the presence of suramin, a non-specific GPCR inhibitor. Salmonella engulfment was also assessed in Tetrahymena in which expression of putative GPCRs was knocked-down using RNAi. A candidate GPCR was then expressed in a heterologous yeast expression system for further characterization. Our results revealed that Tetrahymena were less efficient at engulfing Salmonella in the presence of suramin. Engulfment was reduced concordantly with a reduction in the density of protozoa. RNAi-based studies revealed that knock-down of one the Tetrahymena GPCRs caused diminished engulfment of Salmonella. Tetrahymena lysates activated this receptor in the heterologous expression system. These data demonstrate that the Tetrahymena receptor is a putative GPCR that facilitates bacterial engulfment by Tetrahymena. Activation of the putative GPCR seemed to be related to protozoan cell density, suggesting that its cognate ligand is an intercellular signaling molecule. PMID:26623315

  17. Involvement of a putative intercellular signal-recognizing G protein-coupled receptor in the engulfment of Salmonella by the protozoan Tetrahymena.

    PubMed

    Agbedanu, P N; Brewer, M T; Day, T A; Kimber, M J; Anderson, K L; Rasmussen, S K; Rasmussen, M A; Carlson, S A

    2013-01-01

    In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of Salmonella in cattle, we evaluated protozoan G protein-coupled receptors (GPCRs) as transducers of Salmonella engulfment by the model protozoan Tetrahymena. Our laboratory previously demonstrated that non-pathogenic protozoa (including Tetrahymena) engulf Salmonella and then exacerbate its virulence in cattle, but the mechanistic details of the phenomenon are not fully understood. GPCRs were investigated since these receptors facilitate phagocytosis of particulates by Tetrahymena, and a GPCR apparently modulates bacterial engulfment for the pathogenic protozoan Entamoeba histolytica. A database search identified three putative Tetrahymena GPCRs, based on sequence homologies and predicted transmembrane domains, that were the focus of this study. Salmonella engulfment by Tetrahymena was assessed in the presence of suramin, a non-specific GPCR inhibitor. Salmonella engulfment was also assessed in Tetrahymena in which expression of putative GPCRs was knocked-down using RNAi. A candidate GPCR was then expressed in a heterologous yeast expression system for further characterization. Our results revealed that Tetrahymena were less efficient at engulfing Salmonella in the presence of suramin. Engulfment was reduced concordantly with a reduction in the density of protozoa. RNAi-based studies revealed that knock-down of one the Tetrahymena GPCRs caused diminished engulfment of Salmonella. Tetrahymena lysates activated this receptor in the heterologous expression system. These data demonstrate that the Tetrahymena receptor is a putative GPCR that facilitates bacterial engulfment by Tetrahymena. Activation of the putative GPCR seemed to be related to protozoan cell density, suggesting that its cognate ligand is an intercellular signaling molecule. PMID:26623315

  18. Identification of Particle Size Classes Inhibiting Protozoan Recovery from Surface Water Samples via U.S. Environmental Protection Agency Method 1623▿

    PubMed Central

    Krometis, Leigh-Anne H.; Characklis, Gregory W.; Sobsey, Mark D.

    2009-01-01

    Giardia species recovery by U.S. Environmental Protection Agency method 1623 appears significantly impacted by a wide size range (2 to 30 μm) of particles in water and organic matter. Cryptosporidium species recovery seems negatively correlated only with smaller (2 to 10 μm), presumably inorganic particles. Results suggest constituents and mechanisms interfering with method performance may differ by protozoan type. PMID:19684177

  19. Reactive nitrogen and oxygen species, and iron sequestration contribute to macrophage-mediated control of Encephalitozoon cuniculi (Phylum Microsporidia) infection in vitro and in vivo.

    PubMed

    Didier, Elizabeth S; Bowers, Lisa C; Martin, Aaron D; Kuroda, Marcelo J; Khan, Imtiaz A; Didier, Peter J

    2010-12-01

    Encephalitozoon cuniculi (Phylum Microsporidia) infects a wide range of mammals, and replicates within resting macrophages. Activated macrophages, conversely, inhibit replication and destroy intracellular organisms. These studies were performed to assess mechanisms of innate immune responses expressed by macrophages to control E. cuniculi infection. Addition of reactive oxygen and nitrogen species inhibitors to activated murine peritoneal macrophages statistically significantly, rescued E. cuniculi infection ex vivo. Mice deficient in reactive oxygen species, reactive nitrogen species, or both survived ip inoculation of E. cuniculi, but carried significantly higher peritoneal parasite burdens than wild-type mice at 1 and 2 weeks post inoculation. Infected peritoneal macrophages could still be identified 4 weeks post inoculation in mice deficient in reactive nitrogen species. L-tryptophan supplementation of activated murine peritoneal macrophage cultures ex vivo failed to rescue microsporidia infection. Addition of ferric citrate to supplement iron, however, did significantly rescue E. cuniculi infection in activated macrophages and further increased parasite replication in non-activated macrophages over non-treated resting control macrophages. These results demonstrate the contribution of reactive oxygen and nitrogen species, as well as iron sequestration, to innate immune responses expressed by macrophages to control E. cuniculi infection. PMID:20888426

  20. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres.

    PubMed

    Sorokin, Dimitry Y; Rakitin, Andrey L; Gumerov, Vadim M; Beletsky, Alexey V; Sinninghe Damsté, Jaap S; Mardanov, Andrey V; Ravin, Nikolai V

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5-10.5 and total Na(+) concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  1. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) - an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase.

    PubMed

    Zheng, Hao; Dietrich, Carsten; Radek, Renate; Brune, Andreas

    2016-01-01

    The bacterial tree contains many deep-rooting clades without any cultured representatives. One such clade is 'Endomicrobia', a class-level lineage in the phylum Elusimicrobia represented so far only by intracellular symbionts of termite gut flagellates. Here, we report the isolation and characterization of the first free-living member of this clade from sterile-filtered gut homogenate of defaunated (starch-fed) Reticulitermes santonensis. Strain Rsa215 is a strictly anaerobic ultramicrobacterium that grows exclusively on glucose, which is fermented to lactate, acetate, hydrogen and CO2 . Ultrastructural analysis revealed a Gram-negative cell envelope and a peculiar cell cycle. The genome contains a single set of nif genes that encode homologues of Group IV nitrogenases, which were so far considered to have functions other than nitrogen fixation. We documented nitrogenase activity and diazotrophic growth by measuring acetylene reduction activity and (15) N2 incorporation into cell mass, and demonstrated that transcription of nifH and nitrogenase activity occur only in the absence of ammonium. Based on the ancestral relationship to 'Candidatus Endomicrobium trichonymphae' and other obligate endosymbionts, we propose the name 'Endomicrobium proavitum' gen. nov., sp. nov. for the first isolate of this lineage and the name 'Endomicrobia' class. nov. for the entire clade. PMID:26119974

  2. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres

    PubMed Central

    Sorokin, Dimitry Y.; Rakitin, Andrey L.; Gumerov, Vadim M.; Beletsky, Alexey V.; Sinninghe Damsté, Jaap S.; Mardanov, Andrey V.; Ravin, Nikolai V.

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5–10.5 and total Na+ concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  3. A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia.

    PubMed

    Gupta, Radhey S; Naushad, Sohail; Chokshi, Chirayu; Griffiths, Emma; Adeolu, Mobolaji

    2015-09-01

    The phylum Chlamydiae contains nine ecologically and genetically diverse families all placed within a single order. In this work, we have completed a comprehensive comparative analysis of 36 sequenced Chlamydiae genomes in order to identify shared molecular characteristics, namely conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can serve as distinguishing characteristics of supra-familial clusters within the phylum Chlamydiae. Our analysis has led to the identification of 32 CSIs which are specific to clusters within the phylum Chlamydiae at various phylogenetic depths. Importantly, 17 CSIs and 98 CSPs were found to be specific for the family Chlamydiaceae while another 3 CSI variants and 15 CSPs were specific for a grouping of the families Criblamydiaceae, Parachlamydiaceae, Simkaniaceae and Waddliaceae. These two clusters were also found to be distinguishable in 16S rRNA based phylogenetic trees, concatenated protein based phylogenetic trees, character compatibility based phylogenetic analyses, and on the basis of 16S rRNA gene sequence identity and average amino acid identity values. On the basis of the identified molecular characteristics, branching in phylogenetic trees, and the genetic distance between the two clusters within the phylum Chlamydiae we propose a division of the class Chlamydiia into two orders: an emended order Chlamydiales, containing the family Chlamydiaceae and the closely related Candidatus family Clavichlamydiaceae, and the novel order Parachlamydiales ord. nov. containing the families Parachlamydiaceae, Simkaniaceae and Waddliaceae and the Candidatus families Criblamydiaceae, Parilichlamydiaceae, Piscichlamydiaceae, and Rhabdochlamydiaceae. We also include a brief discussion of the reunification of the genera Chlamydia and Chlamydophila. PMID:26179278

  4. Biochemical and kinetic characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from the amitochondriate protozoan Entamoeba histolytica.

    PubMed

    Jones, Cheryl P; Ingram-Smith, Cheryl

    2014-12-01

    Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed. PMID:25303954

  5. A Genomewide Overexpression Screen Identifies Genes Involved in the Phosphatidylinositol 3-Kinase Pathway in the Human Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Koushik, Amrita B.; Welter, Brenda H.; Rock, Michelle L.

    2014-01-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen. PMID:24442890

  6. A Genome-Wide Over-Expression Screen Identifies Genes Involved in Phagocytosis in the Human Protozoan Parasite, Entamoeba histolytica

    PubMed Central

    King, Ada V.; Welter, Brenda H.; Koushik, Amrita B.; Gordon, Lindsay N.; Temesvari, Lesly A.

    2012-01-01

    Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics. PMID:22905196

  7. Effects of triclosan on growth, viability and fatty acid synthesis of the oyster protozoan parasite Perkinsus marinus.

    PubMed

    Lund, Eric D; Soudant, Philippe; Chu, Fu-Lin E; Harvey, Ellen; Bolton, Stephanie; Flowers, Adolph

    2005-11-28

    Perkinsus marinus, a protozoan parasite of the Eastern oyster Crassostrea virginica, has severely impacted oyster populations from the Mid-Atlantic region to the Gulf of Mexico coast of North America for more than 30 yr. Although a chemotherapeutic treatment to reduce or eliminate P. marinus from infected oysters would be useful for research and hatchery operations, an effective and practical drug treatment does not currently exist. In this study, the antimicrobial drug triclosan 5-chloro-2-(2,4 dichlorophenoxy) phenol, a specific inhibitor of Fab1 (enoyl-acyl-carrier-protein reductase), an enzyme in the Type II class of fatty acid synthetases, was tested for its effects on viability, proliferation and fatty acid synthesis of in vitro-cultured P. marinus meronts. Treatment of P. marinus meront cell cultures with concentrations of > or = 2 microM triclosan at 28 degrees C (a temperature favorable for parasite proliferation) for up to 6 d stopped proliferation of the parasite. Treatment at > or = 5 microM at 28 degrees C greatly reduced the viability and fatty acid synthesis of meront cells. Oyster hemocytes treated with > or = 20 microM triclosan exhibited no significant (p < 0.05) reduction in viability relative to controls for up to 24 h at 13 degrees C. P. marinus meronts exposed to > or = 2 microM triclosan for 24 h at 13 degrees C exhibited significantly (p < 0.05) lower viability relative to controls. Exposure of P. marinus meronts to triclosan concentrations of > or = 20 microM resulted in > 50% mortality of P. marinus cells after 24 h. These results suggest that triclosan may be effective in treating P. marinus-infected oysters. PMID:16408837

  8. Burden of major diarrheagenic protozoan parasitic co-infection among amoebic dysentery cases from North East India: a case report.

    PubMed

    Nath, Joyobrato; Hussain, Gulzar; Singha, Baby; Paul, Jaishree; Ghosh, Sankar Kumar

    2015-09-01

    Intestinal diarrheagenic polyparasitic infections are among the major public health concerns in developing countries. Here we examined stool specimens by microscopy, DNA dot blot and polymerase chain reaction (PCR) to evaluate the co-infection of four principal protozoans among amoebic dysentery cases from Northeast Indian population. The multiplex PCR confirmed Entamoeba histolytica (8.1%), Entamoeba dispar (4.8%) and mixed infection of both the parasites (3.4%) in 68 of 356 stool specimens that were positive in microscopy and/or HMe probe based DNA dot blot screening. The prevailing parasite that co-exists with E. histolytica was Giardia duodenalis (34.1%), followed by Enterocytozoon bieneusi (22.0%), Cryptosporidium parvum (14.6%) and Cyclospora cayetanensis (7.3%, P = 0.017). Symptomatic participants (odds ratio (OR) = 4.07; 95% confidence interval (CI) = 1.06, 15.68; P = 0.041), monsoon season (OR = 7.47; 95% CI = 1.40, 39.84; P = 0.046) and participants with family history of parasitic infection (OR = 4.50; 95% CI = 1.16, 17.51; P = 0.030) have significant association with overall co-infection rate. According to molecular consensus, comprehensive microscopy yielded 3.4% (12/356) false-negative and 7.6% (27/356) false-positive outcome, suggesting an improved broad-spectrum PCR-based diagnostic is required to scale down the poor sensitivity and specificity as well as implementation of integrated control strategy. PMID:26099490

  9. Novel insights into the molecular events linking to cell death induced by tetracycline in the amitochondriate protozoan Trichomonas vaginalis.

    PubMed

    Huang, Kuo-Yang; Ku, Fu-Man; Cheng, Wei-Hung; Lee, Chi-Ching; Huang, Po-Jung; Chu, Lichieh Julie; Cheng, Chih-Chieh; Fang, Yi-Kai; Wu, Hsueh-Hsia; Tang, Petrus

    2015-11-01

    Trichomonas vaginalis colonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. The in vitro effect of TET on the growth of T. vaginalis was examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome of T. vaginalis in response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistant T. vaginalis isolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we provide in vitro evidence that TET is a potential alternative therapeutic choice for treating MTZ-resistant T. vaginalis. The in-depth transcriptomic signatures in T. vaginalis upon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms. PMID:26303799

  10. Quantitative assessment of the proliferation of the protozoan parasite Perkinsus marinus using a bioluminescence assay for ATP content

    PubMed Central

    Shridhar, Surekha; Hassan, Kolaleh; Sullivan, David J.; Vasta, Gerardo R.; Fernndez Robledo, Jos A.

    2013-01-01

    Perkinsus marinus is a protozoan parasite that causes Dermo disease in the eastern oyster Crasssostrea virginica in coastal areas of the USA. Until now, intervention strategies against the parasite have found limited success, and Dermo still remains one of the main hurdles for the restoration of oyster populations. We adapted a commercial adenosine tri-phosphate (ATP) content-based assay to assess the in vitro proliferation of P. marinus in a 96-well plate format, and validated the method by measuring the effects of potential anti-proliferative compounds. The sensitivity (1.53.1נ104cells/well), linearity (R2=0.983), and signal stability (60min) support the reliability of the assay for assessing cell proliferation. Validation of the assay by culturing P. marinus in the presence of increasing concentrations of triclosan showed a doseresponse profile. The IC50 value obtained was higher than that reported earlier, possibly due to the use of different viability assay methods and a different P. marinus strain. The antibiotics G418 and tetracycline and the herbicide fluridone were active against P. marinus proliferation; the IC50 of chloramphenicol, ciprofloxacin, and atrazine was relatively high suggesting either off-target effects or inability to reach the targets. The validation of the ATP-based assay, together with significant advantages of the Perkinsus culture methodology (homogeneity, reproducibility, and high cell densities), underscores the value of this assay for developing high-throughput screens for the identification of novel leader compounds against Perkinsus species, and most importantly, for the closely-related apicomplexan parasites. PMID:24533297

  11. Biochemical and Kinetic Characterization of the Recombinant ADP-Forming Acetyl Coenzyme A Synthetase from the Amitochondriate Protozoan Entamoeba histolytica

    PubMed Central

    Jones, Cheryl P.

    2014-01-01

    Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed. PMID:25303954

  12. Novel Insights into the Molecular Events Linking to Cell Death Induced by Tetracycline in the Amitochondriate Protozoan Trichomonas vaginalis

    PubMed Central

    Huang, Kuo-Yang; Ku, Fu-Man; Cheng, Wei-Hung; Lee, Chi-Ching; Huang, Po-Jung; Chu, Lichieh Julie; Cheng, Chih-Chieh; Fang, Yi-Kai; Wu, Hsueh-Hsia

    2015-01-01

    Trichomonas vaginalis colonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. The in vitro effect of TET on the growth of T. vaginalis was examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome of T. vaginalis in response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistant T. vaginalis isolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we provide in vitro evidence that TET is a potential alternative therapeutic choice for treating MTZ-resistant T. vaginalis. The in-depth transcriptomic signatures in T. vaginalis upon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms. PMID:26303799

  13. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    PubMed

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees. PMID:23467539

  14. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China

    PubMed Central

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-01-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees. PMID:23467539

  15. Novel Transmembrane Receptor Involved in Phagosome Transport of Lysozymes and β-Hexosaminidase in the Enteric Protozoan Entamoeba histolytica

    PubMed Central

    Furukawa, Atsushi; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2012-01-01

    Lysozymes and hexosaminidases are ubiquitous hydrolases in bacteria and eukaryotes. In phagocytic lower eukaryotes and professional phagocytes from higher eukaryotes, they are involved in the degradation of ingested bacteria in phagosomes. In Entamoeba histolytica, which is the intestinal protozoan parasite that causes amoebiasis, phagocytosis plays a pivotal role in the nutrient acquisition and the evasion from the host defense systems. While the content of phagosomes and biochemical and physiological roles of the major phagosomal proteins have been established in E. histolytica, the mechanisms of trafficking of these phagosomal proteins, in general, remain largely unknown. In this study, we identified and characterized for the first time the putative receptor/carrier involved in the transport of the above-mentioned hydrolases to phagosomes. We have shown that the receptor, designated as cysteine protease binding protein family 8 (CPBF8), is localized in lysosomes and mediates transport of lysozymes and β-hexosaminidase α-subunit to phagosomes when the amoeba ingests mammalian cells or Gram-positive bacillus Clostridium perfringens. We have also shown that the binding of CPBF8 to the cargos is mediated by the serine-rich domain, more specifically three serine residues of the domain, which likely contains trifluoroacetic acid-sensitive O-phosphodiester-linked glycan modifications, of CPBF8. We further showed that the repression of CPBF8 by gene silencing reduced the lysozyme and β-hexosaminidase activity in phagosomes and delayed the degradation of C. perfringens. Repression of CPBF8 also resulted in decrease in the cytopathy against the mammalian cells, suggesting that CPBF8 may also be involved in, besides the degradation of ingested bacteria, the pathogenesis against the mammalian hosts. This work represents the first case of the identification of a transport receptor of hydrolytic enzymes responsible for the degradation of microorganisms in phagosomes. PMID:22383874

  16. Use of multiplex real-time PCR for detection of common diarrhea causing protozoan parasites in Egypt.

    PubMed

    Nazeer, John T; El Sayed Khalifa, Khalifa; von Thien, Heidrun; El-Sibaei, Mahmoud Mohamed; Abdel-Hamid, Magda Youssef; Tawfik, Ranya Ayman Samir; Tannich, Egbert

    2013-02-01

    Diarrhea is an important cause of morbidity and mortality, worldwide. Giardia intestinalis, Cryptosporidium spp., and Entamoeba histolytica are the most common diarrhea-causing parasitic protozoa. Diagnosis of these parasites is usually performed by microscopy. However, microscopy lacks sensitivity and specificity. Replacing microscopy with more sensitive and specific nucleic acid based methods is hampered by the higher costs, in particular in developing countries. Multiplexing the detection of more than one parasite in a single test by real-time polymerase chain reaction (PCR) has been found to be very effective and would decrease the cost of the test. In the present study, stool samples collected from 396 Egyptian patients complaining of diarrhea along with 202 faecal samples from healthy controls were examined microscopically by direct smear method and after concentration using formol-ethyl acetate. Frozen portions of the same samples were tested by multiplex real-time for simultaneous detection of E. histolytica, G. intestinalis, and Cryptosporidium spp. The results indicate that among diarrheal patients in Egypt G. intestinalis is the most common protozoan parasite, with prevalence rates of 30.5 and 37.1 %, depending on the method used (microscopy vs. multiplex real-time PCR). Cryptosporidium spp. was detected in 1 % of the diarrheal patients by microscopy and in 3 % by real-time PCR. While E. histolytica/dispar was detected in 10.8 % by microscopy, less than one fifth of them (2 %) were found true positive for Entamoeba dispar by real-time PCR. E. histolytica DNA was not detected in any of the diarrheal patients. In comparison with multiplex real-time PCR, microscopy exhibited many false positive and negative cases with the three parasites giving sensitivities and specificities of 100 and 91 % for E. histolytica/dispar, 57.8 and 85.5 % for G. intestinalis, and 33.3 and 100 % for Cryptosporidium spp. PMID:23114927

  17. The search for the missing link: a relic plastid in Perkinsus?

    PubMed

    Fernández Robledo, José A; Caler, Elisabet; Matsuzaki, Motomichi; Keeling, Patrick J; Shanmugam, Dhanasekaran; Roos, David S; Vasta, Gerardo R

    2011-10-01

    Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata. PMID:21889509

  18. Analysis of Genome Content Evolution in PVC Bacterial Super-Phylum: Assessment of Candidate Genes Associated with Cellular Organization and Lifestyle

    PubMed Central

    Kamneva, Olga K.; Knight, Stormy J.; Liberles, David A.; Ward, Naomi L.

    2012-01-01

    The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies. PMID:23221607

  19. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, spartobacteria classis nov., of the phylum verrucomicrobia

    SciTech Connect

    Sangwan, Parveen; Chen, Xiaolei; Hugenholtz, Philip; Janssen, Peter H.

    2004-03-15

    The phylum Verrucomicrobia is increasingly recognized as an environmentally significant group of bacteria, particularly in soil habitats. At least six subdivisions of the Verrucomicrobia are resolved by comparative analysis of 16S rRNA genes, mostly obtained directly from environmental samples. To date, only two of these subdivisions (1 and 4) have characterized pure-culture representatives. We have isolated and characterized the first known pure-culture representative of subdivision 2. Strain Ellin428 is an aerobic heterotrophic bacterium that is able to grow with many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate. Cells are yellow, rod-shaped, nonmotile, and gram-stain negative, and they contain peptidoglycan with direct cross-linkages of the A1{gamma} meso-Dpm type. The isolate grows well at 25 C on a variety of standard biological media, including some used in the routine cultivation of bacteria from soil. The pH range for growth is 4.0 to 7.0. Low levels of menaquinones MK-10 and MK-11 were detected. The major cellular fatty acids are C{sub 14:0}, a-C{sub 15:0}, C{sub 16:1{omega}7c}, and/or 2OH i-C{sub 15:0}, and C{sub 16:0}. The G+C content of the genomic DNA is 61 mol percent. We propose a new genus and species, Chthoniobacter flavus gen. nov., sp. nov., with isolate Ellin428 as the type strain, and a new class for the subdivision to which it belongs, Spartobacteria classis nov. Environmental sequences indicate that the class Spartobacteria is largely represented by globally distributed, abundant, and active soil bacteria.

  20. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota

    PubMed Central

    Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J. E.; Rittmann, Simon K.-M. R.; Melcher, Michael; Leisch, Nikolaus

    2014-01-01

    A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76T, was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6–0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76T had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76T had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76T is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85 % 16S rRNA gene sequence identity with the closest cultivated relative ‘Candidatus Nitrosopumilus maritimus’ SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81 % 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. ‘Korarchaeota’ and ‘Aigarchaeota’). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76T. The type strain of Nitrososphaera viennensis is strain EN76T ( = DSM 26422T = JMC 19564T). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

  1. Chthoniobacter flavus gen. nov., sp. nov., the First Pure-Culture Representative of Subdivision Two, Spartobacteria classis nov., of the Phylum Verrucomicrobia

    PubMed Central

    Sangwan, Parveen; Chen, Xiaolei; Hugenholtz, Philip; Janssen, Peter H.

    2004-01-01

    The phylum Verrucomicrobia is increasingly recognized as an environmentally significant group of bacteria, particularly in soil habitats. At least six subdivisions of the Verrucomicrobia are resolved by comparative analysis of 16S rRNA genes, mostly obtained directly from environmental samples. To date, only two of these subdivisions (1 and 4) have characterized pure-culture representatives. We have isolated and characterized the first known pure-culture representative of subdivision 2. Strain Ellin428 is an aerobic heterotrophic bacterium that is able to grow with many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate. Cells are yellow, rod-shaped, nonmotile, and gram-stain negative, and they contain peptidoglycan with direct cross-linkages of the A1γ meso-Dpm type. The isolate grows well at 25°C on a variety of standard biological media, including some used in the routine cultivation of bacteria from soil. The pH range for growth is 4.0 to 7.0. Low levels of menaquinones MK-10 and MK-11 were detected. The major cellular fatty acids are C14:0, a-C15:0, C16:1ω7c, and/or 2OH i-C15:0, and C16:0. The G+C content of the genomic DNA is 61 mol%. We propose a new genus and species, Chthoniobacter flavus gen. nov., sp. nov., with isolate Ellin428 as the type strain, and a new class for the subdivision to which it belongs, Spartobacteria classis nov. Environmental sequences indicate that the class Spartobacteria is largely represented by globally distributed, abundant, and active soil bacteria. PMID:15466527

  2. Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes*

    PubMed Central

    Yamaji, Nahoko; Little, Michelle J.; Nishio, Hideki; Billen, Bert; Villegas, Elba; Nishiuchi, Yuji; Tytgat, Jan; Nicholson, Graham M.; Corzo, Gerardo

    2009-01-01

    Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV) channels but, unlike δ-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in NaV channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect NaV channel subtypes showing that δ-hexatoxin-Mg1a selectively slows channel inactivation of mammalian NaV1.1, NaV1.3, and NaV1.6 but more importantly shows higher affinity for insect NaV1 (para) channels. Consequently, δ-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded δ-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion α-toxins and δ-hexatoxins are distributed in a topologically similar manner in δ-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of δ-hexatoxin-Mg1a for certain mammalian and insect NaV channel subtypes. As such, δ-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity. PMID:19592486

  3. Picomonas judraskeda Gen. Et Sp. Nov.: The First Identified Member of the Picozoa Phylum Nov., a Widespread Group of Picoeukaryotes, Formerly Known as ‘Picobiliphytes’

    PubMed Central

    Seenivasan, Ramkumar; Sausen, Nicole; Medlin, Linda K.; Melkonian, Michael

    2013-01-01

    In 2007, a novel, putatively photosynthetic picoeukaryotic lineage, the ‘picobiliphytes’, with no known close eukaryotic relatives, was reported from 18S environmental clone library sequences and fluorescence in situ hybridization. Although single cell genomics later showed these organisms to be heterotrophic rather than photosynthetic, until now this apparently widespread group of pico-(or nano-)eukaryotes has remained uncultured and the organisms could not be formally recognized. Here, we describe Picomonas judraskeda gen. et sp. nov., from marine coastal surface waters, which has a ‘picobiliphyte’ 18S rDNA signature. Using vital mitochondrial staining and cell sorting by flow cytometry, a single cell-derived culture was established. The cells are biflagellate, 2.5–3.8×2–2.5 µm in size, lack plastids and display a novel stereotypic cycle of cell motility (described as the “jump, drag, and skedaddle”-cycle). They consist of two hemispherical parts separated by a deep cleft, an anterior part that contains all major cell organelles including the flagellar apparatus, and a posterior part housing vacuoles/vesicles and the feeding apparatus, both parts separated by a large vacuolar cisterna. From serial section analyses of cells, fixed at putative stages of the feeding cycle, it is concluded that cells are not bacterivorous, but feed on small marine colloids of less than 150 nm diameter by fluid-phase, bulk flow endocytosis. Based on the novel features of cell motility, ultrastructure and feeding, and their isolated phylogenetic position, we establish a new phylum, Picozoa, for Picomonas judraskeda, representing an apparently widespread and ecologically important group of heterotrophic picoeukaryotes, formerly known as ‘picobiliphytes’. PMID:23555709

  4. Microbial Community Analysis in the Roots of Aquatic Plants and Isolation of Novel Microbes Including an Organism of the Candidate Phylum OP10

    PubMed Central

    Tanaka, Yasuhiro; Tamaki, Hideyuki; Matsuzawa, Hiroaki; Nigaya, Masahiro; Mori, Kazuhiro; Kamagata, Yoichi

    2012-01-01

    A number of molecular ecological studies have revealed complex and unique microbial communities in various terrestrial plant roots; however, little is known about the microbial communities of aquatic plant roots in spite of their potential use for water quality improvement in aquatic environments (e.g. floating treatment wetland system). Here, we report the microbial communities inhabiting the roots of emerged plants, reed (Phragmites australis) and Japanese loosestrife (Lythrum anceps), collected from a floating treatment wetland in a pond by both culture-independent and culture-dependent approaches. Culture-independent analysis based on 16S rRNA gene sequences revealed that the microbial compositions between the two aquatic plant roots were clearly different (e.g. the predominant microbe was Betaproteobacteria for reed and Alphaproteobacteria for Japanese loosestrife). In comparisons of microbial communities between the plant roots and pond water taken from near the plants, the microbial diversity in the plant roots (e.g. 4.40–4.26 Shannon-Weiner index) were higher than that of pond water (e.g. 3.15 Shannon-Weiner index). Furthermore, the plant roots harbored 2.5–3.5 times more phylogenetically novel clone phylotypes than pond water. The culture-dependent approach also revealed differences in the microbial composition and diversity among the two plant roots and pond water. More importantly, compared to pond water, we succeeded in isolating approximately two times more novel isolate phylotypes, including a bacterium of candidate phylum OP10 (recently named Armatimonadetes) from the plant roots. These findings suggest that aquatic plants roots are significant sources for a variety of novel organisms. PMID:22791047

  5. Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans.

    PubMed

    Sverdrup, Line Emilie; Ekelund, Flemming; Krogh, Paul Henning; Nielsen, Torben; Johnsen, Kaare

    2002-08-01

    Eight polycyclic aromatic compounds (PACs) were tested for their toxic effect on the soil nitrification process, bacterial genetic diversity, and the total number of protozoans (naked amoebae and heterotrophic flagellates). After four weeks of exposure in a well-characterized agricultural soil, toxic effects were evaluated by comparison to uncontaminated control soils. All PACs affected the nitrification process, and the calculated no-observed-effect concentrations (NOECs) for nitrification were 79 mg/kg for pyrene, 24 mg/kg for fluoranthene, 26 mg/kg for phenanthrene, 72 mg/kg for fluorene, 23 mg/kg for carbazole, 22 mg/kg for dibenzothiophene, 75 mg/kg for dibenzofuran, and 1,100 mg/kg for acridine. For all substances but acridine, nitrification was the most sensitive of the three toxicity indicators evaluated. No effect of the tested substances on bacterial diversity was found, as measured by denaturant gradient gel electrophoresis. In general, only weak effects at very high concentrations were found for the protozoans. However, for acridine, protozoan numbers were reduced at lower concentrations than those that affected the nitrification process, that is, with a 5% reduction at 380 mg/kg. For effects on nitrification, toxicity (NOEC values) expressed as soil pore-water concentrations (log10(micromol/L)) showed a significant inverse relationship with lipophilicity (log octanol-water partition coefficient) of the substances (r2 = 0.69, p = 0.011, n = 8). This finding could indicate that the toxicity of substances similar to those tested might be predicted by a quantitative structure-activity relationship with lipophilicity as the predictor variable. PMID:12152764

  6. Altered Protozoan and Bacterial Communities and Survival of Escherichia coli O157:H7 in Monensin-Treated Wastewater from a Dairy Lagoon

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2013-01-01

    Surviving predation is a fitness trait of Escherichia coli O157:H7 (EcO157) that provides ample time for the pathogen to be transported from reservoirs (e.g. dairies and feedlots) to farm produce grown in proximity. Ionophore dietary supplements that inhibit rumen protozoa may provide such a selective advantage for EcO157 to proliferate in lagoons as the pathogen is released along with the undigested supplement as manure washings. This study evaluated the fate of an outbreak strain of EcO157, protozoan and bacterial communities in wastewater treated with monensin. Although total protozoa and native bacteria were unaffected by monensin, the time for 90% decrease in EcO157 increased from 0.8 to 5.1 days. 18S and 16S rRNA gene sequencing of wastewater samples revealed that monensin eliminated almost all colpodean and oligohymenophorean ciliates, probably facilitating the extended survival of EcO157. Total protozoan numbers remained high in treated wastewater as monensin enriched 94% of protozoan sequences undetected with untreated wastewater. Monensin stimulated 30-fold increases in Cyrtohymena citrina, a spirotrichean ciliate, and also biflagellate bicosoecids and cercozoans. Sequences of gram-negative Proteobacteria increased from 1% to 46% with monensin, but gram-positive Firmicutes decreased from 93% to 46%. It is noteworthy that EcO157 numbers increased significantly (P<0.01) in Sonneborn medium containing monensin, probably due to monensin-inhibited growth of Vorticella microstoma (P<0.05), a ciliate isolated from wastewater. We conclude that dietary monensin inhibits ciliate protozoa that feed on EcO157. Feed supplements or other methods that enrich these protozoa in cattle manure could be a novel strategy to control the environmental dissemination of EcO157 from dairies to produce production environments. PMID:23349969

  7. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0.05) observed between dead and living microbial cells for metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study advocates the use of Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas putida and Bacillus licheniformis. PMID:23387904

  8. Extrachromosomal DNA in the Apicomplexa.

    PubMed Central

    Wilson, R J; Williamson, D H

    1997-01-01

    Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes. PMID:9106361

  9. Anaerocella delicata gen. nov., sp. nov., a strictly anaerobic bacterium in the phylum Bacteroidetes isolated from a methanogenic reactor of cattle farms.

    PubMed

    Abe, Kunihiro; Ueki, Atsuko; Ohtaki, Yoshimi; Kaku, Nobuo; Watanabe, Kazuya; Ueki, Katsuji

    2012-01-01

    A strictly anaerobic bacterial strain (WN081(T)) was isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms in Japan. Cells were Gram-staining negative, non-motile, non-spore-forming straight rods. The strain grew rather well on PY agar slants supplemented with a B-vitamin mixture as well as sugars (PYV4S medium) and made translucent and glossy colonies. Growth in liquid medium with the same composition, however, was scanty, and growth was not improved in spite of various additives to the medium. Strain WN081(T) produced small amounts of acetate, propionate, isobutyrate, butyrate, isovalerate and H(2) from PYV liquid medium. The strain did not use carbohydrates or organic acids. The pH range for growth was narrow (pH 6.8-8.2), having a pH optimum at 6.8-7.5. The temperature range for growth was 10-37°C, the optimum being 25-30°C. The strain was sensitive to bile, and did not have catalase or oxidase activities. Hydrogen sulfide was produced from L-cysteine and L-methionine as well as peptone. Indole was produced from L-tryptophan and peptone. The strain had iso-C(15:0) as the exclusively predominant cellular fatty acid (70%) together with some branched chain components (such as iso-C(15:0) DMA, iso-C(17:0) 3-OH and iso-C(15:0) aldehyde) as minor components. The genomic DNA G+C content was 32.3 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence placed strain WN081(T) in the phylum Bacteroidetes with rather low sequence similarities with the related species such as Rikenella microfusus (85.7% sequence similarity), Alistipes putredinis (85.5%) and Alistipes finegoldii (85.5%) in the family Rikenellaceae. Based on the phylogenetic, physiological and chemotaxonomic analyses, the novel genus and species Anaerocella delicata gen. nov., sp. nov. is proposed to accommodate the strain. The type strain is WN081(T) (= JCM 17049(T) = DSM 23595(T)). PMID:23337575

  10. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose.

    PubMed Central

    Devillard, Estelle; Bera-Maillet, Christel; Flint, Harry J; Scott, Karen P; Newbold, C James; Wallace, R John; Jouany, Jean-Pierre; Forano, Evelyne

    2003-01-01

    A new xylanase gene, xyn10B, was isolated from the ruminal protozoan Polyplastron multivesiculatum and the gene product was characterized. XYN10B is the first protozoan family 10 glycoside hydrolase characterized so far and is a modular enzyme comprising a family 22 carbohydrate-binding module (CBM) preceding the catalytic domain. The CBM22 was shown to be a true CBM. It showed high affinity for soluble arabinoxylan and is the first example of a CBM22 that binds strongly to celluloses of various crystallinities. The enzymic properties of XYN10B were also analysed. Its optimal temperature and pH for activity were 39 degrees C and 7.0 respectively; these values being close to those of the ruminal ecosystem. The phylogenetic relationships between the XYN10B CBM22 or catalytic domain and related sequences from ruminal and non-ruminal bacteria and eukaryotes are reported. The xyn10B gene is shown to lack introns. PMID:12693992

  11. Application of a qPCR Assay with Melting Curve Analysis for Detection and Differentiation of Protozoan Oocysts in Human Fecal Samples from Dominican Republic

    PubMed Central

    Lalonde, Laura F.; Reyes, Julissa; Gajadhar, Alvin A.

    2013-01-01

    A quantitative polymerase chain reaction assay with melt curve analysis (qPCR-MCA) was applied for the detection of protozoan oocysts in 501 human fecal samples collected in Dominican Republic. Samples were subjected to qPCR using universal coccidia primers targeting 18S rDNA to detect oocysts followed by MCA to identify oocyst species based on amplicon melting temperature. Putative positive samples were also tested by conventional PCR and microscopy. Cystoisospora belli (×3), Cryptosporidium parvum (×3), Cryptosporidium hominis (×5), Cryptosporidium meleagridis (×1), Cryptosporidium canis (×1), and Cyclospora cayetanensis (×9) were detected by qPCR-MCA and confirmed by sequencing. This assay consistently detected 10 copies of the cloned target fragment and can be considered more efficient and sensitive than microscopy flotation methods for detecting multiple species of oocysts in human feces. The qPCR-MCA is a reliable protozoan oocyst screening assay for use on clinical and environmental samples in public health, food safety and veterinary programs. PMID:24019437

  12. Effect of aeration on pollutants removal, biofilm activity and protozoan abundance in conventional and hybrid horizontal subsurface-flow constructed wetlands.

    PubMed

    Zapater-Pereyra, M; Gashugi, E; Rousseau, D P L; Alam, M R; Bayansan, T; Lens, P N L

    2014-08-01

    The large area demand of constructed wetlands (CWs) is documented as a weak point that can be potentially reduced by applying active aeration. The aim of this study was, therefore, to understand the effects of aeration on the treatment performance, the biofilm activity, the protozoan population size and potential CW footprint reduction of different horizontal flow (HF) CW configurations. Two experimental periods were considered: a first period with low organic loading rate (OLR) and a second period with high OLR. Three HF CW configurations were compared: a conventional (control), an aerated and a hybrid CW (aerated followed by a non-aerated CW). The results obtained reinforced the competence of aerated CW for organic matter removal (81-89% of chemical oxygen demand) while for nitrogen elimination the control (19-24%) and hybrid (8-41%) systems performed better than the aerated system (-6% to 33%). Biofilm activity and protozoa abundance were distinctly higher at the inlet zones when compared with the outlet zones of all CWs, as well as in the aerated systems when compared with the non-aerated CWs. The protozoan abundance increased with an increase in the OLR and ciliates were found to be the dominant group. Overall, the active aeration highlighted the efficiency and stability of the CWs for organic matter removal and thus can be used as a promising tool to enhance microbial activity and grazing by protozoa; eventually reducing solid accumulation in the bed media. These beneficial effects contribute to reduce the CWs' area requirements. PMID:24956803

  13. Ichthyobacterium seriolicida gen. nov., sp. nov., a member of the phylum 'Bacteroidetes', isolated from yellowtail fish (Seriola quinqueradiata) affected by bacterial haemolytic jaundice, and proposal of a new family, Ichthyobacteriaceae fam. nov.

    PubMed

    Takano, Tomokazu; Matsuyama, Tomomasa; Sakai, Takamitsu; Nakamura, Yoji; Kamaishi, Takashi; Nakayasu, Chihaya; Kondo, Hidehiro; Hirono, Ikuo; Fukuda, Yutaka; Sorimachi, Minoru; Iida, Takaji

    2016-02-01

    A novel Gram-stain-negative, rod-shaped (0.3 × 4-6 μm), non-flagellated, aerobic strain with gliding motility, designated JBKA-6T, was isolated in 1991 from a yellowtail fish, Seriola quinqueradiata, showing symptoms of bacterial haemolytic jaundice. 16S rRNA gene sequence analysis showed that strain JBKA-6T was related most closely to members of the family Flavobacteriaceae in the phylum 'Bacteroidetes'. Furthermore, based on gyrB gene sequence analysis, JBKA-6T was classified into a single clade within the order Flavobacteriales, which was distinct from the known clades of the families Flavobacteriaceae, Blattabacteriaceae and Cryomorphaceae. The predominant isoprenoid quinone was identified as MK-6 (97.9 %), and the major cellular fatty acids (>10 %) were C14 : 0 and iso-C15 : 0. The main polar lipids were phosphatidylethanolamine, three unidentified phospholipids, two unidentified aminophospholipids and two unidentified polar lipids. The DNA G+C content of JBKA-6T, as derived from its whole genome, was 33.4 mol%. The distinct phylogenetic position and phenotypic traits of strain JBKA-6T distinguish it from all other described species of the phylum 'Bacteroidetes', and therefore it was concluded that strain JBKA-6T represents a new member of the phylum 'Bacteroidetes', and the name Ichthyobacterium seriolicida gen. nov., sp. nov. is proposed. The type strain of Ichthyobacterium seriolicida is JBKA-6T ( = ATCC BAA-2465T = JCM 18228T). We also propose that Icthyobacterium gen. nov. is the type genus of a novel family, Ichthyobacteriaceae fam. nov. PMID:26554606

  14. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.

    PubMed

    Hijnen, W A M; Beerendonk, E F; Medema, G J

    2006-01-01

    UV disinfection technology is of growing interest in the water industry since it was demonstrated that UV radiation is very effective against (oo)cysts of Cryptosporidium and Giardia, two pathogenic micro-organisms of major importance for the safety of drinking water. Quantitative Microbial Risk Assessment, the new concept for microbial safety of drinking water and wastewater, requires quantitative data of the inactivation or removal of pathogenic micro-organisms by water treatment processes. The objective of this study was to review the literature on UV disinfection and extract quantitative information about the relation between the inactivation of micro-organisms and the applied UV fluence. The quality of the available studies was evaluated and only high-quality studies were incorporated in the analysis of the inactivation kinetics. The results show that UV is effective against all waterborne pathogens. The inactivation of micro-organisms by UV could be described with first-order kinetics using fluence-inactivation data from laboratory studies in collimated beam tests. No inactivation at low fluences (offset) and/or no further increase of inactivation at higher fluences (tailing) was observed for some micro-organisms. Where observed, these were included in the description of the inactivation kinetics, even though the cause of tailing is still a matter of debate. The parameters that were used to describe inactivation are the inactivation rate constant k (cm(2)/mJ), the maximum inactivation demonstrated and (only for bacterial spores and Acanthamoeba) the offset value. These parameters were the basis for the calculation of the microbial inactivation credit (MIC="log-credits") that can be assigned to a certain UV fluence. The most UV-resistant organisms are viruses, specifically Adenoviruses, and bacterial spores. The protozoon Acanthamoeba is also highly UV resistant. Bacteria and (oo)cysts of Cryptosporidium and Giardia are more susceptible with a fluence requirement of <20 mJ/cm(2) for an MIC of 3 log. Several studies have reported an increased UV resistance of environmental bacteria and bacterial spores, compared to lab-grown strains. This means that higher UV fluences are required to obtain the same level of inactivation. Hence, for bacteria and spores, a correction factor of 2 and 4 was included in the MIC calculation, respectively, whereas some wastewater studies suggest that a correction of a factor of 7 is needed under these conditions. For phages and viruses this phenomenon appears to be of little significance and for protozoan (oo)cysts this aspect needs further investigation. Correction of the required fluence for DNA repair is considered unnecessary under the conditions of drinking water practice (no photo-repair, dark repair insignificant, esp. at higher (60 mJ/cm(2)) fluences) and probably also wastewater practice (photo-repair limited by light absorption). To enable accurate assessment of the effective fluence in continuous flow UV systems in water treatment practice, biodosimetry is still essential, although the use of computational fluid dynamics (CFD) improves the description of reactor hydraulics and fluence distribution. For UV systems that are primarily dedicated to inactivate the more sensitive pathogens (Cryptosporidium, Giardia, pathogenic bacteria), additional model organisms are needed to serve as biodosimeter. PMID:16386286

  15. Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts

    PubMed Central

    2010-01-01

    Background The gram-positive pathogenic bacterium Listeria monocytogenes is widely spread in the nature. L. monocytogenes was reported to be isolated from soil, water, sewage and sludge. Listeriolysin O (LLO) is a L. monocytogenes major virulence factor. In the course of infection in mammals, LLO is required for intracellular survival and apoptosis induction in lymphocytes. In this study, we explored the potential of LLO to promote interactions between L. monocytogenes and the ubiquitous inhabitant of natural ecosystems bacteriovorous free-living ciliate Tetrahymena pyriformis. Results Wild type L. monocytogenes reduced T. pyriformis trophozoite counts and stimulated encystment. The effects were observed starting from 48 h of co-incubation. On the day 14, trophozoites were eliminated from the co-culture while about 5 × 104 cells/ml remained in the axenic T. pyriformis culture. The deficient in the LLO-encoding hly gene L. monocytogenes strain failed to cause mortality among protozoa and to trigger protozoan encystment. Replenishment of the hly gene in the mutant strain restored toxicity towards protozoa and induction of protozoan encystment. The saprophytic non-haemolytic species L. innocua transformed with the LLO-expressing plasmid caused extensive mortality and encystment in ciliates. During the first week of co-incubation, LLO-producing L. monocytogenes demonstrated higher growth rates in association with T. pyriformis than the LLO-deficient isogenic strain. At latter stages of co-incubation bacterial counts were similar for both strains. T. pyriformis cysts infected with wild type L. monocytogenes caused listerial infection in guinea pigs upon ocular and oral inoculation. The infection was proved by bacterial plating from the internal organs. Conclusions The L. monocytogenes virulence factor LLO promotes bacterial survival and growth in the presence of bacteriovorous ciliate T. pyriformis. LLO is responsible for L. monocytogenes toxicity for protozoa and induction of protozoan encystment. L. monocytogenes entrapped in cysts remained viable and virulent. In whole, LLO activity seems to support bacterial survival in the natural habitat outside of a host. PMID:20109168

  16. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts.

    PubMed

    Ike, Fumio; Sakamoto, Mitsuo; Ohkuma, Moriya; Kajita, Ayako; Matsushita, Satoru; Kokubo, Toshiaki

    2016-01-01

    Strain SMR-CT, which was originally isolated from rats as the SMR strain, had been named 'cilia-associated respiratory bacillus' ('CAR bacillus'). 'CAR bacillus' was a Gram-stain-negative, filamentous argentophilic bacterium without flagella. SMR-CT grew at 37 °C under microaerobic conditions, showed gliding activity, hydrolysed urea and induced chronic respiratory diseases in rodents. The dominant cellular fatty acids detected were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 47.7 mol%. 16S rRNA gene sequence analysis revealed SMR-CT and other strains of 'CAR bacillus' isolated from rodents all belonged to the phylum Bacteroidetes. The nearest known type strain, with 86 % 16S rRNA gene sequence similarity, was Chitinophaga pinensis DSM 2588T in the family Chitinophagaceae. Strain SMR-CT and closely related strains of 'CAR bacillus' rodent-isolates formed a novel family-level clade in the phylum Bacteroidetes with high bootstrap support (98-100 %). Based on these results, we propose a novel family, Filobacteriaceae fam. nov., in the order Sphingobacteriales as well as a novel genus and species, Filobacterium rodentium gen. nov., sp. nov., for strain SMR-CT. The type strain is SMR-CT ( = JCM 19453T = DSM 100392T). PMID:26476525

  17. Limnochorda pilosa gen. nov., sp. nov., a moderately thermophilic, facultatively anaerobic, pleomorphic bacterium and proposal of Limnochordaceae fam. nov., Limnochordales ord. nov. and Limnochordia classis nov. in the phylum Firmicutes.

    PubMed

    Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu

    2015-08-01

    A novel facultatively anaerobic bacterium, strain HC45T, was isolated from sediment of a brackish meromictic lake in Japan, Lake Harutori. Cells were pleomorphic, and filamentous bodies were 5-100 μm in length. For growth, the optimum pH was 7.0 and the optimum temperature was 45-50 °C. The G+C content of the genomic DNA was 71 mol%. iso-C15 : 0 and anteiso-C15 : 0 were the major components in the cellular fatty acid profile. The predominant respiratory quinone was MK-7. Strain HC45T shared very low 16S rRNA gene sequence similarity with cultivated strains ( ≤ 85%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was distantly related to members of the family Symbiobacteriaceae and family XVII Incertae Sedis in the class Clostridia, and they formed a cluster separate from canonical species of the phylum Firmicutes. These results indicated that strain HC45T should not be placed in any existing class of the phylum Firmicutes. On the basis of phylogenetic and phenotypic characterization, Limnochorda pilosa gen. nov., sp. nov. is proposed with HC45T ( = NBRC 110152T = DSM 28787T) as the type strain, as the first representative of novel taxa, Limnochordales ord. nov., Limnochordaceae fam. nov. in Limnochordia classis. nov. PMID:25896353

  18. Lipid kinases are essential for apicoplast homeostasis in Toxoplasma gondii

    PubMed Central

    Daher, Wassim; Morlon-Guyot, Juliette; Sheiner, Lilach; Lentini, Gaëlle; Berry, Laurence; Tawk, Lina; Dubremetz, Jean-François; Wengelnik, Kai; Striepen, Boris; Lebrun, Maryse

    2014-01-01

    Phosphoinositides regulate numerous cellular processes, by recruiting cytosolic effector proteins and acting as membrane signaling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3-Kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiontic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P binding proteins and identified in total six PX and FYVE-domain containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2. While depletion of putative PI(3)P binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon the loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking-down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P-related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2. Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species which lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets. PMID:25329540

  19. Correlation between CD4 counts of HIV patients and enteric protozoan in different seasons – An experience of a tertiary care hospital in Varanasi (India)

    PubMed Central

    Tuli, Lekha; Gulati, Anil K; Sundar, Shyam; Mohapatra, Tribhuban M

    2008-01-01

    Background Protozoan infections are the most serious among all the superimposed infections in HIV patients and claim a number of lives every year. The line of treatment being different for diverse parasites necessitates a definitive diagnosis of the etiological agents to avoid empirical treatment. Thus, the present study has been aimed to elucidate the associations between diarrhoea and CD4 counts and to study the effect of HAART along with management of diarrhoea in HIV positive patients. This study is the first of its kind in this area where an attempt was made to correlate seasonal variation and intestinal protozoan infestations. Methods The study period was from January 2006 to October 2007 wherein stool samples were collected from 366 HIV positive patients with diarrhea attending the ART centre, inpatient department and ICTC of S.S. hospital, I.M.S., B.H.U., Varanasi. Simultaneously, CD4 counts were recorded to assess the status of HIV infection vis-à-vis parasitic infection. The identification of pathogens was done on the basis of direct microscopy and different staining techniques. Results Of the 366 patients, 112 had acute and 254 had chronic diarrhea. The percentages of intestinal protozoa detected were 78.5% in acute and 50.7% in chronic cases respectively. Immune restoration was observed in 36.6% patients after treatment on the basis of clinical observation and CD4 counts. In 39.8% of HIV positive cases Cryptosporidium spp. was detected followed by Microsporidia spp. (26.7%). The highest incidence of intestinal infection was in the rainy season. However, infection with Cyclospora spp. was at its peak in the summer. Patients with chronic diarrhea had lower CD4 cell counts. The maximum parasitic isolation was in the patients whose CD4 cell counts were below 200 cells/μl. Conclusion There was an inverse relation between the CD4 counts and duration of diarrhea. Cryptosporidium spp. was isolated maximum among all the parasites in the HIV patients. The highest incidence of infection was seen in the rainy season. PMID:18713475

  20. Prevalence and risk factors of intestinal protozoan and helminth infections among pulmonary tuberculosis patients without HIV infection in a rural county in P. R. China.

    PubMed

    Li, Xin-Xu; Chen, Jia-Xu; Wang, Li-Xia; Tian, Li-Guang; Zhang, Yu-Ping; Dong, Shuang-Pin; Hu, Xue-Guang; Liu, Jian; Wang, Feng-Feng; Wang, Yue; Yin, Xiao-Mei; He, Li-Jun; Yan, Qiu-Ye; Zhang, Hong-Wei; Xu, Bian-Li; Zhou, Xiao-Nong

    2015-09-01

    Although co-infection of tuberculosis (TB) and intestinal parasites, including protozoa and helminths, in humans has been widely studied globally, very little of this phenomenon is known in China. Therefore, a cross-sectional study was conducted in a rural county of China to investigate such co-infections. Patients with pulmonary TB (PTB) undergoing anti-Mycobacterium tuberculosis (anti-MTB) treatment were surveyed by questionnaires, and their feces and blood specimens were collected for detection of intestinal protozoa and helminths, routine blood examination and HIV detection. The χ(2) test and multivariate logistic regression model were used to identify risk factors. A total of 369 patients with PTB were included and all of them were HIV negative. Overall, only 7.3% of participants were infected with intestinal protozoa, among which prevalence of Blastocystis hominis, Entamoeba spp. and Trichomonas hominis were 6.0%, 1.1% and 0.3%, respectively; 7.0% were infected with intestinal helminths, among which prevalence of hookworm, Trichuris trichiura, Ascaris lumbricoides and Clonorchis sinensis were 4.3%, 1.9%, 0.5% and 0.3%, respectively; and 0.5% were simultaneously infected with intestinal protozoa and helminths. Among patients with PTB, body mass index (BMI)≤18 (OR=3.30, 95% CI=1.44-7.54) and raised poultry or livestock (e.g., chicken, duck, pig) (OR=3.96, 95% CI=1.32-11.89) were significantly associated with harboring intestinal protozoan infection, while BMI≤18 (OR=3.32, 95% CI=1.39-7.91), anemia (OR=3.40, 95% CI=1.44-8.02) and laboring barefoot in farmlands (OR=4.54, 95% CI=1.88-10.92) were significantly associated with having intestinal helminth infection. Additionally, there was no significant relationship between duration of anti-MTB treatment and infection rates of intestinal parasites including protozoa and helminths. Therefore, preventing malnutrition, avoiding unprotected contact with reservoirs of protozoa, and improving health education for good hygiene habits, particularly wearing shoes while outdoors, are beneficial in the prevention of intestinal protozoan and helminth infection among patients with PTB. PMID:25976412

  1. The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: The effects of an 808nm infrared laser diode on cellular respiration.

    PubMed

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-07-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. Unfortunately, conflicting literature has led to the labelling of PBM as a complementary or alternative medicine approach. However, past and ongoing clinical and research studies by reputable investigators have re-established the merits of PBM as a genuine medical therapy, and the technique has, in the last decade, seen an exponential increase in the numbers of clinical instruments available, and their applications. This resurgence has led to a clear need for appropriate experimental models to test the burgeoning laser technology being developed for medical applications. In this context, an ethical model that employs the protozoan, Paramecium primaurelia, is proposed. We studied the possibility of using the measure of oxygen consumption to test PBM by irradiation with an infrared or near-infrared laser. The results show that an 808nm infrared laser diode (1W; 64J/cm²) affects cellular respiration in P. primaurelia, inducing, in the irradiated cells, a significantly (p < 0.05) increased oxygen consumption of about 40%. Our findings indicate that Paramecium can be an excellent tool in biological assays involving infrared and near-infrared PBM, as it combines the advantages of in vivo results with the practicality of in vitro testing. This test represents a fast, inexpensive and straightforward assay, which offers an alternative to both traditional in vivo testing and more expensive mammalian cellular cultures. PMID:26256394

  2. Patterns of host-parasite adaptation in three populations of monarch butterflies infected with a naturally occurring protozoan disease: virulence, resistance, and tolerance.

    PubMed

    Sternberg, Eleanore D; Li, Hui; Wang, Rebecca; Gowler, Camden; de Roode, Jacobus C

    2013-12-01

    Many studies have used host-parasite systems to study local adaptation, but few of these studies have found unequivocal evidence for adaptation. One potential reason is that most studies have focused on limited measures of host and parasite fitness that are generally assumed to be under negative frequency-dependent selection. We have used reciprocal cross-infection experiments to test for local adaptation in Hawaiian, south Floridian, and eastern North American populations of monarch butterflies and their protozoan parasites. Sympatric host-parasite combinations did not result in greater host or parasite fitness, as would be expected under coevolutionary dynamics driven by negative frequency-dependent selection. Instead, we found that Hawaiian hosts were more resistant and carried more infective and virulent parasites, which is consistent with theoretical predictions for virulence evolution and coevolutionary arms race dynamics. We also found that Hawaiian hosts were more tolerant, particularly of Hawaiian parasites, indicating that increased resistance does not preclude increased tolerance within a population and that hosts may be more tolerant of local parasites. We did not find a similar pattern in the south Floridian or eastern populations, possibly because host-parasite adaptation occurs within the context of a greater ecological community. PMID:24231547

  3. Current Therapeutics, Their Problems, and Sulfur-Containing-Amino-Acid Metabolism as a Novel Target against Infections by “Amitochondriate” Protozoan Parasites

    PubMed Central

    Ali, Vahab; Nozaki, Tomoyoshi

    2007-01-01

    The “amitochondriate” protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine γ-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, l-trifluoromethionine, which is catalyzed by methionine γ-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica. PMID:17223627

  4. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development

    PubMed Central

    Blake, Damer P.; Clark, Emily L.; Macdonald, Sarah E.; Thenmozhi, Venkatachalam; Kundu, Krishnendu; Garg, Rajat; Jatau, Isa D.; Ayoade, Simeon; Kawahara, Fumiya; Moftah, Abdalgader; Reid, Adam James; Adebambo, Ayotunde O.; Álvarez Zapata, Ramón; Srinivasa Rao, Arni S. R.; Thangaraj, Kumarasamy; Banerjee, Partha S.; Dhinakar-Raj, G.; Raman, M.; Tomley, Fiona M.

    2015-01-01

    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host. PMID:26354122

  5. Prevalence of Sarcocystis spp. and Hammondia spp. microcysts in esophagus tissue of sheep and cattle, emphasized on their morphological differences.

    PubMed

    Rassouli, Maryam; Ahmadpanahi, Javad; Alvandi, Ayda

    2014-10-01

    Sarcocystis and Hammondia are two obligatory protozoan parasites. These genera belong to cyst-forming coccidia group of the phylum Apicomplexa. They both need two different hosts to complete their life cycles. Felids and canids can act as definitive hosts, while herbivores, such as sheep and cattle, are the most important intermediate hosts. Reports verify that no important disease has been caused by Hammondia spp.; on the other hand, Sarcocystis spp. can cause some severe infectious disease in livestock industry such as abortion. Economic losses are another concern due to carcass condemnation during meat inspection in abattoirs and decrease in the quality and quantity of milk and wool production. Due to the Sarcocystis and Hammondia tissue cysts being similar, the distinction between these different genera is so important. In this study, the prevalence of Sarcocystis and Hammondia in the esophagus tissue of sheep and cattle slaughtered in one of the industrial abattoir in Iran was reported and an easy and rapid method for accurate diagnosing of Sarcocystis and Hammondia bradyzoites was explained. PMID:25082016

  6. Structural Evidence for Actin-like Filaments in Toxoplasma gondii Using High-Resolution Low-Voltage Field Emission Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Schatten, Heide; Sibley, L. David; Ris, Hans

    2003-08-01

    The protozoan parasite Toxoplasma gondii is representative of a large group of parasites within the phylum Apicomplexa, which share a highly unusual motility system that is crucial for locomotion and active host cell invasion. Despite the importance of motility in the pathology of these unicellular organisms, the motor mechanisms for locomotion remain uncertain, largely because only limited data exist about composition and organization of the cytoskeleton. By using cytoskeleton stabilizing protocols on membrane-extracted parasites and novel imaging with high-resolution low-voltage field emission scanning electron microscopy (LVFESEM), we were able to visualize for the first time a network of actin-sized filaments just below the cell membrane. A complex cytoskeletal network remained after removing the actin-sized fibers with cytochalasin D, revealing longitudinally arranged, subpellicular microtubules and intermediate-sized fibers of 10 nm, which, in stereo images, are seen both above and below the microtubules. These approaches open new possibilities to characterize more fully the largely unexplored and unconventional cytoskeletal motility complex in apicomplexan parasites.

  7. Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection

    PubMed Central

    Sangaré, Lamba Omar; Alayi, Tchilabalo Dilezitoko; Westermann, Benoit; Hovasse, Agnes; Sindikubwabo, Fabien; Callebaut, Isabelle; Werkmeister, Elisabeth; Lafont, Frank; Slomianny, Christian; Hakimi, Mohamed-Ali; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine; Tomavo, Stanislas

    2016-01-01

    Membrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan parasites that cause life-threatening diseases worldwide. Here we report the first retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a trimer Vps35–Vps26–Vps29 core complex that serves as a hub for the endosome-like compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the retromer complex is crucial for the biogenesis of secretory organelles and for maintaining parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated protein with functions unrelated to secretory organelle formation. Furthermore, the major facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand transmembrane transporter, is maintained at the parasite membrane by retromer-mediated endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and unconventional proteins act in concert in T. gondii by controlling retrograde transport that is essential for parasite integrity and host infection. PMID:27064065

  8. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development.

    PubMed

    Blake, Damer P; Clark, Emily L; Macdonald, Sarah E; Thenmozhi, Venkatachalam; Kundu, Krishnendu; Garg, Rajat; Jatau, Isa D; Ayoade, Simeon; Kawahara, Fumiya; Moftah, Abdalgader; Reid, Adam James; Adebambo, Ayotunde O; Álvarez Zapata, Ramón; Srinivasa Rao, Arni S R; Thangaraj, Kumarasamy; Banerjee, Partha S; Dhinakar-Raj, G; Raman, M; Tomley, Fiona M

    2015-09-22

    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host. PMID:26354122

  9. Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection.

    PubMed

    Sangaré, Lamba Omar; Alayi, Tchilabalo Dilezitoko; Westermann, Benoit; Hovasse, Agnes; Sindikubwabo, Fabien; Callebaut, Isabelle; Werkmeister, Elisabeth; Lafont, Frank; Slomianny, Christian; Hakimi, Mohamed-Ali; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine; Tomavo, Stanislas

    2016-01-01

    Membrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan parasites that cause life-threatening diseases worldwide. Here we report the first retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a trimer Vps35-Vps26-Vps29 core complex that serves as a hub for the endosome-like compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the retromer complex is crucial for the biogenesis of secretory organelles and for maintaining parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated protein with functions unrelated to secretory organelle formation. Furthermore, the major facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand transmembrane transporter, is maintained at the parasite membrane by retromer-mediated endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and unconventional proteins act in concert in T. gondii by controlling retrograde transport that is essential for parasite integrity and host infection. PMID:27064065

  10. Isolation of Besnoitia besnoiti from infected cattle in Portugal.

    PubMed

    Cortes, H C E; Reis, Y; Waap, H; Vidal, R; Soares, H; Marques, I; Pereira da Fonseca, I; Fazendeiro, I; Ferreira, M L; Caeiro, V; Shkap, V; Hemphill, A; Leitão, A

    2006-11-01

    Besnoitia besnoiti, an obligate intracellular protozoan parasite belonging to the phylum apicomplexa, is the causative agent of bovine besnoitiosis. Besnoitiosis is responsible for significant losses in the cattle industry of Africa and Mediterranean countries due to the high morbidity rate, abortion and infertility in males. The acute stage of disease is associated with the proliferative forms (tachyzoites) and is characterized by fever, whimpery, general weakness and swelling of the superficial lymph nodes. During the following chronic stage, a huge number of cysts are formed mainly in the subcutaneous tissues. This process is non-reversible, and chronic besnoitiosis is characterized by hyper-sclerodermia, hyperkeratosis, alopecia and, in bulls, atrophy, sclerosis and focal necrosis that cause irreversible lesions in the testis. In this paper we report on the identification of large cysts in the skin of a cow and a bull in Portugal, which presented loss of hair and enlargement and pachydermis all over the body. The observation of a two-layered cyst wall within the host cell, the encapsulation of the host cell by a large outer cyst wall, and the subcutaneous localization of the cysts within the host, were characteristic for B. besnoiti. The parasites were isolated from the infected animals and successfully propagated in Vero cells without prior passages in laboratory animals. Morphological characterization of B. besnoiti tachyzoites and the amplification of the 149 bp segment from the internal transcribed spacer 1 (ITS1), aided with specific primers, confirmed the identification of B. besnoiti. PMID:16822614

  11. Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii

    PubMed Central

    Khan, Asis; Taylor, Sonya; Su, Chunlei; Mackey, Aaron J.; Boyle, Jon; Cole, Robert; Glover, Darius; Tang, Keliang; Paulsen, Ian T.; Berriman, Matt; Boothroyd, John C.; Pfefferkorn, Elmer R.; Dubey, J. P.; Ajioka, James W.; Roos, David S.; Wootton, John C.; Sibley, L. David

    2005-01-01

    Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii. The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at ∼300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of ∼592 cM and an average map unit of ∼104 kb/cM. Analysis of the genetic parameters in T.gondii revealed a high frequency of closely adjacent, apparent double crossover events that may represent gene conversions. In addition, we detected large regions of genetic homogeneity among the archetypal clonal lineages, reflecting the relatively few genetic outbreeding events that have occurred since their recent origin. Despite these unusual features, linkage analysis proved to be effective in mapping the loci determining several drug resistances. The resulting genome map provides a framework for analysis of complex traits such as virulence and transmission, and for comparative population genetic studies. PMID:15911631

  12. Structure and Function of a G-actin Sequestering Protein with a Vital Role in Malaria Oocyst Development inside the Mosquito Vector*

    PubMed Central

    Hliscs, Marion; Sattler, Julia M.; Tempel, Wolfram; Artz, Jennifer D.; Dong, Aiping; Hui, Raymond; Matuschewski, Kai; Schüler, Herwig

    2010-01-01

    Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins that regulate microfilament turnover. CAPs have a modular structure consisting of an N-terminal adenylate cyclase binding domain, a central proline-rich segment, and a C-terminal actin binding domain. Protozoan parasites of the phylum Apicomplexa, such as Cryptosporidium and the malaria parasite Plasmodium, express small CAP orthologs with homology to the C-terminal actin binding domain (C-CAP). Here, we demonstrate by reverse genetics that C-CAP is dispensable for the pathogenic Plasmodium blood stages. However, c-cap(-) parasites display a complete defect in oocyst development in the insect vector. By trans-species complementation we show that the Cryptosporidium parvum ortholog complements the Plasmodium gene functions. Purified recombinant C. parvum C-CAP protein binds actin monomers and prevents actin polymerization. The crystal structure of C. parvum C-CAP shows two monomers with a right-handed β-helical fold intercalated at their C termini to form the putative physiological dimer. Our results reveal a specific vital role for an apicomplexan G-actin-binding protein during sporogony, the parasite replication phase that precedes formation of malaria transmission stages. This study also exemplifies how Plasmodium reverse genetics combined with biochemical and structural analyses of orthologous proteins can offer a fast track toward systematic gene characterization in apicomplexan parasites. PMID:20083609

  13. Sequence Variation in Superoxide Dismutase Gene of Toxoplasma gondii among Various Isolates from Different Hosts and Geographical Regions

    PubMed Central

    Wang, Shuai; Cao, Aiping; Li, Xun; Zhao, Qunli; Liu, Yuan; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2015-01-01

    Toxoplasma gondii, an obligate intracellular protozoan parasite of the phylum Apicomplexa, can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals. The aim of this study was to investigate whether superoxide dismutase (SOD) of T. gondii can be used as a new marker for genetic study or a potential vaccine candidate. The partial genome region of the SOD gene was amplified and sequenced from 10 different T. gondii isolates from different parts of the world, and all the sequences were examined by PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results showed that partial SOD gene sequences ranged from 1,702 bp to 1,712 bp and A + T contents varied from 50.1% to 51.1% among all examined isolates. Sequence alignment analysis identified total 43 variable nucleotide positions, and these results showed that 97.5% sequence similarity of SOD gene among all examined isolates. Phylogenetic analysis revealed that these SOD sequences were not an effective molecular marker for differential identification of T. gondii strains. The research demonstrated existence of low sequence variation in the SOD gene among T. gondii strains of different genotypes from different hosts and geographical regions. PMID:26174817

  14. Sequence Variation in Superoxide Dismutase Gene of Toxoplasma gondii among Various Isolates from Different Hosts and Geographical Regions.

    PubMed

    Wang, Shuai; Cao, Aiping; Li, Xun; Zhao, Qunli; Liu, Yuan; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2015-06-01

    Toxoplasma gondii, an obligate intracellular protozoan parasite of the phylum Apicomplexa, can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals. The aim of this study was to investigate whether superoxide dismutase (SOD) of T. gondii can be used as a new marker for genetic study or a potential vaccine candidate. The partial genome region of the SOD gene was amplified and sequenced from 10 different T. gondii isolates from different parts of the world, and all the sequences were examined by PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results showed that partial SOD gene sequences ranged from 1,702 bp to 1,712 bp and A + T contents varied from 50.1% to 51.1% among all examined isolates. Sequence alignment analysis identified total 43 variable nucleotide positions, and these results showed that 97.5% sequence similarity of SOD gene among all examined isolates. Phylogenetic analysis revealed that these SOD sequences were not an effective molecular marker for differential identification of T. gondii strains. The research demonstrated existence of low sequence variation in the SOD gene among T. gondii strains of different genotypes from different hosts and geographical regions. PMID:26174817

  15. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution--the ciliated protozoan Paramecium in focus.

    PubMed

    Plattner, Helmut

    2015-03-01

    The ciliated protozoan, Paramecium tetraurelia has a high basic Ca(2+) leakage rate which is counteracted mainly by export through a contractile vacuole complex, based on its V-type H(+)-ATPase activity. In addition Paramecium cells dispose of P-type Ca(2+)-ATPases, i.e. a plasmamembrane and a sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (PMCA, SERCA). Antiporter systems are to be expected, as inferred from indirect evidence. Among the best known cytosolic Ca(2+)-binding proteins, calmodulin activates Ca(2+) influx channels in the somatic cell membrane, but inactivates Ca(2+) influx channels in cilia, where it, thus, ends ciliary reversal induced by depolarization via channels in the somatic cell membrane. Centrin inactivates Ca(2+) signals after stimulation by its high capacity/low affinity binding sites, whereas its high affinity sites regulate some other functions. Cortical Ca(2+) stores (alveolar sacs) are activated during stimulated trichocyst exocytosis and thereby mediate store-operated Ca(2+) entry (SOCE). Ca(2+) release channels (CRCs) localised to alveoli and underlying SOCE are considered as Ryanodine receptor-like proteins (RyR-LPs) which are members of a CRC family with 6 subfamilies. These also encompass genuine inositol 1,4,5-trisphosphate receptors (IP3Rs) and intermediates between the two channel types. All IP3R/RyR-type CRCs possess six carboxyterminal transmembrane domains (TMD), with a pore domain between TMD 5 and 6, endowed with a characteristic selectivity filter. There are reasons to assume a common ancestor molecule for such channels and diversification further on in evolution. The distinct distribution of specific CRCs in the different vesicles undergoing intracellular trafficking suggests constitutive formation of very locally restricted Ca(2+) signals during vesicle-vesicle interaction. In summary, essential steps of Ca(2+) signalling already occur at this level of evolution, including an unexpected multitude of CRCs. For dis-/similarities with other bikonts see "Conclusions". PMID:25601027

  16. In vitro and in vivo efficacy of drugs against the protozoan parasite Azumiobodo hoyamushi that causes soft tunic syndrome in the edible ascidian Halocynthia roretzi (Drasche).

    PubMed

    Park, K H; Zeon, S-R; Lee, J-G; Choi, S-H; Shin, Y K; Park, K-I

    2014-04-01

    It was discovered recently that infection by a protozoan parasite, Azumiobodo hoyamushi, is the most probable cause for soft tunic syndrome in an edible ascidian, Halocynthia roretzi (Drasche). In an attempt to develop measures to eradicate the causative parasite, various drugs were tested for efficacy in vitro and in vivo. Of the 20 antiprotozoal drugs having different action mechanisms, five were found potent (24-h EC50  < 10 mg L(-1) ) in their parasite-killing effects: formalin, H2 O2 , bithionol, ClO2 and bronopol. Moderately potent drugs (10 < 24-h EC50  < 100 mg L(-1) ) were quinine, fumagillin, amphotericin B, ketoconazole, povidone-iodine, chloramine-T and benzalkonium chloride. Seven compounds, metronidazole, albendazole, paromomycin, nalidixic acid, sulfamonomethoxine, KMnO4 , potassium monopersulphate and citric acid, exhibited EC50  > 100 mg L(-1) . When ascidians were artificially infected with A. hoyamushi, treated using 40 mg L(-1) formalin, bronopol, ClO2 , or H2 O2 for 1 h and then monitored for 24 h, very low mortality was observed. However, the number of surviving parasite cells in the ascidian tunic tissues was significantly reduced by treating with 40 mg L(-1) formalin or ClO2 for 1 h. The data suggest that we might be able to develop a disinfection measure using a treatment regimen involving commonly available drugs. PMID:23952334

  17. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment