Sample records for proximal tibial growth

  1. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  2. Proximal tibial osteotomy. A survivorship analysis.

    PubMed

    Ritter, M A; Fechtman, R A

    1988-01-01

    Proximal tibial osteotomy is generally accepted as a treatment for the patient with unicompartmental arthritis. However, a few reports of the long-term results of this procedure are available in the literature, and none have used the technique known as survivorship analysis. This technique has an advantage over conventional analysis because it does not exclude patients for inadequate follow-up, loss to follow-up, or patient death. In this study, survivorship analysis was applied to 78 proximal tibial osteotomies, performed exclusively by the senior author for the correction of a preoperative varus deformity, and a survival curve was constructed. It was concluded that the reliable longevity of the proximal tibial osteotomy is approximately 6 years.

  3. The Protective Effects of Exclusive Enteral Nutrition Formulas on Growth Factor Expression and the Proximal Tibial Epiphyseal Growth Plate in a TNBS-Induced IBD Rat Model.

    PubMed

    Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying

    2015-07-01

    This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.

  4. Physeal growth arrest after tibial lengthening in achondroplasia

    PubMed Central

    2012-01-01

    Background and purpose Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with acondroplasia. Methods We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Results Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Interpretation Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence—especially when lengthening of more than 50% is attempted. PMID:22489887

  5. Tibial dyschondroplasia associated proteomic changes in chicken growth plate cartilage

    USDA-ARS?s Scientific Manuscript database

    Tibial dyschondroplasia (TD) is a poultry leg problem that affects the proximal growth plate of tibia preventing its transition to bone. To understand the disease-induced proteomic changes we compared the protein extracts of cartilage from normal and TD- affected growth plates. TD was induced by fe...

  6. Tibial rotational osteotomy for idiopathic torsion. A comparison of the proximal and distal osteotomy levels.

    PubMed

    Krengel, W F; Staheli, L T

    1992-10-01

    A retrospective analysis was done of 52 rotational tibial osteotomies (RTOs) performed on 35 patients with severe idiopathic tibial torsion. Thirty-nine osteotomies were performed at the proximal or midtibial level. Thirteen were performed at the distal tibial level with a technique previously described by one of the authors. Serious complications occurred in five (13%) of the proximal and in none of the distal RTOs. For severe and persisting idiopathic tibial torsion, the authors recommend correction by RTO at the distal level. Proximal level osteotomy is indicated only when a varus or valgus deformity required concurrent correction.

  7. Comparison of intraoperative anthropometric measurements of the proximal tibia and tibial component in total knee arthroplasty.

    PubMed

    Miyatake, Naohisa; Sugita, Takehiko; Aizawa, Toshimi; Sasaki, Akira; Maeda, Ikuo; Kamimura, Masayuki; Fujisawa, Hirokazu; Takahashi, Atsushi

    2016-09-01

    Precise matching of the tibial component and resected bony surfaces and proper rotational implanting of the tibial component are crucial for successful total knee arthroplasty. We aimed to analyze the exact anthropometric proximal tibial data of Japanese patients undergoing total knee arthroplasty and correlate the measurements with the dimensions of current total knee arthroplasty systems. A total of 703 knees in 566 Japanese patients who underwent total knee arthroplasty for osteoarthritis were included. The bone resection in the proximal tibia was performed perpendicular to the tibial axis in the frontal plane. Measurements of the proximal tibia were intraoperatively obtained after proximal tibial preparation. There were significant positive correlations between the lateral anteroposterior and medial anteroposterior and mediolateral dimensions. A progressive decrease in the mediolateral/lateral anteroposterior ratio with an increasing lateral anteroposterior dimension or the mediolateral/anteroposterior ratio with an increasing anteroposterior dimension was observed. The lateral anteroposterior dimension was smaller than the medial anteroposterior dimension by a mean of 4.8 ± 2.0 mm. The proximal tibia exhibited asymmetry between the lateral and medial plateaus. A comparison of the morphological data and dimensions of the implants, one of which was a symmetric tibial component (NexGen) and the others were asymmetric (Genesis II and Persona), indicated that an asymmetric tibial component could be beneficial to maximize tibial plateau coverage. This study provided important reference data for designing a proper tibial component for Japanese people. The proximal tibial cut surface was asymmetric. There was wide dispersion in the lateral anteroposterior, medial anteroposterior, and mediolateral dimensions depending on the patient. Our data showed that the tibial components of the Genesis II and Persona rather than that of the NexGen may be preferable for

  8. Intraoperative study on anthropometry and gender differences of the proximal tibial plateau at the arthroplasty resection surface.

    PubMed

    Yang, Bo; Yu, Jiakuo; Gong, Xi; Chen, Lianxu; Wang, Yongjian; Wang, Jian; Wang, Haijun; Zhang, Jiying

    2014-01-01

    The tibial plateau is asymmetric with a larger medial plateau. We observed from clinical practice that the shape of the tibial plateau does not always present a larger medial plateau. Tibial plateau also showed other shapes. The purpose of this study was to analyze the anthropometric data of the proximal tibia in a large group of Chinese patients undergoing total knee arthroplasty and to investigate the morphology of the resected proximal tibial surface and its gender differences. A total of 822 knees (164 males, 658 females) from the Chinese population were measured intraoperatively for medial anteroposterior (MAP) and lateral anteroposterior (LAP) dimensions of the resected proximal tibial surface. The difference of MAP and LAP (DML) was also calculated as MAP minus LAP. We then classified the data into three groups based on the DML (<-2, -2 to 2, and >2 mm) to analyze the morphology of the proximal tibia and its distribution between male and female. The shape of proximal tibial plateau was of three types: larger medial plateau type, symmetric type, and larger lateral plateau type. There were significant differences between males and females in relation to the shape distribution of the proximal tibial plateau (P < 0.05). Most of the proximal tibial plateau was asymmetric, with 517 of 822 (62.9%) tibia having a DML >2 mm and 120 of 822 (14.6%) tibia having a DML<-2 mm. Only 185 of 822 (22.5%) tibia had a DML between -2 and 2 mm. The results of this study can be used as a guideline to design tibial components with different DMLs to better match the different anthropometry of the resected tibial surface.

  9. Posttraumatic tibia valga: a case demonstrating asymmetric activity at the proximal growth plate on technetium bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zionts, L.E.; Harcke, H.T.; Brooks, K.M.

    1987-07-01

    Posttraumatic tibia valga is a well-recognized complication following fracture of the upper tibial metaphysis in young children. We present a case of a child who developed a valgus deformity following fracture of the proximal tibia and fibula in which quantitative bone scintigraphy at 5 months after injury demonstrated increased uptake at the proximal tibial growth plate with proportionally greater uptake on the medial side. This finding suggests that the valgus deformity in this patient was due to a relative increase in vascularity and consequent overgrowth of the medial portion of the proximal tibial physis.

  10. High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens

    PubMed Central

    Huang, Shucheng; Zhang, Lihong; Rehman, Mujeeb Ur; Iqbal, Muhammad Kashif; Lan, Yanfang; Mehmood, Khalid; Zhang, Hui; Qiu, Gang; Nabi, Fazul; Yao, Wangyuan; Wang, Meng; Li, Jiakui

    2017-01-01

    Tibial dyschondroplasia (TD) is one of the most common problems in the poultry industry and leads to lameness by affecting the proximal growth plate of the tibia. However, due to the unique environmental and geographical conditions of Tibet, no case of TD has been reported in Tibetan chickens (TBCs). The present study was designed to investigate the effect of high altitude hypoxia on blood parameters and tibial growth plate development in chickens using the complete blood count, morphology, and histological examination. The results of this study showed an undesirable impact on the overall performance, body weight, and mortality of Arbor Acres chickens (AACs) exposed to a high altitude hypoxic environment. However, AACs raised under hypoxic conditions showed an elevated number of red blood cells (RBCs) and an increase in hemoglobin and hematocrit values on day 14 compared to the hypobaric normoxia group. Notably, the morphology and histology analyses showed that the size of tibial growth plates in AACs was enlarged and that the blood vessel density was also higher after exposure to the hypoxic environment for 14 days, while no such change was observed in TBCs. Altogether, our results revealed that the hypoxic environment has a potentially new role in increasing the blood vessel density of proximal tibial growth plates to strengthen and enhance the size of the growth plates, which may provide new insights for the therapeutic manipulation of hypoxia in poultry TD. PMID:28282429

  11. "Clothesline technique" for proximal tibial shaft fracture fixation using conventional intramedullary nail: a simple, useful, and inexpensive technique to prevent fracture malalignment.

    PubMed

    Belangero, William Dias; Santos Pires, Robinson Esteves; Livani, Bruno; Rossi, Felipe Lins; de Andrade, Andre Luis Lugnani

    2018-05-01

    Treatment of proximal tibial shaft fractures is always challenging. Despite the development of modern techniques, the literature still shows high complication rates, especially regarding proximal fragment malalignment. It is well known that knee position in flexion during tibial nailing is responsible for extension and valgus deformities of the proximal fragment. Unlike in tibial shaft fractures, nails do not reduce proximal tibial fractures due to the medullary canal width. This study aims to describe a simple, useful, and inexpensive technique to prevent valgus and extension deformities when treating proximal tibial fractures using conventional nails: the so-called clothesline technique.

  12. Physeal growth arrest after tibial lengthening in achondroplasia: 23 children followed to skeletal maturity.

    PubMed

    Song, Sang-Heon; Agashe, Mandar Vikas; Huh, Young-Jae; Hwang, Soon-Young; Song, Hae-Ryong

    2012-06-01

    Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with achondroplasia. We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence-especially when lengthening of more than 50% is attempted.

  13. Tibial component considerations in bicruciate-retaining total knee arthroplasty: A 3D MRI evaluation of proximal tibial anatomy.

    PubMed

    Saxena, Vishal; Anari, Jason B; Ruutiainen, Alexander T; Voleti, Pramod B; Stephenson, Jason W; Lee, Gwo-Chin

    2016-08-01

    Restoration of normal anatomy and proper ligament balance are theoretical prerequisites for reproducing physiological kinematics with bicruciate-retaining total knee arthroplasty (TKA). The purpose of this study was to use a 3D MRI technique to evaluate the topography of the proximal tibia and outline considerations in tibial component design for bicruciate-retaining TKA. We identified 100 consecutive patients (50 males and 50 females) between ages 20 and 40 years with knee MRIs without arthritis, dysplasia, ACL tears, or prior knee surgery. A novel 3D MRI protocol coordinating axial, coronal, and sagittal images was used to measure: 1) medial and lateral posterior tibial slopes; 2) medial and lateral coronal slopes; and 3) distance from the anterior tibia to the ACL footprint. There was no overall difference in medial and lateral posterior tibial slopes (5.5° (95% CI 5.0 to 6.0°) vs. 5.4° (95% CI 4.8 to 6.0°), respectively (p=0.80)), but 41 patients had side-to-side differences greater than 3°. The medial coronal slope was greater than the lateral coronal slope (4.6° (95% CI 4.0 to 5.1°) vs. 3.3° (95% CI 2.9 to 3.7°), respectively (p<0.0001)). Females had less clearance between the anterior tibia and ACL footprint than males (10.8mm (95% CI 10.4 to 11.2mm) vs. 13.0mm (95% CI 12.5 to 13.5mm), respectively (p<0.0001)). Due to highly variable proximal tibial topography, a monoblock bicruciate-retaining tibial baseplate may not reproduce normal anatomy in all patients. Level IV - Anatomic research study. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Trampoline fracture of the proximal tibial metaphysis in children may not progress into valgus: a report of seven cases and a brief review.

    PubMed

    Kakel, R

    2012-06-01

    Fracture of the proximal tibial metaphysis in children is a rare injury but notorious for carrying the risk of subsequent valgus deformity of the tibia. Trampoline-caused fracture of the proximal tibial metaphysis in children may not progress into valgus. We followed up six children who collectively sustained seven fractures of the proximal tibial metaphysis while trampolining with other heavier and/or older children. Initial and follow-up x-rays were reviewed by an orthopaedic surgeons and two radiologists. None of the patients developed valgus deformity with follow-up. Trampoline is associated with a specific type of injury to the proximal tibia when children are trampolining with other heavier children even without falling off the trampoline. This fracture is linear and complete, often non-displaced. Unlike "other" proximal tibial metaphyseal fractures, trampoline-associated proximal tibial metaphysical fracture in children is not associated with a risk of subsequent valgus deformity. Level 4. case series. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Anthropometric measurements of tibial plateau and correlation with the current tibial implants.

    PubMed

    Erkocak, Omer Faruk; Kucukdurmaz, Fatih; Sayar, Safak; Erdil, Mehmet Emin; Ceylan, Hasan Huseyin; Tuncay, Ibrahim

    2016-09-01

    The aim of the study was to make an anthropometric analysis at the resected surfaces of the proximal tibia in the Turkish population and to compare the data with the dimensions of tibial components in current use. We hypothesized that tibial components currently available on the market do not fulfil the requirements of this population and a new tibial component design may be required, especially for female patients with small stature. Anthropometric data from the proximal tibia of 226 knees in 226 Turkish subjects were measured using magnetic resonance imaging. We measured the mediolateral, middle anteroposterior, medial and lateral anteroposterior dimensions and the aspect ratio of the resected proximal tibial surface. All morphological data were compared with the dimensions of five contemporary tibial implants, including asymmetric and symmetric design types. The dimensions of the tibial plateau of Turkish knees demonstrated significant differences according to gender (P < 0.05). Among the different tibial implants reviewed, neither asymmetric nor symmetric designs exhibited a perfect conformity to proximal tibial morphology in size and shape. The vast majority of tibial implants involved in this study tend to overhang anteroposteriorly, and a statistically significant number of women (21 %, P < 0.05) had tibial anteroposterior diameters smaller than the smallest available tibial component. Tibial components designed according to anthropometric measurements of Western populations do not perfectly meet the requirements of Turkish population. These data could provide the basis for designing the optimal and smaller tibial component for this population, especially for women, is required for best fit. II.

  16. Proximal tibial fractures: early experience using polyaxial locking-plate technology.

    PubMed

    Nikolaou, Vassilios S; Tan, Hiang Boon; Haidukewych, George; Kanakaris, Nikolaos; Giannoudis, Peter V

    2011-08-01

    Between 2004 and 2009, 60 patients with proximal tibial fractures were included in this prospective study. All fractures were treated with the polyaxial locked-plate fixation system (DePuy, Warsaw, IN, USA). Clinical and radiographic data, including fracture pattern, changes in alignment, local and systemic complications, hardware failure and fracture union were analysed. The mean follow-up was 14 (12-36) months. According to the Orthopaedic Trauma Association (OTA) classification, there were five 41-A, 28 41-B and 27 41-C fractures. Fractures were treated percutaneously in 30% of cases. Double-plating was used in 11 cases. All but three fractures progressed to union at a mean of 3.2 (2.5-5) months. There was no evidence of varus collapse as a result of polyaxial screw failure. No plate fractured, and no screw cut out was noted. There was one case of lateral joint collapse (>10°) in a patient with open bicondylar plateau fracture. The mean Knee Society Score at the time of final follow-up was 91 points, and the mean functional score was 89 points. The polyaxial locking-plate system provided stable fixation of extra-articular and intra-articular proximal tibial fractures and good functional outcomes with a low complication rate.

  17. Staged minimally invasive plate osteosynthesis of proximal tibial fractures with acute compartment syndrome.

    PubMed

    Kim, Joon-Woo; Oh, Chang-Wug; Oh, Jong-Keon; Kyung, Hee-Soo; Park, Kyeong-Hyeon; Kim, Hee-June; Jung, Jae-Wook; Jung, Young-Soo

    2017-06-01

    High-energy proximal tibial fractures often accompany compartment syndrome and are usually treated by fasciotomy with external fixation followed by secondary plating. However, the initial soft tissue injury may affect bony union, the fasciotomy incision or external fixator pin sites may lead to postoperative wound infections, and the staged procedure itself may adversely affect lower limb function. We assess the results of staged minimally invasive plate osteosynthesis (MIPO) for proximal tibial fractures with acute compartment syndrome. Twenty-eight patients with proximal tibial fractures accompanied by acute compartment syndrome who underwent staged MIPO and had a minimum of 12 months follow-up were enrolled. According to the AO/OTA classification, 6 were 41-A, 15 were 41-C, 2 were 42-A and 5 were 42-C fractures; this included 6 cases of open fractures. Immediate fasciotomy was performed once compartment syndrome was diagnosed and stabilization of the fracture followed using external fixation. After the soft tissue condition normalized, internal conversion with MIPO was done on an average of 37 days (range, 9-158) after index trauma. At the time of internal conversion, the external fixator pin site grades were 0 in 3 cases, 1 in 12 cases, 2 in 10 cases and 3 in 3 cases, as described by Dahl. Radiographic assessment of bony union and alignment and a functional assessment using the Knee Society Score and American Orthopedic Foot and Ankle Society (AOFAS) score were carried out. Twenty-six cases achieved primary bony union at an average of 18.5 weeks. Two cases of nonunion healed after autogenous bone grafting. The mean Knee Society Score and the AOFAS score were 95 and 95.3 respectively, at last follow-up. Complications included 1 case of osteomyelitis in a patient with a grade IIIC open fracture and 1 case of malunion caused by delayed MIPO due to poor wound conditions. Duration of external fixation and the external fixator pin site grade were not related to the

  18. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    PubMed

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P < .05). Increasing the posterior slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P < .05) but had no significant effect on the dial test at 30°, dial test at 90°, or RPS. Conversely, reversing the slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P < .05) during posterior drawer and an 8.6-mm increase in lateral compartment translation and 9.0-mm increase in medial compartment translation during RPS (vs deficient state; P < .05). Increasing posterior tibial slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the

  19. Biological approach to treatment of intra-articular proximal tibial fractures with double osteosynthesis.

    PubMed

    Singh, Saurabh; Patel, Pankaj R; Joshi, Anil Kumar; Naik, Rajnikant N; Nagaraj, Chethan; Kumar, Sudeep

    2009-02-01

    The treatment of intra-articular proximal tibial fractures is associated with complications, and much conflicting literature exists concerning the treatment of choice. In our study, an attempt has been made to develop an ideal and adequate treatment protocol for these intra-articular fractures. The principle of double osteosynthesis, i.e., lateral minimally invasive plate osteosynthesis (MIPO), was combined with a medial external fixator to treat 22 intra-articular proximal tibial fractures with soft tissue injury with a mean follow-up of 25 months. Superficial pin track infection was observed in one case, and no soft tissue breakdown was noted. Loss of articular reconstruction was reported in one case. Bridging callus was seen at 12 weeks (8 weeks-7 months). The principle of substitution or double osteosynthesis, i.e., lateral MIPO, was combined with a medial external fixator and proved to be a fairly good method of fixation in terms of results and complications.

  20. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone

  1. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures.

    PubMed

    Chen, Fancheng; Huang, Xiaowei; Ya, Yingsun; Ma, Fenfen; Qian, Zhi; Shi, Jifei; Guo, Shuolei; Yu, Baoqing

    2018-01-16

    Proximal tibia fractures are one of the most familiar fractures. Surgical approaches are usually needed for anatomical reduction. However, no single treatment method has been widely established as the standard care. Our present study aims to compare the stress and stability of intramedullary nails (IMN) fixation and double locking plate (DLP) fixation in the treatment of extra-articular proximal tibial fractures. A three-dimensional (3D) finite element model of the extra-articular proximal tibial fracture, whose 2-cm bone gap began 7 cm from the tibial plateau articular surface, was created fixed by different fixation implants. The axial compressive load on an adult knee during single-limb stance was imitated by an axial force of 2500 N with a distribution of 60% to the medial compartment, while the distal end was fixed effectively. The equivalent von Mises stress and displacement of the model was used as the output measures for analysis. The maximal equivalent von Mises stress value of the system in the IMN model was 293.23 MPa, which was higher comparing against that in the DLP fixation model (147.04 MPa). And the mean stress of the model in the IMN model (9.25 MPa) was higher than that of the DLP fixation system in terms of equivalent von Mises stress (EVMS) (P < 0.0001). The maximal value of displacement (sum) in the IMN system was 8.82 mm, which was lower than that in the DLP fixation system (9.48 mm). This study demonstrated that the stability provided by the locking plate fixation system was superior to the intramedullary nails fixation system and served as an alternative fixation for the extra-articular proximal tibial fractures of young patients.

  2. [Close reduction combined with minimally invasive percutaneous plate osteosynthesis for proximal and distal tibial fractures: a report of 56 patients].

    PubMed

    Liu, Yin-Wen; Kuang, Yong; Gu, Xin-Feng; Zheng, Yu-Xin; Li, Zhi-Qiang; Wei, Xiao-En; Zhang, Ming-Cai; Zhan, Hong-Sheng; Shi, Yin-yu

    2013-03-01

    To evaluate the clinical effects of close reduction combined with minimally invasive percutanous plate osteosynthesis (MIPPO) for proximal and distal tibial fractures. From March 2007 to December 2010, 56 patients with proximal and distal tibial fractures were treated with close reduction combined with MIPPO technique. There were 39 males and 17 females,aged from 22 to 67 years with an average of 41.3 years. Left fracture was in 25 cases and right fracture was in 31 cases; proximal tibial fracture was in 15 cases and distal tibial fractures was in 41 cases; 34 cases caused by fall down and 22 cases caused by road accident. The mean time from injury to operation was 1.7 d. Clinical manifestation included pain, swelling of leg with limitation of activity. According to the standard of Johner-Wruhs, clinical effects were evaluated. The mean operative time was 46 min in 56 patients. All fractures obtained satisfactory reduction and the location of plate was good. Incisions healed with one-stage and no superficial or deep infection was found. All the patients were followed up from 8 to 23 months with an average of 14.2 months. Only one fracture complication with delayed union,and after auto grafting with ilium bone,the fracture got union. Other 55 cases obtained bone healing in 15 to 20 weeks after operation and no internal fixation failure was found. The time of walking was 4-6 months after operation,without limping at 7 months after operation. Both lower extremities were symmetrical and the function of knee and ankle got complete recovery. According to the criteria of Johner-Wruhs score,46 cases obtained excellent results,9 good and 2 fair. Treatment of proximal and distal tibial fractures with close reduction and MIPPO technique can not only preserve soft tissue,simplify operative procedure and decrease wound, but also can obtain rigid internal fixation and guarantee early function exercises of knee and ankle joints. The method has the advantages of less soft tissue

  3. Surgical treatment of a proximal diaphyseal tibial deformity associated with partial caudal and cranial cruciate ligament deficiency and patella baja.

    PubMed

    Vincenti, S; Knell, S; Pozzi, A

    2017-04-01

    Caudal cruciate ligament injury can be a complication following tibial plateau leveling osteotomy (TPLO) (Slocum und Slocum, 1993) especially if the post-operative Tibial Plateau Angle (TPA) is less than 5 degree. We describe a case of negative TPA associated with partial cranial and caudal ligament rupture treated with a center of rotation of angulation (CORA) based cranial tibial opening wedge osteotomy and tibial tuberosity transposition. A 13 kg, mixed breed dog was presented for right pelvic limb lameness. Radiographically a bilateral patella baja and a malformed tibia tuberosity along with a bilateral TPA of -8 degree were detected. Arthroscopically a partial rupture of the cranial and caudal cruciate ligaments were found. A cranial tibial opening wedge osteotomy of 23 degree and a fibular ostectomy were performed. The osteotomy was fixed with a 8 holes ALPS 9 (KYON, Switzerland) and a 3-holes 2.0mm UniLock plate (Synthes, Switzerland). Then a proximal tibial tuberosity transposition of 10mm was performed and fixed with a pin and tension band construct. The postoperative TPA was 15 degree. The radiographic controls at 6, 10 weeks, 6 months and 1 year after surgery revealed an unchanged position of the implants and progressive healing of the osteotomies. At the 6 and 12 months recheck evaluation the dog had no evidence of lameness or stifle pain and radiographs revealed complete healing of the osteotomy site and no implant failure. The diaphyseal CORA based osteotomy allowed accurate correction of a proximal tibial deformity associated with negative TPA.

  4. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions.

    PubMed

    Shin, Young-Soo; Han, Seung-Beom; Hwang, Yeok-Ku; Suh, Dong-Won; Lee, Dae-Hee

    2015-05-01

    We aimed to compare posterior cruciate ligament (PCL) tibial tunnel location after tibial guide insertion medial (between the PCL remnant and the medial femoral condyle) and lateral (between the PCL remnant and the anterior cruciate ligament) to the PCL stump as determined by in vivo 3-dimensional computed tomography (3D-CT). Tibial tunnel aperture location was analyzed by immediate postoperative in vivo CT in 66 patients who underwent single-bundle PCL reconstruction, 31 by over-the-PCL and 35 by under-the-PCL tibial guide insertion techniques. Tibial tunnel positions were measured in the medial to lateral and proximal to distal directions of the posterior proximal tibia. The center of the tibial tunnel aperture was located more laterally (by 2.7 mm) in the over-the-PCL group than in the under-the-PCL group (P = .040) and by a relative percentage (absolute value/tibial width) of 3.2% (P = .031). Tibial tunnel positions in the proximal to distal direction, determined by absolute value and relative percentage, were similar in the 2 groups. Tibial tunnel apertures were located more laterally after lateral-to-the-PCL tibial guide insertion than after medial-to-the-PCL tibial guide insertion. There was, however, no significant difference between these techniques in distance from the joint line to the tibial tunnel aperture. Insertion lateral to the PCL stump may result in better placement of the PCL in its anatomic footprint. Level III, retrospective comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. Proximal tibial strain in medial unicompartmental knee replacements: A biomechanical study of implant design.

    PubMed

    Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Pankaj, P; Evans, S L

    2013-10-01

    As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves ('hits') produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.

  6. The Anteroposterior Axis of the Proximal Tibia Can Change After Tibial Resection in Total Knee Arthroplasty: Computer Simulation Using Asian Osteoarthritis Knees.

    PubMed

    Ushio, Tetsuro; Mizu-Uchi, Hideki; Okazaki, Ken; Ma, Yuan; Kuwashima, Umito; Iwamoto, Yukihide

    2017-03-01

    We evaluated the effect of cutting surface on the anteroposterior (AP) axis of the proximal tibia using a 3-dimensional (3D) bone model to ensure proper tibial rotational alignment in total knee arthroplasty. 3D bone models were reconstructed from the preoperative computed tomography data of 93 Japanese osteoarthritis knees with varus deformity. The AP axis was defined as the perpendicular bisector of the medial and lateral condylar centers in a 3D coordinate system. Bone cutting of the proximal tibia was performed with various tibial posterior slopes (0°, 3°, 7°) to the mechanical axis, and we compared the AP axes before and after bone cutting. The AP axis before bone cutting crossed a point at about 16% (one-sixth) of the distance from the medial edge of the patellar tendon at its tibial attachment. The AP axis after bone cutting was significantly internally rotated at all posterior slopes: 4.1° at slope 0°, 3.0° at slope 3°, and 2.1° at slope 7°. The percentages of cases with differences of more than 3° or 5° were 66.7% and 34.4% at slope 0°, 53.8% and 24.7% at slope 3°, and 38.3% and 11.8% at slope 7°, respectively. The AP axis of the proximal tibia may be rotated internally after resection of the proximal tibia in total knee arthroplasty. Hence, surgeons should recognize the effect of changes in the cutting surface on rotational alignment of the proximal tibia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Concomitant Posterior Hip Dislocation, Ipsilateral Intertrochanteric- and Proximal Tibial- Fractures with Popliteal Artery Injury: A Challenging Trauma Mélange.

    PubMed

    Chotai, Pranit N; Ebraheim, Nabil A; Hart, Ryan; Wassef, Andrew

    2015-11-05

    Constellation of ipsilateral posterior hip dislocation, intertrochanteric- and proximal tibial fracture with popliteal artery injury is rare. Management of this presentation is challenging. A motor vehicle accident victim presented with these injuries, but without any initial signs of vascular compromise. Popliteal artery injury was diagnosed intra-operatively and repaired. This was followed by external fixation of tibial fracture, open reduction of dislocated hip and internal fixation of intertrochanteric fracture. Patient regained bilateral complete weight bearing and returned to pre-accident activity level. Apt surgical management including early repair of vascular injury in such a trauma mélange allows for a positive postoperative outcome.

  8. [The randomized controlled trial of influences of T shape approach on the function of knee joint in the treatment of proximal tibial fractures].

    PubMed

    Peng, Wei-xiong; Zhang, Zhi; Liang, Jie-hong

    2008-04-01

    To investigate the clinical value of T shape approach in the treatment of proximal tibial fractures. One handrend and thirteen patients of proximal tibial fractures were randomly divided into two groups. Group A: 62 cases underwent the traditional exposure approach. According to Schatzker classification,the cases of II to VI type was 25, 10, 16, 6, 5 respectively. Group B:51 cases underwent T shape approach ahead of knee joint, the cases of II to VI type was 21, 8, 13, 5, 4 respectively. All data were analyzed by SPSS 10.0 to compare operation time, blood loss, duration of hospitalization, healing time, the time of osseous union and complications after operation. Sixty patients in group A and 50 patients in group B were followed-up from 12 to 24 months. (1) Operation time:group B was longer than A (P < 0.01). (2) Mean blood loss and duration of hospitalization was the same. (3) Clinical healing time:group B was shorter. (4) Mean time of osseous union: 48 group B was shorter. Function of knee: group B was better than group A. (Complication: group B was less than group A. As compared with traditional exposure approach, T shape approach of knee joint had advantages of small scar, fewer complications, faster union of fracture and earlier recovery of joint function. The approach is valuable for the treatment of proximal tibial fractures.

  9. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model.

    PubMed

    Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Evans, S L; Pankaj, P

    2017-01-01

    Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R 2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R 2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection.Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite

  10. The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study.

    PubMed

    Rubino, L Joseph; Schoderbek, Robert J; Golish, S Raymond; Baumfeld, Joshua; Miller, Mark D

    2008-01-01

    Opening wedge high tibial osteotomies are performed for degenerative changes and varus. Opening wedge osteotomies can change proximal tibial slope in the sagittal plane, possibly imparting stability in the ACL-deficient knee. The aim of this study was to assess the effect of plate position and size on change in tibial slope. Eight cadaveric knees underwent opening wedge high tibial osteotomy with Puddu plates of each different size. Plates were placed anterior, central, and posterior for each size used. Lateral radiographs were obtained. Tibial slope was measured and compared with baseline slope. Tibial slope was affected by plate position (P < 0.05) and size (P < 0.001). Smaller, posterior plates had less effect on tibial slope. However, anterior and central plates increased tibial slope over all plate sizes (P < 0.05). This study found that tibial slope increases with opening wedge high tibial osteotomy. Larger corrections and anterior placement of the plate are associated with larger increases in slope.

  11. Comparison of volumetric bone mineral density in the tibial region of interest for ACL reconstruction.

    PubMed

    Klein, Scott A; Nyland, John; Caborn, David N M; Kocabey, Yavuz; Nawab, Akbar

    2005-12-01

    Adequate tibial bone mineral density (BMD) is essential to soft tissue graft fixation during anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare volumetric bone plug density measurements at the tibial region of interest for ACL reconstruction using a standardized immersion technique and Archimedes' principle. Cancellous bone cores were harvested from the proximal, middle, and distal metaphyseal regions of the lateral tibia and from the standard tibial tunnel location used for ACL reconstruction of 18 cadaveric specimens. Proximal tibial cores displayed 32.6% greater BMD than middle tibial cores and 31.8% greater BMD than distal tibial cores, but did not differ from the BMD of the tibial tunnel cores. Correlational analysis confirmed that the cancellous BMD in the tibial tunnel related to the cancellous BMD of the proximal and distal lateral tibial metaphysis. In conjunction with its adjacent cortical bone, the cancellous BMD of the region used for standard tibial tunnel placement provides an effective foundation for ACL graft fixation. In tibia with poor BMD, bicortical fixation that incorporates cortical bone from the distal tibial tunnel region is recommended.

  12. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  13. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1994-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (PTH) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses (PTM) of female rats. The right hindlimbs of six-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization (RHLI), the rats were subcutaneously injected with 200 microgram hPTH(1-38)/kg/day for 15 (short-term) or 75 (longer-term) days. Static bone histomorphometry was performed on the primary spongiosa, while both static and dynamic histomorphometry were performed on the secondary spongiosa of the right PTM. Immobilization for 30 days without treatment decreased trabecular bone area, number and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate (BFR/TV) in the secondary spongios. These changes reached a new steady state thereafter. Treatment with 200 microgram hPTH(1-38)/kg/day for 15 days, beginning at 30 days post immobilization (IM), significantly increased trabecular bone area, thickness and number in both primary and secondary spongiosa despite continuous IM when compared to the age-related and IM controls. The short-term (15 days) PTH treatment significantly increased labeling perimeter, mineral apposition rate and BFR/TV in the secondary spongiosa and stimulated longitudinal bone growth as compared to the age-related and IM controls. PTH treatment for longer-term (75 days) further increased trabecular bone area, thickness and number as compared to aging and IM controls and short-term (15 days) PTH treated groups. The bone formation indices in the secondary spongiosa of these longer-term treated rats were lower than that of short-term (15 days) PTH treated group, but they were still higher than those of IM and age-related controls. Our findings indicate that PTH treatment stimulates

  14. Radiological study of the knee joint line position measured from the fibular head and proximal tibial landmarks.

    PubMed

    Havet, Eric; Gabrion, Antoine; Leiber-Wackenheim, Frederic; Vernois, Joël; Olory, Bruno; Mertl, Patrice

    2007-06-01

    Restoring the joint line level is one of the surgical challenges during revision of total knee arthroplasty. The position of the tibial surface is commonly estimated by its distance to the apex of fibular head, but no study evaluating this distance accurately has been published yet. The purpose of this work was to study the distance between the knee joint line and the apex of the fibular head and the proximal tibia, particularly the tibial tuberosity. Variability with clinical data and relations with other local measurements have been evaluated on knee radiographs (an antero-posterior view, a medio-lateral view and an anteroposterior full length view) of 100 subjects (125 knees). Results showed no correlation between the joint line-fibular head apex distance and any clinical data of the patients, or any other performed measurements. Relations between tibial measurements and the sexe or the height of the subjects were noted. Besides, the review of the 25 bilateral cases did not show statistically significant side difference but the descriptive analysis showed too large discrepancies for the joint line-fibular head apex distance to be used as a landmark. We conclude that the fibular head apex cannot be used as a morphologic landmark to determine the knee joint line position. Its interest in clinical and surgical practice must be discussed.

  15. Monoplanar versus biplanar medial open-wedge proximal tibial osteotomy for varus gonarthrosis: a comparison of clinical and radiological outcomes.

    PubMed

    Elmalı, Nurzat; Esenkaya, Irfan; Can, Murat; Karakaplan, Mustafa

    2013-12-01

    We compared clinical and radiological results of two proximal tibial osteotomy (PTO) techniques: monoplanar medial open-wedge osteotomy and biplanar retrotubercle medial open-wedge osteotomy, stabilised by a wedged plate. We evaluated 88 knees in 78 patients. Monoplanar medial open-wedge PTO was performed on 56 knees in 50 patients with a mean age of 55 ± 9 years. Biplanar retrotubercle medial open-wedge PTO was performed on 32 knees in 28 patients with a mean age of 57 ± 7 years. Mean follow-up periods were 40.6 ± 7 months for the monoplanar PTO group and 38 ± 5 months for the biplanar retrotubercle PTO group. Clinical outcome was evaluated using the hospital for special surgery scoring system, and radiological outcome was evaluated by the measurements of femorotibial angle (FTA), patellar height and tibial slope changes. In both groups, post-operative HSS scores increased significantly. No significant difference was found between groups in FTA alteration, but the FTA decreased significantly in both groups. Patellar index ratios decreased significantly in the monoplanar PTO group (Insall-Salvati Index by 0.07, Blackburne-Peel Index by 0.07), but not in the biplanar retrotubercle PTO group. Tibial slopes were increased significantly in the monoplanar PTO group, but not in the retrotubercle PTO group. Biplanar retrotubercle medial open-wedge osteotomy and monoplanar medial open-wedge osteotomy are both clinically effective for the treatment for varus gonarthrosis. Retrotubercle osteotomy also prevents patella infera and tibial slope changes radiologically.

  16. Predictive formula for the length of tibial tunnel in anterior crucitate ligament reconstruction.

    PubMed

    Chernchujit, Bancha; Barthel, Thomas

    2009-12-01

    The anterior cruciate ligament (ACL) reconstruction using bone-patellar tendon bone graft is a common procedure in orthopedics. One challenging problem found is a graft-tunnel mismatch. Previous studies have reported the mathematic formula to predict the tibial angle length and angle to avoid graft-tunnel mismatch but these formulas have shown limited predictability. To propose a predictive formula for the length of tibial tunnel and to examine its predictability. Thirty six patients (26 males, 14 females) with ACL injury were included in this study. The preoperativemedial proximal tibial angle was measured. Intraoperatively, the tibial tunnel length and tibial entry point were measured. The postoperative coronal and saggital angle of tibial tunnel were measured from knee radiograph. The data were analysed by using trigonometry correlation and formulate the predictive formula of tibial tunnel length. We found that tibial tunnel length (T) has trigonometric correlation between the location of tibial tunnel entry point (w), coronal angle of tibial tunnel (b), saggital angle of tibial tunnel (a) and the medial proximal tibial slope (c) by using this formula T = Wcos(c)tan(b)/sin(a) This proposed predictive formula can well predict the length of the tibial tunnel at preoperative period to avoid graft-tunnel mismatch.

  17. Tibial bone fractures occurring after medioproximal tibial bone grafts for oral and maxillofacial reconstruction.

    PubMed

    Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-12-01

    Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.

  18. The soleal line: a cause of tibial pseudoperiostitis.

    PubMed

    Levine, A H; Pais, M J; Berinson, H; Amenta, P S

    1976-04-01

    An unusually prominent soleal line (a normal anatomic variant) may mimic periosteal reaction along the posterior margin of the proximal tibial shaft. This area of pseudoperiostitis is differentiated from hyperostoses arising from the anterior tibial tubercle and the interosseous membrane. It is always associated with normal, undisturbed architecture of the underlying bone.

  19. Bilateral double level tibial lengthening in dwarfism.

    PubMed

    Burghardt, Rolf D; Yoshino, Koichi; Kashiwagi, Naoya; Yoshino, Shigeo; Bhave, Anil; Paley, Dror; Herzenberg, John E

    2015-12-01

    Outcome assessment after double level tibial lengthening in patients with dwarfism. Fourteen patients with dwarfism were analyzed after bilateral simultaneous double level tibial lengthening. Average age was 15.1 years. Average lengthening was 13.5 cm. The two levels were lengthened by an average of 7.5 cm proximally and 6.0 cm distally. Concomitant deformities were also addressed during lengthening. External fixation treatment time averaged 8.8 months. Healing index averaged 0.7 months/cm. Bilateral tibial lengthening for dwarfism is difficult, but the results are usually quite gratifying.

  20. Fixator-assisted medial tibial plateau elevation to treat severe Blount's disease: outcomes at maturity.

    PubMed

    Fitoussi, F; Ilharreborde, B; Lefevre, Y; Souchet, P; Presedo, A; Mazda, K; Penneçot, G F

    2011-04-01

    Severe forms of Blount's disease may be associated with medial tibial plateau (MTP) depression. Management should then take account of joint congruence, laxity, limb axis, torsional abnomality, leg length discrepancy (LLD) and eventual recurrence history. Eight knees (six patients) were managed in a single step comprising MTP elevation osteotomy, lateral epiphysiodesis and proximal tibia osteotomy to correct varus and rotational deformity. Fixation was achieved using an Ilizarov external fixator. Mean age was 10.5 years. Mean hip-knee-ankle (HKA) angle was 151°; distal femoral varus, 94°; metaphyseal-diaphyseal angle (MDA), 27°; and angle of depression of the medial tibial plateau (ADMTP), 42°. Predicted residual proximal tibial growth was 2.6 cm. At a mean 48 months' follow-up, results were good in six cases, medium in one and poor (due to incomplete lateral epiphysiodesis) in one. Mean lateral tibial torsion was 9° and final LLD 11 mm. Weight-bearing was resumed at 2 months, and the fixator was removed at 5.5 months postoperatively. At end of follow-up, mean HKA angle was 179.6°, MDA 7.3° and ADMTP 5.4°. This technically demanding procedure gave satisfactory results in terms of axes and congruence; longer term assessment remains needed. Level IV. Retrospective study. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser.

    PubMed

    Aldebeyan, Wassim; Liddell, Antony; Steffen, Thomas; Beckman, Lorne; Martineau, Paul A

    2017-08-01

    This is the first biomechanical study to examine the potential stress riser effect of the tibial tunnel or tunnels after ACL reconstruction surgery. In keeping with literature, the primary hypothesis tested in this study was that the tibial tunnel acts as a stress riser for fracture propagation. Secondary hypotheses were that the stress riser effect increases with the size of the tunnel (8 vs. 10 mm), the orientation of the tunnel [standard (STT) vs. modified transtibial (MTT)], and with the number of tunnels (1 vs. 2). Tibial tunnels simulating both single bundle hamstring graft (8 mm) and bone-patellar tendon-bone graft (10 mm) either STT or MTT position, as well as tunnels simulating double bundle (DB) ACL reconstruction (7, 6 mm), were drilled in fourth-generation saw bones. These five experimental groups and a control group consisting of native saw bones without tunnels were loaded to failure on a Materials Testing System to simulate tibial plateau fracture. There were no statistically significant differences in peak load to failure between any of the groups, including the control group. The fracture occurred through the tibial tunnel in 100 % of the MTT tunnels (8 and 10 mm) and 80 % of the DB tunnels specimens; however, the fractures never (0 %) occurred through the tibial tunnel of the standard tunnels (8 or 10 mm) (P = 0.032). In the biomechanical model, the tibial tunnel does not appear to be a stress riser for fracture propagation, despite suggestions to the contrary in the literature. Use of a standard, more vertical tunnel decreases the risk of ACL graft compromise in the event of a fracture. This may help to inform surgical decision making on ACL reconstruction technique.

  2. MRI Anatomy of the Tibial ACL Attachment and Proximal Epiphysis in a Large Population of Skeletally Immature Knees: Reference Parameters for Planning Anatomic Physeal-Sparing ACL Reconstruction.

    PubMed

    Swami, Vimarsha Gopal; Mabee, Myles; Hui, Catherine; Jaremko, Jacob Lester

    2014-07-01

    To aid in performing anatomic physeal-sparing anterior cruciate ligament (ACL) reconstruction, it is important for surgeons to have reference data for the native ACL attachment positions and epiphyseal anatomy in skeletally immature knees. To characterize anatomic parameters of the ACL tibial insertion and proximal tibial epiphysis at magnetic resonance imaging (MRI) in a large population of skeletally immature knees. Cross-sectional study; Level of evidence, 3. The ACL tibial attachment site and proximal epiphysis were examined in 570 skeletally immature knees with an intact ACL (age, 6-15 years) using 1.5-T proton density-weighted sagittal MRI; also measured were the tibial anteroposterior diameter; anterior, central, and posterior ACL attachment positions; vertical height of the epiphysis; and maximum oblique epiphyseal depth extending from the ACL tibial attachment center to the tibial tuberosity. In adolescents (11-15 years of age), the center of the ACL's tibial attachment was 51.5% ± 5.7% of the anteroposterior diameter of the tibia, with no significant differences between sexes or age groups (P > .05 in all cases). Mean vertical epiphyseal height was 15.9 ± 1.7 mm in the adolescent group, with significant differences between 11-year-olds (15.2 ± 1.5 mm) and 15-year-olds (16.6 ± 1.6 mm), P < .001, and between males (16.6 ± 1.5 mm) and females (14.8 ± 1.4), P < .001. Mean maximum oblique depth was 30.0 ± 5.3 mm, with a significant difference between 11-year-olds (26.7 ± 4.9 mm) and 15-year-olds (32.7 ± 5.1 mm), P < .001, and between males (29.7 ± 6.4 mm) and females (27.8 ± 5.2 mm), P < .001. The maximum oblique depth occurred at a mean angle of ~50°, and this angle did not change with age or sex. There was a significant moderate correlation (r = 0.39, P < .001) between epiphyseal vertical height and maximum oblique depth. The center of the ACL tibial attachment was consistently near 51% of the anteroposterior diameter, regardless of age or sex

  3. Ideal tibial intramedullary nail insertion point varies with tibial rotation.

    PubMed

    Walker, Richard M; Zdero, Rad; McKee, Michael D; Waddell, James P; Schemitsch, Emil H

    2011-12-01

    The aim of the study was to investigate how superior entry point varies with tibial rotation and to identify landmarks that can be used to identify suitable radiographs for successful intramedullary nail insertion. The proximal tibia and knee were imaged for 12 cadaveric limbs undergoing 5° increments of internal and external rotation. Medial and lateral arthrotomies were performed, the ideal superior entry point was identified, and a 2-mm Kirschner wire inserted. A second Kirschner wire was sequentially placed at the 5-mm and then the 10-mm position, both medial and lateral to the initial Kirschner wire. Radiographs of the knee were obtained for all increments. The changing position of the ideal nail insertion point was recorded. A 30° arc (range, 25°-40°) provided a suitable anteroposterior radiograph. On the neutral anteroposterior radiograph, the Kirschner wire was 54% ± 1.5% (range, 51-56%) from the medial edge of the tibial plateau. For every 5° of rotation, the Kirschner wire moved 3% of the plateau width. During external rotation, a misleading medial entry point was obtained. A fibular bisector line correlated with an entry point that was ideal or up to 5 mm lateral to this but never medial. The film that best showed the fibular bisector line was between 0° and 10° of internal rotation of the tibia. The fibula head bisector line can be used to avoid choosing external rotation views and, thus, avoid medial insertion points. The current results may help the surgeon prevent malalignment during intramedullary nailing in proximal tibial fractures.

  4. Anatomic mapping for surgical reconstruction of the proximal tibiofibular ligaments.

    PubMed

    See, Aaron; Bear, Russell R; Owens, Brett D

    2013-01-01

    Injury to the proximal tibiofibular joint is uncommon. Previous studies regarding the anatomy of this region have predominantly focused on joint orientation. As radiographic technology has advanced, later studies have attempted to evaluate the capsular anatomy. However, no reports specifically map the ligaments to this joint. The objectives of the current study were to define specific ligamentous structures that provide stability to the proximal tibiofibular joint, describe easily identifiable and reproducible surgical landmarks to aid in surgical reconstruction, and add to the understanding of the posterolateral structures of the knee previously described by other authors. The proximal tibiofibular joint ligaments were identified in 10 fresh-frozen cadaveric specimens. Average ligament length, width, and thickness and area of the footprints of the tibial and fibular attachments were measured. Distances from the ligament footprints to known anatomic landmarks (eg, Gerdy's tubercle, tibial articular surface, and fibular styloid) were also measured. The anterior ligament tibial attachment was a mean of 15.6 mm lateral and posterior to Gerdy's tubercle and 17.3 mm anterior and inferior from the fibular styloid. Posterior ligament tibial insertion was a mean of 15.7 mm inferior to the tibial articular surface on the tibial side and 14.2 mm medial and slightly inferior from the fibular styloid. Definable ligaments provide stability to the proximal tibiofibular joint and can be reconstructed in an anatomic fashion using the landmarks and parameters described. This information allows for an anatomic reconstruction of the proximal tibiofibular joint, which should provide patients with better outcomes and fewer postoperative sequelae. Copyright 2013, SLACK Incorporated.

  5. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2015-08-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain initiation. Calculation of bone elastic moduli from image data is a basic step when constructing finite element models. However, different relationships between elastic moduli and imaged density (known as density-modulus relationships) have been reported in the literature. The objective of this study was to apply seven different trabecular-specific and two cortical-specific density-modulus relationships from the literature to finite element models of proximal tibia subchondral bone, and identify the relationship(s) that best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using published density-modulus relationships and mapped to corresponding finite element models. Proximal tibial structural stiffness values were compared to experimentally measured stiffness values from in-situ macro-indentation testing directly on the subchondral bone surface (47 indentation points). Regression lines between experimentally measured and finite element calculated stiffness had R(2) values ranging from 0.56 to 0.77. Normalized root mean squared error varied from 16.6% to 337.6%. Of the 21 evaluated density-modulus relationships in this study, Goulet combined with Snyder and Schneider or Rho appeared most appropriate for finite element modeling of local subchondral bone structural stiffness. Though, further studies are needed to optimize density-modulus relationships and improve finite element estimates of local subchondral bone structural stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Novel implant for peri-prosthetic proximal tibia fractures.

    PubMed

    Tran, Ton; Chen, Bernard K; Wu, Xinhua; Pun, Chung Lun

    2018-03-01

    Repair of peri-prosthetic proximal tibia fractures is very challenging in patients with a total knee replacement or arthroplasty. The tibial component of the knee implant severely restricts the fixation points of the tibial implant to repair peri-prosthetic fractures. A novel implant has been designed with an extended flange over the anterior of tibial condyle to provide additional points of fixation, overcoming limitations of existing generic locking plates used for proximal tibia fractures. Furthermore, the screws fixed through the extended flange provide additional support to prevent the problem of subsidence of tibial component of knee implant. The design methodology involved extraction of bone data from CT scans into a flexible CAD format, implant design and structural evaluation and optimisation using FEM as well as prototype development and manufacture by selective laser melting 3D printing technology with Ti6Al4 V powder. A prototype tibia implant was developed based on a patient-specific bone structure, which was regenerated from the CT images of patient's tibia. The design is described in detail and being applied to fit up to 80% of patients, for both left and right sides based on the average dimensions and shape of the bone structure from a wide range of CT images. A novel tibial implant has been developed to repair peri-prosthetic proximal tibia fractures which overcomes significant constraints from the tibial component of existing knee implant. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  8. The location of the tibial accelerometer does influence impact acceleration parameters during running.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro

    2017-09-01

    Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.

  9. Tibial anatomy in normal small breed dogs including anisometry of various extracapsular stabilizing suture attachment sites.

    PubMed

    Witte, P G

    2015-01-01

    To investigate proximal tibial anatomy and its influence on anisometry of extracapsular stabilizing sutures in small dog breeds. Mediolateral radiographs of the femora, stifles, and tibiae of 12 small breed dogs were acquired with the stifles positioned at various angles. Measurements taken included tibial plateau angle (TPA), diaphyseal: proximal tibial angle (DPA), patellar tendon angle (PTA), Z-angle, relative tibial tuberosity width (rTTW), and the distance between six combinations of two femoral and three tibial extra-capsular stabilizing suture (ECS) attachment sites. Theoretical strain through stifle range-of-motion was recorded. The TPA (32° ± 5.8°), DPA (10.2° ± 7.3°), PTA (103.7° ± 6.2°), and Z-angle (70.4° ± 9.0°) were positively correlated with one another (R >0.7), but none were correlated with rTTW (0.93 ± 0.10). The F2-T1 combination of ECS attachment sites had lowest strain for nine stifles. The shortest attachment site separation was at a stifle flexion of 50° for nine stifles. Proximal tibial anatomy measurements could not predict optimal attachment site combination, optimal stifle angle for suture placement, or ECS strain. There is individual variation in the optimal attachment site combination and stifle angle for suture placement, which may influence consistency of outcomes with ECS.

  10. Growth Modulation in Achondroplasia.

    PubMed

    McClure, Philip K; Kilinc, Eray; Birch, John G

    2017-09-01

    Achondroplasia is the most common skeletal dysplasia with a rate of nearly 1/10,000. The development of lower extremity deformity is well documented, and various modes of correction have been reported. There are no reports on the use of growth modulation to correct angular deformity in achondroplasia. Medical Records from 1985 to 2015 were reviewed for the diagnosis of achondroplasia and growth modulation procedures. Patients who had been treated for angular deformity of the legs by growth modulation were identified. A detailed analysis of their medical record and preoperative and final lower extremity radiographs was completed. Four patients underwent growth modulation procedures, all to correct existing varus deformity of the legs. Three of the 4 patients underwent bilateral distal femoral and proximal tibial growth modulation. The remaining patient underwent tibial correction only. Two of the 4 patients had a combined proximal fibular epiphysiodesis. All limbs had some improvement of alignment; however, 1 patient went on to bilateral osteotomies. Only 1 limb corrected to a neutral axis with growth modulation alone at last follow-up, initial implantation was done before 5 years of age. Growth modulation is an effective means for deformity correction in the setting of achondroplasia. However implantation may need to be done earlier than would be typical for patients without achondroplasia. Osteotomy may still be required after growth modulation for incomplete correction.

  11. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  12. Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis.

    PubMed

    Krause, Matthias; Hubert, Jan; Deymann, Simon; Hapfelmeier, Alexander; Wulff, Birgit; Petersik, Andreas; Püschel, Klaus; Amling, Michael; Hawellek, Thelonius; Frosch, Karl-Heinz

    2018-05-07

    Impaired bone structure poses a challenge for the treatment of osteoporotic tibial plateau fractures. As knowledge of region-specific structural bone alterations is a prerequisite to achieving successful long-term fixation, the aim of the current study was to characterize tibial plateau bone structure in patients with osteoporosis and the elderly. Histomorphometric parameters were assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 21 proximal tibiae from females with postmenopausal osteoporosis (mean age: 84.3 ± 4.9 years) and eight female healthy controls (45.5 ± 6.9 years). To visualize region-specific structural bony alterations with age, the bone mineral density (Hounsfield units) was additionally analyzed in 168 human proximal tibiae. Statistical analysis was based on evolutionary learning using globally optimal regression trees. Bone structure deterioration of the tibial plateau due to osteoporosis was region-specific. Compared to healthy controls (20.5 ± 4.7%) the greatest decrease in bone volume fraction was found in the medio-medial segments (9.2 ± 3.5%, p < 0.001). The lowest bone volume was found in central segments (tibial spine). Trabecular connectivity was severely reduced. Importantly, in the anterior and posterior 25% of the lateral and medial tibial plateaux, trabecular support and subchondral cortical bone thickness itself were also reduced. Thinning of subchondral cortical bone and marked bone loss in the anterior and posterior 25% of the tibial plateau should require special attention when osteoporotic patients require fracture fixation of the posterior segments. This knowledge may help to improve the long-term, fracture-specific fixation of complex tibial plateau fractures in osteoporosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Proximal tibial stress fracture associated with mild osteoarthritis of the knee: case report.

    PubMed

    Curković, Marko; Kovac, Kristina; Curković, Bozidar; Babić-Naglić, Durda; Potocki, Kristina

    2011-03-01

    Stress fractures are considered as multifactorial overuse injuries occurring in 0.3%-0.8% of patients suffering from rheumatic diseases, with rheumatoid arthritis being the most common underlying condition. Stress fractures can be classified according to the condition of the bone affected as: 1) fatigue stress fractures occurring when normal bone is exposed to repeated abnormal stresses; and 2) insufficiency stress fractures that occur when normal stress is applied to bone weakened by an underlying condition. Stress fractures are rarely associated with severe forms of knee osteoarthritis, accompanied with malalignment and obesity. We present a patient with a proximal tibial stress fracture associated with mild knee osteoarthritis without associated malalignment or obesity. Stress fracture should be considered when a patient with osteoarthritis presents with sudden deterioration, severe localized tenderness to palpation and localized swelling or periosteal thickening at the pain site and elevated local temperature. The diagnosis of stress fractures in patients with rheumatic diseases may often be delayed because plain film radiographs may not reveal a stress fracture soon after the symptom onset; moreover, evidence of a fracture may never appear on plain radiographs. Triple phase nuclear bone scans and magnetic resonance imaging are more sensitive in the early clinical course than plain films for initial diagnosis.

  14. The developmental morphology of a "periosteal" ligament insertion: growth and maturation of the tibial insertion of the rabbit medial collateral ligament.

    PubMed

    Matyas, J R; Bodie, D; Andersen, M; Frank, C B

    1990-05-01

    The structural properties of ligament insertions change dramatically during growth and maturation, but little is known about their developmental anatomy. This study describes and quantifies changes in the gross and microscopic anatomy of the tibial insertion of the rabbit medial collateral ligament (MCL) during development and at skeletal maturity. Eighty animals were used for growth and descriptive studies. From this group, 27 animals, ranging in age from 1 to 24 months, were injected with fluorescent bone markers and their tibial insertions were processed undecalcified for histology. Sections were examined by polarized light and fluorescence microscopy to identify matrix and cells and to quantify mineral formation. Results showed that animals achieved histological skeletal maturity between 9 and 12 months of age. Body weights were a poor index of skeletal maturity. The tibial insertion was composed of five tissue layers, which changed proportions during growth and maturation. In immature animals, MCL fibers entered the periosteum; in older animals, MCL fibers were cemented to the tibia by advancing mineral. The tibial attachment of the MCL was thus transferred from the periosteum to the cortex during growth, suggesting that the term "periosteal insertion" is imprecise in adults. The hypothesis is put forward that these structural changes account for the reported increase in tensile failure of this insertion near skeletal maturity.

  15. The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test.

    PubMed

    Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P

    2016-03-01

    The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee

  16. Do modern total knee replacements improve tibial coverage?

    PubMed

    Meier, Malin; Webb, Jonathan; Collins, Jamie E; Beckmann, Johannes; Fitz, Wolfgang

    2018-01-25

    The purpose of the present study is to compare newer designs of various symmetric and asymmetric tibial components and measure tibial bone coverage using the rotational safe zone defined by two commonly utilized anatomic rotational landmarks. Computed tomography scans (CT scans) of one hundred consecutive patients scheduled for total knee arthroplasty were obtained pre-operatively. A virtual proximal tibial cut was performed and two commonly used rotational axes were added for each image: the medio-lateral axis (ML-axis) and the medial 1/3 tibial tubercle axis (med-1/3-axis). Different symmetric and asymmetric implant designs were then superimposed in various rotational positions for best cancellous and cortical coverage. The images were imported to a public domain imaging software, and cancellous and cortical bone coverage was computed for each image, with each implant design in various rotational positions. One single implant type could not be identified that provided the best cortical and cancellous coverage of the tibia, irrespective of using the med-1/3-axis or the ML-axis for rotational alignment. However, it could be confirmed that the best bone coverage was dependent on the selected rotational landmark. Furthermore, improved bone coverage was observed when tibial implant positions were optimized between the two rotational axes. Tibial coverage is similar for symmetric and asymmetric designs, but depends on the rotational landmark for which the implant is designed. The surgeon has the option to improve tibial coverage by optimizing placement between the two anatomic rotational alignment landmarks, the medial 1/3 and the ML-axis. Surgeons should be careful assessing intraoperative rotational tibial placement using the described anatomic rotational landmarks to optimize tibial bony coverage without compromising patella tracking. III.

  17. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    PubMed

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  18. What Components Comprise the Measurement of the Tibial Tuberosity-Trochlear Groove Distance in a Patellar Dislocation Population?

    PubMed

    Tensho, Keiji; Akaoka, Yusuke; Shimodaira, Hiroki; Takanashi, Seiji; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2015-09-02

    The tibial tuberosity-trochlear groove distance is used as an indicator for medial tibial tubercle transfer; however, to our knowledge, no studies have verified whether this distance is strongly affected by tubercle lateralization at the proximal part of the tibia. We hypothesized that the tibial tuberosity-trochlear groove distance is mainly affected by tibial tubercle lateralization at the proximal part of the tibia. Forty-four patients with a history of patellar dislocation and forty-four age and sex-matched controls were analyzed with use of computed tomography. The tibial tuberosity-trochlear groove distance, tibial tubercle lateralization, trochlear groove medialization, and knee rotation were measured and were compared between the patellar dislocation group and the control group. The association between the tibial tuberosity-trochlear groove distance and three other parameters was calculated with use of the Pearson correlation coefficient and partial correlation analysis. There were significant differences in the tibial tuberosity-trochlear groove distance (p < 0.001) and knee rotation (p < 0.001), but there was no difference in the tibial tubercle lateralization (p = 0.13) and trochlear groove medialization (p = 0.08) between the patellar dislocation group and the control group. The tibial tuberosity-trochlear groove distance had no linear correlation with tubercle lateralization (r = 0.21) or groove medialization (r = -0.15); however, knee rotation had a good positive correlation in the patellar dislocation group (r = 0.62). After adjusting for the remaining parameters, knee rotation strongly correlated with the tibial tuberosity-trochlear groove distance (r = 0.69, p < 0.001), whereas tubercle lateralization showed moderate significant correlations in the patellar dislocation group (r = 0.42; p = 0.005). Because the tibial tuberosity-trochlear groove distance is affected more by knee rotation than by tubercle malposition, its use as an indicator for

  19. Surgical anatomy of medial open-wedge high tibial osteotomy: crucial steps and pitfalls.

    PubMed

    Madry, Henning; Goebel, Lars; Hoffmann, Alexander; Dück, Klaus; Gerich, Torsten; Seil, Romain; Tschernig, Thomas; Pape, Dietrich

    2017-12-01

    To give an overview of the basic knowledge of the functional surgical anatomy of the proximal lower leg and the popliteal region relevant to medial high tibial osteotomy (HTO) as key anatomical structures in spatial relation to the popliteal region and the proximal tibiofibular joint are usually not directly visible and thus escape a direct inspection. The surgical anatomy of the human proximal lower leg and its relevance for HTO are illustrated with a special emphasis on the individual steps of the operation involving creation of the osteotomy planes and plate fixation. The posteriorly located popliteal neurovascular bundle, but also lateral structures such as the peroneal nerve, the head of the fibula and the lateral collateral ligament must be protected from the instruments used for osteotomy. Neither positioning the knee joint in flexion, nor the posterior thin muscle layer of the popliteal muscle offers adequate protection of the popliteal neurovascular bundle when performing the osteotomy. Tactile feedback through a loss-of-resistance when the opposite cortex is perforated is only possible when sawing and drilling is performed in a pounding fashion. Kirschner wires with a proximal thread, therefore, always need to be introduced under fluoroscopic control. Due to anatomy of the tibial head, the tibial slope may increase inadvertently. Enhanced surgical knowledge of anatomical structures that are at a potential risk during the different steps of osteotomy or plate fixation will help to avoid possible injuries. Expert opinion, Level V.

  20. Intra-epiphyseal stress injury of the proximal tibial epiphysis: preliminary experience of magnetic resonance imaging findings.

    PubMed

    Tony, G; Charran, A; Tins, B; Lalam, R; Tyrrell, P N M; Singh, J; Cool, P; Kiely, N; Cassar-Pullicino, V N

    2014-11-01

    Stress induced injuries affecting the physeal plate or cortical bone in children and adolescents, especially young athletes, have been well described. However, there are no reports in the current English language literature of stress injury affecting the incompletely ossified epiphyseal cartilage. We present four cases of stress related change to the proximal tibial epiphysis (PTE) along with their respective magnetic resonance imaging (MRI) appearances ranging from subtle oedema signal to a pseudo-tumour like appearance within the epiphyseal cartilage. The site and pattern of intra-epiphyseal injury is determined by the type of tissue that is affected, the maturity of the skeleton and the type of forces that are transmitted through the tissue. We demonstrate how an awareness of the morphological spectrum of MRI appearances in intra-epiphyseal stress injury and the ability to identify concomitant signs of stress in other nearby structures can help reduce misdiagnosis, avoid invasive diagnostic procedures like bone biopsy and reassure patients and their families. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. External torsion in a proximal tibia and internal torsion in a distal tibia occur independently in varus osteoarthritic knees compared to healthy knees.

    PubMed

    Mochizuki, Tomoharu; Tanifuji, Osamu; Koga, Yoshio; Hata, Ryosuke; Mori, Takahiro; Nishino, Katsutoshi; Sato, Takashi; Kobayashi, Koichi; Omori, Go; Sakamoto, Makoto; Tanabe, Yuji; Endo, Naoto

    2017-05-01

    The relative torsional angle of the distal tibia is dependent on a deformity of the proximal tibia, and it is a commonly used torsional parameter to describe deformities of the tibia; however, this parameter cannot show the location and direction of the torsional deformity in the entire tibia. This study aimed to identify the detailed deformity in the entire tibia via a coordinate system based on the diaphysis of the tibia by comparing varus osteoarthritic knees to healthy knees. In total, 61 limbs in 58 healthy subjects (age: 54 ± 18 years) and 55 limbs in 50 varus osteoarthritis (OA) subjects (age: 72 ± 7 years) were evaluated. The original coordinate system based on anatomic points only from the tibial diaphysis was established. The evaluation parameters were 1) the relative torsion in the distal tibia to the proximal tibia, 2) the proximal tibial torsion relative to the tibial diaphysis, and 3) the distal tibial torsion relative to the tibial diaphysis. The relative torsion in the distal tibia to the proximal tibia showed external torsion in both groups, while the external torsion was lower in the OA group than in the healthy group (p < 0.0001). The proximal tibial torsion relative to the tibial diaphysis had a higher external torsion in the OA group (p = 0.012), and the distal tibial torsion relative to the tibial diaphysis had a higher internal torsion in the OA group (p = 0.004) in comparison to the healthy group. The reverse torsional deformity, showing a higher external torsion in the proximal tibia and a higher internal torsion in the distal tibia, occurred independently in the OA group in comparison to the healthy group. Clinically, this finding may prove to be a pathogenic factor in varus osteoarthritic knees. Level Ⅲ. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  2. Tibial tunnel defect size as a risk factor in growth arrest following paediatric transphyseal anterior cruciate ligament reconstruction: an anatomical study.

    PubMed

    Pananwala, Hasitha; Jabbar, Yaser; Mills, Leonora; Symes, Michael; Nandapalan, Haren; Sefton, Andrew; Delungahawatte, Lasitha; Dao, Quang

    2016-09-01

    There is ongoing controversy regarding growth disturbances in younger patients undergoing anterior cruciate ligament reconstructions. Animal models have shown that an injury of 7-9% of the physeal area is a risk factor for growth disturbances. A total of 39 magnetic resonance imaging studies of the knee were examined. The proximal tibial physeal area was determined using a calibrated 'region of interest' ligature encompassing the tibial physis in the axial plane. The potential defect left by commonly used drill sizes was calculated as a percentage of the physeal area. A 7-mm drill leaves a mean defect of 1.45% physeal area (range: 1.11-1.89%, SD: 0.28, 95% CI: ±0.09), 8-mm drill leaves a 1.84% mean defect (range: 1.43-2.49%, SD: 0.38, 95% CI: ±0.12) and a 9-mm drill leaves a 2.30% mean defect (range: 1.83-3.19%, SD: 0.58, 95% CI: ±0.17). At 55°, 7-mm drill leaves a mean defect of 1.96% (range: 1.32-2.28%, SD: 0.37, 95% CI: ±0.12), 8-mm drill leaves a mean defect of 2.19% (range: 1.71-2.95%, SD: 0.46, 95% CI: ±0.14) and a 9-mm drill leaves a mean defect of 2.76% (range: 2.16-3.73%, SD: 0.58, 95% CI: ±0.18). There was a statistically significant difference in the tunnel area with a change of drill angle (7-mm drill P = 0.005, 8-mm drill P = 0.001, 9-mm drill P = 0.001). On the basis of this study in the context of animal model and observational evidence, the area of physeal injury using drill tunnels for anterior cruciate ligament reconstruction would not appear to contribute to potential growth disturbances. © 2016 Royal Australasian College of Surgeons.

  3. Minimizing Alteration of Posterior Tibial Slope During Opening Wedge High Tibial Osteotomy: a Protocol with Experimental Validation in Paired Cadaveric Knees

    PubMed Central

    Westermann, Robert W; DeBerardino, Thomas; Amendola, Annunziato

    2014-01-01

    Introduction The High Tibial Osteotomy (HTO) is a reliable procedure in addressing uni- compartmental arthritis with associated coronal deformities. With osteotomy of the proximal tibia, there is a risk of altering the tibial slope in the sagittal plane. Surgical techniques continue to evolve with trends towards procedure reproducibility and simplification. We evaluated a modification of the Arthrex iBalance technique in 18 paired cadaveric knees with the goals of maintaining sagittal slope, increasing procedure efficiency, and decreasing use of intraoperative fluoroscopy. Methods Nine paired cadaveric knees (18 legs) underwent iBalance medial opening wedge high tibial osteotomies. In each pair, the right knee underwent an HTO using the modified technique, while all left knees underwent the traditional technique. Independent observers evaluated postoperative factors including tibial slope, placement of hinge pin, and implant placement. Specimens were then dissected to evaluate for any gross muscle, nerve or vessel injury. Results Changes to posterior tibial slope were similar using each technique. The change in slope in traditional iBalance technique was -0.3° ±2.3° and change in tibial slope using the modified iBalance technique was -0.4° ±2.3° (p=0.29). Furthermore, we detected no differences in posterior tibial slope between preoperative and postoperative specimens (p=0.74 traditional, p=0.75 modified). No differences in implant placement were detected between traditional and modified techniques. (p=0.85). No intraoperative iatrogenic complications (i.e. lateral cortex fracture, blood vessel or nerve injury) were observed in either group after gross dissection. Discussion & Conclusions Alterations in posterior tibial slope are associated with HTOs. Both traditional and modified iBalance techniques appear reliable in coronal plane corrections without changing posterior tibial slope. The present modification of the Arthrex iBalance technique may increase the

  4. Arthroscopic pullout repair of a complete radial tear of the tibial attachment site of the medial meniscus posterior horn.

    PubMed

    Kim, Young-Mo; Rhee, Kwang-Jin; Lee, June-Kyu; Hwang, Deuk-Soo; Yang, Jun-Young; Kim, Sung-Jae

    2006-07-01

    We developed an effective arthroscopic pullout technique for repairing complete radial tears of the tibial attachment site of the medial meniscus posterior horn (MMPH). In our technique, the torn meniscus is reattached to the tibial plateau immediately medial or anteromedial to the posterior cruciate ligament (PCL) using two No. 2 Ethibond sutures (Ethicon, Somerville, NJ). After a complete radial tear of the tibial attachment site of the MMPH and its reparability were confirmed, using a Caspari suture loaded with a suture shuttle, one No. 2 Ethibond suture is placed through the meniscus, through the red-red zone, 3 to 5 mm medial to the torn edge of the MMPH, and the other is passed through the meniscocapsular junction 3 to 5 mm medial to the torn edge of the meniscus. Then, a tibial tunnel, 5-mm in diameter, is made from the anteromedial aspect of the proximal tibia to the previously prepared tibial plateau, immediately medial or anteromedial to the PCL, and the two No. 2 Ethibond sutures are pulled out through the tibial tunnel and then fixed to the proximal tibia using a 3.5-mm cortical screw and washer. Firm reattachment of the torn meniscus was confirmed arthroscopically.

  5. The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee.

    PubMed

    Yamagami, Ryota; Taketomi, Shuji; Inui, Hiroshi; Tahara, Keitaro; Tanaka, Sakae

    2017-03-01

    Medial meniscus posterior root tear (MMPRT) has been reported to play a key role in the development of spontaneous osteonecrosis of the knee (SONK) and osteoarthritis (OA) of the knee. However, little is known about the differences in the development of SONK and OA after MMPRT. The purpose of this study was to investigate the factors contributing to the development of these conditions. We evaluated the existence of MMPRT and the extent of medial meniscal extrusion in preoperative magnetic resonance images and proximal tibial morphology in radiographs of 45 patients with SONK and 104 patients with OA who underwent knee surgery. There were no significant differences in age, gender, height, weight, and body mass index between the two groups. The incidence of MMPRT and the mean posterior tibial slope (PTS) were significantly higher in SONK than in OA patients (62.2% versus 34.3%, P=0.002, and 12.8° versus 10.5°, P<0.001, respectively). The mean extent of meniscal extrusion was larger in OA than in SONK patients (7.5mm versus 5.3mm, P<0.001). The mean tibial varus angle was 4.8° in SONK and 5.4° in OA, with no significant difference between the two (P=0.088). Multivariable logistic regression analysis showed that compared with OA, SONK was more closely associated with the existence of MMPRT and had a smaller extent of medial meniscus extrusion and higher PTS. MMRPT and higher PTS were more closely associated with the development of SONK than with that of OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The risk of sacrificing the PCL in cruciate retaining total knee arthroplasty and the relationship to the sagittal inclination of the tibial plateau.

    PubMed

    Sessa, Pasquale; Fioravanti, Giulio; Giannicola, Giuseppe; Cinotti, Gianluca

    2015-01-01

    In cruciate retaining total knee arthroplasty (TKA), a partial avulsion of PCL may occur when en-bloc tibial osteotomy is performed. We evaluated the effects of a tibial cut performed with different degrees of posterior slope on PCL insertion and whether the results are affected by the sagittal inclination of the patient's tibial plateau. We selected 83 MRIs of knees showing mild or no degenerative changes. The effects of a simulated tibial cut performed with a posterior slope of 0°, 3°, 5° and parallel to the patient's tibial plateau inclination on PCL insertion in the proximal tibia were investigated. The results were correlated with the degree of posterior inclination of the tibial plateau. Every angle we used for the tibial cut caused a PCL avulsion greater than 50%. The percentage of PCL avulsion significantly increased with increasing the posterior slope of the tibial cut. Patients with sagittal tibial plateau inclination <5° showed greater PCL avulsion than those with sagittal inclination >8°. Most of the PCL insertion is likely to be sacrificed when resection of the proximal tibia is performed en-block. The risk of PCL avulsion is reduced in patients showing a marked posterior inclination of the tibial plateau, but even in this group of patients a surgical technique aimed at sparing most of the PCL insertion is necessary. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Investigation of tibial bones of the rats exposed on board "Spacelab-2":histomorphometric analysis

    NASA Technical Reports Server (NTRS)

    Durnova, G. N.; Kaplanskii, A. S.; Morey-Holton, E. R.; Vorobeva, V. N.

    1996-01-01

    Proximal metaphyses of tibial bones from the Sprague-Dowly rats exposed in US dedicated space life sciences laboratory SLS-2 for 13-14 days and sacrificed on day 13 in microgravity and within 5 hours and 14 days following recovery were the subject of histological, histochemical, and histomorphometric analyses. After the 13-day flight of SLS-2 the rats showed initial signs of osteopenia in the spongy tissue of tibial bones, secondary spongiosis affected first. Resorption of the secondary spongiosis was consequent to enhanced resorption and inhibition of osteogenesis. In rats sacrificed within 5 hours of recovery manifestations of tibial osteopenia were more evident than in rats sacrificed during the flight. Spaceflight-induced changes in tibial spongiosis were reverse by character the amount of spongy bone was fully compensated and following 14 days of readaptation to the terrestrial gravity.

  8. Periprosthetic fracture of the proximal tibia after lateral unicompartmental knee arthroplasty.

    PubMed

    Kumar, Arun; Chambers, Iain; Wong, Paul

    2008-06-01

    We report a case of periprosthetic fracture of the proximal tibia after lateral unicompartmental knee arthroplasty following a trivial fall. At the time of surgery, the components were found to be loose; and there was a large uncontained tibial defect with bone loss and communition at the fracture site. The patient was treated by revision total knee arthroplasty and proximal structural tibial allograft, with a satisfactory result at 5-year follow up. Our case illustrates that a bone-conserving unicompartmental knee arthroplasty, if complicated by a periprosthetic fracture, can also present with a difficult surgical problem. Attention to preoperative planning and to availability of structural allograft for such difficult cases is recommended.

  9. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  11. Foot and ankle function after tibial overlengthening.

    PubMed

    Emara, Khaled M; Diab, Ramy Ahmed; El Ghazali, Sherif; Farouk, Amr; El Kersh, Mohamed Ahmed

    2014-01-01

    Lengthening the tibia more than 25% of its original length can be indicated for proximal femoral deficiency, poliomyelitis, or femoral infected nonunion. Such lengthening of the tibia can adversely affect the ankle or foot shape and function. The present study aimed to assess the effect of tibial lengthening of more than 25% of its original length on the foot and ankle shape and function compared with the preoperative condition. This was a retrospective study of 13 children with severe proximal focal femoral deficiency, Aitken classification type D, who had undergone limb lengthening from June 2000 to June 2008 using Ilizarov external fixators. The techniques used in tibial lengthening included lengthening without intramedullary rodding and lengthening over a nail. The foot assessment was done preoperatively, at fixator removal, and then annually for 3 years, documenting the range of motion and deformity of the ankle and subtalar joints and big toe and the navicular height, calcaneal pitch angle, and talo-first metatarsal angle. At fixator removal, all cases showed equinocavovarus deformity, with decreased ankle, subtalar, and big toe motion. The mean American Orthopedic Foot and Ankle Society score was significantly reduced. During follow-up, the range of motion, foot deformity, and American Orthopedic Foot and Ankle Society score improved, reaching nearly to the preoperative condition by 2 years of follow-up. The results of our study have shown that tibial overlengthening has an adverse effect on foot and ankle function. This effect was reversible in the patients included in the present study. Lengthening of more than 25% can be safely done after careful discussion with the patients and their families about the probable effects of lengthening on foot and ankle function. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Automated Measurement of Patient-Specific Tibial Slopes from MRI

    PubMed Central

    Amerinatanzi, Amirhesam; Summers, Rodney K.; Ahmadi, Kaveh; Goel, Vijay K.; Hewett, Timothy E.; Nyman, Edward

    2017-01-01

    Background: Multi-planar proximal tibial slopes may be associated with increased likelihood of osteoarthritis and anterior cruciate ligament injury, due in part to their role in checking the anterior-posterior stability of the knee. Established methods suffer repeatability limitations and lack computational efficiency for intuitive clinical adoption. The aims of this study were to develop a novel automated approach and to compare the repeatability and computational efficiency of the approach against previously established methods. Methods: Tibial slope geometries were obtained via MRI and measured using an automated Matlab-based approach. Data were compared for repeatability and evaluated for computational efficiency. Results: Mean lateral tibial slope (LTS) for females (7.2°) was greater than for males (1.66°). Mean LTS in the lateral concavity zone was greater for females (7.8° for females, 4.2° for males). Mean medial tibial slope (MTS) for females was greater (9.3° vs. 4.6°). Along the medial concavity zone, female subjects demonstrated greater MTS. Conclusion: The automated method was more repeatable and computationally efficient than previously identified methods and may aid in the clinical assessment of knee injury risk, inform surgical planning, and implant design efforts. PMID:28952547

  13. Study of the anatomy of the tibial nerve and its branches in the distal medial leg.

    PubMed

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion .

  14. Ipsilateral intact fibula as a predictor of tibial plafond fracture pattern and severity.

    PubMed

    Luk, Pamela C; Charlton, Timothy P; Lee, Jackson; Thordarson, David B

    2013-10-01

    The objective of this study was to determine whether there is a difference in fracture pattern and severity of comminution between tibial plafond fractures with and without associated fibular fractures using computed tomography (CT). We hypothesized that the presence of an intact fibula was predictive of increased tibial plafond fracture severity. This was a case control, radiographic review performed at a single level I university trauma center. Between November 2007 and July 2011, 104 patients with 107 operatively treated tibial pilon fractures and preoperative CT scans were identified: 70 patients with 71 tibial plafond fractures had associated fibular fractures, and 34 patients with 36 tibial plafond fractures had intact fibulas. Four criteria were compared between the 2 groups: AO/OTA classification of distal tibia fractures, Topliss coronal and sagittal fracture pattern classification, plafond region of greatest comminution, and degree of proximal extension of fracture line. The intact fibula group had greater percentages of AO/OTA classification B2 type (5.5 vs 0, P = .046) and B3 type (52.8 vs 28.2, P = .013). Conversely, the percentage of AO/OTA classification C3 type was greater in the fractured fibula group (53.5 vs 30.6, P = .025). Evaluation using the Topliss sagittal and coronal classifications revealed no difference between the 2 groups (P = .226). Central and lateral regions of the plafond were the most common areas of comminution in fractured fibula pilons (32% and 31%, respectively). The lateral region of the plafond was the most common area of comminution in intact fibula pilon fractures (42%). There was no statistically significant difference (P = .71) in degree of proximal extension of fracture line between the 2 groups. Tibial plafond fractures with intact fibulas were more commonly associated with AO/OTA classification B-type patterns, whereas those with fractured fibulas were more commonly associated with C-type patterns. An intact fibula

  15. The Effect of Tibial Plateau Levelling Osteotomy on Stifle Extensor Mechanism Load: A Canine Ex Vivo Study.

    PubMed

    Drew, Jarrod O; Glyde, Mark R; Hosgood, Giselle L; Hayes, Alex J

    2018-02-01

     To evaluate the effect of tibial plateau levelling osteotomy on stifle extensor mechanism load in an ex vivo cruciate-intact canine cadaveric model.   Ex vivo mechanical testing study.  Cadaveric canine pelvic limbs ( n  = 6).  A 21-mm tibial radial osteotomy was performed on pelvic limbs ( n  = 6) prior to being mounted into a load-bearing limb press. The proximal tibial segment was incrementally rotated until the anatomical tibial plateau angle had been rotated to at least 1°. The proportional change in stifle extensor mechanism load between the anatomical tibial plateau angle and the neutralized (∼6.5 degrees) and over-rotated (∼1°) tibial plateau angle was analysed using a one-sample t -test against a null hypothesis of no change. A p -value ≤0.05 was considered significant.  There was no significant change in the stifle extensor mechanism load from the anatomical tibial plateau angle (308 N [261-355 N]) to the neutralized tibial plateau angle (313 N [254-372 N]; p =.81), or from the anatomical tibial plateau angle to the over-rotated tibial plateau angle (303 N [254-352 N; p  = 0.67).  Tibial plateau levelling osteotomy does not significantly alter stifle extensor mechanism load at either a neutralized or over-rotated tibial plateau angle in our cruciate-intact model. Schattauer GmbH Stuttgart.

  16. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    PubMed

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P < 0.05). Increasing or decreasing the slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P < 0.05), while a 5° decrease in slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  17. Study of the anatomy of the tibial nerve and its branches in the distal medial leg

    PubMed Central

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Objective Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Methods Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. Results The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion. PMID:24453596

  18. Tibial component coverage based on bone mineral density of the cut tibial surface during unicompartmental knee arthroplasty: clinical relevance of the prevention of tibial component subsidence.

    PubMed

    Lee, Yong Seuk; Yun, Ji Young; Lee, Beom Koo

    2014-01-01

    An optimally implanted tibial component during unicompartmental knee arthroplasty would be flush with all edges of the cut tibial surface. However, this is often not possible, partly because the tibial component may not be an ideal shape or because the ideal component size may not be available. In such situations, surgeons need to decide between component overhang and underhang and as to which sites must be covered and which sites could be undercovered. The objectives of this study were to evaluate the bone mineral density of the cut surface of the proximal tibia around the cortical rim and to compare the bone mineral density according to the inclusion of the cortex and the site-specific matched evaluation. One hundred and fifty consecutive patients (100 men and 50 women) were enrolled in this study. A quantitative computed tomography was used to determine the bone density of the cut tibial surface. Medial and lateral compartments were divided into anterior, middle, and posterior regions, and these three regions were further subdivided into two regions according to containment of cortex. The site-specific matched comparison (medial vs. lateral) of bone mineral density was performed. In medial sides, the mid-region, including the cortex, showed the highest bone mineral density in male and female patients. The posterior region showed the lowest bone mineral density in male patients, and the anterior and posterior regions showed the lowest bone mineral density in female patients. Regions including cortex showed higher bone mineral density than pure cancellous regions in medial sides. In lateral sides, posterior regions including cortex showed highest bone mineral density with statistical significance in both male and female patients. The anterior region showed the lowest bone mineral density in both male and female patients. The mid-region of the medial side and the posterior region of the lateral side are relatively safe without cortical coverage when the component

  19. Ground reaction forces and bone parameters in females with tibial stress fracture.

    PubMed

    Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim

    2004-03-01

    Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.

  20. Fracture of the proximal tibia after revision total knee arthroplasty with an extensor mechanism allograft.

    PubMed

    Klein, Gregg R; Levine, Harlan B; Sporer, Scott M; Hartzband, Mark A

    2013-02-01

    Extensor mechanism reconstruction with an extensor mechanism allograft (EMA) remains one of the most reliable methods for treating the extensor mechanism deficient total knee arthroplasty. We report 3 patients who were treated with an EMA who sustained a proximal tibial shaft fracture. In all 3 cases, a short tibial component was present that ended close to the level of the distal extent of the bone block. When performing an EMA, it is important to recognize that the tibial bone block creates a stress riser and revision to a long-stemmed tibial component should be strongly considered to bypass this point to minimize the risk of fracture. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits.

    PubMed

    Tomaszewski, R; Bohosiewicz, J; Gap, A; Bursig, H; Wysocka, A

    2014-11-01

    The aim of this experimental study on New Zealand's white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310-16. ©2014 The British Editorial Society of Bone & Joint Surgery.

  2. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give

  3. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    PubMed

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  4. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    PubMed

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Medial Tibial Stress Shielding: A Limitation of Cobalt Chromium Tibial Baseplates.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Kim, Raymond H

    2017-02-01

    Stress shielding is a well-recognized complication associated with total knee arthroplasty. However, this phenomenon has not been thoroughly described. Specifically, no study to our knowledge has evaluated the radiographic impact of utilizing various tibial component compositions on tibial stress shielding. We retrospectively reviewed 3 cohorts of 50 patients that had a preoperative varus deformity and were implanted with a titanium, cobalt chromium (CoCr), or an all polyethylene tibial implant. A radiographic comparative analysis was performed to evaluate the amount of medial tibial bone loss in each cohort. In addition, a clinical outcomes analysis was performed on the 3 cohorts. The CoCr was noted to have a statistically significant increase in medial tibial bone loss compared with the other 2 cohorts. The all polyethylene cohort had a statistically significantly higher final Knee Society Score and was associated with the least amount of stress shielding. The CoCr tray is the most rigid of 3 implants that were compared in this study. Interestingly, this cohort had the highest amount of medial tibial bone loss. In addition, 1 patient in the CoCr cohort had medial soft tissue irritation which was attributed to a prominent medial tibial tray which required revision surgery to mitigate the symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    PubMed

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  7. The Tibial Slope in Patients With Achondroplasia: Its Characterization and Possible Role in Genu Recurvatum Development.

    PubMed

    Brooks, Jaysson T; Bernholt, David L; Tran, Kevin V; Ain, Michael C

    2016-06-01

    Genu recurvatum, a posterior resting position of the knee, is a common lower extremity deformity in patients with achondroplasia and has been thought to be secondary to ligamentous laxity. To the best of our knowledge, the role of the tibial slope has not been investigated, and no studies describe the tibial slope in patients with achondroplasia. Our goals were to characterize the tibial slope in children and adults with achondroplasia, explore its possible role in the development of genu recurvatum, and compare the tibial slope in patients with achondroplasia to that in the general population. We reviewed 252 lateral knee radiographs of 130 patients with achondroplasia seen at our clinic from November 2007 through September 2013. Patients were excluded if they had previous lower extremity surgery or radiographs with extreme rotation. We analyzed patient demographics and, on all radiographs, the tibial slope. We then compared the mean tibial slope to norms in the literature. Tibial slopes >90 degrees had an anterior tibial slope and received a positive prefix. Statistical analysis included intraclass and interclass reliability, Pearson correlation coefficient, and the Student t tests (significance, P<0.05). The overall mean tibial slope for the 252 knees was +1.32±7 degrees, which was significantly more anterior than the normal slopes reported in the literature for adults (7.2 to 10.7 degrees, P=0.0001) and children (10 to 11 degrees, P=0.0001). The Pearson correlation coefficient for mean tibial slope and age showed negative correlations of -0.4011 and -0.4335 for left and right knees, respectively. This anterior tibial slope produces proximal and posterior vector force components, which may shift the knee posteriorly in weightbearing. The mean tibial slope is significantly more anterior in patients with achondroplasia than in the general population; however, this difference diminishes as patients' age. An anterior tibial slope may predispose to a more posterior

  8. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    Objective- To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. Study Design- In vitro biomechanical study. Animals- Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Methods- Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees . Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Results- Significant disturbances to all measured contact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles. Conclusion- TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal. Clinical Relevance- TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.

  9. Treatment of segmental tibial fractures with supercutaneous plating.

    PubMed

    He, Xianfeng; Zhang, Jingwei; Li, Ming; Yu, Yihui; Zhu, Limei

    2014-08-01

    Segmental tibial fractures usually follow a high-energy trauma and are often associated with many complications. The purpose of this report is to describe the authors' results in the treatment of segmental tibial fractures with supercutaneous locking plates used as external fixators. Between January 2009 and March 2012, a total of 20 patients underwent external plating (supercutaneous plating) of the segmental tibial fractures using a less-invasive stabilization system locking plate (Synthes, Paoli, Pennsylvania). Six fractures were closed and 14 were open (6 grade IIIa, 2 grade IIIb, 4 grade II, and 2 grade I, according to the Gustilo classification). When imaging studies confirmed bone union, the plates and screws were removed in the outpatient clinic. Average time of follow-up was 23 months (range, 12-47 months). All fractures achieved union. Median time to union was 19 weeks (range, 12-40 weeks) for the proximal fractures and 22 weeks (range, 12-42 weeks) for the distal fractures. Functional results were excellent in 17 patients and good in 3. Delayed union of the fracture occurred in 2 patients. All patients' radiographs showed normal alignment. No rotational deformities and leg shortening were seen. No incidences of deep infection or implant failures occurred. Minor screw tract infection occurred in 2 patients. A new 1-stage protocol using supercutaneous plating as a definitive fixator for segmental tibial fractures is less invasive, has a lower cost, and has a shorter hospitalization time. Surgeons can achieve good reduction, soft tissue reconstruction, stable fixation, and high union rates using supercutaneous plating. The current patients obtained excellent knee and ankle joint motion and good functional outcomes and had a comfortable clinical course. Copyright 2014, SLACK Incorporated.

  10. All-polyethylene tibial components in distal femur limb-salvage surgery: a finite element analysis based on promising clinical outcomes.

    PubMed

    Tang, Fan; Zhou, Yong; Zhang, Wenli; Min, Li; Shi, Rui; Luo, Yi; Duan, Hong; Tu, Chongqi

    2017-04-04

    Whether all-polyethylene tibial (APT) components are beneficial to patients who received distal femur limb-salvage surgery lacks high-quality clinical follow-up and mechanical evidence. This study aimed to investigate the biomechanics of the distal femur reconstructed with APT tumor knee prostheses using finite element (FE) analysis based on our previous, promising clinical outcome. Three-dimensional FE models that use APT and metal-backed tibial (MBT) prostheses to reconstruct distal femoral bone defects were developed and input into the Abaqus FEA software version 6.10.1. Mesh refinement tests and gait simulation with a single foot both in the upright and 15°-flexion positions with mechanical loading were conducted. Stress distribution analysis was compared between APT and MBT at the two static positions. For both prosthesis types, the stress was concentrated on the junction of the stem and shaft, and the maximum stress in the femoral axis base was more than 100 Mpa. The stress on the tibial surface was relatively distributed, which was 1-19 MPa. The stress on the tibial bone-cement layer of the APT prosthesis was approximately 20 times higher than that on the MBT prosthesis in the same region. The stress on the proximal tibial cancellous bone and cortical bone of the APT prosthesis was 3-5 times greater than that of the MBT prosthesis, and it was more distributed. Although the stress of bone-cement around the APT component is relatively high, the stress was better distributed at the polyethylene-cement-bone interface in APT than in MBT prosthesis, which effectively protects the proximal tibia in distal femur tumor knee prosthesis replacement. These results should be considered when selecting the appropriate tibial component for a patient, especially under the foreseeable conditions of osteoporosis.

  11. Theoretical discrepancy between cage size and efficient tibial tuberosity advancement in dogs treated for cranial cruciate ligament rupture.

    PubMed

    Etchepareborde, S; Mills, J; Busoni, V; Brunel, L; Balligand, M

    2011-01-01

    To calculate the difference between the desired tibial tuberosity advancement (TTA) along the tibial plateau axis and the advancement truly achieved in that direction when cage size has been determined using the method of Montavon and colleagues. To measure the effect of this difference on the final patellar tendon-tibial plateau angle (PTA) in relation to the ideal 90°. Trigonometry was used to calculate the theoretical actual advancement of the tibial tuberosity in a direction parallel to the tibial plateau that would be achieved by the placement of a cage at the level of the tibial tuberosity in the osteotomy plane of the tibial crest. The same principle was used to calculate the size of the cage that would have been required to achieve the desired advancement. The effect of the difference between the desired advancement and the actual advancement achieved on the final PTA was calculated. For a given desired advancement, the greater the tibial plateau angle (TPA), the greater the difference between the desired advancement and the actual advancement achieved. The maximum discrepancy calculated was 5.8 mm for a 12 mm advancement in a case of extreme TPA (59°). When the TPA was less than 31°, the PTA was in the range of 90° to 95°. A discrepancy does exist between the desired tibial tuberosity advancement and the actual advancement in a direction parallel to the TPA, when the tibial tuberosity is not translated proximally. Although this has an influence on the final PTA, further studies are warranted to evaluate whether this is clinically significant.

  12. A Randomized Cadaver Study Comparing First-Attempt Success Between Tibial and Humeral Intraosseous Insertions Using NIO Device by Paramedics: A Preliminary Investigation.

    PubMed

    Szarpak, Lukasz; Truszewski, Zenon; Smereka, Jacek; Krajewski, Paweł; Fudalej, Marcin; Adamczyk, Piotr; Czyzewski, Lukasz

    2016-05-01

    Medical personnel may encounter difficulties in obtaining intravenous (IV) access during cardiac arrest. The 2015 American Heart Association guidelines and the 2015 European Resuscitation Council guidelines for cardiopulmonary resuscitation (CPR) suggest that rescuers establish intraosseous (IO) access if an IV line is not easily obtainable.The aim of the study was to compare the success rates of the IO proximal tibia and proximal humerus head access performed by paramedics using the New Intraosseous access device (NIO; Persys Medical, Houston, TX, USA) in an adult cadaver model during simulated CPR.In an interventional, randomized, crossover, single-center cadaver study, a semi-automatic spring-load driven NIO access device was investigated. In total, 84 paramedics with less than 5-year experience in Emergency Medical Service participated in the study. The trial was performed on 42 adult cadavers. In each cadaver, 2 IO accesses to the humerus head, and 2 IO accesses to the proximal tibia were obtained.The success rate of the first IO attempt was 89.3% (75/84) for tibial access, and 73.8% (62/84) for humeral access (P = 0.017). The procedure times were significantly faster for tibial access [16.8 (interquartile range, IQR, 15.1-19.9] s] than humeral access [26.7 (IQR, 22.1-30.9) s] (P < 0.001).Tibial IO access is easier and faster to put in place than humeral IO access. Humeral IO access can be an alternative method to tibial IO access. clinicaltrials.gov Identifier: NCT02700867.

  13. [The use of structural proximal tibial allografts coated with human albumin in treating extensive periprosthetic knee-joint bone deficiency and averting late complications. Case report].

    PubMed

    Klára, Tamás; Csönge, Lajos; Janositz, Gábor; Pap, Károly; Lacza, Zsombor

    2015-01-11

    The authors report the history of a 74-year-old patient who underwent surgical treatment for segmental knee-joint periprosthetic bone loss using structural proximal tibial allografts coated with serum albumin. Successful treatment of late complications which occurred in the postoperative period is also described. The authors emphasize that bone replacement with allografts is a physiological process that enables the stable positioning of the implant and the reconstruction of the soft tissues, the replacement of extensive bone loss, and also it is a less expensive operation. It has been already confirmed that treatment of lyophilised allografts with albumin improves the ability of bone marrow-derived mesenchymal stem cells to adhere and proliferate the surface of the allografts, penetrate the pores and reach deeper layers of the graft. Earlier studies have shown osteoblast activity on the surface and interior of the graft.

  14. Bilateral periprosthetic tibial stress fracture after total knee arthroplasty: A case report.

    PubMed

    Ozdemir, Guzelali; Azboy, Ibrahim; Yilmaz, Baris

    2016-01-01

    Periprosthetic fractures around the knee after total knee arthroplasty can be seen in the femur, tibia and patella. The tibial fractures are rare cases. Our case with bilateral tibial stress fracture developed after total knee arthroplasty (TKA) is the first of its kind in the literature. 75-year-old male patient with bilateral knee osteoarthritis had not benefited from conservative treatment methods previously applied. Left TKA was applied. In the second month postoperatively, periprosthetic tibial fracture was identified and osteosynthesis was implemented with locked tibia proximal plate-screw. Bone union in 12 weeks was observed in his follow-ups. After 15 months of his first operation, TKA was applied to the right knee. Postoperatively in the second month, as in the first operation, periprosthetic tibial fracture was detected. Osteosynthesis with locking plate-screw was applied and union in 12 weeks was observed in his follow-up. He was seen mobilized independently and without support in the last control of the case made in the 24th month after the second operation. The number of TKA applications is expected to increase in the future. The incidence of periprosthetic fractures should also be expected to increase in these cases. Periprosthetic tibial fractures after TKA are rarely seen. The treatment of periprosthetic fractures around the knee after TKA can be difficult. In the case of persistent pain in the upper end of the tibia after the surgery, stress fracture should be considered. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    PubMed

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The role of fixation and bone quality on the mechanical stability of tibial knee components.

    PubMed

    Lee, R W; Volz, R G; Sheridan, D C

    1991-12-01

    Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.

  17. Early proximal tibial valgus osteotomy as a very important prognostic factor in Thai children with infantile tibia vara.

    PubMed

    Kaewpornsawan, Kamolporn; Tangsataporn, Suksan; Jatunarapit, Ratiporn

    2005-10-01

    To find the effectiveness of the early surgery (2-3 years of age)as a very important prognostic factor affecting the outcomes in Thai children with infantile tibia vara and all the prognostic factors including the usefulness of arthrographic study in correcting the deformity. From 1994 to 2004, sixteen children aged average 3.61 years old (2.08-7.0) were treated in Siriraj Hospital and diagnosed as infantile tibia vara by Langenskiold radiographic staging were included in the present study and retrospectively reviewed with an average of 6.4 years follow up (range 6 month - 11.1 years). All cases were initially treated by surgery because of low compliance for brace or brace failure. They consisted of 3 boys and 13 girls. There were 24 legs including the bilateral involvement in 8 cases (2 boy and 6 girls). After arihrography, the midshaft fibular osteotomy was performed then the proximal tibial dome-shaped valgus osteotomy was done and fixed with 2 pins. The desired position was 12 degree knee valgus . The patients were divided in two groups, 1)group A,the successful group with the knee becoming normal without any deformity after single osteotomy, 2)group B,the recurrent group with recurrence of the varus deformity required further corrective osteotomies to make normal axis of the knee. All variables were analyzed and compared between group A and group B. The general characteristics and radiographic findings were recorded in 1)age, 2)sex, 3)side, 4)weight in kilogram and in percentage of normal or overweight(obesity) compared with the standard Thai weight chart, 5)tibiofemoral angle (TFA) pre and postoperative treatment, 6) metaphyseal diaphyseal angle (MDA), 7)the medial physeal slope angle (MPS, 8)The preoperative arthrographic articulo-diaphyseal angle (ADA), 9.arthrographic articulo-medial physeal angle (AMPA). There were 14 legs in group A and the remaining 10 legs were in group B (average 2.4 operations). All cases healed in good alignment of the legs without

  18. Magnetic Resonance Neurography Visualizes Abnormalities in Sciatic and Tibial Nerves in Patients With Type 1 Diabetes and Neuropathy.

    PubMed

    Vaeggemose, Michael; Pham, Mirko; Ringgaard, Steffen; Tankisi, Hatice; Ejskjaer, Niels; Heiland, Sabine; Poulsen, Per L; Andersen, Henning

    2017-07-01

    This study evaluates whether diffusion tensor imaging magnetic resonance neurography (DTI-MRN), T2 relaxation time, and proton spin density can detect and grade neuropathic abnormalities in patients with type 1 diabetes. Patients with type 1 diabetes ( n = 49) were included-11 with severe polyneuropathy (sDPN), 13 with mild polyneuropathy (mDPN), and 25 without polyneuropathy (nDPN)-along with 30 healthy control subjects (HCs). Clinical examinations, nerve conduction studies, and vibratory perception thresholds determined the presence and severity of DPN. DTI-MRN covered proximal (sciatic nerve) and distal (tibial nerve) nerve segments of the lower extremity. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were calculated, as were T2 relaxation time and proton spin density obtained from DTI-MRN. All magnetic resonance findings were related to the presence and severity of neuropathy. FA of the sciatic and tibial nerves was lowest in the sDPN group. Corresponding with this, proximal and distal ADCs were highest in patients with sDPN compared with patients with mDPN and nDPN, as well as the HCs. DTI-MRN correlated closely with the severity of neuropathy, demonstrating strong associations with sciatic and tibial nerve findings. Quantitative group differences in proton spin density were also significant, but less pronounced than those for DTI-MRN. In conclusion, DTI-MRN enables detection in peripheral nerves of abnormalities related to DPN, more so than proton spin density or T2 relaxation time. These abnormalities are likely to reflect pathology in sciatic and tibial nerve fibers. © 2017 by the American Diabetes Association.

  19. [Influencing factors for trauma-induced tibial infection in underground coal mine].

    PubMed

    Meng, W Z; Guo, Y J; Liu, Z K; Li, Y F; Wang, G Z

    2016-07-20

    Objective: To investigate the influencing factors for trauma-induced tibial infection in underground coal mine. Methods: A retrospective analysis was performed for the clinical data of 1 090 patients with tibial fracture complicated by bone infection who were injured in underground coal mine and admitted to our hospital from January 1995 to August 2015, including the type of trauma, injured parts, severity, and treatment outcome. The association between risk factors and infection was analyzed. Results: Among the 1 090 patients, 357 had the clinical manifestations of acute and chronic bone infection, 219 had red and swollen legs with heat pain, and 138 experienced skin necrosis, rupture, and discharge of pus. The incidence rates of tibial infection from 1995 to 2001, from 2002 to 2008, and from 2009 to 2015 were 31%, 26.9%, and 20.2%, respectively. The incidence rate of bone infection in the proximal segment of the tibia was significantly higher than that in the middle and distal segments (42.1% vs 18.9%/27.1%, P <0.01) . As for patients with different types of trauma (Gustilo typing) , the patients with type III fracture had a significantly higher incidence rate of bone infection than those with type I/II infection (52.8% vs 21.8%/24.6%, P <0.01) . The incidence rates of bone infection after bone traction, internal fixation with steel plates, fixation with external fixator, and fixation with intramedullary nail were 20.7%, 43.5%, 21.4%, and 26.1%, respectively, suggesting that internal fixation with steel plates had a significantly higher incidence rate of bone infection than other fixation methods ( P <0.01) . The multivariate logistic regression analysis showed that the position of tibial fracture and type of fracture were independent risk factors for bone infection. Conclusion: There is a high incidence rate of trauma-induced tibial infection in workers in underground coal mine. The position of tibial fracture and type of fracture are independent risk factors

  20. TIBIAL PLATEAU PROXIMAL AND DISTAL BONE BEHAVE SIMILARLY: BOTH ARE ASSOCIATED WITH FEATURES OF KNEE OSTEOARTHRITIS

    USDA-ARS?s Scientific Manuscript database

    There is a growing imperative to understand how changes in peri-articular bone relate to pathological progression of knee osteoarthritis (KOA). Peri-articular bone density can be measured using dual x-ray absorptiometry (DXA). The medial:lateral tibial BMD ratio (M:L BMD) is associated with MRI and...

  1. Angular deformity correction by guided growth in growing children: Eight-plate versus 3.5-mm reconstruction plate.

    PubMed

    Park, Kyeong-Hyeon; Oh, Chang-Wug; Kim, Joon-Woo; Park, Il-Hyung; Kim, Hee-June; Choi, Young-Seo

    2017-09-01

    Guided growth using the eight-plate (8-plate) is the most commonly used method to correct angular deformities in children; however, implant failure has been reported. Recently, the 3.5-mm reconstruction plate (R-plate) has been used as an alternative option for guided growth; however, hardware prominence has been problematic. This study aimed to compare the coronal angular deformity correction results of guided growth between relatively thin 8-plates with cannulated screws and thick R-plates with solid screws. Thirty-nine physes (24 distal femoral, 15 proximal tibial) in 20 patients underwent hemiepiphysiodesis using 8-plates, and 61 physes (40 distal femoral, 21 proximal tibial) in 35 patients underwent hemiepiphysiodesis using R-plates. Coronal angular corrections were measured and compared preoperatively, and after the completion of corrections. Amounts and rates of correction and complications were compared between the groups. Mean body mass index was 18.7 kg/m2 in the 8-plate group, and 22.7 kg/m2 in the R-plate group. Angular correction was achieved in all deformities at a mean of 13.7 months and 19.7 months in the 8-plate and the R-plate group, respectively. The mean corrected mechanical lateral distal femoral angle was 9.0° in the 8-plate group, and 9.9° in the R-plate group (P = 0.55). The mean corrected medial proximal tibial angle was 7.1° in the 8-plate group, and 9.0° in the R-plate group (P = 0.07). The mean rates of angular correction were also not significantly different in the distal femur (1.03°/month vs. 0.77°/month, P = 0.2) and the proximal tibia (0.66°/month vs. 0.63°/month, P = 0.77). There was one superficial infection in each group, and one case of implant failure in the R-plate group. Two rebound deformities were observed and needed repeat hemiepiphysiodesis. Permanent physeal arrest was not observed in this series. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  2. Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    To evaluate the effects of tibial plateau leveling osteotomy (TPLO) on femorotibial contact mechanics and 3-dimensional (3D) kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. In vitro biomechanical study. Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees. Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TPLO-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Significant disturbances to all measured contact mechanical variables were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and increased internal tibial rotation in the CrCL-deficient stifle. No significant differences in 3D femorotibial alignment were observed between normal and TPLO-treated stifles; however, femorotibial contact area remained significantly smaller and peak contact pressures in both medial and lateral stifle compartments were positioned more caudally on the tibial plateau, when compared with normal. Whereas TPLO eliminates craniocaudal stifle instability during simulated weight bearing, the procedure fails to concurrently restore femorotibial contact mechanics to normal. Progression of stifle osteoarthritis in dogs treated with TPLO may be partly the result of abnormal stifle contact mechanics induced by altering the orientation of the proximal tibial articulating surface.

  3. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  4. MRI analysis of tibial PCL attachment in a large population of adult patients: reference data for anatomic PCL reconstruction.

    PubMed

    Teng, Yuanjun; Guo, Laiwei; Wu, Meng; Xu, Tianen; Zhao, Lianggong; Jiang, Jin; Sheng, Xiaoyun; Xu, Lihu; Zhang, Bo; Ding, Ning; Xia, Yayi

    2016-09-05

    Consistent reference data used for anatomic posterior cruciate ligament (PCL) reconstruction is not well defined. Quantitative guidelines defining the location of PCL attachment would aid in performing anatomic PCL reconstruction. The purpose was to characterize anatomic parameters of the PCL tibial attachment based on magnetic resonance imaging (MRI) in a large population of adult knees. The PCL tibial attachment site was examined in 736 adult knees with an intact PCL using 3.0-T proton density-weighted sagittal MRI. The outcomes measured were the anterior-posterior diameter (APD) of the tibial plateau; angle between the tibial plateau and the posterior tibial 'shelf' (the slope where the PCL tibial attachment site was) (PTS); length of the PTS; proximal, central, and distal PCL attachment positions as well as the width of the PCL attachment site; and vertical dimension of the PCL attachment site inferior from the tibial plateau. The average APD of the tibia plateau was 33.6 ± 3.5 mm, yielding significant differences between males (35.5 ± 3.0 mm) and females (31.6 ± 2.7 mm), P <.05, and there was a significantly decreasing trend with increasing age in males (P <.05). Mean angle between the tibial plateau and the PTS was 122.4° ± 8.1°, and subgroup analysis showed that the young group had a differently smaller angle (120.9° ± 7.5°) than the middle-aged (123.7° ± 8.2°) and the old (123.4° ± 7.7°) in males population, while there were no significant differences between sexes (P >.05). The proximal, central positions and width of the PCL attachment site were 13.4 ± 3.0 mm, 17.8 ± 3.0 mm and 9.6 ± 2.4 mm along the PTS, with significant differences between males and females (P <.05), and accounted for 60.0 % ± 9.1 %, 80.0 % ± 4.6 % and 43.3 % ± 9.7 % of the PTS respectively, with no significant differences between sexes and among age groups (all P >.05). This study provides reference

  5. Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: The tibial tunnel stress-riser.

    PubMed

    Sundaram, R O; Cohen, D; Barton-Hanson, N

    2006-06-01

    Tibial plateau fractures following anterior cruciate ligament (ACL) reconstruction are extremely rare. This is the first reported case of a tibial plateau fracture following four-strand gracilis-semitendinosus autograft ACL reconstruction. The tibial tunnel alone may behave as a stress riser which can significantly reduce bone strength.

  6. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  7. [Proximal tibial valgus osteotomy semi-invasive technique. A report on 66 cases].

    PubMed

    González Maza, Carlos; Moscoso López, Luis; Magaña García, Ignacio; Mejía Vargas, Gildardo; López Segundo, José Román

    2007-01-01

    The purpose of the present study is to report sixty six high tibial lateral osteotomies (HTO) make on patients with osteoarthrosis of the medial compartment, using modified semi invasive technique. With this technique the incision is 5-6 mm, fibular head is not resect, biceps femoris tendon is not cut, no internal fixation is place; the median follow-up was 6.4 years. The status of the patient at the final follow-up was analyzed using Knee Society Score (KSS), and Visual Analogue Scale (VAS). An average of 85 points was achieved after HTO compared to 55 points preoperative and 83 points after HTO compared to 51 points preoperative, was obtained at the evaluation with KSS. The only complication was superficial infections (4%). Serious complications did not appear. There was not pseudoarthrosis.

  8. Tibial Tray Thickness Significantly Increases Medial Tibial Bone Resorption in Cobalt-Chromium Total Knee Arthroplasty Implants.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Miner, Todd M; Springer, Bryan D; Kim, Raymond H

    2017-01-01

    Stress shielding is an uncommon complication associated with primary total knee arthroplasty. Patients are frequently identified radiographically with minimal clinical symptoms. Very few studies have evaluated risk factors for postoperative medial tibial bone loss. We hypothesized that thicker cobalt-chromium tibial trays are associated with increased bone loss. We performed a retrospective review of 100 posterior stabilized, fixed-bearing total knee arthroplasty where 50 patients had a 4-mm-thick tibial tray (thick tray cohort) and 50 patients had a 2.7-mm-thick tibial tray (thin tray cohort). A clinical evaluation and a radiographic assessment of medial tibial bone loss were performed on both cohorts at a minimum of 2 years postoperatively. Mean medial tibial bone loss was significantly higher in the thick tray cohort (1.07 vs 0.16 mm; P = .0001). In addition, there were significantly more patients with medial tibial bone loss in the thick tray group compared with the thin tray group (44% vs 10%, P = .0002). Despite these differences, there were no statistically significant differences in range of motion, knee society score, complications, or revision surgeries performed. A thicker cobalt-chromium tray was associated with significantly more medial tibial bone loss. Despite these radiographic findings, we found no discernable differences in clinical outcomes in our patient cohort. Further study and longer follow-up are needed to understand the effects and clinical significance of medial tibial bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Tibial tunnel aperture irregularity after drilling with 5 reamer designs: a qualitative micro-computed tomography analysis.

    PubMed

    Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F

    2011-04-01

    There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique

  10. ACL double-bundle reconstruction with one tibial tunnel provides equal stability compared to two tibial tunnels.

    PubMed

    Drews, Björn Holger; Seitz, Andreas Martin; Huth, Jochen; Bauer, Gerhard; Ignatius, Anita; Dürselen, Lutz

    2017-05-01

    The purpose of this study was to investigate whether an anterior cruciate ligament (ACL) double-bundle reconstruction with one tibial tunnel displays the same in vitro stability as a conventional double-bundle reconstruction with two tibial tunnels when using the same tensioning protocol. In 11 fresh-frozen cadaveric knees, ACL double-bundle reconstruction with one and two tibial tunnels was performed. The two grafts were tightened using 80 N in different flexion angles (anteromedial-bundle at 60° and posterolateral-bundle at 15°). Anterior tibial translation (134 N) and translation with combined rotatory and valgus loads (10 Nm valgus stress and 4 Nm internal tibial torque) were determined at 0°, 30°, 60° and 90° flexion. Measurements were taken in intact ACL, resected ACL, three-tunnel reconstruction and four-tunnel reconstruction. Additionally, the tension on the grafts was determined. Student's t test was performed for statistical analysis of the related samples. Significance was set at p < 0.017 according to Bonferroni correction. The two reconstructive techniques displayed no significant differences in comparison with the intact ACL in anterior tibial translation at 0°, 60° and 90° of flexion. The same results were obtained for the anterior tibial translation with a combined rotatory load at 60° and 90°. When directly comparing both reconstructive techniques, there were no significant differences for the anterior tibial translation and combined rotatory load at all flexion angles. The measured tension on grafts displayed similar load sharing between both bundles. Except at full extension, both grafts displayed a significantly different tension increase under anterior tibial translation for both techniques (p = 0.0086). Tightening both bundles in ACL double-bundle reconstruction with one or two tibial tunnels in different flexion angles achieved comparable restoration of stability, although there was different load sharing on the bundles

  11. Tibial lengthening over humeral and tibial intramedullary nails in patients with sequelae of poliomyelitis: a comparative study.

    PubMed

    Chen, Daoyun; Chen, Jianmin; Jiang, Yao; Liu, Fanggang

    2011-06-01

    Leg discrepancy is common after poliomyelitis. Tibial lengthening is an effective way to solve this problem. It is believed lengthening over a tibial intramedullary nail can provide a more comfortable lengthening process than by the conventional technique. However, patients with sequelae of poliomyelitis typically have narrow intramedullary canals allowing limited space for inserting a tibial intramedullary nail and Kirschner wires. To overcome this problem, we tried using humeral nails instead of tibial nails in the lengthening procedure. In this study, we used humeral nails in 20 tibial lengthening procedures and compared the results with another group of patients who were treated with tibial lengthening over tibial intramedullary nails. The mean consolidation index, percentage of increase and external fixation index did not show significant differences between the two groups. However, less blood loss and shorter operating time were noted in the humeral nail group. More patients encountered difficulty with the inserted intramedullary nail in the tibial nail group procedure. The complications did not show a statistically significant difference between the two techniques on follow-up. In conclusion, we found the humeral nail lengthening technique was more suitable in leg discrepancy patients with sequelae of poliomyelitis.

  12. Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair.

    PubMed

    Slocum, B; Devine, T

    1984-03-01

    Cranial tibial wedge osteotomy, surgical technique for cranial cruciate ligament rupture, was performed on 19 stifles in dogs. This procedure leveled the tibial plateau, thus causing weight-bearing forces to be compressive and eliminating cranial tibial thrust. Without cranial tibial thrust, which was antagonistic to the cranial cruciate ligament and its surgical reconstruction, cruciate ligament repairs were allowed to heal without constant loads. This technique was meant to be used as an adjunct to other cranial cruciate ligament repair techniques.

  13. In Vitro Effect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells.

    PubMed

    Mehmood, Khalid; Zhang, Hui; Iqbal, Muhammad Kashif; Rehman, Mujeeb Ur; Shahzad, Muhammad; Li, Kun; Huang, Shucheng; Nabi, Fazul; Zhang, Lihong; Li, Jiakui

    2017-09-01

    Tibial dyschondroplasia (TD) is one of the common skeletal abnormalities in fast-growing birds, and it is characterized by nonvascularized, unmineralized, and nonviable cartilage in the tibial growth plate that fails to form bone. The aim of this study was to check the in vitro effect of apigenin and danshen on heat-shock protein 90 (Hsp90) and vascular endothelial growth factor (VEGF) expressions in avian growth plate cells treated with sublethal concentration of thiram. Initially, chondrocytes from chicken growth plates were isolated on culturx ed medium with and without various concentration of thiram to determine the sublethal dose. Then, to check the effect of apigenin and danshen, the chondrocytes were treated first with a sublethal (2.5 μM) concentration of thiram and then with different doses (10, 20, 40, and 80 μM) of apigenin and danshen. The mRNA expression levels of Hsp90 and VEGF genes were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The results showed that the expression levels of Hsp90 and VEGF mRNA transcripts were increased significantly (P < 0.05) in thiram-treated chondrocytes culture medium up to 1.5-fold, whereas apigenin and danshen therapy to chondrocytes in culture medium significantly (P < 0.05) reduced the Hsp90 and VEGF expression levels. In conclusion, up-regulation of both (Hsp90 and VEGF) genes and damage to chondrocytes in culture medium caused by thiram can be restored by using apigenin and danshen. Therefore, apigenin and danshen therapies are suggested and encouraged as a promising approach to control TD in broiler chickens.

  14. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  15. Total knee arthroplasty after high tibial osteotomy. A comparison study in patients who had bilateral total knee replacement.

    PubMed

    Meding, J B; Keating, E M; Ritter, M A; Faris, P M

    2000-09-01

    not found to be significant with the numbers available (p = 0.4810). Knee alignment and stability, femoral and tibial component alignment, and range of motion also were similar in both groups postoperatively. One allpolyethylene tibial component was revised in the high tibial osteotomy group. Two knees in each group required manipulation. There were no deep infections. While patients with a previous high tibial osteotomy may have important differences preoperatively, including valgus alignment, patella infera, and decreased bone stock in the proximal part of the tibia, the present study suggests that the clinical and radiographic results of primary total knee arthroplasty in knees with and without a previous high tibial osteotomy are not substantially different. In our relatively small group of patients, the previous high tibial osteotomy had no adverse effect on the outcome of the subsequent total knee replacement.

  16. Influence of medial parapatellar nail insertion on alignment in proximal tibia fractures--special consideration of the fracture level.

    PubMed

    Weninger, Patrick; Tschabitscher, Manfred; Traxler, Hannes; Pfafl, Veronika; Hertz, Harald

    2010-04-01

    Although a lateral starting point for tibial nailing is recommended to avoid valgus misalignment, higher rates of intra-articular damage were described compared with a medial parapatellar approach. The aim of this anatomic study was to evaluate the fracture level allowing for a safe medial nail entry point without misalignment or dislocation of fragments. Thirty-two fresh-frozen cadaver lower extremities were used to create 1-cm osteotomies at four different levels (n = 8) from 2 cm to 8 cm below the tibial tuberosity. Nine-millimeter unreamed solid titanium tibial nails (Connex, I.T.S. Spectromed, Lassnitzhohe, Austria) were inserted from a medial parapatellar incision. Misalignment (degree) and dislocation of the distal fragment were measured in the frontal and sagittal plane. A medial parapatellar approach for tibial nail insertion mainly caused valgus and anterior bow misalignment and ventral and medial fragment displacement. Mean misalignment and fragment displacement did not exceed 0.5 degree if the osteotomy was performed 8 cm to 9 cm below the tibial tuberosity. According to the results of this study, a medial parapatellar approach can be performed without misalignment and fragment dislocation in proximal tibia fractures extending 8 cm or more below the tibial tuberosity.

  17. 'Trampoline fracture' of the proximal tibia in children: report of 3 cases and review of literature.

    PubMed

    Bruyeer, E; Geusens, E; Catry, F; Vanstraelen, L; Vanhoenacker, F

    2012-01-01

    We present three cases of fracture of the proximal tibia in young children who were jumping on a trampoline. The typical radiological findings and the underlying mechanism of trauma are discussed. The key radiological features are: a transverse hairline fracture of the upper tibia often accompanied by a buckle fracture of the lateral or medial tibial cortex, buckling of the anterior upper tibial cortex and anterior tilting of the epiphyseal plate. New types of injuries related to specific recreational activities are recognized. It is often helpful to associate a typical injury with a particular activity. Trampoline related injuries have increased dramatically over the last years. The most common lesions are fractures and ligamentous injuries, in particular a transverse fracture of the proximal tibia. However the radiological findings can be very subtle and easily overlooked. It is therefore important to be aware of the typical history and radiological findings.

  18. [Structural changes in the tibial bones from an excessive load].

    PubMed

    Moshiashvili, B I

    1977-10-01

    80 cases of pathological reconstruction of the tibia in young men at the age of 18--20 are described. The pathology developed as a result of intense regular physical exercise. In 53 patients the process was localized in the upper third of the tibia, in 20--in the middle third and in 7--in the lower third of the bone. In 6 cases the fracture of the tibial proximal metaphysis happened against the background of pathological reconstruction of the tibia; 3 of them sustained simultaneously a fracture of the fibular head. Some recommendations of practical importance are suggested.

  19. Effect of Tibial Plateau Levelling Osteotomy on Cranial Tibial Subluxation in the Feline Cranial Cruciate Deficient Stifle Joint: An Ex Vivo Experimental Study.

    PubMed

    Bilmont, A; Retournard, M; Asimus, E; Palierne, S; Autefage, A

    2018-06-11

     This study evaluated the effects of tibial plateau levelling osteotomy on cranial tibial subluxation and tibial rotation angle in a model of feline cranial cruciate ligament deficient stifle joint.  Quadriceps and gastrocnemius muscles were simulated with cables, turnbuckles and a spring in an ex vivo limb model. Cranial tibial subluxation and tibial rotation angle were measured radiographically before and after cranial cruciate ligament section, and after tibial plateau levelling osteotomy, at postoperative tibial plateau angles of +5°, 0° and -5°.  Cranial tibial subluxation and tibial rotation angle were not significantly altered after tibial plateau levelling osteotomy with a tibial plateau angle of +5°. Additional rotation of the tibial plateau to a tibial plateau angle of 0° and -5° had no significant effect on cranial tibial subluxation and tibial rotation angle, although 2 out of 10 specimens were stabilized by a postoperative tibial plateau angle of -5°. No stabilization of the cranial cruciate ligament deficient stifle was observed in this model of the feline stifle, after tibial plateau levelling osteotomy.  Given that stabilization of the cranial cruciate ligament deficient stifle was not obtained in this model, simple transposition of the tibial plateau levelling osteotomy technique from the dog to the cat may not be appropriate. Schattauer GmbH Stuttgart.

  20. Hindfoot Valgus following Interlocking Nail Treatment for Tibial Diaphysis Fractures: Can the Fibula Be Neglected?

    PubMed Central

    Uzun, Metin; Kara, Adnan; Adaş, Müjdat; Karslioğlu, Bülent; Bülbül, Murat; Beksaç, Burak

    2014-01-01

    Purpose. We evaluated whether intramedullary nail fixation for tibial diaphysis fractures with concomitant fibula fractures (except at the distal one-third level) managed conservatively with an associated fibula fracture resulted in ankle deformity and assessed the impact of the ankle deformity on lower extremity function. Methods. Sixty middle one-third tibial shaft fractures with associated fibular fractures, except the distal one-third level, were included in this study. All tibial shaft fractures were anatomically reduced and fixed with interlocking intramedullary nails. Fibular fractures were managed conservatively. Hindfoot alignment was assessed clinically. Tibia and fibular lengths were compared to contralateral measurements using radiographs. Functional results were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Foot and Ankle Disability Index Score (FADI). Results. Anatomic union, defined as equal length in operative and contralateral tibias, was achieved in 60 fractures (100%). Fibular shortening was identified in 42 fractures (68%). Mean fibular shortening was 1.2 cm (range, 0.5–2 cm). Clinical exams showed increased hindfoot valgus in 42 fractures (68%). The mean KOOS was 88.4, and the mean FADI score was 90. Conclusion. Fibular fractures in the middle or proximal one-third may need to be stabilized at the time of tibial intramedullary nail fixation to prevent development of hindfoot valgus due to fibular shortening. PMID:25544899

  1. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    NASA Technical Reports Server (NTRS)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  2. Load transfer in the proximal tibia following implantation with a unicompartmental knee replacement: a static snapshot.

    PubMed

    Simpson, D J; Kendrick, B J L; Dodd, C A F; Price, A J; Gill, H S; Murray, D W

    2011-05-01

    Unicompartmental knee replacement (UKR) is an appealing alternative to total knee replacement when the patient has isolated medial compartment osteoarthritis. A common observation post-operatively is radiolucency between the tibial tray wall and the bone. In addition, some patients complain of persistent pain over the proximal tibia antero-medially; this may be related to elevated bone strains in the tibia. Currently, there is no intentionally made mechanical bond between the vertical wall of an Oxford UKR and the adjacent bone; whether one exists or not will influence the load transmission in the proximal tibia and may affect the elevated tibia strain. The aim of this study was to investigate how introducing a mechanical tie between the tibial tray wall and the adjacent bone might alter the load carried into the tibia for both cemented and cementless UKRs. Strain energy density in the region of bone adjacent to the tray wall was considerably increased when a mechanical tie was introduced; this has the potential of reducing the likelihood of a radiolucency occurring in that region. Moreover, a mechanical tie had the effect of reducing proximal tibia strain, which may decrease the incidence of pain following implantation with a UKR.

  3. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    PubMed

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. In vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice

    PubMed Central

    Main, Russell P.; Lynch, Maureen E.; van der Meulen, Marjolein C.H.

    2010-01-01

    Whole bone morphology, cortical geometry, and tissue material properties modulate skeletal stresses and strains that in turn influence skeletal physiology and remodeling. Understanding how bone stiffness, the relationship between applied load and tissue strain, is regulated by developmental changes in bone structure and tissue material properties is important in implementing biophysical strategies for promoting healthy bone growth and preventing bone loss. The goal of this study was to relate developmental patterns of in vivo whole bone stiffness to whole bone morphology, cross-sectional geometry, and tissue properties using a mouse axial loading model. We measured in vivo tibial stiffness in three age groups (6wks, 10wks, 16wks old) of female C57Bl/6 mice during cyclic tibial compression. Tibial stiffness was then related to cortical geometry, longitudinal bone curvature, and tissue mineral density using microcomputed tomography (microCT). Tibial stiffness and the stresses induced by axial compression were generally maintained from 6 to 16wks of age. Growth-related increases in cortical cross-sectional geometry and longitudinal bone curvature had counteracting effects on induced bone stresses and, therefore, maintained tibial stiffness similarly with growth. Tissue mineral density increased slightly from 6 to 16wks of age, and although the effects of this increase on tibial stiffness were not directly measured, its role in the modulation of whole bone stiffness was likely minor over the age range examined. Thus, whole bone morphology, as characterized by longitudinal curvature, along with cortical geometry, plays an important role in modulating bone stiffness during development and should be considered when evaluating and designing in vivo loading studies and biophysical skeletal therapies. PMID:20673665

  5. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  6. Retinol Promotes In Vitro Growth of Proximal Colon Organoids through a Retinoic Acid-Independent Mechanism

    PubMed Central

    Nibe, Yoichi; Akiyama, Shintaro; Matsumoto, Yuka; Nozaki, Kengo; Fukuda, Masayoshi; Hayashi, Ayumi; Mizutani, Tomohiro; Oshima, Shigeru; Watanabe, Mamoru; Nakamura, Tetsuya

    2016-01-01

    Retinol (ROL), the alcohol form of vitamin A, is known to control cell fate decision of various types of stem cells in the form of its active metabolite, retinoic acid (RA). However, little is known about whether ROL has regulatory effects on colonic stem cells. We examined in this study the effect of ROL on the growth of murine normal colonic cells cultured as organoids. As genes involved in RA synthesis from ROL were differentially expressed along the length of the colon, we tested the effect of ROL on proximal and distal colon organoids separately. We found that organoid forming efficiency and the expression level of Lgr5, a marker gene for colonic stem cells were significantly enhanced by ROL in the proximal colon organoids, but not in the distal ones. Interestingly, neither retinaldehyde (RAL), an intermediate product of the ROL-RA pathway, nor RA exhibited growth promoting effects on the proximal colon organoids, suggesting that ROL-dependent growth enhancement in organoids involves an RA-independent mechanism. This was confirmed by the observation that an inhibitor for RA-mediated gene transcription did not abrogate the effect of ROL on organoids. This novel role of ROL in stem cell maintenance in the proximal colon provides insights into the mechanism of region-specific regulation for colonic stem cell maintenance. PMID:27564706

  7. Icariin Ameliorate Thiram-Induced Tibial Dyschondroplasia via Regulation of WNT4 and VEGF Expression in Broiler Chickens

    PubMed Central

    Zhang, Hui; Mehmood, Khalid; Li, Kun; Rehman, Mujeeb U.; Jiang, Xiong; Huang, Shucheng; Wang, Lei; Zhang, Lihong; Tong, Xiaole; Nabi, Fazul; Yao, Wangyuan; Iqbal, Muhammad K.; Shahzad, Muhammad; Li, Jiakui

    2018-01-01

    Tibial dyschondroplasia (TD) is main bone problem in fast growing poultry birds that effect proximal growth plate (GP) of tibia bone. TD is broadly defined as non-vascularized and non-mineralized, and enlarged GP with tibia bone deformation and lameness. Icariin (Epimedium sagittatum) is a traditional Chinese medicine, which is commonly practiced in the treatment of various bone diseases. Recently, many researcher reports about the beneficial effects of icariin in relation to various types of bone conditions but no report is available about promoting effect of icariin against TD. Therefore, current study was conducted to explore the ameliorating effect of icariin in thiram-induced TD chickens. A total of 180 broiler chicks were equally distributed in three groups; control, TD induced by thiram (50 mg/kg), and icariin group (treated with icariin @10 mg/kg). All groups were administered with normal standard diet ad libitum regularly until the end of experiment. The wingless-type member 4 (WNT4) and vascular endothelial growth factor (VEGF) genes and proteins expression were analyzed by quantitative real-time polymerase chain reaction and western blot analysis respectively. Tibial bone parameters, physiological changes in serum, antioxidant enzymes, and chicken growth performance were determined to assess advantage and protective effect of the medicine in broiler chicken. The expression of WNT4 was decreased while VEGF increased significantly (P < 0.05) in TD affected chicks. TD enhanced the GP, lameness, and irregular chondrocytes, while reduced the liver function, antioxidant enzymes in liver, and performance of chickens. Icariin treatment up-regulated WNT4 and down-regulated VEGF gene and protein expressions significantly (P < 0.05), restored the GP width, increased growth performance, corrected liver functions and antioxidant enzymes levels in liver, and mitigated the lameness in broiler chickens. In conclusion, icariin administration recovered GP size, normalized

  8. Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants.

    PubMed

    Payer, Michael; Lohberger, Birgit; Strunk, Dirk; Reich, Karoline M; Acham, Stephan; Jakse, Norbert

    2014-04-01

    Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament?

    PubMed

    Maes, Michael; Luyckx, Thomas; Bellemans, Johan

    2014-11-01

    Based on the anatomy of the deep medial collateral ligament (MCL), it was hypothesized that at least part of its cross-sectional insertion area is jeopardized while performing a standard tibial cut in conventional total knee arthroplasty (TKA). The aim of this study was to determine whether it is anatomically possible to preserve the tibial deep MCL insertion during conventional TKA. Thirty-three unpaired cadaveric knee specimens were used for this study. Knees with severe varus/valgus deformity or damage to the medial structures of the knee were excluded. In the first part of the study, the dimensions of the tibial insertion of the deep MCL and its relationship to the joint line were recorded. Next, the cross-sectional area of the deep MCL insertion was determined using calibrated digital photographic analysis. In the second part, the effect of a standard 9-mm 3° sloped tibial cut on the structural integrity of the deep MCL cross-sectional insertion area was determined using conventional instrumentation. The proximal border of the deep MCL insertion site on the tibia was located on average 4.7 ± 1.2 mm distally to the joint line. After performing a standard 9-mm 3° sloped tibial cut, on average 54% of the deep MCL insertion area was resected. In 29% of the cases, the deep MCL insertion area was completely excised. The deep MCL cannot routinely be preserved in conventional TKA. The deep MCL insertion is at risk and may be jeopardized in case of a tibial cut 9 mm below the native joint line. As the deep MCL is a distinct medial stabilizer and plays an important role in rotational stability, this may have implications in future designs of both unicondylar and total knee arthroplasty, but further research is necessary.

  10. Effects of Long-Term Daily Administration of Prostaglandin-E2 on Maintaining Elevated Proximal Tibial Metaphyseal Cancellous Bone Mass in Male Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S. S.; Mori, Satoshi; Li, Xiao Jian; Kimmel, Donald B.

    1992-01-01

    The effects of long-term prostaglandin E(sub 2) (PGE(sub 2)) on cancellous bone in proximal tibial metaphysis were studied in 7 month old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE(sub 2)/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE(sub 2) produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE(sub 2) for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE(sub 2) administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration .

  11. [Tibial periostitis ("medial tibial stress syndrome")].

    PubMed

    Fournier, Pierre-Etienne

    2003-06-01

    Medial tibial stress syndrome is characterised by complaints along the posteromedial tibia. Runners and athletes involved in jumping activities may develop this syndrome. Increased stress to stabilize the foot especially when excessive pronation is present explain the occurrence this lesion.

  12. [Application of tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty].

    PubMed

    Li, Guoliang; Han, Guangpu; Zhang, Jinxiu; Ma, Shiqiang; Guo, Donghui; Yuan, Fulu; Qi, Bingbing; Shen, Runbin

    2013-07-01

    To explore the application value of self-made tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty (TKA) for improving the lower extremity force line. Between January and August 2012, 13 cases (21 knees) of osteoarthritis with tibial extra-articular deformity were treated, including 5 males (8 knees) and 8 females (13 knees) with an average age of 66.5 years (range, 58-78 years). The disease duration was 2-5 years (mean, 3.5 years). The knee society score (KSS) was 45.5 +/- 15.5. Extra-articular deformities included 1 case of knee valgus (2 knees) and 12 cases of knee varus (19 knees). Preoperative full-length X-ray films of lower extremities showed 10-21 degrees valgus or varus deformity of tibial extra joint. Self-made tibial mechanical axis locator was used to determine and mark coronal tibial mechanical axis under X-ray before TKA, and then osteotomy was performed with extramedullary positioning device according to the mechanical axis marker.' All incisions healed by first intention, without related complications of infection and joint instability. All patients were followed up 5-12 months (mean, 8.3 months). The X-ray examination showed < 2 degrees knee deviation angle in the others except 1 case of 2.9 degrees knee deviation angle at 3 days after operation, and the accurate rate was 95.2%. No loosening or instability of prosthesis occurred during follow-up. KSS score was 85.5 +/- 15.0 at last follow-up, showing significant difference when compared with preoperative score (t=12.82, P=0.00). The seft-made tibial mechanical axis locator can improve the accurate rate of the lower extremity force line in TKA for tibia extra-articular deformity.

  13. Maximizing tibial coverage is detrimental to proper rotational alignment.

    PubMed

    Martin, Stacey; Saurez, Alex; Ismaily, Sabir; Ashfaq, Kashif; Noble, Philip; Incavo, Stephen J

    2014-01-01

    Traditionally, the placement of the tibial component in total knee arthroplasty (TKA) has focused on maximizing coverage of the tibial surface. However, the degree to which maximal coverage affects correct rotational placement of symmetric and asymmetric tibial components has not been well defined and might represent an implant design issue worthy of further inquiry. Using four commercially available tibial components (two symmetric, two asymmetric), we sought to determine (1) the overall amount of malrotation that would occur if components were placed for maximal tibial coverage; and (2) whether the asymmetric designs would result in less malrotation than the symmetric designs when placed for maximal coverage in a computer model using CT reconstructions. CT reconstructions of 30 tibial specimens were used to generate three-dimensional tibia reconstructions with attention to the tibial anatomic axis, the tibial tubercle, and the resected tibial surface. Using strict criteria, four commercially available tibial designs (two symmetric, two asymmetric) were placed on the resected tibial surface. The resulting component rotation was examined. Among all four designs, 70% of all tibial components placed in orientation maximizing fit to resection surface were internally malrotated (average 9°). The asymmetric designs had fewer cases of malrotation (28% and 52% for the two asymmetric designs, 100% and 96% for the two symmetric designs; p < 0.001) and less malrotation on average (2° and 5° for the asymmetric designs, 14° for both symmetric designs; p < 0.001). Maximizing tibial coverage resulted in implant malrotation in a large percentage of cases. Given similar amounts of tibial coverage, correct rotational positioning was more likely to occur with the asymmetric designs. Malrotation of components is an important cause of failure in TKA. Priority should be given to correct tibial rotational positioning. This study suggested that it is easier to balance rotation and

  14. Tibial avulsion fracture of the posterior root of the medial meniscus in a skeletally-immature child - a case report.

    PubMed

    Matava, Matthew J; Kim, Young-Mo

    2011-01-01

    It has been theorized that a traumatic tibial avulsion fracture of the posterior root of the medial meniscus (MM) is the cause of the so-called meniscus ossicle (MO). We report the delayed appearance of a tibial avulsion fracture of the posterior root of the MM after a valgus, twisting injury in a 12-year-old boy with open physes. Magnetic resonance imaging (MRI) scans performed 3 days after the injury did not demonstrate a definitive tibial avulsion fracture of the posterior root of the MM; whereas, a repeat MRI for 3 months post-injury did. Medial extrusion of the MM was also noted on the 3 month MRI. Arthroscopic reattachment of the avulsed posterior root of the MM using a trans-physeal nonabsorbable suture tied over a proximal tibia staple was performed. Follow-up MRI at 6 months postoperatively demonstrated healing of the tibial avulsion fracture of the posterior root of the MM in an anatomic position. The patient had a complete resolution of symptoms and there was no angular deformity or limb-length discrepancy at 2 years postoperatively. To our knowledge, this is the first report describing a tibial avulsion fracture of the posterior root of the MM in a skeletally-immature patient successfully treated by a trans-physeal arthroscopic suture. This case also illustrates the development of the MO of the posterior root of the MM. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Peri-implant bone strains and micro-motion following in vivo service: a postmortem retrieval study of 22 tibial components from total knee replacements.

    PubMed

    Mann, Kenneth A; Miller, Mark A; Goodheart, Jacklyn R; Izant, Timothy H; Cleary, Richard J

    2014-03-01

    Biological adaptation following placement of a total knee replacements (TKRs) affects peri-implant bone mineral density (BMD) and implant fixation. We quantified the proximal tibial bone strain and implant-bone micro-motion for functioning postmortem retrieved TKRs and assessed the strain/micro-motion relationships with chronological (donor age and time in service) and patient (body weight and BMD) factors. Twenty-two tibial constructs were functionally loaded to one body weight (60% medial/40% lateral), and the bone strains and tray/bone micro-motions were measured using a digital image correlation system. Donors with more time in service had higher bone strains (p = 0.044), but there was not a significant (p = 0.333) contribution from donor age. Donors with lower peri-implant BMD (p = 0.0039) and higher body weight (p = 0.0286) had higher bone strains. Long term implants (>11 years) had proximal bone strains 900 µϵ that were almost twice as high as short term (<5 years) implants 570 µϵ. Micro-motion was greater for younger donors (p = 0.0161) and longer time in service (p = 0.0008). Increased bone strain with long term in vivo service could contribute to loosening of TKRs by failure of the tibial peri-implant bone. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Gender differences of the morphology of the distal femur and proximal tibia in a Korean population.

    PubMed

    Lim, Hong-Chul; Bae, Ji-Hoon; Yoon, Ji-Yeol; Kim, Seung-Ju; Kim, Jae-Gyoon; Lee, Jae-Moon

    2013-01-01

    We conducted this study to determine whether the sizes of distal femurs and proximal tibiae in Korean men and women are different, and to assess suitability of the sizes of prostheses currently used in Korea. We performed morphological analysis of proximal tibia and distal femur on 115 patients (56 male, 59 female) using MRI to investigate a gender difference. Tibial mediolateral dimension (tMAP), tibial medial anteroposterior dimension (tMAP), tibial lateral anteroposterior dimension (tLAP) femoral mediolateral dimension (fML), femoral medial anteroposterior dimension (fMAP), and femoral lateral anteroposterior dimension (fLAP) were measured. The ratio of tMAP and tLAP to tML (plateau aspect ratio, tAP/tML×100%), and that of fMAP and fLAP to fML (condylar aspect ratio, fAP/fML×100%) were calculated. The measurements were compared with the similar dimensions of four total knee implants currently used. The tML and tAP lengths showed a significant gender difference (P<0.05). The plateau aspect ratio (tMAP/tML) revealed a significant difference between male (0.74±0.05) and female (0.68±0.04, P<0.05). For morphotype of distal femur, males were found to have significantly large values (P<0.05) in the parameters, except for fLAP. With regards to the ratio of the ML width to the AP length, the women showed a narrower ML width than the men. Both genders were distributed within the range of the dimensions of the prostheses currently used prostheses. Korean population revealed that women have smaller dimensions than male counterparts. In both genders, a relatively small size of prostheses matches distal femur and proximal tibia better among the implants currently used in Korea. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply

    NASA Astrophysics Data System (ADS)

    O'Brien, Maria; McEvoy, Niall; Hallam, Toby; Kim, Hye-Young; Berner, Nina C.; Hanlon, Damien; Lee, Kangho; Coleman, Jonathan N.; Duesberg, Georg S.

    2014-12-01

    Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components.

  18. Incidence and epidemiology of tibial shaft fractures.

    PubMed

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.

    PubMed

    Zhang, Yi-Jun; Xu, Jian; Wang, Yue; Lin, Xiang-Jin; Ma, Xin

    2015-02-01

    The aim of this study was to explore the correlation between the kinematics of the hindfoot joint and the medial arch angle change in stage II posterior tibial tendon dysfunction flatfoot three-dimensionally under loading. Computed tomography (CT) scans of 12 healthy feet and 12 feet with stage II posterior tibial tendon dysfunction flatfoot were taken both in non- and full-body-weight-bearing condition. The CT images of the hindfoot bones were reconstructed into three-dimensional models with Mimics and Geomagic reverse engineering software. The three-dimensional changes of the hindfoot joint were calculated to determine their correlation to the medial longitudinal arch angle. The medial arch angle change was larger in stage II posterior tibial tendon dysfunction flatfoot compared to that in healthy foot under loading. The rotation and translation of the talocalcaneal joint, the talonavicular joint and the calcanocuboid joint had little influence on the change of the medial arch angle in healthy foot. However, the eversion of the talocalcaneal joint, the proximal translation of the calcaneus relative to the talus and the dorsiflexion of talonavicular joint could increase the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot under loading. Joint instability occurred in patients with stage II posterior tibial tendon dysfunction flatfoot under loading. Limitation of over movement of the talocalcaneal joint and the talonavicular joint may help correct the medial longitudinal arch in stage II posterior tibial tendon dysfunction flatfoot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Allograft-prosthesis composites after bone tumor resection at the proximal tibia.

    PubMed

    Biau, David Jean; Dumaine, Valérie; Babinet, Antoine; Tomeno, Bernard; Anract, Philippe

    2007-03-01

    The survival of irradiated allograft-prosthesis composites at the proximal tibia is mostly unknown. However, allograft-prosthesis composites have proved beneficial at other reconstruction sites. We presumed allograft-prosthesis composites at the proximal tibia would improve survival and facilitate reattachment of the extensor mechanism compared with that of conventional (megaprostheses) reconstructions. We retrospectively reviewed 26 patients who underwent resection of proximal tibia tumors followed by reconstruction with allo-graft-prosthesis composites. Patients received Guepar massive custom-made fully constrained prostheses. Allografts were sterilized with gamma radiation, and the stems were cemented into the allograft and host bone. The minimum followup was 6 months (median, 128 months; range, 6-195 months). Fourteen patients had one or more components removed. The median allograft-prosthesis composite survival was 102 months (95% confidence interval, 64.2-infinity). Of the 26 allografts, seven fractured, six showed signs of partial resorption, and six had infections develop. Seven allografts showed signs of fusion with the host bone. Six extensor mechanism reconstructions failed. Allograft-prosthesis composites sterilized by gamma radiation yielded poor results for proximal tibial reconstruction as complications and failures were common. We do not recommend irradiated allograft-prosthesis composites for proximal tibia reconstruction.

  1. Influence of muscle groups' activation on proximal femoral growth tendency.

    PubMed

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  2. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction.

    PubMed

    Inderhaug, Eivind; Raknes, Sveinung; Østvold, Thomas; Solheim, Eirik; Strand, Torbjørn

    2017-01-01

    To map knee morphology radiographically in a population with a torn ACL and to investigate whether anatomic factors could be related to outcomes after ACL reconstruction at mid- to long-term follow-up. Further, we wanted to assess tibial tunnel placement after using the 70-degree "anti-impingement" tibial tunnel guide and investigate any relation between tunnel placement and revision surgery. Patients undergoing ACL reconstruction involving the 70-degree tibial guide from 2003 to 2008 were included. Two independent investigators analysed pre- and post-operative radiographs. Demographic data and information on revision surgery were collected from an internal database. Anatomic factors and post-operative tibial tunnel placements were investigated as predictors of revision. Three-hundred and seventy-seven patients were included in the study. A large anatomic variation with significant differences between men and women was seen. None of the anatomic factors could be related to a significant increase in revision rate. Patients with a posterior tibial tunnel placement, defined as 50 % or more posterior on the Amis and Jakob line, did, however, have a higher risk of revision surgery compared to patients with an anterior tunnel placement (P = 0.03). Use of the 70-degree tibial guide did result in a high incidence (47 %) of posterior tibial tunnel placements associated with an increased rate of revision surgery. The current study was, however, not able to identify any anatomic variation that could be related to a higher risk of revision surgery. Avoiding graft impingement from the femoral roof in anterior tibial tunnel placements is important, but the insight that overly posterior tunnel placement can lead to inferior outcome should also be kept in mind when performing ACL surgery. IV.

  3. Fractures of the Tibial Plateau Involve Similar Energies as the Tibial Pilon but Greater Articular Surface Involvement

    PubMed Central

    Dibbern, Kevin; Kempton, Laurence B.; Higgins, Thomas F.; Morshed, Saam; McKinley, Todd O.; Marsh, J. Lawrence; Anderson, Donald D.

    2016-01-01

    Patients with tibial pilon fractures have a higher incidence of post-traumatic osteoarthritis than those with fractures of the tibial plateau. This may indicate that pilon fractures present a greater mechanical insult to the joint than do plateau fractures. We tested the hypothesis that fracture energy and articular fracture edge length, two independent indicators of severity, are higher in pilon than plateau fractures. We also evaluated if clinical fracture classification systems accurately reflect severity. Seventy-five tibial plateau fractures and fifty-two tibial pilon fractures from a multi-institutional study were selected to span the spectrum of severity. Fracture severity measures were calculated using objective CT-based image analysis methods. The ranges of fracture energies measured for tibial plateau and pilon fractures were 3.2 to 33.2 Joules (J) and 3.6 to 32.2 J, respectively, and articular fracture edge lengths were 68.0 to 493.0 mm and 56.1 to 288.6 mm, respectively. There were no differences in the fracture energies between the two fracture types, but plateau fractures had greater articular fracture edge lengths (p<0.001). The clinical fracture classifications generally reflected severity, but there was substantial overlap of fracture severity measures between different classes. Clinical Significance Similar fracture energies with different degrees of articular surface involvement suggest a possible explanation for dissimilar rates of post-traumatic osteoarthritis for fractures of the tibial plateau compared to the tibial pilon. The substantial overlap of severity measures between different fracture classes may well have confounded prior clinical studies relying on fracture classification as a surrogate for severity. PMID:27381653

  4. Impingement of the Mobile Bearing on the Lateral Wall of the Tibial Tray in Unicompartmental Knee Arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Shirakawa, Nobuyuki; Tanaka, Sakae

    2016-07-01

    Tilting of the mobile bearing relative to the tibial tray in the flexion position may result from the implantation of femoral components more laterally relative to tibial components during unicompartmental knee arthroplasty (UKA) using the Oxford Knee. The purpose of the present study was to compare femoral component positions after UKA using the phase 3 device and a novel device. We further evaluated the placement of the femoral components with the new device in the flexion position to determine the association with short-term prognosis. The location of femoral and tibial components in the flexion position of 38 knees implanted using the phase 3 device and 49 knees using a novel device was assessed at 1 year postoperatively using radiography of the proximal tibia and distal femur in the flexion position. The femoral component was implanted more laterally using the new device than using the phase 3 device in the flexion position (P = .012), which caused the impingement of the mobile bearing against the lateral wall of the tibial tray. After UKA using the new device, 10% of patients exhibited the tilting phenomenon of the mobile bearing because of the lateral implantation of the femoral implant. To prevent implantation of the femoral component too laterally using the new device during UKA, knee surgeons should set the drill guide more medially such that the center of the drill is aligned with the middle of the medial femoral condyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Trifurcation of the tibial nerve within the tarsal tunnel.

    PubMed

    Develi, Sedat

    2018-05-01

    The tibial nerve is the larger terminal branch of the sciatic nerve and it terminates in the tarsal tunnel by giving lateral and medial plantar nerves. We present a rare case of trifurcation of the tibial nerve within the tarsal tunnel. The variant nerve curves laterally after branching from the tibial nerve and courses deep to quadratus plantae muscle. Interestingly, posterior tibial artery was also terminating by giving three branches. These branches were accompanying the terminal branches of the tibial nerve.

  6. Extracurricular sports activity around growth spurt and improved tibial cortical bone properties in late adolescence.

    PubMed

    Shi, Hui-Jing; Nakamura, Keiko; Kizuki, Masashi; Inose, Tomoko; Seino, Kaoruko; Takano, Takehito

    2006-12-01

    To elucidate whether extracurricular sports activity during rapid growth correlates with improved bone properties in late adolescence, a longitudinal observation was performed among 96 high-school enrollments (46 boys and 50 girls, born in 1981-1982) in metropolitan Tokyo. In each year of high school, tibial cortical speed of sound (TCSOS) was measured by quantitative ultrasonometry, and participation in extracurricular sports activity (ECSA) since primary school was examined by structured questionnaire. We calculated the number of years since peak height velocity (ysPHV) based on annual records of height from 6 to 18 y of age to indicate progression of puberty. The increase in TCSOS during high school in boys (32.5 m/s) was significantly greater than that in girls (5.4 m/s). The magnitude of positive association between ysPHV and TCSOS attenuated gradually over time. ECSA in grades 7-9 in boys and in grades 4-6 in girls were significant predictors of TCSOS throughout high school, independent of potential confounders. The bone benefits of ECSA around the growth spurt are maintainable in subsequent years. The importance of physical activities that are integrated into the ordinary lifestyle of children and adolescents during this crucial period is emphasized.

  7. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration.

    PubMed

    Ziegler, Raphaela; Goebel, Lars; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-07-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural changes in the articular cartilage in the lateral tibiofemoral compartment of adult sheep. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction), and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the contralateral knees that only received an arthrotomy. After 6 months, the macroscopic and microscopic characteristics of the articular cartilage of the lateral tibiofemoral compartment were assessed. The articular cartilage in the central region of the lateral tibial plateau in sheep had a higher safranin O staining intensity and was 4.6-fold thicker than in the periphery (covered by the lateral meniscus). No topographical variation in the type-II collagen immunoreactivity was seen. All lateral tibial plateaus showed osteoarthritic changes in regions not covered by the lateral meniscus. No osteoarthritis was seen in the peripheral submeniscal regions of the lateral tibial plateau and the lateral femoral condyle. Opening wedge HTO resulting in both standard and overcorrection was not associated with significant macroscopic and microscopic structural changes between groups in the articular cartilage of the lateral tibial plateau and femoral condyle after 6 months in vivo. Opening wedge HTO resulting in both standard and overcorrection is a safe procedure for the articular cartilage in an intact lateral tibiofemoral compartment of adult sheep at 6 months postoperatively.

  8. Vascularized fibular epiphyseal transfer for proximal humeral reconstruction in children with a primary sarcoma of bone.

    PubMed

    Stevenson, J D; Doxey, R; Abudu, A; Parry, M; Evans, S; Peart, F; Jeys, L

    2018-04-01

    Aims Preserving growth following limb-salvage surgery of the upper limb in children remains a challenge. Vascularized autografts may provide rapid biological incorporation with the potential for growth and longevity. In this study, we aimed to describe the outcomes following proximal humeral reconstruction with a vascularized fibular epiphyseal transfer in children with a primary sarcoma of bone. We also aimed to quantify the hypertrophy of the graft and the annual growth, and to determine the functional outcomes of the neoglenofibular joint. Patients and Methods We retrospectively analyzed 11 patients who underwent this procedure for a primary bone tumour of the proximal humerus between 2004 and 2015. Six had Ewing's sarcoma and five had osteosarcoma. Their mean age at the time of surgery was five years (two to eight). The mean follow-up was 5.2 years (1 to 12.2). Results The overall survival at five and ten years was 91% (confidence interval (CI) 95% 75% to 100%). At the time of the final review, ten patients were alive. One with local recurrence and metastasis died one-year post-operatively. Complications included seven fractures, four transient nerve palsies, and two patients developed avascular necrosis of the graft. All the fractures presented within the first postoperative year and united with conservative management. One patient had two further operations for a slipped fibular epiphysis of the autograft, and a hemi-epiphysiodesis for lateral tibial physeal arrest. Hypertrophy and axial growth were evident in nine patients who did not have avascular necrosis of the graft. The mean hypertrophy index was 65% (55% to 82%), and the mean growth was 4.6 mm per annum (2.4 to 7.6) in these nine grafts. At final follow-up, the mean modified functional Musculoskeletal Tumour Society score was 77% (63% to 83%) and the mean Toronto Extremity Salvage Score (TESS) was 84% (65% to 94%). Conclusion Vascularized fibular epiphyseal transfer preserves function and growth in

  9. Severe lateral tibial bowing with short stature in two siblings--a provisionally novel syndrome.

    PubMed

    Zitano, Lia; Loder, Randall T; Cohen, Mervyn D; Weaver, David D

    2012-09-01

    In this report, we describe two siblings with short stature and severe lateral tibial bowing. In the younger sibling, the bowing was bilateral, while in the older sib, it was unilateral. However, both showed bilateral abnormalities of the distal tibial epiphyses and growth plates. Pseudoarthrosis of the left distal tibial metaphysis and subsequent spontaneous resolution of the abnormality occurred in the younger sibling. The fibulas of both children were of normal diameter and were straight, except for the distal ends. Surgery has almost completely corrected the lower leg bowing in both patients. The type of tibial bowing seen in these children can be associated with a number of syndromes, such as neurofibromatosis type I, Weismann-Netter syndrome, and a variety of environmental caused disorders, such as vitamin D deficient rickets. However, the severity of the bowing present in our patients and the absence of other clinical features differentiates this condition from those reported in the literature. We posit that the condition in the children presented here represents an as yet undescribed syndrome, which is likely to be of genetic origin. Copyright © 2012 Wiley Periodicals, Inc.

  10. Histological analysis of the tibial anterior cruciate ligament insertion.

    PubMed

    Oka, Shinya; Schuhmacher, Peter; Brehmer, Axel; Traut, Ulrike; Kirsch, Joachim; Siebold, Rainer

    2016-03-01

    This study was performed to investigate the morphology of the tibial anterior cruciate ligament (ACL) by histological assessment. The native (undissected) tibial ACL insertion of six fresh-frozen cadaveric knees was cut into four sagittal sections parallel to the long axis of the medial tibial spine. For histological evaluation, the slices were stained with haematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analysed at a magnification of 20×. The anterior tibial ACL insertion was bordered by a bony anterior ridge. The most medial ACL fibres inserted from the medial tibial spine and were adjacent to the articular cartilage of the medial tibial plateau. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact with the lateral part of the tibial ACL insertion. A small fat pad was located just posterior to the functional ACL fibres. The anterior-posterior length of the medial ACL insertion was an average of 10.8 ± 1.1 mm compared with the lateral, which was only 6.2 ± 1.1 mm (p < 0.001). There were no central or posterolateral inserting ACL fibres. The shape of the bony tibial ACL insertion was 'duck-foot-like'. In contrast to previous findings, the functional mid-substance fibres arose from the most posterior part of the 'duck-foot' in a flat and 'c-shaped' way. The most anterior part of the tibial ACL insertion was bordered by a bony anterior ridge and the most medial by the medial tibial spine. No posterolateral fibres nor ACL bundles have been found histologically. This histological investigation may improve our understanding of the tibial ACL insertion and may provide important information for anatomical ACL reconstruction.

  11. Tibial plateau fracture after anterior cruciate ligament reconstruction: Role of the interference screw resorption in the stress riser effect.

    PubMed

    Thaunat, Mathieu; Nourissat, Geoffroy; Gaudin, Pascal; Beaufils, Philippe

    2006-06-01

    We report a case of tibial plateau fracture after previous anterior cruciate ligament (ACL) reconstruction using patellar tendon autograft and bioabsorbable screws 4 years previously. The fracture occurred through the tibial tunnel. The interference screw had undergone complete resorption and the tunnel widening had increased. The resorption of the interference screw did not simultaneously promote and foster the growth of surrounding bone tissue. Therefore, the area of reactive tissue left by the screw resorption in an enlarged bone tunnel may lead to vulnerability of the tibial plateau. Stress risers would occur following ACL reconstruction if either resorption is not complete or bony integration is not complete.

  12. Preserving the PCL during the tibial cut in total knee arthroplasty.

    PubMed

    Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G

    2017-08-01

    Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.

  13. Bypass grafting to the anterior tibial artery.

    PubMed

    Armour, R H

    1976-01-01

    Four patients with severe ischaemia of a leg due to atherosclerotic occlusion of the tibial and peroneal arteries had reversed long saphenous vein grafts to the patent lower part of the anterior tibial artery. Two of these grafts continue to function 19 and 24 months after operation respectively. One graft failed on the fifth postoperative day and another occluded 4 months after operation. The literature on femorotibial grafting has been reviewed. The early failure rate of distal grafting is higher than in the case of femoropopliteal bypass, but a number of otherwise doomed limbs can be salvaged. Contrary to widely held views, grafting to the anterior tibial artery appears to give results comparable to those obtained when the lower anastomosis is made to the posterior tibial artery.

  14. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  15. Rupture of the anterior tibial tendon: three clinical cases, anatomical study, and literature review.

    PubMed

    Anagnostakos, Konstantinos; Bachelier, Felix; Fürst, Oliver Alexander; Kelm, Jens

    2006-05-01

    We report three cases of anterior tibial tendon ruptures and the results of an anatomical study in regard to the tendon's insertion site and a literature review. Three patients were referred to our hospital with anterior tibial tendon ruptures. In the anatomical study, 53 feet were dissected, looking in particular for variants of the bony insertion of the tendon. Two patients had surgical treatment (one primary repair and one semimembranosus tendon graft) and one conservative treatment. After a mean followup of 14 weeks all patients had satisfactory outcomes. In the anatomical study, we noted three different insertion sites: in 36 feet the tendon inserted into the medial side of the cuneiform and the base of the first metatarsal bone and in 13 feet only into the medial side of the cuneiform bone. In the remaining four feet the tendon inserted into the cuneiform and the first metatarsal bone, but an additional tendon was noted taking its origin from the anterior tibial tendon near its insertion into the medial cuneiform and attaching to the proximal part of the first metatarsal. According to literature, surgical repair is the treatment of choice for acute ruptures and for patients with high activity levels. For chronic ruptures and patients with low demands, conservative management may lead to an equally good outcome. Knowledge of the anatomy in this region may be helpful for diagnosis and for the interpretation of intraoperative findings and choosing the most appropriate surgical procedure.

  16. Using external and internal locking plates in a two-stage protocol for treatment of segmental tibial fractures.

    PubMed

    Ma, Ching-Hou; Tu, Yuan-Kun; Yeh, Jih-Hsi; Yang, Shih-Chieh; Wu, Chin-Hsien

    2011-09-01

    The tibial segmental fractures usually follow high-energy trauma and are often associated with many complications. We designed a two-stage protocol for these complex injuries. The aim of this study was to assess the outcome of tibial segmental fractures treated according to this protocol. A prospective series of 25 consecutive segmental tibial fractures were treated using a two-stage procedure. In the first stage, a low-profile locking plate was applied as an external fixator to temporarily immobilize the fractures after anatomic reduction had been achieved followed by soft-tissue reconstruction. The second stage involved definitive internal fixation with a locking plate using a minimally invasive percutaneous plate osteosynthesis technique. The median follow-up was 32 months (range, 20-44 months). All fractures achieved union. The median time for the proximal fracture union was 23 weeks (range, 12-30 weeks) and that for distal fracture union was 27 weeks (range, 12-46 weeks; p = 0.08). Functional results were excellent in 21 patients and good in 4 patients. There were three cases of delayed union of distal fracture. Valgus malunion >5 degrees occurred in two patients, and length discrepancy >1 cm was observed in two patients. Pin tract infection occurred in three patients. Use of the two-stage procedure for treatment of segmental tibial fractures is recommended. Surgeons can achieve good reduction with stable temporary fixation, soft-tissue reconstruction, ease of subsequent definitive fixation, and high union rates. Our patients obtained excellent knee and ankle joint motion, good functional outcomes, and a comfortable clinical course.

  17. Anterior Cruciate Ligament Reconstruction with Tibial Attachment Preserving Hamstring Graft without Implant on Tibial Side

    PubMed Central

    Sinha, Skand; Naik, Ananta Kumar; Maheshwari, Mridul; Sandanshiv, Sumedh; Meena, Durgashankar; Arya, Rajendra K

    2018-01-01

    Background: Tibial attachment preserving hamstring graft could prevent potential problems of free graft in anterior cruciate ligament (ACL) reconstruction such as pull out before graft-tunnel healing or rupture before ligamentization. Different implants have been reportedly used for tibial side fixation with this technique. We investigated short-term outcome of ACL reconstruction (ACLR) with tibial attachment sparing hamstring graft without implant on the tibial side by outside in technique. Materials and Methods: Seventy nine consecutive cases of ACL tear having age of 25.7 ± 6.8 years were included after Institutional Board Approval. All subjects were male. The mean time interval from injury to surgery was of 7.5 ± 6.4 months. Hamstring tendons were harvested with open tendon stripper leaving the tibial insertion intact. The free ends of the tendons were whip stitched, quadrupled, and whip stitched again over the insertion site of hamstring with fiber wire (Arthrex). Single bundle ACLR was done by outside in technique and the femoral tunnel was created with cannulated reamer. The graft was pulled up to the external aperture of femoral tunnel and fixed with interference screw (Arthrex). The scoring was done by Lysholm, Tegner, and KT 1000 by independent observers. All cases were followed up for 2 years. Results: The mean length of quadrupled graft attached to tibia was 127.65 ± 7.5 mm, and the mean width was 7.52 ± 0.78 mm. The mean preoperative Lysholm score of 47.15 ± 9.6, improved to 96.8 ± 2.4 at 1 year. All cases except two returned to the previous level of activity after ACLR. There was no significant difference statistically between preinjury (5.89 ± 0.68) and postoperative (5.87 ± 0.67) Tegner score. The anterior tibial translation (ATT) (KT 1000) improved from 11.44 ± 1.93 mm to 3.59 ± 0.89 mm. The ATT of operated knee returned to nearly the similar value as of the opposite knee (3.47 ± 1.16 mm). The Pivot shift test was negative in all cases

  18. [Growth behaviour after fractures of the proximal radius: differences to the rest of the skeleton].

    PubMed

    Hell, A K; von Laer, L

    2014-12-01

    Fractures of the proximal end of the radius in the growth phase have three characteristics: the head of the radius articulates with two joint partners and is therefore indispensable for an undisturbed function of the elbow. The blood supply of the proximal end of the radius is via periosteal vessels in the sense of a terminal circulation which makes it extremely vulnerable. Severe trauma caused either by accidents or treatment, can result in partial or complete necrosis with deformity of the head and neck region of the radius. Radioulnar synostosis and chronic epiphysiolysis are irreversible complications which can occur after excessive physiotherapy. Despite a low potency growth plate, in young patients the proximal end of the radius shows an enormous spontaneous correction of dislocations. Side to side shifts, however, will not be remodeled. Therapy should be as atraumatic as possible. Due to the blood supply situation, with the appropriate indications the spontaneous correction and a brief period of immobilization without physiotherapy should be integrated into the therapy concept. If an operation is necessary, repeated traumatic repositioning maneuvers should be avoided and in case of doubt closed or careful open repositioning can be achieved with intramedullary nailing. In order to take the special characteristics of the proximal radius into consideration, the vulnerability and correction potential must be weighed up against each other. Therapy must be as atraumatic as possible. The spontaneous correction potential should be integrated into the primary therapy without overestimating this potential with respect to the extent and age of the patient.

  19. Compartment syndrome after tibial plateau fracture☆

    PubMed Central

    Pitta, Guilherme Benjamin Brandão; dos Santos, Thays Fernanda Avelino; dos Santos, Fernanda Thaysa Avelino; da Costa Filho, Edelson Moreira

    2014-01-01

    Fractures of the tibial plateau are relatively rare, representing around 1.2% of all fractures. The tibia, due to its subcutaneous location and poor muscle coverage, is exposed and suffers large numbers of traumas, not only fractures, but also crush injuries and severe bruising, among others, which at any given moment, could lead compartment syndrome in the patient. The case is reported of a 58-year-old patient who, following a tibial plateau fracture, presented compartment syndrome of the leg and was submitted to decompressive fasciotomy of the four right compartments. After osteosynthesis with internal fixation of the tibial plateau using an L-plate, the patient again developed compartment syndrome. PMID:26229779

  20. The preclinical sheep model of high tibial osteotomy relating basic science to the clinics: standards, techniques and pitfalls.

    PubMed

    Pape, Dietrich; Madry, Henning

    2013-01-01

    To develop a preclinical large animal model of high tibial osteotomy to study the effect of axial alignment on the lower extremity on specific issues of the knee joint, such as in articular cartilage repair, development of osteoarthritis and meniscal lesions. Preoperative planning, surgical procedure and postoperative care known from humans were adapted to develop a HTO model in the adult sheep. Thirty-five healthy, skeletally mature, female Merino sheep between 2 and 4 years of age underwent a HTO of their right tibia in a medial open-wedge technique inducing a normal (group 1) and an excessive valgus alignment (group 2) and a closed-wedge technique (group 3) inducing a varus alignment with the aim of elucidating the effect of limb alignment on cartilage repair in vivo. Animals were followed up for 6 months. Solid bone healing and maintenance of correction are most likely if the following surgical principles are respected: (1) medial and longitudinal approach to the proximal tibia; (2) biplanar osteotomy to increase initial rotatory stability regardless of the direction of correction; (3) small, narrow but long implant with locking screws; (4) posterior plate placement to avoid slope changes; (5) use of bicortical screws to account for the brittle bone of the tibial head and to avoid tibial head displacement. Although successful high tibial osteotomy in sheep is complex, the sheep may--because of its similarities with humans--serve as an elegant model to induce axial malalignment in a clinically relevant environment, and osteotomy healing under challenging mechanical conditions.

  1. Distal tibial tuberosity translation using TTA implants for the treatment of patella alta in large breed dogs. Surgical technique and clinical outcome.

    PubMed

    Pugliese, L C; Pike, F S; Aiken, S W

    2015-01-01

    Medial patellar luxation frequently occurs in dogs resulting in lameness with increasing incidence in large breed dogs. Patella alta has been defined as a patellar ligament length to patellar length ratio that is greater than two and may predispose to patellar luxation. To describe the surgical technique for stabilization of the distal translation of the tibial tuberosity using tibial tuberosity advancement plates and the clinical outcomes with follow-up for clinical cases of dogs. Dogs that were presented with the complaint of patellar luxation and that were concurrently diagnosed with patella alta and were greater than 20 kg in body weight underwent surgery using a tibial tuberosity advancement plate to stabilize the osteotomy. Radiographic assessment of A:PL distance (the ratio of the proximal aspect of the patella to the femoral condyle [A] to the patellar length [PL]), L:P ratio (ratio of the length of the patellar ligament to the diagonal length of the patella), and owner assessment were obtained. Eleven stifles in nine dogs underwent surgical correction with a mean preoperative L:P ratio of 2.47. There were no complications and the lameness resolved clinically. The mean A:PL ratios preoperatively (2.6 ± 0.22) and postoperatively (2.1 ± 0.25) were significantly different (p = 0.0003). All owners were satisfied with the outcome and all dogs had a resolution of lameness with no recurrence of patellar luxation. Stabilization of distal translation of the tibial tuberosity using tibial tuberosity advancement implants to correct patella alta in large breed dogs was feasible and resulted in good clinical outcome.

  2. Tibial lengthening over intramedullary nails

    PubMed Central

    Burghardt, R. D.; Manzotti, A.; Bhave, A.; Paley, D.

    2016-01-01

    Objectives The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. Methods In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group. Results The mean external fixation time for the LON group was 2.6 months and for the matched case group was 7.6 months. The mean lengthening amounts for the LON and the matched case groups were 5.2 cm and 4.9 cm, respectively. The radiographic consolidation time in the LON group was 6.6 months and in the matched case group 7.6 months. Using a clinical and radiographic outcome score that was designed for this study, the outcome was determined to be excellent in 17 and good in two patients for the LON group. The outcome was excellent in 14 and good in five patients in the matched case group. The LON group had increased blood loss and increased cost. The LON group had four deep infections; the matched case group did not have any deep infections. Conclusions The outcomes in the LON group were comparable with the outcomes in the matched case group. The LON group had a shorter external fixation time but experienced increased blood loss, increased cost, and four cases of deep infection. The advantage of reducing external fixation treatment time may outweigh these disadvantages in patients who have a healthy soft-tissue envelope. Cite this article: J. E. Herzenberg. Tibial lengthening over intramedullary nails: A matched case comparison with Ilizarov tibial lengthening. Bone Joint Res 2016;5:1–10. doi: 10.1302/2046-3758.51.2000577 PMID:26764351

  3. Angular stable plates in proximal meta-epiphyseal tibial fractures: study of joint restoration and clinical and functional evaluation.

    PubMed

    Giannotti, S; Giovannelli, D; Dell'Osso, G; Bottai, V; Bugelli, G; Celli, F; Citarelli, C; Guido, G

    2016-04-01

    The tibial plateau fractures involve one of the main weight bearing joints of the human body. The goals of surgical treatment are anatomical reduction, articular surface reconstruction and high primary stability. The aim of this study was to evaluate the clinical and functional outcomes after internal plate fixation of this kind of fractures. From January 2009 to December 2012, we treated 75 cases of tibial plateau fracture with angular stable plates. We used Rasmussen Score and the Knee Society Score for the clinical and functional evaluation. Twenty-five cases that underwent hardware removal had arthroscopic and CT evaluation of the joint. No complications occurred. The clinical and functional evaluation, performed by the KSS and Rasmussen Score, highlighted the high percentage of good-to-excellent results (over 90 %). In every case, the range of motion was good with flexion >90°. Arthroscopy showed the presence of chondral damage in 100 % of patients. In all the cases, we found that X-ray images seem better than the CT images. Angular stable plates allow to obtain a good primary stability, permitting an early joint recovery with an excellent range of motion. Avoiding to perform a knee arthrotomy at the time of fracture reduction could prove to be an advantage in terms of functional recovery. The meniscus on the injured bone should be preserved in order to maintain good function of the joint. X-ray images remain the gold standard in checking the progression of post-traumatic osteoarthritis.

  4. High tibial osteotomy in knee laxities: Concepts review and results

    PubMed Central

    Robin, Jonathan G.; Neyret, Philippe

    2016-01-01

    Patients with unstable, malaligned knees often present a challenging management scenario, and careful attention must be paid to the clinical history and examination to determine the priorities of treatment. Isolated knee instability treated with ligament reconstruction and isolated knee malalignment treated with periarticular osteotomy have both been well studied in the past. More recently, the effects of high tibial osteotomy on knee instability have been studied. Lateral closing-wedge high tibial osteotomy tends to reduce the posterior tibial slope, which has a stabilising effect on anterior tibial instability that occurs with ACL deficiency. Medial opening-wedge high tibial osteotomy tends to increase the posterior tibia slope, which has a stabilising effect in posterior tibial instability that occurs with PCL deficiency. Overall results from recent studies indicate that there is a role for combined ligament reconstruction and periarticular knee osteotomy. The use of high tibial osteotomy has been able to extend the indication for ligament reconstruction which, when combined, may ultimately halt the evolution of arthritis and preserve their natural knee joint for a longer period of time. Cite this article: Robin JG, Neyret P. High tibial osteotomy in knee laxities: Concepts review and results. EFORT Open Rev 2016;1:3-11. doi: 10.1302/2058-5241.1.000001. PMID:28461908

  5. Histological Analysis of the Tibial Anterior Cruciate Ligament Insertion

    PubMed Central

    Siebold, Rainer; Oka, Shinya; Traut, Ulrike; Schuhmacher, Peter; Kirsch, Joachim

    2017-01-01

    Objective: To describe the morphology of the tibial ACL insertion by histological assessment in the sagittal plane. Methods: For histology the native (undissected) tibial ACL insertion of 6 fresh-frozen cadaveric knees was cut into 4 sagittal sections parallel to the long axis of the medial tibial spine. The slices were stained with hematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analyzed at a magnification of ×20. Results: From medial to lateral the anterior-posterior lengths of the ACL insertion were an average of 10.2, 9.3, 7.6 and 5.8 mm. The anterior margin of the tibial ACL insertion raised from an anterior ridge. The most medial ACL fibers rose along with a peak of the anterior part of the medial tibial spine in which the direct insertion was adjacent to the articular cartilage. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact to the lateral ACL insertion. A small fat pad was located just posterior to the tibial ACL insertion. There were no central or posterolateral inserting ACL fibers in the area intercondylaris anterior. Conclusion: The functional intraligamentous midsubstance ACL fibers arose from the most posterior part of its bony tibial insertion in a flat and “C-shape” way. The anterior border of this functional ACL started from a bony ‘anterior ridge’ and the medial border was along with a peak of the medial tibial spine.

  6. Paradoxical tunnel enlargement after ACL reconstruction with hamstring autografts when using β-TCP containing interference screws for tibial aperture fixation- prospectively comparative study.

    PubMed

    Wang, Joon Ho; Lee, Eun Su; Lee, Byung Hoon

    2017-09-16

    Tibial aperture fixation with a bioabsorbable interference screw is a popular fixation method in anterior cruciate ligament reconstruction (ACLR). An interference screw containing β-tricalcium phosphate (β-TCP) to improve bony integration and biocompatibility was recently introduced. This study aims to compare the clinical outcomes and radiological results of tunnel enlargement effect between the 2 bioabsorbable fixative devices of pure poly-L-lactic acid (PLLA) interference screws and β-TCP-containing screws, for tibial interference fixation in ACLR using hamstring autografts. Eighty consecutive patients who had undergone double-bundle ACLR between 2011 to 2012 were prospectively reviewed and randomly divided into two groups based on the type of tibial interference screw: 28 were assigned to the pure PLLA screw group (Group A), while the other 29 were assigned to the β-TCP-containing screw fixation group (Group B). Clinical evaluations and radiological analyses were conducted in both groups with a minimum 2- year follow-up. There was no significant difference in subjective or objective clinical outcome between the 2 groups. In radiological analyses, the use of a β-TCP-containing screw reduced tunnel widening in the portion of the tunnel with screw engagement compared to the pure PLLA screw, while the use of a β-TCP-containing screw resulted in greater tunnel enlargement in the proximal portion of the tunnel without screw engagement than use of a pure PLLA screw. Use of a β-TCP-containing interference screw in tibial aperture fixation reduced tunnel enlargement in the vicinity of the screw, whereas greater enlargement occurred proximal to the screw end relative to use of a pure PLLA interference screw. These paradoxical enlargements in use of β-TCP containing screws suggest that for reducing tunnel enlargement, the length of the interference screw should be as fit as possible with tunnel length in terms of using soft grafts. II, Prospectively comparative

  7. Early tension loss in an anterior cruciate ligament graft. A cadaver study of four tibial fixation devices.

    PubMed

    Grover, Dustin M; Howell, Stephen M; Hull, Maury L

    2005-02-01

    The tensile force applied to an anterior cruciate ligament graft determines the maximal anterior translation; however, it is unknown whether the tensile force is transferred to the intra-articular portion of the graft and whether the intra-articular tension and maximal anterior translation are maintained shortly after ligament reconstruction. Ten cadaveric knees were reconstructed with a double-looped tendon graft. The graft was looped through a femoral fixation transducer that measured the resultant force on the proximal end of the graft. A pneumatic cylinder applied a tensile force of 110 N to the graft exiting the tibial tunnel with the knee in full extension. The graft was fixed sequentially with four tibial fixation devices (a spiked metal washer, double staples, a bioabsorbable interference screw, and a WasherLoc). Three cyclic loading treatments designed to conservatively load the graft and its fixation were applied. The combined loss in intra-articular graft tension from friction, insertion of the tibial fixation device, and three cyclic loading treatments was 50% for the spiked washer (p = 0.0004), 100% for the double staples (p < 0.0001), 64% for the interference screw (p = 0.0001), and 56% for the WasherLoc (p < 0.0001). The tension loss caused an increase in the maximal anterior translation from that of the intact knee of 2.0 mm for the spiked washer (p = 0.005), 7.8 mm for the double staples (p < 0.0001), 2.7 mm for the interference screw (p = 0.001), and 2.1 mm for the WasherLoc (p < 0.0001). The tensile force applied to a soft-tissue anterior cruciate ligament graft is not transferred intra-articularly and is not maintained during graft fixation. The loss in tension is caused by friction in the tibial tunnel and wrapping the graft around the shank of the screw of the spiked washer, insertion of the tibial fixation device, and cyclical loading of the knee. The amount of tension loss is sufficient to increase the maximal anterior translation.

  8. [APPLICATION OF V-Y ADVANCED SENSE-REMAINED POSTERIOR TIBIAL ARTERY PERFORATOR FLAP IN REPAIRING WOUND AROUND ANKLE].

    PubMed

    Tang, Xiujun; Wang, Bo; Wei, Zairong; Wang, Dali; Han, Wenjie; Zhang, Wenduo; Li, Shujun

    2015-12-01

    OBJECTIVE To explore the feasibility and effectiveness of V-Y advanced sense-remained posterior tibial artery perforator flap in repairing wound around the ankle. METHODS Between March 2012 and January 2015, 11 patients with wounds around the ankle were treated by V-Y advanced sense-remained posterior tibial artery perforator flap. There were 6 males and 5 females with a median age of 37 years (range, 21-56 years). The causes were traffic accident injury in 3 cases, thermal injury in 2 cases, burn in 2 cases, iatrogenic wounds in 2 cases, and local contusion in 2 cases. The disease duration ranged from 1 to 3 weeks (mean, 2 weeks). Injury was located at the medial malleolus in 4 cases, at the lateral malleolus in 3 cases, and at the heel in 4 cases. All had exposure of bone, tendon, or plate. The defect area ranged from 4 cmx2 cm to 5 cmx3 cm; the area of the flap ranged from 11 cmx4 cm to 15 cmx6 cm. Necrosis of distal flap occurred in 1 case after operation; re-operation to amputate the posterior tibial artery was given and the wound was repaired by proximal skin graft. Light necrosis of distal end was observed in 2 cases, and wound healed at 3 weeks after dressing. And other flaps successfully survived, and primary healing of wounds were obtained. The patients were followed up 6-24 months (mean, 11 months). The flaps were good in color, texture, and appearance. The ankle joint had normal activity. At last follow-up, 10 cases restored fine sense, and 1 case restored protective feeling with posterior tibial artery advanced flap after amputation. V-Y advanced sense-remained posterior tibial artery perforator flap has the advantages of reliable blood supply, simple operation, good appearance, and sensory recovery. Therefore, it is an ideal method to repair wound around the ankle.

  9. Greater Growth of Proximal Metatarsals in Bird Embryos and the Evolution of Hallux Position in the Grasping Foot.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; Núñez-León, Daniel; Palma, Verónica; Vargas, Alexander O

    2017-01-01

    In early theropod dinosaurs-the ancestors of birds-the hallux (digit 1) had an elevated position within the foot and had lost the proximal portion of its metatarsal. It no longer articulated with the ankle, but was attached at about mid-length of metatarsal 2 (mt2). In adult birds, the hallux is articulated closer to the distal end of mt2 at ground level with the other digits. However, on chick embryonic day 7, its position is as in early theropods at half-length of mt2. The adult distal location is acquired during embryonic days 8-10. To assess how the adult phenotype is acquired, we produced fate maps of the metatarsals of day 6 chicken embryos injecting the lipophilic tracer DiI. The fates of these marks indicate a larger expansion of the metatarsals at their proximal end, which creates the illusory effect that d1 moves distally. This larger proximal expansion occurs concomitantly with growth and early differentiation of cartilage. Histological analysis of metatarsals shows that the domains of flattened and prehypertrophic chondrocytes are larger toward the proximal end. The results suggest that the distal position of the hallux in the avian foot evolved as a consequence of an embryological period of expansion of the metatarsus toward the proximal end. It also brings attention to the developmental mechanisms leading to differential growth between epiphyses and their evolutionary consequences. © 2016 Wiley Periodicals, Inc.

  10. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  11. Plate Versus Intramedullary Nail Fixation of Anterior Tibial Stress Fractures: A Biomechanical Study.

    PubMed

    Markolf, Keith L; Cheung, Edward; Joshi, Nirav B; Boguszewski, Daniel V; Petrigliano, Frank A; McAllister, David R

    2016-06-01

    Anterior midtibial stress fractures are an important clinical problem for patients engaged in high-intensity military activities or athletic training activities. When nonoperative treatment has failed, intramedullary (IM) nail and plate fixation are 2 surgical options used to arrest the progression of a fatigue fracture and allow bone healing. A plate will be more effective than an IM nail in preventing the opening of a simulated anterior midtibial stress fracture from tibial bending. Controlled laboratory study. Fresh-frozen human tibias were loaded by applying a pure bending moment in the sagittal plane. Thin transverse saw cuts, 50% and 75% of the depth of the anterior tibial cortex, were created at the midtibia to simulate a fatigue fracture. An extensometer spanning the defect was used to measure the fracture opening displacement (FOD) before and after the application of IM nail and plate fixation constructs. IM nails were tested without locking screws, with a proximal screw only, and with proximal and distal screws. Plates were tested with unlocked bicortical screws (standard compression plate) and locked bicortical screws; both plate constructs were tested with the plate edge placed 1 mm from the anterior tibial crest (anterior location) and 5 mm posterior to the crest. For the 75% saw cut depth, the mean FOD values for all IM nail constructs were 13% to 17% less than those for the saw cut alone; the use of locking screws had no significant effect on the FOD. The mean FOD values for all plate constructs were significantly less than those for all IM nail constructs. The mean FOD values for all plates were 28% to 46% less than those for the saw cut alone. Anterior plate placement significantly decreased mean FOD values for both compression and locked plate constructs, but the mean percentage reductions for locked and unlocked plates were not significantly different from each other for either plate placement. The percentage FOD reductions for all plate

  12. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    PubMed

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  13. Tibial Stress Injuries: Decisive Diagnosis and Treatment of "Shin Splints."

    ERIC Educational Resources Information Center

    Couture, Christopher J.; Karlson, Kristine A.

    2002-01-01

    Tibial stress injuries, commonly called shin splints, often result when bone remodeling processes adopt inadequately to repetitive stress. Physicians who are caring for athletic patients must have a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are…

  14. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging

    PubMed Central

    Efaw, Morgan L.; Williams, Rebecca M.

    2013-01-01

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable “barrier,” which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children. PMID:24371019

  15. Tibial Eminence Involvement With Tibial Plateau Fracture Predicts Slower Recovery and Worse Postoperative Range of Knee Motion.

    PubMed

    Konda, Sanjit R; Driesman, Adam; Manoli, Arthur; Davidovitch, Roy I; Egol, Kenneth A

    2017-07-01

    To examine 1-year functional and clinical outcomes in patients with tibial plateau fractures with tibial eminence involvement. Retrospective analysis of prospectively collected data. Academic Medical Center. All patients who presented with a tibial plateau fracture (Orthopaedic Trauma Association (OTA) 41-B and 41-C). Patients were divided into fractures with a tibial eminence component (+TE) and those without (-TE) cohorts. All patients underwent similar surgical approaches and fixation techniques for fractures. No tibial eminence fractures received fixation specifically. Short musculoskeletal functional assessment (SMFA), pain (Visual Analogue Scale), and knee range-of-motion (ROM) were evaluated at 3, 6, and 12 months postoperatively and compared between cohorts. Two hundred ninety-three patients were included for review. Patients with OTA 41-C fractures were more likely to have an associated TE compared with 41-B fractures (63% vs. 28%, P < 0.01). At 3 months postoperatively, the +TE cohort was noted to have worse knee ROM (75.16 ± 51 vs. 86.82 ± 53 degree, P = 0.06). At 6 months, total SMFA and knee ROM was significantly worse in the +TE cohort (29 ± 17 vs. 21 ± 18, P ≤ 0.01; 115.6 ± 20 vs. 124.1 ± 15, P = 0.01). By 12 months postoperatively, only knee ROM remained significantly worse in the +TE cohort (118.7 ± 15 vs. 126.9 ± 13, P < 0.01). Multivariate analysis revealed that tibial eminence involvement was a significant predictor of ROM at 6 and 12 months and SFMA at 6 months. Body mass index was found to be a significant predictor of ROM and age was a significant predictor of total SMFA at all time points. Knee ROM remains worse throughout the postoperative period in the +TE cohort. Functional outcome improves less rapidly in the +TE cohort but achieves similar results by 1 year. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  16. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  17. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    PubMed

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  18. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    PubMed Central

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau. PMID:28660141

  19. [Surgical approaches to tibial plateau fractures].

    PubMed

    Krause, Matthias; Müller, Gunnar; Frosch, Karl-Heinz

    2018-06-06

    Intra-articular tibial plateau fractures can present a surgical challenge due to complex injury patterns and compromised soft tissue. The treatment goal is to spare the soft tissue and an anatomical reconstruction of the tibial articular surface. Depending on the course of the fracture, a fracture-specific access strategy is recommended to provide correct positioning of the plate osteosynthesis. While the anterolateral approach is used in the majority of lateral tibial plateau fractures, only one third of the joint surface is visible; however, posterolateral fragments require an individual approach, e. g. posterolateral or posteromedial. If necessary, osteotomy of the femoral epicondyles can improve joint access for reduction control. Injuries to the posterior columns should be anatomically reconstructed and biomechanically correctly addressed via posterior approaches. Bony posterior cruciate ligament tears can be refixed via a minimally invasive posteromedial approach.

  20. Tibial stress injuries: decisive diagnosis and treatment of 'shin splints'.

    PubMed

    Couture, Christopher J; Karlson, Kristine A

    2002-06-01

    Tibial stress injuries, commonly called 'shin splints,' often result when bone remodeling processes adapt inadequately to repetitive stress. Physicians who care for athletic patients need a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are implications for appropriate diagnosis, management, and prevention.

  1. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Particular posteromedial and posterolateral approaches for the treatment of tibial head fractures].

    PubMed

    Lobenhoffer, P; Gerich, T; Bertram, T; Lattermann, C; Pohlemann, T; Tscheme, H

    1997-12-01

    Tibial plateau fractures with depression of posterior aspects of the proximal tibia cause significant therapeutic problems. Posterior fractures on the medial side are mainly highly instable fracture-dislocations (Moore type I). Posterolateral fractures usually cause massive depression and destruction of the chondral surface. Surgical exposure of these fractures from anterior requires major soft tissue dissection and has a significant complication rate. However, incomplete restoration of the joint surface results in chronic postero-inferior joint subluxation, osteoarthritis and pain. We present new specific approaches for posterior fracture types avoiding large skin incisions, but allowing for atraumatic exposure, reduction and fixation. Posteromedial fracture-dislocations are exposed by a direct posteromedial skin incision and a deep incision between medial collateral ligament and posterior oblique ligament. The posteromedial pillar and the posterior flare of the proximal tibia are visualized. The inferior extent of the joint fragment can be reduced by indirect techniques or direct manipulation of the fragment. Fixation is achieved with subchondral lag screws and an anti-glide plate at the tip of the fragment. Posterolateral fractures are exposed by a transfibular approach: the skin is incised laterally, the peroneal nerve is dissected free. The fibula neck is osteotomized, the tibiofibular syndesmosis is divided and the fibula neck is reflected upwards in one layer with the meniscotibial ligament and the iliotibial tract attachment. Reflexion of the fibula head relaxes the lateral collateral ligament, allows for lateral joint opening and internal rotation of the tibia and thus exposes the posterolateral and posterior aspect of the tibial plateau. Fixation and buttressing on the posterolateral side can be achieved easily with this approach. In closure, the fibula head is fixed back with a lag screw or a tension-band system. These two exposures can be combined in

  3. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report.

    PubMed

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients.

  4. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Tibial stress fracture after computer-navigated total knee arthroplasty.

    PubMed

    Massai, F; Conteduca, F; Vadalà, A; Iorio, R; Basiglini, L; Ferretti, A

    2010-06-01

    A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers.

  6. Proximalisation of the tibial tubercle gives a good outcome in patients undergoing revision total knee arthroplasty who have pseudo patella baja.

    PubMed

    Vandeputte, F-J; Vandenneucker, H

    2017-07-01

    The aim of this study was to compare the outcome of revision total knee arthroplasty (TKA) with and without proximalisation of the tibial tubercle in patients with a failed primary TKA who have pseudo patella baja. All revision TKAs, performed between January 2008 and November 2013 at a tertiary referral University Orthopaedic Department were retrospectively reviewed. Pseudo patella baja was defined using the modified Insall-Salvati and the Blackburne-Peel ratios. A proximalisation of the tibial tubercle was performed in 13 patients with pseudo patella baja who were matched with a control group of 13 patients for gender, age, height, weight, body mass index, length of surgery and Blackburne-Peel ratio. Outcome was assessed two years post-operatively using the Knee Society Score (KSS). The increase in KSS was significantly higher in the osteotomy group compared with the control group. The outcome was statistically better in patients in whom proximalisation of > 1 cm had been achieved compared with those in whom the proximalisation was < 1 cm. In this retrospective case-control study, a proximal transfer of the tibial tubercle at revision TKA in patients with pseudo patella baja gives good outcomes without major complications. Cite this article: Bone Joint J 2017;99-B:912-16. ©2017 The British Editorial Society of Bone & Joint Surgery.

  7. Management of tibial non-unions according to a novel treatment algorithm.

    PubMed

    Ferreira, Nando; Marais, Leonard Charles

    2015-12-01

    Tibial non-unions represent a spectrum of conditions that are challenging to treat. The optimal management remains unclear despite the frequency with which these diagnoses are encountered. The aim of this study was to determine the outcome of tibial non-unions managed according to a novel tibial non-union treatment algorithm. One hundred and eighteen consecutive patients with 122 uninfected tibial non-unions were treated according to our proposed tibial non-union treatment algorithm. All patients were followed-up clinically and radiologically for a minimum of six months after external fixator removal. Four patients were excluded because they did not complete the intended treatment process. The final study population consisted of 94 men and 24 women with a mean age of 34 years. Sixty-seven non-unions were stiff hypertrophic, 32 mobile atrophic, 16 mobile oligotrophic and one true pseudoarthrosis. Six non-unions were classified as type B1 defect non-unions. Bony union was achieved after the initial surgery in 113/122 (92.6%) tibias. Nine patients had failure of treatment. Seven persistent non-unions were successfully retreated according to the tibial non-union treatment algorithm. This resulted in final bony union in 120/122 (98.3%) tibias. The proposed tibial non-union treatment algorithm appears to produce high union rates across a diverse group of tibial non-unions. Tibial non-unions however, remain difficult to treat and should be referred to specialist units where advanced reconstructive techniques are practiced on a regular basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stretching the indications: high tibial osteotomy used successfully to treat isolated ankle symptoms

    PubMed Central

    Elson, David W; Paweleck, James E; Shields, David W; Dawson, Matthew J; Ferrier, Gail M

    2013-01-01

    High tibial osteotomy (HTO) is successful in treating symptomatic varus arthritis of the knee. We present a case where ankle pain and instability were attributed to varus ankle malalignment. This was found to be secondary to constitutional varus of the proximal tibia but the patient's knee was asymptomatic. The decision to operate on an asymptomatic knee in the hope of improving ankle symptoms took a period of careful consideration, planning and discussion. HTO was performed without immediate complication and the patient reported an excellent outcome with marked improvement in Mazur's foot and ankle score from 18 to 85. In well selected and planned cases, HTO may be considered as an instrument of deformity correction with improvement in symptoms from joints distant to the surgical site. PMID:24022901

  9. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report

    PubMed Central

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Introduction: Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. Case Report: A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. Conclusion: A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients. PMID:29181350

  10. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus.

    PubMed

    Ziegler, Raphaela; Goebel, Lars; Seidel, Roland; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2015-09-01

    First, to evaluate whether medial open wedge high tibial osteotomy (HTO) induces alterations of the microstructure of the lateral tibial subchondral bone plate of sheep. Second, to test the hypothesis that specific correlations exist between topographical structural alterations of the subchondral bone, the cartilage and the lateral meniscus. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction) and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the non-osteotomised contralateral proximal tibiae. After 6 months, subchondral bone structure indices were measured by computed tomography. Correlations between the subchondral bone, the articular cartilage and the lateral meniscus were determined. Increased loading by valgus overcorrection led to an enlarged specific bone surface (BS/BV) in the subarticular spongiosa compared with unloading by varisation. The subchondral bone plate was 3.9-fold thicker in the central region of the lateral tibial plateau than in the submeniscal periphery. Its thickness in the central region significantly correlated with the thickness of the articular cartilage. In the submeniscal region, such correlation did not exist. In general, a higher degree of osteoarthritis (OA) correlated with alterations of the subchondral bone plate microstructure. OA of the submeniscal articular cartilage also correlated with worse matrix staining of the lateral meniscus. Osteoarthritis changes are associated with alterations of the subchondral bone plate microstructure. Specific topographical relationships exist in the central region between the articular cartilage and subchondral bone plate thickness, and in the submeniscal periphery between and the articular cartilage and lateral meniscus. From a clinical perspective, the combined follow-up data from this and the previous two

  11. Gender differences in passive knee biomechanical properties in tibial rotation.

    PubMed

    Park, Hyung-Soon; Wilson, Nicole A; Zhang, Li-Qun

    2008-07-01

    The anterior cruciate ligament (ACL) is the most commonly injured knee ligament with the highest incidence of injury in female athletes who participate in pivoting sports. Noncontact ACL injuries commonly occur with both internal and external tibial rotation. ACL impingement against the lateral wall of the intercondylar notch during tibial external rotation and abduction has been proposed as an injury mechanism, but few studies have evaluated in vivo gender-specific differences in laxity and stiffness in external and internal tibial rotations. The purpose of this study was to evaluate these differences. The knees of 10 male and 10 female healthy subjects were rotated between internal and external tibial rotation with the knee at 60 degrees of flexion. Joint laxity, stiffness, and energy loss were compared between male and female subjects. Women had higher laxity (p = 0.01), lower stiffness (p = 0.038), and higher energy loss (p = 0.008) in external tibial rotation than did men. The results suggest that women may be at greater risk of ACL injury resulting from impingement against the lateral wall of the intercondylar notch, which has been shown to be associated with external tibial rotation and abduction.

  12. Minimally invasive surgical technique: Percutaneous external fixation combined with titanium elastic nails for selective treatment of tibial fractures.

    PubMed

    Tu, Kai-Kai; Zhou, Xian-Ting; Tao, Zhou-Shan; Chen, Wei-Kai; Huang, Zheng-Liang; Sun, Tao; Zhou, Qiang; Yang, Lei

    2015-12-01

    Several techniques have been described to treat tibial fractures, which respectively remains defects. This article presents a novel intra- and extramedullary fixation technique: percutaneous external fixator combined with titanium elastic nails (EF-TENs system). The purpose of this study is to introduce this new minimally invasive surgical technique and selective treatment of tibial fractures, particularly in segmental fractures, diaphysis fractures accompanied with distal or proximal bone subfissure, or fractures with poor soft-tissue problems. Following ethical approval, thirty-two patients with tibial fractures were treated by the EF-TENs system between January 2010 and December 2012. The follow-up studies included clinical and radiographic examinations. All relevant outcomes were recorded during follow-up. All thirty-two patients were achieved follow-ups. According to the AO classification, 3 Type A, 9 Type B and 20 Type C fractures were included respectively. According to the Anderson-Gustilo classification, there were 5 Type Grade II, 3 Type Grade IIIA and 2 Type Grade IIIB. Among 32 patients, 8 of them were segmental fractures. 12 fractures accompanied with bone subfissure. Results showed no nonunion case, with an average time of 23.7 weeks (range, 14-32 weeks). Among them, there were 3/32 delayed union patients and 0/32 malunion case. 4/32 patients developed a pin track infection and no patient suffered deep infection. The external fixator was removed with a mean time of 16.7 weeks (range, 10-26 weeks). Moreover, only 1/32 patient suffered with the restricted ROM of ankle, none with the restricted ROM of knee. This preliminary study indicated that the EF-TENs system, as a novel intra- and extramedullary fixation technique, had substantial effects on selective treatment of tibial fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Changes in coronal alignment of the ankle joint after high tibial osteotomy.

    PubMed

    Choi, Gi Won; Yang, Jae Hyuk; Park, Jung Ho; Yun, Ho Hyun; Lee, Yong In; Chae, Jin Eon; Yoon, Jung Ro

    2017-03-01

    The purpose of this study was to investigate changes in coronal alignment of the ankle joint after HTO. Our hypothesis was that ankle joint orientation may become more parallel or less parallel to the ground after HTO, and this change may affect ankle symptoms. Eighty-six knees were retrospectively analysed after HTO for varus osteoarthritis. Preoperative and follow-up whole-leg radiographs were taken. The hip-knee-ankle (HKA) angle and medial proximal tibial angle (MPTA) were measured to evaluate coronal alignment of the knee. Tibial plafond inclination (TPI), talar inclination (TI), talar tilt (TT), and lateral distal tibial angle (LDTA) were measured to evaluate coronal alignment of the ankle. Patients were divided into two groups: those who exhibited a decrease in the absolute value of TPI and TI after HTO (group A) and those who exhibited an increase in the absolute value of TPI or TI after HTO (group B). Clinical outcomes of the knee and ankle were evaluated pre- and postoperatively. Mean TPI and TI changed from 6.9° ± 3.6° and 8.0° ± 3.8° to 2.8° ± 3.1° and 3.9° ± 3.0° in group A (P < 0.001 for both) and from -1.3° ± 3.7° and 0.6° ± 4.5° to -6.0° ± 4.2° and -4.6° ± 5.9° in group B (P = 0.018 for both). VAS for ankle pain did not change significantly after HTO (n.s.) in group A, whereas those of group B increased significantly after HTO (P = 0.014). Ankle joint orientation becomes more parallel or less parallel to the ground after HTO. Smaller preoperative HKA and LDTA result in a more valgus ankle joint orientation after HTO. Ankle symptoms were affected by coronal alignment changes of the ankle after HTO. III.

  14. Tibial shaft fractures in football players

    PubMed Central

    Chang, Winston R; Kapasi, Zain; Daisley, Susan; Leach, William J

    2007-01-01

    Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8%) of these were football related. All patients were male with a mean age of 23 years (range 15 to 29) and shin guards were worn in 95.8% of cases. 11/24 (45.8%) were treated conservatively, 11/24 (45.8%) by Grosse Kemp intramedullary nail and 2/24 (8.3%) with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p < 0.05). Return to activity was also different in the two groups, conservative 27.6 weeks versus operative 23.3 weeks (p < 0.05). The most common fracture pattern was AO Type 42A3 in 14/24 (58.3%). A high number 19/24 (79.2%) were simple transverse or short oblique fractures. There was a low non-union rate 1/24 (4.2%) and absence of any open injury in our series. Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction. PMID:17567522

  15. Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1

    DTIC Science & Technology

    2014-04-01

    Neurofibromatosis Type 1 PRINCIPAL INVESTIGATOR: Dr. David Stevenson CONTRACTING ORGANIZATION: University of Utah SALT LAKE CITY...COVERED 1 April 2013 - 31 March 2014 4. TITLE AND SUBTITLE Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1 5a. CONTRACT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT Anterolateral tibial bowing is a morbid skeletal manifestation observed in 5% of children with neurofibromatosis

  16. Cranial tibial thrust: a primary force in the canine stifle.

    PubMed

    Slocum, B; Devine, T

    1983-08-15

    A cranially directed force identified within the canine stifle joint was termed cranial tibial thrust. It was generated during weight bearing by tibial compression, of which the tarsal tendon of the biceps femoris is a major contributor, and by the slope of the tibial plateau, found to have a mean cranially directed inclination of 22.6 degrees. This force may be an important factor in cranial cruciate ligament rupture and in generation of cranial drawer sign.

  17. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  18. Total knee arthroplasty and fractures of the tibial plateau

    PubMed Central

    Softness, Kenneth A; Murray, Ryan S; Evans, Brian G

    2017-01-01

    Tibial plateau fractures are common injuries that occur in a bimodal age distribution. While there are various treatment options for displaced tibial plateau fractures, the standard of care is open reduction and internal fixation (ORIF). In physiologically young patients with higher demand and better bone quality, ORIF is the preferred method of treating these fractures. However, future total knee arthroplasty (TKA) is a consideration in these patients as post-traumatic osteoarthritis is a common long-term complication of tibial plateau fractures. In older, lower demand patients, ORIF is potentially less favorable for a variety of reasons, namely fixation failure and the need for delayed weight bearing. In some of these patients, TKA can be considered as primary mode of treatment. This paper will review the literature surrounding TKA as both primary treatment and as a salvage measure in patients with fractures of the tibial plateau. The outcomes, complications, techniques and surgical challenges are also discussed. PMID:28251061

  19. Evaluation and management of pediatric proximal humerus fractures.

    PubMed

    Popkin, Charles A; Levine, William N; Ahmad, Christopher S

    2015-02-01

    In the pediatric population, sports participation, falls, and motor vehicle accidents can result in proximal humerus fractures. Because the proximal humeral growth plate is responsible for up to 80% of the growth of the humerus, the remodeling of these fractures in children is tremendous. Most of these injuries can be treated with a sling or hanging arm cast, although older children with decreased remodeling capacity may require surgery. Special considerations should be taken for management of proximal humerus fractures that occur in the context of Little League shoulder, lesser tuerosity avulsion fractures, fracture-dislocations, birth fractures, and fractures associated with cysts. Most pediatric patients with proximal humerus fractures have favorable results, and complications are infrequent. Copyright 2015 by the American Academy of Orthopaedic Surgeons.

  20. Intermittent Parathyroid Hormone Enhances Cancellous Osseointegration of a Novel Murine Tibial Implant

    PubMed Central

    Yang, Xu; Ricciardi, Benjamin F.; Dvorzhinskiy, Aleksey; Brial, Caroline; Lane, Zachary; Bhimani, Samrath; Burket, Jayme C.; Hu, Bin; Sarkisian, Alexander M.; Ross, F. Patrick; van der Meulen, Marjolein C.H.; Bostrom, Mathias P.G.

    2015-01-01

    Background: Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseointegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee arthroplasty. We developed a murine model in which an intra-articular proximal tibial titanium implant with a roughened stem can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid hormone (iPTH) would increase proximal tibial cancellous osseointegration. Methods: Ten-week-old female C57BL/6 mice received a subcutaneous injection of PTH (40 μg/kg/day) or a vehicle (n = 45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bone morphology as analyzed with micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as measured with mechanical testing. Results: Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1% and 70.1% higher

  1. Intermittent Parathyroid Hormone Enhances Cancellous Osseointegration of a Novel Murine Tibial Implant.

    PubMed

    Yang, Xu; Ricciardi, Benjamin F; Dvorzhinskiy, Aleksey; Brial, Caroline; Lane, Zachary; Bhimani, Samrath; Burket, Jayme C; Hu, Bin; Sarkisian, Alexander M; Ross, F Patrick; van der Meulen, Marjolein C H; Bostrom, Mathias P G

    2015-07-01

    Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseointegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee arthroplasty. We developed a murine model in which an intra-articular proximal tibial titanium implant with a roughened stem can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid hormone (iPTH) would increase proximal tibial cancellous osseointegration. Ten-week-old female C57BL/6 mice received a subcutaneous injection of PTH (40 μg/kg/day) or a vehicle (n = 45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bone morphology as analyzed with micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as measured with mechanical testing. Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1% and 70.1% higher, respectively, in the i

  2. High-energy fractures of the tibial plateau. Knee function after longer follow-up.

    PubMed

    Weigel, Dennis P; Marsh, J Lawrence

    2002-09-01

    Studies of the long-term outcomes of treatment of fractures of the tibial plateau have included wide mixtures of fracture types and mostly low-energy split and split-depression fractures. The long-term results of treatment of high-energy intra-articular proximal tibial fractures are unknown. The purpose of this study was to assess the function of the knee and the development of arthrosis at a minimum of five years after injury in a consecutive series of patients in whom a high-energy fracture of the tibial plateau had been treated with a uniform technique of external fixation. Between July 1988 and December 1994, thirty patients with a total of thirty-one fractures of the tibial plateau were treated with a monolateral external fixator and limited internal fixation of the articular surface. Follow-up data on twenty-four knees in twenty-three patients were obtained at a mean of ninety-eight months. Twenty patients (twenty knees) returned specifically for the study, at which time they completed an Iowa Knee Score questionnaire and a Short Form-36 (SF-36) general health survey, a physical examination was performed, and weight-bearing radiographs were made. The results of the SF-36 evaluations for fourteen patients and the Knee Scores for twelve were compared with those obtained five years previously, at two to four years after the injury. After healing, no patient required a secondary reconstructive procedure. The range of motion of the knee averaged 3 degrees of extension to 120 degrees flexion, which was an average of 87% of the total arc of the contralateral knee. The average Iowa Knee Score was 90 points (range, 72 to 100 points). For twelve patients, the Iowa Knee Score previously recorded at two to four years averaged 92 points, as did the score at the time of the latest follow-up. Thirteen patients rated their outcome as excellent; six, as good; and three, as fair. Fifteen patients were working, and ten of them were performing strenuous labor. Radiographs showed

  3. Mandibular Reconstruction with Lateral Tibial Bone Graft: An Excellent Option for Oral and Maxillofacial Surgery.

    PubMed

    Miceli, Ana Lucia Carpi; Pereira, Livia Costa; Torres, Thiago da Silva; Calasans-Maia, Mônica Diuana; Louro, Rafael Seabra

    2017-12-01

    Autogenous bone grafts are the gold standard for reconstruction of atrophic jaws, pseudoarthroses, alveolar clefts, orthognathic surgery, mandibular discontinuity, and augmentation of sinus maxillary. Bone graft can be harvested from iliac bone, calvarium, tibial bone, rib, and intraoral bone. Proximal tibia is a common donor site with few reported problems compared with other sites. The aim of this study was to evaluate the use of proximal tibia as a donor area for maxillofacial reconstructions, focusing on quantifying the volume of cancellous graft harvested by a lateral approach and to assess the complications of this technique. In a retrospective study, we collected data from 31 patients, 18 women and 13 men (mean age: 36 years, range: 19-64), who were referred to the Department of Oral and Maxillofacial Surgery at the Servidores do Estado Federal Hospital. Patients were treated for sequelae of orthognathic surgery, jaw fracture, nonunion, malunion, pathology, and augmentation of bone volume to oral implant. The technique of choice was lateral access of proximal tibia metaphysis for graft removal from Gerdy tubercle under general anesthesia. The mean volume of bone harvested was 13.0 ± 3.7 mL (ranged: 8-23 mL). Only five patients (16%) had minor complications, which included superficial infection, pain, suture dehiscence, and unwanted scar. However, none of these complications decreases the result and resolved completely. We conclude that proximal tibia metaphysis for harvesting cancellous bone graft provides sufficient volume for procedures in oral and maxillofacial surgery with minimal postoperative morbidity.

  4. Prevention of arthrofibrosis after arthroscopic screw fixation of tibial spine fracture in children and adolescents.

    PubMed

    Parikh, Shital N; Myer, David; Eismann, Emily A

    2014-01-01

    Arthrofibrosis is a major complication of tibial spine fracture treatment in children, potentially resulting in knee pain, quadriceps weakness, altered gait, decreased function, inability to return to sports, and long-term osteoarthritis. Thus, prevention rather than treatment of arthrofibrosis is desirable. The purpose of this study was to evaluate an aggressive postoperative rehabilitation and early intervention approach to prevent permanent arthrofibrosis after tibial spine fracture treatment and to compare epiphyseal and transphyseal screws for fixation. A consecutive series of 24 patients younger than age 18 with displaced type II and III tibial spine fractures who underwent arthroscopic reduction and screw fixation between 2006 and 2011 were retrospectively reviewed. Final range of motion was compared between patients with epiphyseal (n=12) and transphyseal (n=9) screws. One-third (4 of 12) of patients with epiphyseal screws underwent arthroscopic debridement and screw removal approximately 3 months postoperatively; 3 patients lacked 5° to 15° of extension, 1 experienced pain with extension, and 1 had radiographic evidence of screw pullout, loss of reduction, and resultant malunion. In the transphyseal screw group, 3 patients had 10° loss of extension, and all corrected after arthroscopic debridement and screw removal. The two groups did not significantly differ in time to hardware removal or return to sports or final range of motion. No growth disturbances were identified in patients after transphyseal screw removal. An aggressive approach of postoperative rehabilitation and early intervention after arthroscopic reduction and screw fixation of tibial spine fractures in children was successful in preventing permanent arthrofibrosis.

  5. Can the tibial slope be measured on lateral knee radiographs?

    PubMed

    Faschingbauer, M; Sgroi, M; Juchems, M; Reichel, H; Kappe, T

    2014-12-01

    The posterior tibial slope influences both the natural knee stability as well as the stability and kinematics after total knee arthroplasty (TKA). Exact definition of the posterior tibial slope (PTS) requires lateral radiographs of the lower limb. Only lateral knee radiographs are routinely obtained after TKA, however. The purpose of the present study therefore was to analyse the relationship between PTS measurement results on short and expanded lateral knee radiographs. The PTS was measured on 100 consecutive lateral radiographs of the lower limb using the mechanical and three diaphyseal axes with various distances below the tibial plateau. Significant differences between PTS results were found for all three diaphyseal axes, with the smallest differences and the strongest correlation for a diaphyseal axis at 16 and 20 cm below the tibial plateau. Using short distances below the tibial plateau (6 and 10 cm) resulted in an overestimation of the PTS of 3°, on average. The PTS measurements in long lateral knee radiographs are more accurate compared to short radiographs. On short lateral knee radiographs, only a estimation of the PTS can be carried out. Diagnostic study, Level II.

  6. Evaluation of stability of osteosynthesis with K-wires on an artificial model of tibial malleolus fracture.

    PubMed

    Bumči, Igor; Vlahović, Tomislav; Jurić, Filip; Žganjer, Mirko; Miličić, Gordana; Wolf, Hinko; Antabak, Anko

    2015-11-01

    Paediatric ankle fractures comprise approximately 4% of all paediatric fractures and 30% of all epiphyseal fractures. Integrity of the ankle "mortise", which consists of tibial and fibular malleoli, is significant for stability and function of the ankle joint. Tibial malleolar fractures are classified as SH III or SH IV intra-articular fractures and, in cases where the fragments are displaced, anatomic reposition and fixation is mandatory. Type SH III-IV fractures of the tibial malleolus are usually treated with open reduction and fixation with cannulated screws that are parallel to the physis. Two K-wires are used for temporary stabilisation of fragments during reduction. A third "guide wire" for the screw is then placed parallel with the physis. Considering the rules of mechanics, it is assumed that the two temporary pins with the additional third pin placed parallel to the physis create a strong triangle and thus provide strong fracture fixation. To prove this hypothesis, an experiment was conducted on the artificial models of the lower end of the tibia from the company "Sawbones". Each model had been sawn in a way that imitates the fracture of medial malleoli and then reattached with 1.8mm pins in various combinations. Prepared models were then tested for tensile and pressure forces. The least stable model was that in which the fractured pieces were attached with only two parallel pins. The most stable model comprised three pins, where two crossed pins were inserted in the opposite compact bone and the third pin was inserted through the epiphysis parallel with and below the growth plate. A potential method of choice for fixation of tibial malleolar fractures comprises three K-wires, where two crossed pins are placed in the opposite compact bone and one is parallel with the growth plate. The benefits associated with this method include shorter operating times and avoidance of a second operation for screw removal. Copyright © 2015 Elsevier Ltd. All rights

  7. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: Analysis of the lateral meniscus.

    PubMed

    Madry, Henning; Ziegler, Raphaela; Orth, Patrick; Goebel, Lars; Ong, Mei Fang; Kohn, Dieter; Cucchiarini, Magali; Pape, Dietrich

    2013-01-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep. Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red-red and white-white zones of the anterior, middle and posterior third were determined. Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red-red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups. Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red-red zone of the middle third in the sheep model.

  8. External fixation of tibial pilon fractures and fracture healing.

    PubMed

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  9. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.

    PubMed

    Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet

    2011-01-01

    Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.

  10. Growth, Proximate Composition and Pigment Production of Tetraselmis chuii Cultured with Aquaculture Wastewater

    NASA Astrophysics Data System (ADS)

    Khatoon, Helena; Haris, Haris; Rahman, Norazira Abdu; Zakaria, Mimi Nadzirah; Begum, Hasina; Mian, Sohel

    2018-06-01

    Microalgae are cultured commercially as healthy food, cosmetic products, food preservatives, and a source of valuable compounds. However, the high cost of commercial culture medium is one of the challenges to microalgal production. Therefore, it is essential to find an alternative cost-effective culture medium. Aquaculture wastewater is considered as a highly potential candidate due to its high nutrient content and large quantity generated from the rapid growth of aquaculture sector. In this study, Tetraselmis chuii cultured in different media with or without wastewater was evaluated for its growth, proximate composition and carotenoid production. The results showed that significantly ( P < 0.05) higher growth (4.3 × 105 cells mL-1) and protein (56.4% dry weight), lipid (44% dry weight) and carbohydrate (20% of dry weight) contents were found in T. chuii when they were cultured in the combination of both wastewater and Conway (wastewater + Conway) medium. However, carotenoid production of T. chuii was significantly increased ( P < 0.05) when it was cultured in wastewater only, followed by Conway + wastewater and Conway medium only. Therefore, the incorporation of wastewater with commercial medium Convey is recommended for a cost-effective microalgae culture, as well as for the enhancement of growth and nutritional content of microalgae.

  11. Primary Ankle Arthrodesis for Severely Comminuted Tibial Pilon Fractures.

    PubMed

    Al-Ashhab, Mohamed E

    2017-03-01

    Management of severely comminuted, complete articular tibial pilon fractures (Rüedi and Allgöwer type III) remains a challenge, with few treatment options providing good clinical outcomes. Twenty patients with severely comminuted tibial pilon fractures underwent primary ankle arthrodesis with a retrograde calcaneal nail and autogenous fibular bone graft. The fusion rate was 100% and the varus malunion rate was 10%. Fracture union occurred at a mean of 16 weeks (range, 13-18 weeks) postoperatively. Primary ankle arthrodesis is a successful method for treating highly comminuted tibial pilon fractures, having a low complication rate and a high satisfaction score. [Orthopedics. 2017; 40(2):e378-e381.]. Copyright 2016, SLACK Incorporated.

  12. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...

  13. All-Polyethylene Tibial Components: An Analysis of Long-Term Outcomes and Infection.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Watts, Chad D; Cass, Joseph R; Trousdale, Robert T

    2016-07-01

    There is debate regarding tibial component modularity and composition in total knee arthroplasty (TKA). Biomechanical studies have suggested improved stress distribution in metal-backed tibias; however, these results have not translated clinically. The purpose of this study was to analyze the outcomes of all-polyethylene components and to compare the results to those with metal-backed components. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970-2013). There were 28,224 (88%) metal-backed and 3715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to gender, age and body mass index (BMI). Mean follow-up was 7 years. The mean survival for all primary TKAs at the 5-, 10-, 20- and 30-year time points was 95%, 89%, 73%, and 57%, respectively. All-polyethylene tibial components were found to have a significantly improved (P < .0001) survivorship when compared with their metal-backed counterparts. All-polyethylene tibial components were also found to have a significantly lower rate of infection, instability, tibial component loosening, and periprosthetic fracture. The all-polyethylene group had improved survival rates in all age groups, except in patients 85 years old or greater, where there was no significant difference. All-polyethylene tibial components had improved survival for all BMI groups except in the morbidly obese (BMI ≥ 40) where there was no significant difference. All-polyethylene tibial components had significantly improved implant survival, reduced rates of postoperative infection, fracture, and tibial component loosening. All polyethylene should be considered for most of the patients, regardless of age and BMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    PubMed

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  15. Total knee replacement-cementless tibial fixation with screws: 10-year results.

    PubMed

    Ersan, Önder; Öztürk, Alper; Çatma, Mehmet Faruk; Ünlü, Serhan; Akdoğan, Mutlu; Ateş, Yalım

    2017-12-01

    The aim of this study was to evaluate the long term clinical and radiological results of cementless total knee replacement. A total of 51 knees of 49 patients (33 female and 16 male; mean age: 61.6 years (range, 29-66 years)) who underwent TKR surgery with a posterior stabilized hydroxyapatite coated knee implant were included in this study. All of the tibial components were fixed with screws. The HSS scores were examined preoperatively and at the final follow-up. Radiological assessment was performed with Knee Society evaluating and scoring system. Kaplan-Meier survival analysis was performed to rule out the survival of the tibial component. The mean HSS scores were 45.8 (range 38-60) and 88.1 (range 61-93), preoperatively and at the final follow-up respectively. Complete radiological assessment was performed for 48 knees. Lucent lines at the tibial component were observed in 4 patients; one of these patients underwent a revision surgery due to the loosening of the tibial component. The 10-year survival rate of a tibial component was 98%. Cementless total knee replacement has satisfactory long term clinical results. Primary fixation of the tibial component with screws provides adequate stability even in elderly patients with good bone quality. Level IV, Therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Modified arthroscopic suture fixation of a displaced tibial eminence fracture.

    PubMed

    Lehman, Ronald A; Murphy, Kevin P; Machen, M Shaun; Kuklo, Timothy R

    2003-02-01

    This study describes a new arthroscopic method using a whip-stitch technique for treating a displaced type III tibial eminence fracture. A 12-year-old girl who sustained a displaced type III tibial eminence fracture was treated with arthroscopic fixation using the Arthrosew disposable suture device (Surgical Dynamics, Norwalk, CT) to place a whip stitch into the anterior cruciate ligament (ACL). The Arthrex ACL guide (Arthrex, Naples, FL) was used to reduce the avulsed tibial spine fragment. Sutures were then passed through the tibial tunnel and secured over a bony bridge with the knee in 20 degrees of flexion. At 9 months, the patient has a full range of motion with normal Lachman and anterior drawer testing, and she has returned to competitive basketball. Radiographs show complete fracture healing. KT-1000 and isokinetic testing at 9-month follow-up show only minimal side-to-side differences. The Arthrosew device provides a significant advantage in the treatment of type III and IV fractures of the tibial eminence by obtaining arthroscopic fixation within the substance of the ACL, thus obviating arthrotomy and hardware placement. This technique also restores the proper length and tension to the ACL, and provides a simplified, reproducible method of treatment for this injury.

  17. The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.

    PubMed

    Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian

    2018-05-01

    The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.

  18. Analysis of the effects of growth hormone, exercise and food restriction on cancellous bone in different bone sites in middle-aged female rats.

    PubMed

    Banu, J; Orhii, P B; Okafor, M C; Wang, L; Kalu, D N

    2001-06-01

    The aim of this study is to determine the effects of growth hormone (GH), exercise (EX), GH+EX and food restriction on cancellous bone in middle-aged female rats. Female F344 rats aged 13 months were divided into (1) age-matched controls; (2) GH treated (2.5 mg/kg. 5 day/week); (3) EX (voluntary wheel running); (4) GH+EX; and (5) food restricted (FR) (fed 60% of the ad libitum food intake). The animals were treated for 18 weeks, at the end of which they were sacrificed. Cancellous bone and cortical bone in the fourth lumbar vertebra, proximal tibial metaphysis (PTM), distal femoral metaphysis (DFM) and femoral neck (NF) were analyzed using peripheral quantitative computerized tomography (pQCT) densitometry. Growth hormone increased cancellous bone area, cancellous bone mineral content, cortical bone area and cortical bone mineral content in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly after GH treatment. Exercise increased the cancellous bone area in the vertebra, PTM and DFM. Cortical bone area and cortical bone mineral content increased after EX in the vertebra, PTM, DFM and NF. No significant change was seen in the tibial muscle wet weight after EX. Growth hormone+EX increased cancellous bone area in the vertebra PTM and DFM but had no effect in neck of the femur. Cancellous bone mineral content, cortical bone area and cortical bone mineral content increased with GH+EX in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly with GH+EX. Food restriction decreased cancellous bone area and cancellous bone mineral content in all the bones studied. The decrease was statistically significant only at the distal femoral metaphysis. The tibial muscle wet weight decreased when compared with the age-matched control, but this decrease was not statistically significant. We conclude that the effect of the dose of GH used and the levels of voluntary wheel running EX used increased cancellous bone in

  19. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    PubMed

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  20. Metal-backed versus all-polyethylene tibial components in primary total knee arthroplasty

    PubMed Central

    2011-01-01

    Background and purpose The choice of either all-polyethylene (AP) tibial components or metal-backed (MB) tibial components in total knee arthroplasty (TKA) remains controversial. We therefore performed a meta-analysis and systematic review of randomized controlled trials that have evaluated MB and AP tibial components in primary TKA. Methods The search strategy included a computerized literature search (Medline, EMBASE, Scopus, and the Cochrane Central Register of Controlled Trials) and a manual search of major orthopedic journals. A meta-analysis and systematic review of randomized or quasi-randomized trials that compared the performance of tibial components in primary TKA was performed using a fixed or random effects model. We assessed the methodological quality of studies using Detsky quality scale. Results 9 randomized controlled trials (RCTs) published between 2000 and 2009 met the inclusion quality standards for the systematic review. The mean standardized Detsky score was 14 (SD 3). We found that the frequency of radiolucent lines in the MB group was significantly higher than that in the AP group. There were no statistically significant differences between the MB and AP tibial components regarding component positioning, knee score, knee range of motion, quality of life, and postoperative complications. Interpretation Based on evidence obtained from this study, the AP tibial component was comparable with or better than the MB tibial component in TKA. However, high-quality RCTs are required to validate the results. PMID:21895503

  1. Effect of tibial plateau leveling on stability of the canine cranial cruciate-deficient stifle joint: an in vitro study.

    PubMed

    Reif, Ullrich; Hulse, Donald A; Hauptman, Joe G

    2002-01-01

    To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. In vitro cadaver study. Six canine cadaver hind legs. Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing. Copyright 2002 by The American College of Veterinary Surgeons

  2. Electrodiagnostic Examination of the Tibial Nerve in Clinically Normal Ferrets

    PubMed Central

    Bianchi, Ezio; Callegari, Daniela; Ravera, Manuela; Dondi, Maurizio

    2010-01-01

    Tibial nerves of 10 normal domestic ferrets (Mustela putorius furo) were evaluated by means of electrodiagnostic tests: motor nerve conduction studies (MNCSs), supramaximal repetitive nerve stimulation (SRNS), F waves, and cord dorsum potentials (CDPs). Values of conduction velocity, proximal and distal compound muscular action potentials, and amplitudes of MNCS were, respectively, 63.25 ± 7.56 m/sec, 10.79 ± 2.75 mV, and 13.02 ± 3.41 mV. Mean decrements in amplitude and area of compound muscular action potentials of wave 9 with low frequency SRNS were 0.3 ± 3.83% and 0.1 ± 3.51%. The minimum latency of the F waves and the F ratio were, respectively, 8.49 ± 0.65 ms and 1.92 ± 0.17. Onset latency of CDP was 1.99 ± 0.03 ms. These tests may help in diagnosing neuromuscular disorders and in better characterizing the hindlimb paresis reported in many ferrets with systemic illnesses. PMID:20706690

  3. Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study.

    PubMed

    Munier, M; Donnez, M; Ollivier, M; Flecher, X; Chabrand, P; Argenson, J-N; Parratte, S

    2017-04-01

    Treatment of medial tibiofemoral osteoarthritis with a high-tibial osteotomy (HTO) is most effective when the optimal angular correction is achieved. However, conventional instrumentation is limited when multiplanar correction is needed. Use of patient-specific cutting guides (PSCGs) for HTO provides an accurate correction (difference<2°) relative to the preoperative planning. Between February 2014 and February 2015, 10 patients (mean age: 46 years [range: 31-59]; grade 1 or 2 osteoarthritis in Ahlbäck's classification) were included prospectively in this reliability and safety study. All patients were operated using the same medial opening-wedge osteotomy technique. Preoperative planning was based on long-leg radiographs and CT scans with 3D reconstruction. The PSGCs were used to align the osteotomy cut and position the screw holes for the plate. The desired correction was achieved in the three planes when the holes on the plate were aligned with the holes drilled based on the PSCG. Preoperatively, the mean HKA angle was 171.9° (range: 166-179°), the mean proximal tibial angle was 87° (86-88°) and the mean tibial slope was 7.8° (1-22°). The postoperative correction was compared to the planned correction using 3D CT scan transformations. Intraoperative and postoperative complications were assessed at a minimum follow-up of 1 year. The procedure was successfully carried out in all patients with the PSCGs. On postoperative long-leg radiographs, the mean HKA was 182.3° (180-185°); on the CT scan, the mean tibial mechanical angle was 94° (90-98°) and the mean tibial slope was 7.1° (4-11°). In 19 out of 20 postoperative HKA and slope measurements, the difference between the planned and achieved correction was <2° based on the 3D analysis of the three planes in space; in the other case, the slope was 13° instead of the planned 10°. The intra-class correlation coefficients between the postoperative and planned parameters were 0.98 [0.92-0.99] for

  4. Comparison of long-term results between osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis.

    PubMed

    Charoenrook, Victor; Michael, Ralph; de la Paz, Maria Fideliz; Temprano, José; Barraquer, Rafael I

    2018-04-01

    To compare the anatomical and the functional results between osteo-odonto-keratoprosthesis (OOKP) and keratoprosthesis using tibial bone autograft (Tibial bone KPro). We reviewed the charts of 258 patients; 145 had OOKP whereas 113 had Tibial bone KPro implanted. Functional success was defined as best corrected visual acuity ≥0.05 on decimal scale and anatomical success as retention of the keratoprosthesis lamina. Kaplan-Meier survival curves were calculated for anatomical and functional survival as well as to estimate the probability of post-op complications. The anatomical survival for both KPro groups was not significantly different and was estimated as 67% for OOKP and 54% for Tibial bone KPro at 10 years after surgery. There was also no difference found after subdividing for primary diagnosis groups such as chemical injury, thermal burn, trachoma and all autoimmune cases combined. Estimated functional survival at 10 years post-surgery was 49% for OOKP and 25% for Tibial bone KPro, which was significantly different. The probability of patients with Tibial bone KPro developing one or more post-operative complications at 10 years after surgery (65%) was significantly higher than those with OOKP (40%). Mucous membrane necrosis and retroprosthetic membrane formation were more common in Tibial bone KPro than OOKP. Both types of autologous biological KPro, OOKP and Tibial bone KPro, had statistically similar rate of keratoprosthesis extrusion. Although functional success rate was significantly higher in OOKP, it may have been influenced by a better visual potential in the patients in this group. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  6. Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions.

    PubMed

    Moran, Matthew F; Rickert, Brendan J; Greer, Beau K

    2017-05-01

    Treadmills that unload runners via a differential air-pressure (DAP) bladder (eg, AlterG Anti-Gravity Treadmill) are commonly used to reduce effective body weight (BW) in a clinical setting. However, the relationship between the level of unloading and tibial stress is currently unknown. To determine the relationship between tibial impact acceleration and level of BW unloading during running. Cross-sectional. University motion-analysis laboratory. 15 distance runners (9 male, 6 female; 20.4 ± 2.4 y, 60.1 ± 12.6 kg). Peak tibial acceleration and peak-to-peak tibial acceleration were measured via a uniaxial accelerometer attached to the tibia during a 37-min continuous treadmill run that simulated reduced-BW conditions via a DAP bladder. The trial began with a 10-min run at 100% BW followed by nine 3-min stages where BW was systematically reduced from 95% to 60% in 5% increments. There was no significant relationship between level of BW and either peak tibial acceleration or peak-to-peak tibial acceleration (P > .05). Both heart rate and step rate were significantly reduced with each 5% reduction in BW level (P < .01). Although ground-reaction forces are reduced when running in reduced-BW conditions on a DAP treadmill, tibial shock magnitudes are unchanged as an alteration in spatiotemporal running mechanics (eg, reduced step rate) and may nullify the unloading effect.

  7. [Magnetic resonance imaging of tibial periostitis].

    PubMed

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  8. Total knee arthroplasty after failed high tibial osteotomy: a systematic review of open versus closed wedge osteotomy.

    PubMed

    Han, Jae Hwi; Yang, Jae-Hyuk; Bhandare, Nikhl N; Suh, Dong Won; Lee, Jong Seong; Chang, Yong Suk; Yeom, Ji Woong; Nha, Kyung Wook

    2016-08-01

    Medial opening wedge high tibial osteotomy (HTO) has become increasingly popular as an alternative to lateral closing wedge osteotomy for the treatment of medial compartment knee osteoarthritis with varus deformity. The present systematic review was conducted to provide an objective analysis of total knee arthroplasty (TKA) outcomes following previous knee osteotomy (medial opening wedge vs. lateral closing wedge). A literature search of online databases (MEDLINE, EMBASE, Cochrane Library database) was made, in addition to manual search of major orthopaedic journals. The methodological quality of each of the studies was assessed on the Newcastle-Ottawa Scale and Effective Practice and Organization of Care. A total of ten studies were included in the review. There were eight studies with Level IV and two studies with Level III evidence. Eight studies reported clinical and radiologic scores. Comparative studies between TKA following medial opening and lateral closing wedge HTO did not demonstrate statistically significant clinical and radiologic differences. The revision rates were similar. However, more technical issues during TKA surgery after lateral closing wedge HTO were mentioned than the medial open wedge group. The quadriceps snip, tibial tubercle osteotomy, and lateral soft tissue release were more frequently needed in the lateral closing wedge HTO group. In addition, because of loss of proximal tibia bone geometry in the lateral closing wedge HTO group, concerns such as tibia stem impingement in the lateral tibial cortex was noted. The present systematic review suggests that TKA after medial opening and lateral closing wedge HTO showed similar performance. Clinical and radiologic outcome including revision rates did not statistically differ from included studies. However, there are more surgical technical concerns in TKA conversion from lateral closing wedge HTO than from the medial opening wedge HTO group. IV.

  9. Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study.

    PubMed

    Barbadoro, P; Ensini, A; Leardini, A; d'Amato, M; Feliciangeli, A; Timoncini, A; Amadei, F; Belvedere, C; Giannini, S

    2014-12-01

    Unicompartmental knee arthroplasty (UKA) has shown a higher rate of revision compared with total knee arthroplasty. The success of UKA depends on prosthesis component alignment, fixation and soft tissue integrity. The tibial cut is the crucial surgical step. The hypothesis of the present study is that tibial component malalignment is correlated with its risk of loosening in UKA. This study was performed in twenty-three patients undergoing primary cemented unicompartmental knee arthroplasties. Translations and rotations of the tibial component and the maximum total point motion (MTPM) were measured using radiostereometric analysis at 3, 6, 12 and 24 months. Standard radiological evaluations were also performed immediately before and after surgery. Varus/valgus and posterior slope of the tibial component and tibial-femoral axes were correlated with radiostereometric micro-motion. A survival analysis was also performed at an average of 5.9 years by contacting patients by phone. Varus alignment of the tibial component was significantly correlated with MTPM, anterior tibial sinking, varus rotation and anterior and medial translations from radiostereometry. The posterior slope of the tibial component was correlated with external rotation. The survival rate at an average of 5.9 years was 89%. The two patients who underwent revision presented a tibial component varus angle of 10° for both. There is correlation between varus orientation of the tibial component and MTPM from radiostereometry in unicompartmental knee arthroplasties. Particularly, a misalignment in varus larger than 5° could lead to risk of loosening the tibial component. Prognostic studies-retrospective study, Level II.

  10. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.

    PubMed

    Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide

    2014-08-01

    Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia.

    PubMed

    Okudan, Berna; Coşkun, Nazım; Arıcan, Pelin

    2018-02-01

    Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%), stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT) it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  12. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player.

    PubMed

    Tonogai, Ichiro; Matsuura, Tetsuya; Iwame, Toshiyuki; Wada, Keizo; Takasago, Tomoya; Goto, Tomohiro; Hamada, Daisuke; Kawatani, Yohei; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi; Sairyo, Koichi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy.

  13. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player

    PubMed Central

    Iwame, Toshiyuki; Hamada, Daisuke; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy. PMID:28607785

  14. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.

    PubMed

    Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji

    2018-07-01

    Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Avulsion of the tibial tuberosity in a litter of greyhound puppies.

    PubMed

    Skelly, C M; McAllister, H; Donnelly, W J

    1997-10-01

    Avulsion of the tibial tuberosity was diagnosed in six of seven greyhound littermates aged five and a half months. The puppies showed hindlimb lameness of varying severity. Radiological assessment of affected stifle joints revealed partial or complete avulsion of the tibial tuberosities. In four puppies the lesions were bilateral. Euthanasia of the two most severely affected puppies was performed; the changes observed on histopathological examination of their cranioproximal tibiae suggested that the underlying lesion was that of osteochondrosis. A hereditary predisposition in greyhounds to osteochondrosis of the physis between the apophysis and the cranioproximal tibial diaphysis is postulated.

  16. Comparison of tibial shaft ski fractures in children and adults.

    PubMed

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P < 0.0001). Type A fractures were more dominant in children (73 cases, 72.3%) than in adults (39 cases, 53.4%). There was significantly more ER in children than in adults (P < 0.0001). Among children, female patients had significantly more IR than ER; in contrast, among adults, women were injured by ER. We found significant differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.

  17. Growth disturbance after lengthening of the lower limb and quantitative assessment of physeal closure in skeletally immature patients with achondroplasia.

    PubMed

    Song, S H; Kim, S E; Agashe, M V; Lee, H; Refai, M A; Park, Y E; Choi, H J; Park, J H; Song, H R

    2012-04-01

    This study evaluated the effect of limb lengthening on longitudinal growth in patients with achondroplasia. Growth of the lower extremity was assessed retrospectively by serial radiographs in 35 skeletally immature patients with achondroplasia who underwent bilateral limb lengthening (Group 1), and in 12 skeletally immature patients with achondroplasia who did not (Group 2). In Group 1, 23 patients underwent only tibial lengthening (Group 1a) and 12 patients underwent tibial and femoral lengthening sequentially (Group 1b). The mean lengthening in the tibia was 9.2 cm (59.5%) in Group 1a, and 9.0 cm (58.2%) in the tibia and 10.2 cm (54.3%) in the femur in Group 1b. The mean follow-up was 9.3 years (8.6 to 10.3). The final mean total length of lower extremity in Group 1a was 526.6 mm (501.3 to 552.9) at the time of skeletal maturity and 610.1 mm (577.6 to 638.6) in Group 1b, compared with 457.0 mm (411.7 to 502.3) in Group 2. However, the mean actual length, representing the length solely grown from the physis without the length of distraction, showed that there was a significant disturbance of growth after limb lengthening. In Group 1a, a mean decrease of 22.4 mm (21.3 to 23.1) (4.9%) was observed in the actual limb length when compared with Group 2, and a greater mean decrease of 38.9 mm (37.2 to 40.8) (8.5%) was observed in Group 1b when compared with Group 2 at skeletal maturity. In Group 1, the mean actual limb length was 16.5 mm (15.8 to 17.2) (3.6%) shorter in Group 1b when compared with Group 1a at the time of skeletal maturity. Premature physeal closure was seen mostly in the proximal tibia and the distal femur with relative preservation of proximal femur and distal tibia. We suggest that significant disturbance of growth can occur after extensive limb lengthening in patients with achondroplasia, and therefore, this should be included in pre-operative counselling of these patients and their parents.

  18. The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement.

    PubMed

    Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A

    2015-03-01

    The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. There is ongoing debate about how best to reconstruct the ACL to restore normal knee function

  19. The Role of Fibers in the Femoral Attachment of the Anterior Cruciate Ligament in Resisting Tibial Displacement

    PubMed Central

    Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A.

    2015-01-01

    Purpose The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. Methods A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. Results The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Conclusions Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. Clinical Relevance There is ongoing debate about how best

  20. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM.

  1. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.

  2. Long-term complications following tibial plateau levelling osteotomy in small dogs with tibial plateau angles > 30°.

    PubMed

    Knight, Rebekah; Danielski, Alan

    2018-04-21

    Tibial plateau levelling osteotomy (TPLO) is commonly performed for surgical management of cranial cruciate ligament (CCL) disease. It has been suggested that small dogs may have steeper tibial plateau angles (TPAs) than large dogs, which has been associated with increased complication rates after TPLO. A retrospective study was performed to assess the rate and nature of long-term complications following TPLO in small dogs with TPAs>30°. Medical records were reviewed for dogs with TPAs>30° treated for CCL rupture by TPLO with a 2.0 mm plate over a five-year period. Radiographs were assessed to determine TPA, postoperative tibial tuberosity width and to identify any complication. Up-to-date medical records were obtained from the referring veterinary surgeon and any complications in the year after surgery were recorded. The effects of different variables on complication rate were assessed using logistic regression analysis. Minor complications were reported in 22.7 per cent of cases. This is similar to or lower than previously reported complication rates for osteotomy techniques in small dogs and dogs with steep TPAs. A smaller postoperative TPA was the only variable significantly associated with an increased complication rate. No major complications were identified. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Standing balance in people with trans-tibial amputation due to vascular causes: A literature review.

    PubMed

    Seth, Mayank; Lamberg, Eric

    2017-08-01

    Balance is an important variable to consider during the rehabilitation process of individuals with trans-tibial amputation. Limited evidence exists on the balance abilities of people with trans-tibial amputation due to vascular causes. The purpose of this article is to review literature and determine if standing balance is diminished in people with trans-tibial amputation due to vascular causes. Literature review. Data were obtained from PubMed, Google Scholar, OandP.org , CINHAL, and Science Direct. Studies were selected only if they included standing balance assessment of people with unilateral trans-tibial amputation due to vascular causes. The review yielded seven articles that met the inclusion criteria. The general test methodology required participants to stand still on force platforms, with feet together, while center of pressure or postural sway was recorded. According to the findings of this review, individuals with trans-tibial amputees due to vascular causes have diminished balance abilities. Limited evidence suggests their balance might be further diminished as compared to individuals with trans-tibial amputation due to trauma. Although the evidence is limited, because of the underlying pathology and presence of comorbidities in individuals with trans-tibial amputation due to vascular causes, one cannot ignore these findings, as even a minor injury from a fall may develop into a non-healing ulcer and affect their health and well-being more severely than individuals with trans-tibial amputation due to trauma. Clinical relevance Individuals with trans-tibial amputation due to vascular causes have diminished balance abilities compared to healthy individuals and individuals with trans-tibial amputation due to trauma. This difference should be considered when designing and fabricating prostheses. Prosthetists and rehabilitation clinicians should consider designing amputation cause-specific rehabilitation interventions, focussing on balance and other

  4. Segmental transports for posttraumatic lower extremity bone defects: are femoral bone transports safer than tibial?

    PubMed

    Liodakis, Emmanouil; Kenawey, Mohamed; Krettek, Christian; Ettinger, Max; Jagodzinski, Michael; Hankemeier, Stefan

    2011-02-01

    The long-term outcomes following femoral and tibial segment transports are not well documented. Purpose of the study is to compare the complication rates and life quality scores of femoral and tibial transports in order to find what are the complication rates of femoral and tibial monorail bone transports and if they are different? We retrospectively analyzed the medical records of 8 femoral and 14 tibial consecutive segment transports performed with the monorail technique between 2001 and 2008 in our institution. Mean follow-up was 5.1 ± 2.1 years with a minimum follow-up of 2 years. Aetiology of the defects was posttraumatic in all cases. Four femoral (50%) and nine tibial (64%) fractures were open. The Short Form-36 (SF-36) health survey was used to compare the life quality after femoral and tibial bone transports. The Mann-Whiney U test, Fisher exact test, and the Student's two tailed t-test were used for statistical analysis. P ≤ 0.05 was considered to be statistically significant. The tibial transport was associated with higher rates of severe complications and additional procedures (1.5 ± 0.9 vs. 3.4 ± 2.7, p = 0.048). Three patients of the tibial group were amputated because of recurrent infections and one developed a complete regenerate insufficiency that was treated with partial diaphyseal tibial replacement. Contrary to that none of patients of the femoral group developed a complete regenerate insufficiency or was amputated. Tibial bone transports have a higher rate of complete and incomplete regenerate insufficiency and can more often end in an amputation. The authors suggest systematic weekly controls of the CRP value and of the callus formation in patients with posttraumatic tibia bone transports. Further comparative studies comparing the results of bone transports with and without intramedullary implants are necessary.

  5. Growth plate closure: Apex view on bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, P.H.; Trochei, M.; Yeates, K.

    1984-01-01

    Angular deformities of the extremities in children following premature closure of the growth plate are well known. The deformities depend on the position of an osseus bridge which forms between the epiphysis and metaphysis. Several surgical procedures including resection of the osseus bridge have been described, however, delineation of the site of fusion is difficult to define. The commonest site of growth plate arrest is the distal femoral or proximal tibial growth plate. A new technique using the bone scan has been developed which accurately defines the area and position of these osseus bridges. Two hours after injection of technetiummore » 99m methylene diphosphonate apex views of the affected distal femoral growth plate were performed. The knee was flexed into its smallest angle. Using a pinhole collimator the gamma camera was angled to face the affected growth plate end on. The image was collected onto computer and analysed by: (I) regions of interest over segments of the growth plate to calculate the relative area of total growth plate affected: (II) generating histograms: (III) thresholding or performing isocontours to accentuate abnormal areas. The growth plate is normally uniformly increased when compared to the normal shaft of the bone. Fusion across the plate appears as an area of diminished uptake. The apex view gives a unique functional map of the growth plate such that abnormal areas are displayed, and the site, size and position of osseus fusion obtained. The technique has the potential for determining the metabolic activity of the growth plate before and after surgery. Serial studies will allow assessment of regneration of the plate and reformation of new osseus bridges.« less

  6. High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.

    PubMed

    Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep

    2017-12-01

    High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.

  7. Chronic shin splints. Classification and management of medial tibial stress syndrome.

    PubMed

    Detmer, D E

    1986-01-01

    A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.

  8. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study.

    PubMed

    Macdonald, Heather M; Kontulainen, Saija A; Mackelvie-O'Brien, Kerry J; Petit, Moira A; Janssen, Patricia; Khan, Karim M; McKay, Heather A

    2005-06-01

    During growth, bone strength is conferred through subtle adaptations in bone mass and geometry in response to muscle forces. Few studies have examined the changes in bone geometry, strength and the bone-muscle strength relationship across maturity in boys and girls. Our aims were to describe (i) 20-month changes in bone geometry and strength at the tibial midshaft across three maturity groups of boys and girls, (ii) differences in these adaptations between sexes at the same approximate level of maturity and (iii) the bone-muscle strength relationship across maturity groups of boys and girls and between sexes. We used peripheral quantitative computed tomography (pQCT, Stratec XCT-2000) to measure change in total bone cross-sectional area (ToA, mm(2)), cortical area (CoA, mm(2)), average cortical thickness (C.Th., mm), section modulus (mm(3)) and muscle cross-sectional area (mm(2)) at the tibial midshaft (50% site) in 128 EARLY-, PERI- and POST-pubertal girls (n = 69, 11.9 +/- 0.6 years) and boys (n = 59, 12.0 +/- 0.6 years) across 20 months. We also calculated two bone-muscle strength indices (BMSI) for compression (CoA/MCSA) and bending [strength index/MCSA; where strength index = Z / (tibial length / 2)]. EARLY boys and girls had smaller ToA at baseline than same sex PERI or POST participants. There were no sex differences in ToA or CoA at baseline; however, boys increased both parameters significantly more than girls in every maturity group (8.5-11.1%, P < 0.01). These changes in bone geometry conferred greater gains in bone strength for boys compared with girls in each maturity group (13.8-15.6%, P < 0.01). Baseline BMSIs did not differ between sexes for EARLY and PERI groups, whereas BMSIs were significantly higher for POST boys compared with POST girls (P < 0.05). BMSIs decreased for EARLY and PERI girls (-7.4-(-1.1%)) whereas the ratios remained stable for EARLY and PERI boys (-0.6-2.5%). This sex difference in BMSI change was due to a relatively greater

  9. Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: A comparison of different implant systems

    PubMed Central

    Quilez, María Paz; Seral, Belen; Pérez, María Angeles

    2017-01-01

    The best methods to manage tibial bone defects following total knee arthroplasty remain under debate. Different fixation systems exist to help surgeons reconstruct knee osseous bone loss (such as tantalum cones, cement, modular metal augments, autografts, allografts and porous metaphyseal sleeves) However, the effects of the various solutions on the long-term outcome remain unknown. In the present work, a bone remodeling mathematical model was used to predict bone remodeling after total knee arthroplasty (TKA) revision. Five different types of prostheses were analyzed: one with a straight stem; two with offset stems, with and without supplements; and two with sleeves, with and without stems. Alterations in tibia bone density distribution and implant Von Mises stresses were quantified. In all cases, the bone density decreased in the proximal epiphysis and medullary channels, and an increase in bone density was predicted in the diaphysis and around stem tips. The highest bone resorption was predicted for the offset prosthesis without the supplement, and the highest bone formation was computed for the straight stem. The highest Von Mises stress was obtained for the straight tibial stem, and the lowest was observed for the stemless metaphyseal sleeves prosthesis. The computational model predicted different behaviors among the five systems. We were able to demonstrate the importance of choosing an adequate revision system and that in silico models may help surgeons choose patient-specific treatments. PMID:28886100

  10. INDIRECT EFFECT OF X-RADIATION ON BONE GROWTH IN RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conard, R.A.

    1962-12-21

    Effects of 200 to 600 r of x irradiation on tibial bone growth in groups of weanling male rats were studied by in vivo measurement of tibial bone growth in serial radiographs. By comparison of growth rates in shielded with unshielded legs, direct and indirect effects of radiation were demonstrated, both roughly dose dependent, but with the indirect effect being about twice that of the direct effect. Pair-feeding experiments showed that about 70% of the indirect effect was due to radiation-induced lowered food consumption. By partial-body shielding experiments, using pnir-fed controls, it was shown that the abdomen may be themore » site of a non-nutritional abscopal effect. (auth)« less

  11. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  12. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research.

    PubMed

    Yao, Jian-fei; Shen, Jia-zuo; Li, Da-kun; Lin, Da-sheng; Li, Lin; Li, Qiang; Qi, Peng; Lian, Ke-jian; Ding, Zhen-qi

    2012-01-01

    Lower tibial bone fracture may easily cause bone delayed union or nonunion because of lacking of dynamic mechanical load. Research Group would design a new instrument as Rap System of Stress Stimulation (RSSS) to provide dynamic mechanical load which would promote lower tibial bone union postoperatively. This clinical research was conducted from January 2008 to December 2010, 92 patients(male 61/female 31, age 16-70 years, mean 36.3 years) who suffered lower tibial bone closed fracture were given intramedullary nail fixation and randomly averagely separated into experimental group and control group(according to the successively order when patients went for the admission procedure). Then researchers analysed the clinical healing time, full weight bearing time, VAS (Visual Analogue Scales) score and callus growth score of Lane-Sandhu in 3,6,12 months postoperatively. The delayed union and nonunion rates were compared at 6 and 12 months separately. All the 92 patients had been followed up (mean 14 months). Clinical bone healing time in experimental group was 88.78±8.80 days but control group was 107.91±9.03 days. Full weight bearing time in experimental group was 94.07±9.81 days but control group was 113.24±13.37 days respectively (P<0.05). The delayed union rate in 6 months was 4.3% in experimental group but 10.9% in control group(P<0.05). The nonunion rate in 12 months was 6.5% in experimental group but 19.6% in control group(P<0.05). In 3, 6, 12 months postoperatively, VAS score and Lane-Sandhu score in experimental group had more significantly difference than them in control group. RSSS can intermittently provide dynamic mechanical load and stimulate callus formation, promote lower tibial bone union, reduce bone delayed union or nonunion rate. It is an adjuvant therapy for promoting bone union after lower tibial bone fracture.

  13. Sequential avulsions of the tibial tubercle in an adolescent basketball player.

    PubMed

    Huang, Ying Chieh; Chao, Ying-Hao; Lien, Fang-Chieh

    2010-05-01

    Tibial tubercle avulsion is an uncommon fracture in physically active adolescents. Sequential avulsion of tibial tubercles is extremely rare. We reported a healthy, active 15-year-old boy who suffered from left tibial tubercle avulsion fracture during a basketball game. He received open reduction and internal fixation with two smooth Kirschner wires and a cannulated screw, with every effort to reduce the plate injury. Long-leg splint was used for protection followed by programmed rehabilitation. He recovered uneventfully and returned to his previous level of activity soon. Another avulsion fracture happened at the right tibial tubercle 3.5 months later when he was playing the basketball. From the encouragement of previous successful treatment, we provided him open reduction and fixation with two small-caliber screws. He recovered uneventfully and returned to his previous level of activity soon. No genu recurvatum or other deformity was happening in our case at the end of 2-year follow-up. No evidence of Osgood-Schlatter disease or osteogenesis imperfecta was found. Sequential avulsion fractures of tibial tubercles are rare. Good functional recovery can often be obtained like our case if we treat it well. To a physically active adolescent, we should never overstate the risk of sequential avulsion of the other leg to postpone the return to an active, functional life.

  14. Effect of thiram on chicken growth plate cartilage

    USDA-ARS?s Scientific Manuscript database

    Thiram is a general use dithiocarbamate pesticide. It causes tibial dyschondroplasia, a growth plate cartilage defect in poultry characterized by growth plate broadening due to the accumulation of nonviable chondrocytes which lead to lameness. Since proteins play significant roles in all aspects cel...

  15. Management of combined knee medial compartmental and patellofemoral osteoarthritis with lateral closing wedge osteotomy with anterior translation of the distal tibial fragment: Does the degree of anteriorization affect the functional outcome and posterior tibial slope?

    PubMed

    Sadek, Ahmed F; Osman, Mohammed K; Laklok, Mohamed A

    2016-10-01

    The aim of this study was to assess the effect of degree of anterior translation of the distal tibial fragment after lateral closing wedge high tibial osteotomy in patients having combined knee medial compartmental and patellofemoral osteoarthritis. A retrospective study was conducted on 64 patients who were operated on for combined knee medial compartmental and patellofemoral osteoarthritis, by lateral closing wedge high tibial osteotomy with anterior translation of the distal tibial fragment. They were divided into two groups; Group I comprising 32 patients (34 knees, mean age of 51.4±7years) whose degree of anterior translation was <1cm and Group II comprising 32 patients (33 knees, mean age of 52.2±8.3years) whose degree of anterior translation was >1.5cm. The final assessment was performed via: visual analog scale, postoperative Knee Society clinical rating system function score, active range of motion, time to union, degree of correction of mechanical axis, posterior tibial slope, and Insall-Salvati ratio. Group II patients exhibited statistically superior mean postoperative score and better return to their work than Group I (P=0.013, 0.076, respectively). Both groups showed statistically significant differences between the preoperative and postoperative evaluation parameters (P<0.001). The posterior tibial slope was decreased in both groups but with no significant difference (P=0.527). Lateral closing wedge high tibial osteotomy combined with anterior translation of the distal tibial fragment more than 1.5cm achieved significantly better postoperative functional knee score. Both groups exhibited comparatively decreased posterior tibial slope. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site.

    PubMed

    Siebold, Rainer; Schuhmacher, Peter; Fernandez, Francis; Śmigielski, Robert; Fink, Christian; Brehmer, Axel; Kirsch, Joachim

    2015-11-01

    This anatomical cadaver study was performed to investigate the flat appearance of the midsubstance shape of the anterior cruciate ligament (ACL) and its tibial "C"-shaped insertion site. The ACL midsubstance and the tibial ACL insertion were dissected in 20 cadaveric knees (n = 6 fresh frozen and n = 14 paraffined). Magnifying spectacles were used for all dissections. Morphometric measurements were performed using callipers and on digital photographs. In all specimens, the midsubstance of the ACL was flat with a mean width of 9.9 mm, thickness of 3.9 mm and cross-sectional area of 38.7 mm(2). The "direct" "C"-shaped tibial insertion runs from along the medial tibial spine to the anterior aspect of the lateral meniscus. The mean width (length) of the "C" was 12.6 mm, its thickness 3.3 mm and area 31.4 mm(2). The centre of the "C" was the bony insertion of the anterior root of the lateral meniscus overlayed by fat and crossed by the ACL. No posterolateral (PL) inserting ACL fibres were found. Together with the larger "indirect" part (area 79.6 mm(2)), the "direct" one formed a "duck-foot"-shaped footprint. The tibial ACL midsubstance and tibial "C"-shaped insertion are flat and are resembling a "ribbon". The centre of the "C" is the bony insertion of the anterior root of the lateral meniscus. There are no central or PL inserting ACL fibres. Anatomical ACL reconstruction may therefore require a flat graft and a "C"-shaped tibial footprint reconstruction with an anteromedial bone tunnel for single bundle and an additional posteromedial bone tunnel for double bundle.

  17. Medial tibial pain. A prospective study of its cause among military recruits.

    PubMed

    Milgrom, C; Giladi, M; Stein, M; Kashtan, H; Margulies, J; Chisin, R; Steinberg, R; Swissa, A; Aharonson, Z

    1986-12-01

    In a prospective study of 295 infantry recruits during 14 weeks of basic training, 41% had medial tibial pain. Routine scintigraphic evaluation in cases of medial tibial bone pain showed that 63% had abnormalities. A stress fracture was found in 46%. Only two patients had periostitis. None had ischemic medial compartment syndrome. Physical examination could not differentiate between cases with medial tibial bone pain secondary to stress fractures and those with scintigraphically normal tibias. When both pain and swelling were localized in the middle one-third of the tibia, the lesion most likely proved to be a stress fracture.

  18. [Mobility of a polyethylene tibial insert in a mobile total knee prosthesis].

    PubMed

    Castel, E; Roger, B; Camproux, A; Saillant, G

    1999-03-01

    We have studied the mobility of a mobile tibial implant in total knee arthroplasty (TKA) by a radiographical evaluation. We analyzed mobility of the polyethylene tibial insert of 15 "G2S" TKA implanted for one year or more. We established a dynamic radiographical evaluation. We used 3 weight-bearing radiographs: AP in extension and two lateral (one in extension and one at 90 degrees of flexion), two AP with femoral internal and external rotation, 2 strict lateral X-rays in neutral rotation in antero-posterior replacement with a 25 kilograms strength Telos, and 2 AP in varus and valgus with Telos. Wilcoxon's test and Fisher's exact test were used for statistical evaluation. Our study demonstrated preservation of the polyethylene mobility in tibial TKA implant in all movements: in rotation, in antero-posterior translation with Telos, and even in antero-posterior translation during physiological condition with flexion-extension weight-bearing radiographs. Statistical tests were very significant. We noticed that flexion induced anterior translation of tibial polyethylene when PCL was preserved. This study answered to our question whether mobility of TKA tibial implant persists after implantation. This mobility should reduce loosening forces to the tibia and stress in the polyethylene component. Now we have to determine the amplitude of mobility required to reach this objective.

  19. Tibial and fibular nerves evaluation using intraoperative electromyography in rats.

    PubMed

    Nepomuceno, André Coelho; Politani, Elisa Landucci; Silva, Eduardo Guandelini da; Salomone, Raquel; Longo, Marco Vinicius Losso; Salles, Alessandra Grassi; Faria, José Carlos Marques de; Gemperli, Rolf

    2016-08-01

    To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12. Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.

  20. Management of tibial fractures using a circular external fixator in two calves.

    PubMed

    Aithal, Hari Prasad; Kinjavdekar, Prakash; Amarpal; Pawde, Abhijit Motiram; Singh, Gaj Raj; Setia, Harish Chandra

    2010-07-01

    To report the repair of tibial diaphyseal fractures in 2 calves using a circular external skeletal fixator (CEF). Clinical report. Crossbred calves (n=2; age: 6 months; weight: 55 and 60 kg). Mid-diaphyseal tibial fractures were repaired by the use of a 4-ring CEF (made of aluminum rings with 2 mm K-wires) alone in 1 calf and in combination with hemicerclage wiring in 1 calf. Both calves had good weight bearing with moderate lameness postoperatively. Fracture healing occurred by day 60 in 1 calf and by day 30 in calf 2. The CEF was well maintained and tolerated by both calves through fracture healing. Joint mobility and limb usage improved gradually after CEF removal. CEF provided a stable fixation of tibial fractures and healing within 60 days and functional recovery within 90 days. CEF can be safely and successfully used for the management of selected tibial fractures in calves.

  1. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    PubMed

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty.

    PubMed

    Hernigou, Philippe; Deschamps, Gerard

    2004-03-01

    Laboratory studies have suggested that the sagittal displacements permitted by a knee replacement are influenced by the posterior slope of the tibial implant. The effect of the posterior slope of the tibial implant on the outcome of unicompartmental arthroplasty is not well known. The purpose of the present study was to assess the effect of the posterior slope on the long-term outcome of unicompartmental arthroplasty in knees with intact and deficient anterior cruciate ligaments. We retrospectively reviewed the results of ninety-nine unicompartmental arthroplasties after a mean duration of follow-up of sixteen years. At the time of the arthroplasty, the anterior cruciate ligament was considered to be normal in fifty knees, damaged in thirty-one, and absent in eighteen. At the most recent follow-up, we measured the posterior tibial slope and the anterior tibial translation on standing lateral radiographs. The anteroposterior stability of seventy-seven knees that had not been revised by the time of the most recent follow-up was evaluated clinically. In the group of seventy-seven knees that had not been revised by the time of the most recent follow-up, there was a significant linear relationship between anterior tibial translation (mean, 3.7 mm) and posterior tibial slope (mean, 4.3 degrees ) (p < 0.01). The mean posterior slope of the tibial implant was significantly less in the group of seventy-seven knees without loosening of the implant than it was in the group of seventeen knees with loosening of the implant (p < 0.05). Five ruptures of the anterior cruciate ligament occurred in knees in which the ligament had been considered to be normal at the time of implantation; the posterior tibial slope in these five knees was > or = 13 degrees. Clinical evaluation revealed normal or nearly normal anteroposterior stability at the time of the most recent follow-up in all sixty-six unrevised knees in which the anterior cruciate ligament had been present at the time of

  3. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    PubMed

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (P<0.004). There was an increase in the longitudinal ankle joint contact force when they landed with forefoot (P=0.003). However, there was no significant difference in both peak tibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis?

    PubMed Central

    Wluka, A; Wolfe, R; Stuckey, S; Cicuttini, F

    2004-01-01

    Background: No consistent relationship between the severity of symptoms of knee osteoarthritis (OA) and radiographic change has been demonstrated. Objectives: To determine the relationship between symptoms of knee OA and tibial cartilage volume, whether pain predicts loss of cartilage in knee OA, and whether change in cartilage volume over time relates to change in symptoms over the same period. Method: 132 subjects with symptomatic, early (mild to moderate) knee OA were studied. At baseline and 2 years later, participants had MRI scans of their knee and completed questionnaires quantifying symptoms of knee OA (knee-specific WOMAC: pain, stiffness, function) and general physical and mental health (SF-36). Tibial cartilage volume was determined from the MRI images. Results: Complete data were available for 117 (89%) subjects. A weak association was found between tibial cartilage volume and symptoms at baseline. The severity of the symptoms of knee OA at baseline did not predict subsequent tibial cartilage loss. However, weak associations were seen between worsening of symptoms of OA and increased cartilage loss: pain (rs = 0.28, p = 0.002), stiffness (rs = 0.17, p = 0.07), and deterioration in function (rs = 0.21, p = 0.02). Conclusion: Tibial cartilage volume is weakly associated with symptoms in knee OA. There is a weak association between loss of tibial cartilage and worsening of symptoms. This suggests that although cartilage is not a major determinant of symptoms in knee OA, it does relate to symptoms. PMID:14962960

  5. Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.

    PubMed

    Sari, Murat; Tuna, Can; Akogul, Serkan

    2018-03-28

    The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.

  6. Effect of ACL Transection on Internal Tibial Rotation in an in Vitro Simulated Pivot Landing

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Ashton-Miller, James A.; Wojtys, Edward M.

    2011-01-01

    Background: The amount of resistance provided by the ACL (anterior cruciate ligament) to axial tibial rotation remains controversial. The goal of this study was to test the primary hypotheses that ACL transection would not significantly affect tibial rotation under the large impulsive loads associated with a simulated pivot landing but would increase anterior tibial translation. Methods: Twelve cadaveric knees (mean age of donors [and standard deviation] at the time of death, 65.0 ± 10.5 years) were mounted in a custom testing apparatus to simulate a single-leg pivot landing. A compound impulsive load was applied to the distal part of the tibia with compression (∼800 N), flexion moment (∼40 N-m), and axial tibial torque (∼17 N-m) in the presence of five trans-knee muscle forces. A differential variable reluctance transducer mounted on the anteromedial aspect of the ACL measured relative strain. With the knee initially in 15° of flexion, and after five combined compression and flexion moment (baseline) loading trials, six trials were conducted with the addition of either internal or external tibial torque (internal or external loading), and then six baseline trials were performed. The ACL was then sectioned, six baseline trials were repeated, and then six trials of either the internal or the external loading condition, whichever had initially resulted in the larger relative ACL strain, were carried out. Tibiofemoral kinematics were measured optoelectronically. The results were analyzed with a nonparametric Wilcoxon signed-rank test. Results: Following ACL transection, the increase in the normalized internal tibial rotation was significant but small (0.7°/N-m ± 0.3°/N-m to 0.8°/N-m ± 0.3°/N-m, p = 0.012), while anterior tibial translation increased significantly (3.8 ± 2.9 to 7.0 ± 2.9 mm, p = 0.017). Conclusions: ACL transection leads to a small increase in internal tibial rotation, equivalent to a 13% decrease in the dynamic rotational resistance

  7. Delay in weight bearing in surgically treated tibial shaft fractures is associated with impaired healing: a cohort analysis of 166 tibial fractures.

    PubMed

    Houben, I B; Raaben, M; Van Basten Batenburg, M; Blokhuis, T J

    2018-04-09

    The relation between timing of weight bearing after a fracture and the healing outcome is yet to be established, thereby limiting the implementation of a possibly beneficial effect for our patients. The current study was undertaken to determine the effect of timing of weight bearing after a surgically treated tibial shaft fracture. Surgically treated diaphyseal tibial fractures were retrospectively studied between 2007 and 2015. The timing of initial weight bearing (IWB) was analysed as a predictor for impaired healing in a multivariate regression. Totally, 166 diaphyseal tibial fractures were included, 86 cases with impaired healing and 80 with normal healing. The mean age was 38.7 years (range 16-89). The mean time until IWB was significantly shorter in the normal fracture healing group (2.6 vs 7.4 weeks, p < 0.001). Correlation analysis yielded four possible confounders: infection requiring surgical intervention, fracture type, fasciotomy and open fractures. Logistic regression identified IWB as an independent predictor for impaired healing with an odds ratio of 1.13 per week delay (95% CI 1.03-1.25). Delay in initial weight bearing is independently associated with impaired fracture healing in surgically treated tibial shaft fractures. Unlike other factors such as fracture type or soft tissue condition, early resumption of weight bearing can be influenced by the treating physician and this factor therefore has a direct clinical relevance. This study indicates that early resumption of weight bearing should be the treatment goal in fracture fixation. 3b.

  8. Canine stifle joint biomechanics associated with tibial plateau leveling osteotomy predicted by use of a computer model.

    PubMed

    Brown, Nathan P; Bertocci, Gina E; Marcellin-Little, Denis J

    2014-07-01

    To evaluate effects of tibial plateau leveling osteotomy (TPLO) on canine stifle joint biomechanics in a cranial cruciate ligament (CrCL)-deficient stifle joint by use of a 3-D computer model simulating the stance phase of gait and to compare biomechanics in TPLO-managed, CrCL-intact, and CrCL-deficient stifle joints. Computer simulations of the pelvic limb of a Golden Retriever. A previously developed computer model of the canine pelvic limb was used to simulate TPLO stabilization to achieve a tibial plateau angle (TPA) of 5° (baseline value) in a CrCL-deficient stifle joint. Sensitivity analysis was conducted for tibial fragment rotation of 13° to -3°. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. TPLO with a 5° TPA converted cranial tibial translation to caudal tibial translation and increased loads placed on the remaining stifle joint ligaments, compared with results for a CrCL-intact stifle joint. Lateral collateral ligament load was similar, medial collateral ligament load increased, and caudal cruciate ligament load decreased after TPLO, compared with loads for a CrCL-deficient stifle joint. Relative tibial rotation after TPLO was similar to that of a CrCL-deficient stifle joint. Stifle joint biomechanics were affected by TPLO fragment rotation. In the model, stifle joint biomechanics were partially improved after TPLO, compared with CrCL-deficient stifle joint biomechanics, but TPLO did not fully restore CrCL-intact stifle joint biomechanics. Overrotation of the tibial fragment negatively influenced stifle joint biomechanics by increasing caudal tibial translation.

  9. Failure at the Tibial Cement-Implant Interface With the Use of High-Viscosity Cement in Total Knee Arthroplasty.

    PubMed

    Kopinski, Judith E; Aggarwal, Ajay; Nunley, Ryan M; Barrack, Robert L; Nam, Denis

    2016-11-01

    Recent literature has shown debonding of the tibial implant-cement interface as a potential cause for implant loosening. The purpose of this case series is to report this phenomenon in a historically well-performing implant when used with high-viscosity cement (HVC). Thirteen primary cemented Biomet Vanguard total knee arthroplasties were referred to 1 of 2 institutions with complaints of persistent pain after their index procedure. A radiographic and infectious work-up was completed for each patient. All 13 patients underwent a revision of the index surgery with intraoperative diagnosis of tibial component debonding at the implant-cement interface. HVC (Cobalt, DJO Surgical, Vista, CA and Depuy HVC; Depuy Inc, Warsaw, IN) was used in all index cases. The average time to revision surgery for the 13 patients was 2.7 ± 1.9 years from the index surgery. Laboratory infectious markers were within normal in most cases, and all intra-articular aspirations showed no bacterial, fungal, or anaerobic growth. Eleven of 13 patients showed no radiographic evidence of loosening; however, all cases demonstrated tibial component debonding intraoperatively. Given our institution's experience and previously reported data demonstrating excellent survivorship with this total knee arthroplasty prosthesis, we propose that the early failures seen in this case series may be associated with the use of HVC cement. In the setting of a negative infectious work-up and no radiographic evidence to suggest loosening, the surgeon should consider debonding of the tibial component as a potential cause for persistent pain if HVC cement was used with this prosthetic design. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparison of the primary stability of different tibial baseplate concepts to retain both cruciate ligaments during total knee arthroplasty.

    PubMed

    Nowakowski, Andrej M; Stangel, Melanie; Grupp, Thomas M; Valderrabano, Victor

    2013-10-01

    A novel tibial baseplate design (Transversal Support Tibial Plateau) as a new treatment concept for bi-cruciate retaining total knee arthroplasty is evaluated for mechanical stability and compared to other tibial baseplate designs. This concept should provide better primary stability and thus, less subsidence, than implantation of two separate unicondylar tibial baseplates. Different baseplates were implanted into synthetic bone specimens (Sawbones® Pacific Research Laboratories, Inc., Washington, USA), all uncemented. Using a standardized experimental setup, subsidence was achieved, enabling comparison of the models regarding primary stability. Overall implant subsidence was significantly increased for the two separate unicondylar tibial baseplates versus the new Transversal Support Tibial Plateau concept, which showed comparable levels to a conventional tibial baseplate. Reduced subsidence results in better primary stability. Linking of two separate baseplates appears to provide increased primary stability in terms of bony fixation, comparable to that of a conventional single tibial baseplate. © 2013. Published by Elsevier Ltd. All rights reserved.

  11. The medial tibial stress syndrome. A cause of shin splints.

    PubMed

    Mubarak, S J; Gould, R N; Lee, Y F; Schmidt, D A; Hargens, A R

    1982-01-01

    The medial tibial stress syndrome is a symptom complex seen in athletes who complain of exercise-induced pain along the distal posterior-medial aspect of the tibia. Intramuscular pressures within the posterior compartments of the leg were measured in 12 patients with this disorder. These pressures were not elevated and therefore this syndrome is a not a compartment syndrome. Available information suggests that the medial tibial stress syndrome most likely represents a periostitis at this location of the leg.

  12. Metachronous Bilateral Posterior Tibial Artery Aneurysms in Ehlers-Danlos Syndrome Type IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagspiel, Klaus D., E-mail: kdh2n@virginia.edu; Bonatti, Hugo; Sabri, Saher

    2011-04-15

    Ehlers-Danlos syndrome type IV is a life-threatening genetic connective tissue disorder. We report a 24-year-old woman with EDS-IV who presented with metachronous bilateral aneurysms/pseudoaneurysms of the posterior tibial arteries 15 months apart. Both were treated successfully with transarterial coil embolization from a distal posterior tibial approach.

  13. Case report: comprehensive management of medial tibial stress syndrome

    PubMed Central

    Krenner, Bernard John

    2002-01-01

    Abstract Activity or exercise-induced leg pain is a common complication among competitive and “weekend warrior” athletes. Shin splints is a term that has been used to describe all lower leg pain as a result of activity. There are many different causes of “shin splints,” one of which is medial tibial stress syndrome, and the treating clinician must be aware of potentially serious causes of activity related leg pain. Restoring proper biomechanics to the entire kinetic chain and rehabilitation of the injured area should be the primary aim of treatment to optimize shock absorption. The role inflammation plays in medial tibial stress syndrome is controversial, but in this case, seemed to be a causative factor as symptomatology was dramatically decreased with the addition of proteolytic enzymes. Medial tibial stress syndrome can be quite difficult to treat and keeping athletes away from activities that will slow healing or aggravate the condition can be challenging. “Active” rest is the best way in which to allow proper healing while allowing the athlete to maintain their fitness. PMID:19674573

  14. Magnitude of cement-device interfacial stresses with and without tibial stemming: impact of BMI.

    PubMed

    Gopalakrishnan, Ananthkrishnan; Hedley, Anthony Keith; Kester, Mark A

    2011-03-01

    Patients expect their total knee arthroplasty to relieve pain and to be long lasting. With patients becoming more active, weighing more, and living longer, this expectation becomes increasingly more difficult to fulfill. Patients who are obese and active put greater loads on their implants and may have a greater risk of failure. Although much attention has been paid to decreasing polyethylene wear, a major cause of implant failure, very little research focus has been directed to elucidate other measures to reduce failure, such as the efficacy of prophylactic stemming of the tibial tray. This study explored whether additional mechanical support for tibial base plates would help reduce bone cement stresses in heavy patients, who, like patients with a high activity level, put added stress on their implants. A tibial base plate with a 12-mm-diameter x 50-mm-long stem was compared with the same tibial base plate with a 15-mm-diameter x 20-mm-long end cap using finite element analysis. The results indicate that the tibial base plate with a prophylactic stem significantly reduced compressive and shear stresses on the cement-device interface and therefore may help to reduce the possibility of tibial loosening in these at-risk patients. Further, such studies will aid the surgeon in educating patients and in selecting the appropriate implant strategy.

  15. Minimally-invasive plate osteosynthesis in distal tibial fractures: Results and complications.

    PubMed

    Vidović, Dinko; Matejčić, Aljoša; Ivica, Mihovil; Jurišić, Darko; Elabjer, Esmat; Bakota, Bore

    2015-11-01

    Distal tibial or pilon fractures are usually the result of combined compressive and shear forces, and may result in instability of the metaphysis, with or without articular depression, and injury to the soft tissue. The complexity of injury, lack of muscle cover and poor vascularity make these fractures difficult to treat. Surgical treatment of distal tibial fractures includes several options: external fixation, IM nailing, ORIF and minimally-invasive plate osteosynthesis (MIPO). Management of distal tibial fractures with MIPO enables preservation of soft tissue and remaining blood supply. This is a report of a series of prospectively studied closed distal tibial and pilon fractures treated with MIPO. A total of 21 patients with closed distal tibial or pilon fractures were enrolled in the study between March 2008 and November 2013 and completed follow-up. Demographic characteristics, mechanism of injury, time required for union, ankle range of motion and complications were recorded. Fractures were classified according to the AO/OTA classification. Nineteen patients were initially managed with an ankle-spanning external fixator. When the status of the soft tissue had improved and swelling had subsided enough, a definitive internal fixation with MIPO was performed. Patients were invited for follow-up examinations at 3 and 6 weeks and then at intervals of 6 to 8 weeks until 12 months. Mean age of the patients was 40.1 years (range 19-67 years). Eighteen cases were the result of high-energy trauma and three were the result of low-energy trauma. According to the AO/OTA classification there were extraarticular and intraarticular fractures, but only simple articular patterns without depression or comminution. The average time for fracture union was 19.7 weeks (range 12-38 weeks). Mean range of motion was 10° of dorsiflexion (range 5-15°) and 28.3° of plantar flexion (range 20-35°). Three cases were metalwork-related complications. Two patients underwent plate removal

  16. Walking and proximity to the urban growth boundary and central business district.

    PubMed

    Brown, Scott C; Lombard, Joanna; Toro, Matthew; Huang, Shi; Perrino, Tatiana; Perez-Gomez, Gianna; Plater-Zyberk, Elizabeth; Pantin, Hilda; Affuso, Olivia; Kumar, Naresh; Wang, Kefeng; Szapocznik, José

    2014-10-01

    Planners have relied on the urban development boundary (UDB)/urban growth boundary (UGB) and central business district (CBD) to encourage contiguous urban development and conserve infrastructure. However, no studies have specifically examined the relationship between proximity to the UDB/UGB and CBD and walking behavior. To examine the relationship between UDB and CBD distance and walking in a sample of recent Cuban immigrants, who report little choice in where they live after arrival to the U.S. Data were collected in 2008-2010 from 391 healthy, recent Cuban immigrants recruited and assessed within 90 days of arrival to the U.S. who resided throughout Miami-Dade County FL. Analyses in 2012-2013 examined the relationship between UDB and CBD distances for each participant's residential address and purposive walking, controlling for key sociodemographics. Follow-up analyses examined whether Walk Score(®), a built-environment walkability metric based on distance to amenities such as stores and parks, mediated the relationship between purposive walking and each of UDB and CBD distance. Each one-mile increase in distance from the UDB corresponded to an 11% increase in the number of minutes of purposive walking, whereas each one-mile increase from the CBD corresponded to a 5% decrease in the amount of purposive walking. Moreover, Walk Score mediated the relationship between walking and each of UDB and CBD distance. Given the lack of walking and walkable destinations observed in proximity to the UDB/UGB boundary, a sprawl repair approach could be implemented, which strategically introduces mixed-use zoning to encourage walking throughout the boundary's zone. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Outcomes of Surgical Treatment for Anterior Tibial Stress Fractures in Athletes: A Systematic Review.

    PubMed

    Chaudhry, Zaira S; Raikin, Steven M; Harwood, Marc I; Bishop, Meghan E; Ciccotti, Michael G; Hammoud, Sommer

    2017-12-01

    Although most anterior tibial stress fractures heal with nonoperative treatment, some may require surgical management. To our knowledge, no systematic review has been conducted regarding surgical treatment strategies for the management of chronic anterior tibial stress fractures from which general conclusions can be drawn regarding optimal treatment in high-performance athletes. This systematic review was conducted to evaluate the surgical outcomes of anterior tibial stress fractures in high-performance athletes. Systematic review; Level of evidence, 4. In February 2017, a systematic review of the PubMed, MEDLINE, Cochrane, SPORTDiscus, and CINAHL databases was performed to identify studies that reported surgical outcomes for anterior tibial stress fractures. Articles meeting the inclusion criteria were screened, and reported outcome measures were documented. A total of 12 studies, published between 1984 and 2015, reporting outcomes for the surgical treatment of anterior tibial stress fractures were included in this review. All studies were retrospective case series. Collectively, surgical outcomes for 115 patients (74 males; 41 females) with 123 fractures were evaluated in this review. The overall mean follow-up was 23.3 months. The most common surgical treatment method reported in the literature was compression plating (n = 52) followed by drilling (n = 33). Symptom resolution was achieved in 108 of 123 surgically treated fractures (87.8%). There were 32 reports of complications, resulting in an overall complication rate of 27.8%. Subsequent tibial fractures were reported in 8 patients (7.0%). Moreover, a total of 17 patients (14.8%) underwent a subsequent procedure after their initial surgery. Following surgical treatment for anterior tibial stress fracture, 94.7% of patients were able to return to sports. The available literature indicates that surgical treatment of anterior tibial stress fractures is associated with a high rate of symptom resolution and return

  18. Nontraumatic tibial polyethylene insert cone fracture in mobile-bearing posterior-stabilized total knee arthroplasty.

    PubMed

    Tanikake, Yohei; Hayashi, Koji; Ogawa, Munehiro; Inagaki, Yusuke; Kawate, Kenji; Tomita, Tetsuya; Tanaka, Yasuhito

    2016-12-01

    A 72-year-old male patient underwent mobile-bearing posterior-stabilized total knee arthroplasty for osteoarthritis. He experienced a nontraumatic polyethylene tibial insert cone fracture 27 months after surgery. Scanning electron microscopy of the fracture surface of the tibial insert cone suggested progress of ductile breaking from the posterior toward the anterior of the cone due to repeated longitudinal bending stress, leading to fatigue breaking at the anterior side of the cone, followed by the tibial insert cone fracture at the anterior side of the cone, resulting in fracture at the base of the cone. This analysis shows the risk of tibial insert cone fracture due to longitudinal stress in mobile-bearing posterior-stabilized total knee arthroplasty in which an insert is designed to highly conform to the femoral component.

  19. Time dependent loss of trabecular bone in human tibial plateau fractures.

    PubMed

    Solomon, Lucian Bogdan; Kitchen, David; Anderson, Paul Hamill; Yang, Dongqing; Starczak, Yolandi; Kogawa, Masakazu; Perilli, Egon; Smitham, Peter Jonathan; Rickman, Mark Sean; Thewlis, Dominic; Atkins, Gerald James

    2018-05-22

    We investigated if time between injury and surgery affects cancellous bone properties in patients suffering tibial plateau fractures (TPF), in terms of structural integrity and gene expression controlling bone loss. A cohort of 29 TPF, operated 1-17 days post-injury, had biopsies from the fracture and an equivalent contralateral limb site, at surgery. Samples were assessed using micro-computed tomography and real-time RT-PCR analysis for the expression of genes known to be involved in bone remodeling and fracture healing. Significant decreases in the injured vs control side were observed for bone volume fraction (BV/TV, -13.5 ± 6.0%, p = 0.011), trabecular number (Tb.N, -10.5 ± 5.9%, p = 0.041) and trabecular thickness (Tb.Th, -4.6 ± 2.5%, p = 0.033). Changes in these parameters were more evident in patients operated 5-17 days post-injury, compared to those operated in the first 4 days post injury. A significant negative association was found between Tb.Th (r = -0.54, p < 0.01) and BV/TV (r = -0.39, p < 0.05) in relation to time post-injury in the injured limb. Both BV/TV and Tb.Th were negatively associated with expression of key molecular markers of bone resorption, CTSK, ACP5 and the ratio of RANKL:OPG mRNA. These structure/gene expression relationships did not exist in the contralateral tibial plateau of these patients. This study demonstrated that there is a significant early time-dependent bone loss in the proximal tibia after TPF. This bone loss was significantly associated with altered expression of genes typically involved in the process of osteoclastic bone resorption but possibly also by osteocytes. The mechanism of early bone loss in such fractures should be a subject of further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Ceramic hemi-unicondylar arthroplasty in an adolescent patient with idiopathic tibial chondrolysis.

    PubMed

    Dombroski, Derek; Garino, Jonathan; Lee, Gwo-Chin

    2009-06-01

    Despite recent advances in cartilage regeneration and restoration procedures, isolated, large, full-thickness cartilage lesions in young patients continue to pose significant challenges to patients and orthopedic surgeons. Treatment options for this difficult problem have traditionally included arthrodesis, osteotomy, osteochondral allograft, and prosthetic reconstruction. We present a case of an adolescent patient with isolated idiopathic lateral tibial chondrolysis treated with a custom ceramic hemi-unicondylar hemiarthroplasty. Preoperatively, a 3-dimensional computed tomography scan of the patient's knee was obtained to begin manufacturing a conforming custom ceramic insert that would articulate between the tibial base plate and the patient's native lateral femoral cartilage. Through a lateral parapatellar approach, the tibial preparation was carried out using the Zimmer M/G unicompartmental knee system (Warsaw, Indiana), and the tibial base plate was cemented into position in the standard fashion. A custom, conforming, prefabricated ceramic insert (CeramTec, Memphis, Tennessee) was then inserted onto the tibial base plate. At 5-year follow-up, this salvage procedure was successful in relieving pain and restoring function in this young patient. There were no signs of implant loosening or lysis. Magnetic resonance imaging of the knee at last follow-up revealed that the cartilage thickness of the patient's lateral femoral condyle remained unchanged. Unicondylar hemiarthroplasty performed in patients with large unipolar lesions in the knee can provide durable and reliable pain relief. Ceramic is a viable material that can be considered for articulation with native cartilage.

  1. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments.

    PubMed

    Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong

    2013-12-20

    Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of

  2. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments

    PubMed Central

    2013-01-01

    Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better

  3. Tibial condylar valgus osteotomy (TCVO) for osteoarthritis of the knee: 5-year clinical and radiological results.

    PubMed

    Chiba, Ko; Yonekura, Akihiko; Miyamoto, Takashi; Osaki, Makoto; Chiba, Goji

    2017-03-01

    Tibial condylar valgus osteotomy (TCVO) is a type of opening-wedge high tibial osteotomy for advanced medial knee osteoarthritis (OA) with subluxated lateral joint. We report the concept, the current surgical technique with a locking plate, and the short-term clinical and radiological results of this procedure. 11 knees with medial OA and a widened lateral joint were treated by TCVO (KL stage III: 6, IV: 5). In this procedure, by the L-shaped osteotomy from the medial side of the proximal tibia to the intercondylar eminence and the valgus correction, lateralization of the mechanical axis and reduction of the subluxated lateral joint are obtained with early postoperative weight-bearing. Before, 6 months, 1, and 5 years after the operation, a visual analog scale (VAS), the Western Ontario and McMaster Universities Arthritis Index (WOMAC), alignment of the lower extremity, and congruency and stability of the femorotibial joint were investigated. The VAS improved from an average of 73 mm to 13 mm, and the total WOMAC score from 52 to 14 before to 5 years after the operation, respectively. The mechanical axis changed from 1 to 60%, and the FTA changed from 186° to 171°. The joint line convergence angle (JLCA) changed from 6° to 1°, and the angle difference of JLCA between varus and valgus stress improved from 8° to 4° after the procedure. Improvements in pain and activities of daily living were observed by TCVO along with valgus correction of the lower extremity and stabilization of the femorotibial joint.

  4. Does Quantitative Tibial Ultrasound Predict Low Bone Mineral Density Defined by Dual Energy X-Ray Absorptiometry?

    PubMed Central

    Birtane, Murat; Ekuklu, Galip; Cermik, Fikret; Tuna, Filiz; Kokino, Siranus

    2008-01-01

    Purpose Efforts for the early detection of bone loss and subsequent fracture risk by quantitative ultrasound (QUS), which is a non-invasive, radiation free, and cheaper method, seem rational to reduce the management costs. We aimed in this study to assess the probable correlation of speed of sound (SOS) values obtained by QUS with bone mineral density (BMD) as measured by the gold standard method, dual energy X-ray absorptiometry (DEXA), and to investigate the diagnostic value of QUS to define low BMD. Materials and Methods One hundred twenty-two postmenopausal women having prior standard DEXA measurements were included in the study. Spine and proximal femur (neck, trochanter and Ward's triangle) BMD were assessed in a standard protocol by DEXA. The middle point of the right tibia was chosen for SOS measurement by tibial QUS. Results The SOS values were observed to be significantly higher in the normal BMD (t score > - 1) group at all measurement sites except for the lumbar region, when compared with the low BMD group (t score < - 1). SOS was negatively correlated with age (r = - 0.66) and month since menopause (r = - 0.57). The sensitivity, specificity, and positive and negative predictive values for QUS t score to diagnose low BMD did not seem to be satisfactory at either of the measurement sites. Conclusion Tibial SOS was correlated weakly with BMD values of femur and lumbar spine as measured by DEXA and its diagnostic value did not seem to be high for discriminating between normal and low BMD, at these sites. PMID:18581594

  5. Association between foot type and tibial stress injuries: a systematic review.

    PubMed

    Barnes, A; Wheat, J; Milner, C

    2008-02-01

    To systematically review published articles investigating the association between structural foot characteristics and tibial stress injuries, and to suggest possible future avenues of research in this area. Literature was identified, selected and appraised in accordance with the methods of a systematic review. Articles potentially relevant to the research question were identified by searching the following electronic databases: Amed, Cinahl, Index to UK theses, Medline, PubMed, Scopus, Sports discus and Web of science. Duplicates were removed and, based on the title and abstract, the full text of relevant studies were retrieved. Two reviewers independently assessed papers; this formed the basis for the inclusion of the most appropriate trials. From the 479 articles originally identified, nine were deemed appropriate for inclusion in the review. In general, specific data relating to this relationship was limited. Outcomes of the nine investigations were difficult to compare due to differing methods used across studies. Results have proved conflicting, with limited evidence found to implicate any specific foot type as a potential risk factor for tibial stress injuries. No definitive conclusions can be drawn relating foot structure or function to an increased risk of tibial stress injuries. Extremes of foot types are likely to pose an increased risk of tibial stress injuries compared to normal arched feet.

  6. Higher Rate of Revision in PFC Sigma Primary Total Knee Arthroplasty With Mismatch of Femoro-Tibial Component Sizes.

    PubMed

    Young, Simon W; Clarke, Henry D; Graves, Stephen E; Liu, Yen-Liang; de Steiger, Richard N

    2015-05-01

    Total knee arthroplasty (TKA) systems permit a degree of femoro-tibial component size mismatch. The effect of mismatched components on revision rates has not been evaluated in a large study. We reviewed 21,906 fixed-bearing PFC Sigma primary TKAs using the Australian Orthopaedic Association National Joint Replacement Registry, dividing patients into three groups: no femoro-tibial size mismatch, tibial component size > femoral component size, and femoral component > tibial component. Revision rates were higher when the femoral size was greater than the tibia, compared to both equal size (HR = 1.20 (1.00, 1.45), P = 0.047) and to tibial size greater than femoral (HR = 1.60 (1.08, 2.37), P = 0.019). Potential mechanisms to explain these findings include edge loading of polyethylene and increased tibial component stresses. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of Tibial Posterior Slope on Knee Kinematics, Quadriceps Force, and Patellofemoral Contact Force After Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Nakahara, Hiroyuki; Iwamoto, Yukihide

    2015-08-01

    We used a musculoskeletal model validated with in vivo data to evaluate the effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. The maximum quadriceps force and patellofemoral contact force decreased with increasing posterior slope. Anterior sliding of the tibial component and anterior impingement of the anterior aspect of the tibial post were observed with tibial posterior slopes of at least 5° and 10°, respectively. Increased tibial posterior slope contributes to improved exercise efficiency during knee extension, however excessive tibial posterior slope should be avoided to prevent knee instability. Based on our computer simulation we recommend tibial posterior slopes of less than 5° in posterior-stabilized total knee arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Production of New Trabecular Bone in Osteopenic Ovariectomized Rats by Prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Mori, S.; Jee, W. S. S.; Li, X. J.

    1992-01-01

    Serum chemistry and bone morphometry of the proximal tibial metaphysis were performed in 3 month-old double fluorescent-labeled, female Sprague-Dawley rats subjected to bilateral ovariectomy or sham surgery for 4 months prior to treatment with 0, 0.3, 1,3, or 6 mg of prostaglandin E2 (PGE2)/kg/day subcutaneously for 30 days. The 4 month postovariectomized rats possessed an osteopenic proximal tibial metaphysis with 7% trabecular area compared with controls (19%). PGE2 treatment elevated osteocalcin levels and augmented proximal tibial metaphyseal bone area in ovariectomized and sham-operated rats. Osteopenic, ovariectomized rats treated with 6 mg (PGE2)/kg/day for 30 days restored bone area to levels of agematched sham-operated rats. Morphometric analyses showed increased woven and lamellar bone area, fluorescent-labeled perimeter (osteoblastic recruitment), mineral apposition rate (osteoblastic activity), bone formation rate (BFR/BV), and longitudinal bone growth. These dramatic bone changes were all significantly increased at the doseresponse manner. This study showed that in vivo PGE2 is a powerful activator of bone remodeling, it increases both bone resorption and bone formation, and produces an anabolic effect by shifting bone balance to the positive direction. Furthermore, PGE2-induced augmentation of metaphyseal bone area in ovariectomized rats was at least two times greater than in sham-operated rats.

  9. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    PubMed

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults.

    PubMed

    Antony, Benny; Venn, Alison; Cicuttini, Flavia; March, Lyn; Blizzard, Leigh; Dwyer, Terence; Cross, Marita; Jones, Graeme; Ding, Changhai

    2015-10-26

    Physical activity has been recommended to patients with knee osteoarthritis for improving their symptoms. However, it is still controversial if physical activity has effects on joint structures including cartilage volume. The aim of this study was to describe the associations between physical activity and performance measured 5 years prior and tibial cartilage volume and bone area in young adults. Subjects broadly representative of the Australian population (n = 328, aged 31-41 years, female 47.3 %) were selected from the Childhood Determinants of Adult Health study. They underwent T1-weighted fat-suppressed magnetic resonance imaging (MRI) scans of their knees. Tibial bone area and cartilage volume were measured from MRI. Physical activity (measured using long international physical activity questionnaire (IPAQ)) and performance measures (long jump, leg muscle strength, physical work capacity (PWC170)) were measured 5 years prior. In multivariable analyses, total physical activity (min/week) (β: 0.30 mm(3), 95 % CI: 0.13,0.47), vigorous (β: 0.54 mm(3), 95 % CI: 0.13,0.94), moderate (β: 0.34 mm(3), 95 % CI: 0.01,0.67), walking (β: 0.40 mm(3), 95 % CI: 0.07,0.72) and IPAQ category (β: 182.9 mm(3), 95 % CI: 51.8,314.0) were positively associated with total tibial cartilage volume but not tibial bone area. PWC170, long jump and leg muscle strength were positively and significantly associated with both total tibial cartilage volume and total tibial bone area; and the associations with tibial cartilage volume decreased in magnitude but remained significant for PWC170 and long jump after further adjustment for tibial bone area. While tibial bone area is affected only by physical performance, total tibial cartilage volume can be influenced by both physical activity and performance in younger adults. The clinical significance suggests a beneficial effect for cartilage but the bone area association was restricted to performance suggesting other factors

  11. Use of embedded strain gages for the in-vitro study of proximal tibial cancellous bone deformation during knee flexion-extension movement: development, reproducibility and preliminary results of feasibility after frontal low femoral osteotomy

    PubMed Central

    2011-01-01

    Background This paper reports the development of an in-vitro technique allowing quantification of relative (not absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CBTPE) during knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral osteotomies consequence on the CBTPE. Methods Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six measurement elements (ME). The latter were inserted into the CBTPE of six unembalmed specimens, just below the tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs. Intra-specimen repeatability was calculated to determine specimen's variability and the error of measurement. A varum and valgum chirurgical procedure was realised on another specimen to observed CBTPE deformation after these kind of procedure. Results Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation, MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from 0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion. For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95 - 0.99). A Pearson's correlation coefficient was calculated showing that RMS was independent of signal intensity. For the chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory. Conclusions Results show that the

  12. Use of embedded strain gages for the in-vitro study of proximal tibial cancellous bone deformation during knee flexion-extension movement: development, reproducibility and preliminary results of feasibility after frontal low femoral osteotomy.

    PubMed

    Sobczak, Stéphane; Salvia, Patrick; Dugailly, Pierre-Michel; Lefèvre, Philippe; Feipel, Véronique; Van Sint Jan, Serge; Rooze, Marcel

    2011-03-03

    This paper reports the development of an in-vitro technique allowing quantification of relative (not absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CB(TPE)) during knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral osteotomies consequence on the CB(TPE). Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six measurement elements (ME). The latter were inserted into the CB(TPE) of six unembalmed specimens, just below the tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs. Intra-specimen repeatability was calculated to determine specimen's variability and the error of measurement. A varum and valgum chirurgical procedure was realised on another specimen to observed CB(TPE) deformation after these kind of procedure. Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation, MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from 0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion. For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95-0.99). A Pearson's correlation coefficient was calculated showing that RMS was independent of signal intensity. For the chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory. Results show that the methodology is reproducible within a

  13. Effect of cranial cruciate ligament deficiency, tibial plateau leveling osteotomy, and tibial tuberosity advancement on contact mechanics and alignment of the stifle in flexion.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2010-04-01

    To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.

  14. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  15. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty.

    PubMed

    Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing

    2013-12-01

    To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P < 0.001). However, no significant differences were found between the 3 groups in the postoperative HSS scores, the changes in the posterior condylar offset, the elevation of the joint line or the tibial anteroposterior translation at either the 30° or the 90° flexion angles. A 1° increase in the tibial slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P < 0.001). An increase in the posterior tibial slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

  16. [Role of growth hormone underproduction and support load deficit in development of muscle atrophy and osteopenia in tail-suspended rats].

    PubMed

    Kaplanskiĭ, A S; Durnova, G N; Ili'ina-Kakueva, E I; Loginov, V I

    1999-01-01

    In a 20-day experiment with tail-suspended male rats histological and histomorphometric techniques were used to study the effects of growth hormone, thyroxin, and graded support loads on the progress of atrophy in soleus and gastrocnemius m.m., tibial metaphyses spongiosis, and growth of tibiae. Daily injections of growth hormone at a dose of 0.5 mg/kg of the body mass were found to restore the longitudinal growth of tibiae and to suppress osteopenia in the spongiosis of metaphyses; however, they did not have any noteworthy effect on the muscular atrophy in the suspended rats. Support loading of the hind limbs for 2 hours a day in parallel to the treatment with growth hormone and thyroxin (0.02 mg/kg of the body mass per a day) suppressed the atrophy in soleus m. but not in gastrocnemius m. They were not able to oppose to osteoporosis in tibial metaphyses spongiosis; tibial growth was not normalized. Thyroxin did not appear to markedly influence muscle and bone atrophies; moreover, it made hypofunctioning of the thyroid more intense and, when combined with the growth hormone, masked the positive effect of the latter on the rats' bones.

  17. Larger medial femoral to tibial condylar dimension may trigger posterior root tear of medial meniscus.

    PubMed

    Chung, Jun Young; Song, Hyung Keun; Jung, Myung Kuk; Oh, Hyeong Tak; Kim, Joon Ho; Yoon, Ji-Sang; Min, Byoung-Hyun

    2016-05-01

    The major meniscal functions are load bearing, load distribution, and shock absorption by increasing the tibiofemoral joint (TFJ) contact area and dissipating axial loads by conversion into hoop stresses. The increased hoop strain stretches the meniscus in outward direction towards radius, causing extrusion, which is associated with the root tear and resultant degenerative osteoarthritis. Since the larger contact area of medial TFJ may increase the hoop stresses, we hypothesized that the larger medial femoral to tibial condylar dimension would contribute to the development of medial meniscus posterior root tear (MMPRT). Thus, the purpose of the study was to assess the relationship between MMPRT and medial femoral to tibial condylar dimension. A case-control study was conducted to compare medial femoral to tibial condylar dimensions of patients with complete MMPRT (n = 59) with those of demography-matched controls (n = 59) during the period from 2010 to 2013. In each patient, MRIs were reviewed and several parameters were measured including articulation width of medial femoral condyle (MFC) at 0°, 30°, 60°, and 90°, medial tibial condyle (MTC) width, degree of meniscal extrusion, and medial femoral to tibial condylar width ratio (MFC/MTC) at 0°, 30°, 60°, and 90°, respectively. Demographic and radiographic data were assessed. A larger medial femoral to tibial condylar dimension was associated with MMPRT at 0° and 30° knee angles. Patients with MFC/MTC greater than 0.9 at 0° also showed about 2.5-fold increase in the chance of MMPRT. Those with meniscal extrusion greater than 3 mm also had about 17.1 times greater chance for the presence of MMPRT accordingly. A larger medial femoral to tibial condylar dimension may be considered as one of the regional contributors to the outbreak of MMPRT, and medial femoral to tibial condylar width ratio greater than 0.9 at 0° knee angle may be considered as a significant risk factor for MMPRT. III.

  18. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    PubMed

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological

  19. Predictors of failure and success of tibial interventions for critical limb ischemia.

    PubMed

    Fernandez, Nathan; McEnaney, Ryan; Marone, Luke K; Rhee, Robert Y; Leers, Steven; Makaroun, Michel; Chaer, Rabih A

    2010-10-01

    The efficacy of tibial artery endovascular intervention (TAEI) for critical limb ischemia (CLI) and particularly for wound healing is not fully defined. The purpose of this study is to determine predictors of failure and success for TAEI in the setting of CLI. All TAEI for tissue loss or rest pain (Rutherford classes 4, 5, and 6) from 2004 to 2008 were retrospectively reviewed. Clinical outcomes and patency rates were analyzed by multivariable Cox proportional hazards regression and life table analysis. One hundred twenty-three limbs in 111 patients (62% male, mean age 74) were treated. Sixty-seven percent of patients were diabetics, 55% had renal insufficiency, and 21% required hemodialysis. One hundred two limbs (83%) exhibited tissue loss; all others had ischemic rest pain. All patients underwent tibial angioplasty (PTA). Tibial excimer laser atherectomy was performed in 14% of the patients. Interventions were performed on multiple tibial vessels in 20% of limbs. Isolated tibial procedures were performed on 50 limbs (41%), while 73 patients had concurrent ipsilateral superficial femoral artery or popliteal interventions. The mean distal popliteal and tibial runoff score improved from 11.8 ± 3.6 to 6.7 ± 1.6 (P < .001), and the mean ankle-brachial index increased from 0.61 ± 0.26 to 0.85 ± 0.22 (P < .001). Surgical bypass was required in seven patients (6%). The mean follow up was 6.8 ± 6.6 months, while the 1-year primary, primary-assisted, and secondary patency rates were 33%, 50%, and 56% respectively. Limb salvage rate at 1 year was 75%. Factors found to be associated with impaired limb salvage included renal insufficiency (hazard ratio [HR] = 5.7; P = .03) and the need for pedal intervention (HR = 13.75; P = .04). TAEI in an isolated peroneal artery (odds ratio = 7.80; P = .01) was associated with impaired wound healing, whereas multilevel intervention (HR = 2.1; P = .009) and tibial laser atherectomy (HR = 3.1; P = .01) were predictors of wound healing

  20. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia.

    PubMed

    Lu, Minxun; Li, Yongjiang; Luo, Yi; Zhang, Wenli; Zhou, Yong; Tu, Chongqi

    2018-03-06

    Currently, it is challenging to treat massive bone defects of proximal tibia. Although numerous methods are available for reconstruction with epiphysis preservation, limitations in knee function and complications are noted with these methods. Our paper describes our attempt to reconstruct a marked defect in the proximal tibia with an uncemented three-dimensional (3D)-printed prosthesis and to evaluate the prosthesis design and short-term outcomes. A 15-year-old boy with metaphyseal osteosarcoma of the tibia underwent intercalary allograft reconstruction following wide tumour resection with epiphysis preservation. However, chronic allograft rejection and/or infection occurred after the surgery and a sinus tract was formed. The rejection and/or infection process was successfully stopped by the removal of the graft and implantation of an antibiotic-loaded cement spacer; however, the limb function was poor. Because of the irregular shape of the defect and the excessively short length of the residual proximal tibia, we used the 3D printing technology to design and fabricate a personalised prosthesis to reconstruct the defect, with the preservation of the knee joint. At the last follow-up at 26 months, the patient had satisfactory limb function. The 3D-printed prosthesis may be a feasible option in the reconstruction of tibial metaphyseal defects with the preservation of the knee joint. Moreover, it can result in good postoperative function and low complication rates. However, a long-term follow-up is required to clarify its long-term outcomes.

  1. Osteosarcoma following tibial plateau leveling osteotomy in dogs: 29 cases (1997-2011).

    PubMed

    Selmic, Laura E; Ryan, Stewart D; Boston, Sarah E; Liptak, Julius M; Culp, William T N; Sartor, Angela J; Prpich, Cassandra Y; Withrow, Stephen J

    2014-05-01

    To determine the signalment, tibial plateau leveling osteotomy (TPLO) plate type, clinical staging information, treatment, and oncological outcome in dogs that developed osteosarcoma at the proximal aspect of the tibia following TPLO and to calculate the interval between TPLO and osteosarcoma diagnosis. Multi-institutional retrospective case series. 29 dogs. Medical records from 8 participating institutions were searched for dogs that developed osteosarcoma (confirmed through cytologic or histologic evaluation) at previous TPLO sites. Signalment, TPLO details, staging tests, treatment data, and outcome information were recorded. Descriptive statistics were calculated, and disease-free intervals and survival times were evaluated by means of Kaplan-Meier analysis. 29 dogs met the inclusion criteria. The mean age was 9.2 years and mean weight was 45.1 kg (99.2 lb) at the time of osteosarcoma diagnosis. Most dogs had swelling over the proximal aspect of the tibia (17/21) and lameness of the affected limb (28/29). The mean interval between TPLO and osteosarcoma diagnosis was 5.3 years. One type of cast stainless steel TPLO plate was used in most (18) dogs; the remaining dogs had received plates of wrought stainless steel (n = 4) or unrecorded type (7). Twenty-three of 29 dogs underwent treatment for osteosarcoma. Median survival time for 10 dogs that underwent amputation of the affected limb and received ≥ 1 chemotherapeutic treatment was 313 days. Results supported that osteosarcoma should be a differential diagnosis for dogs with a history of TPLO that later develop lameness and swelling at the previous surgical site. Oncological outcome following amputation and chemotherapy appeared to be similar to outcomes previously reported for dogs with appendicular osteosarcoma.

  2. An Improved Tibial Force Sensor to Compute Contact Forces and Contact Locations In Vitro After Total Knee Arthroplasty.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2017-04-01

    Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.

  3. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  4. Posterior tibial vein aneurysm presenting as tarsal tunnel syndrome.

    PubMed

    Ayad, Micheal; Whisenhunt, Anumeha; Hong, EnYaw; Heller, Josh; Salvatore, Dawn; Abai, Babak; DiMuzio, Paul J

    2015-06-01

    Tarsal tunnel syndrome is a compressive neuropathy of the posterior tibial nerve within the tarsal tunnel. Its etiology varies, including space occupying lesions, trauma, inflammation, anatomic deformity, iatrogenic injury, and idiopathic and systemic causes. Herein, we describe a 46-year-old man who presented with left foot pain. Work up revealed a venous aneurysm impinging on the posterior tibial nerve. Following resection of the aneurysm and lysis of the nerve, his symptoms were alleviated. Review of the literature reveals an association between venous disease and tarsal tunnel syndrome; however, this report represents the first case of venous aneurysm causing symptomatic compression of the nerve. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. The effect of high tibial osteotomy on osteoarthritis of the knee : Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-03-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165° to 174°. Four of 28 knees with femoro-tibial angles of 175° to 179°, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone.High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170° (10° valgus).

  6. The effect of high tibial osteotomy on osteoarthritis of the knee. Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-01-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165 degrees to 174 degrees. Four of 28 knees with femoro-tibial angles of 175 degrees to 179 degrees, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone. High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170 degrees (10 degrees valgus).

  7. [Operative treatment for complex tibial plateau fractures].

    PubMed

    Song, Qi-Zhi; Li, Tao

    2012-03-01

    To explore the surgical methods and clinical evaluation of complex tibial plateau fractures resulted from high-energy injuries. From March 2006 to May 2009,48 cases with complex tibial plateau fractures were treated with open reduction and plate fixation, including 37 males and 11 females, with an average age of 37 years (ranged from 18 to 63 years). According to Schatzker classification, 16 cases were type IV, 20 cases type V and 12 cases type VI. All patients were examined by X-ray flim and CT scan. The function of knee joint were evaluated according to postoperative follow-up X-ray and Knee Merchant Rating. Forty-eight patients were followed up with a mean time of 14 months. According to Knee Merchant Rating, 24 cases got excellent results, 16 cases good, 6 cases fair and 2 cases poor. Appropriate operation time, anatomical reduction, suitable bone graft and reasonable rehabilitation exercises can maximally recovery the function of knee joint.

  8. Gait retraining and incidence of medial tibial stress syndrome in army recruits.

    PubMed

    Sharma, Jagannath; Weston, Matthew; Batterham, Alan M; Spears, Iain R

    2014-09-01

    Gait retraining, comprising biofeedback and/or an exercise intervention, might reduce the risk of musculoskeletal conditions. The purpose was to examine the effect of a gait-retraining program on medial tibial stress syndrome incidence during a 26-wk basic military training regimen. A total of 450 British Army recruits volunteered. On the basis of a baseline plantar pressure variable (mean foot balance during the first 10% of stance), participants classified as at risk of developing medial tibial stress syndrome (n = 166) were randomly allocated to an intervention (n = 83) or control (n = 83) group. The intervention involved supervised gait retraining, including exercises to increase neuromuscular control and flexibility (three sessions per week) and biofeedback enabling internalization of the foot balance variable (one session per week). Both groups continued with the usual military training regimen. Diagnoses of medial tibial stress syndrome over the 26-wk regimen were made by physicians blinded to the group assignment. Data were modeled in a survival analysis using Cox regression, adjusting for baseline foot balance and time to peak heel rotation. The intervention was associated with a substantially reduced instantaneous relative risk of medial tibial stress syndrome versus control, with an adjusted HR of 0.25 (95% confidence interval, 0.05-0.53). The number needed to treat to observe one additional injury-free recruit in intervention versus control at 20 wk was 14 (11 to 23) participants. Baseline foot balance was a nonspecific predictor of injury, with an HR per 2 SD increment of 5.2 (1.6 to 53.6). The intervention was effective in reducing incidence of medial tibial stress syndrome in an at-risk military sample.

  9. Biomechanical analysis of posteromedial tibial plateau split fracture fixation.

    PubMed

    Zeng, Zhi-Min; Luo, Cong-Feng; Putnis, Sven; Zeng, Bing-Fang

    2011-01-01

    The purpose of this study was to compare the biomechanical strength of four different fixation methods for a posteromedial tibial plateau split fracture. Twenty-eight tibial plateau fractures were simulated using right-sided synthetic tibiae models. Each fracture model was randomly instrumented with one of the four following constructs, anteroposterior lag-screws, an anteromedial limited contact dynamic compression plate (LC-DCP), a lateral locking plate, or a posterior T-shaped buttress plate. Vertical subsidence of the posteromedial fragment was measured from 500 N to 1500 N during biomechanical testing, the maximum load to failure was also determined. It was found that the posterior T-shaped buttress plate allowed the least subsidence of the posteromedial fragment and produced the highest mean failure load than each of the other three constructs (P=0.00). There was no statistical significant difference between using lag screws or an anteromedial LC-DCP construct for the vertical subsidence at a 1500 N load and the load to failure (P>0.05). This study showed that a posterior-based buttress technique is biomechanically the most stable in-vitro fixation method for posteromedial split tibial plateau fractures, with AP screws and anteromedial-based LC-DCP are not as stable for this type of fracture. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

  11. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    PubMed

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  12. Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size.

    PubMed

    Guenther, Daniel; Irarrázaval, Sebastian; Albers, Marcio; Vernacchia, Cara; Irrgang, James J; Musahl, Volker; Fu, Freddie H

    2017-05-01

    To determine the distribution of different sizes of the area of the tibial insertion site among the population and to evaluate whether preoperative MRI measurements correlate with intraoperative findings to enable preoperative planning of the required graft size to cover the tibial insertion site sufficiently. The hypothesis was that the area of the tibial insertion site varies among individuals and that there is good agreement between MRI and intraoperative measurements. Intraoperative measurements of the tibial insertion site were taken on 117 patients. Three measurements were taken in each plane building a grid to cover the tibial insertion site as closely as possible. The mean of the three measurements in each plane was used for determination of the area. Two orthopaedic surgeons, who were blinded to the intraoperative measurements, took magnetic resonance imaging (MRI) measurements of the area of the tibial insertion site at two different time points. The intraoperative measured mean area was 123.8 ± 21.5 mm 2 . The mean area was 132.8 ± 15.7 mm 2 (rater 1) and 136.7 ± 15.4 mm 2 (rater 2) when determined using MRI. The size of the area was approximately normally distributed. Inter-rater (0.89; 95 % CI 0.84, 0.92; p < 0.001) and intrarater reliability (rater 1: 0.97; 95 % CI 0.95, 0.98; p < 0.001; rater 2: 0.95; 95 % CI 0.92, 0.96; p < 0.001) demonstrated excellent test-retest reliability. There was good agreement between MRI and intraoperative measurement of tibial insertion site area (ICCs rater 1: 0.80; 95 % CI 0.71, 0.87; p < 0.001; rater 2: 0.87; 95 % CI 0.81, 0.91; p < 0.001). The tibial insertion site varies in size and shape. Preoperative determination of the area using MRI is repeatable and enables planning of graft choice and size to optimally cover the tibial insertion site. III.

  13. Induction of chronic growth hormone deficiency by anti-GH serum

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Smith, A. T.; Ellis, S.; Evans, E. S.

    1974-01-01

    The observations reported indicate that the growth rate of neonatal rats can be specifically inhibited for at least 78 days following the administration of antisera against growth hormone (GH) for only four days after birth. The inhibition can be correlated with a marked deficit of tibial growth promoting activity in the pituitary but not with the plasma concentrations of immuno-reactive GH.

  14. Comparison of outcomes between proximal and distal chevron osteotomy, both with supplementary lateral soft-tissue release, for severe hallux valgus deformity: A prospective randomised controlled trial.

    PubMed

    Park, H-W; Lee, K-B; Chung, J-Y; Kim, M-S

    2013-04-01

    Severe hallux valgus deformity is conventionally treated with proximal metatarsal osteotomy. Distal metatarsal osteotomy with an associated soft-tissue procedure can also be used in moderate to severe deformity. We compared the clinical and radiological outcomes of proximal and distal chevron osteotomy in severe hallux valgus deformity with a soft-tissue release in both. A total of 110 consecutive female patients (110 feet) were included in a prospective randomised controlled study. A total of 56 patients underwent a proximal procedure and 54 a distal operation. The mean follow-up was 39 months (24 to 54) in the proximal group and 38 months (24 to 52) in the distal group. At follow-up the hallux valgus angle, intermetatarsal angle, distal metatarsal articular angle, tibial sesamoid position, American Orthopaedic Foot and Ankle Society (AOFAS) hallux metatarsophalangeal-interphalangeal score, patient satisfaction level, and complications were similar in each group. Both methods showed significant post-operative improvement and high levels of patient satisfaction. Our results suggest that the distal chevron osteotomy with an associated distal soft-tissue procedure provides a satisfactory method for correcting severe hallux valgus deformity.

  15. ACL Roof Impingement Revisited: Does the Independent Femoral Drilling Technique Avoid Roof Impingement With Anteriorly Placed Tibial Tunnels?

    PubMed

    Tanksley, John A; Werner, Brian C; Conte, Evan J; Lustenberger, David P; Burrus, M Tyrrell; Brockmeier, Stephen F; Gwathmey, F Winston; Miller, Mark D

    2017-05-01

    Anatomic femoral tunnel placement for single-bundle anterior cruciate ligament (ACL) reconstruction is now well accepted. The ideal location for the tibial tunnel has not been studied extensively, although some biomechanical and clinical studies suggest that placement of the tibial tunnel in the anterior part of the ACL tibial attachment site may be desirable. However, the concern for intercondylar roof impingement has tempered enthusiasm for anterior tibial tunnel placement. To compare the potential for intercondylar roof impingement of ACL grafts with anteriorly positioned tibial tunnels after either transtibial (TT) or independent femoral (IF) tunnel drilling. Controlled laboratory study. Twelve fresh-frozen cadaver knees were randomized to either a TT or IF drilling technique. Tibial guide pins were drilled in the anterior third of the native ACL tibial attachment site after debridement. All efforts were made to drill the femoral tunnel anatomically in the center of the attachment site, and the surrogate ACL graft was visualized using 3-dimensional computed tomography. Reformatting was used to evaluate for roof impingement. Tunnel dimensions, knee flexion angles, and intra-articular sagittal graft angles were also measured. The Impingement Review Index (IRI) was used to evaluate for graft impingement. Two grafts (2/6, 33.3%) in the TT group impinged upon the intercondylar roof and demonstrated angular deformity (IRI type 1). No grafts in the IF group impinged, although 2 of 6 (66.7%) IF grafts touched the roof without deformation (IRI type 2). The presence or absence of impingement was not statistically significant. The mean sagittal tibial tunnel guide pin position prior to drilling was 27.6% of the sagittal diameter of the tibia (range, 22%-33.9%). However, computed tomography performed postdrilling detected substantial posterior enlargement in 2 TT specimens. A significant difference in the sagittal graft angle was noted between the 2 groups. TT grafts were

  16. Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.

    PubMed

    Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic

    2011-01-01

    This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.

  17. Knee braces can decrease tibial rotation during pivoting that occurs in high demanding activities.

    PubMed

    Giotis, Dimitrios; Tsiaras, Vasilios; Ristanis, Stavros; Zampeli, Franceska; Mitsionis, Grigoris; Stergiou, Nicholas; Georgoulis, Anastasios D

    2011-08-01

    The purpose of this study was to investigate whether knee braces could effectively decrease tibial rotation during high demanding activities. Using an in vivo three-dimensional kinematic analysis, 21 physically active, healthy, male subjects were evaluated. Each subject performed two tasks that were used extensively in the literature because they combine increased rotational and translational loads on the knee, (1) descending from a stair and subsequent pivoting and (2) landing from a platform and subsequent pivoting under three conditions: (A) wearing a prophylactic brace (braced), (B) wearing a patellofemoral brace (sleeved), and (C) unbraced condition. In the first task, tibial rotation during the pivoting phase was significantly decreased in the braced condition as compared to the sleeved condition (P = 0.019) and the non-braced condition (P = 0.002). In the second task, the same variable was significantly decreased in the braced condition as compared to the sleeved (P = 0.001) and the unbraced condition (P < 0.001). The sleeved condition also produced significantly decreased tibial rotation with respect to the unbraced condition (P = 0.021). Bracing decreased tibial rotation in activities where increased translational and rotational forces were applied. Because knee braces decreased tibial rotation, they can possibly be used with ACL-reconstructed and ACL-deficient patients to prevent such problems. Case-control study, Level III.

  18. Proximal dup(10q): Case report and literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barritt, J.A.; Teague, K.E.; Bodurtha, J.N.

    We report a case of a proximal dir dup(10q) in a female with multiple congenital anomalies. During infancy she was noted to gave growth retardation, microcephaly, microphthalmia, coloboma, a long, beaked nose, posteriorly rotated ears with simple helices, full bowed lips, widely-spaced nipples, broad first toes, hypermobile and proximally placed thumbs, a heart murmur, PDA, and coarctation of the aorta. Additional findings at age 13 included a full columella, short philtrum, thin limbs, bilateral blindness, and mental retardation, as well as continued growth retardation. Her medical history included precocious puberty at age 8 and a diagnosis of hyperactivity. Using FISHmore » with multiple probes combined with GTG-banding, the aberrant chromosome was determined to be a dir dup(10)(q21{r_arrow}q22). Parental chromosomes were normal and the family history was unremarkable. The parental origin of the dir dup(10) is being assessed using DNA markers. Five similar cases of proximal dup(10q) have been reported previously. Consistent characteristics include low birth weight, developmental and psychomotor delay, growth retardation, and microcephaly. Also found in most cases were short prominent philtrum, bowed mouth, PDA, thin limbs, coloboma, micropthalmia, deep set eyes, and other ocular anomalies. Our case is unique in that she has a long, beaked nose, precocious puberty, and hyperactivity. Future studies such as this, using molecular cytogenetic techniques to better define the chromatin involved in proximal dup(10q), may lead to its recognition as a distinct clinical phenotype.« less

  19. [The geometry of the keel determines the behaviour of the tibial tray against torsional forces in total knee replacement].

    PubMed

    García David, S; Cortijo Martínez, J A; Navarro Bermúdez, I; Maculé, F; Hinarejos, P; Puig-Verdié, L; Monllau, J C; Hernández Hermoso, J A

    2014-01-01

    The keel design of the tibial tray is essential for the transmission of the majority of the forces to the peripheral bone structures, which have better mechanical proprieties, thus reducing the risk of loosening. The aim of the present study was to compare the behaviour of different tibial tray designs submitted to torsional forces. Four different tibial components were modelled. The 3-D reconstruction was made using the Mimics software. The solid elements were generated by SolidWorks. The finite elements study was done by Unigraphics. A torsional force of 6 Nm. applied to the lateral aspects of each tibial tray was simulated. The GENUTECH® tibial tray, with peripheral trabecular bone support, showed a lower displacement and less transmitted tensions under torsional forces. The results suggest that a tibial tray with more peripheral support behaves mechanically better than the other studied designs. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  20. Does lateral versus medial exposure influence total knee tibial component final external rotation? A CT based study.

    PubMed

    Passeron, D; Gaudot, F; Boisrenoult, P; Fallet, L; Beaufils, P

    2009-10-01

    A previous study demonstrated that performing a total knee arthroplasty through a lateral approach including anterior tibial tuberosity (ATT) osteotomy (refixed in its original position) presented numerous advantages: correcting the preoperative patella lateral tilt and improving postoperative patella tracking. We hypothesized that these improvements in patella centering were, at least in part, due to an increased external rotation of the tibial component. Postoperative scannographic studies were, therefore, undertaken to measure tibial component rotation and analyze the results according the medial and lateral exposure used. Rotational positioning of the tibial component is influenced by the lateral or medial approach selected at surgery. Forty-five CAT scans, performed according to the protocol criteria of the French Hip and Knee Society (SFHG), were studied 3 months postoperatively: 15 knees operated through the lateral approach and 30 knees operated through a standard medial approach. The total knee utilized in all these cases was a posteriorly stabilized, fixed-bearing, design. We measured first the angle formed between the perpendicular to the transverse axis of the tibial component and the axis joining the ATT to the center of the knee; second we also measured the coronal distance between the center of the component and the anterior tibial tuberosity (ATT). In the group using the medial approach, the lateral position of the ATT was 7 + or - 3mm with a rotation angle of 18 degrees . In the group using the lateral approach these measurements were respectively 1 + or - 4mm and 2 degrees (p<0.0001). External rotation of the tibial component is substantially increased by the lateral approach compared to the medial approach. Better exposure of the lateral tibial plateau is probably responsible of this difference. This increased external rotation improves postoperative patella tracking. Prospective; comparative; non-randomized study; level 3. 2009 Elsevier Masson

  1. Reconstruction of bilateral tibial aplasia and split hand-foot syndrome in a father and daughter.

    PubMed

    Al Kaissi, Ali; Ganger, Rudolf; Klaushofer, Klaus; Grill, Franz

    2014-01-01

    Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD) inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Reconstruction of these patients required multiple surgical procedures and orthoprosthesis was mandatory. The main goal of treatment was to achieve walking. Stabilization of the ankle joint by fibular-talar-chondrodesis on both sides, followed by bilateral Brown-procedure at the knee joint level has been applied accordingly. The outcome was with improved function of the deformed limbs and walking was achieved with simultaneous designation of orthotic fitting. This is the first study encompassing the diagnosis and management of a father and daughter with bilateral tibial aplasia associated with variable split hand/foot deformity without foot ablation. Our patients showed the typical AD pattern of inheritance of split-hand/foot and tibial aplasia.

  2. Return to Sport After Tibial Shaft Fractures

    PubMed Central

    Robertson, Greg A. J.; Wood, Alexander M.

    2015-01-01

    Context: Acute tibial shaft fractures represent one of the most severe injuries in sports. Return rates and return-to-sport times after these injuries are limited, particularly with regard to the outcomes of different treatment methods. Objective: To determine the current evidence for the treatment of and return to sport after tibial shaft fractures. Data Sources: OVID/MEDLINE (PubMed), EMBASE, CINAHL, Cochrane Collaboration Database, Web of Science, PEDro, SPORTDiscus, Scopus, and Google Scholar were all searched for articles published from 1988 to 2014. Study Selection: Inclusion criteria comprised studies of level 1 to 4 evidence, written in the English language, that reported on the management and outcome of tibial shaft fractures and included data on either return-to-sport rate or time. Studies that failed to report on sporting outcomes, those of level 5 evidence, and those in non–English language were excluded. Study Design: Systematic review. Level of Evidence: Level 4. Data Extraction: The search used combinations of the terms tibial, tibia, acute, fracture, athletes, sports, nonoperative, conservative, operative, and return to sport. Two authors independently reviewed the selected articles and created separate data sets, which were subsequently combined for final analysis. Results: A total of 16 studies (10 retrospective, 3 prospective, 3 randomized controlled trials) were included (n = 889 patients). Seventy-six percent (672/889) of the patients were men, with a mean age of 27.7 years. Surgical management was assessed in 14 studies, and nonsurgical management was assessed in 8 studies. Return to sport ranged from 12 to 54 weeks after surgical intervention and from 28 to 182 weeks after nonsurgical management (mean difference, 69.5 weeks; 95% CI, –83.36 to −55.64; P < 0.01). Fractures treated surgically had a return-to-sport rate of 92%, whereas those treated nonsurgically had a return rate of 67% (risk ratio, 1.37; 95% CI, 1.20 to 1.57; P < 0

  3. The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency.

    PubMed

    Jennings, Meagan M; Christensen, Jeffery C

    2008-01-01

    Posterior tibial tendon insufficiency has been implicated as a cause of adult acquired flatfoot. Multiple theories are debated as to whether or not a flatfoot deformity develops secondary to insufficiency of the posterior tibial tendon or of the ligamentous structures such as the spring ligament complex. This cadaveric study was undertaken in an attempt to determine the effect that sectioning the spring ligament complex has on foot stability, and whether engagement of the posterior tibial tendon would be able to compensate for the loss of the spring ligament complex. A 3-dimensional kinematic system and a custom-loading frame were used to quantify rotation about the talus, navicular, and calcaneus in 5 cadaveric specimens, before and after sectioning the spring ligament complex, while incremental tension was applied to the posterior tibial tendon. This study demonstrated that sectioning the spring ligament complex created instability in the foot for which the posterior tibial tendon was unable to compensate. Sectioning the spring ligament complex also produced significant changes in talar, navicular, and calcaneal rotations. During simulated midstance, the navicular plantarflexed, adducted, and everted; the talar head plantarflexed, adducted, and inverted; and the calcaneus plantarflexed, abducted, and everted, after sectioning the spring ligament complex. The results of this study indicate that the spring ligament complex is the major stabilizer of the arch during midstance and that the posterior tibial tendon is incapable of fully accommodating for its insufficiency, suggesting that the spring ligament complex should be evaluated and, if indicated, repaired in flatfoot reconstruction. 5.

  4. Survivorship comparison of all-polyethylene and metal-backed tibial components in cruciate-substituting total knee arthroplasty--Chinese experience.

    PubMed

    Shen, Bin; Yang, Jing; Zhou, Zongke; Kang, Pengde; Wang, Liao; Pei, Fuxing

    2009-10-01

    Considering its cost saving, the all-polyethylene tibial component is of potential interest in developing countries like China. But to our knowledge, a survivorship comparison of all-polyethylene and metal-backed tibial components in posterior cruciate ligament-substituting total knee arthroplasty (PS-TKA) has not been studied in China previously. Using survivorship analysis, we have studied the midterm outcome of 34 cemented PS-TKA using an all-polyethylene tibial component and of 34 cemented PS-TKA using a metal-backed tibial component which has an identical articular surface with all-polyethylene tibial components. All operations were performed by the same group of surgeons; 58 patients underwent a unilateral operation and five patients a bilateral operation. These patients had a mean follow-up of 5.9 years (range: 5-7 years); three patients were lost to follow-up and one was revised for infection. No significant difference between the two groups was reported regarding HSS scores, ROM, clinical and radiographic parameters measured and survival rates. Although the Asian lifestyle includes more squatting and bending of the knee, the results of this series of TKA using all-polyethylene tibial components in Chinese people are comparable to the satisfactory results of other reported all-polyethylene series whose patients are mainly Western people. Considering its cost saving and excellent clinical result, the all-polyethylene tibial component is of potential interest in developing countries.

  5. The proximally based long peroneal muscle turnover flap: A novel salvage flap for small to medium-sized defects of the knee.

    PubMed

    Wagner, Till; Hupkens, Pieter; Slater, Nicholas J; Ulrich, Dietmar J O

    2016-04-01

    Coverage of soft-tissue defects of the knee due to multiple operations, trauma, and infection remains a surgical challenge. Often, these defects are repaired using free tissue transfer. The aim of this study was to find an easy and reliable local method of repair for small to medium-sized defects. The authors describe a new surgical option for tissue coverage using a proximally based long peroneal muscle turnover flap (LPTF) with split-thickness skin graft. Proximally based LPTFs were harvested and transposed into same-size created defects in five cadavers. After optimizing this technique, it was clinically used in two patients with defects secondary to total knee replacement revisions. Average cadaver flap size was 4.7 × 15.8 cm allowing reach of all knee joint areas and was based consistently on a sufficient (2-mm-diameter average) proximal arterial branch of the anterior tibial artery. Donor sites were closed without tension. Subsequent application of the flap on two patients resulted in good functional outcome. The proximally based LPTF is a new option available in the reconstruction of knee defects and should be added to the reconstructive surgeon's armamentarium of pedicled flaps, providing short operating time and promising clinical outcome. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Aboveground growth interactions of paired conifer seedlings in close proximity

    Treesearch

    Warren D. Devine; Timothy B. Harrington

    2011-01-01

    Where belowground resources are relatively abundant, naturally established trees sometimes occur in very close proximity to one another. We conducted a two-year study to assess the aboveground interactions between Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis) and noble fir (Abies procera)...

  7. Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament reconstruction: a case report.

    PubMed

    Gobbi, Alberto; Mahajan, Vivek; Karnatzikos, Georgios

    2011-05-01

    Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament (ACL) reconstruction is rare. To our knowledge, this is the first case report of a tibial plateau fracture after primary anatomic double-bundle ACL reconstruction. In our patient the tibial plateau fracture occurred after a torsional injury to the involved extremity. The fracture occurred 4.5 years after the ACL reconstruction. The fracture was intra-articular Schatzker type IV and had a significant displacement. The patient was treated operatively by open reduction-internal fixation. He recovered well. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  8. Regional variations in growth plate chondrocyte deformation as predicted by three-dimensional multi-scale simulations.

    PubMed

    Gao, Jie; Roan, Esra; Williams, John L

    2015-01-01

    The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales.

  9. Regional Variations in Growth Plate Chondrocyte Deformation as Predicted By Three-Dimensional Multi-Scale Simulations

    PubMed Central

    Gao, Jie; Roan, Esra; Williams, John L.

    2015-01-01

    The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales. PMID:25885547

  10. Negative pressure wound therapy for Gustilo Anderson grade IIIb open tibial fractures.

    PubMed

    Park, Chul Hyun; Shon, Oog Jin; Kim, Gi Beom

    2016-09-01

    Traditionally, Gustilo Anderson grade IIIb open tibial fractures have been treated by initial wide wound debridement, stabilization of fracture with external fixation, and delayed wound closure. The purpose of this study is to evaluate the clinical and radiological results of staged treatment using negative pressure wound therapy (NPWT) for Gustilo Anderson grade IIIb open tibial fractures. 15 patients with Gustilo Anderson grade IIIb open tibial fractures, treated using staged protocol by a single surgeon between January 2007 and December 2011 were reviewed in this retrospective study. The clinical results were assessed using a Puno scoring system for severe open fractures of the tibia at the last followup. The range of motion (ROM) of the knee and ankle joints and postoperative complication were evaluated at the last followup. The radiographic results were assessed using time to bone union, coronal and sagittal angulations and a shortening at the last followup. The mean score of Puno scoring system was 87.4 (range 67-94). The mean ROM of the knee and ankle joints was 121.3° (range 90°-130°) and 37.7° (range 15°-50°), respectively. Bone union developed in all patients and the mean time to union was 25.3 weeks (range 16-42 weeks). The mean coronal angulation was 2.1° (range 0-4°) and sagittal was 2.7° (range 1-4°). The mean shortening was 4.1 mm (range 0-8 mm). Three patients had partial flap necrosis and 1 patient had total flap necrosis. There was no superficial and deep wound infection. Staged treatment using NPWT decreased the risks of infection and requirement of flap surgeries in Gustilo Anderson grade IIIb open tibial fractures. Therefore, staged treatment using NPWT could be a useful treatment option for Gustilo Anderson grade IIIb open tibial fractures.

  11. Quantitative Comparison of the Microscopic Anatomy of the Human ACL Femoral and Tibial Entheses

    PubMed Central

    Beaulieu, Mélanie L.; Carey, Grace E.; Schlecht, Stephen H.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p < 0.001), a 43% greater calcified fibrocartilage tissue area (p < 0.001), and a 226% greater uncalcified fibrocartilage depth (p < 0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. PMID:26134706

  12. A Case of Nonunion Avulsion Fracture of the Anterior Tibial Eminence

    PubMed Central

    Atsumi, Satoru; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2016-01-01

    Avulsion fracture of the anterior tibial eminence is an uncommon injury. If bone union does not occur, knee extension will be limited by impingement of the avulsed fragment and knee instability will be induced by dysfunction of the anterior cruciate ligament (ACL). This report describes a 55-year-old woman who experienced an avulsion fracture of the right anterior tibial eminence during recreational skiing. Sixteen months later, she presented at our hospital with limitation of right knee extension. Plain radiography showed nonunion of the avulsion fracture region, and arthroscopy showed that the avulsed fragment impinged the femoral intercondylar notch during knee extension. The anterior region of the bony fragment was debrided arthroscopically until the knee could be extended completely. There was no subsequent instability, and the patient was able to climb a mountain 6 months after surgery. These findings indicate that arthroscopic debridement of an avulsed fragment for nonunion of an avulsion fracture of the anterior tibial eminence is a minimally invasive and effective treatment for middle-aged and elderly patients with a low level of sports activity. PMID:27119035

  13. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study.

    PubMed

    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu

    2017-11-18

    Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force were estimated from motion capture data and synchronized force data from the force plate. One-way repeated measures analysis of variance and the post hoc Bonferroni test were conducted to compare the peak time of the vertical ground reaction force, quadriceps force and anterior tibial force during the single-leg landing. In addition, we examined the contribution of vertical and posterior ground reaction force, knee flexion angle and moment to peak quadriceps force using multiple linear regression. The peak times of the estimated quadriceps force (96.0 ± 23.0 ms) and anterior tibial force (111.9 ± 18.9 ms) were significantly later than that of the vertical ground reaction force (63.5 ± 6.8 ms) during the single-leg landing. The peak quadriceps force was positively correlated with the peak anterior tibial force (R = 0.953, P < 0.001). Multiple linear regression analysis showed that the peak knee flexion moment contributed significantly to the peak quadriceps force (R 2  = 0.778, P < 0.001). The peak times of the quadriceps force and the anterior tibial force were obviously later than that of the vertical ground reaction force for the female athletes during successful single-leg landings. Studies have reported that the peak time of the vertical ground reaction force was close to the time of anterior cruciate ligament (ACL) disruption in ACL injury cases. It is possible that early contraction of the quadriceps during landing might induce ACL disruption as a result of

  14. In Vivo Tibial Fit and Rotational Analysis of a Customized, Patient-Specific TKA versus Off-the-Shelf TKA.

    PubMed

    Schroeder, Lennart; Martin, Gregory

    2018-05-25

    In total knee arthroplasty (TKA), surgeons often face the decision of maximizing tibial component fit and achieving correct rotational alignment at the same time. Customized implants (CIMs) address this difficulty by aiming to replicate the anatomical joint structure, utilizing data from patient-specific knee geometry during the manufacturing. We intraoperatively compared component fit in four tibial zones of a CIM to that of three different off-the-shelf (OTS) TKA designs in 44 knees. Additionally, we assessed the rotational alignment of the tibia using computed tomography (CT)-based computer aided design model analysis. Overall the CIM device showed significantly better component fit than the OTS TKAs. While 18% of OTS designs presented an implant overhang of 3 mm or more, none of the CIM components did ( p  < 0.05). There was a larger percentage of CIMs seen with optimal fit (≤1 mm implant overhang to ≤1 mm tibial bone undercoverage) than in OTS TKAs. Also, OTS implants showed significantly more component underhang of ≥3 mm than the CIM design (37 vs. 18%). The rotational analysis revealed that 45% of the OTS tibial components showed a rotational deviation of more than 5 degrees and 4% of more than 10 degrees to a tibial rotational axis described by Cobb et al. No deviation was seen for the CIM, as the device is designed along this axis. Using the medial one-third of the tibial tubercle as the rotational landmark, 95% of the OTS trays demonstrated a rotational deviation of more than 5 degrees and 73% of more than 10 degrees compared with 73% of CIM tibial trays with more than 5 degrees and 27% with more than 10 degrees. Based on our findings, we believe that the CIM TKA provides both better rotational alignment and tibial fit without causing overhang of the tibial tray than the three examined OTS implants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Medial tibial stress syndrome: a critical review.

    PubMed

    Moen, Maarten H; Tol, Johannes L; Weir, Adam; Steunebrink, Miriam; De Winter, Theodorus C

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry. The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution. Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor. The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

  16. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    PubMed

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  17. Survivorship comparison of all-polyethylene and metal-backed tibial components in cruciate-substituting total knee arthroplasty—Chinese experience

    PubMed Central

    Shen, Bin; Yang, Jing; Zhou, Zongke; Kang, Pengde; Wang, Liao

    2008-01-01

    Considering its cost saving, the all-polyethylene tibial component is of potential interest in developing countries like China. But to our knowledge, a survivorship comparison of all-polyethylene and metal-backed tibial components in posterior cruciate ligament-substituting total knee arthroplasty (PS-TKA) has not been studied in China previously. Using survivorship analysis, we have studied the midterm outcome of 34 cemented PS-TKA using an all-polyethylene tibial component and of 34 cemented PS-TKA using a metal-backed tibial component which has an identical articular surface with all-polyethylene tibial components. All operations were performed by the same group of surgeons; 58 patients underwent a unilateral operation and five patients a bilateral operation. These patients had a mean follow-up of 5.9 years (range: 5–7 years); three patients were lost to follow-up and one was revised for infection. No significant difference between the two groups was reported regarding HSS scores, ROM, clinical and radiographic parameters measured and survival rates. Although the Asian lifestyle includes more squatting and bending of the knee, the results of this series of TKA using all-polyethylene tibial components in Chinese people are comparable to the satisfactory results of other reported all-polyethylene series whose patients are mainly Western people. Considering its cost saving and excellent clinical result, the all-polyethylene tibial component is of potential interest in developing countries. PMID:18688613

  18. The effect of retained intramedullary nails on tibial bone mineral density.

    PubMed

    Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A

    2008-07-01

    Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.

  19. Metrology to quantify wear and creep of polyethylene tibial knee inserts.

    PubMed

    Muratoglu, Orhun K; Perinchief, Rebecca S; Bragdon, Charles R; O'Connor, Daniel O; Konrad, Reto; Harris, William H

    2003-05-01

    Assessment of damage on articular surfaces of ultrahigh molecular weight polyethylene tibial knee inserts primarily has been limited to qualitative methods, such as visual observation and classification of features such as pitting, delamination, and subsurface cracking. Semiquantitative methods also have been proposed to determine the linear penetration and volume of the scar that forms on articular surfaces of tibial knee inserts. The current authors report a new metrologic method that uses a coordinate measuring machine to quantify the dimensions of this scar. The articular surface of the insert is digitized with the coordinate measuring machine before and after regular intervals of testing on a knee simulator. The volume and linear penetration of the scar are calculated by mathematically taking the difference between the digitized surface maps of the worn and unworn articular surfaces. Three conventional polyethylene tibial knee inserts of a posterior cruciate-sparing design were subjected to five million cycles of normal gait on a displacement-driven knee wear simulator in bovine serum. A metrologic method was used to calculate creep and wear contributions to the scar formation on each tibial plateau. Weight loss of the inserts was determined gravimetrically with the appropriate correction for fluid absorption. The total average wear volume was 43 +/- 9 and 41 +/- 4 mm3 measured by the metrologic and gravimetric methods, respectively. The wear rate averaged 8.3 +/- 0.9 and 8.5 +/- 1.6 mm3 per million cycles measured by the metrologic and gravimetric methods, respectively. These comparisons reflected strong agreement between the metrologic and gravimetric methods.

  20. Surgical treatment of refractory tibial stress fractures in elite dancers: a case series.

    PubMed

    Miyamoto, Ryan G; Dhotar, Herman S; Rose, Donald J; Egol, Kenneth

    2009-06-01

    Treatment of tibial stress fractures in elite dancers is centered on rest and activity modification. Surgical intervention in refractory cases has important implications affecting the dancers' careers. Refractory tibial stress fractures in dancers can be treated successfully with drilling and bone grafting or intramedullary nailing. Case series; Level of evidence, 4. Between 1992 and 2006, 1757 dancers were evaluated at a dance medicine clinic; 24 dancers (1.4%) had 31 tibial stress fractures. Of that subset, 7 (29.2%) elite dancers with 8 tibial stress fractures were treated operatively with either intramedullary nailing or drilling and bone grafting. Six of the patients were followed up closely until they were able to return to dance. One patient was available only for follow-up phone interview. Data concerning their preoperative treatment regimens, operative procedures, clinical union, radiographic union, and time until return to dance were recorded and analyzed. The mean age of the surgical patients at the time of stress fracture was 22.6 years. The mean duration of preoperative symptoms before surgical intervention was 25.8 months. Four of the dancers were male and 3 were female. All had failed nonoperative treatment regimens. Five patients (5 tibias) underwent drilling and bone grafting of the lesion, and 2 patients (3 tibias) with completed fractures or multiple refractory stress fractures underwent intramedullary nailing. Clinical union was achieved at a mean of 6 weeks and radiographic union at 5.1 months. Return to full dance activity was at an average of 6.5 months postoperatively. Surgical intervention for tibial stress fractures in dancers who have not responded to nonoperative management allowed for resolution of symptoms and return to dancing with minimal morbidity.

  1. Biomechanical Factors in Tibial Stress Fracture

    DTIC Science & Technology

    2001-08-01

    Relationship between Loading Rates and Tibial Accelerometry in Forefoot Strike Runners. Presented at the Annual American Society of Biomechanics Mtg...of the APTA, Seattle, WA, 2/99. McClay, IS, Williams, DS, and Manal, KT. Lower Extremity Mechanics of Runners with a Converted Forefoot Strike ...Management, Inc, 1998-1999 The Effect of Different Orthotic Devices on Lower Extremity Mechanics of Rearfoot and Forefoot Strikers, $3,500. Foot Management

  2. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    PubMed

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P < 0.01). We concluded that combined CT-based and image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  3. What are the bias, imprecision, and limits of agreement for finding the flexion-extension plane of the knee with five tibial reference lines?

    PubMed

    Brar, Abheetinder S; Howell, Stephen M; Hull, Maury L

    2016-06-01

    Internal-external (I-E) malrotation of the tibial component is associated with poor function after total knee arthroplasty (TKA). Kinematically aligned (KA) TKA uses a functionally defined flexion-extension (F-E) tibial reference line, which is parallel to the F-E plane of the extended knee, to set I-E rotation of the tibial component. Sixty-two, three-dimensional bone models of normal knees were analyzed. We computed the bias (mean), imprecision (±standard deviation), and limits of agreement (mean±2 standard deviations) of the angle between five anatomically defined tibial reference lines used in mechanically aligned (MA) TKA and the F-E tibial reference line (+external). The following are the bias, imprecision, and limits of agreement of the angle between the F-E tibial reference line and 1) the tibial reference lines connecting the medial border (-2°±6°, -14° to 10°), medial 1/3 (6°±6°, -6° to 18°), and the most anterior point of the tibial tubercle (9°±4°, -1° to 17°) with the center of the posterior cruciate ligament, and 2) the tibial reference lines perpendicular to the posterior condylar axis of the tibia (-3°±4°, -11° to 5°), and a line connecting the centers of the tibial condyles (1°±4°, -7° to 9°). Based on these in vitro findings, it might be prudent to reconsider setting the I-E rotation of the tibial component to tibial reference lines that have bias, imprecision, and limits of agreement that fall outside the -7° to 10° range associated with high function after KA TKA. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses.

    PubMed

    Beaulieu, Mélanie L; Carey, Grace E; Schlecht, Stephen H; Wojtys, Edward M; Ashton-Miller, James A

    2015-12-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p<0.001), a 43% greater calcified fibrocartilage tissue area (p<0.001), and a 226% greater uncalcified fibrocartilage depth (p<0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Tibial nerve stimulation to inhibit the micturition reflex by an implantable wireless driver microstimulator in cats

    PubMed Central

    Li, Xing; Liao, Li-Min; Chen, Guo-Qing; Wang, Zhao-Xia; Lu, Tian-Ji; Deng, Han; Loeb, Gerald-E

    2016-01-01

    Abstract Background: Traditional tibial nerve stimulation (TNS) has been used to treat overactive bladder syndrome (OAB), but there are some shortcomings. Thus, a novel alternative is needed for the treatment of OAB. The study investigated the effects of a new type of tibial nerve microstimulator on the micturition reflex in cats. Methods: An implantable wireless driver microstimulator was implanted around the tibial nerve in 9 α-chloralose anesthetized cats. Cystometry was performed by infusing 0.9% normal saline (NS) or 0.25% acetic acid (AA) through a urethral catheter. Multiple cystometrograms were performed before, during, and after TNS to determine the inhibitory effect of the microstimulator on the micturition reflex. Results: TNS at 2 threshold (T) intensity significantly increased the bladder capacity (BC) during NS infusion. Bladder overactivity was irritated by the intravesical infusion of 0.25% AA, which significantly reduced the BC compared with the NS infusion. TNS at 2 T intensity suppressed AA-induced bladder overactivity and significantly increased the BC compared with the AA control. Conclusion: The implantable wireless driver tibial nerve microstimulator appears to be effective in inhibiting the micturition reflex during physiologic and pathologic conditions. The implantable wireless driver tibial nerve microstimulator could be used to treat OAB. PMID:27537576

  6. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players?

    PubMed Central

    Liebenberg, Jacobus; Woo, Jeonghyun; Park, Sang-Kyoon; Yoon, Suk-Hoon; Cheung, Roy Tsz-Hei; Ryu, Jiseon

    2018-01-01

    Background Tibial stress fracture (TSF) is a common injury in basketball players. This condition has been associated with high tibial shock and impact loading, which can be affected by running speed, footwear condition, and footstrike pattern. However, these relationships were established in runners but not in basketball players, with very little research done on impact loading and speed. Hence, this study compared tibial shock, impact loading, and foot strike pattern in basketball players running at different speeds with different shoe cushioning properties/performances. Methods Eighteen male collegiate basketball players performed straight running trials with different shoe cushioning (regular-, better-, and best-cushioning) and running speed conditions (3.0 m/s vs. 6.0 m/s) on a flat instrumented runway. Tri-axial accelerometer, force plate and motion capture system were used to determine tibial accelerations, vertical ground reaction forces and footstrike patterns in each condition, respectively. Comfort perception was indicated on a 150 mm Visual Analogue Scale. A 2 (speed) × 3 (footwear) repeated measures ANOVA was used to examine the main effects of shoe cushioning and running speeds. Results Greater tibial shock (P < 0.001; η2 = 0.80) and impact loading (P < 0.001; η2 = 0.73–0.87) were experienced at faster running speeds. Interestingly, shoes with regular-cushioning or best-cushioning resulted in greater tibial shock (P = 0.03; η2 = 0.39) and impact loading (P = 0.03; η2 = 0.38–0.68) than shoes with better-cushioning. Basketball players continued using a rearfoot strike during running, regardless of running speed and footwear cushioning conditions (P > 0.14; η2 = 0.13). Discussion There may be an optimal band of shoe cushioning for better protection against TSF. These findings may provide insights to formulate rehabilitation protocols for basketball players who are recovering from TSF. PMID:29770274

  7. [High tibial osteotomy--fixation by means of external fixation--indication, technique, complications (author's transl)].

    PubMed

    Klems, H

    1976-02-01

    High tibial osteotomy has proved its value in the treatment of gonarthrosis with or without axis deformity. The thrust of weight-bearing and other stresses is lessened on the degenerated tibial condyle and transferred to the more normal condyle. The stable fixation by means of external fixation allows early movement of the knee joint.-R-ferences to operative technique, indication, complications and after-treatment.

  8. Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.

    PubMed

    Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud

    2018-02-01

    There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile

  9. Do Tibial Plateau Fractures Worsen Outcomes of Knee Ligament Injuries? A Matched Cohort Analysis

    PubMed Central

    Cinque, Mark E.; Godin, Jonathan A.; Moatshe, Gilbert; Chahla, Jorge; Kruckeberg, Bradley M.; Pogorzelski, Jonas; LaPrade, Robert F.

    2017-01-01

    Background: Tibial plateau fractures account for a small portion of all fractures; however, these fractures can pose a surgical challenge when occurring concomitantly with ligament injuries. Purpose/Hypothesis: The purpose of this study was to compare 2-year outcomes of soft tissue reconstruction with or without a concomitant tibial plateau fracture and open reduction internal fixation. We hypothesized that patients with a concomitant tibial plateau fracture at the time of soft tissue surgery would have inferior outcomes compared with patients without an associated tibial plateau fracture. Study Design: Cohort study; Level of evidence, 3. Methods: Forty patients were included in this study: 8 in the fracture group and 32 in the matched control group. Inclusion criteria for the fracture group included patients who were at least 18 years old at the time of surgery and sustained a tibial plateau fracture and a concomitant injury of the anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament, or fibular collateral ligament in isolation or any combination of cruciate or collateral ligaments and who subsequently underwent isolated or combined ligament reconstruction. Patients were excluded if they underwent prior ipsilateral knee surgery, sustained additional bony injuries, or sustained an isolated extra-articular ligament injury at the time of injury. Each patient with a fracture was matched with 4 patients from a control group who had no evidence of a tibial plateau fracture but underwent the same soft tissue reconstruction procedure. Results: Patients in the fracture group improved significantly from preoperatively to postoperatively with respect to Short Form–12 (P < .05) and Western Ontario and McMaster Universities Osteoarthritis Index total scores (P < .05). The Lysholm (P = .075) and Tegner scores (P = .086) also improved, although this was not statistically significant. Patients in the control group improved significantly from

  10. Achilles lengthening/posterior tibial tenotomy with immediate weightbearing for patients with significant comorbidities.

    PubMed

    Redfern, John C; Thordarson, David B

    2008-03-01

    Fixed equinovarus deformities can be challenging to treat especially in medically debilitated patients. The purpose of this study was to evaluate Achilles lengthening with posterior tibial tenotomy and immediate weightbearing in this difficult group of patients. Thirteen extremities in 10 patients underwent Achilles lengthening and posterior tibial tenotomy for fixed equinovarus deformities with significant medical comorbidities. Pre- and postoperative ambulatory status and deformities were noted. Average age at the time of surgery was 65 with an average duration of deformity 6.3 years. The average equinus corrected from 26 degrees to 1.2 degrees and the average varus deformity improved from -8.5 degrees to 2.7 degrees. All patients except one who was wheelchair-bound had a significant improvement in ambulatory status. Achilles lengthening with posterior tibial tenotomy allowed for immediate postoperative weightbearing with improvement in deformity and ambulatory status in this complicated patient group.

  11. Chronic exertional compartment syndrome with medial tibial stress syndrome in twins.

    PubMed

    Banerjee, Purnajyoti; McLean, Christopher

    2011-06-14

    Chronic exertional compartment syndrome and medial tibial stress syndrome are uncommon conditions that affect long-distance runners or players involved in team sports that require extensive running. We report 2 cases of bilateral chronic exertional compartment syndrome, with medial tibial stress syndrome in identical twins diagnosed with the use of a Kodiag monitor (B. Braun Medical, Sheffield, United Kingdom) fulfilling the modified diagnostic criteria for chronic exertional compartment syndrome as described by Pedowitz et al, which includes: (1) pre-exercise compartment pressure level >15 mm Hg; (2) 1 minute post-exercise pressure >30 mm Hg; and (3) 5 minutes post-exercise pressure >20 mm Hg in the presence of clinical features. Both patients were treated with bilateral anterior fasciotomies through minimal incision and deep posterior fasciotomies with tibial periosteal stripping performed through longer anteromedial incisions under direct vision followed by intensive physiotherapy resulting in complete symptomatic recovery. The etiology of chronic exertional compartment syndrome is not fully understood, but it is postulated abnormal increases in intramuscular pressure during exercise impair local perfusion, causing ischemic muscle pain. No familial predisposition has been reported to date. However, some authors have found that no significant difference exists in the relative perfusion, in patients, diagnosed with chronic exertional compartment syndrome. Magnetic resonance images of affected compartments have indicated that the pain is not due to ischemia, but rather from a disproportionate oxygen supply versus demand. We believe this is the first report of chronic exertional compartment syndrome with medial tibial stress syndrome in twins, raising the question of whether there is a genetic predisposition to the causation of these conditions. Copyright 2011, SLACK Incorporated.

  12. Total knee arthroplasty in patients with a prior fracture of the tibial plateau.

    PubMed

    Weiss, Nicholas G; Parvizi, Javad; Trousdale, Robert T; Bryce, Rex D; Lewallen, David G

    2003-02-01

    A fracture of the tibial plateau may predispose the knee to the development of posttraumatic arthritis. Malunion, intra-articular chondro-osseous defects, limb malalignment, retained internal fixation devices, and poor surrounding soft tissues may in turn compromise the outcome of total knee arthroplasty. The aim of our study was to evaluate the results of total knee arthroplasty in patients with a previous fracture of the tibial plateau. The results of sixty-two condylar total knee arthroplasties performed with cement, from 1988 to 1999, in sixty-two patients with a previous fracture of the tibial plateau were reviewed. The fracture of the tibial plateau had been treated by open reduction and internal fixation in thirty-eight knees, external fixation in one knee, and nonoperatively in twenty-three knees. There were forty women and twenty-two men with an average age of sixty-three years at the time of the arthroplasty. Knee Society scores were recorded preoperatively and at the time of follow-up, at an average of 4.7 years, and complications were noted. No patient was lost to follow-up. The mean Knee Society scores improved significantly (p < 0.0001), from 43.9 points for pain and 52 points for function preoperatively to 82.9 and 84 points, respectively, at the time of the latest follow-up. There were thirteen reoperations, which included manipulation with the patient under anesthesia (five knees), wound revision (three knees), and component revision (five knees). There were six intraoperative complications (10%). A postoperative complication occurred in sixteen knees (26%). The vast majority of patients treated with total knee arthroplasty after a previous fracture of the tibial plateau have substantial improvement in function and relief of pain. However, these patients are at increased risk for perioperative complications, as evidenced by the high reoperation rate of 21% in this study.

  13. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging

    PubMed Central

    2014-01-01

    Objective This work aimed to assess tibial rotations, meniscal movements, and morphological changes during knee flexion and extension using kinematic magnetic resonance imaging (MRI). Methods Thirty volunteers with healthy knees were examined using kinematic MRI. The knees were imaged in the transverse plane with flexion and extension angles from 0° to 40° and 40° to 0°, respectively. The tibial interior and exterior rotation angles were measured, and the meniscal movement range, height change, and side movements were detected. Results The tibia rotated internally (11.55° ± 3.20°) during knee flexion and rotated externally (11.40° ± 3.0°) during knee extension. No significant differences were observed between the internal and external tibial rotation angles (P > 0.05), between males and females (P > 0.05), or between the left and right knee joints (P > 0.05). The tibial rotation angle with a flexion angle of 0° to 24° differed significantly from that with a flexion angle of 24° to 40° (P < 0.01). With knee flexion, the medial and lateral menisci moved backward and the height of the meniscus increased. The movement range was greater in the anterior horn than in the posterior horn and greater in the lateral meniscus than in the medial meniscus (P < 0.01). During backward movements of the menisci, the distance between the anterior and posterior horns decreased, with the decrease more apparent in the lateral meniscus (P < 0.01). The side movements of the medial and lateral menisci were not obvious, and a smaller movement range was found than that of the forward and backward movements. Conclusion Knee flexion and extension facilitated internal and external tibial rotations, which may be related to the ligament and joint capsule structure and femoral condyle geometry. PMID:25142267

  14. The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.

    PubMed

    Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio

    2018-02-14

    Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p  < 0.01). The addition of

  15. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture.

    PubMed

    Dejour, David; Saffarini, Mo; Demey, Guillaume; Baverel, Laurent

    2015-10-01

    Revision ACL reconstruction requires careful analysis of failure causes particularly in cases of two previous graft ruptures. Intrinsic factors as excessive tibial slope or narrow femoral notch increase failure risks but are rarely addressed in revision surgery. The authors report outcomes, at minimum follow-up of 2 years, for second revision ACL reconstructions combined with tibial deflexion osteotomy for correction of excessive slope (>12°). Nine patients that underwent second revision ACL reconstruction combined with tibial deflexion osteotomy were retrospectively studied. The mean age was 30.3 ± 4.4 years (median 28; range 26-37), and mean follow-up was 4.0 ± 2.0 years (median 3.6; range 2.0-7.6). Autografts were harvested from the quadriceps tendon (n = 8) or hamstrings (n = 1), and tibial osteotomy was done by anterior closing wedge, without detachment of the patellar tendon, to obtain a slope of 3° to 5°. All patients had fused osteotomies, stable knees, and there were no intraoperative or postoperative complications. The mean posterior tibial slope decreased from 13.2° ± 2.6° (median 13°; range 12°-18°) preoperatively to 4.4° ± 2.3° (median 4°; range 2°-8°) postoperatively. The mean Lysholm score was 73.8 ± 5.8 (median 74; range 65-82), and the IKDC-SKF was 71.6 ± 6.1 (median 72.8; range 62.2-78.5). The satisfactory results of second revision ACL reconstruction combined with tibial deflexion osteotomy at minimum follow-up of 2 years suggest that tibia slope correction protects reconstructed ACL from fatigue failure in this study. The authors stress the importance of careful analysis failure causes prior to revision ACL reconstruction, and recommend correction of tibial slope if it exceeds 12°, to reduce the risks of graft retear. III.

  16. Biomechanical strength of the Peri-Loc proximal tibial plate: a comparison of all-locked versus hybrid locked/nonlocked screw configurations.

    PubMed

    Estes, Chris; Rhee, Peter; Shrader, M Wade; Csavina, Kristine; Jacofsky, Marc C; Jacofsky, David J

    2008-01-01

    The purpose of this study was to compare the biomechanical properties of a contoured locking plate instrumented with either an all-locked or hybrid locked/nonlocked screw construct in a proximal metaphyseal fracture of the tibia (AO 41-A3.2). A standardized proximal metaphyseal wedge osteotomy (AO 41-A3.2) was created in five pairs of cadaveric tibia. Each pair was randomly instrumented with either an all-locked or combination locked/nonlocked screw construct using a locked contoured periarticular plate (Peri-Loc periarticular locked plating system, Smith & Nephew, Memphis, TN). Vertical subsidence (irreversible deformation) and deflection (reversible deformation) in each pair were analyzed and compared. Load to failure, defined by complete fracture gap closure, was also determined. There was no statistically significant difference in vertical subsidence (P = 0.19) or deflection (P = 0.19) of the proximal tibia between the all-locked and combination locked/nonlocked screw construct with increasing levels of cyclical axial load from 200 to 1200 N. Failure occurred at a mean value of 2160 N in the locked group and 1760 N in the hybrid group (P = 0.19); the failure mode was plate bending in all specimens. The results indicate that the use of compression screws with locked screws in this particular construct allows a similar amount of irreversible and reversible deformation in response to an axial load when compared to an all-locked screw construct. This suggests that there is no statistically significant difference in the stability in fixation between the two methods, allowing the surgeon the freedom to choose the appropriate screw combination unique to each fracture.

  17. Location of the tibial tunnel aperture affects extrusion of the lateral meniscus following reconstruction of the anterior cruciate ligament.

    PubMed

    Kodama, Yuya; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Tanaka, Takaaki; Inoue, Hiroto; Ozaki, Toshifumi

    2017-08-01

    The anterior root of the lateral meniscus provides functional stability to the meniscus. In this study, we evaluated the relationship between the position of the tibial tunnel and extrusion of the lateral meniscus after anterior cruciate ligament reconstruction, where extrusion provides a proxy measure of injury to the anterior root. The relationship between extrusion and tibial tunnel location was retrospectively evaluated from computed tomography and magnetic resonance images of 26 reconstructed knees, contributed by 25 patients aged 17-31 years. A measurement grid was used to localize the position of the tibial tunnel based on anatomical landmarks identified from the three-dimensional reconstruction of axial computed tomography images of the tibial plateaus. The reference point-to-tibial tunnel distance (mm) was defined as the distance from the midpoint of the lateral edge of the grid to the posterolateral aspect of the tunnel aperture. The optimal cutoff of this distance to minimize post-operative extrusion was identified using receiver operating curve analysis. Extrusion of the lateral meniscus was positively correlated to the reference point-to-tibial tunnel distance (r 2  = 0.64; p < 0.001), with a cutoff distance of 5 mm having a sensitivity to extrusion of 83% and specificity of 93%. The mean extrusion for a distance >5 mm was 0.40 ± 0.43 mm, compared to 1.40 ± 0.51 mm for a distance ≤5 mm (p < 0.001). Therefore, a posterolateral location of the tibial tunnel aperture within the footprint of the anterior cruciate ligament decreases the reference point-to-tibial tunnel distance and increases extrusion of the lateral meniscus post-reconstruction. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1625-1633, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Posterior tibial slope and femoral sizing affect posterior cruciate ligament tension in posterior cruciate-retaining total knee arthroplasty.

    PubMed

    Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi

    2015-08-01

    During cruciate-retaining total knee arthroplasty, surgeons sometimes encounter increased tension of the posterior cruciate ligament. This study investigated the effects of femoral size, posterior tibial slope, and rotational alignment of the femoral and tibial components on forces at the posterior cruciate ligament in cruciate-retaining total knee arthroplasty using a musculoskeletal computer simulation. Forces at the posterior cruciate ligament were assessed with the standard femoral component, as well as with 2-mm upsizing and 2-mm downsizing in the anterior-posterior dimension. These forces were also determined with posterior tibial slope angles of 5°, 7°, and 9°, and lastly, were measured in 5° increments when the femoral (tibial) components were positioned from 5° (15°) of internal rotation to 5° (15°) of external rotation. Forces at the posterior cruciate ligament increased by up to 718N with the standard procedure during squatting. The 2-mm downsizing of the femoral component decreased the force at the posterior cruciate ligament by up to 47%. The 2° increment in posterior tibial slope decreased the force at the posterior cruciate ligament by up to 41%. In addition, posterior cruciate ligament tension increased by 11% during internal rotation of the femoral component, and increased by 18% during external rotation of the tibial component. These findings suggest that accurate sizing and bone preparation are very important to maintain posterior cruciate ligament forces in cruciate-retaining total knee arthroplasty. Care should also be taken regarding malrotation of the femoral and tibial components because this increases posterior cruciate ligament tension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    PubMed

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the

  20. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically

  1. Osteoblast histogenesis in periodontal ligament and tibial metaphysis during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Fielder, Paul J.; Morey, Emily R.; Roberts, W. Eugene

    1986-01-01

    Utilizing the nuclear morphometric assay for osteoblast histogenesis, the effect of simulated weightlessness (SW) on the relative numbers of the periodontal ligament (PDL) osteoblast progenitors and on the total number of osteogenic cells was determined in rats. Weightlessness was simulated by subjecting rats to continuous 30-deg head-down posture using a modified back-harness device of Morey (1979). The response of a partially unloaded, weight-bearing bone, tibial primary spongiosa (PS), was compared to a normally loaded, nonweight-bearing PDL bone. Data indicated a similar differentiation sequence in PS and PDL, which suggests that these bones might be sensitive to the same systemic factors. Preosteoblast numbers were seen to decrease in both nonweight-bearing and weight-bearing bones during SW (compared with rats not exposed to SW), indicating the importance of systemic mediators, such as cephalad fluid shift, physiological stress, and/or growth retardation.

  2. Factors influencing interlocking screw failure in unreamed small diameter nails--a biomechanical study using a distal tibia fracture model.

    PubMed

    Weninger, Patrick; Schueller, Michael; Jamek, Michael; Stanzl-Tschegg, Stefanie; Redl, Heinz; Tschegg, Elmar K

    2009-05-01

    Unreamed tibia nails with small diameters are increasingly used for fracture fixation. However, little is known about the fatigue strength of proximal and distal interlocking screws in those nails. To date, no data are available reporting on mechanical differences of solid compared to cannulated tibial nails. The aim of this study was to assess the fatigue strength of proximal and distal interlocking screws of solid and cannulated small diameter tibia nails. We created a distal tibia fracture model (AO/OTA 43 A3) using 16 Sawbones. After fracture stabilization with one of four different nail types (Expert Tibial Nail, VersaNail, T2 Tibial Nailing System, Connex), mechanical testing was performed in three loading series (40,000 cycles each) with incremental loads. Timing and type of interlocking screw failure were assessed. Interlocking screw failure was observed significantly earlier (after a mean interval of 57,042 cycles) in cannulated tibial nails (VersaNail, T2) compared to solid nails (after a mean interval of 88,415 cycles; P < 0.001). Proximal interlocking screw failure was recorded if oblique screws were used proximally (VersaNail, T2, Connex). No distal interlocking screw failure was recorded in the Connex nail. Two- and three-part fractures of proximal or distal interlocking screws were observed in all specimen. Proximal and distal interlocking screw failure has to be considered in small diameter nails in case of delayed fracture healing. To support our results, further experimental studies and clinical series are necessary.

  3. Total Knee Arthroplasty for Osteoarthritis Secondary to Fracture of the Tibial Plateau. A Prospective Matched Cohort Study.

    PubMed

    Lizaur-Utrilla, Alejandro; Collados-Maestre, Isabel; Miralles-Muñoz, Francisco A; Lopez-Prats, Fernando A

    2015-08-01

    A prospective matched cohort study was performed to compare outcomes of total knee arthroplasties (TKA) between 29 patients with posttraumatic osteoarthritis (POA) after a fracture of tibial plateau and 58 patients underwent routine TKA. Mean follow-up was 6.7 years. There were no significant differences in KSS, WOMAC, SF12 scores or range of motion. In the control group there were no complications. In the posttraumatic group, complications occurred in 4 patients (13.7%) (P=0.010) including partial patellar tendon detachment, superficial infection, skin necrosis, and knee stiffness. Only this last patient required revision for manipulation under anesthesia. Also, there was a revision for tibial aseptic loosening in each group. TKA is an effective treatment for POA after tibial plateau fracture. We recommend the prior removal of hardware, as well as tibial tubercle osteotomy when necessary. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Radiologic assessment of femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single bundle anterior cruciate ligament reconstruction.

    PubMed

    Nema, Sandeep Kumar; Balaji, Gopisankar; Akkilagunta, Sujiv; Menon, Jagdish; Poduval, Murali; Patro, Dilip

    2017-01-01

    Accurate tibial and femoral tunnel placement has a significant effect on outcomes after anterior cruciate ligament reconstruction (ACLR). Postoperative radiographs provide a reliable and valid way for the assessment of anatomical tunnel placement after ACLR. The aim of this study was to examine the radiographic location of tibial and femoral tunnels in patients who underwent arthroscopic ACLR using anatomic landmarks. Patients who underwent arthroscopic ACLR from January 2014 to March 2016 were included in this retrospective cohort study. 45 patients who underwent arthroscopic ACLR, postoperative radiographs were studied. Femoral and tibial tunnel positions on sagittal and coronal radiographic views, graft impingement, and femoral roof angle were measured. Radiological parameters were summarized as mean ± standard deviation and proportions as applicable. Interobserver agreement was measured using intraclass correlation coefficient. The position of the tibial tunnel was found to be at an average of 35.1% ± 7.4% posterior from the anterior edge of the tibia. The femoral tunnel was found at an average of 30% ± 1% anterior to the posterior femoral cortex along the Blumensaat's line. Radiographic impingement was found in 34% of the patients. The roof angle averaged 34.3° ± 4.3°. The position of the tibial tunnel was found at an average of 44.16% ± 3.98% from the medial edge of the tibial plateau. The coronal tibial tunnel angle averaged 67.5° ± 8.9°. The coronal angle of the femoral tunnel averaged 41.9° ± 8.5°. The femoral and tibial tunnel placements correlated well with anatomic landmarks except for radiographic impingement which was present in 34% of the patients.

  5. Effect of thiram on avian growth plate chondrocytes in culture

    USDA-ARS?s Scientific Manuscript database

    Thiram (tetramethyl thiuram disulfide) is a general use pesticide. It causes tibial dyschondroplasia, a cartilage defect in poultry leading to growth plate deformation and lameness. The mechanism of its action on chondrocytes is not understood. Since proteins play significant role in development an...

  6. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  7. In vivo Delivery of Fluoresceinated Dextrans to the Murine Growth Plate: Imaging of Three Vascular Routes by Multiphoton Microscopy

    PubMed Central

    Farnum, Cornelia; Lenox, Michelle; Zipfel, Warren; Horton, William; Williams, Rebecca

    2008-01-01

    Bone elongation by endochondral ossification occurs through the differentiation cascade of chondrocytes of cartilaginous growth plates. Molecules from the systemic vasculature reach the growth plate from three different directions: epiphyseal, metaphyseal, and via a ring vessel and plexus associated with the perichondrium. This study is an analysis of the real-time dynamics of entrance of fluoresceinated tracers of different molecular weights into the growth plate from the systemic vasculature, and tests the hypothesis that molecular weight is a key variable in the determination of both the directionality and the extent of tracer movement into the growth plate. Multiphoton microscopy was used for direct in vivo imaging of the murine proximal tibial growth plate in anesthetized 4-5-week-old transgenic mice with green fluorescent protein linked to the collagen II promoter. Mice were given an intracardiac injection of either fluorescein (332.3 Da), or fluoresceinated dextrans of 3, 10, 40, 70 kDa, singly or sequentially. For each tracer, directionality and rate of arrival, together with extent of movement within the growth plate, were imaged in real time. For small molecules (up to 10 kDa) vascular access from all three directions was observed and entrance was equally permissive from the metaphyseal and the epiphyseal sides. Within our detection limit (a few per cent of vascular concentration) 40 kDa and larger dextrans did not enter. These results have implications both for understanding systemic and paracrine regulation of growth plate chondrocytic differentiation, as well as variables associated with effective drug delivery to growth plate chondrocytes. PMID:16342207

  8. Role of the fibula in the stability of diaphyseal tibial fractures fixed by intramedullary nailing.

    PubMed

    Galbraith, John G; Daly, Charles J; Harty, James A; Dailey, Hannah L

    2016-10-01

    For tibial fractures, the decision to fix a concomitant fibular fracture is undertaken on a case-by-case basis. To aid in this clinical decision-making process, we investigated whether loss of integrity of the fibula significantly destabilises midshaft tibial fractures, whether fixation of the fibula restores stability to the tibia, and whether removal of the fibula and interosseous membrane for expediency in biomechanical testing significantly influences tibial interfragmentary mechanics. Tibia/fibula pairs were harvested from six cadaveric donors with the interosseous membrane intact. A tibial osteotomy fracture was fixed by reamed intramedullary (IM) nailing. Axial, torsion, bending, and shear tests were completed for four models of fibular involvement: intact fibula, osteotomy fracture, fibular plating, and resected fibula and interosseous membrane. Overall construct stiffness decreased slightly with fibular osteotomy compared to intact bone, but this change was not statistically significant. Under low loads, the influence of the fibula on construct stability was only statistically significant in torsion (large effect size). Fibular plating stiffened the construct slightly, but this change was not statistically significant compared to the fibular osteotomy case. Complete resection of the fibula and interosseous membrane significantly decreased construct torsional stiffness only (large effect size). These results suggest that fixation of the fibula may not contribute significantly to the stability of diaphyseal tibial fractures and should not be undertaken unless otherwise clinically indicated. For testing purposes, load-sharing through the interosseous membrane contributes significantly to overall construct mechanics, especially in torsion, and we recommend preservation of these structures when possible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Strain measurements of the tibial insert of a knee prosthesis using a knee motion simulator.

    PubMed

    Sera, Toshihiro; Iwai, Yuya; Yamazaki, Takaharu; Tomita, Tetsuya; Yoshikawa, Hideki; Naito, Hisahi; Matsumoto, Takeshi; Tanaka, Masao

    2017-12-01

    The longevity of a knee prosthesis is influenced by the wear of the tibial insert due to its posture and movement. In this study, we assumed that the strain on the tibial insert is one of the main reasons for its wear and investigated the influence of the knee varus-valgus angles on the mechanical stress of the tibial insert. Knee prosthesis motion was simulated using a knee motion simulator based on a parallel-link six degrees-of-freedom actuator and the principal strain and pressure distribution of the tibial insert were measured. In particular, the early stance phase obtained from in vivo X-ray images was examined because the knee is applied to the largest load during extension/flexion movement. The knee varus-valgus angles were 0° (neutral alignment), 3°, and 5° malalignment. Under a neutral orientation, the pressure was higher at the middle and posterior condyles. The first and second principal strains were larger at the high and low pressure areas, respectively. Even for a 3° malalignment, the load was concentrated at one condyle and the positive first principal strain increased dramatically at the high pressure area. The negative second principal strain was large at the low pressure area on the other condyle. The maximum equivalent strain was 1.3-2.1 times larger at the high pressure area. For a 5° malalignment, the maximum equivalent strain increased slightly. These strain and pressure measurements can provide the mechanical stress of the tibial insert in detail for determining the longevity of an artificial knee joint.

  10. Adult periarticular locking plates for the treatment of pediatric and adolescent subtrochanteric hip fractures.

    PubMed

    Sanders, Samuel; Egol, Kenneth A

    2009-01-01

    Two cases are presented in which adult, precontoured, lower-extremity periarticular locking plates were utilized for fixation of subtrochanteric femur fractures in pediatric patients. Recognition of the fact that a distal tibial locking plate in a small child and a proximal tibial locking plate in an adolescent anatomically ft the proximal femur in each case may provide a surgeon treating subtrochanteric hip fractures in this population increased options for operative stabilization.

  11. Management of Open Tibial Shaft Fractures: Does the Timing of Surgery Affect Outcomes?

    PubMed

    Duyos, Oscar A; Beaton-Comulada, David; Davila-Parrilla, Ariel; Perez-Lopez, Jose Carlos; Ortiz, Krystal; Foy-Parrilla, Christian; Lopez-Gonzalez, Francisco

    2017-03-01

    Open tibial shaft fractures require emergent care. Treatment with intravenous antibiotics and fracture débridement within 6 to 24 hours is recommended. Few studies have examined outcomes when surgical treatment is performed >24 hours after occurrence of the fracture. This retrospective study included 227 patients aged ≥18 years with isolated open tibial shaft fractures in whom the time to initial débridement was >24 hours. The statistical analysis was based on time from injury to surgical débridement, Gustilo-Anderson classification, method of fixation, union status, and infection status. Fractures débrided within 24 to 48 hours and 48 to 96 hours after injury did not show a statistically significant difference in terms of infection rates (P = 0.984). External fixation showed significantly greater infection rates (P = 0.044) and nonunion rates (P = 0.001) compared with intramedullary nailing. Open tibial shaft fractures should be débrided within 24 hours after injury. Our data indicate that after the 24-hour period and up to 4 days, the risk of infection remains relatively constant independent of the time to débridement. Patients treated with external fixation had more complications than did patients treated with other methods of fixation. Primary reamed intramedullary nailing appears to be a reasonable option for the management of Gustilo-Anderson types 1 and 2 open tibial shaft fractures. Level III retrospective study.

  12. Tibial lengthening using a humeral intramedullary nail combined with a single-plane external fixator for leg discrepancy in sequelae of poliomyelitis.

    PubMed

    Chen, Daoyun; Chen, Jianmin; Liu, Fanggang; Jiang, Yao

    2011-03-01

    The sequelae of poliomyelitis are the common causes of leg discrepancy. Tibial lengthening is an effective way to solve this problem but it is associated with a high rate of complications. In this study, we combined the use of humeral nail and external fixator in tibial lengthening with the purpose of reducing lengthening complications. Compared with the cases lengthened by a single-plane external fixator alone, this combined strategy was found to be beneficial in maintaining the tibial alignment. Therefore, it can be recommended as a good technique for tibial lengthening in patients with sequelae of poliomyelitis.

  13. A Biomechanical Study of Posteromedial Tibial Plateau Fracture Stability: Do They All Require Fixation?

    PubMed

    Cuéllar, Vanessa G; Martinez, Danny; Immerman, Igor; Oh, Cheongeun; Walker, Peter S; Egol, Kenneth A

    2015-07-01

    Although the posteromedial fragment in tibial plateau fractures is often considered unstable, biomechanical evidence supporting this view is lacking. We aimed to evaluate the stability of the fragment in a cadaver model. Our hypothesis was that under the expected small axial force during rehabilitation and the combined effects of this force with shear force, internal rotation torque, and varus moment, the most common posteromedial tibial fragment morphology could maintain stability in early flexion. Axial compression force alone or combined with posterior shear, internal rotation torque, or varus moment was applied to the femurs of 5 fresh cadaveric knees. A Tekscan pressure mapping system was used to measure pressure and contact area between the femoral condyles, meniscus, and tibial plateau. A Microscribe 3D digitizer was used to define the 3-dimensional positions of the femur and tibia. A 10-mm and then a 20-mm osteotomy was created with a saw at an angle of 30 degrees in the axial plane with respect to the tangent of the posterior tibial plateau and 75 degrees in the sagittal plane, representing a typical posteromedial fracture fragment. At each flexion angle (15, 30, 60, 90, and 120 degrees) and loading condition (axial compression only, compression with shear force, torque, and varus moment), distal displacement of the medial femoral condyle and the tibial fracture fragments was determined. For the 10-mm fragment, medial femoral condyle displacement was little affected up to approximately 30-degree flexion, after which it increased. For the 20-mm fragment, there was progressive medial femoral condyle displacement with increasing flexion from baseline. However, for the 10- and 20-mm fragments themselves, displacements were noted at every flexion angle, starting at 1.7 mm inferior displacement with 15 degrees of flexion and internal rotation torque and up to 10.2 mm displacement with 90 degrees of flexion and varus bending moment. In this cadaveric model of a

  14. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    PubMed

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (P<0.05). Tibial slope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Radiologic assessment of femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single bundle anterior cruciate ligament reconstruction

    PubMed Central

    Nema, Sandeep Kumar; Balaji, Gopisankar; Akkilagunta, Sujiv; Menon, Jagdish; Poduval, Murali; Patro, Dilip

    2017-01-01

    Background: Accurate tibial and femoral tunnel placement has a significant effect on outcomes after anterior cruciate ligament reconstruction (ACLR). Postoperative radiographs provide a reliable and valid way for the assessment of anatomical tunnel placement after ACLR. The aim of this study was to examine the radiographic location of tibial and femoral tunnels in patients who underwent arthroscopic ACLR using anatomic landmarks. Patients who underwent arthroscopic ACLR from January 2014 to March 2016 were included in this retrospective cohort study. Materials and Methods: 45 patients who underwent arthroscopic ACLR, postoperative radiographs were studied. Femoral and tibial tunnel positions on sagittal and coronal radiographic views, graft impingement, and femoral roof angle were measured. Radiological parameters were summarized as mean ± standard deviation and proportions as applicable. Interobserver agreement was measured using intraclass correlation coefficient. Results: The position of the tibial tunnel was found to be at an average of 35.1% ± 7.4% posterior from the anterior edge of the tibia. The femoral tunnel was found at an average of 30% ± 1% anterior to the posterior femoral cortex along the Blumensaat's line. Radiographic impingement was found in 34% of the patients. The roof angle averaged 34.3° ± 4.3°. The position of the tibial tunnel was found at an average of 44.16% ± 3.98% from the medial edge of the tibial plateau. The coronal tibial tunnel angle averaged 67.5° ± 8.9°. The coronal angle of the femoral tunnel averaged 41.9° ± 8.5°. Conclusions: The femoral and tibial tunnel placements correlated well with anatomic landmarks except for radiographic impingement which was present in 34% of the patients. PMID:28566780

  16. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.

    PubMed

    Nazemi, S Majid; Kalajahi, S Mehrdad Hosseini; Cooper, David M L; Kontulainen, Saija A; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-07-05

    Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R 2 =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R 2 and RMSE%. The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sprouty / FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae

    PubMed Central

    Yue, Zhicao; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B; Chuong, Cheng Ming

    2013-01-01

    In a feather, there are distinct morphologies along the proximal-distal axis. The proximal part is a cylindrical stalk (calamus), whereas the distal part has barb and barbule branches. Here we focus on what molecular signaling activity can modulate feather stem cells to generate these distinct morphologies. We demonstrate the drastic tissue remodeling during feather cycling which includes initiation, growth and resting phases. In the growth phase, epithelial components undergo progressive changes from the collar growth zone to the ramogenic zone, to maturing barb branches along the proximal- distal axis. Mesenchymal components also undergo progressive changes from the dermal papilla, to the collar mesenchyme, to the pulp along the proximal- distal axis. Over-expression of Spry4, a negative regulator of receptor tyrosine kinases, promotes barb branch formation at the expense of the epidermal collar. It even induces barb branches from the follicle sheath (equivalent to the outer root sheath in hair follicles). The results are feathers with expanded feather vane regions and small or missing proximal feather shafts (the calamus). Spry4 also expands the pulp region while reducing the size of dermal papillae, leading to a failure to regenerate. In contrast, over-expressing Fgf10 increases the size of the dermal papillae, expands collar epithelia and mesenchyme, but also prevents feather branch formation and feather keratin differentiation. These results suggest that coordinated Sprouty/FGF pathway activity at different stages is important to modulate feather epidermal stem cells to form distinct feather morphologies along the proximal-distal feather axis. PMID:23000358

  18. Locking plate fixation in distal metaphyseal tibial fractures: series of 79 patients.

    PubMed

    Gupta, Rakesh K; Rohilla, Rajesh Kumar; Sangwan, Kapil; Singh, Vijendra; Walia, Saurav

    2010-12-01

    Open reduction and internal fixation in distal tibial fractures jeopardises fracture fragment vascularity and often results in soft tissue complications. Minimally invasive osteosynthesis, if possible, offers the best possible option as it permits adequate fixation in a biological manner. Seventy-nine consecutive adult patients with distal tibial fractures, including one patient with a bilateral fracture of the distal tibia, treated with locking plates, were retrospectively reviewed. The 4.5-mm limited-contact locking compression plate (LC-LCP) was used in 33 fractures, the metaphyseal LCP in 27 fractures and the distal medial tibial LCP in the remaining 20 fractures. Fibula fixation was performed in the majority of comminuted fractures (n = 41) to maintain the second column of the ankle so as to achieve indirect reduction and to prevent collapse of the fracture. There were two cases of delayed wound breakdown in fractures fixed with the 4.5-mm LC-LCP. Five patients required primary bone grafting and three patients required secondary bone grafting. All cases of delayed union (n = 7) and nonunion (n = 3) were observed in cases where plates were used in bridge mode. Minimally invasive plate osteosynthesis (MIPO) with LCP was observed to be a reliable method of stabilisation for these fractures. Peri-operative docking of fracture ends may be a good option in severely impacted fractures with gap. The precontoured distal medial tibial LCP was observed to be a better tolerated implant in comparison to the 4.5-mm LC-LCP or metaphyseal LCP with respect to complications of soft tissues, bone healing and functional outcome, though its contour needs to be modified.

  19. Open-wedge high tibial osteotomy: comparison between manual and computer-assisted techniques.

    PubMed

    Iorio, R; Pagnottelli, M; Vadalà, A; Giannetti, S; Di Sette, P; Papandrea, P; Conteduca, F; Ferretti, A

    2013-01-01

    The purpose of our study was to compare clinical and radiological results of two groups of patients treated for medial compartment osteoarthritis of the knee with either conventional or computer-assisted open-wedge high tibial osteotomy (HTO). Goals of surgical treatment were a correction of the mechanical axis between 2° and 6° of valgus and a modification of posterior tibial slope between -2° and +2°. Twenty-four patients (27 knees) affected by varus knee deformity and operated with HTO were prospectively followed-up. They were randomly divided in two groups, A (11 patients, conventional treatment) and B (13 patients, navigated treatment). The American Knee Society Score and the Modified Cincinnati Rating System Questionnaire were used for clinical assessment. All patients were radiologically evaluated with a comparative lower limb weight-bearing digital radiograph, a standard digital anteroposterior, a latero-lateral radiograph of the knee, and a Rosenberg view. Patients were followed-up at a mean of 39 months. Clinical evaluation showed no statistical difference (n.s.) between the two groups. Radiological results showed an 86% reproducibility in achieving a mechanical axis of 182°-186° in group B compared to a 23% in group A (p = 0.0392); furthermore, in group B, we achieved a modification of posterior tibial slope between -2° and +2° in 100% of patients, while in group A, this goal was achieved only in 24% of cases (p = 0.0021). High tibial osteotomy with navigator is more accurate and reproducible in the correction of the deformity compared to standard technique. Therapeutic study, Level II.

  20. Effects of spaceflight on trabecular bone in rats

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Wronski, T. J.; Morey, E. R.; Kimmel, D. B.

    1983-01-01

    Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.

  1. Lateralization of the Tibial Tubercle in Recurrent Patellar Dislocation: Verification Using Multiple Methods to Evaluate the Tibial Tubercle.

    PubMed

    Tensho, Keiji; Shimodaira, Hiroki; Akaoka, Yusuke; Koyama, Suguru; Hatanaka, Daisuke; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2018-05-02

    The tibial tubercle deviation associated with recurrent patellar dislocation (RPD) has not been studied sufficiently. New methods of evaluation were used to verify the extent of tubercle deviation in a group with patellar dislocation compared with that in a control group, the frequency of patients who demonstrated a cutoff value indicating that tubercle transfer was warranted on the basis of the control group distribution, and the validity of these methods of evaluation for diagnosing RPD. Sixty-six patients with a history of patellar dislocation (single in 19 [SPD group] and recurrent in 47 [RPD group]) and 66 age and sex-matched controls were analyzed with the use of computed tomography (CT). The tibial tubercle-posterior cruciate ligament (TT-PCL) distance, TT-PCL ratio, and tibial tubercle lateralization (TTL) in the SPD and RPD groups were compared with those in the control group. Cutoff values to warrant 10 mm of transfer were based on either the minimum or -2SD (2 standard deviations below the mean) value in the control group, and the prevalences of patients in the RPD group with measurements above these cutoff values were calculated. The area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the measurements as predictors of RPD. The mean TT-PCL distance, TT-PCL ratio, and TTL were all significantly greater in the RPD group than in the control group. The numbers of patients in the RPD group who satisfied the cutoff criteria when they were based on the minimum TT-PCL distance, TT-PCL ratio, and TTL in the control group were 11 (23%), 7 (15%), and 6 (13%), respectively. When the cutoff values were based on the -2SD values in the control group, the numbers of patients were 8 (17%), 6 (13%), and 0, respectively. The AUC of the ROC curve for TT-PCL distance, TT-PCL ratio, and TTL was 0.66, 0.72, and 0.72, respectively. The extent of TTL in the RPD group was not substantial, and the percentages

  2. Evaluation of Hallux Valgus Correction With Versus Without Akin Proximal Phalanx Osteotomy.

    PubMed

    Shibuya, Naohiro; Thorud, Jakob C; Martin, Lanster R; Plemmons, Britton S; Jupiter, Daniel C

    2016-01-01

    Although the efficacy of Akin proximal phalanx closing wedge osteotomy as a sole procedure for correction of hallux valgus deformity is questionable, when used in combination with other osseous corrective procedures, the procedure has been believed to be efficacious. However, a limited number of comparative studies have confirmed the value of this additional procedure. We identified patients who had undergone osseous hallux valgus correction with first metatarsal osteotomy or first tarsometatarsal joint arthrodesis with (n = 73) and without (n = 81) Akin osteotomy and evaluated their radiographic measurements at 3 points (preoperatively, within 3 months after surgery, and ≥6 months after surgery). We found that those people who had undergone the Akin procedure tended to have a larger hallux abduction angle and a more laterally deviated tibial sesamoid position preoperatively. Although the radiographic correction of the deformity was promising immediately after corrective surgery with the Akin osteotomy, maintenance of the correction was questionable in our cohort. The value of additional Akin osteotomy for correction of hallux valgus deformity is uncertain. Published by Elsevier Inc.

  3. Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture.

    PubMed

    Zhang, Wei; Luo, Cong-Feng; Putnis, Sven; Sun, Hui; Zeng, Zhi-Min; Zeng, Bing-Fang

    2012-03-01

    The posterolateral shearing tibial plateau fracture is uncommon in the literature, however with the increased usage of computer tomography (CT), the incidence of these fractures is no longer as low as previously thought. Few studies have concentrated on this fracture, least of all using a biomechanical model. The purpose of this study was to compare and analyse the biomechanical characteristics of four different types of internal fixation to stabilise the posterolateral shearing tibial plateau fracture. Forty synthetic tibiae (Synbone, right) simulated the posterolateral shearing fracture models and these were randomly assigned into four groups; Group A was fixed with two anterolateral lag screws, Group B with an anteromedial Limited Contact Dynamic Compression Plate (LC-DCP), Group C with a lateral locking plate, and Group D with a posterolateral buttress plate. Vertical displacement of the posterolateral fragment was measured using three different strengths of axial loading force, and finally loaded until fixation failure. It was concluded that the posterolateral buttress plate is biomechanically the strongest fixation method for the posterolateral shearing tibial plateau fracture. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Improvement of the knee center of rotation during walking after opening wedge high tibial osteotomy.

    PubMed

    Kim, Kyungsoo; Feng, Jun; Nha, Kyung Wook; Park, Won Man; Kim, Yoon Hyuk

    2015-06-01

    Accurate measurement of the center of rotation of the knee joint is indispensable for prediction of joint kinematics and kinetics in musculoskeletal models. However, no study has yet identified the knee center of rotations during several daily activities before and after high tibial osteotomy surgery, which is one surgical option for treating knee osteoarthritis. In this study, an estimation method for determining the knee joint center of rotation was developed by applying the optimal common shape technique and symmetrical axis of rotation approach techniques to motion-capture data and validated for typical activities (walking, squatting, climbing up stairs, walking down stairs) of 10 normal subjects. The locations of knee joint center of rotations for injured and contralateral knees of eight subjects with osteoarthritis, both before and after high tibial osteotomy surgery, were then calculated during walking. It was shown that high tibial osteotomy surgery improved the knee joint center of rotation since the center of rotations for the injured knee after high tibial osteotomy surgery were significantly closer to those of the normal healthy population. The difference between the injured and contralateral knees was also generally reduced after surgery, demonstrating increased symmetry. These results indicate that symmetry in both knees can be recovered in many cases after high tibial osteotomy surgery. Moreover, the recovery of center of rotation in the injured knee was prior to that of symmetry. This study has the potential to provide fundamental information that can be applied to understand abnormal kinematics in patients, diagnose knee joint disease, and design a novel implants for knee joint surgeries. © IMechE 2015.

  5. Arthroscopic evaluation of soft tissue injuries in tibial plateau fractures: retrospective analysis of 98 cases.

    PubMed

    Abdel-Hamid, Mohamed Zaki; Chang, Chung-Hsun; Chan, Yi-Sheng; Lo, Yang-Pin; Huang, Jau-Wen; Hsu, Kuo-Yao; Wang, Ching-Jen

    2006-06-01

    This investigation arthroscopically assesses the frequency of soft tissue injury in tibial plateau fracture according to the severity of fracture patterns. We hypothesized that use of arthroscopy to evaluate soft tissue injury in tibial plateau fractures would reveal a greater number of associated injuries than have previously been reported. From March 1996 to December 2003, 98 patients with closed tibial plateau fractures were treated with arthroscopically assisted reduction and osteosynthesis, with precise diagnosis and management of associated soft tissue injuries. Arthroscopic findings for associated soft tissue injuries were recorded, and the relationship between fracture type and soft tissue injury was then analyzed. The frequency of associated soft tissue injury in this series was 71% (70 of 98). The menisci were injured in 57% of subjects (56 in 98), the anterior cruciate ligament (ACL) in 25% (24 of 98), the posterior cruciate ligament (PCL) in 5% (5 of 98), the lateral collateral ligament (LCL) in 3% (3 of 98), the medial collateral ligament (MCL) in 3% (3 of 98), and the peroneal nerve in 1% (1 of 98); none of the 98 patients exhibited injury to the arteries. No significant association was noted between fracture type and incidence of meniscus, PCL, LCL, MCL, artery, and nerve injury. However, significantly higher injury rates for the ACL were observed in type IV and VI fractures. Soft tissue injury was associated with all types of tibial plateau fracture. Menisci (peripheral tear) and ACL (bony avulsion) were the most commonly injured sites. A variety of soft tissue injuries are common with tibial plateau fracture; these can be diagnosed with the use of an arthroscope. Level III, diagnostic study.

  6. Changes in tibial bone microarchitecture in female recruits in response to 8 weeks of U.S. Army Basic Combat Training.

    PubMed

    Hughes, Julie M; Gaffney-Stomberg, Erin; Guerriere, Katelyn I; Taylor, Kathryn M; Popp, Kristin L; Xu, Chun; Unnikrishnan, Ginu; Staab, Jeffery S; Matheny, Ronald W; McClung, James P; Reifman, Jaques; Bouxsein, Mary L

    2018-08-01

    U.S. Army Basic Combat Training (BCT) is a physically-demanding program at the start of military service. Whereas animal studies have shown that increased mechanical loading rapidly alters bone structure, there is limited evidence of changes in bone density and structure in humans exposed to a brief period of unaccustomed physical activity. We aimed to characterize changes in tibial bone density and microarchitecture and serum-based biochemical markers of bone metabolism in female recruits as a result of 8 weeks of BCT. We collected high-resolution peripheral quantitative computed tomographic images of the distal tibial metaphysis and diaphysis (4% and 30% of tibia length from the distal growth plate, respectively) and serum markers of bone metabolism before and after BCT. Linear mixed models were used to estimate the mean difference for each outcome from pre- to post-BCT, while controlling for race/ethnicity, age, and body mass index. 91 female BCT recruits volunteered and completed this observational study (age = 21.5 ± 3.3 yrs). At the distal tibial metaphysis, cortical thickness, trabecular thickness, trabecular number, bone volume/total volume, and total and trabecular volumetric bone density (vBMD) increased significantly by 1-2% (all p < 0.05) over the BCT period, whereas trabecular separation, cortical tissue mineral density (TMD), and cortical vBMD decreased significantly by 0.3-1.0% (all p < 0.05). At the tibial diaphysis, cortical vBMD and cortical TMD decreased significantly (both -0.7%, p < 0.001). Bone strength, estimated by micro finite element analysis, increased by 2.5% and 0.7% at the distal tibial metaphysis and diaphysis, respectively (both p < 0.05). Among the biochemical markers of bone metabolism, sclerostin decreased (-5.7%), whereas bone alkaline phosphatase, C-telopeptide cross-links of type 1 collagen, tartrate-resistance acid phosphatase, and 25(OH)D increased by 10-28% (all p < 0.05). BCT leads to

  7. Long-term anabolic effects of prostaglandin-E2 on tibial diaphyseal bone in male rats

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Ke, Hua Zhu; Li, Xiao Jian

    1991-01-01

    The effects of long-term prostaglandin E2 (PGE2) on tibial diaphyseal bone were studied in 7-month-old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3 and 6 mg PGE2/kg/day for 60, 120 and 180 days. The tibial shaft was measured by single photon absorptiometry and dynamic histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial diaphyseal bone samples. Exogenous PGE2 administration produced the following transient changes in a dose-response manner between zero and 60 days: (1) increased bone width and mineral density; (2) increased total tissue and total bone areas; (3) decreased marrow area; (4) increased periosteal and corticoendosteal lamellar bone formation; (5) activated corticoendosteal lamellar and woven trabecular bone formation; and (6) activated intracortical bone remodeling. A new steady-state of increased tibial diaphyseal bone mass and elevated bone activities were observed from day 60 onward. The elevated bone mass level attained after 60 days of PGE2 treatment was maintained at 120 and 180 days. These observations indicate that the powerful anabolic effects of PGE2 will increase both periosteal and corticoendosteal bone mass and sustain the transient increase in bone mass with continuous daily administration of PGE2.

  8. Cemented tibial component fixation performs better than cementless fixation: a randomized radiostereometric study comparing porous-coated, hydroxyapatite-coated and cemented tibial components over 5 years.

    PubMed

    Carlsson, Ake; Björkman, Anders; Besjakov, Jack; Onsten, Ingemar

    2005-06-01

    The question whether the tibial component of a total knee arthroplasty should be fixed to bone with or without bone cement has not yet been definitely answered. We studied movements between the tibial component and bone by radiostereometry (RSA) in total knee replacement (TKR) for 3 different types of fixation: cemented fixation (C-F), uncemented porous fixation (UC-F) and uncemented porous hydroxyapatite fixation (UCHA-F). 116 patients with osteoarthrosis, who had 146 TKRs, were included in 2 randomized series. The first series included 86 unilateral TKRs stratified into 1 of the 3 types of fixation. The second series included 30 patients who had simultaneous bilateral TKR surgery, and who were stratified into 3 subgroups of pairwise comparisons of the 3 types of fixation. After 5 years 2 knees had been revised, neither of which were due to loosening. 1 UCHA-F knee in the unilateral series showed a large and continuous migration and a poor clinical result, and is a pending failure. The C-F knees rotated and migrated less than UC-F and UCHA-F knees over 5 years. UCHA-F migrated less than UC-F after 1 year. Cementing of the tibial component offers more stable bone-implant contact for 5 years compared to uncemented fixation. When using uncemented components, however, there is evidence that augmenting a porous surface with hydroxyapatite may mean less motion between implant and bone after the initial postoperative year.

  9. What is the Risk of Developing Proximal Junctional Kyphosis During Growth Friendly Treatments for Early-onset Scoliosis?

    PubMed

    El-Hawary, Ron; Sturm, Peter; Cahill, Patrick; Samdani, Amer; Vitale, Michael; Gabos, Peter; Bodin, Nathan; d'Amato, Charles; Harris, Colin; Al Khudairy, Ammar; Smith, John T

    2017-03-01

    Rib-based and spine-based systems are commonly used distraction-based growth friendly treatments for early-onset scoliosis (EOS). Our primary purpose was to determine the risk of developing postoperative proximal junctional kyphosis (PJK) during distraction-based growth friendly surgery. A multicenter, retrospective, radiographic comparison was performed for a group of 40 children with EOS who were treated with posterior distraction-based implants. PJK was defined as proximal junction sagittal angle (PJA)≥10 degrees and PJA at least 10 degrees greater than preoperative. Eight subjects (20%) at immediate postoperative follow-up and 11 subjects (27.5%) at minimum 2-year follow-up had developed PJK. The risk of developing PJK between rib-based and spine-based growing systems was not significantly different at immediate postoperative (17% vs. 25%) or at final (25% vs. 31%) follow-ups.Further analysis combining both treatment groups demonstrated that PJK subjects were significantly older at time of initial surgery (7.1 y PJK vs. 5.0 y no PJK). Radiographic comparisons between PJK versus no PJK: Preoperative scoliosis (69.9 vs. 76.0 degrees), thoracic kyphosis (45.1 vs. 28.7 degrees), lumbar lordosis (53.1 vs. 44.0 degrees), PJA (2.2 vs. 2.8 degrees), sagittal vertical axis (1.5 vs. 2.6 cm), pelvic incidence (52.8 vs. 47.4 degrees), pelvic tilt (14.3 vs. 8.7 degrees), and sacral slope (37.7 vs. 35.9 degrees). At both initial postoperative and at final follow-up visits, a significant difference was found for cervical lordosis 32.2 versus 14.0 degrees and 42.0 versus 16.6 degrees, respectively. Risk ratio for developing PJK at final follow-up was 2.8 for subjects with preoperative thoracic hyperkyphosis and was 3.1 for subjects with high pelvic incidence (P<0.05). The risk of developing PJK during distraction-based growth friendly treatment for EOS was 20% immediately after implantation and 28% at minimum 2-year follow-up, with no difference observed between rib

  10. Etiologic factors in the development of medial tibial stress syndrome: a review of the literature.

    PubMed

    Tweed, Jo L; Avil, Steven J; Campbell, Jackie A; Barnes, Mike R

    2008-01-01

    Medial tibial stress syndrome is a type of exercise-induced leg pain that is common in recreational and competitive athletes. Although various studies have attempted to find the exact pathogenesis of this common condition, it remains unknown. Various theories in literature from 1976 to 2006 were reviewed using key words. Until recently, inflammation of the periosteum due to excessive traction was thought to be the most likely cause of medial tibial stress syndrome. This periostitis has been hypothesized by some authors to be caused by the tearing away of the muscle fibers at the muscle-bone interface, although there are several suggestions as to which, if any, muscle is responsible. Recent studies have supported the view that medial tibial stress syndrome is not an inflammatory process of the periosteum but instead a stress reaction of bone that has become painful.

  11. ß-TCP bone substitutes in tibial plateau depression fractures.

    PubMed

    Rolvien, Tim; Barvencik, Florian; Klatte, Till Orla; Busse, Björn; Hahn, Michael; Rueger, Johannes Maria; Rupprecht, Martin

    2017-10-01

    The use of beta-tricalciumphospate (ß-TCP, Cerasorb®) ceramics as an alternative for autologous bone-grafting has been outlined previously, however with no study focusing on both clinical and histological outcomes of ß-TCP application in patients with multi-fragment tibial plateau fractures. The aim of this study was to analyze the long-term results of ß-TCP in patients with tibial plateau fractures. 52 patients were included in this study. All patients underwent open surgery with ß-TCP block or granulate application. After a mean follow-up of 36months (14-64months), the patients were reviewed. Radiography and computed-tomography were performed, while the Rasmussen score was obtained for clinical outcome. Furthermore, seven patients underwent biopsy during hardware removal, which was subsequently analyzed by histology and backscattered electron microscopy (BSEM). An excellent reduction with two millimeters or less of residual incongruity was achieved in 83% of the patients. At follow-up, no further changes occurred and no nonunions were observed. Functional outcome was good to excellent in 82%. Four patients underwent revision surgery due to reasons unrelated to the bone substitute material. Histologic analyses indicated that new bone was built around the ß-TCP-grafts, however a complete resorption of ß-TCP was not observed. ß-TCP combined with internal fixation represents an effective and safe treatment of tibial plateau depression fractures with good functional recovery. While its osteoconductivity seems to be successful, the biological degradation and replacement of ß-TCP is less pronounced in humans than previous animal studies have indicated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Calcium phosphate cement augmentation in the treatment of depressed tibial plateau fractures with open reduction and internal fixation.

    PubMed

    Oztürkmen, Yusuf; Caniklioğlu, Mustafa; Karamehmetoğlu, Mahmut; Sükür, Erhan

    2010-01-01

    We aimed to evaluate the clinical and radiological outcomes of open reduction and internal fixation augmented with calcium phosphate cement (CPC) in the treatment of depressed tibial plateau fractures. Twenty-eight knees of 28 patients [19 males and 9 females; mean age, 41.2 years (range 22-72 years)] who had open reduction and internal fixation combined with CPC augmentation were included in this study. Seventeen fractures were Schatzker type II, 5 were type III, 3 were type IV, 2 were type V, and 1 was type VI. CPC was used to fill the subchondral bone defects in all knees. Fixation of the fragments was done with screws in 3 knees (10%). Standard proximal tibial plates or buttress plates were used in 25 knees (90%) with an additional split fragment extending distally to achieve internal fixation. Full weight-bearing was allowed in 6.4 weeks (range 6-12 weeks) after surgery. Resorption of CPC granules was defined as the decrease in the size and density of grafting material on radiographs. Rasmussen's radiological and clinical scores were determined postoperatively. Functionality was assessed with Lysholm knee scoring system. Activity was graded with Tegner's activity scale. Union was achieved in all patients with a mean follow-up of 22.2 months (range 6-36 months). There were no intraoperative complications. At the latest follow-up radiographs, resorption of the graft was observed in 25 knees (89%). Rasmussen's radiologic score was excellent in 17 patients (61%), good in 9 patients (32%), and fair in 2 patients (7%). Rasmussen's clinical score was excellent in 9 patients (32%), good in 18 patients (64%), and fair in 1 patient (4%). According to the Lysholm knee score, functional results were excellent in 16 patients (57%), good in 8 patients (29%), and fair in 4 patients (14%). Twenty-two patients (78%) achieved the preoperative activity level after surgery, and there was no significant difference between the mean preoperative and postoperative Tegner scores (4

  13. Computational comparison of tibial diaphyseal fractures fixed with various degrees of prebending of titanium elastic nails and with and without end caps.

    PubMed

    Chen, Yen-Nien; Lee, Pei-Yuan; Chang, Chih-Han; Chang, Chih-Wei; Ho, Yi-Hung; Li, Chun-Ting; Peng, Yao-Te

    2016-10-01

    Elastic stable intramedullary nailing (ESIN) is a treatment strategy for the management of diaphyseal long-bone fractures in adolescents and children, but few studies have investigated the mechanical stability of tibial diaphyseal fractures treated with various degrees of prebending of the elastic nails. Therefore, the aim of this study was to compare the mechanical stability, including the gap deformation and nail dropping, of a tibia fracture with various fracture sites and fixed with various degrees of prebending of the elastic nails by the finite element method. Furthermore, the contribution of end caps to stability was taken into consideration in the simulation. A tibia model was developed with a transverse fracture at the proximal, middle and distal parts of the diaphysis, and fixed with three degrees of prebending of elastic nails, including those equal to, two times and three times the diameter of the intramedullary canal. The outer diameter of the nail used in the computation was 3.5mm, and the fractured tibia was fixed with two elastic double C-type nails. Furthermore, the proximal end of each nail was set to free or being tied to the surrounding bone by a constraint equation to simulate with or without using end caps. The results indicated that using end caps can prevent the fracture gap from collapsing by stopping the ends of the nails from dropping back in all prebending conditions and fracture patterns, and increasing the prebending of the nails to a degree three times the diameter of the canal reduced the gap shortening and the dropping distance of the nail end in those without using end caps under axial compression and bending. Insufficient prebending of the nails and not using end caps caused the gap to collapse and the nail to drop back at the entry point under loading. Using end caps or increasing the prebending of the nails to three times the diameter of the canal is suggested to stop the nail from dropping back and thus produce a more stable

  14. The Proximate Causes of Sexual Size Dimorphism in Phrynocephalus przewalskii

    PubMed Central

    Zhao, Wei; Liu, Nai-fa

    2014-01-01

    Sexual size dimorphism (SSD) is a common phenomenon and is a central topic in evolutionary biology. Recently, the importance of pursuing an ontogenetic perspective of SSD has been emphasized, to elucidate the proximate physiological mechanisms leading to its evolution. However, such research has seldom focused on the critical periods when males and females diverge. Using mark-recapture data, we investigated the development of SSD, sex-specific survivorship, and growth rates in Phrynocephalus przewalskii (Agamidae). We demonstrated that both male and female lizards are reproductively mature at age 10–11 months (including 5 months hibernation). Male-biased SSD in snout-vent length (SVL) was only found in adults and was fully expressed at age 11 months (June of the first full season of activity), just after sexual maturation. However, male-biased SSD in tail length (TL), hind-limb length (LL), and head width (HW) were fully expressed at age 9–10 months, just before sexual maturation. Analysis of age-specific linear growth rates identified sexually dimorphic growth during the fifth growth month (age 10–11 months) as the proximate cause of SSD in SVL. The males experienced higher mortality than females in the first 2 years and only survived better than females after SSD was well developed. This suggests that the critical period of divergence in the sizes of male and female P. przewalskii occurs between 10 and 11 months of age (May to June during the first full season of activity), and that the sexual difference in growth during this period is the proximate cause. However, the sexual difference in survivorship cannot explain the male-biased SSD in SVL. Our results indicate that performance-related characteristics, such as TL, HW, and LL diverged earlier than SVL. The physiological mechanisms underlying the different growth patterns of males and females may reflect different energy allocations associated with their different reproductive statuses. PMID:24465815

  15. [Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee].

    PubMed

    Yue, De-bo; E, Sen; Wang, Bai-liang; Wang, Wei-guo; Guo, Wan-shou; Zhang, Qi-dong

    2013-05-07

    To retrospectively explore the correlation between anterior cruciate ligament (ACL)-ruptured knees, stability of ACL-rupture knee and posterior tibial slope (PTS). From January 2008 to October 2012, 150 knees with ACL rupture underwent arthroscopic surgery for ACL reconstruction. A control group was established for subjects undergoing arthroscopic surgery without ACL rupture during the same period. PTS was measured on a digitalized lateral radiograph. Lachman and mechanized pivot shift tests were performed for assessing the stability of knee. There was significant difference (P = 0.007) in PTS angle between the patients with ACL rupture (9.5 ± 2.2 degrees) and the control group (6.6 ± 1.8 degrees). Only among females, increased slope of tibial plateau had effect on the Lachman test. There was a higher positive rate of pivot shift test in patients of increased posterior slope in the ACL rupture group. Increased posterior tibial slope (>6.6) appears to contribute to non-contact ACL injuries in females. And the changes of tibial slope have no effect upon the Lachman test. However, large changes in tibial slope affect pivot shift.

  16. Atypical presentation of popliteal artery entrapment syndrome: involvement of the anterior tibial artery.

    PubMed

    Bou, Steven; Day, Carly

    2014-11-01

    Popliteal artery entrapment syndrome (PAES) is a rare condition that should be suspected in a young patient with exertional lower extremity pain. We report the case of an 18-year-old female volleyball player with bilateral exertional lower extremity pain who had been previously diagnosed with tendinitis and periostitis. Diagnostic studies showed entrapment of the left popliteal artery and the left anterior tibial artery. To our knowledge, there has only been 1 previous report of anterior tibial artery involvement in PAES. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.

    PubMed

    Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul

    2007-01-01

    Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, P<0.05). Tibial internal rotation excursion was compared between the shod and barefoot conditions over the first 50% of stance phase using paired t-test, (P<0.05). Forefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (P<0.05; effect size=0.47). The mean absolute relative angle was significantly modified to 37 degrees in-phase relationship at the heel-strike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.

  18. Incidence of complications associated with tibial tuberosity advancement in Boxer dogs.

    PubMed

    de Lima Dantas, Brigite; Sul, Rui; Parkin, Tim; Calvo, Ignacio

    2016-01-01

    To retrospectively review and describe the incidence of complications associated with tibial tuberosity advancement (TTA) surgical procedures in a group of Boxer dogs (n = 36 stifles) and compare the data with a non-Boxer control population (n = 271 stifles). Retrospective analysis of medical records to identify all dogs that underwent TTA surgery due to cranial cruciate ligament disease. These records were categorized into two groups: Boxer dogs and non-Boxer dogs (controls - all other breeds). Of the 307 stifles included, 69 complications were reported in 58 joints. The complication rate differed significantly for Boxer dogs (16/36 stifles) and non-Boxer dogs (42/271 stifles), corresponding to an odds ratio of 5.8 (confidence interval: 1.96-17.02; p-value <0.001). Boxer dogs were more likely to undergo revision surgery and to develop multiple complications. The incidence of tibial tuberosity fractures requiring surgical repair (2/36 versus 1/271) and incisional infections requiring antibiotic treatment (three in each group) was significantly higher in the Boxer group. Boxer dogs had more major and multiple complications after TTA surgery than the control non-Boxer group; these complications included higher rates of revision surgery, tibial tuberosity fractures requiring stabilization, and infection related complications. The pertinence and value of breed-specific recommendations for cranial cruciate ligament disease appears to be a subject worthy of further investigation.

  19. Os tibiale externum or sesamoid in the tendon of tibialis posterior.

    PubMed

    Bareither, D J; Muehleman, C M; Feldman, N J

    1995-01-01

    From a total of 165 foot and lower leg cadaveric specimens, 38 specimens were selected by palpation of the region of the tuberosity of the navicular for the possible presence of an accessory bone. Specimens were radiographed and dissected to reveal the presence of an accessory bone and its relationship to the tibialis posterior tendon. Nineteen of the specimens exhibited hypertrophy of the tibialis posterior tendon and 19 specimens exhibited an accessory bone. Specimens exhibiting an accessory bone were divided into two categories. In one group, the accessory bone was located in the tibialis posterior tendon prior to its division and was separated from the tuberosity by at least 3 mm. In the other group, the accessory bone was located in the main segment of the tibialis posterior tendon, connected to the tuberosity of the navicular by fibrous tissue, and, in some cases, exhibited a central cavity between the accessory bone and tuberosity. The accessory bone of specimens in the first group was considered to be a sesamoid in the tibialis posterior tendon and the accessory bone in the second group was an ossicle considered to be the os tibiale externum. Linking the os tibiale externum to the tibiale component of the primitive tetrapod foot rather than to the prehallux component eliminates the use of the term "prehallux" as an alternative name for this ossicle.

  20. EMG and tibial shock upon the first attempt at barefoot running.

    PubMed

    Olin, Evan D; Gutierrez, Gregory M

    2013-04-01

    As a potential means to decrease their risk of injury, many runners are transitioning into barefoot running. Habitually shod runners tend to heel-strike (SHS), landing on their heel first, while barefoot runners tend to mid-foot or toe-strike (BTS), landing flat-footed or on the ball of their foot before bringing down the rest of the foot including the heel. This study compared muscle activity, tibial shock, and knee flexion angle in subjects between shod and barefoot conditions. Eighteen habitually SHS recreational runners ran for 3 separate 7-minute trials, including SHS, barefoot heel-strike (BHS), and BTS conditions. EMG, tibial shock, and knee flexion angle were monitored using bipolar surface electrodes, an accelerometer, and an electrogoniometer, respectively. A one-way MANOVA for repeated measures was conducted and several significant changes were noted between SHS and BTS, including significant increases in average EMG of the medial gastrocnemius (p=.05), average and peak tibial shock (p<.01), and the minimum knee flexion angle (p<.01). Based on our data, the initial change in mechanics may have detrimental effects on the runner. While it has been argued that BTS running may ultimately be less injurious, these data indicate that habitually SHS runners who choose to transition into a BTS technique must undertake the process cautiously. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  2. Creep of trabecular bone from the human proximal tibia

    PubMed Central

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna

    2014-01-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486

  3. Risk factors for tibial implant malpositioning in total knee arthrosplasty-consecutive series of one thousand, four hundred and seventeen cases.

    PubMed

    Gaillard, Romain; Cerciello, Simone; Lustig, Sebastien; Servien, Elvire; Neyret, Philippe

    2017-04-01

    Total knee arthroplasty (TKA) malalignment may result in pain and limited range of motion. The present study assessed the influence of different surgeon's and patient's related factors on the post-operative tibial tray coronal alignment. The charts and the x-rays of a continuous prospective series of 1417 TKAs operated upon between 1987 and 2015 were retrospectively reviewed. The long-leg AP views were performed at two months post-op and the tibial mechanical angle of the tibial tray was measured. Three groups were defined: varus (≤87° n = 167), valgus (≥93° n = 55) and well alignment (88° to 92° n = 1195). The influence of several pre-operative and peri-operative factors was investigated: surgeon handedness and experience (junior or senior), previous tibial osteotomies, Ahlbäck stage of osteoarthritits, pre-operative alignment, height and weight, age at surgery, approach (medial, lateral or tibial tubercle osteotomy), generation of implants, tray fixation, size of the tray and stem lenght. Univariate then multivariate analysis were performed to find out any correlation. Multivariate analysis showed a strong correlation between varus alignment of the tibial tray and pre-operative varus of the lower limb (p = 0.037), increased BMI (p = 0.016) and operated side opposite to the dominant surgeon's arm (p = 0.006). In a similar way a strong correlation was found between valgus alignment and pre-operative valgus of the limb (p = 0.026). Poor alignment of the tibial tray after TKA was associated with pre-operative malalignment of the lower limb, increased BMI and an index knee which was opposite to surgeon's dominant arm.

  4. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program.

    PubMed

    Rice, Hannah M; Saunders, Samantha C; McGuire, Stephen J; O'Leary, Thomas J; Izard, Rachel M

    2018-03-26

    Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted. This study aimed to provide estimates of tibial shock during military drill in British Army Basic training. The study also aimed to compare values between men and women, and to identify any differences between the first and final sessions of training. Tibial accelerometers were secured on the right medial, distal shank of 10 British Army recruits (n = 5 men; n = 5 women) throughout a scheduled drill training session in week 1 and week 12 of basic military training. Peak positive accelerations, the average magnitude above given thresholds, and the rate at which each threshold was exceeded were quantified. Mean (SD) peak positive acceleration was 20.8 (2.2) g across all sessions, which is considerably higher than values typically observed during high impact physical activity. Magnitudes of tibial shock were higher in men than women, and higher in week 12 compared with week 1 of training. This study provides the first estimates of tibial shock magnitude during military drill training in the field. The high values suggest that military drill is a demanding activity and this should be considered when developing and evaluating military training programs. Further exploration is required to understand the response of the lower limb to military drill training and the etiology of these responses in the development of lower limb stress fractures.

  5. Moore I postero-medial articular tibial fracture in alpine skiers: Surgical management and return to sports activity.

    PubMed

    Morin, Vincent; Pailhé, Régis; Sharma, Akash; Rouchy, René-Christopher; Cognault, Jérémy; Rubens-Duval, Brice; Saragaglia, Dominique

    2016-06-01

    Over the past 10 years, like many authors, we observed an increasing number of Moore I tibial plateau fractures related to alpine skiing for which the surgeon may face difficult choices regarding surgical approach and fixation means. Some authors have recently been suggesting a posterior approach associated to open reduction and osteosynthesis by a buttress plate. But in our knowledge there is no specific study on sports activity recovery after Moore I tibial fractures. The aim of this work was to assess sports activities and clinical outcomes after surgically treated Moore I tibial plateau fractures in an athletic population of skiers. We conducted a prospective case series between 2012 and 2014. This included fifteen patients aged 39.6±7 years whom presented with a Moore I tibial plateau fracture during a skiing accident. 12 cases (80%) presented with an associated tibial spine fracture. Treatment consisted of a standard antero-medial approach, with a medial para patellar arthrotomy to allow direct visualisation of articular reduction and spinal fixation. Two or three 6.5mm long cancellous bone screws were placed antero-posteriorly so as to ensure perfect compression of the fracture site. Radiological and functional results were assessed by an independent observer (Lysholm-Tegner, UCLA, KOOS scores) at the longest follow-up. Mean follow-up was 18.2±6 months (12-28). An immediate postoperative anatomical reduction was achieved in all cases and remained stable in time. At last follow-up Lysholm mean score was 85±14 points (59-100), UCLA score was 7.3±1.6 (4-10) and Tegner score was 4.6±1.3 (3-6). Mean KOOS score was 77±15 (54-97). 87% of patients had resumed their skiing activity and 93% were satisfied or very satisfied from their post-operative surgical outcome. We observed no pseudarthrosis or secondary varus displacement. In our series 87% of patients had resumed back to their sporting activities. Surgical management of Moore I tibial plateau fractures by

  6. Distal tibial pilon fractures (AO/OTA type B, and C) treated with the external skeletal and minimal internal fixation method.

    PubMed

    Milenković, Sasa; Mitković, Milorad; Micić, Ivan; Mladenović, Desimir; Najman, Stevo; Trajanović, Miroslav; Manić, Miodrag; Mitković, Milan

    2013-09-01

    Distal tibial pilon fractures include extra-articular fractures of the tibial metaphysis and the more severe intra-articular tibial pilon fractures. There is no universal method for treating distal tibial pilon fractures. These fractures are treated by means of open reduction, internal fixation (ORIF) and external skeletal fixation. The high rate of soft-tissue complications associated with primary ORIF of pilon fractures led to the use of external skeletal fixation, with limited internal fixation as an alternative technique for definitive management. The aim of this study was to estimate efficacy of distal tibial pilon fratures treatment using the external skeletal and minimal internal fixation method. We presented a series of 31 operated patients with tibial pilon fractures. The patients were operated on using the method of external skeletal fixation with a minimal internal fixation. According to the AO/OTA classification, 17 patients had type B fracture and 14 patients type C fractures. The rigid external skeletal fixation was transformed into a dynamic external skeletal fixation 6 weeks post-surgery. This retrospective study involved 31 patients with tibial pilon fractures, average age 41.81 (from 21 to 60) years. The average follow-up was 21.86 (from 12 to 48) months. The percentage of union was 90.32%, nonunion 3.22% and malunion 6.45%. The mean to fracture union was 14 (range 12-20) weeks. There were 4 (12.19%) infections around the pins of the external skeletal fixator and one (3.22%) deep infections. The ankle joint arthrosis as a late complication appeared in 4 (12.90%) patients. All arthroses appeared in patients who had type C fractures. The final functional results based on the AOFAS score were excellent in 51.61%, good in 32.25%, average in 12.90% and bad in 3.22% of the patients. External skeletal fixation and minimal internal fixation of distal tibial pilon fractures is a good method for treating all types of inta-articular pilon fractures. In

  7. The anterior tilt angle of the proximal tibia epiphyseal plate: a significant radiological finding in young children with trampoline fractures.

    PubMed

    Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael

    2014-08-01

    Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Open Tibial Inlay PCL Reconstruction: Surgical Technique and Clinical Outcomes.

    PubMed

    Vellios, Evan E; Jones, Kristofer J; McAllister, David R

    2018-06-01

    To review the current literature on clinical outcomes following open tibial inlay posterior cruciate ligament (PCL) reconstruction and provide the reader with a detailed description of the author's preferred surgical technique. Despite earlier biomechanical studies which demonstrated superiority of the PCL inlay technique when compared to transtibial techniques, recent longitudinal cohort studies have shown no significant differences in clinical or functional outcomes at 10-year follow-up. Furthermore, no significant clinical differences have been shown between graft types used and/or single- versus double-bundle reconstruction methods. The optimal treatment for the PCL-deficient knee remains unclear. Open tibial inlay PCL reconstruction is safe, reproducible, and avoids the "killer turn" that may potentially lead to graft weakening and failure seen in transtibial reconstruction methods. No significant differences in subjective outcomes or clinical laxity have been shown between single-bundle versus double-bundle reconstruction methods.

  9. Proximal third humeral shaft fractures -- a fracture entity not fully characterized by conventional AO classification.

    PubMed

    Stedtfeld, H W; Biber, R

    2014-01-01

    The retrospective study was made to evaluate the fracture patterns at the proximal humeral shaft for which the long version of a standard proximal humeral nail (PHNLV) has been used. The indication has been decided by the individual surgeons. Over a five year period 72 consecutive PHNLV cases of an acute fracture were identified and were included in the study. Mean patient age was 68.9 years. Gender ratio was m/f=22/50. 86.1% of the patients fractured their humerus by a fall, the rest by a high velocity accident. We analysed patient comorbidity, ASA score, osteoporosis, social status before accident, additional injuries affecting local soft tissues or other anatomic regions. We analysed the expansion of the fractures, dividing the humerus into five zones. Fracture morphology was categorized according to the standard AO/ASIF classification (if applicable). Comorbidities were found in 76.4% of the patients. Almost all patients (93.1%) had been living independently at home before the accident. 47.2% of patients had osteoporosis in their medical history. Five patients (6.9%) had a primary palsy of the radial nerve. Six fractures chosen for PHNLV fixation were clearly restricted to the humeral head. The remaining 66 fractures were located in the humeral shaft (AO region 12). There were 5 segmental fractures. Of the remaining 67 fractures affecting the proximal third of the humeral shaft 49.3 percent extended into the humeral head. 98 percent of these fractures displayed spiral morphology. Proximal humeral shaft fractures are amazingly similar to subtrochanteric and distal tibial shaft fractures: Spiral fracture types with different grades of comminution are absolutely dominant; a great proportion of the fractures extend into the humeral head with growing tendency of displacement if located closer to the humeral head. Diverging traction of deltoid and pectoralis muscle causes typical displacement if the fracture line runs in between their attachments substantiating the

  10. The Effect of Arch Drop on Tibial Rotation and Tibiofemoral Contact Stress in Postpartum Women.

    PubMed

    Rabe, Kaitlin; Segal, Neil A; Waheed, Saphia; Anderson, Donald D

    2018-04-26

    Women are at greater risk for knee osteoarthritis and numerous other lower limb musculoskeletal disorders. Arch drop during pregnancy and the resultant excessive pronation of the feet may alter loading patterns and contribute to the greater prevalence of knee osteoarthritis in women. To determine the effect of arch drop on tibial rotation and tibiofemoral contact stress. Interventional study with internal control. Biomechanics laboratory. Eleven postpartum women (age 33.4 ± 5.3 years, body mass 76.1 ± 13.5 kg) who had lost arch height with pregnancy in a previous study. Subjects underwent standing computed tomography (SCT) with their knees in a 20° fixed-flexed position with and without semirigid arch supports to reconstitute prepregnancy arch height. Magnetic resonance imaging of the knee was acquired at a flexion angle equivalent to that of SCT. Bone and cartilage were manually segmented on the magnetic resonance images and segmented surfaces were registered to the 3-dimensional SCT image sets for the arch-supported and -unsupported conditions. These models were used to measure changes in tibial rotation, as well as to estimate contact stress in the medial and lateral tibiofemoral compartments, using computational methods. Change in tibial rotation and tibiofemoral contact stress with arch drop. Arch drop resulted in a mean tibial internal rotation of 0.75 ± 1.33° (P < .05). Changes in mean or peak contact stress were not detected. Arch drop causes internal tibial rotation, resulting in a shift in the tibiofemoral articulation. An associated increase in contact stress was not detected. Internal rotation of the tibia increases stress on the anterior cruciate ligament and menisci, potentially explaining the greater prevalence of knee disorders in postpartum women. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. A modified technique to reduce tibial keel cutting errors during an Oxford unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2017-03-01

    Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.

  12. Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1

    DTIC Science & Technology

    2015-01-01

    controlling for age and sex was used. However, there were no statistically significant differences between NF1 individuals with and without tibial...Dinorah Friedmann-Morvinski (The Salk Institute) presented a different model of glioblastoma in which tumors were induced from fully differentiated...a driver of Schwann cell tumorigenesis. Induction ofWnt signaling was sufficient to induce a transformed phenotype in human Schwann cells, while

  13. Selective reinnervation: a comparison of recovery following microsuture and conduit nerve repair.

    PubMed

    Evans, P J; Bain, J R; Mackinnon, S E; Makino, A P; Hunter, D A

    1991-09-20

    Selective reinnervation was studied by comparing the regeneration across a conventional neurorraphy versus a conduit nerve repair. Lewis rats underwent right sciatic nerve transection followed by one of four different nerve repairs (n = 8/group). In groups I and II a conventional neurorraphy was performed and in groups III and IV the proximal and distal stumps were coapted by use of a silicone conduit with an interstump gap of 5 mm. The proximal and distal stumps in groups I and III were aligned anatomically correct and the proximal stump was rotated 180 degrees in groups II and IV (i.e. proximal peroneal nerve opposite the distal tibial nerve and the proximal tibial nerve opposite the distal peroneal nerve). By 14 weeks, there was an equivalent, but incomplete return in sciatic function index (SFI) in groups I, III, and IV as measured by walking track analysis. However, the SFI became unmeasurable by 6 weeks in all group II animals. At 14 weeks, the percent innervation of the tibialis anterior and medial gastronemius muscles by the peroneal and tibial nerves respectively was estimated by selective compound muscle action potential amplitude recordings. When fascicular alignment was reversed, there was greater tibial (P = 0.02) and lesser peroneal (P = 0.005) innervation of the gastrocnemius muscle in the conduit (group IV) versus the neurorraphy (group II) group. This suggests that the gastrocnemius muscle may be selectively reinnervated by the tibial nerve. However, there was no evidence of selective reinnervation of the tibialis anterior muscle. Despite these differences, the functional recovery in both conduit repair groups (III and IV) was equivalent to a correctly aligned microsuture repair (group I) and superior to that in the incorrectly aligned microsuture repair (group II).

  14. Locked compression plating for peri- and intra-articular fractures around the knee.

    PubMed

    Jain, Jitesh Kumar; Asif, Naiyer; Ahmad, Suhail; Qureshi, Owais; Siddiqui, Yasir Salam; Rana, Ashish

    2013-11-01

    To evaluate the role of locked compression plates (LCPs) in management of peri- and intra-articular fractures around the knee. Twenty distal femoral and 20 proximal tibial fractures were fixed with LCPs. The types of femoral fractures were A1 (four), A2 (three), A3 (two), C1 (one), C2 (seven) and C3 (three). The types of tibial fractures were A2 (one), A3 (two), B2 (two), C1 (four), C2 (five) and C3 (six). All patients were followed up for up to 18 months (mean, 12 months). Fourteen patients with distal femoral fractures and 19 with proximal tibial fractures underwent surgery using a minimally invasive percutaneous plate osteosynthesis (MIPPO) technique. The others were treated by open reduction. The average time of fixation was 8 days after injury (0-31 days). Knee Society scores were used for clinical and functional assessment. All fractures, except one of the distal femur and one of the proximal tibia, united. The mean union times for distal femoral and proximal tibial fractures were 15.2 and 14.9 weeks, respectively. One patient with a distal femoral fracture had implant failure. One patient was quadriplegic and did not recover the ability to walk. The average Knee Society scores of the remaining 18 patients were 82.66 (excellent) and 77.77 (functional score, good). There was one case of implant failure and one of screw breakage in distal femoral fractures. One case of nonunion occurred in a proximal tibial fracture. Provided it is applied with proper understanding of biomechanics, LCP is one of the best available options for management of challenging peri- and intra-articular fractures. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  15. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training.

    PubMed

    Finestone, Aharon; Milgrom, Charles; Wolf, Omer; Petrov, Kaloyan; Evans, Rachel; Moran, Daniel

    2011-01-01

    The training of elite infantry recruits takes a year or more. Stress fractures are known to be endemic in their basic training and the clinical presentation of tibial, femoral, and metatarsal stress fractures are different. Stress fracture incidence during the subsequent progressively more demanding training is not known. The study hypothesis was that after an adaptation period, the incidence of stress fractures during the course of 1 year of elite infantry training would fall in spite of the increasingly demanding training. Seventy-six male elite infantry recruits were followed for the development of stress fractures during a progressively more difficult training program composed of basic training (1 to 14 weeks), advanced training (14 to 26 weeks), and unit training (26 to 52 weeks). Subjects were reviewed regularly and those with clinical suspicion of stress fracture were assessed using bone scan and X-rays. The incidence of stress fractures was 20% during basic training, 14% during advanced training and 23% during unit training. There was a statistically significant difference in the incidence of tibial and femoral stress fractures versus metatarsal stress fractures before and after the completion of phase II training at week 26 (p=0.0001). Seventy-eight percent of the stress fractures during phases I and II training were either tibial or femoral, while 91% of the stress fractures in phase III training were metatarsal. Prior participation in ball sports (p=0.02) and greater tibial length (p=0.05) were protective factors for stress fracture. The study hypothesis that after a period of soldier adaptation, the incidence of stress fractures would decrease in spite of the increasingly demanding elite infantry training was found to be true for tibial and femoral fractures after 6 months of training but not for metatarsal stress fractures. Further studies are required to understand the mechanism of this difference but physicians and others treating stress fractures

  16. Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner.

    PubMed

    Savarese, Eugenio; Bisicchia, Salvatore; Romeo, Rocco; Amendola, Annunziato

    2011-03-01

    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO.

  17. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture.

    PubMed

    Milner, Clare E; Hamill, Joseph; Davis, Irene S

    2010-02-01

    Cross-sectional controlled laboratory study. To investigate the kinematics of the hip, knee, and rearfoot in the frontal and transverse planes in female distance runners with a history of tibial stress fracture. Tibial stress fractures are a common overuse injury in runners, accounting for up to half of all stress fractures. Abnormal kinematics of the lower extremity may contribute to abnormal musculoskeletal load distributions, leading to an increased risk of stress fractures. Thirty female runners with a history of tibial stress fracture were compared to 30 age-matched and weekly-running-distance-matched control subjects with no previous lower extremity bony injuries. Kinematic and kinetic data were collected using a motion capture system and a force platform, respectively, as subjects ran in the laboratory. Selected variables of interest were compared between the groups using a multivariate analysis of variance (MANOVA). Peak hip adduction and peak rearfoot eversion angles were greater in the stress fracture group compared to the control group. Peak knee adduction and knee internal rotation angles and all joint angles at impact peak were similar between the groups. Runners with a previous tibial stress fracture exhibited greater peak hip adduction and rearfoot eversion angles during the stance phase of running compared to healthy controls. A consequence of these mechanics may be altered load distribution within the lower extremity, predisposing individuals to stress fracture.

  18. Management of open tibial fractures – a regional experience

    PubMed Central

    Townley, WA; Nguyen, DQA; Rooker, JC; Dickson, JK; Goroszeniuk, DZ; Khan, MS; Camp, D

    2010-01-01

    INTRODUCTION The treatment of soft-tissue injuries associated with tibial diaphyseal fractures presents a clinical challenge that is best managed by a combined plastic and orthopaedic surgery approach. The current study was undertaken to assess early treatment outcomes and burden of service provision across five regional plastic surgery units in the South-West of England. SUBJECTS AND METHODS We conducted a prospective 6-month audit of open tibial diaphyseal fracture management in five plastic surgery units (Bristol, Exeter, Plymouth, Salisbury, Swansea) with a collective catchment of 9.2 million people. Detailed data were collected on patient demographics, injury pattern, surgical management and outcome followed to discharge. RESULTS The study group consisted of 55 patients (40 male, 15 female). Twenty-two patients presented directly to the emergency department at the specialist hospital (primary group), 33 patients were initially managed at a local hospital (tertiary group). The mean time from injury to soft tissue cover was significantly less (P < 0.001) in the primary group (3.6 ± 0.8 days) than the tertiary group (10.8 ± 2.2 days), principally due to a delay in referral in the latter group (5.4 ±1.7 days). Cover was achieved with 39 flaps (19 free, 20 local), eight split skin grafts. Nine wounds closed directly or by secondary intention. There were 11 early complications (20%) including one flap failure and four infections. The overall mean length of stay was 17.5 ± 2.8 days. CONCLUSIONS Multidisciplinary management of severe open tibial diaphyseal may not be feasible at presentation of injury depending on local hospital specialist services available. Our results highlight the need for robust assessment, triage and senior orthopaedic review in the early post-injury phase. However, broader improvements in the management of lower limb trauma will additionally require further development of combined specialist trauma centres. PMID:21047449

  19. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  20. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    PubMed

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  1. Ketorolac Administered in the Recovery Room for Acute Pain Management Does Not Affect Healing Rates of Femoral and Tibial Fractures.

    PubMed

    Donohue, David; Sanders, Drew; Serrano-Riera, Rafa; Jordan, Charles; Gaskins, Roger; Sanders, Roy; Sagi, H Claude

    2016-09-01

    To determine whether ketorolac administered in the immediate perioperative period affects the rate of nonunion in femoral and tibial shaft fractures. Retrospective comparative study. Single Institution, Academic Level 1 Trauma Center. Three hundred and thirteen skeletally mature patients with 137 femoral shaft (OTA 32) and 191 tibial shaft (OTA 42) fractures treated with intramedullary rod fixation. Eighty patients with 33 femoral shaft and 52 tibial shaft fractures were administered ketorolac within the first 24 hours after surgery (group 1-study group). Two-hundred thirty-three patients with 104 femoral shaft and 139 tibial shaft fractures were not (group 2-control group). Rate of reoperation for repair of a nonunion and time to union. Average time to union of the femur was 147 days for group 1 and 159 days for group 2 (P = 0.57). Average time to union of the tibia was 175 days for group 1 and 175 days for group 2 (P = 0.57). There were 3 femoral nonunions (9%) in group 1 and eleven femoral nonunions (11.6%) in group 2 (P = 1.00). There were 3 tibial nonunions (5.8%) in group 1 and 17 tibial nonunions (12.2%) in group 2 (P = 0.29). The average dose of ketorolac for patients who healed their fracture was 85 mg, whereas it was 50 mg for those who did not (P = 0.27). All patients with a nonunion in the study group were current smokers. Ketorolac administered in the first 24 hours after fracture repair for acute pain management does not seem to have a negative impact on time to healing or incidence of nonunion for femoral or tibial shaft fractures. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  2. EFFECT OF AXIAL TIBIAL TORQUE DIRECTION ON ACL RELATIVE STRAIN AND STRAIN RATE IN AN IN VITRO SIMULATED PIVOT LANDING

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2011-01-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment and internal or external tibial torque) was applied to the distal tibia while recording the 3-D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3mm DVRT. In this repeated measures experiment, the Wilcoxon Signed-Rank test was used to test the null hypotheses with p<0.05 considered significant. The mean (± SD) peak AM-ACL relative strains were 5.4±3.7 % and 3.1±2.8 % under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4±160.1 %/sec and 179.4±109.9 %/sec, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70% and 42% greater under internal than external tibial torque, respectively (p=0.023, p=0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. PMID:22025178

  3. Minimally invasive treatment of tibial pilon fractures through arthroscopy and external fixator-assisted reduction.

    PubMed

    Luo, Huasong; Chen, Liaobin; Liu, Kebin; Peng, Songming; Zhang, Jien; Yi, Yang

    2016-01-01

    The aim of this study was to evaluate the clinical outcome of tibial pilon fractures treated with arthroscopy and assisted reduction with an external fixator. Thirteen patients with tibial pilon fractures underwent assisted reduction for limited lower internal fixation with an external fixator under arthroscopic guidance. The weight-bearing time was decided on the basis of repeat radiography of the tibia 3 months after surgery. Postoperative ankle function was evaluated according to the Mazur scoring system. Healing of fractures was achieved in all cases, with no complications such as severe infection, skin necrosis, or an exposed plate. There were 9 excellent, 2 good, and 2 poor outcomes, scored according to the Mazur system. The acceptance rate was 85%. Arthroscopy and external fixator-assisted reduction for the minimally invasive treatment of tibial pilon fractures not only produced less trauma but also protected the soft tissues and blood supply surrounding the fractures. External fixation could indirectly provide reduction and effective operative space for arthroscopic implantation, especially for AO type B fractures and partial AO type C1 fractures.

  4. Regional fibrocartilage variations in human anterior cruciate ligament tibial insertion: a histological three-dimensional reconstruction.

    PubMed

    Dai, Can; Guo, Lin; Yang, Liu; Wu, Yi; Gou, Jingyue; Li, Bangchun

    2015-02-01

    We studied anterior cruciate ligament (ACL) tibial insertion architecture in humans and investigated regional differences that could suggest unequal force transmission from ligament to bone. ACL tibial insertions were processed histologically. With Photoshop software, digital images taken from the histological slides were collaged, contour lines were drawn, and different gray values were filled based on the structure. The data were exported to Amira software for three-dimensional reconstruction. The uncalcified fibrocartilage (UF) layer was divided into three regions: lateral, medial and posterior according to the architecture. The UF zone was significantly thicker laterally than medially or posteriorly (p < 0.05). Similarly, the calcified fibrocartilage (CF) thickness was significantly greater in the lateral part of the enthesis compared to the medial and posterior parts (p < 0.05). The UF quantity (more UF laterally) corresponding to the CF quantity (more CF laterally) at the ACL tibial insertion provides further evidence suggesting that the load transferred from the ACL to the tibia was greater laterally than medially and posteriorly.

  5. A new aiming guide can create the tibial tunnel at favorable position in transtibial pullout repair for the medial meniscus posterior root tear.

    PubMed

    Furumatsu, T; Kodama, Y; Fujii, M; Tanaka, T; Hino, T; Kamatsuki, Y; Yamada, K; Miyazawa, S; Ozaki, T

    2017-05-01

    Injuries to the medial meniscus (MM) posterior root lead to accelerated cartilage degeneration of the knee. An anatomic placement of the MM posterior root attachment is considered to be critical in transtibial pullout repair of the medial meniscus posterior root tear (MMPRT). However, tibial tunnel creation at the anatomic attachment of the MM posterior root is technically difficult using a conventional aiming device. The aim of this study was to compare two aiming guides. We hypothesized that a newly-developed guide, specifically designed, creates the tibial tunnel at an adequate position rather than a conventional device. Twenty-six patients underwent transtibial pullout repairs. Tibial tunnel creation was performed using the Multi-use guide (8 cases) or the PRT guide that had a narrow twisting/curving shape (18 cases). Three-dimensional computed tomography images of the tibial surface were evaluated using the Tsukada's measurement method postoperatively. Expected anatomic center of the MM posterior root attachment and tibial tunnel center were evaluated using the percentage-based posterolateral location on the tibial surface. Percentage distance between anatomic center and tunnel center was calculated. Anatomic center of the MM posterior root footprint located at a position of 78.5% posterior and 39.4% lateral. Both tunnels were anteromedial but tibial tunnel center located at a more favorable position in the PRT group: percentage distance was significantly smaller in the PRT guide group (8.7%) than in the Multi-use guide group (13.1%). The PRT guide may have great advantage to achieve a more anatomic location of the tibial tunnel in MMPRT pullout repair. III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Tibial Plateau Fractures in Elderly Patients

    PubMed Central

    Vemulapalli, Krishna C.; Gary, Joshua L.; Donegan, Derek J.

    2016-01-01

    Tibial plateau fractures are common in the elderly population following a low-energy mechanism. Initial evaluation includes an assessment of the soft tissues and surrounding ligaments. Most fractures involve articular depression leading to joint incongruity. Treatment of these fractures may be complicated by osteoporosis, osteoarthritis, and medical comorbidities. Optimal reconstruction should restore the mechanical axis, provide a stable construct for mobilization, and reestablish articular congruity. This is accomplished through a variety of internal or external fixation techniques or with acute arthroplasty. Regardless of the treatment modality, particular focus on preservation and maintenance of the soft tissue envelope is paramount. PMID:27551570

  7. External versus internal fixation for bicondylar tibial plateau fractures: systematic review and meta-analysis.

    PubMed

    Metcalfe, David; Hickson, Craig J; McKee, Lesley; Griffin, Xavier L

    2015-12-01

    It is uncertain whether external fixation or open reduction internal fixation (ORIF) is optimal for patients with bicondylar tibial plateau fractures. A systematic review using Ovid MEDLINE, Embase Classic, Embase, AMED, the Cochrane Library, Open Grey, Orthopaedic Proceedings, WHO International Clinical Trials Registry Platform, Current Controlled Trials, US National Institute for Health Trials Registry, and the Cochrane Central Register of Controlled Trials. The search was conducted on 3rd October 2014 and no language limits were applied. Inclusion criteria were all clinical study designs comparing external fixation with open reduction internal fixation of bicondylar tibial plateau fractures. Studies of only one treatment modality were excluded, as were those that included unicondylar tibial plateau fractures. Treatment effects from studies reporting dichotomous outcomes were summarised using odds ratios. Continuous outcomes were converted to standardized mean differences to assess the treatment effect, and inverse variance methods used to combine data. A fixed effect model was used for meta-analyses. Patients undergoing external fixation were more likely to have returned to preinjury activities by six and twelve months (P = 0.030) but not at 24 months follow-up. However, external fixation was complicated by a greater number of infections (OR 2.59, 95 % CI 1.25-5.36, P = 0.01). There were no statistically significant differences in the rates of deep infection, venous thromboembolism, compartment syndrome, or need for re-operation between the two groups. Although external fixation and ORIF are associated with different complication profiles, both are acceptable strategies for managing bicondylar tibial plateau fractures.

  8. Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement.

    PubMed

    Teeter, Matthew G; Perry, Kevin I; Yuan, Xunhua; Howard, James L; Lanting, Brent A

    2018-03-01

    Contact kinematics between total knee arthroplasty components is thought to affect implant migration; however, the interaction between kinematics and tibial component migration has not been thoroughly examined in a modern implant system. A total of 24 knees from 23 patients undergoing total knee arthroplasty with a single radius, posterior stabilized implant were examined. Patients underwent radiostereometric analysis at 2 and 6 weeks, 3 and 6 months, and 1 and 2 years to measure migration of the tibial component in all planes. At 1 year, patients also had standing radiostereometric analysis examinations acquired in 0°, 20°, 40°, and 60° of flexion, and the location of contact and magnitude of any condylar liftoff was measured for each flexion angle. Regression analysis was performed between kinematic variables and migration at 1 year. The average magnitude of maximum total point motion across all patients was 0.671 ± 0.270 mm at 1 year and 0.608 ± 0.359 mm at 2 years (P = .327). Four implants demonstrated continuous migration of >0.2 mm between the first and second year of implantation. There were correlations between the location of contact and tibial component anterior-posterior tilt, varus-valgus tilt, and anterior-posterior translation. The patients with continuous migration demonstrated atypical kinematics and condylar liftoff in some instances. Kinematics can influence tibial component migration, likely through alterations of force transmission. Abnormal kinematics may play a role in long-term implant loosening. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Tibial nerve stimulation for overactive bladder syndrome unresponsive to medical therapy.

    PubMed

    Ridout, A E; Yoong, W

    2010-02-01

    Overactive bladder syndrome is defined as a symptom syndrome which includes urinary urgency, with or without urge incontinence, usually accompanied by frequency (>8 micturitions/24 h) and nocturia. Conservative treatment usually comprises behavioural techniques, bladder retraining, pelvic floor re-education and pharmacotherapy but up to 30% of patients will remain refractory to treatment. Although second-line treatment options such as sacral nerve stimulation and intravesical botulinum A injections are valuable additions to the therapeutic arsenal, they are relatively invasive and can have serious side-effects. Inhibition of detrusor activity by peripheral neuromodulation of the posterior tibial nerve was first described in 1983, with recent authors further confirming a 60-80% positive response rate. This review was undertaken to examine published literature on percutaneous tibial nerve stimulation and to discuss outcome measures, maintenance therapy and prognostic factors of this technique.

  10. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA.

    PubMed

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-01-29

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of varus-valgus (V-V) malalignment of the femoral component in kinematically aligned total knee arthroplasty (TKA) and use the results to detemine sensitivities to errors in making the distal femoral resections. Because V-V malalignment would introduce the greatest changes in the alignment of the articular surfaces at 0° flexion, the hypotheses were that the greatest increases in tibial force imbalance would occur at 0° flexion, that primarily V-V laxity would significantly change at this flexion angle, and that the tibial force imbalance would increase and laxities would change in proportion to the degree of V-V malalignment. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced V-V malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured during passive knee flexion-extension between 0° to 120° using a custom tibial force sensor. Eight laxities were measured from 0° to 120° flexion using a six degree-of-freedom load application system. With the tibial component kinematically aligned, the increase in the tibial force imbalance from that of the reference component at 0° of flexion was sensitive to the degree of V-V malalignment of the femoral component. Sensitivities were 54 N/deg (medial tibial force increasing > lateral tibial force) (p < 0.0024) and 44 N/deg (lateral tibial force increasing > medial tibial force) (p < 0.0077) for varus and valgus malalignments, respectively. Varus

  11. Ontogeny and Sexual Differences in Swimming Proximity to Conspecifics in Response to Visual Cues in Medaka Fish.

    PubMed

    Isoe, Yasuko; Konagaya, Yumi; Yokoi, Saori; Kubo, Takeo; Takeuchi, Hideaki

    2016-06-01

    Adult medaka fish (Oryzias latipes) exhibit complex social behaviors that depend mainly on visual cues from conspecifics. The ontogeny of visually-mediated social behaviors from larval/juvenile to adult medaka fish, however, is unknown. In the present study, we established a simple behavioral paradigm to evaluate the swimming proximity to conspecifics based on visual cues in an inter-individual interaction of two medaka fish throughout life. When two fish were placed separately in a cylindrical tank with a concentric transparent wall, the two fish maintained close proximity to each other. A normal fish inside the tank maintained proximity to an optic nerve-cut fish outside of the tank, while the converse was not true. This behavioral paradigm enabled us to quantify visually-induced motivation of a single fish inside the tank. The proximity was detected from larval/juvenile to adult fish. Larval fish, however, maintained close proximity not only to conspecifics, but also to heterospecifics. As the growth stage increased, the degree of proximity to heterospecifics decreased, suggesting that shoaling preferences toward conspecifics and/or visual ability to recognize conspecifics is refined and established according to the growth stage. Furthermore, the proximity of adult female fish was affected by their reproductive status and social familiarity. Only before spawning, adult females maintained closer proximity to familiar males rather than to unfamiliar males, suggesting that proximity was affected by familiarity in a female-specific manner. This simple behavioral paradigm will contribute to our understanding of the neural basis of the development of visually-mediated social behavior using medaka fish.

  12. Risk of total knee arthroplasty after operatively treated tibial plateau fracture: a matched-population-based cohort study.

    PubMed

    Wasserstein, David; Henry, Patrick; Paterson, J Michael; Kreder, Hans J; Jenkinson, Richard

    2014-01-15

    The aims of operative treatment of displaced tibial plateau fractures are to stabilize the injured knee to restore optimal function and to minimize the risk of posttraumatic arthritis and the eventual need for total knee arthroplasty. The purpose of our study was to define the rate of subsequent total knee arthroplasty after tibial plateau fractures in a large cohort and to compare that rate with the rate in the general population. All patients sixteen years of age or older who had undergone surgical treatment of a tibial plateau fracture from 1996 to 2009 in the province of Ontario, Canada, were identified from administrative health databases with use of surgeon fee codes. Each member of the tibial plateau fracture cohort was matched to four individuals from the general population according to age, sex, income, and urban/rural residence. The rates of total knee arthroplasty at two, five, and ten years were compared by using time-to-event analysis. A separate Cox proportional hazards model was used to explore the influence of patient, provider, and surgical factors on the time to total knee arthroplasty. We identified 8426 patients (48.5% female; median age, 48.9 years) who had undergone fixation of a tibial plateau fracture and matched them to 33,698 controls. The two, five, and ten-year rates of total knee arthroplasty in the plateau fracture and control cohorts were 0.32% versus 0.29%, 5.3% versus 0.82%, and 7.3% versus 1.8%, respectively (p < 0.0001). After adjustment for comorbidity, plateau fracture surgery was found to significantly increase the likelihood of total knee arthroplasty (hazard ratio [HR], 5.29 [95% confidence interval, 4.58, 6.11]; p < 0.0001). Higher rates of total knee arthroplasty were also associated with increasing age (HR, 1.03 [1.03, 1.04] per year over the age of forty-eight; p < 0.0001), bicondylar fracture (HR, 1.53 [1.26, 1.84]; p < 0.0001), and greater comorbidity (HR, 2.17 [1.70, 2.77]; p < 0.001). Ten years after tibial plateau

  13. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint.

    PubMed

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by  2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping

  14. Sizing the Jurassic theropod dinosaur Allosaurus: assessing growth strategy and evolution of ontogenetic scaling of limbs.

    PubMed

    Bybee, Paul J; Lee, Andrew H; Lamm, Ellen-Thérèse

    2006-03-01

    Allosaurus is one of the most common Mesozoic theropod dinosaurs. We present a histological analysis to assess its growth strategy and ontogenetic limb bone scaling. Based on an ontogenetic series of humeral, ulnar, femoral, and tibial sections of fibrolamellar bone, we estimate the ages of the largest individuals in the sample to be between 13-19 years. Growth curve reconstruction suggests that maximum growth occurred at 15 years, when body mass increased 148 kg/year. Based on larger bones of Allosaurus, we estimate an upper age limit of between 22-28 years of age, which is similar to preliminary data for other large theropods. Both Model I and Model II regression analyses suggest that relative to the length of the femur, the lengths of the humerus, ulna, and tibia increase in length more slowly than isometry predicts. That pattern of limb scaling in Allosaurus is similar to those in other large theropods such as the tyrannosaurids. Phylogenetic optimization suggests that large theropods independently evolved reduced humeral, ulnar, and tibial lengths by a phyletic reduction in longitudinal growth relative to the femur.

  15. Symptomatic venous thromboembolism following circular frame treatment for tibial fractures.

    PubMed

    Vollans, S; Chaturvedi, A; Sivasankaran, K; Madhu, T; Hadland, Y; Allgar, V; Sharma, H K

    2015-01-01

    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality following tibial fractures. The risk is as high as 77% without prophylaxis and around 10% with prophylaxis. Within the current literature there are no figures reported specifically for those individuals treated with circular frames. Our aim was to evaluate the VTE incidence within a single surgeon series and to evaluate potential risk factors. We retrospectively reviewed our consecutive single surgeon series of 177 patients admitted to a major trauma unit with tibial fractures. All patients received standardised care, including chemical thromboprophylaxis within 24h of injury until independent mobility was achieved. We comprehensively reviewed our prospective database and medical records looking at demographics and potential risk factors. Seven patients (4.0% ± 2.87%) developed symptomatic VTE during the course of frame treatment; three deep vein thrombosis (DVTs) and four pulmonary embolisms (PEs). Those with a VTE event had significantly increased body mass index (BMI) (p = 0.01) when compared to those without symptomatic VTE. No differences (p > 0.05) were observed between the groups in age, gender, smoking status, fracture type (anatomical allocation or open/closed), delay to frame treatment, weight bearing status post-frame, inpatient stay or total duration of frame treatment. This study suggests that increased BMI is a statistically significant risk factor for VTE, as reported in current literature. In addition, we calculated the true risk of VTE following circular frame treatment for tibial fracture in our series is from 1.13% to 6.87%, which is at least comparable to other forms of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content.

    PubMed

    Duckett, S K; Neel, J P S; Fontenot, J P; Clapham, W M

    2009-09-01

    Angus-cross steers (n = 198; 270 kg of BW; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on LM proximate, fatty acid, cholesterol, vitamin, and mineral composition. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stockering phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or pasture (PAST) finishing system and finished to an equal time endpoint. Winter stocker growth rate did not alter (P > 0.05) proximate, cholesterol, or vitamin content of the LM. All interactions among winter stocker growth rate and finishing system were nonsignificant, indicating that supplementation systems during winter stocker period did not influence beef composition after finishing on PAST or CONC. Finishing steers on CONC decreased (P < 0.001) moisture content of the LM and increased (P < 0.001) lipid content of the LM. Protein, ash, and cholesterol content of the LM did not differ (P > 0.05) between finishing systems. alpha-Tocopherol and beta-carotene content of the LM were 288 and 54% greater, respectively, for PAST-finished cattle than CONC. B-vitamins, thiamine and riboflavin, were also present in greater (P = 0.001) concentrations for PAST than CONC. Calcium, Mg, and K contents of the LM were greater (P < 0.05) for PAST than CONC. Total fatty acid content of the LM was 49% less for PAST than CONC. Myristoleic, palmitoleic, and oleic acid concentrations were all less (P = 0.001) for PAST than CONC. Trans-10 octadecenoic acid percentage in LM was 97% greater (P = 0.001) for CONC than PAST; conversely, trans-11 vaccenic acid percentage in the LM was 90% greater (P = 0.001) for PAST than CONC. Conjugated linoleic acid, cis-9, trans-11 isomer, percentage was greater (P = 0.001) by 117% for PAST than CONC. Linoleic acid (C18:2) concentration did

  17. Technique tip: use of anterior cruciate ligament jig for hindfoot fusion by calcanio-talo-tibial nail.

    PubMed

    Haque, Syed; Sarkar, Jay

    2012-08-01

    The use of intramedullary nail fixation for tibio-talo-calcaneal fusion is gaining popularity. There is chance of failure of procedure following faulty operative technique specially alignment. The article describes a useful application of tibial tunnel jig in inserting the calcanio-talo-tibial guide wire. There is precision of few millimeters in the exit point of guide wire on talus. The authors believe that this helps in better positioning of nail and hence better alignment and better operative outcome.

  18. Popliteal versus tibial retrograde access for subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) technique.

    PubMed

    Hua, W R; Yi, M Q; Min, T L; Feng, S N; Xuan, L Z; Xing, J

    2013-08-01

    This study aimed to ascertain differences in benefit and effectiveness of popliteal versus tibial retrograde access in subintimal arterial flossing with the antegrade-retrograde intervention (SAFARI) technique. This was a retrospective study of SAFARI-assisted stenting for long chronic total occlusion (CTO) of TASC C and D superficial femoral lesions. 38 cases had superficial femoral artery lesions (23 TASC C and 15 TASC D). All 38 cases underwent SAFARI-assisted stenting. The ipsilateral popliteal artery was retrogradely punctured in 17 patients. A distal posterior tibial (PT) or dorsalis pedis (DP) artery was retrogradely punctured in 21 patients, and 16 of them were punctured after open surgical exposure. SAFARI technical success was achieved in all cases. There was no significant difference in 1-year primary patency (75% vs. 78.9%, p = .86), secondary patency (81.2% vs. 84.2%, p = .91) and access complications (p = 1.00) between popliteal and tibial retrograde access. There was statistical difference in operation time between popliteal (140.1 ± 28.4 min) and tibial retrograde access with PT/DP punctures after surgical vessel exposure (120.4 ± 23.0 min, p = .04). The SAFARI technique is a safe and feasible option for patients with infrainguinal CTO (TASC II C and D). The PT or DP as the retrograde access after surgical vessel exposure is a good choice when using the SAFARI technique. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Opening-wedge high tibial osteotomy with a locked low-profile plate: surgical technique.

    PubMed

    Kolb, Werner; Guhlmann, Hanno; Windisch, Christoph; Koller, Heiko; Grützner, Paul; Kolb, Klaus

    2010-09-01

    High tibial osteotomy has been recognized as a beneficial treatment for osteoarthritis of the medial compartment of the knee. The purpose of this prospective study was to assess the short-term results of opening-wedge high tibial osteotomies with locked plate fixation. From September 2002 to November 2005, fifty-one consecutive medial opening-wedge high tibial osteotomies were performed. The mean age of the patients at the time of the index operation was forty-nine years. The preoperative and postoperative factors analyzed included the grade of arthritis of the tibiofemoral compartment (the Ahlbäck radiographic grade), the anatomic tibiofemoral angle, patellar height, the Hospital for Special Surgery rating system score, and the Lysholm and Gillquist knee score. Postoperatively, one superficial wound infection occurred. Fifty of the fifty-one osteotomies healed after an average period of 12.9 weeks (range, eight to sixteen weeks) without bone grafts. A nonunion developed in a sixty-two-year-old patient who was a cigarette smoker. The average postoperative tibiofemoral angle was 9° of valgus. Forty-nine patients were followed for a mean of fifty-two months. The average score on the Hospital for Special Surgery rating system was 86 points at the time of the most recent follow-up. The rating was excellent in twenty-eight patients (57%), good in twelve (24%), fair in four (8%), and poor in five (10%). The average score on the Lysholm and Gillquist knee-scoring scale was 83 points. According to these scores, the outcome was excellent in nine patients (18%), good in thirty-one (63%), fair in three (6%), and poor in six (12%). Four knees failed after an average of thirty-six months. Our results suggest that an opening-wedge high tibial osteotomy with locked plate fixation allows a correct valgus angle to be achieved with good short-term results.

  20. Evaluation of cranial tibial and extensor carpi radialis reflexes before and after anesthetic block in cats.

    PubMed

    Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso

    2017-02-01

    Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.

  1. Landing strategies focusing on the control of tibial rotation in the initial contact period of one-leg forward hops.

    PubMed

    Chen, W-L; Chen, Y-T; Huang, S-Y; Yang, C-Y; Wu, C-D; Chang, C-W

    2017-08-01

    Anterior cruciate ligament (ACL) reconstruction (ACLR) surgeries successfully restore anterior tibial translation but not tibial rotation. This study aimed to explore landing strategies focusing on the control of tibial rotation at landing when the ACL is most vulnerable. Three groups of male subjects (50 ACLRs, 26 basketball players, and 31 controls) participated in one-leg forward hop tests for determining the tibial rotatory landing strategies adopted during the initial landing phase. The differences in knee kinematics and muscle activities between internal and external tibial rotatory (ITR, ETR) landing strategies were examined. A higher proportion of basketball players (34.6%) were found to adopt ITR strategies (controls: 6.5%), exhibiting significantly greater hopping distance and knee strength. After adjusting for hopping distance, subjects adopting ITR strategies were found to hop faster with straighter knees at foot contact and with greater ITR and less knee adduction angular displacement during the initial landing phase. However, significantly greater angular displacement in knee flexion, greater medial hamstring activities, and greater co-contraction index of hamstrings and medial knee muscles were also found during initial landing. Our results support the importance of the recruitments of medial hamstrings or the local co-contraction in assisting the rotatory control of the knee during initial landing for avoiding ACL injuries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Anatomy, function, and pathophysiology of the posterior tibial tendon.

    PubMed

    Smith, C F

    1999-07-01

    The posterior tibial tendon is vital for the structure and function of the foot and ankle. Dysfunction of the tendon can be debilitating and devastating. In recent years, much attention had been directed toward the diagnosis and treatment of PTTD. To properly diagnose and devise an appropriate treatment regimen, the anatomy, function, and pathophysiology associated with PTTD need to be thoroughly understood.

  3. Leg Muscle Usage on Tibial Elasticity During Running

    DTIC Science & Technology

    2005-01-01

    relative risk of forefoot versus heel- strike running. In summary, there is no evidence in the literature that either study arm is at more risk than...tested in TSF, or even studied in runners. These basic validation studies will determine if modulators of tibial stress, .such as heel- strike mechanics...the other for acute injuries, although it was agreed that forefoot runners will be periodically evaluated for injuries to the Achilles tendon. After

  4. Multiple Tibial Insufficiency Fractures in the Same Tibia

    PubMed Central

    Defoort, Saartje; Mertens, Peter

    2011-01-01

    Stress fractures were first described by Briethaupt in 1855. Since then, there have been many discussions in the literature concerning stress fractures, which have been described in both weight-bearing and non-weight-bearing bones. Currently, the tibia is the most frequent location, but multiple stress fractures in the same tibia are rare. This paper presents an unusual case of a 60-year-old woman with multiple tibial stress fractures of spontaneous onset. PMID:23569673

  5. Does the tibial remnant of the anterior cruciate ligament promote ligamentization?

    PubMed

    Lee, Byung Ill; Kim, Byoung Min; Kho, Duk Hwan; Kwon, Sai Won; Kim, Hyeung June; Hwang, Hyun Ryong

    2016-12-01

    The purpose of this study was to clarify the difference in ligamentization between the remnant-preserving (RP) and remnant-sacrificing (RS) techniques in anterior cruciate ligament (ACL) reconstruction using magnetic resonance imaging (MRI). A retrospective comparative study was carried out on 98 patients undergoing ACL reconstruction using either an RP (n=56) or RS (n=42) technique. MRI was performed at one of four time points postoperatively, and the signal intensity of the ACL graft was analyzed using the signal to noise quotient (SNQ) ratio and inter-bundle high signal intensity, along with an analysis of the survival rate of remnant tissue. The mean SNQ ratio of grafted tendons in the RP group was significantly higher than that seen in the RS group in the proximal and middle regions two to four months after surgery (P<0.05) and was significantly lower than that seen in the RS group in all regions at 12 -18months (P<0.05). The inter-bundle high signal intensity was observed more frequently in the RP group (73.7%) at two to four months. Tibial remnants were observed on postoperative MRI regardless of when MRI was conducted. The ACL graft of the RP group showed higher signal intensity in the early stage and lower signal intensity in the late stage compared to that of the RS group. The ligamentization of grafts in the RP group proceeded more quickly. Preserving the remnant in ACL reconstruction appears to have a positive effect on ligamentization. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation.

    PubMed

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-10-01

    The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation.Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups.The mean follow-up time was 18.6 months (range: 5-24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P < .05). In group A, 5 cases had postoperative complications and 1 in group B (P < .05). The mean bone healing time in group A was 6.9 months (range: 5-9 months) and 6.0 months (range: 5-8 months) in group B (P > .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P < 0.05). In group A, the mean knee joint range of motion was 122° (range: 95°-150°) and 135° (range: 100°-160°) in group B (P > 0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05).External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation.

  7. Relationship between the tibial mechanical axis and bony anatomical landmarks of the calf and foot as measured on radiographs obtained with a new laser-calibrated position.

    PubMed

    He, Peiheng; Zhu, Qi; Zhang, Zhaohui; Zou, Xuenong; Xu, Dongliang

    2013-01-01

    To investigate relationship between the tibial mechanical axis and bony landmarks of the calf and foot by developing a new laser-calibrated position for radiography of the lower limb. A total of 120 volunteers were randomly divided into two groups. All subjects were marked with skin projection of the hypothetical axis of the calf on the frontal and sagittal planes. Radiographs of weight-bearing full-length lower-limb were obtained by the laser-calibrated positioning in the experimental group, and by the use of conventional technique in the control group. To consider the rotation of the calf, radiological features of the knee and ankle were investigated. The relationship between the tibial mechanical axis and the bony landmarks of the calf and foot were also measured. Anteroposterior view depicted a tangential projection on the superior/inferior tibiofibular syndesmosis and between lateral malleolus and talus in ankle mortise in the experimental group. Bony overlap on the superior/inferior tibiofibular syndesmosis and between lateral malleolus and talus was seen in control group. On the tangential projection, it also presented a clear wheel-like contour of the medial femoral condyle, but a partial overlap between medial femoral condyle and tibial plateau. The femoral joint angle between the connecting line at the lowest point of the medial and lateral femoral condyles and the tibial mechanical axis was 83.6° ± 2.49° in the experimental group and 85.3° ± 2.18° in the control group (P < 0.001). The tibial tubercle-axis distance from the center of the medial and middle one-third of the tibial tubercle to the tibial mechanical axis was 1.5 mm in the experimental group and 3.7 mm in the control group (P < 0.05). The malleoli-axis distance from the midpoint of the bimalleolar line joining the tips of the medial and lateral malleoli to the tibial mechanical axis was 1.9 mm in the experimental group and 6.9 mm in the control group (P < 0.001). Lateral view showed no

  8. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments

    PubMed Central

    Franklyn, Melanie; Oakes, Barry

    2015-01-01

    Medial tibial stress syndrome (MTSS) is a debilitating overuse injury of the tibia sustained by individuals who perform recurrent impact exercise such as athletes and military recruits. Characterised by diffuse tibial anteromedial or posteromedial surface subcutaneous periostitis, in most cases it is also an injury involving underlying cortical bone microtrauma, although it is not clear if the soft tissue or cortical bone reaction occurs first. Nuclear bone scans and magnetic resonance imaging (MRI) can both be used for the diagnosis of MTSS, but the patient’s history and clinical symptoms need to be considered in conjunction with the imaging findings for a correct interpretation of the results, as both imaging modalities have demonstrated positive findings in the absence of injury. However, MRI is rapidly becoming the preferred imaging modality for the diagnosis of bone stress injuries. It can also be used for the early diagnosis of MTSS, as the developing periosteal oedema can be identified. Retrospective studies have demonstrated that MTSS patients have lower bone mineral density (BMD) at the injury site than exercising controls, and preliminary data indicates the BMD is lower in MTSS subjects than tibial stress fracture (TSF) subjects. The values of a number of tibial geometric parameters such as cross-sectional area and section modulus are also lower in MTSS subjects than exercising controls, but not as low as the values in TSF subjects. Thus, the balance between BMD and cortical bone geometry may predict an individual's likelihood of developing MTSS. However, prospective longitudinal studies are needed to determine how these factors alter during the development of the injury and to find the detailed structural cause, which is still unknown. Finite element analysis has recently been used to examine the mechanisms involved in tibial stress injuries and offer a promising future tool to understand the mechanisms involved in MTSS. Contemporary accurate diagnosis

  9. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments.

    PubMed

    Franklyn, Melanie; Oakes, Barry

    2015-09-18

    Medial tibial stress syndrome (MTSS) is a debilitating overuse injury of the tibia sustained by individuals who perform recurrent impact exercise such as athletes and military recruits. Characterised by diffuse tibial anteromedial or posteromedial surface subcutaneous periostitis, in most cases it is also an injury involving underlying cortical bone microtrauma, although it is not clear if the soft tissue or cortical bone reaction occurs first. Nuclear bone scans and magnetic resonance imaging (MRI) can both be used for the diagnosis of MTSS, but the patient's history and clinical symptoms need to be considered in conjunction with the imaging findings for a correct interpretation of the results, as both imaging modalities have demonstrated positive findings in the absence of injury. However, MRI is rapidly becoming the preferred imaging modality for the diagnosis of bone stress injuries. It can also be used for the early diagnosis of MTSS, as the developing periosteal oedema can be identified. Retrospective studies have demonstrated that MTSS patients have lower bone mineral density (BMD) at the injury site than exercising controls, and preliminary data indicates the BMD is lower in MTSS subjects than tibial stress fracture (TSF) subjects. The values of a number of tibial geometric parameters such as cross-sectional area and section modulus are also lower in MTSS subjects than exercising controls, but not as low as the values in TSF subjects. Thus, the balance between BMD and cortical bone geometry may predict an individual's likelihood of developing MTSS. However, prospective longitudinal studies are needed to determine how these factors alter during the development of the injury and to find the detailed structural cause, which is still unknown. Finite element analysis has recently been used to examine the mechanisms involved in tibial stress injuries and offer a promising future tool to understand the mechanisms involved in MTSS. Contemporary accurate diagnosis

  10. Proximal Hypospadias

    PubMed Central

    Kraft, Kate H.; Shukla, Aseem R.; Canning, Douglas A.

    2011-01-01

    Hypospadias results from abnormal development of the penis that leaves the urethral meatus proximal to its normal glanular position. Meatal position may be located anywhere along the penile shaft, but more severe forms of hypospadias may have a urethral meatus located at the scrotum or perineum. The spectrum of abnormalities may also include ventral curvature of the penis, a dorsally redundant prepuce, and atrophic corpus spongiosum. Due to the severity of these abnormalities, proximal hypospadias often requires more extensive reconstruction in order to achieve an anatomically and functionally successful result. We review the spectrum of proximal hypospadias etiology, presentation, correction, and possible associated complications. PMID:21516286

  11. Paediatric tibial shaft fractures treated by open reduction and stabilization with monolateral external fixation

    PubMed Central

    Simon, A.-L.; Apostolou, N.; Vidal, C.; Ferrero, E.; Mazda, K.; Ilharreborde, B.

    2018-01-01

    Abstract Purpose Elastic stable intramedullary nailing is increasingly used for surgical treatment of tibial shaft fractures, but frequently requires immobilization and delayed full weight-bearing. Therefore, external fixation remains interesting. The aim was to report clinico-radiological outcomes of monolateral external fixation for displaced and unstable tibial shaft fractures in children. Methods All tibial fractures consecutively treated by monolateral external fixation between 2008 and 2013 were followed. Inclusion criteria included skeletal immaturity and closed and open Gustilo I fractures caused by a direct impact. Patients were seen until two years postoperatively. Demographics, mechanism of injury, surgical data and complications were recorded. Anteroposterior and lateral side radiographs were performed at each visit. Full-limb 3D reconstructions using biplanar stereroradiography was performed for final limb length and alignment measures. Results A total of 45 patients (mean age 9.7 years ± 0.5) were included. In all, 17 were Gustilo I fractures, with no difference between open and closed fractures for any data. Mean time to full weight bearing was 18.2 days ± 0.7. After 15 days, 39 patients returned to school. Hardware removal (mean time to union 15.6 weeks ± 0.8) was performed during consultation under analgesic gas. There were no cases of nonunion. No fracture healed with > 10° of angulation (mean 5.1° ± 0.4°). Leg-length discrepancy > 10 mm was found for six patients. Conclusions This procedure can be a safe and simple surgical treatment for children with tibial shaft fractures. Few complications and early return to school were reported, with the limitations of non-comparative study. Level of Evidence IV PMID:29456750

  12. Experiment K-6-06. Morphometric and EM analyses of tibial epiphyseal plates from Cosmos 1887 rats

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Montufar-Solis, D.; Durnova, G.

    1990-01-01

    Light and electron microscopy studies were carried out on decalcified tibial epiphyseal plates of rats flown aboard Cosmos 1887 (12.5d flight plus 53.5h recovery). Analysis of variance showed that the proliferative zone of flight animals was significantly higher than that of synchronous controls, while the hypertrophic/calcification zone was significantly reduced. Flight animals had more cells than synchronous controls in the proliferative zone, and less in the hypertrophic/calcification region. The total number of cells, however, was significantly higher in flight animals. No differences were found for perimeter or shape factor of growth plates, but area was significantly lower in flight animals in comparison to synchronous controls. Collagen fibrils in flight animals were shorter and wider than in synchronous controls. The time required for a cell to cycle through the growth plate is 2 to 3 days, so most of the cells and matrix present were formed after the animals had returned to 1 g, and probably represent stages of recovery from microgravity exposure, which in itself is an interesting question.

  13. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?

    PubMed

    Sangeux, Morgan; Mahy, Jessica; Graham, H Kerr

    2014-01-01

    Informed clinical decision making for femoral and/or tibial de-rotation osteotomies requires accurate measurement of patient function through gait analysis and anatomy through physical examination of bony torsions. Validity of gait analysis has been extensively studied; however, controversy remains regarding the accuracy of physical examination measurements of femoral and tibial torsion. Comparison between CT-scans and physical examination measurements of femoral neck anteversion (FNA) and external tibial torsion (ETT) were retrospectively obtained for 98 (FNA) and 64 (ETT) patients who attended a tertiary hospital for instrumented gait analysis between 2007 and 2010. The physical examination methods studied for femoral neck anteversion were the trochanteric prominence angle test (TPAT) and the maximum hip rotation arc midpoint (Arc midpoint) and for external tibial torsion the transmalleolar axis (TMA). Results showed that all physical examination measurements statistically differed to the CT-scans (bias(standard deviation): -2(14) for TPAT, -10(12) for Arc midpoint and -16(9) for TMA). Bland and Altman plots showed that method disagreements increased with increasing bony torsions in all cases but notably for TPAT. Regression analysis showed that only TMA and CT-scan measurement of external tibial torsion demonstrated good (R(2)=57%) correlation. Correlations for both TPAT (R(2)=14%) and Arc midpoint (R(2)=39%) with CT-scan measurements of FNA were limited. We conclude that physical examination should be considered as screening techniques rather than definitive measurement methods for FNA and ETT. Further research is required to develop more accurate measurement methods to accompany instrumented gait analysis. Copyright © 2013. Published by Elsevier B.V.

  14. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    PubMed

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty.

    PubMed

    Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori

    2013-12-01

    The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is

  16. Effect of tibial positioning on the diagnosis of posterolateral rotatory instability in the posterior cruciate ligament-deficient knee.

    PubMed

    Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey

    2007-08-01

    To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the

  17. [Clinical report of hereditary motor and sensory neuropathy with proximal dominance in Shiga prefecture].

    PubMed

    Takahashi, Mitsuo; Mitsui, Yoshiyuki; Yorifuji, Shiro; Nakamura, Yuusaku; Tsukamoto, Yoshihumi; Nishimoto, Kazuhiro

    2007-09-01

    We followed eight hereditary motor and sensory neuropathy patients with proximal dominance (HMSN-P) in Shiga prefecture from 1984 to 2007. There were 4 men and 4 women from two families showing autosomal and dominant prepotency. These families were related by marriage. The average onset of disease was at 53.4 +/- 8.9 (40-68) years-old. Initial symptoms were difficulty of standing up, difficulty elevating their arms, limping, or numbness. The main feature was neurogenic muscular atrophy with proximal dominance. All deep tendon reflexes were decreased or nonexistent. Paresthesia in the hands and feet and/or decreased vibratory sense in the legs were found in six patients. High CK blood levels were recognized in three patients. EMG in four patients revealed neurogenic pattern. Nerve conduction study was conducted in two patients. MCV of the median nerve and of the tibial posterior nerve, also SCV of the median nerve and of the sural nerve were within normal range in all nerves. Amplitudes of sensory action potential or of M wave were decreased or nonexistent in five of eight nerves, and distal latency of M waves was delayed in three of four nerves. These data suggests dysfunction of distal parts of the peripheral nerve fibers and axonal degeneration of the nerve trunk. Seven patients have died, and their average death age was 69.1 +/- 8.2 (52-77) years-old. Their average affected period was 16.6 (4-30) years. Their clinical history resembles Okinawa-type HMSN-P, but without the painful muscle cramps which are distinctive Okinawa-type signs.

  18. Rare case of tibial hemimelia, preaxial polydactyly, and club foot

    PubMed Central

    Granite, Guinevere; Herzenberg, John E; Wade, Ronald

    2016-01-01

    A seven-month old female presented with left tibial hemimelia (or congenital tibial aplasia; Weber type VIIb, Jones et al type 1a), seven-toed preaxial polydactyly, and severe club foot (congenital talipes equinovarus). Definitive amputation surgery disarticulated the lower limb at the knee. This case report describes the anatomical findings of a systematic post-amputation examination of the lower limb’s superficial dissection, X-rays, and computed tomography (CT) scans. From the X-rays and CT scans, we found curved and overlapping preaxial supernumerary toes, hypoplastic first metatarsal, lack of middle and distal phalanges in one supernumerary toe, three tarsal bones, hypoplastic middle phalanx and no distal phalanx for fourth toe, and no middle or distal phalanges for fifth toe. The fibula articulated with the anteromedial calcaneus and the tibia was completely absent. We identified numerous muscles and nerves in the superficial dissection that are described in the results section of the case report. Due to the rarity of this combination of anatomical findings, descriptions of such cases are very infrequent in the literature. PMID:28035313

  19. Rare case of tibial hemimelia, preaxial polydactyly, and club foot.

    PubMed

    Granite, Guinevere; Herzenberg, John E; Wade, Ronald

    2016-12-16

    A seven-month old female presented with left tibial hemimelia (or congenital tibial aplasia; Weber type VIIb, Jones et al type 1a), seven-toed preaxial polydactyly, and severe club foot (congenital talipes equinovarus). Definitive amputation surgery disarticulated the lower limb at the knee. This case report describes the anatomical findings of a systematic post-amputation examination of the lower limb's superficial dissection, X-rays, and computed tomography (CT) scans. From the X-rays and CT scans, we found curved and overlapping preaxial supernumerary toes, hypoplastic first metatarsal, lack of middle and distal phalanges in one supernumerary toe, three tarsal bones, hypoplastic middle phalanx and no distal phalanx for fourth toe, and no middle or distal phalanges for fifth toe. The fibula articulated with the anteromedial calcaneus and the tibia was completely absent. We identified numerous muscles and nerves in the superficial dissection that are described in the results section of the case report. Due to the rarity of this combination of anatomical findings, descriptions of such cases are very infrequent in the literature.

  20. Economics of All-Polyethylene Versus Metal-Backed Tibial Prosthesis Designs.

    PubMed

    Chambers, Monique C; El-Othmani, Mouhanad M; Sayeed, Zain; Anoushiravani, Afshin; Schnur, Anne-Kathrin; Mihalko, William M; Saleh, Khaled J

    2016-05-01

    With the large number of total knee arthroplasties being performed and expectations that these numbers will be on the rise over the coming decades, efforts to provide cost-efficient care are of greater interest. The preferred design of knee arthroplasty implants has changed over time, with the original all-polyethylene tibial (APT) design being replaced by metal-backed tibial (MBT) components, as well as more recent considerations of newer APT designs. Modern APT components have been shown to have similar or superior outcomes than MBT components. Despite their limitations, APT components can be used to reduce the economic burden to the provider, medical institution, and health care system as a whole. There is a paucity of evidence-based literature directly comparing the cost associated with APT and MBT components. The purpose of this report is to review the literature to assess the available data regarding direct and indirect costs of both designs so that orthopedic surgeons can account for economic differences in everyday practice. [Orthopedics. 2016; 39(3):S61-S66.]. Copyright 2016, SLACK Incorporated.

  1. Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: The 'fix and shift' technique.

    PubMed

    Ramasamy, P R

    2017-01-01

    Open fractures of tibia have posed great difficulty in managing both the soft tissue and the skeletal components of the injured limb. Gustilo Anderson III B open tibial fractures are more difficult to manage than I, II, and III A fractures. Stable skeletal fixation with immediate soft tissue cover has been the key to the successful outcome in treating open tibial fractures, in particular, Gustilo Anderson III B types. If the length of the open wound is larger and if the exposed surface of tibial fracture and tibial shaft is greater, then the management becomes still more difficult. Thirty six Gustilo Anderson III B open tibial fractures managed between June 2002 and December 2013 with "fix and shift" technique were retrospectively reviewed. All the 36 patients managed by this technique had open wounds measuring >5 cm (post debridement). Under fix and shift technique, stable fixation involved primary external fixator application or primary intramedullary nailing of the tibial fracture and immediate soft tissue cover involved septocutaneous shift, i.e., shifting of fasciocutaneous segments based on septocutaneous perforators. Primary fracture union rate was 50% and reoperation rate (bone stimulating procedures) was 50%. Overall fracture union rate was 100%. The rate of malunion was 14% and deep infection was 16%. Failure of septocutaneous shift was 2.7%. There was no incidence of amputation. Management of Gustilo Anderson III B open tibial fractures with "fix and shift" technique has resulted in better outcome in terms of skeletal factors (primary fracture union, overall union, and time for union and malunion) and soft tissue factors (wound healing, flap failure, access to secondary procedures, and esthetic appearance) when compared to standard methods adopted earlier. Hence, "fix and shift" could be recommended as one of the treatment modalities for open III B tibial fractures.

  2. Motion at the Tibial and Polyethylene Component Interface in a Mobile-Bearing Total Ankle Replacement.

    PubMed

    Lundeen, Gregory A; Clanton, Thomas O; Dunaway, Linda J; Lu, Minggen

    2016-08-01

    Normal biomechanics of the ankle joint includes sagittal as well as axial rotation. Current understanding of mobile-bearing motion at the tibial-polyethylene interface in total ankle arthroplasty (TAA) is limited to anterior-posterior (AP) motion of the polyethylene component. The purpose of our study was to define the motion of the polyethylene component in relation to the tibial component in a mobile-bearing TAA in both the sagittal and axial planes in postoperative patients. Patients who were a minimum of 12 months postoperative from a third-generation mobile-bearing TAA were identified. AP images were saved at maximum internal and external rotation, and the lateral images were saved in maximum plantarflexion and dorsiflexion. Sagittal range of motion and AP translation of the polyethylene component were measured from the lateral images. Axial rotation was determined by measuring the relative position of the 2 wires within the polyethylene component on AP internal and external rotation imaging. This relationship was compared to a table developed from fluoroscopic images taken at standardized degrees of axial rotation of a nonimplanted polyethylene with the associated length relationship of the 2 imbedded wires. Sixteen patients were included in this investigation, 9 (56%) were male and average age was 68 (range, 49-80) years. Time from surgery averaged 25 (range, 12-38) months. Total sagittal range of motion averaged 23±9 (range, 9-33) degrees. Axial motion for total internal and external rotation of the polyethylene component on the tibial component averaged 6±5 (range, 0-18) degrees. AP translation of the polyethylene component relative to the tibial component averaged 1±1 (range, 0-3) mm. There was no relationship between axial rotation or AP translation of the polyethylene component and ankle joint range of motion (P > .05). To our knowledge, this is the first investigation to measure axial and sagittal motion of the polyethylene component at the tibial

  3. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound.

    PubMed

    Leung, Kwok-Sui; Lee, Wing-Sze; Tsui, Hon-For; Liu, Paul Po-Lung; Cheung, Wing-Hoi

    2004-03-01

    A clinical study was conducted to investigate the effect of low-intensity pulsed ultrasound (US) stimulation (LIPUS) on the healing of complex tibial fractures. Thirty complex tibial fractures were randomly assigned to the treatment with LIPUS (n = 16) or by a dummy machine (sham-exposed: n = 14). The fractures were immobilized by either internal or external fixations according to the clinical indications. LIPUS was given 20 min/day for 90 days. Fracture healing was monitored by clinical, radiological, densitometric and biochemical assessments. The LIPUS-treated group showed statistically significantly better healing, as demonstrated by all assessments. Complications were minimal in the LIPUS group. There were two cases of delayed union, with one in each group. There were two cases of infection in the control group. The delayed-union cases were subsequently treated by LIPUS and the infection cases were treated with standard protocol. Fracture healing in these patients was again treated by LIPUS.

  4. Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation.

    PubMed

    Morin, Paul M; Reindl, Rudolf; Harvey, Edward J; Beckman, Lorne; Steffen, Thomas

    2008-02-01

    Distal third tibia fractures have classically been treated with standard plating, but intramedullary (IM) nailing has gained popularity. Owing to the lack of interference fit of the nail in the metaphyseal bone of the distal tibia, it may be beneficial to add rigid plating of the fibula to augment the overall stability of fracture fixation in this area. This study sought to assess the biomechanical effect of adding a fibular plate to standard IM nailing in the treatment of distal third tibia and fibula fractures. Eight cadaveric tibia specimens were used. Tibial fixation consisted of a solid titanium nail locked with 3 screws distally and 2 proximally, and fibular fixation consisted of a 3.5 mm low-contact dynamic compression plate. A section of tibia and fibula was removed. Testing was accomplished with an MTS machine. Each leg was tested 3 times; with and without a fibular plate and with a repetition of the initial test condition. Vertical displacements were tested with an axial load up to 500 N, and angular rotation was tested with torques up to 5 N*m. The difference in axial rotation was the only statistically significant finding (p = 0.003), with fibular fixation resulting in 1.1 degrees less rotation through the osteotomy site (17.96 degrees v. 19.10 degrees ). Over 35% of this rotational displacement occurred at the nail-locking bolt interface with the application of small torsional forces. Fibular plating in addition to tibial IM fixation of distal third tibia and fibula fractures leads to slightly increased resistance to torsional forces. This small improvement may not be clinically relevant.

  5. Appropriate hinge position for prevention of unstable lateral hinge fracture in open wedge high tibial osteotomy.

    PubMed

    Nakamura, R; Komatsu, N; Fujita, K; Kuroda, K; Takahashi, M; Omi, R; Katsuki, Y; Tsuchiya, H

    2017-10-01

    Open wedge high tibial osteotomy (OWHTO) for medial-compartment osteoarthritis of the knee can be complicated by intra-operative lateral hinge fracture (LHF). We aimed to establish the relationship between hinge position and fracture types, and suggest an appropriate hinge position to reduce the risk of this complication. Consecutive patients undergoing OWHTO were evaluated on coronal multiplanar reconstruction CT images. Hinge positions were divided into five zones in our new classification, by their relationship to the proximal tibiofibular joint (PTFJ). Fractures were classified into types I, II, and III according to the Takeuchi classification. Among 111 patients undergoing OWHTOs, 22 sustained lateral hinge fractures. Of the 89 patients without fractures, 70 had hinges in the zone within the PTFJ and lateral to the medial margin of the PTFJ (zone WL), just above the PTFJ. Among the five zones, the relative risk of unstable fracture was significantly lower in zone WL (relative risk 0.24, confidence interval 0.17 to 0.34). Zone WL appears to offer the safest position for the placement of the osteotomy hinge when trying to avoid a fracture at the osteotomy site. Cite this article: Bone Joint J 2017;99B10:1313-18. ©2017 The British Editorial Society of Bone & Joint Surgery.

  6. Defining the Lower Limit of a "Critical Bone Defect" in Open Diaphyseal Tibial Fractures.

    PubMed

    Haines, Nikkole M; Lack, William D; Seymour, Rachel B; Bosse, Michael J

    2016-05-01

    To determine healing outcomes of open diaphyseal tibial shaft fractures treated with reamed intramedullary nailing (IMN) with a bone gap of 10-50 mm on ≥50% of the cortical circumference and to better define a "critical bone defect" based on healing outcome. Retrospective cohort study. Forty patients, age 18-65, with open diaphyseal tibial fractures with a bone gap of 10-50 mm on ≥50% of the circumference as measured on standard anteroposterior and lateral postoperative radiographs treated with IMN. IMN of an open diaphyseal tibial fracture with a bone gap. Level-1 trauma center. Healing outcomes, union or nonunion. Forty patients were analyzed. Twenty-one (52.5%) went on to nonunion and nineteen (47.5%) achieved union. Radiographic apparent bone gap (RABG) and infection were the only 2 covariates predicting nonunion outcome (P = 0.046 for infection). The RABG was determined by measuring the bone gap on each cortex and averaging over 4 cortices. Fractures achieving union had a RABG of 12 ± 1 mm versus 20 ± 2 mm in those going on to nonunion (P < 0.01). This remained significant when patients with infection were removed. Receiver operator characteristic analysis demonstrated that RABG was predictive of outcome (area under the curve of 0.79). A RABG of 25 mm was the statistically optimal threshold for prediction of healing outcome. Patients with open diaphyseal tibial fractures treated with IMN and a <25 mm RABG have a reasonable probability of achieving union without additional intervention, whereas those with larger gaps have a higher probability of nonunion. Research investigating interventions for RABGs should use a predictive threshold for defining a critical bone defect that is associated with greater than 50% risk of nonunion without supplementary treatment. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  7. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study.

    PubMed

    Chen, Pengbo; Lu, Hua; Shen, Hao; Wang, Wei; Ni, Binbin; Chen, Jishizhan

    2017-02-23

    Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability than other fixation methods. The objectives of the present study were to introduce two newly designed locking anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes under the axial loads. Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement was calculated along the fracture lines. The displacement and stresses in the fixation complexes increased with the axial force. The equivalent displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load. These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

  8. The Effect of Sagittal Plane Deformities after Tibial Plateau Fractures to Functions and Instability of Knee Joint.

    PubMed

    Erdil, M; Yildiz, F; Kuyucu, E; Sayar, Ş; Polat, G; Ceylan, H H; Koçyiğit, F

    2016-01-01

    The objective of this study is to evaluate the effect of posterior tibial slope after fracture healing on antero-posterior knee laxity, functional outcome and patient satisfaction. 126 patients who were treated for tibial plateau fractures between 2008-2013 in the orthopedics and traumatology department of our institution were evaluated for the study. Patients were treated with open reduction and internal fixation, arthroscopy assisted minimally invasive osteosynthesis or conservative treatment. Mean posterior tibial slope after the treatment was 6.91 ± 5.11 and there was no significant difference when compared to the uninvolved side 6.42 ± 4,21 (p = 0.794). Knee laxity in anterior-posterior plane was 6.14 ± 2.11 and 5.95 ± 2.25 respectively on healthy and injured side. The difference of mean laxity in anterior-posterior plane between two sides was statistically significant. In this study we found no difference in laxity between the injured and healthy knees. However Tegner score decreased significantly in patients who had greater laxity difference between the knees. We did not find significant difference between fracture type and laxity, IKDC functional scores independent of the ligamentous injury. In conclusion despite coronal alignment is taken into consideration in treatment of tibial plateau fractures, sagittal alignment is reasonably important for stability and should not be ignored.

  9. Comparison of Clinical Results and Injury Risk of Posterior Tibial Cortex Between Attune and Press Fit Condylar Sigma Knee Systems.

    PubMed

    Song, Sang Jun; Park, Cheol Hee; Liang, Hu; Kang, Se Gu; Park, Jong Jun; Bae, Dae Kyung

    2018-02-01

    We compared clinical and radiographic results after total knee arthroplasty (TKA) using Attune and Press Fit Condylar Sigma, and investigated whether use of the current prosthesis increased injury risk to the tibial cortex in Asian patients. We also assessed whether a preoperative posterior tibial slope angle (PSA) is associated with the injury when using the current prosthesis. The 300 TKAs with Attune (group A) were compared to the 300 TKAs with Press Fit Condylar Sigma (group B). Demographics were not different, except follow-up periods (24.8 vs 33.3 months, P < .001). The Western Ontario and McMaster Universities Index and range of motion were compared. A minimum distance between tibial component stem and posterior tibial cortex (mDSC) was compared. The correlation between preoperative PSA and mDSC was analyzed in group A. The postoperative Western Ontario and McMaster Universities Index and range of motion of group A were better than those of group B (17.7 vs 18.8, P = .004; 131.4° vs 129.0°, P = .008). The mDSC was shorter in group A (6.3 vs 7.0 mm, P < .001), which made up a higher proportion of the high-risk group for posterior tibial cortical injury with an mDSC of <4 mm (20.0% vs 10.7%, P = .002). A negative correlation was found between the preoperative PSA and mDSC in group A (r = -0.205, P < .001). The TKA using the current prosthesis provided more satisfactory results than the TKA using the previous prosthesis. However, the injury risk to the posterior tibial cortex increased in the knees with a large PSA when using the current prosthesis for Asian patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Flow-Through Free Fibula Osteocutaneous Flap in Reconstruction of Tibial Bone, Soft Tissue, and Main Artery Segmental Defects.

    PubMed

    Li, Zonghuan; Yu, Aixi; Qi, Baiwen; Pan, Zhenyu; Ding, Junhui

    2017-08-01

    The aim of this report was to present the use of flow-through free fibula osteocutaneous flap for the repair of complex tibial bone, soft tissue, and main artery segmental defects. Five patients with bone, soft tissue, and segmental anterior tibial artery defects were included. The lengths of injured tibial bones ranged from 4 to 7 cm. The sizes of impaired soft tissues were between 9 × 4 and 15 × 6 cm. The lengths of defect of anterior tibial artery segments ranged from 6 to 10 cm. Two patients had distal limb perfusion problems. Flow-through free fibula osteocutaneous flap was performed for all 5 patients. Patients were followed for 12 to 18 months. All wounds healed after 1-stage operation, and all flow-through flaps survived. The distal perfusion after vascular repair was normal in all patients. Superficial necrosis of flap edge was noted in 1 case. After the local debridement and partial thickness skin graft, the flap healed uneventfully, and the surgical operation did not increase injury to the donor site. Satisfactory bone union was achieved in all patients in 2 to 4 months postoperation. Enlargement of fibula graft was observed during follow-up from 12 to 18 months. The functions of adjacent joints were recovered, and all patients were able to walk normally. Flow-through free fibula osteocutaneous flap was shown to be an effective and efficient technique for repairing composite tibial bone, soft tissue, and main artery segmental defects. This 1-stage operation should be useful in clinical practice for the treatment of complex bone, soft tissue, and vessel defects.

  11. Proximate determinants of fertility in peninsular Malaysia.

    PubMed

    Tey, Nai Peng; Ng, Sor Tho; Yew, Siew Yong

    2012-05-01

    The continuing decline in fertility despite a contraction in contraceptive use in Peninsular Malaysia since the mid-1980s has triggered considerable interest in the reasons behind this phenomenon, such as increase in abortion, sterility, and out-of-wedlock pregnancy. Fertility decline has been attributed to rapid socioeconomic development, which can only influence fertility through the intermediate variables. Application of vital statistics, population census, and survey data of Peninsular Malaysia on Bongaarts's model vindicates that marriage postponement and contraceptive use are the 2 most important proximate determinants of fertility, but the effects are not uniform across the ethnic groups. For instance, the predicted total fertility rate for Chinese and Malays are 2.9 and 1.6, respectively, compared with the observed level of 3.0 and 1.9. Postpartum infecundability and abortion also play a part in explaining ethnic fertility differentials. The fertility inhibiting effects of these proximate determinants have significant implications on reproductive health and future population growth.

  12. Load Sharing Among Collateral Ligaments, Articular Surfaces, and the Tibial Post in Constrained Condylar Knee Arthroplasty.

    PubMed

    Wang, Xiaonan; Malik, Aamer; Bartel, Donald L; Wright, Timothy M; Padgett, Douglas E

    2016-08-01

    The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus-valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus-valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus-valgus moment and, thus, reduced the exposure of the tibial post to the external varus-valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry

  13. Wnt/RANKL-mediated bone growth promoting effects of blueberries in weanling rats

    USDA-ARS?s Scientific Manuscript database

    We studied the effects of dietary blueberry supplementation on bone growth in weanling rats. Weanling male and female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder for 14 and 30 days beginning on PND 21. In both sexes tibial bone mineral density and content a...

  14. High tibial closing wedge osteotomy for medial compartment osteoarthrosis of knee

    PubMed Central

    Tuli, SM; Kapoor, Varun

    2008-01-01

    Background: Most patients of symptomatic osteoarthrosis of knee are associated with varus malalignment that is causative or contributory to painful arthrosis. It is rational to correct the malalignment to transfer the functional load to the unaffected or less affected compartment of the knee to relieve symptoms. We report the outcome of a simple technique of high tibial osteotomy in the medial compartment osteoarthrosis of the knee. Materials and Methods: Between 1996 and 2004 we performed closing wedge osteotomy in 78 knees in 65 patients. The patients selected for osteotomy were symptomatic essentially due to medial compartment osteoarthrosis associated with moderate genu varum. Of the 19 patients who had bilateral symptomatic disease 11 opted for high tibial osteotomy of their second knee 1-3 years after the first operation. Preoperative grading of osteoarthrosis and postoperative function was assessed using Japanese Orthopaedic Association (JOA) rating scale. Results: At a minimum follow-up of 2 years (range 2-9 years) 6-10° of valgus correction at the site of osteotomy was maintained, there was significant relief of pain while walking, negotiating stairs, squatting and sitting cross-legged. Walking distance in all patients improved by two to four times their preoperative distance of 200-400 m. No patient lost any preoperative knee function. The mean JOA scoring improved from preoperative 54 (40-65) to 77 (55-85) at final follow-up. Conclusion: Closing wedge high tibial osteotomy performed by our technique can be undertaken in any setup with moderate facilities. Operation related complications are minimal and avoidable. Kirschner wire fixation is least likely to interfere with replacement surgery if it becomes necessary. PMID:19823659

  15. [Comparison of effect between early and delayed in primary intramedullary nailing combined with locked plate fixation for the treatment of multi-segments tibial fractures of type].

    PubMed

    Gao, Wei-qiang; Hu, Jiang-hai; Gu, Zhu-chao; Zhang, Huai-xian; Min, Peng; Zhang, Lin-jun; Yu, Wen-wen; Wang, Guang-lin

    2015-02-01

    locked plating does not significantly increase the postoperative incidence of soft tissue complications for patients. The early and delayed primary intramedullary nailing and locked plating for treatment of AO/ASIF-42C2 proximal third tibial fractures can get similar curative effect.

  16. Tension Band Plating for Chronic Anterior Tibial Stress Fractures in High-Performance Athletes.

    PubMed

    Zbeda, Robert M; Sculco, Peter K; Urch, Ekaterina Y; Lazaro, Lionel E; Borens, Olivier; Williams, Riley J; Lorich, Dean G; Wellman, David S; Helfet, David L

    2015-07-01

    Anterior tibial stress fractures are associated with high rates of delayed union and nonunion, which can be particularly devastating to a professional athlete who requires rapid return to competition. Current surgical treatment strategies include intramedullary nailing, which has satisfactory rates of fracture union but an associated risk of anterior knee pain. Anterior tension band plating is a biomechanically sound alternative treatment for these fractures. Tension band plating of chronic anterior tibial stress fractures leads to rapid healing and return to physical activity and avoids the anterior knee pain associated with intramedullary nailing. Case series; Level of evidence, 4. Between 2001 and 2013, there were 13 chronic anterior tibial stress fractures in 12 professional or collegiate athletes who underwent tension band plating after failing nonoperative management. Patient charts were retrospectively reviewed for demographics, injury history, and surgical details. Radiographs were used to assess time to osseous union. Follow-up notes and phone interviews were used to determine follow-up time, return to training time, and whether the patient was able to return to competition. Cases included 13 stress fractures in 12 patients (9 females, 3 males). Five patients were track-and-field athletes, 4 patients played basketball, 2 patients played volleyball, and 1 was a ballet dancer. Five patients were Division I collegiate athletes and 7 were professional or Olympic athletes. Average age at time of surgery was 23.6 years (range, 20-32 years). Osseous union occurred on average at 9.6 weeks (range, 5.3-16.9 weeks) after surgery. Patients returned to training on average at 11.1 weeks (range, 5.7-20 weeks). Ninety-two percent (12/13) eventually returned to preinjury competition levels. Thirty-eight percent (5/13) underwent removal of hardware for plate prominence. There was no incidence of infection or nonunion. Anterior tension band plating for chronic tibial stress

  17. Tibial Inlay Press-fit Fixation Versus Interference Screw in Posterior Cruciate Ligament Reconstruction.

    PubMed

    Ettinger, Max; Büermann, Sarah; Calliess, Tilman; Omar, Mohamed; Krettek, Christian; Hurschler, Christof; Jagodzinski, Michael; Petri, Maximilian

    2013-01-01

    Reconstruction of the posterior cruciate ligament (PCL) by a tibial press-fit fixation of the patellar tendon with an accessory bone plug is a promising approach because no foreign materials are required. Until today, there is no data about the biomechanical properties of such press-fit fixations. The aim of this study was to compare the biomechanical qualities of a bone plug tibial inlay technique with the commonly applied interference screw of patellar tendon PCL grafts. Twenty patellar tendons including a bone block were harvested from ten human cadavers. The grafts were implanted into twenty legs of adult German country pigs. In group P, the grafts were attached in a press-fit technique with accessory bone plug. In group S, the grafts were fixed with an interference screw. Each group consisted of 10 specimens. The constructs were biomechanically analyzed in cyclic loading between 60 and 250 N for 500 cycles recording elongation. Finally, ultimate failure load and failure mode were analyzed. Ultimate failure load was 598.6±36.3 N in group P and 653.7±39.8 N in group S (not significant, P>0.05). Elongation during cyclic loading between the 1(st) and the 20(th) cycle was 3.4±0.9 mm for group P and 3.1±1 mm for group S. Between the 20(th) and the 500(th) cycle, elongation was 4.2±2.3 mm in group P and 2.5±0.9 mm in group S (not significant, P>0.05). This is the first study investigating the biomechanical properties of tibial press-fit fixation of the patellar tendon with accessory bone plug in posterior cruciate ligament reconstruction. The implant-free tibial inlay technique shows equal biomechanical characteristics compared to an interference screw fixation. Further in vivo studies are desirable to compare the biological behavior and clinical relevance of this fixation device.

  18. Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis.

    PubMed

    Belaid, D; Vendeuvre, T; Bouchoucha, A; Brémand, F; Brèque, C; Rigoard, P; Germaneau, A

    2018-05-08

    Treatment for fractures of the tibial plateau is in most cases carried out by stable fixation in order to allow early mobilization. Minimally invasive technologies such as tibioplasty or stabilization by locking plate, bone augmentation and cement filling (CF) have recently been used to treat this type of fracture. The aim of this paper was to determine the mechanical behavior of the tibial plateau by numerically modeling and by quantifying the mechanical effects on the tibia mechanical properties from injury healing. A personalized Finite Element (FE) model of the tibial plateau from a clinical case has been developed to analyze stress distribution in the tibial plateau stabilized by balloon osteoplasty and to determine the influence of the cement injected. Stress analysis was performed for different stages after surgery. Just after surgery, the maximum von Mises stresses obtained for the fractured tibia treated with and without CF were 134.9 MPa and 289.9 MPa respectively on the plate. Stress distribution showed an increase of values in the trabecular bone in the treated model with locking plate and CF and stress reduction in the cortical bone in the model treated with locking plate only. The computed results of stresses or displacements of the fractured models show that the cement filling of the tibial depression fracture may increase implant stability, and decrease the loss of depression reduction, while the presence of the cement in the healed model renders the load distribution uniform. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Treatment of large posttraumatic tibial bone defects using the Ilizarov method: a subjective outcome assessment.

    PubMed

    Krappinger, Dietmar; Irenberger, Alexander; Zegg, Michael; Huber, Burkhart

    2013-06-01

    The treatment of large posttraumatic tibial bone defects using the Ilizarov method was shown to be successful in several studies. These studies, however, typically focus on the radiological and functional outcome using objective parameters only. The aim of the present study was therefore to assess the objective and subjective outcome of a consecutive series of patients with large posttraumatic tibial bone defects using the Ilizarov method. Additionally, it was our goal to assess the physical and mental stress for the patients and their relatives during the long treatment period and the general health status at final follow-up. A consecutive series of 15 patients with posttraumatic tibial bone defects of >30 mm after sustaining open tibial fractures and failure of internal fixation was included. The objective outcome was assessed at final follow-up using Paley's criteria. For the assessment of the subjective outcome, all patients were asked to evaluate their satisfaction with the function of the lower leg, the cosmetic appearance and overall outcome as well. The physical and mental stress of the treatment for the patients and the nearest relative of patients were assessed at the time of frame removal using a custom-made questionnaire. The SF-36 was used to evaluate the general health status at final follow-up. Solid bone union with stable soft tissue coverage and eradication of infection was achieved in all patients despite a high complication rate. The functional outcome at final follow-up was excellent or good in all patients. The patients' satisfaction with the overall outcome and the function of the lower extremity was high as well. The fear of amputation and complications was the major subjective burden for both the patients and their relatives. The long external fixation time is another relevant issue. The Ilizarov method is a safe option for the treatment of large posttraumatic tibial bone defects after failure of internal fixation despite the high

  20. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation

    PubMed Central

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-01-01

    Abstract The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation. Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups. The mean follow-up time was 18.6 months (range: 5–24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P < .05). In group A, 5 cases had postoperative complications and 1 in group B (P < .05). The mean bone healing time in group A was 6.9 months (range: 5–9 months) and 6.0 months (range: 5–8 months) in group B (P > .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P < 0.05). In group A, the mean knee joint range of motion was 122° (range: 95°–150°) and 135° (range: 100°–160°) in group B (P > 0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05). External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation. PMID:29019890

  1. [effectiveness of open reduction and internal fixation without opening joint capsule on tibial plateau fracture].

    PubMed

    Chen, Qi; Xu, Xiaofeng; Huang, Yonghui; Cao, Xingbing; Meng, Chen; Cao, Xueshu; Wei, Changbao

    2014-12-01

    To introduce the surgery method to reset and fix tibial plateau fracture without opening joint capsule, and evaluate the safety and effectiveness of this method. Between July 2011 and July 2013, 51 patients with tibial plateau fracture accorded with the inclusion criteria were included. All of 51 patients, 17 cases underwent open reduction and internal fixation without opening joint capsule in trial group, and 34 cases underwent traditional surgery method in control group. There was no significant difference in gender, age, cause of injury, time from injury to admission, side of injury, and types of fracture between 2 groups (P > 0.05). The operation time, intraoperative blood loss, incision length, incision healing, and fracture healing were compared between 2 groups. The tibial-femoral angle and collapse of joint surface were measured on X-ray film. At last follow-up, joint function was evaluated with Hospital for Special Surgery (HSS) knee function scale. The intraoperative blood loss in trial group was significantly less than that in control group (P < 0.05). The incision length in trial group was significantly shorter than that in control group (P < 0.05). Difference was not significant in operation time and the rate of incision healing between 2 groups (P > 0.05). The patients were followed up 12-30 months (mean, 20.4 months) in trial group and 12-31 months (mean, 18.2 months) in control group. X-ray films indicated that all cases in 2 groups obtained fracture healing; there was no significant difference in the fracture healing time between 2 groups (t=1.382, P=0.173). On X-ray films, difference was not significant in tibial-femoral angle and collapse of joint surface between 2 groups (P > 0.05). HSS score of the knee in trial group was significantly higher than that of control group (t=3.161, P=0.003). It can reduce the intraoperative blood loss and shorten the incision length to use open reduction and internal fixation without opening joint capsule for

  2. Atrophic, aseptic, tibial nonunion: how effective is modified Judet's osteoperiosteal decortication technique and buttress plating?

    PubMed

    Binod, Bijukachhe; Nagmani, Singh; Bigyan, Bhandari; Rakesh, John; Prashant, Adhikari

    2016-08-01

    Tibial nonunion is the most common nonunion encountered by the orthopedic surgeon. Repeated surgeries, cost, increased duration of hospital stay, disability, pain all contribute to the increased morbidity. Many methods have been used to treat nonunion of tibia with variable results and none of them are 100 % successful. Our objective was to determine the effectiveness of modification of Judet's decortication technique and buttress plating, without bone graft, in the treatment of aseptic, atrophic tibial nonunion. Also, to find the correlation between time of achieving union and time since injury to decortication. Ours is a retrospective study conducted at a Level I trauma center. A total of 35 cases of atrophic tibial nonunion, irrespective of the cause, was treated by modifying Judet's osteoperiosteal decortication and plating during the time period January 2006 to July 2013. Demographic data, range of motion, time of achieving union and clinico-radiological evaluation for union of fracture were included as main outcome measurements. Union was achieved in all cases with a mean duration of 8.34 months. Pain and stiffness of joints were not reported in any case on long-term follow-up and the patients had satisfactory range of motion. Implant removal was done in three cases after fracture union. Treatment of atrophic tibial nonunion is challenging and management of each nonunion has to be customized based on the biological and mechanical characteristics of the nonunion. Plating with osteoperiosteal decortication is an effective and simple technique, which in our hands has shown to result in 100 % union rates without the need of additional bone healing augmentation procedures like bone grafting. Level II.

  3. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals.

    PubMed

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-02-26

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence.

  4. Hybrid external fixation in the treatment of tibial pilon fractures: A retrospective analysis of 162 fractures.

    PubMed

    Galante, Vito N; Vicenti, Giovanni; Corina, Gianfranco; Mori, Claudio; Abate, Antonella; Picca, Girolamo; Conserva, Vito; Speciale, Domenico; Scialpi, Lorenzo; Tartaglia, Nicola; Caiaffa, Vincenzo; Moretti, Biagio

    2016-10-01

    To determine the efficacy of hybrid external fixation in the treatment of tibial pilon fractures. Retrospective, multicentre study. Adult patients with tibial pilon fractures treated with hybrid external fixation. Fracture reduction with ligamentotaxis and fixation with XCaliber hybrid external fixator. Fracture union, complications, functional outcome (Mazur Ankle Score). Union was obtained in 159 fractures at an average of 125days; there were three delayed unions and three non-unions. The most frequent complication was superficial pin-track infections (48), all of which responded to local wound care and antibiotics. There were no deep infections and no DVT. Only one fracture had loss of reduction that required frame revision. The overall functional scores were 91 (excellent) for AO/OTA type A fractures, 89 (good) for type B fractures, and 75 (satisfactory) for type C fractures. Hybrid external fixation is an effective method of stabilising tibial pilon fractures, particularly those with marked comminution. The minimally-invasive technique and stable fixation enable early mobilisation, with good functional results and minimal complications. Level IV Case series. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  6. SPECT/CT tracer uptake is influenced by tunnel orientation and position of the femoral and tibial ACL graft insertion site.

    PubMed

    Hirschmann, Michael T; Mathis, Dominic; Rasch, Helmut; Amsler, Felix; Friederich, Niklaus F; Arnold, Markus P

    2013-02-01

    SPECT/CT is a hybrid imaging modality, which combines a 3D scintigraphy (SPECT) and a conventional computerised tomography (CT). SPECT/CT allows accurate anatomical localisation of metabolic tracer activity. It allows the correlation of surgical factors such as tunnel position and orientation with mechanical alignment, clinical outcome and biological factors. The purpose of this study was to investigate whether the SPECT/CT tracer uptake (intensity and distribution) correlates with the stability and laxity of the knee joint and the position and orientation of the tibial and femoral tunnels in patients after anterior cruciate ligament (ACL) reconstruction. A consecutive series of knees (n=66), with symptoms of pain and/or instability after ACL reconstruction were prospectively evaluated using clinical examination and 99mTc-HDP-SPECT/CT. Clinical laxity testing was performed using the Rolimeter (Ormed, Freiburg, Germany) including Lachman testing (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), anterior drawer test (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), pivot shift test (positive versus negative) and patient-based subjective instability (yes versus no). For analysis of SPECT/CT tracer uptake a previously validated SPECT/CT localisation scheme consisting of 17 tibial, nine femoral and four patellar regions on standardised axial, coronal, and sagittal slices was used. The tracer activity on SPECT/CT was localised and recorded using a 3D volumetric and quantitative analysis software. Mean, standard deviation, minimum and maximum of grading for each area of the localisation scheme were recorded. The position and orientation of the tibial and femoral tunnel was assessed using a previously published method on 3D-CT. Correlation of instability, pivot shift as well as clinical laxity testing with 99mTc-HDP-SPECT/CT tracer uptake intensity and distribution showed no significant correlation. 99mTc-HDP-SPECT/CT tracer uptake correlated significantly with the position and orientation of the ACL

  7. A high rate of tibial plateau fractures after early experience with patient-specific instrumentation for unicompartmental knee arthroplasties.

    PubMed

    Leenders, A M; Schotanus, M G M; Wind, R J P; Borghans, R A P; Kort, N P

    2018-04-30

    Patient-specific instrumentation (PSI) for unicompartmental knee arthroplasty (UKA) has been available for a few years. However, limited literature is available on this subject. Hence, the aim of this cohort study is to evaluate the 2 years' results of our first experiences with the use of PSI in UKA. It is hypothesised that there is no advantage in rate of adverse events and in radiological and functional outcomes in comparison to literature on the conventional method. This cohort included 129 knees of 122 patients, operated by one surgeon. Outcome measures were the rate of adverse events (AEs); implant position as determined on radiographs; the accuracy of the default and approved planning of the implant sizes and the patient-reported outcome measures (PROMs) preoperatively, and at 3, 12 and 24 months, postoperatively. A total of 6 (4.9%) AEs were observed in this study, with 4 (3.3%) tibial fractures being the main complication. The mean postoperative biomechanical axis was 176.4° and in the majority of cases, the radiographic criteria, as determined by the manufacturer, were met. The tibial component showed 20 (16.4%) outliers in the sagittal and 3 (2.5%) outliers in the frontal plane. There were no outliers of the femoral component. For the femoral and tibial components, respectively, in 125 (96.9%) and 79 (61.7%) cases, there was an agreement between approved planning and implanted component size. All PROMs improved significantly after surgery. Tibial fracture was the most common AE, probably related to the transition from cemented to uncemented UKA. Perioperative modifications to the surgical technique were made in order to prevent this AE. Improvements should be made to the operation technique of the uncemented tibial plateau to obtain an adequate placement and at the same time reduce the risk for tibial fracture. The PSI technique was a reliable tool for the placement of the femoral component. Functional outcome was in line with literature on the

  8. Patient reported health related quality of life early outcomes at 12 months after surgically managed tibial plafond fracture.

    PubMed

    Bonato, Luke J; Edwards, Elton R; Gosling, Cameron McR; Hau, Raphael; Hofstee, Dirk Jan; Shuen, Alex; Gabbe, Belinda J

    2017-04-01

    Tibial plafond fractures represent a small but complex subset of fractures of the lower limb. The aim of this study was to describe the health related quality of life, pain and return to work outcomes 12 months following surgically managed tibial plafond fracture. The Victorian Orthopaedic Trauma Outcomes Registry (VOTOR) database was used to identify patients with tibial plafond fractures. All patients captured by VOTOR with a tibial plafond fracture between September 2003 and July 2009, were identified consecutively and comprised the initial cohort. The radiographs of all identified patients were classified using the AO/OTA fracture classification. A review of the included patient's medical records was performed. Data were collected on the injury event, management and complications. Outcomes at 12 months were prospectively collected by telephone interview and included return to work, a numerical rating scale for assessment of pain and the Short Form 12 (SF-12). There were 98 unilateral tibial plafond fractures; 91 fractures were managed operatively, 4 non-operatively and 3 underwent amputation. The 91 operatively managed patients were the focus of this study. A two-stage management approach, involving temporary external fixation, followed by definitive open reduction and internal fixation, was the most common operative treatment. The follow-up rate at 12 months was 70%. 57% had returned to work by 12 months post-injury, the median (IQR) pain score was 2 (0-5) and 27% reported moderate to severe persistent pain. Mean PCS-12 scores were significantly lower than Australian norms (p=0.99), 38.2 for males and 37.5 for females. The presence of persistent pain, loss of physical health and a low return to work rate highlights the profound impact of tibial plafond fractures on patients' lives. Although this study looked at the early 12 month results, it is expected these outcomes will continue to improve over time. Further studies, with larger patient numbers, must focus

  9. Bracing can partially limit tibial rotation during stressful activities after anterior crucial ligament reconstruction with a hamstring graft.

    PubMed

    Giotis, D; Paschos, N K; Zampeli, F; Pappas, E; Mitsionis, G; Georgoulis, A D

    2016-09-01

    Hamstring graft has substantial differences with BPTB graft regarding initial mechanical strength, healing sequence, and vascularization, which may imply that a different approach during rehabilitation period is required. The purpose of this study was to investigate the influence of knee bracing on tibial rotation in ACL-reconstructed patients with a hamstring autograft during high loading activities. The hypothesis was that there would be a decrease in tibial rotation in the ACL-reconstructed braced knee as compared to the unbraced knee. Twenty male patients having undergone unilateral ACL reconstruction with a semitendinosus/gracilis autograft were assessed. Kinematic data were collected with an eight-camera optoelectronic system during two stressful tasks: (1) descending from a stair and subsequent pivoting; and (2) landing from a platform and subsequent pivoting. In each patient, three different experimental conditions were evaluated: (A) wearing a prophylactic brace (braced condition); (B) wearing a patellofemoral brace (sleeved condition); (C) without brace (unbraced condition). The intact knee without brace served as a control. Tibial rotation was significantly lower in the intact knee compared to all three conditions of the ACL-reconstructed knee (P≤0.01 for both tasks). Presence of a brace or sleeve resulted in lower tibial rotation than in the unbraced condition (p=0.003 for descending/pivot and P=0.0004 for landing/pivot). The braced condition resulted in lower rotation than the sleeved condition for descending/pivoting (P=0.031) while no differences were found for landing/pivoting (P=0.230). Knee bracing limited the excessive tibial rotation during pivoting under high loading activities in ACL-reconstructed knees with a hamstring graft. This partial restoration of normal kinematics may have a potential beneficial effect in patients recovering from ACL reconstruction with a hamstring autograft. Level III, case-control therapeutic study. Copyright

  10. Multiple Osteochondral Allograft Transplantation with Concomitant Tibial Tubercle Osteotomy for Multifocal Chondral Disease of the Knee.

    PubMed

    Cotter, Eric J; Waterman, Brian R; Kelly, Mick P; Wang, Kevin C; Frank, Rachel M; Cole, Brian J

    2017-08-01

    Symptomatic patellofemoral chondral lesions are a challenging clinical entity, as these defects may result from persistent lateral patellar maltracking or repetitive microtrauma. Anteromedializing tibial tubercle osteotomy has been shown to be an effective strategy for primary and adjunctive treatment of focal or diffuse patellofemoral disease to improve the biomechanical loading environment. Similarly, osteochondral allograft transplantation has proven efficacy in physiologically young, high-demand patients with condylar or patellofemoral lesions, particularly without early arthritic progression. The authors present the surgical management of a young athlete with symptomatic tricompartmental focal chondral defects with fresh osteochondral allograft transplantation and anteromedializing tibial tubercle osteotomy.

  11. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys

    PubMed Central

    Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.

    2008-01-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but

  12. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys.

    PubMed

    Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S

    2008-05-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but

  13. Anatomy and classification of the posterior tibial fragment in ankle fractures.

    PubMed

    Bartoníček, Jan; Rammelt, Stefan; Kostlivý, Karel; Vaněček, Václav; Klika, Daniel; Trešl, Ivo

    2015-04-01

    The aim of this study was to analyze the pathoanatomy of the posterior fragment on the basis of a comprehensive CT examination, including 3D reconstructions, in a large patient cohort. One hundred and forty one consecutive individuals with an ankle fracture or fracture-dislocation of types Weber B or Weber C and evidence of a posterior tibial fragment in standard radiographs were included in the study. The mean patient age was 49 years (range 19-83 years). The exclusion criteria were patients below 18 years of age, inability to provide written consent, fractures of the tibial pilon, posttraumatic arthritis and pre-existing deformities. In all patients, post-injury radiographs were obtained in anteroposterior, mortise and lateral views. All patients underwent CT scanning in transverse, sagittal and frontal planes. 3D CT reconstruction was performed in 91 patients. We were able to classify 137 cases into one of the following four types with constant pathoanatomic features: type 1: extraincisural fragment with an intact fibular notch, type 2: posterolateral fragment extending into the fibular notch, type 3: posteromedial two-part fragment involving the medial malleolus, type 4: large posterolateral triangular fragment. In the 4 cases it was not possible to classify the type of the posterior tibial fragment. These were collectively termed type 5 (irregular, osteoporotic fragments). It is impossible to assess the shape and size of the posterior malleolar fragment, involvement of the fibular notch, or the medial malleolus, on the basis of plain radiographs. The system that we propose for classification of fractures of the posterior malleolus is based on CT examination and takes into account the size, shape and location of the fragment, stability of the tibio-talar joint and the integrity of the fibular notch. It may be a useful indication for surgery and defining the most useful approach to these injuries.

  14. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    PubMed

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  15. Total knee replacement with tibial tubercle osteotomy in rheumatoid patients with stiff knee.

    PubMed

    Eid, Ahmed Salem; Nassar, Wael Ahmed Mohamed; Fayyad, Tamer Abdelmeguid Mohamed

    2016-11-01

    Total knee arthroplasty (TKA) is a well-proven modality that can provide pain relief and restore mobility for rheumatoid arthritis (RA) patients with advanced joint destruction. Patellar ligament avulsion, especially in presence of poor bone quality and knee stiffness, is one of the special considerations that must be addressed in this unique population of patients. This study aimed to determine the functional results in a series of rheumatoid patients with stiff knee and end-stage joint destruction who underwent tibial tubercle osteotomy during TKA. Twenty-three knees in 20 patients (16 women; four men) at a mean age of 54 years with end-stage arthritis and knee stiffness due to RA were operated upon for TKA using tibial tubercle osteotomy as a step during the operation. Patients were reviewed clinically and radiographically with a minimum follow-up of two years. Complications were noted. Hospital for Special Surgery (HSS) score was recorded pre-operatively and at six and 12 months postoperatively. Union occurred at the osteotomy site in 21 of 23 cases. One case had deep venous thrombosis (DVT). There was no infection or periprosthetic fracture, and at last follow-up, no patient required revision. HSS score improved from 46 (15-60) pre-operatively to 85 (71-96) post-operatively. Tibial tubercle osteotomy during TKA in patients with RA and stiff knee is technically demanding yet proved to be effective in improving post-operative range of movement and minimising the complication of patellar ligament avulsion.

  16. Low-energy fracture of posterolateral tibial plateau: treatment by a posterolateral prone approach.

    PubMed

    Yu, Guang-Rong; Xia, Jiang; Zhou, Jia-Qian; Yang, Yun-Feng

    2012-05-01

    Most of the posterolateral tibial plateau fractures are caused by low-energy injury. The posterior fracture fragment could not be exposed and reduced well through traditional approaches. The aim of this study was to review the results of surgical treatment of this kind of fracture using posterolateral approach with patient in prone position. The low-energy posterolateral fracture is defined as the main part of articular depression or split fragment limited within the posterior half of the lateral column. Direct reduction and buttress plate fixation through the posterolateral prone approach was applied in all the patients. In our series, 15 of 132 (11.4%) patients with tibial plateau fractures were identified as low-energy posterolateral fractures. The clinical outcomes were available in 14 of the 15 patients through phone interviews and chart reviews. Mean follow-up was 35.1 months (range: 24-48 months). All the patients had anatomic or good reductions (≤ 2 mm step/gap). Average range of motion was 0.7 degrees to 123.2 degrees (5-110 degrees to 0-140 degrees). The complications were limited to one superficial wound infection, two slight flexion contractures, and five implants removal. The average modified hospital for special surgery knee score was 93.4 (range: 86-100). The posterolateral prone approach provides excellent visualization, which can facilitate the reduction and posterior buttress plate fixation for low-energy posterolateral tibial plateau fractures and shows encouraging results. V, therapeutic study.

  17. [Treatment of Schatzker IV tibial plateau fractures with arthroscopy combined with MIPPO technique].

    PubMed

    Li, Jian-Wen; Ye, Feng; Bi, Da-Wei; Zheng, Xiao-Dong; Chen, Jian-Liang

    2018-02-25

    To discusses the clinical effects of arthroscopy combined with minimally invasive percutaneous plate osteosynthesis(MIPPO) technology in treating Schatzker IV tibial plateau fractures. From January 2012 to January 2016, 19 patients with Schatzker type IV tibial plateau fractures were treated with arthroscopy combined with minimally invasive technique including 12 males and 7 females with an average age of 46.5 years old ranging from 19 to 78 years old. Patients were suffering knee pain, swelling, flexion and extension limited, and other symptoms preoperative. Patients were followed up and assessed by Rasmussen knee function score. No infection, traumatic arthritis, and knee joint valgus occurred after operation. Nineteen cases were followed up for 12 to 24 months with an average of 18.6 months. Fracture healing time was 3 to 5 months with an average of 3.8 months. The knee pain and limited mobility improved significantly. The range of autonomic movement of joints was from 90 to 136 degrees. According to Rasmussen functional score criteria, the total score was 27.00±2.49, the result was excellent in 16 cases, good in 2 cases, fair in 1 case. Arthroscopic treatment for Schatzker type IV tibial plateau fractures combined with MIPPO can simultaneously treat internal structural injuries such as meniscus and other knee joints, with less trauma, fewer complications, and faster joint function recovery, but we must strictly grasp surgical indications and avoid expanding injuries. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  18. Relationship between tibial spine size and the occurrence of osteochondritis dissecans: an argument in favour of the impingement theory.

    PubMed

    Cavaignac, Etienne; Perroncel, Geoffroy; Thépaut, Mathias; Vial, Julie; Accadbled, Franck; De Gauzy, Jérôme Sales

    2017-08-01

    Pathophysiology of osteochondritis dissecans (OCD) of the medial femoral condyle remains uncertain. Specifically, the relationship between the size of the anterior tibial spine (ATS) and the presence of OCD has not been explored. The purpose of this study was to evaluate the relationship between ATS size and the occurrence of OCD. Seventy-nine children between 8 and 17 years of age were included in two groups: OCD (n = 37) and control (n = 42). The groups were matched in terms of age, gender, BMI and weight. Two independent observers performed an MRI analysis of the size of the tibial spine and intercondylar notch relative to the size of the respective epiphyses. For this study, the "S ratio" was calculated by dividing the height of the tibial spine by the height of the tibial epiphysis. The "N ratio" was calculated by dividing the height of the notch by the height of the femoral epiphysis. These two ratios for both groups were compared using Student's t test. The mean value of the S ratio in the OCD group was 0.39 ± 0.06; the mean value of the S ratio in the control group was 0.32 ± 0.03 (P = 0.004). The mean value of the N ratio in the OCD group was 0.70 ± 0.08; the mean value of the N ratio in the control group was 0.70 ± 0.07 (n.s.). This study's findings confirm our hypothesis that patients with OCD have a more prominent tibial spine than in patients without OCD. IV.

  19. [Biphasic ceramic wedge and plate fixation with locked adjustable screws for open wedge tibial osteotomy].

    PubMed

    Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y

    2004-10-01

    The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.

  20. Changes in patellofemoral alignment do not cause clinical impact after open-wedge high tibial osteotomy.

    PubMed

    Lee, Yong Seuk; Lee, Sang Bok; Oh, Won Seok; Kwon, Yong Eok; Lee, Beom Koo

    2016-01-01

    The objectives of this study were (1) to evaluate the clinical and radiologic outcomes of open-wedge high tibial osteotomy focusing on patellofemoral alignment and (2) to search for correlation between variables and patellofemoral malalignment. A total of 46 knees (46 patients) from 32 females and 14 males who underwent open-wedge high tibial osteotomy were included in this retrospective case series. Outcomes were evaluated using clinical scales and radiologic parameters at the last follow-up. Pre-operative and final follow-up values were compared for the outcome analysis. For the focused analysis of the patellofemoral joint, correlation analyses between patellofemoral variables and pre- and post-operative weight-bearing line (WBL), clinical score, posterior slope, Blackburn Peel ratio, lateral patellar tilt, lateral patellar shift, and congruence angle were performed. The minimum follow-up period was 2 years and median follow-up period was 44 months (range 24-88 months). The percentage of weight-bearing line was shifted from 17.2 ± 11.1 to 56.7 ± 12.7%, and it was statistically significant (p < 0.01). Regarding the clinical results, statistical significance was observed using all scores (p < 0.01). In the radiologic evaluation, patellar descent was observed with statistical significance (p < 0.01). Last follow-up lateral patellar tilt was decreased with statistical significance (p < 0.01). In correlation analysis between variables of patellofemoral malalignment, the pre-operative weight-bearing line showed an association with the change in lateral patellar tilt and lateral patellar shift (correlation coefficient: 0.3). After open-wedge high tibial osteotomy, clinical results showed improvement, compared to pre-operative values. The patellar tilt and lateral patellar shift were not changed; however, descent of the patella was observed. Therefore, mild patellofemoral problems should not be a contraindication of the open-wedge high tibial osteotomy. Case series