Sample records for proximal tubular basolateral

  1. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    PubMed

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  2. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    PubMed

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  3. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.

    2008-12-15

    The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less

  4. Basolateral choline transport in isolated rabbit renal proximal tubules.

    PubMed

    Dantzler, W H; Evans, K K; Wright, S H

    1998-11-01

    Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.

  5. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  6. Loss of tubular creatinine secretion as the only sign of tubular proximal cell dysfunction in light chain proximal tubulopathy: A case report.

    PubMed

    Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle

    2016-06-01

    Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined.

  7. Na+-independent D-glucose transport in rabbit renal basolateral membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, P.T.; Hammerman, M.R.

    1988-05-01

    To define the mechanism by which glucose is transported across the basolateral membrane of the renal proximal tubular cell, we measured D-(14C)glucose uptake in basolateral membrane vesicles from rabbit kidney. Na+-dependent D-glucose transport, demonstrable in brush-border vesicles, could not be demonstrated in basolateral membrane vesicles. In the absence of Na+, the uptake of D-(14C)glucose in basolateral vesicles was more rapid than that of L-(3H)glucose over a concentration range of 1-50 mM. Subtraction of the latter from the former uptakes revealed a saturable process with apparent Km of 9.9 mM and Vmax of 0.80 nmol.mg protein-1.s-1. To characterize the transport componentmore » of D-glucose uptake in basolateral vesicles, we measured trans stimulation of 2 mM D-(14C)glucose entry in the absence of Na+. Trans stimulation could be effected by preloading basolateral vesicles with D-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose, but not with L-glucose or alpha-methyl-D-glucoside. Trans-stimulated D-(14C)glucose uptake was inhibited by 0.1 mM phloretin or cytochalasin B but not phlorizin. In contrast, Na+-dependent D-(14C)glucose transport in brush-border vesicles was inhibited by phlorizin but not phloretin or cytochalasin B. Our findings are consistent with the presence of a Na+-independent D-glucose transporter in the proximal tubular basolateral membrane with characteristics similar to those of transporters present in nonepithelial cells.« less

  8. Tubular Obstruction Leads to Progressive Proximal Tubular Injury and Atubular Glomeruli in Polycystic Kidney Disease

    PubMed Central

    Galarreta, Carolina I.; Grantham, Jared J.; Forbes, Michael S.; Maser, Robin L.; Wallace, Darren P.; Chevalier, Robert L.

    2015-01-01

    In polycystic kidney disease (PKD), renal parenchyma is destroyed by cysts, hypothesized to obstruct nephrons. A signature of unilateral ureteral obstruction, proximal tubular atrophy leads to formation of atubular glomeruli. To determine whether this process occurs in PKD, kidneys from pcy mice (moderately progressive PKD), kidneys from cpk mice (rapidly progressive PKD), and human autosomal dominant PKD were examined in early and late stages. Integrity of the glomerulotubular junction and proximal tubular mass were determined in sections stained with Lotus tetragonolobus lectin. Development of proximal tubular atrophy and atubular glomeruli was determined in serial sections of individual glomeruli. In pcy mice, most glomerulotubular junctions were normal at 20 weeks, but by 30 weeks, 56% were atrophic and 25% of glomeruli were atubular; glomerulotubular junction integrity decreased with increasing cyst area (r = 0.83, P < 0.05). In cpk mice, all glomerulotubular junctions were normal at 10 days, but by 19 days, 26% had become abnormal. In early-stage autosomal dominant PKD kidneys, 50% of glomeruli were atubular or attached to atrophic tubules; in advanced disease, 100% were abnormal. Thus, proximal tubular injury in cystic kidneys closely parallels that observed with ureteral obstruction. These findings support the hypothesis that, in renal cystic disorders, cyst-dependent obstruction of medullary and cortical tubules initiates a process culminating in widespread destruction of proximal convoluted tubules at the glomerulotubular junction. PMID:24815352

  9. Functional characterization of apical transporters expressed in rat proximal tubular cells (PTCs) in primary culture.

    PubMed

    Nakanishi, Takeo; Fukushi, Akimasa; Sato, Masanobu; Yoshifuji, Mayuko; Gose, Tomoka; Shirasaka, Yoshiyuki; Ohe, Kazuyo; Kobayashi, Masato; Kawai, Keiichi; Tamai, Ikumi

    2011-12-05

    Since in vitro cell culture models often show altered apical transporter expression, they are not necessarily suitable for the analysis of renal transport processes. Therefore, we aimed here to investigate the usefulness of primary-cultured rat proximal tubular cells (PTCs) for this purpose. After isolation of renal cortical cells from rat kidneys, PTCs were enriched and the gene expression and function of apical transporters were analyzed by means of microarray, RT-PCR and uptake experiments. RT-PCR confirmed that the major apical transporters were expressed in rat PTCs. Na(+)-dependent uptake of α-methyl-d-glucopyranoside (αMG), ergothioneine and carnitine by the PTCs suggests functional expression of Sglts, Octn1 and Octn2, respectively. Inhibition of pH-dependent glycylsarcosine uptake by low concentration of cephalexin, which is a β-lactam antibiotics recognized by Pepts, indicates a predominant role of high affinity type Pept2, but not low affinity type Pept1, in the PTCs. Moreover, the permeability ratio of [(14)C]αMG (apical to basolateral/basolateral to apical) across PTCs was 4.3, suggesting that Sglt-mediated reabsorptive transport is characterized. In conclusion, our results indicate that rat PTCs in primary culture are found to be a promising in vitro model to evaluate reabsorption processes mediated at least by Sglts, Pept2, Octn1 and Octn2.

  10. Acquired Fanconi syndrome with proximal tubular cytoplasmic fibrillary inclusions of λ light chain restriction.

    PubMed

    Yao, Ying; Wang, Su-Xia; Zhang, You-Kang; Wang, Yan; Liu, Li; Liu, Gang

    2014-01-01

    Light chain proximal tubulopathy is a rarely reported entity associated with plasma cell dyscrasia that classically manifests as acquired Fanconi syndrome and is characterized by the presence of κ-restricted crystals in the proximal tubular cytoplasm. We herein present a case of multiple myeloma with Fanconi syndrome and acute kidney injury due to light chain proximal tubulopathy with light chain cast nephropathy. Prominent phagolysosomes and numerous irregularly shaped inclusions with a fibrillary matrix in the cytoplasm of the proximal tubules were identified on electron microscopy. A monotypic light chain of the λ type was detected in the distal tubular casts, proximal tubular cytoplasmic lysosomes and fibrillary inclusions on immunofluorescence and immune electron microscopy. This case underscores the importance of conducting careful ultrastructural investigations and immunocytologic examinations of light chains for detecting and diagnosing light chain proximal tubulopathy.

  11. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.

    PubMed

    Sasaki, S; Shiigai, T; Yoshiyama, N; Takeuchi, J

    1987-01-01

    To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.

  12. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells.

    PubMed

    Schlatter, P; Beglinger, C; Drewe, J; Gutmann, H

    2007-06-07

    GLP-1 is secreted into the circulation after food intake. The main biological effects of GLP-1 include stimulation of glucose dependent insulin secretion and induction of satiety feelings. Recently, it was demonstrated in rats and humans that GLP-1 can stimulate renal excretion of sodium. Based on these data, the existence of a renal GLP-1 receptor (GLP-1R) was postulated. However, the exact localization of the GLP-1R and the mechanism of this GLP-1 action have not yet been investigated. Primary porcine proximal tubular cells were isolated from porcine kidneys. Expression of GLP-1R was measured at the mRNA level by quantitative RT-PCR. Protein expression of GLP-1R was verified with immunocytochemistry, immunohistochemistry and Western blot analysis. Functional studies included transport assessments of sodium and glucose using three different GLP-1 concentrations (200 pM, 2 nM and 20 nM), 200 pM exendin-4 (GLP-1 analogue) and an inhibitor of the dipeptidylpeptidase IV (DPPIV) enzyme (P32/98 at 10 microM). Finally, the expression of NHE3, the predominant Na(+)/H(+) exchanger in proximal tubular cells, was also investigated. GLP-1R, NHE3 and DPPIV were expressed at the mRNA level in porcine proximal tubular kidney cells. GLP-1R expression was confirmed at the protein level. Staining of human and pig kidney cortex revealed that GLP-1R was predominantly expressed in proximal tubular cells. Functional assays demonstrated an inhibition of sodium re-absorption with GLP-1 after 3 h of incubation. Exendin-4 and GLP-1 in combination with P32/98 co-administration had no clear influence on glucose and sodium uptake and transport. GLP-1R is functionally expressed in porcine proximal tubular kidney cells. Addition of GLP-1 to these cells resulted in a reduced sodium re-absorption. GLP-1 had no effect on glucose re-absorption. We conclude that GLP-1 modulates sodium homeostasis in the kidney most likely through a direct action via its GLP-1R in proximal tubular cells.

  13. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  14. Basolateral phosphate transport in renal proximal-tubule-like OK cells.

    PubMed

    Barac-Nieto, M; Alfred, M; Spitzer, A

    2002-09-01

    It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.

  15. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury.

    PubMed

    Kim, Jinu

    2017-10-01

    Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.

  16. Tubularized proximally-incised plate in distal/midshaft hypospadias repair.

    PubMed

    Marte, Antonio; Pintozzi, Lucia

    2017-06-23

    The aim of this study was to verify the validity, feasibility, and the functional results, by uroflowmetry, of Tubularized proximallyincised plate technique in selected case of distal/midshaft hypospadias. Out of 120 patients scheduled to undergo TIP (or Snodgrass) procedure, 23 were selected between January 2013 and January 2016 (19.1%). This case series comprised 16 patients with distal and 7 with midshaft hypospadias. Mean age at surgery was 2.9 years. The inclusion criteria were a deep and wide glandular groove and a proximal narrow urethral plate. The procedure was carried out as described by Snodgrass but the incision of the urethral plate, including the mucosal and submucosal tissue, was made only proximally, between the original meatus and the glandular groove in no case extending to the entire length of the plate. Postoperatively a foley catheter was left in place from 4 to 7 days. Uroflowmetry was performed when the patients age ranged from 2.5 to 5.7 years (mean age 3.11 years and mean follow-up 1.8 years, body surface 2). No patient presented fistulas nor perioperative complications. At uroflowmetry, eighteen patients presented values above the 25th percentile and 5 showed a borderline flow. All patients in this group remained stable without urinary symptoms. In selected cases, the tubularized proximally-incised plate yields satisfactory cosmetic and functional results for the treatment of midshaft proximal hypospadias. A long-term follow-up study is needed for further evaluation. Patient selection is crucial for the success of this technique.

  17. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung-Min; Department of Nutritional Science and Toxicology, University of California, Berkeley, CA; Attieh, Zouhair K.

    2012-05-11

    a cellular compartment in close proximity but not overlapping with the basolateral surface. Surface biotinylation studies indicate that hephaestin in the peri-basolateral location is accessible to the extra-cellular environment. These results support the hypothesis that hephaestin is involved in iron mobilization of iron from the intestine to circulation.« less

  18. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    PubMed

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  20. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells.

    PubMed

    Grahammer, Florian; Ramakrishnan, Suresh K; Rinschen, Markus M; Larionov, Alexey A; Syed, Maryam; Khatib, Hazim; Roerden, Malte; Sass, Jörn Oliver; Helmstaedter, Martin; Osenberg, Dorothea; Kühne, Lucas; Kretz, Oliver; Wanner, Nicola; Jouret, Francois; Benzing, Thomas; Artunc, Ferruh; Huber, Tobias B; Theilig, Franziska

    2017-01-01

    Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells. Copyright © 2016 by the American Society of Nephrology.

  1. Haploinsufficiency of the ammonia transporter Rhcg predisposes to chronic acidosis: Rhcg is critical for apical and basolateral ammonia transport in the mouse collecting duct.

    PubMed

    Bourgeois, Soline; Bounoure, Lisa; Christensen, Erik I; Ramakrishnan, Suresh K; Houillier, Pascal; Devuyst, Olivier; Wagner, Carsten A

    2013-02-22

    Ammonia secretion by the collecting duct (CD) is critical for acid-base homeostasis and, when defective, causes distal renal tubular acidosis (dRTA). The Rhesus protein RhCG mediates NH(3) transport as evident from cell-free and cellular models as well as from Rhcg-null mice. Here, we investigated in a Rhcg mouse model the metabolic effects of Rhcg haploinsufficiency, the role of Rhcg in basolateral NH(3) transport, and the mechanisms of adaptation to the lack of Rhcg. Both Rhcg(+/+) and Rhcg(+/-) mice were able to handle an acute acid load, whereas Rhcg(-/-) mice developed severe metabolic acidosis with reduced ammonuria and high mortality. However, chronic acid loading revealed that Rhcg(+/-) mice did not fully recover, showing lower blood HCO(3)(-) concentration and more alkaline urine. Microperfusion studies demonstrated that transepithelial NH(3) permeability was reduced by 80 and 40%, respectively, in CDs from Rhcg(-/-) and Rhcg(+/-) mice compared with controls. Basolateral membrane permeability to NH(3) was reduced in CDs from Rhcg(-/-) mice consistent with basolateral Rhcg localization. Rhcg(-/-) responded to acid loading with normal expression of enzymes and transporters involved in proximal tubular ammoniagenesis but reduced abundance of the NKCC2 transporter responsible for medullary accumulation of ammonium. Consequently, tissue ammonium content was decreased. These data demonstrate a role for apical and basolateral Rhcg in transepithelial NH(3) transport and uncover an incomplete dRTA phenotype in Rhcg(+/-) mice. Haploinsufficiency or reduced expression of RhCG may underlie human forms of (in)complete dRTA.

  2. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less

  3. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells.

    PubMed

    Liu, Jing; Livingston, Man J; Dong, Guie; Tang, Chengyuan; Su, Yunchao; Wu, Guangyu; Yin, Xiao-Ming; Dong, Zheng

    2018-02-23

    Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.

  4. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells.

    PubMed

    Ellis, Robert J; Small, David M; Ng, Keng Lim; Vesey, David A; Vitetta, Luis; Francis, Ross S; Gobe, Glenda C; Morais, Christudas

    2018-06-01

    Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.

  5. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.

    PubMed

    Mitsuoka, Keisuke; Shirasaka, Yoshiyuki; Fukushi, Akimasa; Sato, Masanobu; Nakamura, Toshimichi; Nakanishi, Takeo; Tamai, Ikumi

    2009-04-01

    L-Citrulline has diagnostic potential for renal function, because its plasma concentration increases with the progression of renal failure. Although L-citrulline extracted by glomerular filtration in kidney is mostly reabsorbed, the mechanism involved is not clearly understood. The present study was designed to characterize L-citrulline transport across the apical membranes of renal epithelial tubular cells, using primary-cultured rat renal proximal tubular cells, as well as the human kidney proximal tubular cell line HK-2. L-Citrulline was transported in a Na(+)-dependent manner from the apical side of both cell types cultured on permeable supports with a microporous membrane. Kinetic analysis indicated that the transport involves two distinct Na(+)-dependent saturable systems and one Na(+)-independent saturable system in HK-2 cells. The uptake was competitively inhibited by neutral and cationic, but not anionic amino acids. Relatively large cationic and anionic compounds inhibited the uptake, but smaller ones did not. In HK-2 cells, mRNA expression of SLC6A19 and SLC7A9, which encode B(0)AT1 and b(0,+)AT, respectively, was detected by RT-PCR. In addition, L-citrulline transport was significantly decreased in HK-2 cells in which either SLC6A19 or SLC7A9 was silenced. Hence, these results suggest that amino acid transporters B(0)AT1 and b(0,+)AT are involved in the reabsorption of L-citrulline in the kidney, at least in part, by mediating the apical membrane transport of L-citrulline in renal tubule cells.

  6. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression

  7. Phosphorylation of Stats at Ser727 in renal proximal tubular epithelial cells exposed to cadmium.

    PubMed

    Nakagawa, Junko; Nishitai, Gen; Inageda, Kiyoshi; Matsuoka, Masato

    2007-11-01

    The effects of cadmium exposure on serine phosphorylation of signal transducers and activators of transcription (Stats) and an upstream kinase were examined in renal proximal tubular cells. In porcine LLC-PK1 cells treated with cadmium, Stat1 and Stat3 proteins were phosphorylated at Ser727 without changing total Stat protein levels. While phosphorylated forms of the members of mitogen-activated protein kinases (MAPKs) increased in response to cadmium exposure, treatment with a p38 inhibitor, SB203580 reduced Ser727 phosphorylation of Stat1 and Stat3 markedly in LLC-PK1 cells. The expression of human matrix metalloproteinase-3 (MMP-3), a Stats-inducible gene, was found to be up-regulated in human HK-2 cells exposed to cadmium, and suppressed by preincubation with SB203580. These results suggest that cadmium might induce the phosphorylation of Stat1 and Stat3 at Ser727 via the p38 pathway at least in part, and modulate gene expression in these proximal tubular cells. Copyright © 2007 Elsevier B.V. All rights reserved.

  8. Basolateral membrane K+ channels in renal epithelial cells

    PubMed Central

    Devor, Daniel C.

    2012-01-01

    The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

  9. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury

    PubMed Central

    McCracken, Ruth; Liu, Yan; Heitmeier, Monique R.; Bourgeois, Soline; Ryerse, Jan; Wu, Xue-Ru

    2013-01-01

    Tamm-Horsfall protein (THP) is a glycoprotein normally targeted to the apical membrane domain of the kidney's thick ascending limbs (TAL). We previously showed that THP of TAL confers protection to proximal tubules against acute kidney injury (AKI) via a possible cross talk between the two functionally distinct tubular segments. However, the extent, timing, specificity, and functional effects of basolateral translocation of THP during AKI remain unclear. Using an ischemia-reperfusion (IRI) model of murine AKI, we show here that, while THP expression in TAL is downregulated at the peak of injury, it is significantly upregulated 48 h after IRI. Confocal immunofluorescence and immunoelectron microscopy reveal a major redirection of THP during recovery from the apical membrane domain of TAL towards the basolateral domain, interstitium, and basal compartment of S3 segments. This corresponds with increased THP in the serum but not in the urine. The overall epithelial polarity of TAL cells does not change, as evidenced by correct apical targeting of Na+-K+-2Cl cotransporter (NKCC2) and basolateral targeting of Na+-K+-ATPase. Compared with the wild-type, THP−/− mice show a significantly delayed renal recovery after IRI, due possibly to reduced suppression by THP of proinflammatory cytokines and chemokines such as monocyte chemoattractant protein-1 during recovery. Taken together, our data suggest that THP redistribution in the TAL after AKI is a protein-specific event and its increased interstitial presence negatively regulates the evolving inflammatory signaling in neighboring proximal tubules, thereby enhancing kidney recovery. The increase of serum THP may be used as a prognostic biomarker for recovery from AKI. PMID:23389456

  10. Primary hyperparathyroidism and proximal renal tubular acidosis: Report of two cases

    PubMed Central

    Siddiqui, Abdullah A.; Wilson, Douglas R.

    1972-01-01

    Two cases of primary hyperparathyroidism due to single parathyroid adenomas presented with the additional feature of hyperchloremic acidosis. The defect in urinary acidification responsible was not of the distal or gradient-limited type since both patients could lower urine pH adequately. However, there was a defect of bicarbonate reabsorption, an abnormality referred to as the proximal or rate-limited type of renal tubular acidosis. It is suggested that this defect represents an exaggeration of the physiological effect of parathormone on bicarbonate reabsorption and may be responsible for the frequent finding of hyperchloremia in association with primary hyperparathyroidism as well as for the urinary bicarbonate-wasting associated with a variety of causes of secondary hyperparathyroidism. PMID:5012229

  11. [Acute renal failure and proximal renal tubular dysfuntion in a patient with acquired immunodeficiency syndrome treated with tenofovir].

    PubMed

    de la Prada, F J; Prados, A M; Tugores, A; Uriol, M; Saus, C; Morey, A

    2006-01-01

    Tenofovir, a new nucleotide reverse transcriptase inhibitor that has good antiviral activity against drug-resistant strains of HIV, is structurally similar to cidofovir and adefovir and seems to be less nephrotoxic. Nephrotoxicity of cidofovir and adefovir is well established and they have been associated with increase for acute renal insufficiency due to tubular toxicity, possibly induced via mitochondrial deplection. Tenofovir has little mithocondrial toxicity in in vitro assays and early clinical studies. However some cases of renal tubular dysfuntion and renal failure related to tenofovir treatment have been published recently. Increased plasma concentrations of didanosine were observed after the adition of tenofovir and protease inhibitors can interact with the renal transport of organic anions leading to proximal tubular intracellular accumulation of tenofovir, yield Fanconi syndrome-type tubulopathy. We present a case in wich acute renal failure and proximal tubular dysfunction developed after therapy with tenofovir in a patiente with HIV who had suffered from complications of didanosine treatment. Although nephrotoxicity certainly occurs much less frequently with tenofovir that it does with other nuclotide analogues, use of tenofovir by patients with underlying renal disfuntion, for longer durations and/or associated with didanosine or lopinavir-ritonavir, might be associated with renal toxicity. Patients receiving tenofovir must be monitored for sings of tubulopathy with simple tests such us glycosuria, phosphaturia, proteinuria, phosphoremia and renal function, as well as assessment for signs of mithocondrial toxicity when a nucleoside analogue is being administered, and therapy should be stopped to avoid the risk of definitive renal failure.

  12. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects.

    PubMed

    ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O

    1999-10-01

    Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.

  13. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    PubMed

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  14. Hypertrophy of proximal tubular epithelial cells induced by low pH in vitro is independent of ammoniagenesis.

    PubMed

    Bevington, A; Millwater, C J; Walls, J

    1994-01-01

    Metabolic acidosis can lead to tubular hypertrophy in vivo. This is thought to arise from stimulation of renal production of ammonia, a known hypertrophic agent. To examine this effect in vitro, confluent opossum (OK) proximal tubular epithelial cells were cultured at acidic pH (7.21 +/- 0.02) or at control pH (7.37 +/- 0.01) for 4 days. Protein content was 9% higher at acidic pH whereas DNA content was unaffected. The resulting increase in mean cell size (protein/DNA ratio) was 10% but correlated inversely with the mass of cells in control wells, varying from +48% at low cell mass to -14% at high cell mass. In contrast, low pH decreased 3H-thymidine incorporation by 9%. However, ammonia production was unaffected. These changes in protein/DNA ratio and 3H-thymidine incorporation cannot therefore be attributed to acid-induced ammoniagenesis and imply that low pH exerts a more direct effect on tubular cell growth than previously envisaged.

  15. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C., E-mail: bridges_cc@mercer.edu; Zalups, Rudolfs K.; Joshee, Lucy

    Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize themore » role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.« less

  16. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process

    PubMed Central

    1985-01-01

    In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH- sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)- carboxyfluorescein, was loaded into cells and relative changes in fluorescence at two excitation wavelengths were followed. Calibration was accomplished using nigericin with high extracellular potassium concentrations. When luminal and peritubular fluids were pH 7.32, cell pH was 7.14 +/- 0.01. Decreasing peritubular pH from 7.32 to 6.63 caused cell pH to decrease from 7.16 +/- 0.02 to 6.90 +/- 0.03. This effect occurred at an initial rate of 2.4 +/- 0.3 pH units/min, and was inhibited by 0.5 mM SITS. Lowering the peritubular sodium concentration from 147 to 25 meq/liter caused cell pH to decrease from 7.20 +/- 0.03 to 6.99 +/- 0.01. The effect of peritubular sodium concentration on cell pH was inhibited by 0.5 mM SITS, but was unaffected by 1 mM amiloride. In addition, when peritubular pH was decreased in the total absence of luminal and peritubular sodium, the rate of cell acidification was 0.2 +/- 0.1 pH units/min, a greater than 90% decrease from that in the presence of sodium. Cell depolarization achieved by increasing the peritubular potassium concentration caused cell pH to increase, an effect that was blocked by peritubular barium or luminal and peritubular sodium removal. Lowering the peritubular chloride concentration from 128 to 0 meq/liter did not affect cell pH. These results suggest the existence of an electrogenic, sodium-coupled H+/OH- /HCO-3 transport mechanism on the basolateral membrane of the rat proximal convoluted tubule. PMID:2999293

  17. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  18. P1,P4-diadenosine tetraphosphate (Ap4A) inhibits proximal tubular reabsorption of sodium in rats.

    PubMed

    Stiepanow-Trzeciak, Anna; Jankowski, Maciej; Angielski, Stefan; Szczepanska-Konkel, Miroslawa

    2007-01-01

    P1,P4-diadenosine tetraphosphate (Ap4A) is a vasoactive dinucleotide possessing natriuretic activity. It is unclear, however, which part of the nephron is the target site of action for Ap4A. We evaluated the tubular sites of Ap4A action using the lithium clearance technique. Ap4A at a priming dose of 2 micromol/kg with subsequent infusion at 20 nmol/kg/min increased fractional water and sodium excretion 2.5- and 5.6-fold, respectively. Moreover, Ap4A increased lithium clearance 1.9-fold and fractional lithium excretion 2.8-fold. Fractional water and sodium excretion from distal nephron segments was not significantly affected by Ap4A. These results suggest that Ap4A induces natriuresis mainly through inhibition of proximal tubular reabsorption of sodium. Copyright 2007 S. Karger AG, Basel.

  19. Tubular Recovery after Acute Kidney Injury.

    PubMed

    Fattah, Hadi; Vallon, Volker

    2018-05-31

    A significant portion of patients who are affected by acute kidney injury (AKI) do not fully recover due to largely unclear reasons. Restoration of tubular function has been proposed to be a prerequisite for glomerular filtration rate (GFR) recovery. Proximal tubular cells dedifferentiate during the tubular injury phase, which is required for subsequent cell proliferation and replacement of lost epithelial cells. Experimental studies indicate that some cells fail to redifferentiate and continue to produce growth factors (e.g., transforming growth factor β) that can induce fibrosis. Preclinical studies provide first evidence for beneficial effects of inhibiting glucose transport in the proximal tubule in models of ischemia-reperfusion injury. Comparing renal RNA sequencing data with kidney function during recovery from varying levels of AKI may provide new cues with regard to the sequence of events and help identify key determinants of recovery from AKI. Key Messages: Tubular recovery after AKI is vital for recovery of kidney function including improvement of GFR, and likely determines which patients fully recover from AKI or progress to chronic kidney disease. There is a need to better understand the sequence of events and the processes of tubular cell proliferation and repair, including safe strategies to intervene. The temporary inhibition of selected tubular transport processes, possibly in selected nephron regions, may provide an opportunity to improve tubular cell energetics and facilitate tubular cell recovery with consequences for kidney outcome. © 2018 S. Karger AG, Basel.

  20. Toxicological Significance of Renal Bcrp: Another Potential Transporter in the Elimination of Mercuric Ions from Proximal Tubular Cells

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.; Joshee, Lucy

    2015-01-01

    Secretion of inorganic mercury (Hg2+) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg2+ was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg2+. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg2+-induced nephropathy, Sprague-Dawley and Bcrp knockout (bcrp−/−) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol • kg−1), a moderately nephrotoxic (1.5 μmol • kg−1) or a significantly nephrotoxic (2.0 μmol • kg−1) dose of HgCl2. In general, the accumulation of Hg2+ was greater in organs of bcrp−/− rats than in Sprague-Dawley rats, suggesting that Bcrp may play a role in the export of Hg2+ from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp−/− rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. PMID:25868844

  1. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  2. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule

    PubMed Central

    1987-01-01

    The mechanism of basolateral membrane base transport was examined in the in vitro microperfused rabbit proximal convoluted tubule (PCT) in the absence and presence of ambient CO2/HCO3- by means of the microfluorometric measurement of cell pH. The buffer capacity of the cells measured using rapid NH3 washout was 42.8 +/- 5.6 mmol.liter-1.pH unit-1 in the absence and 84.6 +/- 7.3 mmol.liter-1.pH unit-1 in the presence of CO2/HCO3-. In the presence of CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by peritubular 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). In the absence of exogenous CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 induced a proton flux of 643 +/- 51 pmol.mm-1.min-1 in the presence of exogenous CO2/HCO3- and 223 +/- 27 pmol.mm-1.min-1 in its absence. Lowering bath Na from 147 to 0 mM induced proton fluxes of 596 +/- 77 pmol.mm-1.min-1 in its absence. The cell acidification induced by lowering bath pH or bath Na in the absence of CO2/HCO3- was inhibited by peritubular SITS or by acetazolamide, whereas peritubular amiloride had no effect. In the absence of exogenous CO2/HCO3-, cyanide blocked the cell acidification induced by bath Na removal, but was without effect in the presence of exogenous CO2/HCO3-. We reached the following conclusions. (a) The basolateral Na/base n greater than 1 cotransporter in the rabbit PCT has an absolute requirement for CO2/HCO3-. (b) In spite of this CO2 dependence, in the absence of exogenous CO2/HCO3-, metabolically produced CO2/HCO3- is sufficient to keep the transporter running at 30% of its control rate in the presence of ambient CO2/HCO3- . (c) There is no apparent amiloride-sensitive Na/H antiporter on

  3. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells

    PubMed Central

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-01

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity. PMID:28139717

  4. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells.

    PubMed

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-31

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity.

  5. Increased Fatty Acid Oxidation in Differentiated Proximal Tubular Cells Surviving a Reversible Episode of Acute Kidney Injury.

    PubMed

    Bataille, Aurélien; Galichon, Pierre; Chelghoum, Nadjim; Oumoussa, Badreddine Mohand; Ziliotis, Marie-Julia; Sadia, Iman; Vandermeersch, Sophie; Simon-Tillaux, Noémie; Legouis, David; Cohen, Raphaël; Xu-Dubois, Yi-Chun; Commereuc, Morgane; Rondeau, Eric; Le Crom, Stéphane; Hertig, Alexandre

    2018-06-19

    Fatty acid oxidation (FAO), the main source of energy produced by tubular epithelial cells in the kidney, was found to be defective in tubulo-interstitial samples dissected out in kidney biopsies from patients with chronic kidney disease (CKD). Experimental data indicated that this decrease was a strong determinant of renal fibrogenesis, hence a focus for therapeutic interventions. Nevertheless, whether persistently differentiated renal tubules, surviving in a pro-fibrotic environment, also suffer from a decrease in FAO, is currently unknown. To address this question, we isolated proximal tubules captured ex vivo on the basis of the expression of an intact brush border antigen (Prominin-1) in C57BL6/J mice subjected to a controlled, two-hit model of renal fibrosis (reversible ischemic acute kidney injury (AKI) or sham surgery, followed by angiotensin 2 administration). A transcriptomic high throughput sequencing was performed on total mRNA from these cells, and on whole kidneys. In contrast to mice subjected to sham surgery, mice with a history of AKI displayed histologically more renal fibrosis when exposed to angiotensin 2. High throughput RNA sequencing, principal component analysis and clustering showed marked consistency within experimental groups. As expected, FAO transcripts were decreased in whole fibrotic kidneys. Surprisingly, however, up- rather than down-regulation of metabolic pathways (oxidative phosphorylation, fatty acid metabolism, glycolysis, and PPAR signalling pathway) was a hallmark of the differentiated tubules captured from fibrotic kidneys. Immunofluorescence co-staining analysis confirmed that the expression of FAO enzymes was dependent of tubular trophicity. These data suggest that in differentiated proximal tubules energetic hyperactivity is promoted concurrently with organ fibrogenesis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE

  7. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI

    PubMed Central

    Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.

    2016-01-01

    NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548

  8. A Role for Tubular Necroptosis in Cisplatin-Induced AKI

    PubMed Central

    Xu, Yanfang; Ma, Huabin; Shao, Jing; Wu, Jianfeng; Zhou, Linying; Zhang, Zhirong; Wang, Yuze; Huang, Zhe; Ren, Junming; Liu, Suhuan; Chen, Xiangmei

    2015-01-01

    Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI. PMID:25788533

  9. Diabetes and renal tubular cell apoptosis

    PubMed Central

    Habib, Samy L

    2013-01-01

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells. PMID:23593533

  10. Diabetes and renal tubular cell apoptosis.

    PubMed

    Habib, Samy L

    2013-04-15

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells.

  11. Impaired organic ion transport in proximal tubules of rats with Heymann nephritis.

    PubMed

    Park, E K; Hong, S K; Goldinger, J; Andres, G; Noble, B

    1985-10-01

    Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.

  12. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    PubMed

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Improved outcomes after technical modifications in tubularized incised plate urethroplasty for mid-shaft and proximal hypospadias.

    PubMed

    Tam, Yuk Him; Pang, Kristine Kit Yi; Wong, Yuen Shan; Tsui, Siu Yan; Wong, Hei Yi; Mou, Jennifer Wai Cheung; Chan, Kin Wai; Lee, Kim Hung

    2016-11-01

    To investigate and compare the outcomes after tubularized incised plate (TIP) urethroplasty in mid-shaft and proximal hypospadias using a standard and a modified technique. We conducted a retrospective study in 104 consecutive children who underwent mid-shaft or proximal TIP repairs from Jan 2007 to Sept 2015. Patients in Cohort One had dorsal dartos (DD) neourethral coverage while patients in Cohort Two had either de-epithelialized split preputial (DESP) or tunica vaginalis (TV) flap coverage. TV flap was used only when DESP flap was not sufficient to cover the neourethra. There were 52 patients each in Cohort One (DD, n = 52) and Cohort Two (DESP, n = 38; TV, n = 14) with no difference in ratio of mid-shaft/proximal between the two cohorts. At a median follow-up of 28 months, 36 patients (34.6 %) developed 47 complications including fistula (n = 19; 18.3 %) and neourethral dehiscence (n = 4; 3.8 %). Cohort One patients had significantly more fistula (28.8 vs 7.7 %; p = 0.005) and neourethral dehiscence (7.7 vs 0 %; p = 0.04) than Cohort Two. There was no difference between the two cohorts in the complication rates of meatal stenosis, recurrent ventral curvature and neourethral stricture. Both DESP and TV flap appear to be superior to DD in preventing fistula and neourethral dehiscence in non-distal TIP repairs.

  15. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis.

    PubMed

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-11-01

    In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). The urinary protein level in Tg mice decreased significantly during the acute phase (~Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with vascular thrombosis in WT mice

  16. Nephrolithiasis in renal tubular acidosis.

    PubMed

    Buckalew, V M

    1989-03-01

    Renal tubular acidosis is a term applied to several conditions in which metabolic acidosis is caused by specific defects in renal tubular hydrogen ion secretion. Three types of renal tubular acidosis generally are recognized based on the nature of the tubular defect. Nephrolithiasis occurs only in type I renal tubular acidosis, a condition marked by an abnormality in the generation and maintenance of a hydrogen ion gradient by the distal tubule. A forme fruste of type I renal tubular acidosis has been described in which the characteristic defect in distal hydrogen ion secretion occurs in the absence of metabolic acidosis (incomplete renal tubular acidosis). Type I renal tubular acidosis is a heterogeneous disorder that may be hereditary, idiopathic or secondary to a variety of conditions. Secondary type I renal tubular acidosis in sporadic cases is associated most commonly with autoimmune diseases, such as Sjögren's syndrome and systemic lupus erythematosus, and it occurs more frequently in women than men. Nephrolithiasis, which may occur in any of the subsets of type I renal tubular acidosis, accounts for most of the morbidity in adults and adolescents. Major risk factors for nephrolithiasis include alkaline urine, hypercalciuria and hypocitraturia. In addition, we found hyperuricosuria in 21 per cent of the patients with type I renal tubular acidosis with nephrolithiasis. The most frequently occurring risk factor, hypocitraturia, is due to decreased filtered load and/or to increased tubular reabsorption of filtered citrate. While increased tubular reabsorption may be due to systemic acidosis, hypocitraturia occurs in incomplete renal tubular acidosis. Furthermore, alkali therapy (either bicarbonate or citrate salts) increases citrate excretion in complete and incomplete type I renal tubular acidosis. These data suggest that hypocitraturia in type I renal tubular acidosis may be due to a defect in proximal tubule function. Hypercalciuria appears to have 2 causes

  17. The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*

    PubMed Central

    Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.

    1967-01-01

    The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476

  18. Modified tubularized incised plate urethroplasty reduces the risk of fistula and meatal stenosis for proximal hypospadias: a report of 63 cases.

    PubMed

    Arshadi, Hamid; Sabetkish, Shabnam; Kajbafzadeh, Abdol-Mohammad

    2017-12-01

    To report the feasibility of modified tubularized incised plate (TIP) urethroplasty technique for proximal hypospadias in 63 cases. From January 2004 to March 2010, 63 patients underwent one-stage TIP urethroplasty (modified Snodgrass technique repair) using 2-3 of three covering layers (corpus spongiosum, dartos, and tunica vaginalis). The primary meatus was proximal penile, penoscrotal, scrotal, and perineal in 38, 13, 10, and 2 patients, respectively. All patients had chordee that was corrected with dorsal plication. Glanuloplasty was performed in all cases. Complications and cosmetic results were documented after 6-72 months of follow-up. A total of 63 boys with proximal hypospadias underwent Snodgrass hypospadias repair at a mean age of 8.5 months (range 6-54). Mean operative time was 210 ± 35 min. Patients were followed up with 6-month intervals for up to 6 years postoperatively. After 6 years of follow-up, nine urethrocutaneous fistulae, four bleeding, four meatal stenoses, and one urethral stricture were reported. Cosmetic result was satisfactory according to parent's opinion and another surgeon. No residual chordee was observed in any cases (without artificial correction). In conclusion, this preliminary report can be estimated as an alternative technique with acceptable complication and cosmetic results for proximal hypospadias correction.

  19. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells.

    PubMed

    Liu, Gang; Li, Zifa; Wang, Jinqiu; Wang, Hong; Wang, Zhenyong; Wang, Lin

    2014-10-01

    Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 µM Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (ΔΨ) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 µM) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells. © The Author(s) 2014.

  20. Upregulation of TLR4 via PKC activation contributes to impaired wound healing in high-glucose-treated kidney proximal tubular cells.

    PubMed

    Peng, Jianping; Zheng, Hang; Wang, Xia; Cheng, Zhixiang

    2017-01-01

    Acute kidney injury (AKI) leads to a worse prognosis in diabetic patients compared with prognoses in non-diabetic patients, but whether and how diabetes affects kidney repair after AKI remains unknown. Here, we used scratch-wound healing and transwell migration models to examine whether and how wound healing is affected by high glucose levels in cultured kidney proximal tubular cells (RPTC). The results show that scratch-wound healing and transwell migration were significantly slower in high-glucose-treated kidney tubular cells (30 mM glucose) than in low-glucose-treated cells (5.5 mM). Toll-like receptor 4 (TLR4), MyD88, phospho-protein kinase C (PKC), phospho-p38 MAPK and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were upregulated after high glucose treatments. Staurosporine, a selective PKC inhibitor, inhibited TLR4, MyD88 and p-p38 upregulation in the high-glucose-treated cells, indicating the involvement of PKC in high-glucose-induced TLR4 upregulation. The pharmacological inhibition of TLR4 or shRNA-mediated TLR4 knockdown improved wound healing and transwell migration in high-glucose-treated RPTC. In contrast, the overexpression of TLR4 in low-glucose-treated RPTC suppressed wound healing, mimicking the effects of high glucose levels. These results suggest that the upregulation of TLR4 expression via PKC activation contributes to defective wound healing in high-glucose-treated kidney tubular cells.

  1. Upregulation of TLR4 via PKC activation contributes to impaired wound healing in high-glucose-treated kidney proximal tubular cells

    PubMed Central

    Peng, Jianping; Zheng, Hang; Wang, Xia; Cheng, Zhixiang

    2017-01-01

    Acute kidney injury (AKI) leads to a worse prognosis in diabetic patients compared with prognoses in non-diabetic patients, but whether and how diabetes affects kidney repair after AKI remains unknown. Here, we used scratch-wound healing and transwell migration models to examine whether and how wound healing is affected by high glucose levels in cultured kidney proximal tubular cells (RPTC). The results show that scratch-wound healing and transwell migration were significantly slower in high-glucose-treated kidney tubular cells (30 mM glucose) than in low-glucose-treated cells (5.5 mM). Toll-like receptor 4 (TLR4), MyD88, phospho-protein kinase C (PKC), phospho-p38 MAPK and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were upregulated after high glucose treatments. Staurosporine, a selective PKC inhibitor, inhibited TLR4, MyD88 and p-p38 upregulation in the high-glucose-treated cells, indicating the involvement of PKC in high-glucose-induced TLR4 upregulation. The pharmacological inhibition of TLR4 or shRNA-mediated TLR4 knockdown improved wound healing and transwell migration in high-glucose-treated RPTC. In contrast, the overexpression of TLR4 in low-glucose-treated RPTC suppressed wound healing, mimicking the effects of high glucose levels. These results suggest that the upregulation of TLR4 expression via PKC activation contributes to defective wound healing in high-glucose-treated kidney tubular cells. PMID:28542370

  2. The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells.

    PubMed

    Schaaf, G J; Nijmeijer, S M; Maas, R F M; Roestenberg, P; de Groene, E M; Fink-Gremmels, J

    2002-11-20

    Balkan endemic nephropathy (BEN), a disease characterized by progressive renal fibrosis in human patients, has been associated with exposure to ochratoxin A (OTA). This mycotoxin is a frequent contaminant of human and animal food products, and is toxic to all animal species tested. OTA predominantly affects the kidney and is known to accumulate in the proximal tubule (PT). The induction of oxidative stress is implicated in the toxicity of this mycotoxin. In the present study, primary rat PT cells and LLC-PK(1) cells, which express characteristics of the PT, were used to investigate the OTA-mediated oxidative stress response. OTA exposure of these cells resulted in a concentration-dependent elevation of reactive oxygen species (ROS) levels, depletion of cellular glutathione (GSH) levels and an increase in the formation of 8-oxoguanine. The OTA-induced ROS response was significantly reduced following treatment with alpha-tocopherol (TOCO). However, this chain-braking anti-oxidant did not reduce the cytotoxicity of OTA and was unable to prevent the depletion of total GSH levels in OTA-exposed cells. In contrast, pre-incubation of the cell with N-acetyl-L-cysteine (NAC) completely prevented the OTA-induced increase in ROS levels as well as the formation of 8-oxoguanine and completely protected against the cytotoxicity of OTA. In addition, NAC treatment also limited the GSH depletion in OTA-exposed PT- and LLC-PK(1) cells. From these data, we conclude that oxidative stress contributes to the tubular toxicity of OTA. Subsequently, cellular GSH levels play a pivotal role in limiting the short-term toxicity of this mycotoxin in renal tubular cells.

  3. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis

    PubMed Central

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi

    2011-01-01

    Background. In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Methods. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). Results. The urinary protein level in Tg mice decreased significantly during the acute phase (∼Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with

  4. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism.

    PubMed

    Liu, Wenjing; Chen, Binbin; Wang, Yang; Meng, Chenling; Huang, Huihui; Huang, Xiao-Ru; Qin, Jinzhong; Mulay, Shrikant R; Anders, Hans-Joachim; Qiu, Andong; Yang, Baoxue; Freeman, Gordon J; Lu, Hua Jenny; Lin, Herbert Y; Zheng, Zhi-Hua; Lan, Hui-Yao; Huang, Yu; Xia, Yin

    2018-02-13

    Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.

  5. Effects of autophagy and endocytosis on the activity of matrix metalloproteinase‑2 in human renal proximal tubular cells under hypoxia.

    PubMed

    Yu, Wenmin; Wang, Zhi; Li, Yiping; Liu, Lei; Liu, Jing; Ding, Fenggan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng

    2017-05-01

    Tubulointerstitial fibrosis is characterized by tubular atrophy with basement membrane thickening and accumulation of interstitial extracellular matrix (ECM). A decrease in the activity of matrix metalloproteinase‑2 (MMP‑2) may promote this process. Although proximal tubular cells are sensitive to oxygen deprivation, whether cellular autophagy or endocytosis induced by hypoxia can alter the activity of MMP‑2 remains to be elucidated. The aim of the present study was to investigate whether autophagy and endocytosis induced by hypoxia can have an effect on the activity of MMP‑2 in HK‑2 cells. The investigations involved exposing the HK‑2 cell line to an autophagy inhibitor, 3‑MA, or an endocytotic inhibitor, filipin. The mRNA expression of MMP‑2 was elevated in the hypoxic milieu. Furthermore, it was found that filipin increased the activity of MMP‑2 under hypoxia. These results suggested that autophagy and endocytosis were potential mediators for the altered expression of MMP‑2, and endocytosis was a potential target for regulating the activity of MMP‑2. These data suggested that hypoxia may be an important pro‑fibrogenic stimulus, which acts in part via endocytosis.

  6. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury

    PubMed Central

    Thomasova, Dana; Ebrahim, Martrez; Fleckinger, Kristina; Li, Moying; Molnar, Jakob; Popper, Bastian; Liapis, Helen; Kotb, Ahmed M; Siegerist, Florian; Endlich, Nicole; Anders, Hans-Joachim

    2016-01-01

    Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death. PMID:27882940

  7. Dietary sodium induces a redistribution of the tubular metabolic workload

    PubMed Central

    Udwan, Khalil; Abed, Ahmed; Roth, Isabelle; Dizin, Eva; Maillard, Marc; Bettoni, Carla; Loffing, Johannes; Wagner, Carsten A.; Edwards, Aurélie

    2017-01-01

    Key points Body Na+ content is tightly controlled by regulated urinary Na+ excretion.The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized.We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell‐surface expression of major Na+ transporters all along the kidney tubule.Low dietary Na+ intake increased Na+ reabsorption in the proximal tubule and decreased it in more distal kidney tubule segments.High dietary Na+ intake decreased Na+ reabsorption in the proximal tubule and increased it in distal segments with lower energetic efficiency.The abundance of apical transporters and Na+ delivery are the main determinants of Na+ reabsorption along the kidney tubule.Tubular O2 consumption and the efficiency of sodium reabsorption are dependent on sodium diet. Abstract Na+ excretion by the kidney varies according to dietary Na+ intake. We undertook a systematic study of the effects of dietary salt intake on glomerular filtration rate (GFR) and tubular Na+ reabsorption. We examined the renal adaptive response in mice subjected to 7 days of a low sodium diet (LSD) containing 0.01% Na+, a normal sodium diet (NSD) containing 0.18% Na+ and a moderately high sodium diet (HSD) containing 1.25% Na+. As expected, LSD did not alter measured GFR and increased the abundance of total and cell‐surface NHE3, NKCC2, NCC, α‐ENaC and cleaved γ‐ENaC compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption increased in the proximal tubule but decreased in the distal nephron because of diminished Na+ delivery. This prediction was confirmed by the natriuretic response to diuretics targeting the thick ascending limb, the distal convoluted tubule or the collecting system. On the other hand, HSD did not alter measured GFR but decreased the abundance of the aforementioned transporters compared to NSD

  8. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  9. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  10. The rebirth of interest in renal tubular function.

    PubMed

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  11. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients

    PubMed Central

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment. PMID:28979691

  12. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients.

    PubMed

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment.

  13. [Clonal association of flat epithelial atypia and tubular breast cancer].

    PubMed

    Aulmann, S; Elsawaf, Z; Penzel, R; Schirmacher, P; Sinn, H P

    2008-11-01

    Flat epithelial atypia (FEA) of the breast has recently gained attention as a possible precursor lesion of highly differentiated breast cancer. Especially tubular carcinomas, with which FEA shares cytological features, often occur in close proximity to each other. To examine a possible clonal relationship, we analysed mutations of the highly variable region of the mitochondrial genome in a series of tubular carcinomas, associated FEA and normal glands. Multiple sequence alignment showed identical mtDNA mutations in approximately 50% of paired FEA and tumour samples, indicative of a clonal relationship. Our data indicate a possible precursor role of FEA in the development of tubular breast cancer.

  14. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.

    PubMed

    Bridges, Christy C; Barfuss, Delon W; Joshee, Lucy; Zalups, Rudolfs K

    2016-12-01

    Chronic kidney disease is characterized by a progressive and permanent loss of functioning nephrons. In order to compensate for this loss, the remaining functional nephrons undergo significant structural and functional changes. We hypothesize that luminal uptake of inorganic mercury (Hg 2+ ), as a conjugate of cysteine (Cys; Cys-S-Hg-S-Cys), is enhanced in S2 segments of proximal tubules from the remnant kidney of uninephrectomized (NPX) rabbits. To test this hypothesis, we measured uptake and accumulation of Cys-S-Hg-S-Cys in isolated perfused S2 segments of proximal tubules from normal (control) and NPX rabbits. The remnant kidney in NPX rabbits undergoes significant hypertrophy during the initial 3 weeks following surgery. Tubules isolated from NPX rabbits were significantly larger in diameter and volume than those from control rabbits. Moreover, real-time PCR analyses of proximal tubules indicated that the expression of selected membrane transporters was greater in kidneys of NPX animals than in kidneys of control animals. When S2 segments from control and NPX rabbits were perfused with cystine or Cys-S-Hg-S-Cys, we found that the rates of luminal disappearance and tubular accumulation of Hg 2+  were greater in tubules from NPX animals. These increases were inhibited by the addition of various amino acids to the perfusate. Taken together, our data suggest that hypertrophic changes in proximal tubules lead to an enhanced ability of these tubules to take up and accumulate Hg 2 . © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  16. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1

    PubMed Central

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins. PMID:26885277

  17. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    PubMed

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  18. Role of serotonin in the regulation of renal proximal tubular epithelial cells.

    PubMed

    Erikci, Acelya; Ucar, Gulberk; Yabanoglu-Ciftci, Samiye

    2016-08-01

    In various renal injuries, tissue damage occurs and platelet activation is observed. Recent studies suggest that some factors, such as serotonin, are released into microenvironment upon platelet activation following renal injury. In the present study, we aimed to investigate whether platelets and platelet-released serotonin are involved in the functional regulation of renal proximal tubular epithelial cells (PTECs). PTECs were obtained by primary cell culture and treated with platelet lysate (PL) (2 × 10(6)/mL, 4 × 10(6)/mL, 8 × 10(6)/mL) or serotonin (1 μM or 5 μM) for 12 or 24 h. Phenotypic transdifferentiation of epithelial cells into myofibroblasts were demonstrated under light microscope and confirmed by the determination of α-smooth muscle actin gene expression. Serotonin and PL were shown to induce epithelial-mesenchymal transdifferentiation of PTECs. After stimulation of PTECs with serotonin or PL, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and collagen-α1 gene expressions, which were reported to be elevated in renal injury, were determined by real-time PCR and found to be upregulated. Expressions of some inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and transforming growth factor-β1 were found to be increased in both protein and gene levels. Recently there is no published report on the effect of serotonin on renal PTECs. Results obtained in this study have lightened the role of serotonin and platelet-mediated effects of serotonin on fibrotic and inflammatory processes in PTECs.

  19. Low Risk of Proximal Tubular Dysfunction Associated With Emtricitabine-Tenofovir Disoproxil Fumarate Preexposure Prophylaxis in Men and Women

    PubMed Central

    Mugwanya, Kenneth; Baeten, Jared; Celum, Connie; Donnell, Deborah; Nickolas, Thomas; Mugo, Nelly; Branch, Andrea; Tappero, Jordan; Kiarie, James; Ronald, Allan; Yin, Michael; Wyatt, Christina

    2016-01-01

    Objective. Tenofovir disoproxil fumarate (TDF) is associated with proximal tubular dysfunction (tubulopathy) when used in the treatment of human immunodeficiency virus (HIV) infection. We evaluated whether TDF causes tubulopathy when used as HIV preexposure prophylaxis (PrEP) and whether tubulopathy predicts clinically relevant decline (≥25%) in the estimated glomerular filtration rate (eGFR). Methods. A subgroup analysis of the Partners PrEP Study, a randomized, placebo-controlled trial of daily oral TDF, alone or with emtricitabine (FTC), in HIV-uninfected African men and women (Clinicaltrials.gov NCT00557245). Tubulopathy was assessed in concurrently obtained urine and serum samples at the 24-month or last on-treatment visit, predefined as ≥2 of the following: tubular proteinuria, euglycemic glycosuria, increased urinary phosphate, and uric acid excretion. Results. Of 1549 persons studied (776 receiving FTC-TDF, 773 receiving placebo), 64% were male, and the median age was 37 years. Over a median 24 months of study-drug exposure, the frequency of tubulopathy was 1.7% for FTC-TDF versus 1.3% for placebo (odds ratio, 1.30; 95% confidence interval, .52–3.33; P = .68); Tubulopathy occurred in 2 of 52 persons (3.8%) with versus 3 of 208 (1.4%) without ≥25% eGFR decline (adjusted odds ratio, 1.39; .10–14.0; P > .99). Conclusions. Daily oral FTC-TDF PrEP was not significantly associated with tubulopathy over the course of 24 months, nor did tubulopathy predict clinically relevant eGFR decline. PMID:27029778

  20. Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin.

    PubMed Central

    Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.

    1997-01-01

    Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992

  1. Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis

    PubMed Central

    Shao, Xuesi M.; Kao, Liyo; Azimov, Rustam; Weinstein, Alan M.; Newman, Debra; Liu, Weixin; Kurtz, Ira

    2013-01-01

    Mutations in SLC4A4, the gene encoding the electrogenic Na+-HCO3− cotransporter NBCe1, cause severe proximal renal tubular acidosis (pRTA), growth retardation, decreased IQ, and eye and teeth abnormalities. Among the known NBCe1 mutations, the disease-causing mechanism of the T485S (NBCe1-A numbering) mutation is intriguing because the substituted amino acid, serine, is structurally and chemically similar to threonine. In this study, we performed intracellular pH and whole cell patch-clamp measurements to investigate the base transport and electrogenic properties of NBCe1-A-T485S in mammalian HEK 293 cells. Our results demonstrated that Ser substitution of Thr485 decreased base transport by ∼50%, and importantly, converted NBCe1-A from an electrogenic to an electroneutral transporter. Aqueous accessibility analysis using sulfhydryl reactive reagents indicated that Thr485 likely resides in an NBCe1-A ion interaction site. This critical location is also supported by the finding that G486R (a pRTA causing mutation) alters the position of Thr485 in NBCe1-A thereby impairing its transport function. By using NO3− as a surrogate ion for CO32−, our result indicated that NBCe1-A mediates electrogenic Na+-CO32− cotransport when functioning with a 1:2 charge transport stoichiometry. In contrast, electroneutral NBCe1-T485S is unable to transport NO3−, compatible with the hypothesis that it mediates Na+-HCO3− cotransport. In patients, NBCe1-A-T485S is predicted to transport Na+-HCO3− in the reverse direction from blood into proximal tubule cells thereby impairing transepithelial HCO3− absorption, possibly representing a new pathogenic mechanism for generating human pRTA. PMID:23636456

  2. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  3. Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells

    PubMed Central

    Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee

    2014-01-01

    Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  4. [Study on the assay of proximal tubular antigen in urine and serum with an anti-human renal monoclonal antibody].

    PubMed

    Taniai, K

    1991-10-01

    Monoclonal antibodies (Mabs) were produced by immunizing mice with human kidney microsomal antigen. Mab-B1 recognized brushborder (B1-Ag) in proximal tubules. Using Mab-B1, B1-Ag was assayed in the urine and serum of renal disease patients by sandwich ELISA. The subjects included normal control (Nor), minimal change nephrotic syndrome (MCNS), IgA nephropathy (IgA), membranous nephropathy (MN), membranoproliferative glomerulonephritis (MPGN), and chronic renal failure (CRF) (s-Cr greater than 2 mg/dl). Urinary B1-Ag demonstrated significant increases in the IgA (p less than 0.001), MN (p less than 0.001), MPGN (p less than 0.001) and CRF (p less than 0.01) groups as compared to the Nor group. There was no significant increase in the MCNS group. In the CRF group, B1-Ag in urine showed a significant increase in the progressive CRF group with delta s-Cr greater than 1.0 mg/dl/month as compared to the stationary CRF group with delta s-Cr less than 1.0 mg/dl/month. No correlation was observed between urinary B1-Ag and proteinuria, hematuria, s-Cr, s-BMG and u-NAG. The above findings suggested that the assay of urinary B1-Ag was useful as a new parameter in detecting the site and degree of proximal tubular damage.

  5. Low Risk of Proximal Tubular Dysfunction Associated With Emtricitabine-Tenofovir Disoproxil Fumarate Preexposure Prophylaxis in Men and Women.

    PubMed

    Mugwanya, Kenneth; Baeten, Jared; Celum, Connie; Donnell, Deborah; Nickolas, Thomas; Mugo, Nelly; Branch, Andrea; Tappero, Jordan; Kiarie, James; Ronald, Allan; Yin, Michael; Wyatt, Christina

    2016-10-01

    Tenofovir disoproxil fumarate (TDF) is associated with proximal tubular dysfunction (tubulopathy) when used in the treatment of human immunodeficiency virus (HIV) infection. We evaluated whether TDF causes tubulopathy when used as HIV preexposure prophylaxis (PrEP) and whether tubulopathy predicts clinically relevant decline (≥25%) in the estimated glomerular filtration rate (eGFR). A subgroup analysis of the Partners PrEP Study, a randomized, placebo-controlled trial of daily oral TDF, alone or with emtricitabine (FTC), in HIV-uninfected African men and women (Clinicaltrials.gov NCT00557245). Tubulopathy was assessed in concurrently obtained urine and serum samples at the 24-month or last on-treatment visit, predefined as ≥2 of the following: tubular proteinuria, euglycemic glycosuria, increased urinary phosphate, and uric acid excretion. Of 1549 persons studied (776 receiving FTC-TDF, 773 receiving placebo), 64% were male, and the median age was 37 years. Over a median 24 months of study-drug exposure, the frequency of tubulopathy was 1.7% for FTC-TDF versus 1.3% for placebo (odds ratio, 1.30; 95% confidence interval, .52-3.33; P = .68); Tubulopathy occurred in 2 of 52 persons (3.8%) with versus 3 of 208 (1.4%) without ≥25% eGFR decline (adjusted odds ratio, 1.39; .10-14.0; P > .99). Daily oral FTC-TDF PrEP was not significantly associated with tubulopathy over the course of 24 months, nor did tubulopathy predict clinically relevant eGFR decline. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. The basolateral vesicle sorting machinery and basolateral proteins are recruited to the site of enteropathogenic E. coli microcolony growth at the apical membrane.

    PubMed

    Pedersen, Gitte A; Jensen, Helene H; Schelde, Anne-Sofie B; Toft, Charlotte; Pedersen, Hans N; Ulrichsen, Maj; Login, Frédéric H; Amieva, Manuel R; Nejsum, Lene N

    2017-01-01

    Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that

  7. The basolateral vesicle sorting machinery and basolateral proteins are recruited to the site of enteropathogenic E. coli microcolony growth at the apical membrane

    PubMed Central

    Pedersen, Gitte A.; Jensen, Helene H.; Schelde, Anne-Sofie B.; Toft, Charlotte; Pedersen, Hans N.; Ulrichsen, Maj; Login, Frédéric H.; Amieva, Manuel R.

    2017-01-01

    Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that

  8. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    PubMed

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  9. Quercetin protects against radiocontrast medium toxicity in human renal proximal tubular cells.

    PubMed

    Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Serra, Raffaele; Russo, Domenico; De Sarro, Giovambattista; Michael, Ashour

    2018-05-01

    Radiocontrast media (RCM)-induced acute kidney injury (CI-AKI) is a major clinical problem whose pathophysiology is not well understood. Direct toxic effects on renal cells, possibly mediated by reactive oxygen species, have been postulated as contributing to CI-AKI. We investigated the effect of quercetin on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. Quercetin is the most widely studied flavonoid, and the most abundant flavonol present in foods. It has been suggested to have many health benefits, including angioprotective properties and anti-cancer effects. These beneficial effects have been attributed to its antioxidant properties and its ability to modulate cell signaling pathways. Incubation of HK-2 cells with 100 μM quercetin caused a decrease in cell viability and pre-treatment of HK-2 cells with 100 μM quercetin followed by incubation with 75 mgI/ml sodium diatrizoate for 2 hr caused a decrease in cell viability which was worse than in cells treated with diatrizoate alone. However, further incubation of the cells (for 22 hr) after removal of the diatrizoate and quercetin caused a recovery in cell viability in those cells previously treated with quercetin + diatrizoate and quercetin alone. Analysis of signaling molecules by Western blotting showed that in RCM-treated cells receiving initial pre-treatment with quercetin, followed by its removal, an increase in phosphorylation of Akt (Ser473), pSTAT3 (Tyr705), and FoxO3a (Thr32) as well as an induction of Pim-1 and decrease in PARP1 cleavage were observed. Quercetin may alleviate the longer-term toxic effects of RCM toxicity and its possible beneficial effects should be further investigated. © 2017 Wiley Periodicals, Inc.

  10. Extracellular 2′,3′-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells

    PubMed Central

    Gillespie, Delbert G.

    2013-01-01

    In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and extracellular 2′-AMP and 3′-AMP to adenosine (the extracellular 2′,3′-cAMP-adenosine pathway; extracellular 2′,3′-cAMP → 2′-AMP + 3′-AMP → adenosine). The purpose of this study was to investigate the metabolism of extracellular 2′,3′-cAMP in proximal tubular vs. thick ascending limb vs. collecting duct epithelial cells freshly isolated from their corresponding nephron segments obtained from rat kidneys. In epithelial cells from all three nephron segments, 1) extracellular 2′,3′-cAMP was metabolized to 2′-AMP and 3′-AMP, with 2′-AMP > 3′-AMP, 2) the metabolism of extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP was not inhibited by either 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor) or 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), 3) extracellular 2′,3′-cAMP increased extracellular adenosine levels, 4) 3′-AMP and 2′-AMP were metabolized to adenosine with an efficiency similar to that of 5′-AMP, and 5) the metabolism of 5′-AMP, 3′-AMP, and 2′-AMP was not inhibited by α,β-methylene-adenosine-5′-diphosphate (CD73 inhibitor). These results support the conclusion that renal epithelial cells all along the nephron can metabolize extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and can efficiently metabolize extracellular 2′-AMP and 3′-AMP to adenosine and that the metabolic enzymes involved are not the classical phosphodiesterases nor ecto-5′-nucleotidase (CD73). Because 2′,3′-cAMP is released by injury and because previous studies demonstrate that the extracellular 2′,3′-cAMP-adenosine pathway stimulates epithelial cell proliferation via adenosine A2B receptors, the present results suggest that the extracellular 2′,3′-cAMP-adenosine pathway may help restore epithelial

  11. Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice.

    PubMed

    Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-01-01

    A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure-natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In

  12. Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice

    PubMed Central

    Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M.; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-01-01

    A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure—natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In

  13. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    PubMed Central

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  14. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    PubMed

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  15. Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells

    PubMed Central

    Satou, Ryousuke; Miyata, Kayoko; Gonzalez-Villalobos, Romer A.; Ingelfinger, Julie R.; Navar, L. Gabriel; Kobori, Hiroyuki

    2012-01-01

    Renal inflammation modulates angiotensinogen (AGT) production in renal proximal tubular cells (RPTCs) via inflammatory cytokines, including interleukin-6, tumor necrosis factor α, and interferon-γ (IFN-γ). Among these, the effects of IFN-γ on AGT regulation in RPTCs are incompletely delineated. This study aimed to elucidate mechanisms by which IFN-γ regulates AGT expression in RPTCs. RPTCs were incubated with or without IFN-γ up to 48 h. AGT expression, STAT1 and STAT3 activities, and SOCS1 expression were evaluated. RNA interference studies against STAT1, SOCS1, and STAT3 were performed to elucidate a signaling cascade. IFN-γ decreased AGT expression at 6 h (0.61±0.05, ratio to control) and 12 h (0.47±0.03). In contrast, longer exposure for 24 and 48 h increased AGT expression (1.76±0.18, EC50=3.4 ng/ml, and 1.45±0.08, respectively). IFN-γ treatment for 6 h strongly induced STAT1 phosphorylation and SOCS1 augmentation, and decreased STAT3 activity. However, STAT1 phosphorylation and SOCS1 augmentation waned at 24 h, while STAT3 activity increased. RNA interference studies revealed that activation of STAT1-SOCS1 axis decreased STAT3 activity. Thus, IFN-γ biphasically regulates AGT expression in RPTCs via STAT3 activity modulated by STAT1-SOCS1 axis, suggesting the STAT1-SOCS1 axis is important in IFN-γ-induced activation of the intrarenal renin-angiotensin system.—Satou, R., Miyata, K., Gonzalez-Villalobos, R. A., Ingelfinger, J. R., Navar, L. G., Kobori, H. Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. PMID:22302831

  16. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.

    PubMed

    Sackin, H; Boulpaep, E L

    1975-12-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.

  17. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney

    PubMed Central

    Sackin, H; Boulpaep, EL

    1975-01-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761

  18. IgA-kappa type multiple myeloma affecting proximal and distal renal tubules.

    PubMed

    Minemura, K; Ichikawa, K; Itoh, N; Suzuki, N; Hara, M; Shigematsu, S; Kobayashi, H; Hiramatsu, K; Hashizume, K

    2001-09-01

    A 45-year-old male was admitted because of chest pain, lumbago, and bilateral ankle pain. Examination disclosed hypophosphatemic osteomalacia, acquired Fanconi syndrome, and abnormalities in distal nephron such as distal renal tubular acidosis and renal diabetes insipidus. Further exploration revealed IgA kappa multiple myeloma excreting urinary Bence Jones protein (kappa-light chain). Renal biopsy revealed thick basement membranes and elec-tron-dense crystals in proximal tubular epithelial cells. Immunofluorescent studies revealed deposition of kappa-light chain in renal tubular epithelial cells that caused the renal tubular damage. Although the osteomalacia was relieved by medical treatment, the urinary Bence Jones protein and the renal tubular defects were not improved by the chemotherapy for the myeloma. The patient died of exacerbation of multiple myeloma at 50 years of age.

  19. Albumin-induced apoptosis of tubular cells is modulated by BASP1

    PubMed Central

    Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A

    2015-01-01

    Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria. PMID:25675304

  20. Bidirectional signalling between EphA2 and ephrinA1 increases tubular cell attachment, laminin secretion and modulates erythropoietin expression after renal hypoxic injury.

    PubMed

    Rodriguez, Stéphane; Rudloff, Stefan; Koenig, Katrin Franziska; Karthik, Swapna; Hoogewijs, David; Huynh-Do, Uyen

    2016-08-01

    Acute kidney injury (AKI) is common in hospitalized patients and has a poor prognosis, the severity of AKI being linked to progression to chronic kidney disease. This stresses the need to search for protective mechanisms during the acute phase. We investigated kidney repair after hypoxic injury using a rat model of renal artery branch ligation, which led to an oxygen gradient vertical to the corticomedullary axis. Three distinct zones were observed: tubular necrosis, infarction border zone and preserved normal tissue. EphA2 is a receptor tyrosine kinase with pivotal roles in cell architecture, migration and survival, upon juxtacrine contact with its membrane-bound ligand EphrinA1. Following hypoxia, EphA2 was up-regulated in cortical and medullary tubular cells, while EphrinA1 was up-regulated in interstitial cells adjacent to peritubular capillaries. Moreover, erythropoietin (EPO) messenger RNA (mRNA) was strongly expressed in the border zone of infarcted kidney within the first 6 h. To gain more insight into the biological impact of EphA2 and EphrinA1 up-regulation, we activated the signalling pathways in vitro using recombinant EphrinA1/Fc or EphA2/Fc proteins. Stimulation of EphA2 forward signalling in the proximal tubular cell line HK2 increased cell attachment and laminin secretion at the baso-lateral side. Conversely, activation of reverse signalling through EphrinA1 expressed by Hep3B cells promoted EPO production at both the transcriptional and protein level. Strikingly, in co-culture experiments, juxtacrine contact between EphA2 expressing MDCK and EphrinA1 expressing Hep3B was sufficient to induce a significant up-regulation of EPO mRNA production in the latter cells, even in the absence of hypoxic conditions. The synergistic effects of EphA2 and hypoxia led to a 15-20-fold increase of EPO expression. Collectively, our results suggest an important role of EphA2/EphrinA1 signalling in kidney repair after hypoxic injury through stimulation of (i) tubular

  1. Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells.

    PubMed

    Chu, Bing-Xin; Fan, Rui-Feng; Lin, Shu-Qian; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2018-05-01

    Autophagy and apoptosis are two different biological processes that determine cell fates. We previously reported that autophagy inhibition and apoptosis induction are involved in lead(II)-induced cytotoxicity in primary rat proximal tubular (rPT) cells, but the interplay between them remains to be elucidated. Firstly, data showed that lead(II)-induced elevation of LC3-II protein levels can be significantly modulated by 3-methyladenine or rapamycin; moreover, protein levels of Autophagy-related protein 5 (Atg5) and Beclin-1 were markedly up-regulated by lead(II) treatment, demonstrating that lead(II) could promote the autophagosomes formation in rPT cells. Next, we applied three pharmacological agents and genetic method targeting the early stage of autophagy to validate that enhancement of autophagosomes formation can inhibit lead(II)-induced apoptotic cell death in rPT cells. Simultaneously, lead(II) inhibited the autophagic degradation of rPT cells, while the addition of autophagic degradation inhibitor bafilomycin A1 aggravated lead(II)-induced apoptotic death in rPT cells. Collectively, this study provided us a good model to know about the dynamic process of lead(II)-induced autophagy in rPT cells, and the interplay between autophagy and apoptosis highlights a new sight into the mechanism of lead(II)-induced nephrotoxicity. Copyright © 2018. Published by Elsevier Inc.

  2. Evidence for an Intrinsic Renal Tubular Defect in Mice with Genetic Hypophosphatemic Rickets

    PubMed Central

    Cowgill, Larry D.; Goldfarb, Stanley; Lau, Kai; Slatopolsky, Eduardo; Agus, Zalman S.

    1979-01-01

    To investigate the role of parathyroid hormone (PTH) and(or) an intrinsic renal tubular reabsorptive defect for phosphate in mice with hereditary hypophosphatemic rickets, we performed clearance and micropuncture studies in hypophosphatemic mutants and nonaffected littermate controls. Increased fractional excretion of phosphate in mutants (47.2±4 vs. 30.8±2% in controls) was associated with reduced fractional and absolute reabsorption in the proximal convoluted tubule and more distal sites. Acute thyropara-thyroidectomy (TPTX) increased phosphate reabsorption in both mutants and controls with a fall in fractional phosphate excretion to ≅7.5% in both groups indicating that PTH modified the degree of phosphaturia in the intact mutants. Absolute reabsorption in the proximal tubule and beyond remained reduced in the mutants, however, possibly because of the reduced filtered load. Serum PTH levels were the same in intact mutants and normals as was renal cortical adenylate cyclase activity both before and after PTH stimulation. To evaluate the possibility that the phosphate wasting was caused by an intrinsic tubular defect that was masked by TPTX, glomerular fluid phosphate concentration was raised by phosphate infusion in TPTX mutants to levels approaching those of control mice. Phosphate excretion rose markedly and fractional reabsorption fell, but there was no change in absolute phosphate reabsorption in either the proximal tubule or beyond, indicating a persistent reabsorptive defect in the absence of PTH. We conclude that hereditary hypophosphatemia in the mouse is associated with a renal tubular defect in phosphate reabsorption, which is independent of PTH and therefore represents a specific intrinsic abnormality of phosphate transport. PMID:221535

  3. Inhibition of basolateral cAMP permeability in the toad urinary bladder.

    PubMed

    Boom, A; Golstein, P E; Frerotte, M; Sande, J V; Beauwens, R

    2000-10-01

    1. The effect of sulphonylurea drugs on hydrosmotic flow across toad urinary bladder epithelium was re-evaluated in the present study. Glibenclamide, added to the basolateral medium, significantly enhanced the osmotic flow induced by low doses of antidiuretic hormone (ADH) or forskolin (FK), while it inhibited the effect of exogenous cyclic adenosine monophosphate (cAMP) or its non-hydrolysable bromo derivative, 8-Br-cAMP, added to the basolateral medium. These opposite effects of glibenclamide on the transepithelial osmotic flow can be explained by a reduction of cAMP permeability across the basolateral membrane of the epithelium. The decrease in cAMP permeability leads, according to the direction of the cAMP gradient, to firstly an enhanced osmotic flow when cAMP is generated intracellularly by addition of ADH and FK, glibenclamide reducing cAMP exit from the cell, and secondly a decreased osmotic flow in response to cAMP (and 8-Br-cAMP) added to the basolateral medium, glibenclamide inhibiting, in this case, their entry into the cell. 2. The demonstration that glibenclamide actually inhibits the basolateral cAMP permeability rests on the fact that firstly it decreases the release of cAMP into the basolateral medium by about 40 %, at each concentration of ADH or forskolin tested, secondly it increases the cAMP content of paired hemibladders incubated in the presence of ADH or FK, when intracellular degradation was prevented by phosphodiesterase inhibition, and thirdly it decreases also the uptake of basolateral 8-Br-[3H]cAMP into paired toad hemibladders. 3. Taken together, the present data demonstrate that glibenclamide inhibits the toad urinary bladder basolateral membrane permeability to cAMP, most probably by a direct interaction with a membrane protein not yet indentified but distinct from the sulphonylurea receptor.

  4. Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.

    PubMed

    Udi, Shiran; Hinden, Liad; Earley, Brian; Drori, Adi; Reuveni, Noa; Hadar, Rivka; Cinar, Resat; Nemirovski, Alina; Tam, Joseph

    2017-12-01

    Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB 1 R) induces nephropathy, whereas CB 1 R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB 1 R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β -oxidation. Collectively, these findings indicate that renal proximal tubule cell CB 1 R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway. Copyright © 2017 by the American Society of Nephrology.

  5. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    PubMed

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  6. Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells

    PubMed Central

    Venkatareddy, Madhusudan; Verma, Rakesh; Kalinowski, Anne; Patel, Sanjeevkumar R.; Shisheva, Assia

    2016-01-01

    The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34–deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux. PMID:26825532

  7. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    PubMed

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  8. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.

    PubMed Central

    Weinstein, A M

    1983-01-01

    The rat proximal tubule epithelium is represented as well-stirred, compliant cellular and paracellular compartments bounded by mucosal and serosal bathing solutions. With a uniform pCO2 throughout the epithelium, the model variables include the concentrations of Na, K, Cl, HCO3, H2PO4, HPO4, and H, as well as hydrostatic pressure and electrical potential. Except for a metabolically driven Na-K exchanger at the basolateral cell membrane, all membrane transport within the epithelium is passive and is represented by the linear equations of nonequilibrium thermodynamics. In particular, this includes the cotransport of Na-Cl and Na-H2PO4 and countertransport of Na-H at the apical cell membrane. Experimental constraints on the choice of ionic conductivities are satisfied by allowing K-Cl cotransport at the basolateral membrane. The model equations include those for mass balance of the nonreacting species, as well as chemical equilibrium for the acidification reactions. Time-dependent terms are retained to permit the study of transient phenomena. In the steady state the energy dissipation is computed and verified equal to the sum of input from the Na-K exchanger plus the Gibbs free energy of mass addition to the system. The parameter dependence of coupled water transport is studied and shown to be consistent with the predictions of previous analytical models of the lateral intercellular space. Water transport in the presence of an end-proximal (HCO3-depleted) luminal solution is investigated. Here the lower permeability and higher reflection coefficient of HCO3 enhance net sodium and water transport. Due to enhanced flux across the tight junction, this process may permit proximal tubule Na transport to proceed with diminished energy dissipation. PMID:6652211

  9. Factor h and properdin recognize different epitopes on renal tubular epithelial heparan sulfate.

    PubMed

    Zaferani, Azadeh; Vivès, Romain R; van der Pol, Pieter; Navis, Gerjan J; Daha, Mohamed R; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A; van den Born, Jacob

    2012-09-07

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases.

  10. Inhibiting post-translational core fucosylation protects against albumin-induced proximal tubular epithelial cell injury.

    PubMed

    Wang, Dapeng; Fang, Ming; Shen, Nan; Li, Longkai; Wang, Weidong; Wang, Lingyu; Lin, Hongli

    2017-01-01

    Albuminuria is an independent risk factor for renal interstitial fibrosis (RIF). Glomerular-filtered albumin in endocytic and non-endocytic pathways may injure proximal tubular epithelial cells (PTECs) via megalin and TGFβRII, respectively. Since megalin and TGFβRII are both modified by post-translational core fucosylation, which plays a critical role in RIF. Thus, we sought to identify whether core fucosylation is a potential target for reducing albumin-induced injury to PTECs. We constructed a human PTEC-derived cell line (HK-2 cells) and established an in vitro model of bovine serum albumin (BSA) injury. RNAi was used to inhibit the expression of megalin, TGFβRII, and Fut8. Western blotting, immunostaining, ELISA, lectin blotting, and fluorescence-activated cell sorting were used to identify BSA-induced endocytic and non-endocytic damage in HK-2 cells. Fut8 is a core fucosylation-related gene, which is significantly increased in HK-2 cells following an incubation with BSA. Fut8 siRNA significantly reduced the core fucosylation of megalin and TGFβRII and also inhibited the activation of the TGFβ/TGFβRII/Smad2/3 signaling pathway. Furthermore, Fut8 siRNA could reduce monocyte chemotactic protein-1, reactive oxygen species, and apoptosis, as well as significantly decrease the fibronectin and collagen I levels in BSA-overloaded HK-2 cells. Core fucosylation inhibition was more effective than inhibiting either megalin or TGFβRII for the prevention of albumin-induced injury to PTECs. Our findings indicate that post-translational core fucosylation is essential for the albumin-induced injury to PTECs. Thus, the inhibition of core fucosylation could effectively alleviate albumin-induced endocytic and non-endocytic injury to PTECs. Our study provides a potential therapeutic target for albuminuria-induced injury.

  11. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp; Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui; Mikami, Daisuke

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area bymore » producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.« less

  12. Clinical and molecular aspects of distal renal tubular acidosis in children.

    PubMed

    Besouw, Martine T P; Bienias, Marc; Walsh, Patrick; Kleta, Robert; Van't Hoff, William G; Ashton, Emma; Jenkins, Lucy; Bockenhauer, Detlef

    2017-06-01

    Distal renal tubular acidosis (dRTA) is characterized by hyperchloraemic metabolic acidosis, hypokalaemia, hypercalciuria and nephrocalcinosis. It is due to reduced urinary acidification by the α-intercalated cells in the collecting duct and can be caused by mutations in genes that encode subunits of the vacuolar H + -ATPase (ATP6V1B1, ATP6V0A4) or the anion exchanger 1 (SLC4A1). Treatment with alkali is the mainstay of therapy. This study is an analysis of clinical data from a long-term follow-up of 24 children with dRTA in a single centre, including a genetic analysis. Of the 24 children included in the study, genetic diagnosis was confirmed in 19 patients, with six children having mutations in ATP6V1B1, ten in ATP6V0A4 and three in SLC4A1; molecular diagnosis was not available for five children. Five novel mutations were detected (2 in ATP6V1B1 and 3 in ATP6V0A4). Two-thirds of patients presented with features of proximal tubular dysfunction leading to an erroneous diagnosis of renal Fanconi syndrome. The proximal tubulopathy disappeared after resolution of acidosis, indicating the importance of following proximal tubular function to establish the correct diagnosis. Growth retardation with a height below -2 standard deviation score was found in ten patients at presentation, but persisted in only three of these children once established on alkali treatment. Sensorineural hearing loss was found in five of the six patients with an ATP6V1B1 mutation. Only one patient with an ATP6V0A4 mutation had sensorineural hearing loss during childhood. Nine children developed medullary cysts, but without apparent clinical consequences. Cyst development in this cohort was not correlated with age at therapy onset, molecular diagnosis, growth parameters or renal function. In general, the prognosis of dRTA is good in children treated with alkali.

  13. Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells.

    PubMed

    Kuwada, S K; Lund, K A; Li, X F; Cliften, P; Amsler, K; Opresko, L K; Wiley, H S

    1998-12-01

    Overexpression of the epidermal growth factor receptors (EGFR) in polarized kidney epithelial cells caused them to appear in high numbers at both the basolateral and apical cell surfaces. We utilized these cells to look for differences in the regulation and signaling of apical vs. basolateral EGFR. Apical and basolateral EGFR were biologically active and mediated EGF-induced cell proliferation to similar degrees. Receptor downregulation and endocytosis were less efficient at the apical surface, resulting in prolonged EGF-induced tyrosine kinase activity at the apical cell membrane. Tyrosine phosphorylation of EGFR substrates known to mediate cell proliferation, Src-homologous and collagen protein (SHC), extracellularly regulated kinase 1 (ERK1), and ERK2 could be induced similarly by activation of apical or basolateral EGFR. Focal adhesion kinase was tyrosine phosphorylated more by basolateral than by apical EGFR; however, beta-catenin was tyrosine phosphorylated to a much greater degree following the activation of mislocalized apical EGFR. Thus EGFR regulation and EGFR-mediated phosphorylation of certain substrates differ at the apical and basolateral cell membrane domains. This suggests that EGFR mislocalization could result in abnormal signal transduction and aberrant cell behavior.

  14. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction

    PubMed Central

    Bank, Norman; Yarger, William E.; Aynedjian, Hagop S.

    1971-01-01

    Constriction of the renal vein has been shown to inhibit net sodium and water reabsorption by the rat proximal tubule. The mechanism is unknown but might be the result of inhibition of the active sodium pump induced by changes in the interstitial fluid compartment of the kidney, or to enhanced passive backflux of sodium and water into the cell or directly into the tubular lumen. Since passive movement of solutes across epithelial membranes is determined in part by the permeability characteristics of the epithelium, an increase in the permeability of the proximal tubule during venous constriction would suggest that enhanced passive flux is involved in the inhibition of reabsorption. In the present experiments, isolated segments of rat proximal convoluted tubules were microperfused in vivo with saline while the animals were receiving 14C-labeled sucrose intravenously. In normal control animals, no sucrose was detected in the majority of the collected tubular perfusates. In rats with renal vein constriction (RVC), however, sucrose consistently appeared in the tubular perfusates. The rate of inflow of sucrose correlated with the length of the perfused segment, estimated by fractional water reabsorption. In another group of animals with renal vein constriction, inulin-14C was given intravenously and the proximal tubules similarly microperfused. Inulin did not appear in the majority of collected perfusates in these animals. These observations indicate that a physiological alteration in the permeability of the proximal tubule occurs during RVC. Such an increase in permeability is consistent with the view that enhanced passive extracellular back-flux plays a role in the reduction of net sodium and water reabsorption in this experimental condition. PMID:5540167

  15. Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice.

    PubMed

    Wang, Yu; Zhao, Shanshan; Liu, Xu; Fu, Qunying

    2014-01-01

    Though social anxiety and social recognition have been studied extensively, the roles of the medial or basolateral amygdala in the control of social anxiety and social recognition remain to be determined. This study investigated the effects of excitotoxic bilateral medial or basolateral amygdala lesions upon social anxiety and social recognition in-mice. Animals at 9 weeks of age were given bilateral medial or basolateral amygdala lesions via infusion of N-methyl- D-aspartate and then were used for behavioral tests: anxiety-related tests (including open-field test, light-dark test, and elevated-plus maze test), social behavior test in a novel environment, social recognition test, and flavor recognition test. Medial or basolateral amygdala-lesioned mice showed lower levels of anxiety and increased social behaviors in a novel environment. Destruction of the medial or basolateral amygdala neurons impaired social recognition but not flavor recognition. The medial or basolateral amygdala is involved in the control of anxiety-related behavior (social anxiety and social behaviors) in mice. Moreover, both the medial and the basolateral amygdala are essential for social recognition but not flavor recognition in mice.

  16. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function.

    PubMed

    Perico, Luca; Morigi, Marina; Rota, Cinzia; Breno, Matteo; Mele, Caterina; Noris, Marina; Introna, Martino; Capelli, Chiara; Longaretti, Lorena; Rottoli, Daniela; Conti, Sara; Corna, Daniela; Remuzzi, Giuseppe; Benigni, Ariela

    2017-10-17

    Mesenchymal stromal cells (MSCs) are renoprotective and drive regeneration following injury, although cellular targets of such an effect are still ill-defined. Here, we show that human umbilical cord (UC)-MSCs transplanted into mice stimulate tubular cells to regain mitochondrial mass and function, associated with enhanced microtubule-rich projections that appear to mediate mitochondrial trafficking to create a reparative dialogue among adjacent tubular cells. Treatment with UC-MSCs in mice with cisplatin-induced acute kidney injury (AKI) regulates mitochondrial biogenesis in proximal tubuli by enhancing PGC1α expression, NAD + biosynthesis and Sirtuin 3 (SIRT3) activity, thus fostering antioxidant defenses and ATP production. The functional role of SIRT3 in tubular recovery is highlighted by data that in SIRT3-deficient mice with AKI, UC-MSC treatment fails to induce renoprotection. These data document a previously unrecognized mechanism through which UC-MSCs facilitate renal repair, so as to induce global metabolic reprogramming of damaged tubular cells to sustain energy supply.Mesenchymal stromal cells drive renal regeneration following injury. Here, the authors show that human mesenchymal stromal cells, when transplanted into mice with acute kidney injury, stimulate renal tubular cell growth and enhance mitochondrial function via SIRT3.

  17. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  18. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5

    PubMed Central

    Wang, Juan; Shibayama, Yuki; Kobori, Hiroyuki; Liu, Ya; Kobara, Hideki; Masaki, Tsutomu; Wang, Zhiyu

    2017-01-01

    High glucose has been demonstrated to induce angiotensinogen (AGT) synthesis in the renal proximal tubular cells (RPTCs) of rats, which may further activate the intrarenal renin-angiotensin system (RAS) and contribute to diabetic nephropathy. This study aimed to investigate the effects of high glucose on AGT in the RPTCs of human origin and identify the glucose-responsive transcriptional factor(s) that bind(s) to the DNA sequences of AGT promoter in human RPTCs. Human kidney (HK)-2 cells were treated with normal glucose (5.5 mM) and high glucose (15.0 mM), respectively. Levels of AGT mRNA and AGT secretion of HK-2 cells were measured by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Consecutive 5’-end deletion mutant constructs and different site-directed mutagenesis products of human AGT promoter sequences were respectively transfected into HK-2 cells, followed by AGT promoter activity measurement through dual luciferase assay. High glucose significantly augmented the levels of AGT mRNA and AGT secretion of HK-2 cells, compared with normal glucose treatment. High glucose also significantly augmented AGT promoter activity in HK-2 cells transfected with the constructs of human AGT promoter sequences, compared with normal glucose treatment. Hepatocyte nuclear factor (HNF)-5 was found to be one of the glucose-responsive transcriptional factors of AGT in human RPTCs, since the mutation of its binding sites within AGT promoter sequences abolished the above effects of high glucose on AGT promoter activity as well as levels of AGT mRNA and its secretion. The present study has demonstrated, for the first time, that high glucose augments AGT in human RPTCs through HNF-5, which provides a potential therapeutic target for diabetic nephropathy. PMID:29053707

  19. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    PubMed

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  20. Renal Type A Intercalated Cells Contain Albumin in Organelles with Aldosterone-Regulated Abundance

    PubMed Central

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells. PMID:25874770

  1. Response of human renal tubular cells to cyclosporine and sirolimus: A toxicogenomic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallet, Nicolas; Rabant, Marion; Xu-Dubois, Yi-Chun

    The molecular mechanisms involved in the potentially nephrotoxic response of tubular cells to immunosuppressive drugs remain poorly understood. Transcriptional profiles of human proximal tubular cells exposed to cyclosporine A (CsA), sirolimus (SRL) or their combination, were established using oligonucleotide microarrays. Hierarchical clustering of genes implicated in fibrotic processes showed a clear distinction between expression profiles with CsA and CsA + SRL treatments on the one hand and SRL treatment on the other. Functional analysis found that CsA and CsA + SRL treatments preferentially alter biological processes located at the cell membrane, such as ion transport or signal transduction, whereas SRLmore » modifies biological processes within the nucleus and related to transcriptional activity. Genome wide expression analysis suggested that CsA may induce an endoplasmic reticulum (ER) stress in tubular cells in vitro. Moreover we found that CsA exposure in vivo is associated with the upregulation of the ER stress marker BIP in kidney transplant biopsies. In conclusion, this toxicogenomic study highlights the molecular interaction networks that may contribute to the tubular response to CsA and SRL. These results may also offer a new working hypothesis for future research in the field of CsA nephrotoxicity. Further studies are needed to evaluate if ER stress detection in tubular cells in human biopsies can predict CsA nephrotoxicity.« less

  2. Tight junctions of the proximal tubule and their channel proteins.

    PubMed

    Fromm, Michael; Piontek, Jörg; Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M

    2017-08-01

    The renal proximal tubule achieves the majority of renal water and solute reabsorption with the help of paracellular channels which lead through the tight junction. The proteins forming such channels in the proximal tubule are claudin-2, claudin-10a, and possibly claudin-17. Claudin-2 forms paracellular channels selective for small cations like Na + and K + . Independently of each other, claudin-10a and claudin-17 form anion-selective channels. The claudins form the paracellular "pore pathway" and are integrated, together with purely sealing claudins and other tight junction proteins, in the belt of tight junction strands surrounding the tubular epithelial cells. In most species, the proximal tubular tight junction consists of only 1-2 (pars convoluta) to 3-5 (pars recta) horizontal strands. Even so, they seal the tubule very effectively against leak passage of nutrients and larger molecules. Remarkably, claudin-2 channels are also permeable to water so that 20-25% of proximal water absorption may occur paracellularly. Although the exact structure of the claudin-2 channel is still unknown, it is clear that Na + and water share the same pore. Already solved claudin crystal structures reveal a characteristic β-sheet, comprising β-strands from both extracellular loops, which is anchored to a left-handed four-transmembrane helix bundle. This allowed homology modeling of channel-forming claudins present in the proximal tubule. The surface of cation- and anion-selective claudins differ in electrostatic potentials in the area of the proposed ion channel, resulting in the opposite charge selectivity of these claudins. Presently, while models of the molecular structure of the claudin-based oligomeric channels have been proposed, its full understanding has only started.

  3. Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations.

    PubMed

    Guergueltcheva, Velina; Müller, Juliane S; Dusl, Marina; Senderek, Jan; Oldfors, Anders; Lindbergh, Christopher; Maxwell, Susan; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres; Vilchez, Juan J; Muelas, Nuria; Kirschner, Janbernd; Nafissi, Shahriar; Kariminejad, Ariana; Nilipour, Yalda; Bozorgmehr, Bita; Najmabadi, Hossein; Rodolico, Carmelo; Sieb, Jörn P; Schlotter, Beate; Schoser, Benedikt; Herrmann, Ralf; Voit, Thomas; Steinlein, Ortrud K; Najafi, Abdolhamid; Urtizberea, Andoni; Soler, Doriette M; Muntoni, Francesco; Hanna, Michael G; Chaouch, Amina; Straub, Volker; Bushby, Kate; Palace, Jacqueline; Beeson, David; Abicht, Angela; Lochmüller, Hanns

    2012-05-01

    Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of inherited disorders of the neuromuscular junction. A difficult to diagnose subgroup of CMS is characterised by proximal muscle weakness and fatigue while ocular and facial involvement is only minimal. DOK7 mutations have been identified as causing the disorder in about half of the cases. More recently, using classical positional cloning, we have identified mutations in a previously unrecognised CMS gene, GFPT1, in a series of DOK7-negative cases. However, detailed description of clinical features of GFPT1 patients has not been reported yet. Here we describe the clinical picture of 24 limb-girdle CMS (LG-CMS) patients and pathological findings of 18 of them, all carrying GFPT1 mutations. Additional patients with CMS, but without tubular aggregates, and patients with non-fatigable weakness with tubular aggregates were also screened. In most patients with GFPT1 mutations, onset of the disease occurs in the first decade of life with characteristic limb-girdle weakness and fatigue. A common feature was beneficial and sustained response to acetylcholinesterase inhibitor treatment. Most of the patients who had a muscle biopsy showed tubular aggregates in myofibers. Analysis of endplate morphology in one of the patients revealed unspecific abnormalities. Our study delineates the phenotype of CMS associated with GFPT1 mutations and expands the understanding of neuromuscular junction disorders. As tubular aggregates in context of a neuromuscular transmission defect appear to be highly indicative, we suggest calling this condition congenital myasthenic syndrome with tubular aggregates (CMS-TA).

  4. Luminal angiotensin II stimulates rat medullary thick ascending limb chloride transport in the presence of basolateral norepinephrine.

    PubMed

    Baum, Michel

    2016-02-15

    Angiotensin II (ANG II) is secreted by the proximal tubule resulting in a luminal concentration that is 100- to 1,000-fold greater than that in the blood. Luminal ANG II has been shown to stimulate sodium transport in the proximal tubule and distal nephron. Surprisingly, luminal ANG II inhibits NaCl transport in the medullary thick ascending limb (mTAL), a nephron segment responsible for a significant amount of NaCl absorption from the glomerular ultrafiltrate. We confirmed that addition of 10(-8) M ANG II to the lumen inhibited mTAL chloride transport (220 ± 19 to 165 ± 25 pmol·mm(-1)·min(-1), P < 0.01) and examined whether an interaction with basolateral norepinephrine existed to simulate the in vivo condition of an innervated tubule. We found that in the presence of a 10(-6) M norepinephrine bath, luminal ANG II stimulated mTAL chloride transport from 298 ± 18 to 364 ± 42 pmol·mm(-1)·min(-1) (P < 0.05). Stimulation of chloride transport by luminal ANG II was also observed with 10(-3) M bath dibutyryl cAMP in the bathing solution and bath isoproterenol. A bath of 10(-5) H-89 blocked the stimulation of chloride transport by norepinephrine and prevented the effect of luminal ANG II to either stimulate or inhibit chloride transport. Bath phentolamine, an α-adrenergic agonist, also prevented the decrease in mTAL chloride transport by luminal ANG II. Thus luminal ANG II increases chloride transport with basolateral norepinephrine; an effect likely mediated by stimulation of cAMP. Alpha-1 adrenergic stimulation prevents the inhibition of chloride transport by luminal ANG II. Copyright © 2016 the American Physiological Society.

  5. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction.

    PubMed Central

    Bird, J E; Milhoan, K; Wilson, C B; Young, S G; Mundy, C A; Parthasarathy, S; Blantz, R C

    1988-01-01

    The effects of antioxidant therapy with probucol were evaluated in rats subjected to 1 h renal ischemia and to 24 h reperfusion. Probucol exerted significant antioxidant effects in renal cortical tubules in vitro when exposed to a catalase-resistant oxidant. At 24 h probucol treatment (IP) improved single nephron glomerular filtration rate (SNGFR) (28.1 +/- 3.3 nl/min) in comparison to untreated ischemic (I) rats (15.2 +/- 3.0), primarily as a result of improving SNGFR in a population of low SNGFR, low flow and/or obstructed nephrons. However, absolute proximal reabsorption remained abnormally low in IP rats at 24 h (5.9 +/- 0.8 nl/min), and cell necrosis was greater than in I rats. Kidney GFR remained low in IP rats due to extensive tubular backleak of inulin measured by microinjection studies. Evaluations after 2 h of reperfusion revealed a higher SNGFR in IP (36 +/- 3.1 nl/min) than I rats (20.8 +/- 2.7 nl/min). Absolute proximal reabsorption was essentially normal (11.6 +/- 1.3 nl/min) in IP rats, which was higher than IP rats at 24 h and the concurrent I rats. Administration of the lipophilic antioxidant, probucol, increased SNGFR and proximal tubular reabsorption within 2 h after ischemic renal failure. Although SNGFR remained higher than I rats at 24 h, absolute reabsorption fell below normal levels and tubular necrosis was more extensive in IP rats. Early improvement in nephron filtration with antioxidants may increase load dependent metabolic demand upon tubules and increase the extent of damage and transport dysfunction. Images PMID:2835399

  6. Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium

    PubMed Central

    Hanrahan, JW; Wills, NK; Phillips, JE; Lewis, SA

    1986-01-01

    K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. PMID:2420918

  7. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    PubMed Central

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  8. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo.

    PubMed

    Wang, Bin; Lin, Lilu; Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-10-25

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.

  9. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo

    PubMed Central

    Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-01-01

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity. PMID:27732567

  10. Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux

    PubMed Central

    Wang, Xin-Yu; Yang, Heng; Wang, Min-Ge; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2017-01-01

    Autophagy has an important renoprotective function and we recently found that autophagy inhibition is involved in cadmium (Cd)-induced nephrotoxicity. Here, we aimed to investigate the protective effect of trehalose (Tre), a novel autophagy activator, against Cd-induced cytotoxicity in primary rat proximal tubular (rPT) cells. First, data showed that Tre treatment significantly decreased Cd-induced apoptotic cell death of rPT cells via inhibiting caspase-dependent apoptotic pathway, evidenced by morphological analysis, flow cytometric and immunoblot assays. Also, administration with Tre protected rPT cells against Cd-induced lipid peroxidation. Inhibition of autophagic flux in Cd-exposed rPT cells was markedly restored by Tre administration, demonstrated by immunoblot analysis of autophagy marker proteins and GFP and RFP tandemly tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was obviously alleviated by Tre treatment. Meanwhile, blockage of autophagosome–lysosome fusion by Cd exposure was noticeably restored by Tre, which promoted the autophagic degradation in Cd-exposed rPT cells. Moreover, Tre treatment markedly recovered Cd-induced lysosomal alkalinization and impairment of lysosomal degradation capacity in rPT cells, demonstrating that Tre has the ability to restore Cd-impaired lysosomal function. Collectively, these findings demonstrate that Tre treatment alleviates Cd-induced cytotoxicity in rPT cells by inhibiting apoptosis and restoring autophagic flux. PMID:29022917

  11. Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle

    PubMed Central

    Radford, Robert; Slattery, Craig; Jennings, Paul; Blacque, Oliver; Pfaller, Walter; Gmuender, Hans; Van Delft, Joost; Ryan, Michael P.

    2012-01-01

    The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO3) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO3 resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO3 exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO3 cause significant deciliation in a model of the proximal tubule. With KBrO3, this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO3 exposure. PMID:22262483

  12. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells

    PubMed Central

    Farr, Glen A.; Hull, Michael; Mellman, Ira

    2009-01-01

    Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells. PMID:19620635

  13. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  14. A Microperfusion Study of Bicarbonate Accumulation in the Proximal Tubule of the Rat Kidney*

    PubMed Central

    Bank, Norman; Aynedjian, Hagop S.

    1967-01-01

    In order to determine whether HCO3- gains access to the proximal tubular lumen from a source other than the glomerular filtrate, we carried out microperfusion experiments on isolated segments of rat proximal tubules in vivo. The perfusion fluid was essentially free of HCO3- and of a composition that prevented net absorption of sodium and water. It was found that when plasma HCO3- concentration and CO2 tension (PCO2) were normal, the HCO3- concentration in the collected perfusate rose to about 3 mEq per L. Inhibition of renal carbonic anhydrase did not produce an appreciable change in this value in normal rats, but when the enzyme was inhibited in acutely alkalotic rats, a mean concentration of 15 mEq per L was recovered in the perfusate. Addition of HCO3- to the tubular lumen might occur by either intraluminal generation of HCO3- from CO2 and OH- or by influx of ionic bicarbonate from the plasma or tubular cells. Because of the marked increase in HCO3- found when intraluminal carbonic anhydrase was inhibited, generation of new HCO3- from CO2 and OH- seems unlikely. We conclude, therefore, that influx of ionic bicarbonate occurred, either across the luminal membrane or through extracellular aqueous channels. These observations suggest that the proximal epithelium has a finite degree of permeability to HCO3- and that influx of this ion may be a component of the over-all handling of HCO3- by the kidney. PMID:4959907

  15. Tubular graphite cones.

    PubMed

    Zhang, Guangyu; Jiang, Xin; Wang, Enge

    2003-04-18

    We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.

  16. Cisplatin-induced cytotoxicity in BSO-exposed renal proximal tubular epithelial cells: sex, age, and species.

    PubMed

    Lu, Yongke; Kawashima, Akira; Horii, Ikuo; Zhong, Laifu

    2005-01-01

    Cisplatin (CP)-induced kidney damage and effects of DL-buthionine-(S,R)-sulfoximine (BSO) on it are species- and age-different. It remains unclear whether CP-induced cytotoxicity in renal proximal tubular epithelial cells (RTEC), the main target cells of CP, is also species- and age-different; and whether CP-induced cytotoxicity varies with the difference in age and species, if any, is one of the questions. In the present study, the effects of BSO on CP-induced cytotoxicity in primary cultures of RTEC isolated from monkeys and different age and sex rats were studied. The RTEC were isolated from 3-week-old, 2-month-old, or 5-month-old rats, and 6-8 year-old monkeys. After subculturing, RTEC was inoculated into type I collagen-coated 96-well culture plates; after preincubation, 40 microM BSO was added, 16 hours later, varying concentrations of CP were added. At that time, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were performed to test cell viability. The concentrations of CP that inhibited 50% cell growth (IC50) of RTEC from rats and monkeys were 1.11 and 3.03 mM at 8 hours, and 0.51 and 1.24 mM at 24 hours, respectively. The BSO made the IC50s of RTEC from rats and monkeys lower, down to 0.07 and 0.48 mM at 8 hours, and 0.02 and 0.11 mM at 24 hours, respectively. The IC50s of RTEC from different sex and age rats were almost same. These results suggested that CP-induced cytotoxicity was concentration- and time-dependent, with species-dependent differences, rat RTEC were more susceptible to CP than monkey RTEC, rat RTEC were more dependent on glutathione (GSH) during the stress state were than monkey cells; CP-induced cytotoxicity was without sex- and age-dependent differences in rat RTEC.

  17. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, Mamiko; Inageda, Kiyoshi; Matsuoka, Masato, E-mail: matsuoka@research.twmu.ac.jp

    2011-03-15

    We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl{sub 2}, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl{sub 2} exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translationalmore » modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl{sub 2}. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal kinase, and p38-increased after CdCl{sub 2} exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl{sub 2}.« less

  18. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury

    PubMed Central

    Pollen, Sean; Greco, Elisabetta; Courtneidge, Holly; Hall, Andrew M.; Duchen, Michael R.; Tam, Frederick W. K.; Unwin, Robert J.; Singer, Mervyn

    2018-01-01

    Objective: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Intervention: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6–10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. Measurements and Main Results: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. Conclusions: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism. PMID:29293148

  19. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells.

    PubMed

    Zhang, Wei; Zhou, Xiangjun; Yao, Qisheng; Liu, Yutao; Zhang, Hao; Dong, Zheng

    2017-10-01

    Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes. Copyright © 2017 the American Physiological Society.

  20. Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis

    PubMed Central

    Simon, Noémie; Hertig, Alexandre

    2015-01-01

    Renal proximal tubular cells are the most energy-demanding cells in the body. The ATP that they use is mostly produced in their mitochondrial and peroxisomal compartments, by the oxidation of fatty acids. When those cells are placed under a biological stress, such as a transient hypoxia, fatty acid oxidation (FAO) is shut down for a period of time that outlasts injury, and carbohydrate oxidation does not take over. Facing those metabolic constraints, surviving tubular epithelial cells exhibit a phenotypic switch that includes cytoskeletal rearrangement and production of extracellular matrix proteins, most probably contributing to acute kidney injury-induced renal fibrogenesis, thence to the development of chronic kidney disease. Here, we review experimental evidence that dysregulation of FAO profoundly affects the fate of tubular epithelial cells, by promoting epithelial-to-mesenchymal transition, inflammation, and eventually interstitial fibrosis. Restoring physiological production of energy is undoubtedly a possible therapeutic approach to unlock the mesenchymal reprograming of tubular epithelial cells in the kidney. In this respect, the benefit of the use of fibrates is uncertain, but new drugs that could specifically target this metabolic pathway, and, hopefully, attenuate renal fibrosis merit future research. PMID:26301223

  1. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif.

    PubMed

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten; Jensen, Henrik S; Angelo, Kamilla; Dupuis, Delphine S; Vogel, Lotte K; Jorgensen, Nanna K; Klaerke, Dan A; Olesen, Søren-Peter

    2004-09-01

    KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ1 channels are located basolaterally when expressed in polarised MDCK cells. The basolateral localisation of KCNQ1 is not affected by co-expression of any of the five KCNE beta-subunits. We characterise two independent basolateral sorting signals present in the N-terminal tail of KCNQ1. Mutation of the tyrosine residue at position 51 resulted in a non-polarized steady-state distribution of the channel. The importance of tyrosine 51 in basolateral localisation was emphasized by the fact that a short peptide comprising this tyrosine was able to redirect the p75 neurotrophin receptor, an otherwise apically located protein, to the basolateral plasma membrane. Furthermore, a di-leucine-like motif at residues 38-40 (LEL) was found to affect the basolateral localisation of KCNQ1. Mutation of these two leucines resulted in a primarily intracellular localisation of the channel.

  2. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury.

    PubMed

    Zhao, Chuanyan; Chen, Zhuyun; Xu, Xueqiang; An, Xiaofei; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-15

    Cisplatin often causes acute kidney injury (AKI) in the treatment of a wide variety of malignancies. Mitochondrial dysfunction is one of the main reasons for cisplatin nephrotoxicity. Previous study showed that Pink1 and Parkin play central roles in regulating the mitophagy, which is a key protective mechanism by specifically eliminating dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy in cisplatin induced nephrotoxicity remain to be elucidated. The purpose of this study was to investigate the effects of Pink1/Parkin pathway in mitophagy, mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. In cultured human renal proximal tubular cells, we found that knockdown of Pink1/Parkin induced the aggravation of mitochondrial function, leading to the increase of cell injury through inhibition of mitophagy. Additionally, the overexpression of Pink1/Parkin protected against cisplatin-induced mitochondrial dysfunction and cell injury by promoting mitophagy. Our results provide clear evidence that Pink1/Parkin-dependent mitophagy has identified potential targets for the treatment of cisplatin-induced AKI. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Segmental heterogeneity in Bcl-2, Bcl-xL and Bax expression in rat tubular epithelium after ischemia-reperfusion.

    PubMed

    Valdés, Francisco; Pásaro, Eduardo; Díaz, Inmaculada; Centeno, Alberto; López, Eduardo; García-Doval, Sandra; González-Roces, Severino; Alba, Alfonso; Laffon, Blanca

    2008-06-01

    Studies in rats with bilateral clamping of renal arteries showed transient Bcl-2, Bcl-xL and Bax expression in renal tubular epithelium following ischemia-reperfusion. However, current data on the preferential localization of specific mRNAs or proteins are limited because gene expression was not analysed at segmental level. This study analyses the mRNA expression of Bcl-2, Bcl-xL and Bax in four segments of proximal and distal tubules localized in the renal cortex and outer medulla in rat kidneys with bilateral renal clamping for 30 min and seven reperfusion times versus control animals without clamp. Proximal convoluted tubule (PCT), distal convoluted tubule (DCT), proximal straight tubule (PST) and medullary thick ascending limb (MTAL) were obtained by manual microdissection. RT-PCR was used to analyse mRNA expression at segmental level. Proximal convoluted tubule and MTAL showed early, persistent and balanced up-regulation of Bcl-2, Bcl-xL and Bax, while PST and DCT revealed only Bcl-2 and Bcl-xL, when only Bax was detected in PST. DCT expressed Bcl-xL initially, and persistent Bcl-2 later. These patterns suggest a heterogeneous apoptosis regulatory response in rat renal tubules after ischemia-reperfusion, independently of cortical or medullary location. This heterogeneity of the expression patterns of Bcl-2 genes could explain the different susceptibility to undergo apoptosis, the different threshold to ischemic damage and the different adaptive capacity to injury among these tubular segments.

  4. Trafficking to the apical and basolateral membranes in polarized epithelial cells.

    PubMed

    Stoops, Emily H; Caplan, Michael J

    2014-07-01

    Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. Copyright © 2014 by the American Society of Nephrology.

  5. Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells

    PubMed Central

    Stoops, Emily H.

    2014-01-01

    Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type–specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. PMID:24652803

  6. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  7. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    PubMed

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  8. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    PubMed Central

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419

  9. Expandable tubulars for use in geologic structures

    DOEpatents

    Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael

    2014-08-12

    An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.

  10. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression.

    PubMed

    Nezu, Masahiro; Souma, Tomokazu; Yu, Lei; Suzuki, Takafumi; Saigusa, Daisuke; Ito, Sadayoshi; Suzuki, Norio; Yamamoto, Masayuki

    2017-02-01

    Acute kidney injury is a devastating disease with high morbidity in hospitalized patients and contributes to the pathogenesis of chronic kidney disease. An underlying mechanism of acute kidney injury involves ischemia-reperfusion injury which, in turn, induces oxidative stress and provokes organ damage. Nrf2 is a master transcription factor that regulates the cellular response to oxidative stress. Here, we examined the role of Nrf2 in the progression of ischemia-reperfusion injury-induced kidney damage in mice using genetic and pharmacological approaches. Both global and tubular-specific Nrf2 activation enhanced gene expression of antioxidant and NADPH synthesis enzymes, including glucose-6-phosphate dehydrogenase, and ameliorated both the initiation of injury in the outer medulla and the progression of tubular damage in the cortex. Myeloid-specific Nrf2 activation was ineffective. Short-term administration of the Nrf2 inducer CDDO during the initial phase of injury ameliorated the late phase of tubular damage. This inducer effectively protected the human proximal tubular cell line HK-2 from oxidative stress-mediated cell death while glucose-6-phosphate dehydrogenase knockdown increased intracellular reactive oxygen species. These findings demonstrate that tubular hyperactivation of Nrf2 in the initial phase of injury prevents the progression of reactive oxygen species-mediated tubular damage by inducing antioxidant enzymes and NADPH synthesis. Thus, Nrf2 may be a promising therapeutic target for preventing acute kidney injury to chronic kidney disease transition. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    PubMed

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  12. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    PubMed

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  13. Ultrastructural Study of Electron Dense Deposits in Renal Tubular Basement Membrane: Prevalence and Relationship to Epithelial Atrophy

    PubMed Central

    Killingsworth, Murray C.

    2014-01-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition. PMID:24933115

  14. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    PubMed

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  15. Recycling Endosomes of Polarized Epithelial Cells Actively Sort Apical and Basolateral Cargos into Separate Subdomains

    PubMed Central

    Thompson, Anthony; Nessler, Randy; Wisco, Dolora; Anderson, Eric; Winckler, Bettina

    2007-01-01

    The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B–dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity. PMID:17494872

  16. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  17. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    PubMed

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ko Eun; Kim, Eun Young; Kim, Chang Seong

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in themore » presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  19. Protective Effects of Pistacia lentiscus L. fruit extract against calcium oxalate monohydrate induced proximal tubular injury.

    PubMed

    Cheraft-Bahloul, Nassima; Husson, Cécile; Ourtioualous, Meriam; Sinaeve, Sébastien; Atmani, Djebbar; Stévigny, Caroline; Nortier, Joëlle L; Antoine, Marie-Hélène

    2017-09-14

    The world prevalence of kidney stones is increasing and plants are frequently used to treat urolithiasis. Pistacia lentiscus L, a plant which freely grows around the Mediterranean basin areas, is widely used for various pathologies. P. lentiscus has an important impact as it has economical value on top of its pharmacological interest. Decoctions of its aerial parts and/or resin are used to treat kidney stones. To in vitro assess the potential nephroprotective effect of Pistacia lentiscus ethanolic fruit extract (PLEF) on proximal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Human Kidney [HK]-2 cells were incubated with and without COM in the presence or absence of PLEF. Cell viability was measured by the resazurin assay. The expression of E-cadherin was analyzed by PCR. The extracellular production of H 2 O 2 was measured by Amplex® Red H 2 O 2 Assay. The numbers of detached or non-adherent COM crystals in the presence of PLEF were microscopically captured and counted using ImageJ software. The interaction of PLEF with COM and the effect of PLEF on crystal size were analyzed by flow cytometry. The spectrophotometric measurement of turbidity was performed for assessing the COM concentration. PLEF incubated with COM was able to increase the cell viability. The decrease of E-cadherin expression after incubation with COM was counteracted by PLEF. Overproduction of H 2 O 2 induced by COM was also inhibited by PLEF. Observations using flow cytometry showed that interactions between PLEF and the COM crystals occurred. PLEF was also effective in reducing the particles size and in lowering COM concentration. Our data show that COM tubulotoxicity can be significantly reversed by PLEF -at least in part- via an inhibition of COM crystals adhesion onto the apical membrane. This early beneficial effect of PLEF needs to be further investigated as a useful strategy in nephrolithiasis prevention. Copyright © 2017 Elsevier Ireland Ltd

  20. Reversal of radiocontrast medium toxicity in human renal proximal tubular cells by white grape juice extract.

    PubMed

    Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Sabbatini, Massimo; Russo, Domenico; Mattivi, Fulvio; De Sarro, Giovambattista; Navarra, Michele; Michael, Ashour

    2015-03-05

    Radiocontrast media (RCM)-induced nephrotoxicity (CIN) is a major clinical problem accounting for 12% of all hospital-acquired cases of acute kidney injury. The pathophysiology of CIN is not well understood, but direct toxic effects on renal cells have been postulated as contributing to CIN. We have investigated the effect of a white grape (Vitis vinifera) juice extract (WGJe) on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. WGJe caused an increase in phosphorylation of the prosurvival kinases Akt and ERK1/2 in HK-2 cells. Treatment of HK-2 cells with 75 mgI/ml sodium diatrizoate for 2.5h and then further incubation (for 27.5h) after removal of the RCM caused a drastic decrease in cell viability. However, pre-treatment with WGJe, prior to incubation with diatrizoate, dramatically improved cell viability. Analysis of key signaling molecules by Western blotting showed that diatrizoate caused a drastic decrease in phosphorylation of Akt (Ser473), FOXO1 (Thr24) and FOXO3a (Thr32) during the initial 2.5h incubation period, and WGJe pre-treatment caused a reversal of these effects. Further analysis by Western blotting of samples from HK-2 cells cultured for longer periods of time (for up to 27.5h after an initial 2.5h exposure to diatrizoate with or without WGJe pre-treatment) showed that WGJe pre-treatment caused a negative effect on phosphorylation of p38, NF-κB (Ser276) and pERK1/2 whilst having a positive effect on the phosphorylation of Akt, FOXO1/FOXO3a and maintained levels of Pim-1 kinase. WGJe may alleviate RCM toxicity through modulation of signaling molecules that are known to be involved in cell death and cell survival and its possible beneficial effects should be further investigated. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. EMMPRIN expression is involved in the development of interstitial fibrosis and tubular atrophy in human kidney allografts.

    PubMed

    Kemmner, Stephan; Schulte, Christian; von Weyhern, Claus Hann; Schmidt, Roland; Baumann, Marcus; Heemann, Uwe; Renders, Lutz; Schmaderer, Christoph

    2016-03-01

    Matrix metalloproteinases (MMP) are involved in the development of interstitial fibrosis and tubular atrophy (IF/TA) in renal disease. The synthesis of MMP is activated by the extracellular matrix metalloproteinases inducer protein (EMMPRIN). To analyze the role of EMMPRIN in IF/TA, we retrospectively detected EMMPRIN expression in specimens of human renal allografts with various levels of IF/TA. Immunohistochemistry was performed to detect EMMPRIN expression. In a retrospective analysis, a total cohort of 50 specimens were divided according to BANFF-classification into four subgroups (0-3): no, mild (≤ 25%), moderate (26-50%), or severe (>50%) IF/TA. Among other parameters, renal function was analyzed and compared to EMMPRIN expression. In 24 of 38 biopsies, we detected positive EMMPRIN staining. All nephrectomy (n = 12) samples were negative for EMMPRIN. Positive staining in the biopsy samples was detectable on the basolateral side of tubular epithelial cells. EMMPRIN staining was negatively correlated with IF/TA (p < 0.001). We found significant differences between the mean EMMPRIN expression in IF/TA groups 0 and 3 (p = 0.021) and groups 1 and 3 (p = 0.004). Furthermore, we found significant correlations between EMMPRIN staining and renal function. Our data suggest that EMMPRIN is involved in the pathophysiology of IF/TA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Basolateral amygdala lesions abolish mutual reward preferences in rats.

    PubMed

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias

    2016-01-01

    In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  4. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes.

    PubMed

    Yun, Bo; Azad, Mohammad A K; Nowell, Cameron J; Nation, Roger L; Thompson, Philip E; Roberts, Kade D; Velkov, Tony; Li, Jian

    2015-12-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula.

    PubMed

    Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant

    2012-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.

  6. 78 FR 14361 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, PA; Notice of Initiation of Investigation To Terminate Certification of Eligibility Pursuant to... Tubular Products, McKeesport Tubular Operations Division, Subsidiary of United States Steel Corporation...

  7. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons.

    PubMed

    Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L

    2013-08-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium.

    PubMed

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-04-05

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium.

  9. 78 FR 37584 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... make the following certification: All workers of U.S. Steel Tubular Products, McKeesport Tubular... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, Pennsylvania; Notice of Amended Certification Pursuant to Section 221 of the Trade Act of 1974...

  10. Microparticles released by vascular endothelial cells increase hypoxia inducible factor expression in human proximal tubular HK-2 cells.

    PubMed

    Fernandez-Martínez, Ana Belen; Torija, Ana Valdehita; Carracedo, Julia; Ramirez, Rafael; de Lucio-Cazaña, Francisco Javier

    2014-08-01

    Microparticles are produced by vesiculation of the cell plasma membrane and serve as vectors of cell-to-cell communication. Co-culture experiments have shown that hypoxia-inducible factor-α (HIF-α)-regulated-genes are up-regulated in human renal proximal tubular HK-2 cells by endothelial cell factors which might be transported inside endothelial microparticles (EMP). Here we aimed to study in HK-2 cells the effect of EMP, produced by activated endothelial cells, on HIF-α and HIF-α-regulated vascular endothelial growth factor-A (VEGF-A). EMP, at a concentration much lower than that found in plasma, increased the expression of HIF-α/VEGF-A in a COX-2/EP2 receptor dependent manner. Since the EMP/cells ratio was ∼1/1000, we hypothesized that paracrine mediators produced by HK-2 cells amplified the initial signal. This hypothesis was confirmed by two facts which also suggested that the mediators were conveyed by particles released by HK-2 cells: (i) HIF-α was up-regulated in HK-2 cells treated with the pellet obtained from the conditioned medium of the EMP-treated HK-2 cells. (ii) In transwell experiments, EMP-treated cells increased the expression of HIF-α in untreated HK-2 cells. Interestingly, we detected these cells, particles that were released by EMP-treated HK-2 cells. Depending on the pathological context, activation of HIF-α and VEGF-A signaling in renal tissue/cells may have either beneficial or harmful effects. Therefore, our results suggest that their presence in the urinary space of EMP produced by activated endothelial cells may influence the outcome of a number of renal diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids.

    PubMed

    Vilches, Clara; Boiadjieva-Knöpfel, Emilia; Bodoy, Susanna; Camargo, Simone; López de Heredia, Miguel; Prat, Esther; Ormazabal, Aida; Artuch, Rafael; Zorzano, Antonio; Verrey, François; Nunes, Virginia; Palacín, Manuel

    2018-04-02

    Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y + LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivo Methods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo , we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice). Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y + LAT1/CD98hc. Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo , and y + LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans. Copyright © 2018 by the American Society of Nephrology.

  12. The Role of the Basolateral Amygdala in Punishment

    ERIC Educational Resources Information Center

    Dit-Bressel, Philip Jean-Richard; McNally, Gavan P.

    2015-01-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects…

  13. Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy.

    PubMed

    Eriguchi, Masahiro; Lin, Mercury; Yamashita, Michifumi; Zhao, Tuantuan V; Khan, Zakir; Bernstein, Ellen A; Gurley, Susan B; Gonzalez-Villalobos, Romer A; Bernstein, Kenneth E; Giani, Jorge F

    2018-04-01

    Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.

  14. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    PubMed Central

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-01-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand. PMID:27725720

  15. Induction of lateral lumens through disruption of a monoleucine-based basolateral-sorting motif in betacellulin

    PubMed Central

    Singh, Bhuminder; Bogatcheva, Galina; Starchenko, Alina; Sinnaeve, Justine; Lapierre, Lynne A.; Williams, Janice A.; Goldenring, James R.; Coffey, Robert J.

    2015-01-01

    ABSTRACT Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically 156EEMETL161). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of lateral lumens in polarized MDCK cells, and this process was significantly attenuated by inhibition of EGFR. Additionally, expression of a cancer-associated somatic BTC mutation (E156K) led to BTC mistrafficking and induced lateral lumens in MDCK cells. Overexpression of BTC, especially mistrafficking forms, increased the growth of MDCK cells. These results uncover a unique role for BTC mistrafficking in promoting epithelial reorganization. PMID:26272915

  16. Tubular nanostructured materials for bioapplications

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.

    2009-03-01

    Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.

  17. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway

    PubMed Central

    Huang, Chunling; Zhang, Yuan; Kelly, Darren J.; Tan, Christina Y. R.; Gill, Anthony; Cheng, Delfine; Braet, Filip; Park, Jin-Sung; Sue, Carolyn M.; Pollock, Carol A.; Chen, Xin-Ming

    2016-01-01

    Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway. PMID:27381856

  18. Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity

    PubMed Central

    Wheeler, Daniel S.; Chang, Stephen E.; Holland, Peter C.

    2013-01-01

    Mediated learning is a unique cognitive phenomenon in which mental representations of physically absent stimuli enter into associations with directly-activated representations of physically present stimuli. Three experiments investigated the functional physiology of mediated learning involving the use of odor-taste associations. In Experiments 1a and 1b, basolateral amygdala lesions failed to attenuate mediated taste aversion learning. In Experiment 2, dorsal hippocampus inactivation impaired mediated learning, but left direct learning intact. Considered with past studies, the results implicate the dorsal hippocampus in mediated learning generally, and suggest a limit on the importance of the basolateral amygdala. PMID:23274135

  19. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

    PubMed

    Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S

    2014-10-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.

  20. Tubular inverse opal scaffolds for biomimetic vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  1. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticlesmore » were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.« less

  2. Proximal hypospadias: A persistent challenge. Single institution outcome analysis of three surgical techniques over a 10-year period.

    PubMed

    Pippi Salle, J L; Sayed, S; Salle, A; Bagli, D; Farhat, W; Koyle, M; Lorenzo, A J

    2016-02-01

    The optimal treatment of proximal hypospadias remains controversial. Several techniques have been described, but the best approach remains unsettled. To evaluate and compare the complication rates of proximal hypospadias with and without ventral curvature (VC), according to three different surgical techniques: tubularized incised plate (TIP) uretroplasty, dorsal inlay graft TIP (DIG), and staged preputial repair (SR). It was hypothesized that SR performs better than TIP and DIG for proximal hypospadias. Single-center, retrospective chart review of all patients with primary proximal hypospadias reconstructed between 2003 and 2013. The DIG was selectively employed in cases with narrow urethral plate (UP) and deficient spongiosum. Extensive urethral plate (UP) mobilization (UPM), dorsal plication (DP) and/or deep transverse incisions of tunica albuginea (DTITA) were selectively performed when attempting to spare transecting the UP. Division of UP and SR was favored in cases with severe VC (>50°), which was often concurrently managed with DTITA if intrinsic curvature was present. For SR, tubularization of the graft was performed 6 months later. A total of 140 patients were included. Tubularized incised plate (TIP), DIG, and SR techniques were performed in 57, 23, and 60 patients, respectively. The TIP and DIG techniques achieved similar success rates, although DIG was performed in cases of narrow and spongiosum-deficient plates. Reoperation rates with TIP and DIG techniques was 52.6% and 52.1% (NS). Urethro-cutaneous fistulas were seen in 31.5% and 13% of TIP and DIG techniques, respectively. Staged repair accomplished better results than both TIP and DIG techniques, despite being performed in the most unfavorable cases (reoperation rate 28%). After technical modifications, the DIG technique achieved similar outcomes of SR. Proximal hypospadias remains challenging, regardless of the technique utilized for its repair. Urethro-cutaneous fistulas were more commonly seen

  3. Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease.

    PubMed

    Raaij, Sanne van; Swelm, Rachel van; Bouman, Karlijn; Cliteur, Maaike; Heuvel, Marius van den; Pertijs, Jeanne; Patel, Dominic; Bass, Paul; Goor, Harry van; Unwin, Robert; Srai, Surjit Kaila; Swinkels, Dorine

    2018-06-19

    Iron is suggested to play a detrimental role in the progression of chronic kidney disease (CKD). The kidney recycles iron back into the circulation. However, the localization of proteins relevant for physiological tubular iron handling and their potential role in CKD remain unclear. We examined associations between iron deposition, expression of iron handling proteins and tubular injury in kidney biopsies from CKD patients and healthy controls using immunohistochemistry. Iron was deposited in proximal (PT) and distal tubules (DT) in 33% of CKD biopsies, predominantly in pathologies with glomerular dysfunction, but absent in controls. In healthy kidney, PT contained proteins required for iron recycling including putative iron importers ZIP8, ZIP14, DMT1, iron storage proteins L- and H-ferritin and iron exporter ferroportin, while DT only contained ZIP8, ZIP14, and DMT1. In CKD, iron deposition associated with increased intensity of iron importers (ZIP14, ZIP8), storage proteins (L-, H-ferritin), and/or decreased ferroportin abundance. This demonstrates that tubular iron accumulation may result from increased iron uptake and/or inadequate iron export. Iron deposition associated with oxidative injury as indicated by heme oxygenase-1 abundance. In conclusion, iron deposition is relatively common in CKD, and may result from altered molecular iron handling and may contribute to renal injury.

  4. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    PubMed

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  5. Tubular inverse opal scaffolds for biomimetic vessels.

    PubMed

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-14

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.

  6. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    PubMed Central

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  7. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    PubMed

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Microinfusion of nefazodone into the basolateral nucleus of the amygdala enhances defensive behavior induced by NMDA stimulation of the inferior colliculus.

    PubMed

    Maisonnette, S; Villela, C; Carotti, A P; Landeira-Fernandez, J

    2000-01-01

    The inferior colliculus is notably associated with defensive behavior. Electrical or pharmacological stimulation of the inferior colliculus induces aversive reactions such as running and jumping. Lesion of the basolateral nucleus of the amygdala decreases the threshold of aversive reactions induced by electrical stimulation of the inferior colliculus. The present work examined the influence of microinjections of nefazodone, a serotonin (5-HT(2)) antagonist, into the basolateral nucleus of amygdala on aversive reactions induced by N-methyl-D-aspartate (NMDA) microinjected into the inferior colliculus. Rats implanted with cannulae in the inferior colliculus and in the basolateral nucleus of the amygdala were submitted to the open-field test where defensive behaviors were observed. Results indicated that microinjection of nefazodone into the basolateral nucleus of the amygdala increases aversive responses induced by NMDA injections into the inferior colliculus. This result suggests that the inferior colliculus and the basolateral nucleus of the amygdala have a functional relationship on the neural circuitry of defensive behavior. Moreover, 5-HT(2) receptors located at the basolateral nucleus of the amygdala seem to play an inhibitory role on defensive behaviors induced by inferior colliculus stimulation.

  9. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  10. Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞

    PubMed Central

    Lock, John G.; Stow, Jennifer L.

    2005-01-01

    E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490

  11. Diuretics and salt transport along the nephron.

    PubMed

    Bernstein, Paul L; Ellison, David H

    2011-11-01

    The clinical use of diuretics almost uniformly predated the localization of their site of action. The consequence of diuretic specificity predicts clinical application and side effect, and the proximity of the sodium transporters, one to the next, often dictates potency or diuretic efficiency. All diuretics function by inhibiting the normal transport of sodium from the filtrate into the renal tubular cells. This movement of sodium into the renal epithelial cells on the apical side is facilitated by a series of transporters whose function is, in turn, dependent on the adenosine triphosphate (ATP)-dependent Na-K cotransporter on the basolateral side of the cell. Our growing understanding of the physiology of sodium transport has spawned new possibilities for diuretic development. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Calcium-activated potassium channels in basolateral membranes of colon epithelial cells; reconstitution and functional properties.

    PubMed

    Wiener, H; Turnheim, K

    1990-10-26

    Using differential sedimentation, isopycnic and Ficoll-400 barrier centrifugation, basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon were enriched 34- and 9-fold, respectively. 86Rb(+)-uptake into these vesicles, driven by an electrical potential difference, was stimulated by submicromolar Ca2+ activities and inhibited by Ba2+. These findings indicate the presence of Ca2(+)-activated K+ channels. The K+ channels in surface and crypt cell membranes differed with respect to inhibition by the bee venom apamin, the scorpion venom charybdotoxin and tetraethylammonium and exhibited a different pH dependence. Fusion of basolateral membrane vesicles with planar phospholipid bilayers revealed the presence of high-conductance Ba2(+)-sensitive K+ channels which were activated by micromolar Ca2+ and inhibited by crude scorpion venom and trifluoperazine. These K+ channels may be involved in the coupling of apical and basolateral membrane conductances during Na+ absorption and Cl- secretion, but they may also play a role in cell volume regulation.

  13. Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium

    PubMed Central

    Callejo, Ainhoa; Bilioni, Aphrodite; Mollica, Emanuela; Gorfinkiel, Nicole; Andrés, Germán; Ibáñez, Carmen; Torroja, Carlos; Doglio, Laura; Sierra, Javier; Guerrero, Isabel

    2011-01-01

    Hedgehog (Hh) moves from the producing cells to regulate the growth and development of distant cells in a variety of tissues. Here, we have investigated the mechanism of Hh release from the producing cells to form a morphogenetic gradient in the Drosophila wing imaginal disk epithelium. We describe that Hh reaches both apical and basolateral plasma membranes, but the apical Hh is subsequently internalized in the producing cells and routed to the basolateral surface, where Hh is released to form a long-range gradient. Functional analysis of the 12-transmembrane protein Dispatched, the glypican Dally-like (Dlp) protein, and the Ig-like and FNNIII domains of protein Interference Hh (Ihog) revealed that Dispatched could be involved in the regulation of vesicular trafficking necessary for basolateral release of Hh, Dlp, and Ihog. We also show that Dlp is needed in Hh-producing cells to allow for Hh release and that Ihog, which has been previously described as an Hh coreceptor, anchors Hh to the basolateral part of the disk epithelium. PMID:21690386

  14. Visualization of Calcium Dynamics in Kidney Proximal Tubules

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Csohány, Rózsa; Prókai, Ágnes; Kis-Petik, Katalin; Szabó, Attila; Bősze, Zsuzsanna; Bender, Balázs; Tóvári, József; Enyedi, Ágnes; Orbán, Tamás I.

    2015-01-01

    Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin–based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations. PMID:25788535

  15. Trans-proximal tubular steady-state concentration differences studied by micro-puncture and tissue content of sodium and chloride at varying intraluminal sodium concentrations in vitro in rat kidney cortex slices: evidence for a multisite sodium transport system.

    PubMed Central

    Györy, A Z; Roby, H

    1977-01-01

    1. With the aid of micropuncture techniques, proximal tubular transepithelial concentration differences for Na (deltaC Na) and chloride (deltaC Cl) were measured in kidney cortex slices at bathing fluid Na concentrations from 10 to 400 m-mole. kg-1. Tissue content of water, Na and K was also measured in such slices. Under steady-state conditions of zero net flux of NaCl and water, deltaC Na represents the sum of active Na transport, factored by the tubular permeability coefficient added to a component of flux due to electrical forces. 2. The relation between bathing fluid Na concentraton and deltaC Na appeared sigmoid in form suggesting an allosteric mechanism for the transport step. 3. Transtubular potential difference, calculated from transepithelial Cl distribution ratios, did not appear constant at the various bathing fluid Na concentrations. Correcting for the effect of these potential differences on the value of each deltaC Na did not convert the sigmoid transport curve to a hyperbolic one, confirming the suggested allosteric nature of the active Na transport step. 4. Intracellular Na content varied linearly with bathing fluid Na concentrations implying free entry of this cation into the cell. This also suggests that the sigmoid transport curve is related to the properties of the active Na transport pump. PMID:856986

  16. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  17. Roles of the anterior basolateral amygdalar nucleus during exposure to a live predator and to a predator-associated context.

    PubMed

    Bindi, Ricardo Passoni; Baldo, Marcus Vinicius C; Canteras, Newton Sabino

    2018-04-16

    The basolateral amygdala complex, which includes the lateral, basolateral and basomedial nuclei, has been implicated in innate and contextual fear responses to predator threats. In the basolateral complex, the lateral and posterior basomedial nuclei are able to process predator odor information, and they project to the predator-responsive hypothalamic circuit; lesions in these amygdalar sites reduce innate responses and practically abolish contextual fear responses to predatory threats. In contrast to the lateral and posterior basomedial nuclei, the basolateral nucleus does not receive direct information from predator olfactory cues and has no direct link to the predator-responsive hypothalamic circuit. No attempt has previously been made to determine the specific role of the basolateral nucleus in fear responses to predatory threats, and we currently addressed this question by making bilateral N-methyl-D-aspartate lesions in the anterior basolateral nucleus of the amygdala (BLAa), which is often regarded as being contiguous with the lateral amygdalar nucleus, and tested both innate and contextual fear in response to cat exposure. Accordingly, BLAa lesions decreased both innate and contextual fear responses to predator exposure. Considering the targets of the BLAa, the nucleus accumbens appears to be a potential candidate to influence innate defensive responses to predator threats. The present findings also suggest that the BLAa has a role in fear memory of predator threat. The BLAa is likely involved in memory consolidation, which could potentially engage BLAa projection targets, opening interesting possibilities in the investigation of how these targets could be involved in the consolidation of predator-related fear memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  19. Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen; Zhang, Qiong; Cheng, Shiwu

    Fibrosis is the final common pathway of chronic kidney disease (CKD). Normal lipid metabolism is integral to renal physiology, and disturbances of renal lipid metabolism are increasingly being linked with CKD, including the fibrosis. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. In the present study, we used Atgl{sup −/−} mice to investigate whether ATGL played a role in the regulation of proximal convoluted tubule (PCT) lipid metabolism and renal fibrosis development. ATGL deficiency led to lipid vacuolation of PCT and tubulointerstitial fibrosis, accompanied by massive albuminuria and decreased creatinine clearance rate (Ccr). In vitro experiments indicated that inhibitionmore » of ATGL in proximal tubular cell line HK-2 promoted intracellular lipid deposition, reactive oxygen species (ROS) accumulation and cell apoptosis. Both in vitro and in vivo experiments showed that ATGL inhibition decreased the renal peroxisome proliferator-activated receptorα(PPARα) expression, which implied the suppressed lipid metabolism. The antioxidant N-acetylcysteine (NAC) could partially reverse the effect of ROS accumulation and cell apoptosis, but could not restore the PPARαdecrease. These data raise the possibility that ATGL deficiency could impair the renal fatty acid metabolism though inhibiting PPARαexpression, which may lead to lipid deposition and cell apoptosis of PCT, and finally contribute to the renal fibrosis and dysfunction. - Highlights: • Atgl{sup −/−} mice develop tubulointerstitial damage and renal dysfunction. • ATGL deficiency results in lipid accumulation and apoptosis of proximal tubular cells. • ROS scavenger alleviates the ATGL-knockdown mediated lipid accumulation and apoptosis. • PPARαdown-regulation is the reason of ROS elevating in ATGL-knockdown HK-2 cells.« less

  20. Mechanism of intracellular signal transduction during injury of renal tubular cells induced by postasphyxial serum in neonates with asphyxia.

    PubMed

    Zhao, Jin; Dong, Wen-Bin; Li, Peng-yun; Deng, Chun-liang

    2009-01-01

    Renal injury is a severe and extremely common complication that occurs early in neonates with asphyxia. Reperfusion injury has been suggested as the cause of kidney damage during resuscitation of neonatal asphyxia. Previous studies have demonstrated that postasphyxial serum from neonates with asphyxia may result in apoptosis of renal tubular cells. However, the mechanisms that mediate renal tubular cell apoptosis induced by postasphyxial serum remain poorly understood. In this report we investigate the intracellular signal transduction mechanisms that operate during injury of renal tubular cells induced by postasphyxial serum in neonates. Cultured human renal proximal tubular cells HK-2 cell were exposed to 10% fetal calf serum (normal control), 20% postasphyxial serum or 20% postasphyxial serum with pyrrolidine dithiocarbamate (PDTC). The expression of both BAD and BAX in the cytoplasm was detected by immunohistochemistry. The mitochondria membrane potential (Deltapsim) was examined by confocal microscopy, and the release of the apoptogenic mitochondrial proteins cytochrome C and AIF was assessed by Western blot analysis. Loss of mitochondria membrane potential was detected in HK-2 cells treated with 20% postasphyxial serum as compared to cells in normal serum or PTDC-pretreated cells in 20% postasphyxial serum. A significant increase of Bad and Bax protein expression was also detected, along with the release of cytochrome C and AIF from mitochondria to cytosol in the postasphyxial serum treated cells, but not in the normal or PTDC-pretreated control cells. Our findings suggest that postasphyxial serum may induce renal tubular cell apoptosis through the mitochondrial pathway, and its intracellular signal transduction mechanism includes the activation of nuclear factor-kappaB. Copyright 2009 S. Karger AG, Basel.

  1. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  2. Exposure to high- and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific subdivisions of the rat basolateral amygdaloid complex.

    PubMed

    Hale, Matthew W; Bouwknecht, J Adriaan; Spiga, Francesca; Shekhar, Anantha; Lowry, Christopher A

    2006-12-11

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of forebrain structures including the basolateral amygdaloid complex (basolateral amygdala). Despite a wealth of research examining the role of the basolateral amygdala in anxiety-related behaviors and anxiety states, the specific subdivisions of the basolateral amygdala that are involved in responses to anxiogenic stimuli have not been examined. In this study, we investigated the effects of exposure to a novel open-field environment, with either low- or high-levels of illumination, on expression of the protein product of the immediate-early gene c-Fos in subdivisions of the rat basolateral amygdala. The subdivisions studied included the lateral, ventrolateral and ventromedial parts of the lateral amygdaloid nucleus, the anterior, posterior and ventral parts of the basolateral amygdaloid nucleus and the anterior and posterior part of the basomedial amygdaloid nucleus. Small increases in the number of c-Fos-immunoreactive cells were observed in several, but not all, of the subdivisions of the basolateral amygdala studied following exposure of rats to either the high- or low-light conditions, compared to home cage or handled control groups. Open-field exposure in both the high- and low-light conditions resulted in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus compared to either home cage or handled control groups. These findings point toward anatomical and functional heterogeneity within the basolateral amygdaloid complex and an important role of the anterior part of the basolateral amygdaloid nucleus in the neural mechanisms underlying physiological or behavioral responses to this anxiety-related stimulus.

  3. The effect of proximal anastomosis on the expansion rate of a dilated ascending aorta in coronary artery bypass surgery: a prospective study

    PubMed Central

    Balcı, Ahmet Yavuz; Vural, Unsal; Özdemir, MD Fatih; Kızılay, Mehmet; Şenocak, Mutlu; Kayacıoğlu, Ilyas; Yekeler, Ibrahim; Aksoy, Rezan; Satılmış,, Seçkin; Şaşkın, Huseyin

    2017-01-01

    Summary Background: This study was designed to determine the short- and long-term effects of proximal aortic anastomosis, performed during isolated coronary artery bypass grafting (CABG) in patients with dilatation of the ascending aorta who did not require surgical intervention. Methods: The study was performed on 192 (38 female and 160 male patients; mean age, 62.1 ± 9.2 years; range, 42–80 years) patients with dilatation of the ascending aorta who underwent CABG surgery between 1 June 2006 and 31 May 2014. In group 1 (n = 114), the saphenous vein and left internal mammarian artery grafts were used, and proximal anastomosis was performed on the ascending aorta. In group 2 (n = 78), left and right internal mammarian artery grafts were used, and proximal aortic anastomosis was not performed. Pre-operatively and in the first and third years postoperatively, the ascending aortic diameter was measured and recorded using transthoracic echocardiography at four different regions (annulus, sinus of Valsalva, sinotubular junction and tubular aorta). Results: A statistically significant difference was found between the groups for the number of grafts used and the duration of aortic cross-clamping and cardiopulmonary bypass. No significant intergroup difference was seen for the mean diameter of the ascending aorta (p > 0.05). Annual changes in the aortic diameter were found to be extremely significantly different in both groups (p = 0.0001). Mean values of the aortic diameter at the level of the sinotubular junction and tubular ascending aorta, mean aortic diameters (p = 0.002 and p = 0.0001, respectively), annual increase in diameter (p = 0.0001 and p = 0.0001, respectively), and mean annual difference in diameter (p = 0.0001 and p = 0.0001, respectively) at one and three years postoperatively were statistically significantly different between the groups. Conclusion: In patients with ascending aortic dilatation who did not require surgical intervention and who had

  4. The effect of proximal anastomosis on the expansion rate of a dilated ascending aorta in coronary artery bypass surgery: a prospective study.

    PubMed

    Yavuz Balci, Ahmet; Vural, Unsal; Aksoy, Rezan; Özdemir, M Fatih; Satilmiş, Seçkin; Kizilay, Mehmet; Şenocak, Mutlu; Şaşkin, Huseyin; Kayacioğlu, Ilyas; Yekeler, Ibrahim

    This study was designed to determine the short- and long-term effects of proximal aortic anastomosis, performed during isolated coronary artery bypass grafting (CABG) in patients with dilatation of the ascending aorta who did not require surgical intervention. The study was performed on 192 (38 female and 160 male patients; mean age, 62.1 ± 9.2 years; range, 42-80 years) patients with dilatation of the ascending aorta who underwent CABG surgery between 1 June 2006 and 31 May 2014. In group 1 (n = 114), the saphenous vein and left internal mammarian artery grafts were used, and proximal anastomosis was performed on the ascending aorta. In group 2 (n = 78), left and right internal mammarian artery grafts were used, and proximal aortic anastomosis was not performed. Pre-operatively and in the first and third years postoperatively, the ascending aortic diameter was measured and recorded using transthoracic echocardiography at four different regions (annulus, sinus of Valsalva, sinotubular junction and tubular aorta). A statistically significant difference was found between the groups for the number of grafts used and the duration of aortic cross-clamping and cardiopulmonary bypass. No significant intergroup difference was seen for the mean diameter of the ascending aorta (p > 0.05). Annual changes in the aortic diameter were found to be extremely significantly different in both groups (p = 0.0001). Mean values of the aortic diameter at the level of the sinotubular junction and tubular ascending aorta, mean aortic diameters (p = 0.002 and p = 0.0001, respectively), annual increase in diameter (p = 0.0001 and p = 0.0001, respectively), and mean annual difference in diameter (p = 0.0001 and p = 0.0001, respectively) at one and three years postoperatively were statistically significantly different between the groups. In patients with ascending aortic dilatation who did not require surgical intervention and who had proximal anastomosis of the ascending aorta and underwent

  5. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and themore » gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.« less

  6. The Effects of Basolateral Amygdala Lesions on Unblocking

    PubMed Central

    Chang, Stephen E.; McDannald, Michael A.; Wheeler, Daniel S.; Holland, Peter C.

    2012-01-01

    Prior reinforcement of a neutral stimulus often blocks subsequent conditioning of a new stimulus if a compound of the original and new cues is paired with the same reinforcer. However, if the value of the reinforcer is altered when the compound is presented, the new cue typically acquires conditioning, a result called unblocking. Blocking, unblocking and related phenomena have been attributed to variations in processing of either the reinforcer, for example, the Rescorla-Wagner (1972) model, or cues, for example, the Pearce-Hall (1980) model. Here, we examined the effects of lesions of the basolateral amygdala on the occurrence of unblocking when the food reinforcer was increased in quantity at the time of introduction of the new cue. The lesions had no effects on unblocking in a simple design (Experiment 1), which did not distinguish between unblocking produced by variations in reward or cue processing. However, in a procedure that distinguished between unblocking due to direct conditioning by the added reinforcer, consistent with the Rescorla-Wagner (1972) model, and that due to increases in conditioning to the original reinforcer, consistent with the Pearce-Hall (1980) and other models of learning, the lesions prevented unblocking of the latter type. These results were discussed in the context of roles of the basolateral amygdala in coding and using reward prediction error information in associative learning. PMID:22448857

  7. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury.

    PubMed

    Ceron, Carla S; Baligand, Celine; Joshi, Sunil; Wanga, Shaynah; Cowley, Patrick M; Walker, Joy P; Song, Sang Heon; Mahimkar, Rajeev; Baker, Anthony J; Raffai, Robert L; Wang, Zhen J; Lovett, David H

    2017-06-01

    Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH 2 -terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.

  8. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.

    PubMed

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-07-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells

    PubMed Central

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-01-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP-depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP-depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. PMID:24726884

  10. Arcas Rocket with Special Tubular Launcher

    NASA Image and Video Library

    1959-07-31

    Arcas Rocket with Special Tubular Launcher: Lt. Commander W. Houston checks elevation adjustment of special tubular launcher for Arcas rocket, July 31, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 697.

  11. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    PubMed Central

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  12. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  13. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes.

    PubMed

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2012-06-15

    Sustained hyperglycemia is associated with increased oxidative stress resulting in decreased intrarenal oxygen tension (Po(2)) due to increased oxygen consumption (Qo(2)). Chronic blockade of the main superoxide radicals producing system, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, normalizes Qo(2) by isolated proximal tubular cells (PTC) and reduces proteinuria in diabetes. The aim was to investigate the effects of acute NADPH oxidase inhibition on tubular Na(+) transport and kidney Po(2) in vivo. Glomerular filtration rate (GFR), renal blood flow (RBF), filtration fraction (FF), Na(+) excretion, fractional Li(+) excretion, and intrarenal Po(2) was measured in control and streptozotocin-diabetic rats during baseline and after acute NADPH oxidase inhibition using apocynin. The effects on tubular transporters were investigated using freshly isolated PTC. GFR was increased in diabetics compared with controls (2.2 ± 0.3 vs. 1.4 ± 0.1 ml·min(-1)·kidney(-1)). RBF was similar in both groups, resulting in increased FF in diabetics. Po(2) was reduced in cortex and medulla in diabetic kidneys compared with controls (34.4 ± 0.7 vs. 42.5 ± 1.2 mmHg and 15.7 ± 1.2 vs. 25.5 ± 2.3 mmHg, respectively). Na(+) excretion was increased in diabetics compared with controls (24.0 ± 4.7 vs. 9.0 ± 2.0 μm·min(-1)·kidney(-1)). In controls, all parameters were unaffected. However, apocynin increased Na(+) excretion (+112%) and decreased fractional lithium reabsorption (-10%) in diabetics, resulting in improved cortical (+14%) and medullary (+28%) Po(2). Qo(2) was higher in PTC isolated from diabetic rats compared with control. Apocynin, dimethylamiloride, and ouabain reduced Qo(2), but the effects of combining apocynin with either dimethylamiloride or ouabain were not additive. In conclusion, NADPH oxidase inhibition reduces tubular Na(+) transport and improves intrarenal Po(2) in diabetes.

  14. Clinicopathologic characteristics of light chain proximal tubulopathy with light chain inclusions involving multiple renal cell types
.

    PubMed

    Li, Xiaomei; Xu, Feng; Liang, Dandan; Liang, Shaoshan; Zhu, Xiaodong; Zhang, Mingchao; Huang, Xianghua; Liu, Zhihong; Zeng, Caihong

    2018-02-01

    Light chain proximal tubulopathy (LCPT) associated with plasma cell dyscrasias is a rare abnormality, especially cases involving multiple cell types. The aim of this study is to explore the characteristics and outcomes of these diseases. We comprehensively evaluated the clinical-pathological data, treatment, and outcomes of 6 LCPT patients with involvement of multiple cell types. In 3 cases, we found that the inclusions largely existed in tubular cells, while in 2 cases they coexisted in podocytes and tubular cells, and in 1 case they coexisted in histiocytes and tubular cells. The stain features and appearances of inclusions were specific and varied. Five patients displayed κ-light chains with crystal formation, while 1 patient displayed a λ subtype with increased lysosomes instead of crystals. Six patients presented with proteinuria, 4 with renal insufficiency, and 4 with complete or partial Fanconi syndrome. Our findings indicate that tubular cells are the most common location of cytoplasmic inclusions. Cases with κ-light chain storage are more common than λ, and the formation of crystals may be associated with the subtype of light chains. Immunoelectron microscopy could be used to increase sensitivity for the detection and location of monoclonal light chains. Therefore, these patients have some common clinical features with varied pathologic characteristics and prognoses but the same subtype of light chains.
.

  15. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul

    2010-04-15

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mousemore » proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.« less

  16. Role of the glomerular-tubular imbalance with tubular predominance in the arterial hypertension pathophysiology.

    PubMed

    Fox, María Ofelia Barber; Gutiérrez, Ernesto Barber

    2013-09-01

    In previous investigations we caused renal tubular reabsorption preponderance relating to the glomerular filtration (Glomerular-tubular imbalance) and we observed that this fact conducted to volume expansion and development of arterial hypertension, in rats that previously were normotens. We based on this evidence and other which are reflected in the literature arrived at the following hypothesis: a greater proportion of tubular reabsorption relating to the filtered volume is the base of the establishment of the glomerular-tubular imbalance with tubular predominance (GTI-T), which favors to the Na(+)-fluid retention and volume expansion. All of which conduced to arterial hypertension. These facts explain a primary hypertensive role of the kidney, consistent with the results of renal transplants performed in different lines of hypertensive rats and their respective controls and in humans: hypertension can be transferred with the kidney. GTI-T aims to be, a common phenomenon involved in the hypertension development in the multiple ways which is manifested the hypertensive syndrome. In secondary hypertension, GTI-T is caused by significant disruptions of hormone secretions that control renal function, or obvious vascular or parenchymal damage of these organs. In primary hypertension the GTI-T has less obvious causes inherently developed in the kidney, including humoral, cellular and subcellular mechanisms, which may insidiously manifest under environmental factors influence, resulting in insidious development of hypertension. This would explain the state of prehypertension that these individuals suffer. So it has great importance to study GTI-T before the hypertension is established, because when hypertensive state is established, other mechanisms are installed and they contribute to maintain the hypertension. Our hypothesis may explaining the inability of the kidneys to excrete salt and water in hypertension, as Guyton and colleagues have expressed and constitutes a

  17. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.

    PubMed

    Green, R; Giebisch, G

    1975-11-01

    Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.

  18. The proximal straight tubule (PST) basolateral cell membrane water channel: selectivity characteristics.

    PubMed

    Gutiérrez, A M; González, E; Echevarría, M; Hernández, C S; Whittembury, G

    1995-02-01

    Proximal straight tubules (PST) were dissected from rabbit kidneys, held by crimping pipettes in a chamber and bathed in a buffered isosmotic (295 mOsm/kg) solution containing 200 mM mannitol (MBS). Changes in tubule diameter were monitored on line with an inverted microscope, TV camera and image processor. The PST were then challenged for 20 sec with MBS made 35 mOsm/kg hyperosmotic by addition of either NaCl, KCl, mannitol (M), glycerol (G), ethylene glycol (E), glycine (g), urea (U), acetamide (A) or formamide (F). With NaCl, KCl, M, G, E, g, U, and A, tubules shrunk osmometrically within 0.5 sec and remained shrunk for as long as 20 sec without recovering their original volume (sometimes A showed some recovery). PST barely shrunk with F and quickly recovered their original volume. The permeability coefficients were 0 microns/sec (NaCl, M, g, E and U), 1 micron/sec (A), 84 microns/sec (F) and 0.02 micron/sec (G). The reflection coefficients sigma = 1.0 (NaCl, KCl, M, G, E, g and U), 0.95 (A) and 0.62 (F). Similar sigma values were obtained by substituting 200 mOsm/kg M in MBS by either NaCl, KCl, G, E, g, U, a or F. The olive oil/water partition coefficients are 5 (M), 15 (U), 85 (A) and 75 (F) (all x 10(-5)). Thus, part of F permeates the cell membrane through the lipid bilayer. The probing molecules van der Waals diameters are 7.4 x 8.2 x 12.0 (M), 3.6 x 5.2 x 5.4 (U), 3.8 x 5.2 x 5.4 (A) and (3.4 x 4.5 x 5.4 (F) A.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  20. BSC-1 growth inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal proximal tubular cells: relationship to Na/sup +//H/sup +/ antiport activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, L.G.; Holley, R.W.; Nasri, H.

    Renal hypertrophy is characterized by an increase in cell size and protein content with minimal hyperplasia. The mechanisms of control of this pattern of cell growth have not been determined. The present studies examined whether the growth inhibitor elaborated by BSC-1 kidney epilethal cells (GI), which has nearly identical biological properties to transforming growth factor ..beta.. (TGF-..beta..), could transform a mitogenic stimulus into a hypertrophic stimulus for rabbit renal proximal tubular cells in primary culture. Insulin plus hydrocortisone increased the amount of protein per cell, cell volume, and (/sup 3/H)thymidine incorporation at 24 and 48 hr in these cells. Whenmore » added together with insulin plus hydrocortisone, GI/TGF-..beta.. inhibited the stimulatory effect of these mitogens on (/sup 3/H)thymidine incorporation but did not block the increase in protein per cell and cell volume - i.e., the cells underwent hypertrophy. The fact that this pattern persisted for 48 hr indicated that GI/TGF-..beta.. exerted a prolonged inhibitory effect on mitogenic-stimulated DNA synthesis rather than delaying its onset. Amiloride-sensitive Na/sup +/ uptake using /sup 22/Na/sup +/ as a tracer, correlated with protein per cell and cell volume rather than with DNA synthesis. These studies indicate that the control of cell size may be regulated by autocrine mechanisms mediated by the elaboration of growth inhibitory factors that alter the pattern of the growth response to mitogens.« less

  1. Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of extracellular matrix molecules in cultured human renal proximal tubular cells.

    PubMed

    Liu, Yuyuan; Li, Weiwei; Liu, Hong; Peng, Youming; Yang, Qiu; Xiao, Li; Liu, Yinghong; Liu, Fuyou

    2014-03-01

    In this study, we investigated the effect of small interfering RNA (siRNA) of connective tissue growth factor (CTGF) by pRetro-Super (PRS) retrovirus vector on the expression of CTGF and related extracellular matrix molecules in human renal proximal tubular cells (HKCs) induced by high glucose, to provide help for renal tubulointerstitial fibrosis therapy. HKCs were exposed to d-glucose to observe their dose and time effect, while the mannitol as osmotic control. Retrovirus producing CTGF siRNA were constructed from the inverted oligonucleotides and transferred into packaging cell line PT67 with lipofectamine, and the virus supernatant was used to infect HKC. The expression of CTGF, fibronectin (FN) and collagen-type I (col1) were measured by semi-quantitative RT-PCR and Western blot. In response to high glucose, CTGF expression in HKCs was increased in a dose- and time-dependent manner, whereas the increase did not occur in the osmotic control. Introduction of PRS-CTGF-siRNA resulted in the significant reduction of CTGF, FN, col1 mRNA (p < 0.01, respectively) and CTGF, col1 protein (p < 0.05, respectively) expression, while PRS void vector group did not have these effects (p > 0.05). CTGF siRNA therapy can effectively reduce the levels of CTGF, FN and col1 induced by high glucose in cultured HKCs, which suggested that it may be a potential therapeutic strategy to prevent the renal interstitial fibrosis in the future.

  2. Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion

    PubMed Central

    Mitra, Rupshi; Sapolsky, Robert Morris; Vyas, Ajai

    2013-01-01

    SUMMARY Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity. PMID:23104989

  3. Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin.

    PubMed

    Andreucci, M; Fuiano, G; Presta, P; Lucisano, G; Leone, F; Fuiano, L; Bisesti, V; Esposito, P; Russo, D; Memoli, B; Faga, T; Michael, A

    2009-08-01

    Erythropoietin has been shown to have a protective effect in certain models of ischaemia-reperfusion, and in some cases the protection has been correlated with activation of signalling pathways known to play a role in cell survival and proliferation. We have studied whether erythropoietin would overcome direct toxic effects of hydrogen peroxide (H(2)O(2)) treatment to human renal proximal tubular (HK-2) cells. HK-2 cells were incubated with H(2)O(2) (2 mm) for 2 h with or without erythropoietin at concentrations of 100 and 400 U/ml, and cell viability/proliferation was assessed by chemical reduction of MTT. Changes in phosphorylation state of the kinases Akt, glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) were also analysed. Cells incubated with H(2)O(2) alone showed a significant decrease in viability, which did not significantly change by addition of erythropoietin at concentration of 100 U/ml, but was further reduced when concentration of erythropoietin was increased to 400 U/ml. Phosphorylation state of the kinases Akt, GSK-3beta, mTOR and ERK1/ERK2 of H(2)O(2)-treated HK-2 cells was slightly altered in the presence of erythropoietin at concentration of 100 U/ml, but was significantly less in the presence of erythropoietin at a concentration of 400 U/ml. Phosphorylation of forkhead transcription factor FKHRL1 was diminished in cells incubated with H(2)O(2) and erythropoietin at a concentration of 400 U/ml. Erythropoietin, at high concentrations, may significantly increase cellular damage in HK-2 cells subjected to oxidative stress, which may be due in part to decrease in activation of important signalling pathways involved in cell survival and/or cell proliferation.

  4. SGLT2 mediates glucose reabsorption in the early proximal tubule.

    PubMed

    Vallon, Volker; Platt, Kenneth A; Cunard, Robyn; Schroth, Jana; Whaley, Jean; Thomson, Scott C; Koepsell, Hermann; Rieg, Timo

    2011-01-01

    Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.

  5. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    PubMed Central

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  6. Proximal renal tubular acidosis

    MedlinePlus

    ... Tests The health care provider will perform a physical exam and ask about the symptoms. Tests that may be ordered include: Arterial blood gas Blood chemistry Blood pH level Urine pH and acid-loading ...

  7. Developmental changes of morphology in the basolateral complex of the rabbit amygdala.

    PubMed

    Jagalska-Majewska, Hanna; Luczyńska, Anna; Wójcik, Sławomir; Dziewiatkowski, Jerzy; Kurlapska, Renata; Moryś, Janusz

    2003-01-01

    The aim of the present study is to follow topographical and morphological changes in the development of the amygdaloid basolateral complex (BLC) in the rabbit. The material consists of 35 brains of New Zealand rabbits of both sexes, divided into 7 age groups (P2-P90). In cresyl violet preparations BLC is already well visible on P2 and is composed of the lateral (divided into dorsolateral and ventromedial divisions), basolateral and homogenous basomedial nuclei. On about the 7th postnatal day it is possible to divide the basomedial nucleus (BM) into dorsal (Bmd) and ventral (BMv) divisions. The topography and subdivisions set on P7 are maintained in further periods of life. The morphology of neurons (shape, dendrites, staining) changes significantly until P21 in all BLC nuclei. Our results indicate that BLC achieves morphological maturity relatively late, which is probably connected with a long creation of emotional memory and regulation of emotional behaviour.

  8. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    PubMed Central

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  9. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury

    PubMed Central

    Zarjou, Abolfazl; Bolisetty, Subhashini; Joseph, Reny; Traylor, Amie; Apostolov, Eugene O.; Arosio, Paolo; Balla, Jozsef; Verlander, Jill; Darshan, Deepak; Kuhn, Lukas C.; Agarwal, Anupam

    2013-01-01

    Ferritin plays a central role in iron metabolism and is made of 24 subunits of 2 types: heavy chain and light chain. The ferritin heavy chain (FtH) has ferroxidase activity that is required for iron incorporation and limiting toxicity. The purpose of this study was to investigate the role of FtH in acute kidney injury (AKI) and renal iron handling by using proximal tubule–specific FtH-knockout mice (FtHPT–/– mice). FtHPT–/– mice had significant mortality, worse structural and functional renal injury, and increased levels of apoptosis in rhabdomyolysis and cisplatin-induced AKI, despite significantly higher expression of heme oxygenase-1, an antioxidant and cytoprotective enzyme. While expression of divalent metal transporter-1 was unaffected, expression of ferroportin (FPN) was significantly lower under both basal and rhabdomyolysis-induced AKI in FtHPT–/– mice. Apical localization of FPN was disrupted after AKI to a diffuse cytosolic and basolateral pattern. FtH, regardless of iron content and ferroxidase activity, induced FPN. Interestingly, urinary levels of the iron acceptor proteins neutrophil gelatinase–associated lipocalin, hemopexin, and transferrin were increased in FtHPT–/– mice after AKI. These results underscore the protective role of FtH and reveal the critical role of proximal tubule FtH in iron trafficking in AKI. PMID:24018561

  10. Sugar uptake by intestinal basolateral membrane vesicles.

    PubMed

    Wright, E M; van Os, C H; Mircheff, A K

    1980-03-27

    A high yield of membrane vesicles was prepared from the basolateral surface of rat intestinal cells using an N2 cavitation bomb and density gradient centrifugation. The membranes were enriched 10-fold and were free of significatn contamination by brush border membranes and mitochondria. The rate of D-E114C]glucose and L-E13H]glucose uptake into the vesicle was measured using a rapid filtration technique. D-Glucose equilibrated within the vesicles with a half-time 1/25th that for L-glucose. The stereospecific uptake exhibited saturation kinetics with a Km of approx. 44 mM and a V of approx. 110 nmol . mg-1 min-1 at 10 degrees C. The activation energy for the process was 14 kcal . mol-1 below 15 degrees C and it approached 3 kcal . mol-1 above 22 degrees C. Carrier-mediated uptake was eliminated in the presence of 1 mM HgCl2 and 0.5 mM phloretin. The rate of transport was unaffected by the absence or presence of sodium concentration gradients. Competition studies demonstrated that all sugars with the D-glucose pyranose ring chair conformation shared the transport system, and that, with the possible exception of the -OH group at carbon No. 1, there were no specific requirements for an equatorial -OH group at any position in the pyranose ring. In the case of alpha-methyl-D-glucoside its inability to share the D-glucose transport system may be due to steric hindrance posed by the -OCH3 group rather than by a specific requirement for a free hydroxyl group at the position in the ring. It is concluded that sugars are transported across the basolateral membrane of the intestinal epithelium by a facilitated diffusion system reminiscent of that in human red blood cells.

  11. Determination of Clara cell protein urinary elimination as a marker of tubular dysfunction.

    PubMed

    Martín-Granado, Ascensión; Vázquez-Moncholí, Carmen; Luis-Yanes, María Isabel; López-Méndez, Marisela; García-Nieto, Víctor

    2009-04-01

    Clara cell 16-kDa protein (CC16) is a protein expressed primarily by the bronchial cells. It is rapidly eliminated by glomerular filtration, reabsorbed almost entirely, and catabolized in proximal tubule cells. To date, normal values for urinary CC16 in healthy children have not been determined. We have studied 63 pediatric patients (mean age 8.17 +/- 3.91 years) and 31 healthy children (control group; mean age 8.83 +/- 3.65 years). In the control group, the CC16/creatinine ratio was 1.22 +/- 1.52 microg/g. In 16 out of 31 control children, the value of the ratio was zero. Fourteen patients (22.2%) showed a high CC16/creatinine ratio; in contrast, among these same patients, the ratio N-acetyl-beta-D: -glucosaminidase (NAG)/creatinine was elevated in seven cases (11.1%) and the ratio beta2-microglobulin/creatinine was elevated in seven cases (11.1%). The three parameters were in agreement in 51 patients (80.9%). Among the patients, the CC16/creatinine ratio was correlated with both the beta2-microglobulin/creatinina ratio (r = 0.76, P < 0.001) and the NAG/creatinine ratio (r = 0.6, P < 0.001). Our findings indicate that CC16 is a good marker of proximal tubular function in childhood. The highest observed values were in children with proximal tubulopathies, in children with chronic renal failure, and in those treated with cyclosporine.

  12. Is tenofovir involved in hypophosphatemia and decrease of tubular phosphate reabsorption in HIV-positive adults?

    PubMed

    Badiou, Stéphanie; De Boever, Corinne Merle; Terrier, Nathalie; Baillat, Vincent; Cristol, Jean-Paul; Reynes, Jacques

    2006-05-01

    Tubulopathy with hypophosphatemia have been observed in HIV-positive patients receiving a tenofovir-containing regimen. However, the real incidence and prevalence of hypophosphatemia and their relation to tubular reabsorption disorders in tenofovir-treated patients remain uncertain. The aim of our study was to explore the effect of tenofovir on phosphatemia and on tubular phosphate reabsorption. In a first transversal study, 145 HIV-positive adults (44+/-9 years) receiving tenofovir 300 mg daily with a mean exposure of 11+/-9 months were included. In a second prospective study, 29 HIV-positive antiretroviral experienced adults (44+/-10 years) were evaluated before introduction of tenofovir 300 mg daily (M0) and at 3 months (M3) and 6 months (M6), thereafter. Phosphate, creatinine, glucose and protein levels were determined in plasma and urine. The ratio of maximal reabsorption capacity (TmPO4)/glomerular filtration rate (GFR) was determined by using the normogramm of Walton and Bijvoet. In the transversal study, 26% of patients had hypophosphatemia (<0.84 mmol/l) while 47% of patients had a decreased TmPO4/GFR (<0.8 mmol/l). In the prospective study, baseline prevalence of hypophosphatemia (<0.84 mmol/l) and decreased TmPO4/GFR (<0.8mmol/l) was 31 and 41%, respectively. Three and 6 months after starting tenofovir, there is no significant change in mean phosphate levels (M0:0.91 mmol/l, M3:0.97 mmol/l, M6:0.98 mmol/l) and mean TmPO4/GFR (M0:0.80 mmol/l, M3:0.88 mmol/l, M6:0.84 mmol/l). Moreover, prevalence of hypophosphatemia (M3:28%, M6:28%) and decreased TmPO4/GFR (M3:41%, M6:45%) remained stable. Hypophosphatemia linked to a decreased proximal tubular reabsorption was frequently observed in HIV-positive adults independently of the use of tenofovir. In this preliminary study, no worsening effect on phosphatemia and tubular phosphate reabsorption was observed 6 months after introduction of tenofovir in treatment experienced patients.

  13. TGF-β1 stimulates movement of renal proximal tubular epithelial cells in a three-dimensional cell culture via an autocrine TGF-β2 production.

    PubMed

    Luo, Deyi; Guan, Qiunong; Wang, Kunjie; Nguan, Christopher Y C; Du, Caigan

    2017-01-01

    TGF-βs are multifunctional cytokines, but their roles in human renal homeostasis are not fully understood. This study investigated the role of TGF-β1 in the movement of human renal proximal tubular epithelial cells (PTECs) in a three-dimensional (3D) model. HKC-8 cells, a human PTEC line, were grown in a 3D collagen culture system. Cell movement was observed under a microscope. The gene expression was examined using PCR Arrays or qRT-PCR, and protein levels by Western blot. Here, we showed that the tight junction structure formed between adjacent cells of a HKC-8 cell colony in 3D cultures, and TGF-β1 stimulated their movement, evidenced by the appearance of fingerlike pseudopodia in the leader cells at the edge of the colonies. The cell movement of these human PTECs was correlated with up-regulation of both MMP2 and MMP9 and down-regulation or inactivation of PLAUR and PTK2B. Analysis of TGF-β signaling targets confirmed autocrine production of TGF-β2 and its cleaving enzyme furin as well as SNAI1 by TGF-β1stimulation. Knockdown of TGF-β2 expression disrupted TGF-β1-stimulated PTEC invasiveness, which was correlated with the down-regulation of MMP2 and MMP9. In conclusion, the activation of TGF-β receptor autocrine signaling by up-regulated TGF-β2 may play a pivotal role in TGF-β1-induced human PTEC movement, which could be mediated at least by both MMP2 and MMP9. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Distal renal tubular acidosis in two children with acquired hypothyroidism.

    PubMed

    Guerra-Hernández, Norma E; Ordaz-López, Karen V; Vargas-Poussou, Rosa; Escobar-Pérez, Laura; García-Nieto, Víctor M

    2018-04-28

    Two cases of children diagnosed with renal tubular acidosis (RTA) associated with autoimmune hypothyroidism are presented. Case 1 developed an intestinal ileus at the age of five in the context of a respiratory problem. The tests performed confirmed metabolic acidosis, hyperchloraemia, hypokalaemia and nephrocalcinosis. Case 2 was diagnosed with hypothyroidism at the age of 11, and with RTA two years later. In both patients, the diagnosis of RTA was verified when decreased maximum urinary pCO 2 was found. In case 2, a proximal bicarbonate leak (type 3 RTA) was also confirmed. This was the first case to be published on the topic. The causes of RTA in patients with hypothyroidism are reviewed. The deleterious effect on the kidneys may be due to the absence of thyroid hormone and/or autoantibodies in the cases of autoimmune hypothyroidism. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  15. A New Pathogenesis of Albuminuria: Role of Transcytosis.

    PubMed

    He, Fang-Fang; Gong, Yi; Li, Zhen-Qiong; Wu, Liang; Jiang, Hua-Jun; Su, Hua; Zhang, Chun; Wang, Yu-Mei

    2018-06-15

    Transcytosis is an important intracellular transport process by which multicellular organisms selectively move cargoes from apical to basolateral membranes without disrupting cellular homeostasis. In kidney, macromolecular components in the serum, such as albumin, low-density lipoprotein and immunoglobulins, pass through the glomerular filtration barrier (GFB) and proximal tubular cells (PTCs) by transcytosis. Protein transcytosis plays a vital role in the pathology of albuminuria, which causes progressive destruction of the GFB structure and function. However, the pathophysiological consequences of protein transcytosis in the kidney remain largely unknown. This article summarizes recent researches on the regulation of albumin transcytosis across the GFB and PTCs in both physiological and pathological conditions. Understanding the mechanism of albumin transcytosis may reveal potential therapeutic targets for prevention or alleviation of the pathological consequences of albuminuria. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety.

    PubMed

    Wallace, Tanya L; Stellitano, Kathryn E; Neve, Rachael L; Duman, Ronald S

    2004-08-01

    Chronic antidepressant administration increases the cyclic adenosine monophosphate response element binding protein (CREB) in the amygdala, a critical neural substrate involved in the physiologic responses to stress, fear, and anxiety. To determine the role of CREB in the amygdala in animal models of depression and anxiety, a viral gene transfer approach was used to selectively express CREB in this region of the rat brain. In the learned helplessness model of depression, induction of CREB in the basolateral amygdala after training decreased the number of escape failures, an antidepressant response. However, expression of CREB before training increased escape failures, and increased immobility in the forced swim test, depressive effects. Expression of CREB in the basolateral amygdala also increased behavioral measures of anxiety in both the open field test and the elevated plus maze, and enhanced cued fear conditioning. Taken together, these data demonstrate that CREB expression in the basolateral amygdala influences behavior in models of depression, anxiety, and fear. Moreover, in the basolateral amygdala, the temporal expression of CREB in relation to learned helplessness training, determines the qualitative outcome in this animal model of depression.

  17. Effects of shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Araoz, Alicia; Repetto, Horacio A; Ibarra, Fernando R; Silberstein, Claudia

    2016-10-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development.

    PubMed

    Akchurin, Oleh; Du, Zhongfang; Ramkellawan, Nadira; Dalal, Vidhi; Han, Seung Hyeok; Pullman, James; Müsch, Anne; Susztak, Katalin; Reidy, Kimberly J

    2016-12-01

    The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling. Copyright © 2016 by the American Society of Nephrology.

  19. Orphanin FQ/Nociceptin Interacts with the Basolateral Amygdala Noradrenergic System in Memory Consolidation

    ERIC Educational Resources Information Center

    Roozendaal, Benno; Lengvilas, Ray; McGaugh, James L.; Civelli, Olivier; Reinscheid, Rainer K.

    2007-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin…

  20. Temporary Basolateral Amygdala Lesions Disrupt Acquisition of Socially Transmitted Food Preferences in Rats

    ERIC Educational Resources Information Center

    Fontanini, Alfredo; Katz, Donald B.; Wang, Yunyan

    2006-01-01

    Lesions of the basolateral amygdala (BLA) have long been associated with abnormalities of taste-related behaviors and with failure in a variety of taste- and odor-related learning paradigms, including taste-potentiated odor aversion, conditioned taste preference, and conditioned taste aversion. Still, the general role of the amygdala in…

  1. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  2. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  3. Inducible nitric oxide synthase and apoptosis in murine proximal tubule epithelial cells.

    PubMed

    Tiwari, Manish M; Messer, Kurt J; Mayeux, Philip R

    2006-06-01

    Since inducible nitric oxide synthase (iNOS) and proximal tubule injury are known to be critical determinants of lipopolysaccharide (LPS)-induced renal failure, the role of nitric oxide (NO) in proximal tubule cell apoptosis was examined. An 18-h treatment with a combination of LPS (5 microg/ml) and interferon-gamma (IFN-gamma, 100 units/ml) synergistically induced iNOS and produced a 20-fold increase in NO generation in the TKPTS murine proximal tubule cell line. NO generation by LPS + IFN-gamma was blocked by a specific iNOS blocker, L-N6-(1-iminoethyl)-lysine (L-NIL, 1 mM). To assess the role of iNOS-derived NO in proximal tubule cell apoptosis, annexin V- and propidium iodide-labeled cells were analyzed by flow cytometry. Neither the induction of iNOS nor its inhibition produced significant apoptotic cell death in TKPTS cells. Two exogenous NO donors were used to examine the role of NO more directly in proximal tubule apoptosis. Although both sodium nitroprusside (SNP), an iron-containing, nitrosonium cation donor, and S-nitroso-N-acetylpenicillamine (SNAP), a noniron-containing, NO generator, produced a concentration-dependent increase in NO generation, only SNP increased apoptotic cell death in TKPTS cells (5.9 +/- 0.7% in control cells vs. 21.6 +/- 3.8% in SNP [500 microM]-treated cells; n = 4-9; p < 0.01). SNP-mediated tubule cell apoptosis was not dependent on the activation of caspases or p53 but was possibly related to the generation of reactive oxygen species by SNP. Thus, in TKPTS cells induction of iNOS and generation of NO by LPS does not lead to tubular epithelial cell death.

  4. Design of a tubular skylight system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, B.L.

    1996-10-01

    Since its introduction to the US market in 1991, tubular skylight provides a solution to the problem of lighting up dark corners in a house. Over the years, design of similar products has emphasized on quantity alone and attention to a range of other equally important issues: efficient collecting system, selection of higher specular reflectance material, seals, distribution and quality of light, was not noted. In this paper, the fundamental design concept of an efficient tubular skylight and the possibility of collimating diffuse light is reviewed. The importance of specular reflectance of the tube material on the performance of tubularmore » skylight is demonstrated. Visual appearance (quality) of transmitted light down the tube is related in part to the yellowness index of various materials. Discussion of adequacy of current building and energy code requirements on tubular skylights is briefly touched on and energy simulation results based on a numerical code are presented.« less

  5. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    PubMed

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion.

    PubMed

    Chan, Y L; Malnic, G; Giebisch, G

    1983-11-01

    The effect of oncotic pressure changes on fluid (Jv) and net bicarbonate transport (JHCO-3) and the transepithelial bicarbonate permeability (PHCO-3) were measured by an improved luminal and capillary microperfusion method that allows paired experiments on the same tubule. Rat proximal tubules were pump-perfused and Jv and [HCO-3] measured with [14C]inulin and a pH glass electrode. Raising peritubular protein (0-8-15 g/100 ml bovine serum albumin) stimulated Jv and HCO-3 reabsorption. The response to oncotic pressure changes was asymmetrical since changes of the luminal protein concentration had no significant effects. Whereas transepithelial solvent drag effects on HCO-3 must be minimal, peritubular protein most likely stimulates translocation of fluid and bicarbonate from intercellular spaces into peritubular capillaries. PHCO-3 was measured from HCO-3 net flux along a lumen-to-capillary-directed electrochemical potential gradient. In these experiments active H+ transport and Jv were minimized by 10(-4) M acetazolamide and luminal raffinose. PHCO-3 was 1.77 X 10(-5) cm X s-1 and was unaffected by increasing luminal flow rate from 10 to 45 nl X min-1. Since bicarbonate backflux is only a small fraction of physiological rates of JHCO-3, net transport alterations at varying [HCO-3] in the lumen must be due to changes in active HCO-3 (H+) transport. Thus, active H+ ion secretion across the luminal membrane of the proximal tubule is gradient dependent.

  7. Two-dimensional transthoracic echocardiographic normal reference ranges for proximal aorta dimensions: results from the EACVI NORRE study.

    PubMed

    Saura, Daniel; Dulgheru, Raluca; Caballero, Luis; Bernard, Anne; Kou, Seisyou; Gonjilashvili, Natalia; Athanassopoulos, George D; Barone, Daniele; Baroni, Monica; Cardim, Nuno; Hagendorff, Andreas; Hristova, Krasimira; Lopez, Teresa; de la Morena, Gonzalo; Popescu, Bogdan A; Penicka, Martin; Ozyigit, Tolga; Rodrigo Carbonero, Jose David; Van De Veire, Nico; Von Bardeleben, Ralph Stephan; Vinereanu, Dragos; Zamorano, Jose Luis; Gori, Ann-Stephan; Cosyns, Bernard; Donal, Erwan; Habib, Gilbert; Addetia, Karima; Lang, Roberto M; Badano, Luigi P; Lancellotti, Patrizio

    2017-02-01

    To report normal reference ranges for echocardiographic dimensions of the proximal aorta obtained in a large group of healthy volunteers recruited using state-of-the-art cardiac ultrasound equipment, considering different measurement conventions, and taking into account gender, age, and body size of individuals. A total of 704 (mean age: 46.0 ± 13.5 years) healthy volunteers (310 men and 394 women) were prospectively recruited from the collaborating institutions of the Normal Reference Ranges for Echocardiography (NORRE) study. A comprehensive echocardiographic examination was obtained in all subjects following pre-defined protocols. Aortic dimensions were obtained in systole and diastole, following both the leading-edge to leading-edge and the inner-edge to inner-edge conventions. Diameters were measured at four levels: ventricular-arterial junction, sinuses of Valsalva, sino-tubular junction, and proximal tubular ascending aorta. Measures of aortic root in the short-axis view following the orientation of each of the three sinuses were also performed. Men had significantly larger body sizes when compared with women, and showed larger aortic dimensions independently of the measurement method used. Dimensions indexed by height and body surface area are provided, and stratification by age ranges is also displayed. In multivariable analysis, the independent predictors of aortic dimensions were age, gender, and height or body surface area. The NORRE study provides normal values of proximal aorta dimensions as assessed by echocardiography. Reference ranges for different anatomical levels using different (i) measurement conventions and (ii) at different times of the cardiac cycle (i.e. mid-systole and end-diastole) are provided. Age, gender, and body size were significant determinants of aortic dimensions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  8. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    PubMed

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    PubMed

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  10. 75 FR 28058 - Certain Oil Country Tubular Goods From China; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1159 (Final)] Certain Oil Country Tubular... threatened with material injury by reason of imports from China of certain oil country tubular goods (``OCTG... are contained in USITC Publication 4152 (May 2010), entitled Certain Oil Country Tubular Goods From...

  11. Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex.

    PubMed

    Hale, M W; Hay-Schmidt, A; Mikkelsen, J D; Poulsen, B; Shekhar, A; Lowry, C A

    2008-08-26

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation of specific afferent input to this region of the amygdala. In order to identify candidate brain regions mediating anxiety-induced activation of the basolateral amygdaloid complex in rats, we used cholera toxin B subunit (CTb) as a retrograde tracer to identify neurons with direct afferent projections to this region in combination with c-Fos immunostaining to identify cells responding to exposure to an open-field arena in low-light (8-13 lux) conditions (an anxiogenic stimulus in rats). Adult male Wistar rats received a unilateral microinjection of 4% CTb in phosphate-buffered saline into the basolateral amygdaloid complex. Rats were housed individually for 11 days after CTb injections and handled (HA) for 2 min each day. On the test day rats were either, 1) exposed to an open-field in low-light conditions (8-13 lux) for 15 min (OF); 2) briefly HA or 3) left undisturbed (control). We report that dual immunohistochemical staining for c-Fos and CTb revealed an increase in the percentage of c-Fos-immunopositive basolateral amygdaloid complex-projecting neurons in open-field-exposed rats compared with HA and control rats in the ipsilateral CA1 region of the ventral hippocampus, subiculum and lateral entorhinal cortex. These data are consistent with the hypothesis that exposure to the open-field arena activates an anxiety-related neuronal system with convergent input to the

  12. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    PubMed

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  13. Tubular duplication of the oesophagus presenting with dysphagia.

    PubMed

    Saha, A K; Kundu, A K

    2014-06-01

    Duplications of the alimentary tract are rare congenital malformations, with the ileum being the most commonly affected site, followed by the oesophagus. Among oesophageal duplications, cystic duplication is the most common and the tubular variety, the rarest. Herein, we report a rare case of tubular oesophageal duplication, complicated by adenosquamous carcinoma at the lower end of the oesophagus, in a 32-year-old man who presented with progressive dysphagia. Although proton pump inhibitors may relieve dysphagia, oesophagectomy and gastric interpositioning should be the first-line treatment for patients with tubular oesophageal duplication, in order to reduce the risk of malignant transformation at the lower end of the oesophagus.

  14. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy.

    PubMed

    Czajka, Anna; Malik, Afshan N

    2016-12-01

    Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN), a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs) and proximal tubular cells (HK-2) were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36

    PubMed Central

    Munkonda, Mercedes N.; Akbari, Shareef; Landry, Chloe; Sun, Suzy; Xiao, Fengxia; Turner, Maddison; Holterman, Chet E.; Nasrallah, Rania; Hébert, Richard L.; Kennedy, Christopher R. J.; Burger, Dylan

    2018-01-01

    ABSTRACT Tubulointerstitial fibrosis is a hallmark of advanced diabetic kidney disease that is linked to a decline in renal function, however the pathogenic mechanisms are poorly understood. Microparticles (MPs) are 100–1000 nm vesicles shed from injured cells that are implicated in intercellular signalling. Our lab recently observed the formation of MPs from podocytes and their release into urine of animal models of type 1 and 2 diabetes and in humans with type 1 diabetes. The purpose of the present study was to examine the role of podocyte MPs in tubular epithelial cell fibrotic responses. MPs were isolated from the media of differentiated, untreated human podocytes (hPODs) and administered to cultured human proximal tubule epithelial cells (PTECs). Treatment with podocyte MPs increased p38 and Smad3 phosphorylation and expression of the extracellular matrix (ECM) proteins fibronectin and collagen type IV. MP-induced responses were attenuated by co-treatment with the p38 inhibitor SB202190. A transforming growth factor beta (TGF-β) receptor inhibitor (LY2109761) blocked MP-induced Smad3 phosphorylation and ECM protein expression but not p38 phosphorylation suggesting that these responses occurred downstream of p38. Finally, blockade of the class B scavenger receptor CD36 completely abrogated MP-mediated p38 phosphorylation, downstream Smad3 activation and fibronectin/collagen type IV induction. Taken together our results suggest that podocyte MPs interact with proximal tubule cells and induce pro-fibrotic responses. Such interactions may contribute to the development of tubular fibrosis in glomerular disease. PMID:29435202

  16. Functional somato-dendritic α7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex

    PubMed Central

    Klein, Rebecca C; Yakel, Jerrel L

    2006-01-01

    Multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed in the CNS. The amygdala complex, the limbic structure important for emotional memory formation, receives cholinergic innervation from the basal forebrain. Although cholinergic drugs have been shown to regulate passive avoidance performance via the amygdala, the neuronal subtypes and circuits involved in this regulation are unknown. In the present study, whole-cell patch-clamp electrophysiological techniques were used to identify and characterize the presence of functional somato-dendritic nAChRs within the basolateral complex of the amygdala. Pressure-application of acetylcholine (ACh; 2 mm) evoked inward current responses in a subset of neurons from both the lateral (49%) and basolateral nuclei (72%). All responses displayed rapid activation kinetics, and were blocked by the α7-selective antagonist methyllycaconitine. In addition, the α7-selective agonist choline induced inward current responses that were similar to ACh-evoked responses. Spiking patterns were consistent with pyramidal class I neurons (the major neuronal type in the basolateral complex); however, there was no correlation between firing frequency and the response to ACh. The local photolysis of caged carbachol demonstrated that the functional expression of nAChRs is located both on the soma and dendrites. This is the first report demonstrating the presence of functional nAChR-mediated current responses from rat amygdala slices, where they may be playing a significant role in fear and aversively motivated memory. PMID:16931547

  17. Apelin attenuates TGF-β1-induced epithelial to mesenchymal transition via activation of PKC-ε in human renal tubular epithelial cells.

    PubMed

    Wang, Li-Yan; Diao, Zong-Li; Zheng, Jun-Fang; Wu, Yi-Ru; Zhang, Qi-Dong; Liu, Wen-Hu

    2017-10-01

    Epithelial to mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of renal fibrosis. Apelin, a bioactive peptide, has recently been recognized to protect against renal profibrotic activity, but the underlying mechanism has not yet been elucidated. In this study, we investigated the regulation of EMT in the presence of apelin-13 in vitro. Expression of the mesenchymal marker alpha-smooth muscle actin (α-SMA) and the epithelial marker E-cadherin was examined by immunofluorescence and western blotting in transforming growth factor beta 1 (TGF-β1)-stimulated human proximal tubular epithelial cells. Expression of extracellular matrix, fibronectin and collagen-I was examined by quantitative real-time PCR and ELISA. F13A, an antagonist of the apelin receptor APJ, and small interfering RNA targeting protein kinase C epsilon (PKC-ε) were used to explore the relevant signaling pathways. Apelin attenuated TGF-β1-induced EMT, and inhibited the EMT-associated increase in α-SMA, loss of E-cadherin, and secretion of extracellular matrix. Moreover, apelin activated PKC-ε in tubular epithelial cells, which in turn decreased phospho-Smad2/3 levels and increased Smad-7 levels. APJ inhibition or PKC-ε deletion diminished apelin-induced modulation of Smad signaling and suppression of tubular EMT. Our findings identify a novel PKC-ε-dependent mechanism in which apelin suppresses TGF-β1-mediated activation of Smad signaling pathways and thereby inhibits tubular EMT. These results suggest that apelin may be a new agent that can suppress renal fibrosis and retard chronic kidney disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Electrophysiology of sodium-coupled transport in proximal renal tubules.

    PubMed

    Lang, F; Messner, G; Rehwald, W

    1986-06-01

    Effects of sodium-coupled transport on intracellular electrolytes and electrical properties of proximal renal tubule cells are described in this review. Simultaneous with addition of substrate for sodium-coupled transport to luminal perfusates, both cell membranes depolarize. The luminal cell membrane depolarizes due to opening of sodium-cotransport pathways. The depolarization of the peritubular cell membrane during sodium-coupled transport is primarily due to a circular current reentering the lumen via the paracellular pathway. The depolarization leads to a transient decrease of basolateral potassium conductance that in turn amplifies the depolarization. However, within 5-10 min of continued exposure to substrate, potassium conductance increases again, and peritubular cell membrane repolarizes. During depolarization the driving force of peritubular bicarbonate exit is reduced. As a result net alkalinization of the cell prevails despite an increase of intracellular sodium activity, which reduces the driving force for the sodium-hydrogen ion exchanger and would thus have been expected to acidify the cell. No evidence is obtained for regulatory inhibition of sodium-coupled transport by intracellular sodium or calcium. Rather, luminal cotransport is altered by the change of driving forces.

  19. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  20. The Tuberin/mTOR Pathway Promotes Apoptosis of Tubular Epithelial Cells in Diabetes

    PubMed Central

    Velagapudi, Chakradhar; Bhandari, Basant S.; Abboud-Werner, Sherry; Simone, Simona; Abboud, Hanna E.

    2011-01-01

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex. Induction of diabetes also increased phosphorylation of tuberin in association with mTOR activation (measured by p70S6K phosphorylation), inactivation of Bcl-2, increased cytosolic cytochrome c expression, activation of caspase 3, and cleavage of PARP; insulin treatment prevented these changes. In vitro, exposure of PTE cells to HG increased phosphorylation of tuberin and p70S6K, phosphorylation of Bcl-2, expression of cytosolic cytochrome c, and caspase 3 activity. High glucose induced translocation of the caspase substrate YY1 from the cytoplasm to the nucleus and enhanced cleavage of PARP. Pretreatment the cells with the mTOR inhibitor rapamycin reduced the number of apoptotic cells induced by HG and the downstream effects of mTOR activation noted above. Furthermore, gene silencing of tuberin with siRNA decreased cleavage of PARP. These data show that the tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes, mediated in part by cleavage of PARP by YY1. PMID:21289215

  1. Neural control of renal tubular sodium reabsorption of the dog.

    PubMed

    DiBona, G F

    1978-04-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.

  2. Distal renal tubular acidosis and hepatic lipidosis in a cat.

    PubMed

    Brown, S A; Spyridakis, L K; Crowell, W A

    1986-11-15

    Clinical and laboratory evidence of hepatic failure was found in a chronically anorectic cat. Simultaneous blood and urine pH determinations established a diagnosis of distal renal tubular acidosis. The cat did not respond to treatment. Necropsy revealed distal tubular nephrosis and hepatic lipidosis. The finding of distal renal tubular acidosis in a cat with hepatic lipidosis emphasizes the importance of complete evaluation of acid-base disorders in patients.

  3. The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses.

    PubMed

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-07-01

    The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca 2+ gated outward K + currents. To quantify how the voltage-dependent activation of the K + channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K + conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K + channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K + channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    PubMed

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy.

  5. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.

    PubMed

    Versteegden, Luuk R; van Kampen, Kenny A; Janke, Heinz P; Tiemessen, Dorien M; Hoogenkamp, Henk R; Hafmans, Theo G; Roozen, Edwin A; Lomme, Roger M; van Goor, Harry; Oosterwijk, Egbert; Feitz, Wout F; van Kuppevelt, Toin H; Daamen, Willeke F

    2017-04-01

    Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression

  6. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2011-09-01

    The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.

  7. Intra-tubular hydrodynamic forces influence tubulo-interstitial fibrosis in the kidney

    PubMed Central

    Rohatgi, Rajeev; Flores, Daniel

    2010-01-01

    Purpose of review Renal epithelial cells respond to mechanical stimuli with immediate transduction events (e.g., activation of ion channels), intermediate biological responses (e.g., changes in gene expression), and long term cellular adaptation (e.g., protein expression). Progressive renal disease is characterized by disturbed glomerular hydrodynamics that contributes to glomerulosclerosis, but, how intra-tubular biomechanical forces contribute to tubulo-interstital inflammation and fibrosis is poorly understood. Recent findings In vivo and in vitro models of obstructive uropathy demonstrate that tubular stretch induces robust expression of transforming growth factor β-1 (TGFβ-1), activation of tubular apoptosis, and induction of NF-κB signaling which contribute to the inflammatory and fibrotic milieu. Non-obstructive structural kidney diseases associated with nephron loss follow a course characterized by compensatory increases of single nephron glomerular filtration rate and tubular flow rate. Resulting increases in tubular fluid shear stress (FSS) reduce tissue-plasminogen activator and urokinase enzymatic activity which diminishes breakdown of extracellular matrix. In models of high dietary Na intake, which increase tubular flow, urinary TGFβ-1 concentrations and renal mitogen activated protein kinase activity are increased. Summary In conclusion, intra-tubular biomechanical forces, stretch and FSS, generate changes in intracellular signaling and gene expression that contribute to the pathobiology of obstructive, and non-obstructive kidney disease. PMID:19851105

  8. Basolateral junctions are sufficient to suppress epithelial invasion during Drosophila oogenesis.

    PubMed

    Szafranski, Przemyslaw; Goode, Scott

    2007-02-01

    Epithelial junctions play crucial roles during metazoan evolution and development by facilitating tissue formation, maintenance, and function. Little is known about the role of distinct types of junctions in controlling epithelial transformations leading to invasion of neighboring tissues. Discovering the key junction complexes that control these processes and how they function may also provide mechanistic insight into carcinoma cell invasion. Here, using the Drosophila ovary as a model, we show that four proteins of the basolateral junction (BLJ), Fasciclin-2, Neuroglian, Discs-large, and Lethal-giant-larvae, but not proteins of other epithelial junctions, directly suppress epithelial tumorigenesis and invasion. Remarkably, the expression pattern of Fasciclin-2 predicts which cells will invade. We compared the apicobasal polarity of BLJ tumor cells to border cells (BCs), an epithelium-derived cluster that normally migrates during mid-oogenesis. Both tumor cells and BCs differentiate a lateralized membrane pattern that is necessary but not sufficient for invasion. Independent of lateralization, derepression of motility pathways is also necessary, as indicated by a strong linear correlation between faster BC migration and an increased incidence of tumor invasion. However, without membrane lateralization, derepression of motility pathways is also not sufficient for invasion. Our results demonstrate that spatiotemporal patterns of basolateral junction activity directly suppress epithelial invasion by organizing the cooperative activity of distinct polarity and motility pathways.

  9. New methods for the geometrical analysis of tubular organs.

    PubMed

    Grélard, Florent; Baldacci, Fabien; Vialard, Anne; Domenger, Jean-Philippe

    2017-12-01

    This paper presents new methods to study the shape of tubular organs. Determining precise cross-sections is of major importance to perform geometrical measurements, such as diameter, wall-thickness estimation or area measurement. Our first contribution is a robust method to estimate orthogonal planes based on the Voronoi Covariance Measure. Our method is not relying on a curve-skeleton computation beforehand. This means our orthogonal plane estimator can be used either on the skeleton or on the volume. Another important step towards tubular organ characterization is achieved through curve-skeletonization, as skeletons allow to compare two tubular organs, and to perform virtual endoscopy. Our second contribution is dedicated to correcting common defects of the skeleton by new pruning and recentering methods. Finally, we propose a new method for curve-skeleton extraction. Various results are shown on different types of segmented tubular organs, such as neurons, airway-tree and blood vessels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  11. Role of NF-κB in oxidative stress-induced defective dopamine D1 receptor signaling in the renal proximal tubules of Sprague Dawley rats

    PubMed Central

    Fardoun, Riham Zein; Asghar, Mohammad; Lokhandwala, Mustafa

    2009-01-01

    Dopamine promotes sodium excretion, in part, via activation of D1 receptors in renal proximal tubules (PT) and subsequent inhibition of Na, K-ATPase. Recently, we have reported that oxidative stress causes D1 receptors-G-protein uncoupling via mechanisms involving Protein Kinase C (PKC) and G-protein Coupled Receptor Kinase 2 (GRK2) in the primary culture of renal PT of Sprague Dawley (SD) rats. There are reports suggesting that redox-sensitive nuclear transcription factor, NF-κB, is activated in conditions associated with oxidative stress. This study was designed to identify the role of NF-κB in oxidative stress–induced defective renal D1 receptor –G-protein coupling and function. Treatment of the PT with hydrogen peroxide (H2O2, 50 μM/20 min) induced the nuclear translocation of NF-κB, increased PKC activity, and triggered the translocation of GRK2 to the proximal tubular membranes. This was accompanied by hyperphosphorylation of D1 receptors and defective D1 receptor-G-protein coupling. The functional consequence of these changes was decreased D1 receptor activation-mediated inhibition of Na, K-ATPase activity. Interestingly, pre-treatment with pyrrolidine dithiocarbamate (PDTC, 25 μM/10min), an NF-κB inhibitor, blocked the H2O2-induced nuclear translocation of NF-κB, increase in PKC activity, as well as GRK2 translocation and hyperphosphorylation of D1 receptors in the proximal tubular membranes. Furthermore, PDTC restored D1 receptor G-protein coupling and D1 receptor agonist-mediated inhibition of the Na, KATPase activity. Therefore, we suggest that oxidative stress causes nuclear translocation of NF-κB in the renal proximal tubules, which contributes to defective D1-receptor-G-protein coupling and function via mechanism involving PKC, membranous translocation of GRK 2, and subsequent phosphorylation of dopamine D1 receptors. PMID:17320758

  12. High sodium intake increases HCO3− absorption in medullary thick ascending limb through adaptations in basolateral and apical Na+/H+ exchangers

    PubMed Central

    George, Thampi; Watts, Bruns A.

    2011-01-01

    A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO3−. Here, we examined the role of the apical NHE3 and basolateral NHE1 Na+/H+ exchangers in this adaptation. MTALs from rats drinking H2O or 0.28 M NaCl for 5–7 days were perfused in vitro. High sodium intake increased HCO3− absorption rate by 60%. The increased HCO3− absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO3− absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na+/H+ exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na+/H+ exchange activity by 30% under conditions in which basolateral Na+/H+ exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO3− absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO3− absorption. The adaptive increases in Na+/H+ exchange activity and HCO3− absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance. PMID:21613418

  13. The Basolateral Amygdala Is Necessary for the Encoding and the Expression of Odor Memory

    ERIC Educational Resources Information Center

    Sevelinges, Yannick; Desgranges, Bertrand; Ferreira, Guillaume

    2009-01-01

    Conditioned odor avoidance (COA) results from the association between a novel odor and a delayed visceral illness. The present experiments investigated the role of the basolateral amygdala (BLA) in acquisition and retrieval of COA memory. To address this, we used the GABAA agonist muscimol to temporarily inactivate the BLA during COA acquisition…

  14. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States

    PubMed Central

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-01-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy. PMID:26725834

  15. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    PubMed

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  16. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    NASA Astrophysics Data System (ADS)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  17. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    PubMed

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

  18. 49 CFR 230.55 - Tubular type water and lubricator glasses and shields.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tubular type water and lubricator glasses and... STANDARDS Boilers and Appurtenances Water Glasses and Gauge Cocks § 230.55 Tubular type water and lubricator glasses and shields. (a) Water glasses. Tubular type water glasses shall be renewed at each 92 service day...

  19. Mars Life? - Microscopic Tubular Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. http://photojournal.jpl.nasa.gov/catalog/PIA00287

  20. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI.more » Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.« less

  1. Enhancement of basolateral amygdaloid neuronal dendritic arborization following Bacopa monniera extract treatment in adult rats.

    PubMed

    Vollala, Venkata Ramana; Upadhya, Subramanya; Nayak, Satheesha

    2011-01-01

    In the ancient Indian system of medicine, Ayurveda, Bacopa monniera is classified as Medhya rasayana, which includes medicinal plants that rejuvenate intellect and memory. Here, we investigated the effect of a standardized extract of Bacopa monniera on the dendritic morphology of neurons in the basolateral amygdala, a region that is concerned with learning and memory. The present study was conducted on 2½-month-old Wistar rats. The rats were divided into 2-, 4- and 6-week treatment groups. Rats in each of these groups were further divided into 20 mg/kg, 40 mg/kg and 80 mg/kg dose groups (n = 8 for each dose). After the treatment period, treated rats and age-matched control rats were subjected to spatial learning (T-maze) and passive avoidance tests. Subsequently, these rats were killed by decapitation, the brains were removed, and the amygdaloid neurons were impregnated with silver nitrate (Golgi staining). Basolateral amygdaloid neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization) and dendritic intersections (a measure of dendritic length) were quantified. These data were compared with the data from the age-matched control rats. The results showed an improvement in spatial learning performance and enhanced memory retention in rats treated with Bacopa monniera extract. Furthermore, a significant increase in dendritic length and the number of dendritic branching points was observed along the length of the dendrites of the basolateral amygdaloid neurons of rats treated with 40 mg/kg and 80 mg/kg of Bacopa monniera (BM) for longer periods of time (i.e., 4 and 6 weeks). We conclude that constituents present in Bacopa monniera extract have neuronal dendritic growth-stimulating properties.

  2. Renal pathophysiologic role of cortical tubular inclusion bodies.

    PubMed

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  3. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  4. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  5. Renal tubular function in children with tyrosinaemia type I treated with nitisinone.

    PubMed

    Santra, S; Preece, M A; Hulton, S-A; McKiernan, P J

    2008-06-01

    Tyrosinaemia type I (TTI) is an inherited deficiency in the enzyme fumarylacetoacetate hydrolase and is frequently complicated by renal tubular dysfunction which may persist in some patients after hepatic transplantation. Nitisinone has revolutionized the management of TTI but its effect on renal tubular dysfunction has not been described in a large cohort of patients. To document the incidence and progression of renal tubular dysfunction in children with TTI treated with nitisinone at a single centre. Twenty-one patients with TTI from a single centre were treated with nitisinone for at least 12 months. Median age at first treatment was 17 weeks (range 1 week to 27 months). Nine patients (43%) presented in acute liver failure, seven (33%) had a chronic presentation and five (24%) were detected pre-clinically. A retrospective case analysis of plasma phosphate, urinary protein/creatinine ratio and tubular reabsorption of phosphate was performed for all patients as markers of tubular function. Renal ultrasounds were examined for evidence of nephrocalcinosis and where available, skeletal radiographs for rickets. All patients had biochemical evidence of renal tubular dysfunction at presentation. After nitisinone and dietary treatment were started, all three markers normalized within one year. Four children had clinical rickets at presentation (which improved), of whom one had nephrocalcinosis, which did not reverse on nitisinone. No child redeveloped tubular dysfunction after commencing nitisinone. All patients with TTI had evidence of tubular dysfunction at presentation and in all cases this resolved with nitisinone and dietary control. The tubulopathy associated with TTI is reversible.

  6. Proximal tubulopathies associated with monoclonal light chains: the spectrum of clinicopathologic manifestations and molecular pathogenesis.

    PubMed

    Herrera, Guillermo A

    2014-10-01

    Lesions associated with monoclonal light and heavy chains display a variety of glomerular, tubular interstitial, and vascular manifestations. While some of the entities are well recognized, including light and heavy chain deposition diseases, AL (light chain) and AH (heavy chain) amyloidosis, and light chain ("myeloma") cast nephropathy, other lesions centered on proximal tubules are much less accurately identified, properly diagnosed, and adequately understood in terms of pathogenesis and molecular mechanisms involved. These proximal tubule-centered lesions are typically associated with monoclonal light chains and have not been reported in patients with circulating monoclonal heavy chains. To determine the incidence of proximal tubulopathies in a series of patients with monoclonal light chain-related renal lesions and characterize them with an emphasis on clinical correlations and elucidation of molecular mechanisms involved in their pathogenesis. A study of 5410 renal biopsies with careful evaluation of light microscopic, immunofluorescence, and electron microscopic findings was conducted to identify these monoclonal light/heavy chain-related lesions. In selected cases, ultrastructural immunolabeling was performed to better illustrate and understand molecular mechanisms involved or to resolve specific diagnostic difficulties. In all, 2.5% of the biopsies were diagnosed as demonstrating renal pathology associated with monoclonal light or heavy chains. Of these, approximately 46% were classified as proximal tubule-centered lesions, also referred to as monoclonal light chain-associated proximal tubulopathies. These proximal tubulopathies were divided into 4 groups defined by characteristic immunomorphologic manifestations associated with specific clinical settings. These are important lesions whose recognition in the different clinical settings is extremely important for patients' clinical management, therapeutic purposes, and prognosis. These entities have been

  7. Performance of Serum Creatinine and Kidney Injury Biomarkers for Diagnosing Histologic Acute Tubular Injury.

    PubMed

    Moledina, Dennis G; Hall, Isaac E; Thiessen-Philbrook, Heather; Reese, Peter P; Weng, Francis L; Schröppel, Bernd; Doshi, Mona D; Wilson, F Perry; Coca, Steven G; Parikh, Chirag R

    2017-12-01

    The diagnosis of acute kidney injury (AKI), which is currently defined as an increase in serum creatinine (Scr) concentration, provides little information on the condition's actual cause. To improve phenotyping of AKI, many urinary biomarkers of tubular injury are being investigated. Because AKI cases are not frequently biopsied, the diagnostic accuracy of concentrations of Scr and urinary biomarkers for histologic acute tubular injury is unknown. Cross-sectional analysis from multicenter prospective cohort. Hospitalized deceased kidney donors on whom kidney biopsies were performed at the time of organ procurement for histologic evaluation. (1) AKI diagnosed by change in Scr concentration during donor hospitalization and (2) concentrations of urinary biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], liver-type fatty acid-binding protein [L-FABP], interleukin 18 [IL-18], and kidney injury molecule 1 [KIM-1]) measured at organ procurement. Histologic acute tubular injury. Of 581 donors, 98 (17%) had mild acute tubular injury and 57 (10%) had severe acute tubular injury. Overall, Scr-based AKI had poor diagnostic performance for identifying histologic acute tubular injury and 49% of donors with severe acute tubular injury did not have AKI. The area under the receiver operating characteristic curve (AUROC) of change in Scr concentration for diagnosing severe acute tubular injury was 0.58 (95% CI, 0.49-0.67) and for any acute tubular injury was 0.52 (95% CI, 0.45-0.58). Compared with Scr concentration, NGAL concentration demonstrated higher AUROC for diagnosing both severe acute tubular injury (0.67; 95% CI, 0.60-0.74; P=0.03) and any acute tubular injury (0.60; 95% CI, 0.55-0.66; P=0.005). In donors who did not have Scr-based AKI, NGAL concentrations were higher with increasing severities of acute tubular injury (subclinical AKI). However, compared with Scr concentration, AUROCs for acute tubular injury diagnosis were not significantly higher for urinary L

  8. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions

    PubMed Central

    Malvaez, Melissa; Greenfield, Venuz Y.; Wang, Alice S.; Yorita, Allison M.; Feng, Lili; Linker, Kay E.; Monbouquette, Harold G.; Wassum, Kate M.

    2015-01-01

    Environmental stimuli have the ability to generate specific representations of the rewards they predict and in so doing alter the selection and performance of reward-seeking actions. The basolateral amygdala participates in this process, but precisely how is unknown. To rectify this, we monitored, in near-real time, basolateral amygdala glutamate concentration changes during a test of the ability of reward-predictive cues to influence reward-seeking actions (Pavlovian-instrumental transfer). Glutamate concentration was found to be transiently elevated around instrumental reward seeking. During the Pavlovian-instrumental transfer test these glutamate transients were time-locked to and correlated with only those actions invigorated by outcome-specific motivational information provided by the reward-predictive stimulus (i.e., actions earning the same specific outcome as predicted by the presented CS). In addition, basolateral amygdala AMPA, but not NMDA glutamate receptor inactivation abolished the selective excitatory influence of reward-predictive cues over reward seeking. These data the hypothesis that transient glutamate release in the BLA can encode the outcome-specific motivational information provided by reward-predictive stimuli. PMID:26212790

  9. Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle

    PubMed Central

    Cardozo, Marcos Julián; Sánchez-Arrones, Luisa; Sandonis, África; Sánchez-Camacho, Cristina; Gestri, Gaia; Wilson, Stephen W.; Guerrero, Isabel; Bovolenta, Paola

    2014-01-01

    Patterning of the vertebrate optic vesicle into proximal/optic stalk and distal/neural retina involves midline-derived Hedgehog (Hh) signalling, which promotes stalk specification. In the absence of Hh signalling, the stalks are not specified, causing cyclopia. Recent studies showed that the cell adhesion molecule Cdon forms a heteromeric complex with the Hh receptor Patched 1 (Ptc1). This receptor complex binds Hh and enhances signalling activation, indicating that Cdon positively regulates the pathway. Here we show that in the developing zebrafish and chick optic vesicle, in which cdon and ptc1 are expressed with a complementary pattern, Cdon acts as a negative Hh signalling regulator. Cdon predominantly localizes to the basolateral side of neuroepithelial cells, promotes the enlargement of the neuroepithelial basal end-foot and traps Hh protein, thereby limiting its dispersion. This Ptc-independent function protects the retinal primordium from Hh activity, defines the stalk/retina boundary and thus the correct proximo-distal patterning of the eye. PMID:25001599

  10. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  11. Mars Life? - Microscopic Tubular Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00285

  12. The Chlamydial Inclusion Preferentially Intercepts Basolaterally Directed Sphingomyelin-Containing Exocytic Vacuoles

    PubMed Central

    Moore, Elizabeth R.; Fischer, Elizabeth R.; Mead, David J.; Hackstadt, Ted

    2010-01-01

    Chlamydiae replicate intracellularly within a unique vacuole termed the inclusion. The inclusion circumvents classical endosomal/lysosomal pathways but actively intercepts a subset of Golgi-derived exocytic vesicles containing sphingomyelin (SM) and cholesterol. To further examine this interaction, we developed a polarized epithelial cell model to study vectoral trafficking of lipids and proteins to the inclusion. We examined seven epithelial cell lines for their ability to form single monolayers of polarized cells and support chlamydial development. Of these cell lines, polarized colonic mucosal C2BBe1 cells were readily infected with Chlamydia trachomatis and remained polarized throughout infection. Trafficking of (6-((N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)hexanoyl)sphingosine) (NBD-C6-ceramide) and its metabolic derivatives, NBD-glucosylceramide (GlcCer) and NBD-SM, was analyzed. SM was retained within L2-infected cells relative to mock-infected cells, correlating with a disruption of basolateral SM trafficking. There was no net retention of GlcCer within L2-infected cells and purification of C. trachomatis elementary bodies from polarized C2BBe1 cells confirmed that bacteria retained only SM. The chlamydial inclusion thus appears to preferentially intercept basolaterally-directed SM-containing exocytic vesicles, suggesting a divergence in SM and GlcCer trafficking. The observed changes in lipid trafficking were a chlamydia-specific effect because Coxiella burnetii-infected cells revealed no changes in GlcCer or SM polarized trafficking. PMID:18778406

  13. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells.

    PubMed

    Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo

    2008-10-01

    Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.

  14. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    PubMed

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  15. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model.more » The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage

  16. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  17. Perigraft Plug Embolization of the Internal Iliac Artery and Implantation of a Bifurcated Stentgraft: One Treatment Option for Insufficient Tubular Stentgraft Repair of a Common Iliac Artery Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goltz, Jan Peter, E-mail: janpeter.goltz@uksh.de; Loesaus, Julia; Frydrychowicz, Alex

    We report an endovascular technique for the treatment of type Ia endoleak after a plain tubular stentgraft had been implanted for a large common iliac artery aneurysm with an insufficient proximal landing zone and without occlusion of the hypogastric in another hospital. CT follow-up showed an endoleak with continuous sac expansion over 12 months. This was classified as type Ia by means of dynamic contrast-enhanced MRI. Before a bifurcated stentgraft was implanted to relocate the landing zone more proximally, the still perfused ipsilateral hypogastric artery was embolized to prevent a type II endoleak. A guidewire was manipulated alongside the indwelling stentgraft.more » The internal iliac artery could then be selectively intubated followed by successful plug embolization of the vessel’s orifice despite the stentgraft being in place.« less

  18. Perigraft Plug Embolization of the Internal Iliac Artery and Implantation of a Bifurcated Stentgraft: One Treatment Option for Insufficient Tubular Stentgraft Repair of a Common Iliac Artery Aneurysm.

    PubMed

    Goltz, Jan Peter; Loesaus, Julia; Frydrychowicz, Alex; Barkhausen, Jörg; Wiedner, Marcus

    2016-02-01

    We report an endovascular technique for the treatment of type Ia endoleak after a plain tubular stentgraft had been implanted for a large common iliac artery aneurysm with an insufficient proximal landing zone and without occlusion of the hypogastric in another hospital. CT follow-up showed an endoleak with continuous sac expansion over 12 months. This was classified as type Ia by means of dynamic contrast-enhanced MRI. Before a bifurcated stentgraft was implanted to relocate the landing zone more proximally, the still perfused ipsilateral hypogastric artery was embolized to prevent a type II endoleak. A guidewire was manipulated alongside the indwelling stentgraft. The internal iliac artery could then be selectively intubated followed by successful plug embolization of the vessel's orifice despite the stentgraft being in place.

  19. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    PubMed

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  20. Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms.

    PubMed

    Isaka, Y; Suzuki, C; Abe, T; Okumi, M; Ichimaru, N; Imamura, R; Kakuta, Y; Matsui, I; Takabatake, Y; Rakugi, H; Shimizu, S; Takahara, S

    2009-01-01

    Ischemia/reperfusion (I/R) injury, which induces extensive loss of tubular epithelial cells, is associated with delayed graft function following kidney transplantation. Recent reports have suggested that cell death by I/R injury occurs by autophagy, a cellular degradation process responsible for the turnover of unnecessary or dysfunctional organelles and cytoplasmic proteins, as well as by apoptosis. Recently, we demonstrated that overexpression of the anti-apoptotic factor, Bcl-2, inhibited tubular apoptosis and subsequent tubulointerstitial damage after I/R injury. Autophagy is also observed in cells undergoing cell death in several diseases. Therefore, we hypothesized that increased Bcl-2 protein may protect tubular epithelial cells by suppressing autophagy and inhibiting apoptosis. In the present study, a transgenic mouse model (LC3-GFP TG) in which autophagosomes are labeled with LC3-GFP and Bcl-2/LC3-GFP double transgenic mice (Bcl-2/LC3-GFP TG) were used to examine the effect of Bcl-2 on I/R-induced autophagy. I/R injury, which is associated with marked disruption of normal tubular morphology, promoted the formation of LC3-GFP dots, representing extensively induced autophagosomes. On electron microscopy, the autophagosomes contained mitochondria in I/R-injured tubular epithelial cells. In contrast, Bcl-2 augmentation suppressed the formation of autophagosomes and there was less tubular damage. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R injury by suppressing autophagosomal degradation and inhibiting tubular apoptosis.

  1. Inversin relays Frizzled-8 signals to promote proximal pronephros development

    PubMed Central

    Lienkamp, Soeren; Ganner, Athina; Boehlke, Christopher; Schmidt, Thorsten; Arnold, Sebastian J.; Schäfer, Tobias; Romaker, Daniel; Schuler, Julia; Hoff, Sylvia; Powelske, Christian; Eifler, Annekathrin; Krönig, Corinna; Bullerkotte, Axel; Nitschke, Roland; Kuehn, E. Wolfgang; Kim, Emily; Burkhardt, Hans; Brox, Thomas; Ronneberger, Olaf; Gloy, Joachim; Walz, Gerd

    2010-01-01

    Mutations of inversin cause type II nephronophthisis, an infantile autosomal recessive disease characterized by cystic kidney disease and developmental defects. Inversin regulates Wnt signaling and is required for convergent extension movements during early embryogenesis. We now show that Inversin is essential for Xenopus pronephros formation, involving two distinct and opposing forms of cell movements. Knockdown of Inversin abrogated both proximal pronephros extension and distal tubule differentiation, phenotypes similar to that of Xenopus deficient in Frizzled-8. Exogenous Inversin rescued the pronephric defects caused by lack of Frizzled-8, indicating that Inversin acts downstream of Frizzled-8 in pronephros morphogenesis. Depletion of Inversin prevents the recruitment of Dishevelled in response to Frizzled-8 and impeded the accumulation of Dishevelled at the apical membrane of tubular epithelial cells in vivo. Thus, defective tubule morphogenesis seems to contribute to the renal pathology observed in patients with nephronophthisis type II. PMID:21059920

  2. Enhancement of basolateral amygdaloid neuronal dendritic arborization following Bacopa monniera extract treatment in adult rats

    PubMed Central

    Vollala, Venkata Ramana; Upadhya, Subramanya; Nayak, Satheesha

    2011-01-01

    OBJECTIVE: In the ancient Indian system of medicine, Ayurveda, Bacopa monniera is classified as Medhya rasayana, which includes medicinal plants that rejuvenate intellect and memory. Here, we investigated the effect of a standardized extract of Bacopa monniera on the dendritic morphology of neurons in the basolateral amygdala, a region that is concerned with learning and memory. METHODS: The present study was conducted on 2½-month-old Wistar rats. The rats were divided into 2-, 4- and 6-week treatment groups. Rats in each of these groups were further divided into 20 mg/kg, 40 mg/kg and 80 mg/kg dose groups (n  =  8 for each dose). After the treatment period, treated rats and age-matched control rats were subjected to spatial learning (T-maze) and passive avoidance tests. Subsequently, these rats were killed by decapitation, the brains were removed, and the amygdaloid neurons were impregnated with silver nitrate (Golgi staining). Basolateral amygdaloid neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization) and dendritic intersections (a measure of dendritic length) were quantified. These data were compared with the data from the age-matched control rats. RESULTS: The results showed an improvement in spatial learning performance and enhanced memory retention in rats treated with Bacopa monniera extract. Furthermore, a significant increase in dendritic length and the number of dendritic branching points was observed along the length of the dendrites of the basolateral amygdaloid neurons of rats treated with 40 mg/kg and 80 mg/kg of Bacopa monniera (BM) for longer periods of time (i.e., 4 and 6 weeks). CONCLUSION: We conclude that constituents present in Bacopa monniera extract have neuronal dendritic growth-stimulating properties. PMID:21655763

  3. Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting.

    PubMed

    Delaunay, Jean-Louis; Breton, Michelyne; Goding, James W; Trugnan, Germain; Maurice, Michèle

    2007-03-15

    Targeting of glycosylphosphatidylinositol-anchored proteins to the apical surface of epithelial cells involves clustering in Triton X-100-resistant membrane microdomains or rafts. The role of these microdomains in sorting transmembrane proteins is more questionable because, unlike glycosylphosphatidylinositol-anchored proteins, apical transmembrane proteins are rather soluble in Triton X-100. They are, however, resistant to milder detergents such as Lubrol WX or Tween 20. It has been proposed that specific membrane microdomains, defined by resistance to these detergents, would carry transmembrane proteins to the apical surface. We have used MDCK cells stably transfected with the apical and basolateral pyrophosphatases/phosphodiesterases, NPP3 and NPP1, to examine the relationship between detergent resistance and apical targeting. The apically expressed wild-type NPP3 was insoluble in Lubrol WX whereas wild-type NPP1, which is expressed basolaterally, was essentially soluble. By using tail mutants and chimeric constructs that combine the cytoplasmic, transmembrane and extracellular domains of NPP1 and NPP3, we show that there is not a strict correlation between detergent resistance and apical targeting. Lubrol resistance is an intrinsic property of NPP3, which is acquired early during the biosynthetic process irrespective of its final destination, and depends on positively charged residues in its cytoplasmic tail.

  4. Transport of salicylic acid through monolayers of a kidney epithelial cell line (LLC-PK1).

    PubMed

    Chatton, J Y; Roch-Ramel, F

    1992-05-01

    LLC-PK1 cells were used as a model of renal proximal epithelium to study the nonionic diffusion of salicylic acid (SAL). The apparent [14C]SAL transcellular permeability (PSal) and intracellular content were estimated at 20-21 degrees C from fluxes measured across cell monolayers grown on filters, in both apical-to-basolateral and basolateral-to-apical directions. The medium pH of the cis-side was varied from 6.0 to 7.4, and the medium pH of the trans-side was kept at 7.4. In the apical-to-basolateral direction, PSal increased linearly with the calculated concentration of nonionized SAL, indicating that SAL permeability was essentially the result of nonionic diffusion. In the basolateral-to-apical direction, PSal was about 2.5-fold higher than in the apical-to-basolateral direction and was not linearly related to the concentration of nonionized SAL molecules (0-4.5 nM), suggesting that besides nonionic diffusion, SAL was transported in its ionized form by a facilitated mechanism still active at 21 degrees C. This was confirmed by measuring basolateral-to-apical fluxes at 37 degrees C and observing that probenecid, an inhibitor of organic anion secretion, and cold SAL decreased PSal. Interestingly, at 37 degrees C, PSal in the apical-to-basolateral direction was also decreased by probenecid and cold SAL, suggesting the existence of a facilitated transport in this direction. These data demonstrated that the secretory transport of SAL is present in LLC-PK1 cells. The facilitated transport observed in the apical-to-basolateral direction suggests that in proximal tubule, SAL reabsorption might occur by facilitated mechanism and nonionic diffusion.

  5. Tubular Adenoma of the Breast: A Rare Presentation and Review of the Literature

    PubMed Central

    Salemis, Nikolaos S.; Gemenetzis, Georgios; Karagkiouzis, Gregorios; Seretis, Charalambos; Sapounas, Konstantinos; Tsantilas, Vlasios; Sambaziotis, Dimitrios; Lagoudianakis, Emmanuel

    2012-01-01

    Tubular adenomas, also known as pure adenomas, are rare epithelial tumors of the breast. Only a few cases have been reported in the literature, especially in young women of reproductive age. Postmenopausal women are very rarely affected. We describe here a very rare case of tubular breast adenoma in a postmenopausal woman who presented with a gradually enlarging breast lump. Clinical examination and imaging studies revealed a non-tender well circumscribed left breast tumor suggestive of a fibroadenoma. Due to the history of progressive enlargement of the breast lump, a surgical excision was performed. Histological findings were suggestive of a tubular breast adenoma. We conclude that although tubular breast adenoma is rare, it should always be considered in the differential diagnosis in postmenopausal patients presenting with a gradually enlarging breast mass. Preoperative diagnosis is difficult because tubular adenoma is indistinguishable from a fibroadenoma on physical examination and breast imaging. Surgical excision is necessary to establish a definitive diagnosis. Clinical presentation and management of our patient are discussed along with a review of the literature. Keywords Tubular adenoma; Breast; Breast mass. PMID:22383931

  6. Tubular adenoma of the breast: a rare presentation and review of the literature.

    PubMed

    Salemis, Nikolaos S; Gemenetzis, Georgios; Karagkiouzis, Gregorios; Seretis, Charalambos; Sapounas, Konstantinos; Tsantilas, Vlasios; Sambaziotis, Dimitrios; Lagoudianakis, Emmanuel

    2012-02-01

    Tubular adenomas, also known as pure adenomas, are rare epithelial tumors of the breast. Only a few cases have been reported in the literature, especially in young women of reproductive age. Postmenopausal women are very rarely affected. We describe here a very rare case of tubular breast adenoma in a postmenopausal woman who presented with a gradually enlarging breast lump. Clinical examination and imaging studies revealed a non-tender well circumscribed left breast tumor suggestive of a fibroadenoma. Due to the history of progressive enlargement of the breast lump, a surgical excision was performed. Histological findings were suggestive of a tubular breast adenoma. We conclude that although tubular breast adenoma is rare, it should always be considered in the differential diagnosis in postmenopausal patients presenting with a gradually enlarging breast mass. Preoperative diagnosis is difficult because tubular adenoma is indistinguishable from a fibroadenoma on physical examination and breast imaging. Surgical excision is necessary to establish a definitive diagnosis. Clinical presentation and management of our patient are discussed along with a review of the literature. Tubular adenoma; Breast; Breast mass.

  7. An AGEF-1/Arf GTPase/AP-1 Ensemble Antagonizes LET-23 EGFR Basolateral Localization and Signaling during C. elegans Vulva Induction

    PubMed Central

    Skorobogata, Olga; Escobar-Restrepo, Juan M.; Rocheleau, Christian E.

    2014-01-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling

  8. An AGEF-1/Arf GTPase/AP-1 ensemble antagonizes LET-23 EGFR basolateral localization and signaling during C. elegans vulva induction.

    PubMed

    Skorobogata, Olga; Escobar-Restrepo, Juan M; Rocheleau, Christian E

    2014-10-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling.

  9. K(Ca)3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation.

    PubMed

    Palmer, Melissa L; Peitzman, Elizabeth R; Maniak, Peter J; Sieck, Gary C; Prakash, Y S; O'Grady, Scott M

    2011-07-15

    Human mammary epithelial (HME) cells express several P2Y receptor subtypes located in both apical and basolateral membranes. Apical UTP or ATP-γ-S stimulation of monolayers mounted in Ussing chambers evoked a rapid, but transient decrease in short circuit current (I(sc)), consistent with activation of an apical K+ conductance. In contrast, basolateral P2Y receptor stimulation activated basolateral K+ channels and increased transepithelial Na+ absorption. Chelating intracellular Ca2+ using the membrane-permeable compound BAPTA-AM, abolished the effects of purinoceptor activation on I(sc). Apical pretreatment with charybdotoxin also blocked the I(sc) decrease by >90% and similar magnitudes of inhibition were observed with clotrimazole and TRAM-34. In contrast, iberiotoxin and apamin did not block the effects of apical P2Y receptor stimulation. Silencing the expression of K(Ca)3.1 produced ∼70% inhibition of mRNA expression and a similar reduction in the effects of apical purinoceptor agonists on I(sc). In addition, silencing P2Y2 receptors reduced the level of P2Y2 mRNA by 75% and blocked the effects of ATP-γ-S by 65%. These results suggest that P2Y2 receptors mediate the effects of purinoceptor agonists on K+ secretion by regulating the activity of K(Ca)3.1 channels expressed in the apical membrane of HME cells. The results also indicate that release of ATP or UTP across the apical or basolateral membrane elicits qualitatively different effects on ion transport that may ultimately determine the [Na+]/[K+] composition of fluid within the mammary ductal network.

  10. A Simple Tubular Reactor Experiment.

    ERIC Educational Resources Information Center

    Hudgins, Robert R.; Cayrol, Bertrand

    1981-01-01

    Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

  11. Genetics Home Reference: renal tubular dysgenesis

    MedlinePlus

    ... genetic condition? Genetic and Rare Diseases Information Center Frequency Renal tubular dysgenesis is a rare disorder, but ... of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  12. Mutations in GFPT1-related congenital myasthenic syndromes are associated with synaptic morphological defects and underlie a tubular aggregate myopathy with synaptopathy.

    PubMed

    Bauché, Stéphanie; Vellieux, Geoffroy; Sternberg, Damien; Fontenille, Marie-Joséphine; De Bruyckere, Elodie; Davoine, Claire-Sophie; Brochier, Guy; Messéant, Julien; Wolf, Lucie; Fardeau, Michel; Lacène, Emmanuelle; Romero, Norma; Koenig, Jeanine; Fournier, Emmanuel; Hantaï, Daniel; Streichenberger, Nathalie; Manel, Veronique; Lacour, Arnaud; Nadaj-Pakleza, Aleksandra; Sukno, Sylvie; Bouhour, Françoise; Laforêt, Pascal; Fontaine, Bertrand; Strochlic, Laure; Eymard, Bruno; Chevessier, Frédéric; Stojkovic, Tanya; Nicole, Sophie

    2017-08-01

    Mutations in GFPT1 (glutamine-fructose-6-phosphate transaminase 1), a gene encoding an enzyme involved in glycosylation of ubiquitous proteins, cause a limb-girdle congenital myasthenic syndrome (LG-CMS) with tubular aggregates (TAs) characterized predominantly by affection of the proximal skeletal muscles and presence of highly organized and remodeled sarcoplasmic tubules in patients' muscle biopsies. We report here the first long-term clinical follow-up of 11 French individuals suffering from LG-CMS with TAs due to GFPT1 mutations, of which nine are new. Our retrospective clinical evaluation stresses an evolution toward a myopathic weakness that occurs concomitantly to ineffectiveness of usual CMS treatments. Analysis of neuromuscular biopsies from three unrelated individuals demonstrates that the maintenance of neuromuscular junctions (NMJs) is dramatically impaired with loss of post-synaptic junctional folds and evidence of denervation-reinnervation processes affecting the three main NMJ components. Moreover, molecular analyses of the human muscle biopsies confirm glycosylation defects of proteins with reduced O-glycosylation and show reduced sialylation of transmembrane proteins in extra-junctional area. Altogether, these results pave the way for understanding the etiology of this rare neuromuscular disorder that may be considered as a "tubular aggregates myopathy with synaptopathy".

  13. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules.

    PubMed

    Goralski, Kerry B; Lou, Ganlu; Prowse, Matthew T; Gorboulev, Valentin; Volk, Christopher; Koepsell, Hermann; Sitar, Daniel S

    2002-12-01

    In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 in Xenopus oocytes and HEK 293 cells, we demonstrated that both transporters translocated amantadine. In Xenopus oocytes, the inhibitory potency of several rOCT1/2 inhibitors was similar for amantadine compared to TEA uptake and supports amantadine transport by rOCT1 and rOCT2. In proximal tubules, procainamide, quinine, cyanine(863), choline, and guanidine in concentrations that inhibit rOCT1/2-mediated TEA or amantadine uptake in Xenopus oocytes exhibited no effect on amantadine uptake. At variance, these inhibitors blocked TEA uptake into proximal tubules. Amantadine and TEA transport were sensitive to modulation by 25 mM bicarbonate. The effect of bicarbonate on organic cation transport was dependent on substrate (amantadine or TEA), cell system (oocytes, HEK 293 cells, or proximal tubules), and transporter (rOCT1 or rOCT2). In proximal tubules, only amantadine uptake was stimulated by bicarbonate. The data suggested that rat renal proximal tubules contain an organic cation transporter in addition to rOCT1 and rOCT2 that mediates amantadine uptake and requires bicarbonate for optimal function. TEA uptake by the basolateral membrane may be mediated mainly by rOCT1 and rOCT2, but these transporters may be in a different functional or regulatory state when expressed in cells or oocytes compared with expression in vivo.

  14. Genetics Home Reference: tubular aggregate myopathy

    MedlinePlus

    ... in both type I and type II fibers, forming clumps of tube-like structures called tubular aggregates. ... Hyun C, Woo JS, Park CS, Kim do H, Lee EH. Stromal interaction molecule 1 (STIM1) regulates ...

  15. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions.

    PubMed

    Ma, Xing; Hortelao, Ana C; Miguel-López, Albert; Sánchez, Samuel

    2016-10-26

    The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O 2 bubbles formed by catalytic decomposition of H 2 O 2 , which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelled tubular nanojets (as small as 220 nm diameter), powered by an enzyme-triggered biocatalytic reaction using urea as fuel. We studied the translational and rotational dynamics of the nanojets as functions of the length and location of the enzymes. Introducing tracer nanoparticles into the system, we demonstrated the presence of an internal flow that extends into the external fluid via the cavity opening, leading to the self-propulsion. One-dimensional nanosize, longitudinal self-propulsion, and biocompatibility make the tubular nanojets promising for future biomedical applications.

  16. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells.

    PubMed

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J

    2014-01-01

    Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  17. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis

    PubMed Central

    Bonventre, Joseph V

    2014-01-01

    Tubular injury has a major etiological role in fibrosis. For many years, this relationship has been dominated by the perception that epithelial cells are transformed into myofibroblasts that proliferate and generate fibrotic matrix—the so-called epithelial-to-mesenchymal transition. Here we focus on mechanisms by which injury to the tubule results in fibrosis because of paracrine mechanisms. Specific injury to the proximal tubule results in inflammation, reversible injury, and adaptive repair if the insult is mild, self-limited in time, and occurs in a background of a normal kidney. Repeated injury, in contrast, leads to maladaptive repair with sustained tubule injury, chronic inflammation, proliferation of interstitial myofibroblasts, vascular rarefaction, interstitial fibrosis, and glomerular sclerosis. During the maladaptive repair process after the renal insult, many tubular cells become arrested in the G2/M phase of the cell cycle. This results in activation of the DNA repair response with the resultant synthesis and secretion of pro-fibrotic factors. Pharmacologic interventions that enhance the movement through G2/M or facilitate apoptosis of cells that otherwise would be blocked in G2/M may reduce the development of fibrosis after kidney injury and reduce the progression of chronic kidney disease. PMID:26310195

  19. Developmental changes in renal tubular transport - An overview

    PubMed Central

    Gattineni, Jyothsna; Baum, Michel

    2013-01-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. None the less, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development. PMID:24253590

  20. Developmental changes in renal tubular transport-an overview.

    PubMed

    Gattineni, Jyothsna; Baum, Michel

    2015-12-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.

  1. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    PubMed Central

    1987-01-01

    We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature

  2. Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct.

    PubMed

    Chou, Chung-Lin; Yu, Ming-Jiun; Kassai, Eliza M; Morris, Ryan G; Hoffert, Jason D; Wall, Susan M; Knepper, Mark A

    2008-07-01

    Collecting duct cells swell when exposed to arginine vasopressin (AVP) in the presence of a transepithelial osmolality gradient. We investigated the mechanisms of AVP-induced cell swelling in isolated, perfused rat inner medullary collecting ducts (IMCDs) using quantitative video microscopy and fluorescence-based measurements of transepithelial water transport. We tested the roles of transepithelial water flow, basolateral solute entry, and the cytoskeleton (actomyosin). When a transepithelial osmolality gradient was imposed by addition of NaCl to the bath, AVP significantly increased both water flux and cell height. When the osmolality gradient was imposed by addition of mannitol, AVP increased water flux but not cell height, suggesting that AVP-induced cell swelling requires a NaCl gradient and is not merely dependent on the associated water flux. Bumetanide (Na-K-2Cl cotransporter inhibitor) added to the bath markedly diminished the AVP-induced cell height increase. AVP-induced cell swelling was absent in IMCDs from NKCC1-knockout mice. In rat IMCDs, replacement of Na, K, or Cl in the peritubular bath caused significant cell shrinkage, consistent with a basolateral solute transport pathway dependent on all three ions. Immunocytochemistry using an antibody to NKCC1 confirmed basolateral expression in IMCD cells. The conventional nonmuscle myosin II inhibitor blebbistatin also diminished the AVP-induced cell height increase and cell shape change, consistent with a role for the actin cytoskeleton and myosin II. We conclude that the AVP-induced cell height increase is dependent on basolateral solute uptake via NKCC1 and changes in actin organization via myosin II, but is not dependent specifically on increased apical water entry.

  3. Boron--epoxy tubular structure members

    NASA Technical Reports Server (NTRS)

    Shakespeare, W. B. J.; Nelson, P. T.; Lindkvist, E. C.

    1973-01-01

    Composite materials fabricate thin-walled tubular members which have same load-carrying capabilities as aluminum, titanium, or other metals, but are lighter. Interface between stepped end fitting and tube lends itself to attachments by primary as well as secondary bonding. Interlaminar shear and hoop stress buildup in attachment at end fitting is avoided.

  4. Transforming Growth Factor Beta 1 Drives a Switch in Connexin Mediated Cell-to-Cell Communication in Tubular Cells of the Diabetic Kidney.

    PubMed

    Hills, Claire; Price, Gareth William; Wall, Mark John; Kaufmann, Timothy John; Chi-Wai Tang, Sidney; Yiu, Wai Han; Squires, Paul Edward

    2018-01-01

    Changes in cell-to-cell communication have been linked to several secondary complications of diabetes, but the mechanism by which connexins affect disease progression in the kidney is poorly understood. This study examines a role for glucose-evoked changes in the beta1 isoform of transforming growth factor (TGFβ1), on connexin expression, gap-junction mediated intercellular communication (GJIC) and hemi-channel ATP release from tubular epithelial cells of the proximal renal nephron. Biopsy material from patients with and without diabetic nephropathy was stained for connexin-26 (CX26) and connexin-43 (CX43). Changes in expression were corroborated by immunoblot analysis in human primary proximal tubule epithelial cells (hPTECs) and model epithelial cells from human renal proximal tubules (HK2) cultured in either low glucose (5mmol/L) ± TGFβ1 (2-10ng/ml) or high glucose (25mmol/L) for 48h or 7days. Secretion of the cytokine was determined by ELISA. Paired whole cell patch clamp recordings were used to measure junctional conductance in control versus TGFβ1 treated (10ng/ml) HK2 cells, with carboxyfluorescein uptake and ATP-biosensing assessing hemi-channel function. A downstream role for ATP in mediating the effects of TGF-β1 on connexin mediated cell communication was assessed by incubating cells with ATPγS (1-100µM) or TGF-β1 +/- apyrase (5 Units/ml). Implications of ATP release were measured through immunoblot analysis of interleukin 6 (IL-6) and fibronectin expression. Biopsy material from patients with diabetic nephropathy exhibited increased tubular expression of CX26 and CX43 (P<0.01, n=10), data corroborated in HK2 and hPTEC cells cultured in TGFβ1 (10ng/ml) for 7days (P<0.001, n=3). High glucose significantly increased TGFβ1 secretion from tubular epithelial cells (P<0.001, n=3). The cytokine (10ng/ml) reduced junctional conductance between HK2 cells from 4.5±1.3nS in control to 1.15±0.9nS following 48h TGFβ1 and to 0.42±0.2nS after 7days TGFβ1

  5. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    DOEpatents

    Golovashchenko, Sergey Fedorovich [Beverly Hills, MI

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  6. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    PubMed Central

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J.

    2014-01-01

    Background/Aims Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD. PMID:24575118

  7. Basolateral amygdala volume and cell numbers in major depressive disorder: a postmortem stereological study.

    PubMed

    Rubinow, Marisa J; Mahajan, Gouri; May, Warren; Overholser, James C; Jurjus, George J; Dieter, Lesa; Herbst, Nicole; Steffens, David C; Miguel-Hidalgo, Jose J; Rajkowska, Grazyna; Stockmeier, Craig A

    2016-01-01

    Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.

  8. Cleistanthus collinus induces type I distal renal tubular acidosis and type II respiratory failure in rats.

    PubMed

    Maneksh, Delinda; Sidharthan, Anita; Kettimuthu, Kavithapriya; Kanthakumar, Praghalathan; Lourthuraj, Amala A; Ramachandran, Anup; Subramani, Sathya

    2010-06-01

    A water decoction of the poisonous shrub Cleistanthus collinus is used for suicidal purposes. The mortality rate is 28%. The clinical profile includes distal renal tubular acidosis (DRTA) and respiratory failure. The mechanism of toxicity is unclear. To demonstrate features of C. collinus toxicity in a rat model and to identify its mechanism(s) of action. Rats were anesthetized and the carotid artery was cannulated. Electrocardiogram and respiratory movements were recorded. Either aqueous extract of C. collinus or control solution was administered intraperitoneally. Serial measurements of blood gases, electrolytes and urinary pH were made. Isolated brush border and basolateral membranes from rat kidney were incubated with C. collinus extract and reduction in ATPase activity was assessed. Venous blood samples from human volunteers and rats were incubated with an acetone extract of C. collinus and plasma potassium was estimated as an assay for sodium-potassium pump activity. The mortality was 100% in tests and 17% in controls. Terminal event in test animals was respiratory arrest. Controls had metabolic acidosis, respiratory compensation acidic urine and hyperkalemia. Test animals showed respiratory acidosis, alkaline urine and low blood potassium as compared to controls. C. collinus extract inhibited ATPase activity in rat kidney. Plasma K(+) did not increase in human blood incubated with C. collinus extract. Active principles of C. collinus inhibit proton pumps in the renal brush border, resulting in type I DRTA in rats. There is no inhibition of sodium-potassium pump activity. Test animals develop respiratory acidosis, and the immediate cause of death is respiratory arrest.

  9. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

    PubMed Central

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua

    2017-01-01

    Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156

  10. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    PubMed

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  11. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    PubMed

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.

  13. Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: relevance of recent stress history and β-adrenergic signaling.

    PubMed

    Sarabdjitsingh, R A; Joëls, M

    2014-07-01

    The rodent stress hormone corticosterone rapidly enhances long-term potentiation in the CA1 hippocampal area, but leads to a suppression when acting in a more delayed fashion. Both actions are thought to contribute to stress effects on emotional memory. Emotional memory formation also involves the basolateral amygdala, an important target area for corticosteroid actions. We here (1) investigated the rapid effects of corticosterone on amygdalar synaptic potentiation, (2) determined to what extent these effects depend on the mouse's recent stress history or (3) on prior β-adrenoceptor activation; earlier studies at the single cell level showed that especially a recent history of stress changes the responsiveness of basolateral amygdala neurons to corticosterone. We report that, unlike the hippocampus, stress enhances amygdalar synaptic potentiation in a slow manner. In vitro exposure to 100 nM corticosterone quickly decreases synaptic potentiation, and causes only transient potentiation in tissue from stressed mice. This transient type of potentiation is also seen when β-adrenoceptors are blocked during stress and this is further exacerbated by subsequent in vitro administered corticosterone. We conclude that stress and corticosterone change synaptic potentiation in the basolateral amygdala in a manner opposite to that seen in the hippocampus and that renewed exposure to corticosterone only allows induction of non-persistent forms of synaptic potentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo

    PubMed Central

    Johnson, Alyssa E; Shu, Huidy; Hauswirth, Anna G; Tong, Amy; Davis, Graeme W

    2015-01-01

    Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network. DOI: http://dx.doi.org/10.7554/eLife.07366.001 PMID:26167652

  15. A narrow open tubular column for high efficiency liquid chromatographic separation

    DOE PAGES

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; ...

    2018-01-01

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.

  16. A narrow open tubular column for high efficiency liquid chromatographic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.

  17. Basolateral Amygdala Projections to Ventral Hippocampus Modulate the Consolidation of Footshock, but Not Contextual, Learning in Rats

    ERIC Educational Resources Information Center

    Huff, Mary L.; Emmons, Eric B.; Narayanan, Nandakumar S.; LaLumiere, Ryan T.

    2016-01-01

    The basolateral amygdala (BLA) modulates memory consolidation for a variety of types of learning, whereas other brain regions play more selective roles in specific kinds of learning suggesting a role for differential consolidation via distinct BLA pathways. The ventral hippocampus (VH), an efferent target of the BLA, has been suggested to…

  18. Emergent patterns of collective cell migration under tubular confinement.

    PubMed

    Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee

    2017-11-15

    Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.

  19. HER-2 amplification in tubular carcinoma of the breast.

    PubMed

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  20. Action of ANP on the nongenomic dose-dependent biphasic effect of aldosterone on NHE1 in proximal S3 segment.

    PubMed

    Braga-Sobrinho, C; Leite-Dellova, D C A; Mello-Aires, M

    2012-02-01

    The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na⁺/H⁺ exchanger isoform), after the acid load induced by NH₄Cl, and on the cytosolic free calcium concentration ([Ca²⁺](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15±0.008 and the basal pHirr was 0.195±0.012 pH units/min (number of tubules/number of tubular areas=16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10⁻¹² M) increases the pHirr to approximately 59% of control value, and ALDO (10⁻⁶ M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10⁻⁶ M) or BAPTA (5×10⁻⁵ M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca²⁺](i) was 104±3 nM (15), and ALDO (10⁻¹² or 10⁻⁶ M) increased the basal [Ca²⁺](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca²⁺](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca²⁺](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. SHIP2 Regulates Lumen Generation, Cell Division, and Ciliogenesis through the Control of Basolateral to Apical Lumen Localization of Aurora A and HEF 1.

    PubMed

    Hamze-Komaiha, Ola; Sarr, Sokavuth; Arlot-Bonnemains, Yannick; Samuel, Didier; Gassama-Diagne, Ama

    2016-12-06

    Lumen formation during epithelial morphogenesis requires the creation of a luminal space at cell interfaces named apical membrane-initiation sites (AMISs). This is dependent upon integrated signaling from mechanical and biochemical cues, vesicle trafficking, cell division, and processes tightly coupled to ciliogenesis. Deciphering relationships between polarity determinants and lumen or cilia generation remains a fundamental issue. Here, we report that Src homology 2 domain-containing inositol 5-phosphatase 2 (SHIP2), a basolateral determinant of polarity, regulates RhoA-dependent actin contractility and cell division to form AMISs. SHIP2 regulates mitotic spindle alignment. SHIP2 is expressed in G1 phase, whereas Aurora A kinase is enriched in mitosis. SHIP2 binds Aurora A kinase and the scaffolding protein HEF1 and promotes their basolateral localization at the expense of their luminal expression connected with cilia resorption. Furthermore, SHIP2 expression increases cilia length. Thus, our findings offer new insight into the relationships among basolateral proteins, lumen generation, and ciliogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Expanded plug method for developing circumferential mechanical properties of tubular materials

    DOEpatents

    Hendrich, William Ray; McAfee, Wallace Jefferson; Luttrell, Claire Roberta

    2006-11-28

    A method for determining the circumferential properties of a tubular product, especially nuclear fuel cladding, utilizes compression of a polymeric plug within the tubular product to determine strain stress, yield stress and other properties. The process is especially useful in the determination of aging properties such as fuel rod embrittlement after long burn-down.

  3. Plastic deformation of tubular crystals by dislocation glide.

    PubMed

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  4. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  6. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis.

    PubMed

    Namba, Tomoko; Takabatake, Yoshitsugu; Kimura, Tomonori; Takahashi, Atsushi; Yamamoto, Takeshi; Matsuda, Jun; Kitamura, Harumi; Niimura, Fumio; Matsusaka, Taiji; Iwatani, Hirotsugu; Matsui, Isao; Kaimori, Junya; Kioka, Hidetaka; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-10-01

    Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy. Copyright

  7. Electrochemical forces for chloride transport in the proximal tubules of the rat kidney.

    PubMed

    Sohtell, M

    1978-08-01

    The electrochemical forces for chloride transport in the proximal tubule of the rat kidney were studied using micropuncture techniques. Electrical transmembrane potentials were recorded in randomly punctured tubules with Ling-Gerhard electrodes. Chloride activities in the luminal, cellular and interstitial compartments were measured with ion selective micro-electrodes. Electrical potential measurements between cell to interstitium and lumen to interstitium were -72.1 +/- 2.6 mV and +0.5 +/- 1.4 mV (mean +/- S.D.) respectively. The calculated chloride concentrations for lumen, cell and interstitium were 133.0 +/- 10.3 mM, 8.5 +/- 1.0 mM and 99.1 +/- 3.2 mM (mean +/- S.D.) respectively. The net electrochemical forces, qualitatively, offer a passive chloride ion pathway through the tubular wall and a chloride equilibrium over the luminal membrane seems to exist.

  8. Dopamine evoked inhibition of single cells of the feline putamen and basolateral amygdala.

    PubMed Central

    Ben-Ari, Y; Kelly, J S

    1976-01-01

    1. In cats under pentobarbitone or halothane anaesthesia, neurones of the putamen and basolateral amygdala were inhibited with a similar time course by iontophoretic applications of dopamine and gamma-aminobutyric acid (GABA), ejected with relatively short (20 sec) low intensity (less than 40 nA) pulses of positive current from five and seven barrelled extracellular micropipettes. The use of a stereotaxically positioned guide tube, sealed to the skull with dental cement, made it possible to obtain stable recording conditions and to correlate the stereotaxic position of the cells with the position of the micro-electrode tracks determined histologically by the post-mortem reconstruction of serial sections. 2. Since in cats anaesthetized with pentobarbitone none of the cells were found to be spontaneously active, the relative potency of dopamine and GABA were compared on glutamate excited cells. Approximately 2-5 times more current was required to release sufficient dopamine to cause just submaximal inhibition, equal in magnitude and duration to that evoked by GABA. 3. In nitrous oxide/halothane anaesthetized cats, approximately one quarter of the cells were spontaneously active. Relative potency studies showed that for dopamine, currents 2-0 and 1-6 times larger than those used for GABA were required to inhibit glutamate excited and spontaneously active cells respectively. 4. When the depth distribution of the cells was compared with the sensitivity of the cells to dopamine and GABA, the most sensitive cells were found to lie within the putamen and the basolateral amygdala. 5. On more than one third of the cells tested, iontophoretic application of the neuroleptic, alpha-flupenthixol of more than 3 or 4 min in duration, greatly reduced or abolished the inhibition of the cells by dopamine without impairing their sensitivity to GABA. 6. In four cats, large I.V. injections of alpha-flupenthixol (10 mg/kg) and the more potent neuroleptic pimozide (1 mg/kg) had no

  9. Self-Cleaning Tubular-Membrane Module

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1983-01-01

    Tubular membranes made self-cleaning with aid of flow reversing valve. Sponge balls scrub membrane surfaces as they travel inside membrane tubes. A four-way flow-reversal valve automatically reverses flow in tubes at preset intervals so sponge balls reciprocate along tubes. Baskets at ends of tubes prevent sponges from escaping. Automatic cleaning feature added to existing membrane processing equipment with minimal modifications.

  10. Effect of section shape on frequencies of natural oscillations of tubular springs

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Chuba, A. Yu; Cherentsov, D. A.

    2018-05-01

    The necessity of determining the frequencies of natural oscillations of manometric tubular springs is substantiated. Based on the mathematical model and computer program, numerical experiments were performed that allowed us to reveal the effect of geometric parameters on the frequencies of free oscillations of manometric tubular springs.

  11. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  12. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    PubMed

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  13. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons.

    PubMed

    Power, John M; Sah, Pankaj

    2008-03-19

    Acetylcholine (ACh) is an important modulator of learning, memory, and synaptic plasticity in the basolateral amygdala (BLA) and other brain regions. Activation of muscarinic acetylcholine receptors (mAChRs) suppresses a variety of potassium currents, including sI(AHP), the calcium-activated potassium conductance primarily responsible for the slow afterhyperpolarization (AHP) that follows a train of action potentials. Muscarinic stimulation also produces inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. Here, we show using whole-cell patch-clamp recordings and high-speed fluorescence imaging that focal application of mAChR agonists evokes large rises in cytosolic calcium in the soma and proximal dendrites in rat BLA projection neurons that are often associated with activation of an outward current that hyperpolarizes the cell. This hyperpolarization results from activation of small conductance calcium-activated potassium (SK) channels, secondary to the release of calcium from intracellular stores. Unlike bath application of cholinergic agonists, which always suppressed the AHP, focal application of ACh often evoked a paradoxical enhancement of the AHP and spike-frequency adaptation. This enhancement was correlated with amplification of the action potential-evoked calcium response and resulted from the activation of SK channels. When SK channels were blocked, cholinergic stimulation always reduced the AHP and spike-frequency adaptation. Conversely, suppression of the sI(AHP) by the beta-adrenoreceptor agonist, isoprenaline, potentiated the cholinergic enhancement of the AHP. These results suggest that competition between cholinergic suppression of the sI(AHP) and cholinergic activation of the SK channels shapes the AHP and spike-frequency adaptation.

  14. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract.

    PubMed

    Al-Mosauwi, Hashemeya; Ryan, Elizabeth; McGrane, Alison; Riveros-Beltran, Stefanie; Walpole, Caragh; Dempsey, Eugene; Courtney, Danielle; Fearon, Naomi; Winter, Desmond; Baird, Alan; Stewart, Gavin

    2016-12-01

    Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states. © 2016 International Federation for Cell Biology.

  15. Electrolytic lesions of the nucleus accumbens core (but not the medial shell) and the basolateral amygdala enhance context-specific locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Gerety, Lyle P; Guerriero, Rejean M

    2009-06-01

    We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. Copyright (c) 2009 APA, all rights reserved.

  16. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters.

    PubMed

    Zalups, Rudolfs K; Ahmad, Sarfaraz

    2005-11-01

    Recently, the activity of the organic anion transporter 1 (OAT1) protein has been implicated in the basolateral uptake of inorganic mercuric species in renal proximal tubular cells. Unfortunately, very little is known about the role of OAT1 in the renal epithelial transport of organic forms of mercury, such as methylmercury (CH(3)Hg(+)). Homocysteine (Hcy) S-conjugates of methylmercury [(S)-(3-amino-3-carboxypropylthio)(methyl)mercury (CH(3)Hg-Hcy)] have been identified recently as being potentially important biologically relevant forms of mercury. Thus, the present study was designed to characterize the transport of CH(3)Hg-Hcy in Madin-Darby canine kidney (MDCK) cells (which are derived from the distal nephron) that were transfected stably with the human isoform of OAT1 (hOAT1). Data on saturation kinetics, time dependence, substrate specificity, and temperature dependence demonstrated that CH(3)Hg-Hcy is a transportable substrate of hOAT1. However, substrate-specificity data from the control MDCK cells also showed that CH(3)Hg-Hcy is a substrate of one or more transporter(s) that is/are not hOAT1. Additional findings indicated that at least one amino acid transport system was probably responsible for this transport. It is noteworthy that the activity of amino acid transporters accounted for the greatest level of uptake of CH(3)Hg-Hcy in the hOAT1-expressing cells. Furthermore, rates of survival of the hOAT1-transfected MDCK cells were significantly lower than those of corresponding control MDCK cells when they were exposed to cytotoxic concentrations of CH(3)Hg-Hcy. Collectively, the present data indicate that CH(3)Hg-Hcy is a transportable substrate of OAT1 and amino acid transporters and, thus, is probably a transportable mercuric species taken up in vivo by proximal tubular epithelial cells.

  17. Generous economic investments after basolateral amygdala damage.

    PubMed

    van Honk, Jack; Eisenegger, Christoph; Terburg, David; Stein, Dan J; Morgan, Barak

    2013-02-12

    Contemporary economic models hold that instrumental and impulsive behaviors underlie human social decision making. The amygdala is assumed to be involved in social-economic behavior, but its role in human behavior is poorly understood. Rodent research suggests that the basolateral amygdala (BLA) subserves instrumental behaviors and regulates the central-medial amygdala, which subserves impulsive behaviors. The human amygdala, however, typically is investigated as a single unit. If these rodent data could be translated to humans, selective dysfunction of the human BLA might constrain instrumental social-economic decisions and result in more impulsive social-economic choice behavior. Here we show that humans with selective BLA damage and a functional central-medial amygdala invest nearly 100% more money in unfamiliar others in a trust game than do healthy controls. We furthermore show that this generosity is not caused by risk-taking deviations in nonsocial contexts. Moreover, these BLA-damaged subjects do not expect higher returns or perceive people as more trustworthy, implying that their generous investments are not instrumental in nature. These findings suggest that the human BLA is essential for instrumental behaviors in social-economic interactions.

  18. Sex- and Estrus-Dependent Differences in Rat Basolateral Amygdala

    PubMed Central

    Blume, Shannon R.; Freedberg, Mari; Vantrease, Jaime E.; Chan, Ronny; Padival, Mallika; Record, Matthew J.; DeJoseph, M. Regina; Urban, Janice H.

    2017-01-01

    Depression and anxiety are diagnosed almost twice as often in women, and the symptomology differs in men and women and is sensitive to sex hormones. The basolateral amygdala (BLA) contributes to emotion-related behaviors that differ between males and females and across the reproductive cycle. This hints at sex- or estrus-dependent features of BLA function, about which very little is known. The purpose of this study was to test whether there are sex differences or estrous cyclicity in rat BLA physiology and to determine their mechanistic correlates. We found substantial sex differences in the activity of neurons in lateral nuclei (LAT) and basal nuclei (BA) of the BLA that were associated with greater excitatory synaptic input in females. We also found strong differences in the activity of LAT and BA neurons across the estrous cycle. These differences were associated with a shift in the inhibition–excitation balance such that LAT had relatively greater inhibition during proestrus which paralleled more rapid cued fear extinction. In contrast, BA had relatively greater inhibition during diestrus that paralleled more rapid contextual fear extinction. These results are the first to demonstrate sex differences in BLA neuronal activity and the impact of estrous cyclicity on these measures. The shift between LAT and BA predominance across the estrous cycle provides a simple construct for understanding the effects of the estrous cycle on BLA-dependent behaviors. These results provide a novel framework to understand the cyclicity of emotional memory and highlight the importance of considering ovarian cycle when studying the BLA of females. SIGNIFICANCE STATEMENT There are differences in emotional responses and many psychiatric symptoms between males and females. This may point to sex differences in limbic brain regions. Here we demonstrate sex differences in neuronal activity in one key limbic region, the basolateral amygdala (BLA), whose activity fluctuates across the

  19. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    PubMed

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P < 0.05). In 31 patients (19 children, 12 adults), an acute urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  20. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex

    PubMed Central

    McGarry, Laura M.

    2016-01-01

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at

  1. Tubular space truss structure for SKITTER 2 robot

    NASA Technical Reports Server (NTRS)

    Beecham, Richard; Dejulio, Linda; Delorme, Paul; Eck, Eric; Levy, Avi; Lowery, Joel; Radack, Joe; Sheffield, Randy; Stevens, Scott

    1988-01-01

    The Skitter 2 is a three legged transport vehicle designed to demonstrate the principle of a tripod walker in a multitude of environments. The tubular truss model of Skitter 2 is a proof of principal design. The model will replicate the operational capabilities of Skitter 2 including its ability to self-right itself. The project's focus was on the use of light weight tubular members in the final structural design. A strong design for the body was required as it will undergo the most intense loading. Triangular geometry was used extensively in the body, providing the required structural integrity and eliminating the need for cumbersome shear panels. Both the basic femur and tibia designs also relied on the strong geometry of the triangle. An intense literature search aided in the development of the most suitable weld techniques, joints, linkages, and materials required for a durable design. The hinge design features the use of spherical rod end bearings. In order to obtain a greater range of mobility in the tibia, a four-bar linkage was designed which attaches both to the femur and the tibia. All component designs, specifically the body, femur, and the tibia were optimized using the software package IDEAS 3.8A Supertab. The package provided essential deformation and stress analysis information on each component's design. The final structure incurred only a 0.0544 inch deflection in a maximum (worst case) loading situation. The highest stress experienced by any AL6061-T6 tubular member was 1920 psi. The structural integrity of the final design facilitated the use of Aluminum 6061-T6 tubing. The tubular truss structure of Skitter 2 is an effective and highly durable design. All facets of the design are structurally sound and cost effective.

  2. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients.

    PubMed

    Ciarimboli, Giuliano; Lancaster, Cynthia S; Schlatter, Eberhard; Franke, Ryan M; Sprowl, Jason A; Pavenstädt, Hermann; Massmann, Vivian; Guckel, Denise; Mathijssen, Ron H J; Yang, Wenjian; Pui, Ching-Hon; Relling, Mary V; Herrmann, Edwin; Sparreboom, Alex

    2012-02-15

    Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Creatinine transport was studied in transfected HEK293 cells in vitro and in wild-type mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(-/-)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Compared with wild-type mice, creatinine clearance was significantly impaired in Oct1/2(-/-) mice. Furthermore, creatinine inhibited organic cation transport in freshly isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(-/-) mice. In a genetic association analysis (n = 590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P = 0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n = 68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P = 0.0083), consistent with inhibition of an elimination pathway. Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. ©2012 AACR.

  3. Classification of capped tubular viral particles in the family of Papovaviridae

    NASA Astrophysics Data System (ADS)

    Keef, T.; Taormina, A.; Twarock, R.

    2006-04-01

    A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Viral capsids are usually spherical, and for a significant number of viruses they exhibit overall icosahedral symmetry. The corresponding surface lattices, that encode the locations of the capsid proteins and intersubunit bonds, can be modelled by viral tiling theory. It has been shown in vitro that under a variation of the experimental boundary conditions, such as the pH value and salt concentration, tubular particles may appear instead of, or in addition to, spherical ones. In order to develop models that describe the simultaneous assembly of both spherical and tubular variants, and hence study the possibility of triggering tubular malformations as a means of interference with the replication mechanism, viral tiling theory has to be extended to include tubular lattices with end caps. We focus here on the case of Papovaviridae, which play a distinguished role from the viral structural point of view as they correspond to all pentamer lattices, i.e. lattices formed from clusters of five protein subunits throughout. These results pave the way for a generalization of recently developed assembly models.

  4. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  5. Buckling characteristics of hypersonic aircraft wing tubular panels

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Shideler, John L.; Fields, Roger A.

    1986-01-01

    The buckling characteristics of Rene 41 tubular panels installed as wing panels on a hypersonic wing test structure (HWTS) were determined nondestructively through use of a force/stiffness technique. The nondestructive buckling tests were carried out under different combined load conditions and different temperature environments. Two panels were subsequently tested to buckling failure in a universal tension compression testing machine. In spite of some data scattering because of large extrapolations of data points resulting from termination of the test at a somewhat low applied load, the overall test data correlated fairly well with theoretically predicted buckling interaction curves. The structural efficiency of the tubular panels was slightly higher than that of the beaded panels which they replaced.

  6. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload.

    PubMed

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-08-22

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.

  7. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells.

    PubMed

    Tan, Jin; Xie, Qi; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-03-01

    BACKGROUND Albumin, as a major urinary protein component, is a risk factor for chronic kidney disease progression. Mitochondrial dysfunction is one of the main causes of albumin-induced proximal tubule cells injury. Mitophagy is considered as a pivotal protective mechanism for the elimination of dysfunctional mitochondria. The objective of this research was to determine whether albumin overload-induced mitochondrial dysfunction can activate PINK1/Parkin-mediated mitophagy in renal tubular epithelial cells (TECs). MATERIAL AND METHODS Immunofluorescence assay and Western blot assay were used to detect the effects of albumin overload on autophagy marker protein LC3. Transmission electron microscopy and Western blot assay were used to investigate the role of albumin in mitochondrial injury. Western blot assay and co-localization of acidic lysosomes and mitochondria assay were employed to detect the activation of mitophagy induced by albumin. Finally, we explored the role of PINK1/Parkin signaling in albumin-induced mitophagy by inhibiting mitophagy by knockdown of PARK2 (Parkin) level. RESULTS Immunofluorescence and Western blot results showed that the expression level of LC3-II increased, and the maximum increase point was observed after 8 h of albumin treatment. Transmission electron microscopy results demonstrated that albumin overload-induced mitochondrial injury and quantity of autophagosomes increased. Additionally, expression of PINK1 and cytosolic cytochrome C increased and mitochondria cytochrome C decreased in the albumin group. The co-localization of acidic lysosomes and mitochondria demonstrated that the number of albumin overload-induced mitophagy-positive dots increased. The transient transfection of PARK2 siRNA result showed knockdown of the expression level of PARK2 can inhibit mitophagy induced by albumin. CONCLUSIONS In conclusion, our study suggests that mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular

  8. Tissue cell assisted fabrication of tubular catalytic platinum microengines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Moo, James Guo Sheng; Pumera, Martin

    2014-09-01

    We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks.We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks. Electronic supplementary information (ESI) available: Related video. See DOI: 10.1039/c4nr03720k

  9. Opposite Effects of Basolateral Amygdala Inactivation on Context-Induced Relapse to Cocaine Seeking after Extinction versus Punishment.

    PubMed

    Pelloux, Yann; Minier-Toribio, Angelica; Hoots, Jennifer K; Bossert, Jennifer M; Shaham, Yavin

    2018-01-03

    Studies using the renewal procedure showed that basolateral amygdala (BLA) inactivation inhibits context-induced relapse to cocaine-seeking after extinction. Here, we determined whether BLA inactivation would also inhibit context-induced relapse after drug-reinforced responding is suppressed by punishment, an animal model of human relapse after self-imposed abstinence due to adverse consequences of drug use. We also determined the effect of central amygdala (CeA) inactivation on context-induced relapse.We trained rats to self-administer cocaine for 12 d (6 h/d) in Context A and then exposed them to either extinction or punishment training for 8 d in Context B. During punishment, 50% of cocaine-reinforced lever-presses produced an aversive footshock of increasing intensity (0.1-0.5 or 0.7 mA). We then tested the rats for relapse to cocaine seeking in the absence of cocaine or shock in Contexts A and B after BLA or CeA injections of vehicle or GABA agonists (muscimol-baclofen). We then retrained the rats for cocaine self-administration in Context A, repunished or re-extinguished lever pressing in Context B, and retested for relapse after BLA or CeA inactivation.BLA or CeA inactivation decreased context-induced relapse in Context A after extinction in Context B. BLA, but not CeA, inactivation increased context-induced relapse in Context A after punishment in Context B. BLA or CeA inactivation provoked relapse in Context B after punishment but not extinction. Results demonstrate that amygdala's role in relapse depends on the method used to achieve abstinence and highlights the importance of studying relapse under abstinence conditions that more closely mimic the human condition. SIGNIFICANCE STATEMENT Relapse to drug use during abstinence is often provoked by re-exposure to the drug self-administration environment or context. Studies using the established extinction-reinstatement rodent model of drug relapse have shown that inactivation of the basolateral amygdala

  10. Tubular Heart Pumping Mechanisms in Ciona Intestinalis

    NASA Astrophysics Data System (ADS)

    Battista, Nicholas; Miller, Laura

    2015-11-01

    In vertebrate embryogenesis, the first organ to form is the heart, beginning as a primitive heart tube. However, many invertebrates have tubular hearts from infancy through adulthood. Heart tubes have been described as peristaltic and impedance pumps. Impedance pumping assumes a single actuation point of contraction, while traditional peristalsis assumes a traveling wave of actuation. In addition to differences in flow, this inherently implies differences in the conduction system. It is possible to transition from pumping mechanism to the other with a change in the diffusivity of the action potential. In this work we consider the coupling between the fluid dynamics and electrophysiology of both mechanisms, within a basal chordate, the tunicate. Using CFD with a neuro-mechanical model of tubular pumping, we discuss implications of the both mechanisms. Furthermore, we discuss the implications of the pumping mechanism on evolution and development.

  11. Renal Tubular Acidosis in Patients with Primary Sjögren's Syndrome.

    PubMed

    Jung, Su Woong; Park, Eun Ji; Kim, Jin Sug; Lee, Tae Won; Ihm, Chun Gyoo; Lee, Sang Ho; Moon, Ju-Young; Kim, Yang Gyun; Jeong, Kyung Hwan

    2017-09-01

    Primary Sjögren's syndrome (pSS) is characterized by lymphocytic infiltration of the exocrine glands resulting in decreased saliva and tear production. It uncommonly involves the kidneys in various forms, including tubulointerstitial nephritis, renal tubular acidosis, Fanconi syndrome, and rarely glomerulonephritis. Its clinical symptoms include muscle weakness, periodic paralysis, and bone pain due to metabolic acidosis and electrolyte imbalance. Herein, we describe the cases of two women with pSS whose presenting symptoms involve the kidneys. They had hypokalemia and normal anion gap metabolic acidosis due to distal renal tubular acidosis and positive anti-SS-A and anti-SS-B autoantibodies. Since one of them experienced femoral fracture due to osteomalacia secondary to renal tubular acidosis, an earlier diagnosis of pSS is important in preventing serious complications.

  12. A Different Recruitment of the Lateral and Basolateral Amygdala Promotes Contextual or Elemental Conditioned Association in Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Calandreau, Ludovic; Desmedt, Aline; Decorte, Laurence; Jaffard, Robert

    2005-01-01

    Convergent data suggest dissociated roles for the lateral (LA) and basolateral (BLA) amygdaloid nuclei in fear conditioning, depending on whether a discrete conditioned stimulus (CS)-unconditional stimulus (US) or context-US association is considered. Here, we show that pretraining inactivation of the BLA selectively impaired conditioning to…

  13. Interobserver agreement for post mortem renal histopathology and diagnosis of acute tubular necrosis in critically ill patients.

    PubMed

    Glassford, Neil J; Skene, Alison; Guardiola, Maria B; Chan, Matthew J; Bagshaw, Sean M; Bellomo, Rinaldo; Solez, Kim

    2017-12-01

    The renal histopathology of critically ill patients dying with acute kidney injury (AKI) in intensive care units of high income countries remains uncertain. Retrospective observational assessment of interobserver agreement in the reporting of renal post mortem histopathology, and the ability of pathologists blinded to the clinical context to independently identify the presence of pre-mortem AKI from digital images of histological sections from 34 critically ill patients dying in teaching hospitals in Australia and Canada. We identified a heterogeneous cohort with a median age of 65 years (interquartile range [IQR], 56.5-77), APACHE II score of 27 (IQR, 19-33), and sepsis as the most common admission diagnosis (12/34; 35%). The most common proximate causes of death were cardiovascular (19/34; 56%) and respiratory (7/34; 21%) failure. AKI was common, with 23 patients (68%) developing RIFLE-F AKI, and 21 patients (62%) receiving renal replacement therapy. Structured reporting for tubular inflammation showed excellent agreement (kappa = 1), but no other subdomain demonstrated better than moderate agreement (kappa < 0.6). Only fair agreement (55.9% of cases; kappa = 0.23) was demonstrated on the diagnosis of moderate to severe acute tubular necrosis (ATN). Pathologist A predicted RIFLE-I or worse AKI with the diagnosis of ATN, with an overall accuracy of 61.8%; pathologist B predicted AKI with an accuracy of 35.3%. Post mortem assessment of the renal histopathology in critically ill patients is neither robust nor reproducible; independent pathologists agree poorly on the diagnosis of ATN, and their structural assessment appears dissociated from ante-mortem renal function.

  14. Effect of corrosion on the buckling capacity of tubular members

    NASA Astrophysics Data System (ADS)

    Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.

    2017-12-01

    Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.

  15. Augmented reality visualization of deformable tubular structures for surgical simulation.

    PubMed

    Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro

    2016-06-01

    Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. The basolateral amygdala in reward learning and addiction.

    PubMed

    Wassum, Kate M; Izquierdo, Alicia

    2015-10-01

    Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The basolateral amygdala in reward learning and addiction

    PubMed Central

    Wassum, Kate M.; Izquierdo, Alicia

    2015-01-01

    Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action. PMID:26341938

  18. Activation of an ATP-dependent K(+) conductance in Xenopus oocytes by expression of adenylate kinase cloned from renal proximal tubules.

    PubMed

    Brochiero, E; Coady, M J; Klein, H; Laprade, R; Lapointe, J Y

    2001-02-09

    In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.

  19. Thermal sprayed composite melt containment tubular component and method of making same

    DOEpatents

    Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.

    2002-03-19

    A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.

  20. Porcine proximal tubular cells (LLC-PK1) are able to tolerate high levels of lithium chloride in vitro: assessment of the influence of 1-20 mM LiCl on cell death and alterations in cell biology and biochemistry.

    PubMed

    Lucas, Kirsten C; Hart, David A; Becker, Rolf W

    2010-01-25

    Lithium, a prophylactic drug for the treatment of bipolar disorder, is prescribed with caution due to its side effects, including renal damage. In this study porcine LLC-PK1 renal tubular cells were used to establish the direct toxicity of lithium on proximal cells and gain insights into the molecular mechanisms involved. In the presence of LiCl, cell proliferation exhibited insignificant decreases in a concentration-dependent manner, but once confluent, constant cell numbers were observed. Cell cycle studies indicated a small dose-dependent accumulation of cells in the G2/M stage after 24 h, as well as an increase in cells in the G0/G1 phase after treatment with 1-10 mM LiCl, but not at 20 mM LiCl. No evidence of apoptosis was observed based on cell morphology or DNA fragmentation studies, or evidence of protein expression changes for Bax, Bcl-2, and p53 proteins using immunocytochemistry. In addition caspases 3, 8 and 9 activity remained unaltered between control and lithium-treated cultures. To conclude, exposure to high concentrations of lithium did not result in overt toxic effects to LLC-PK1 renal cells, although LiCl did alter some aspects of cell behaviour, which could potentially influence function over time.

  1. Proximal Tubular Secretion of Creatinine by Organic Cation Transporter OCT2 in Cancer Patients

    PubMed Central

    Ciarimboli, Giuliano; Lancaster, Cynthia S.; Schlatter, Eberhard; Franke, Ryan M.; Sprowl, Jason A.; Pavenstädt, Hermann; Massmann, Vivian; Guckel, Denise; Mathijssen, Ron H. J.; Yang, Wenjian; Pui, Ching-Hon; Relling, Mary V.; Herrmann, Edwin; Sparreboom, Alex

    2012-01-01

    Purpose Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design Creatinine transport was studied in transfected HEK293 cells in vitro and in wildtype mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(−/−)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Results Compared to wildtype mice, creatinine clearance was significantly impaired in Oct1/2(−/−) mice. Furthermore, creatinine inhibited organic cation transport in freshly-isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(−/−) mice. In a genetic-association analysis (n=590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P=0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n=68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P=0.0083), consistent with inhibition of an elimination pathway. Conclusions Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. PMID:22223530

  2. Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment

    NASA Astrophysics Data System (ADS)

    LiJ. X. L.; G. S. H. Contributed Equally To This Work., Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the

  3. Large tubular colonic duplication in an adult treated with a small midline incision

    PubMed Central

    Yong, Yuen Geng; Jung, Kyung Uk; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong

    2012-01-01

    Tubular colonic duplication presenting in adults is rare and difficult to diagnose preoperatively. Only a few cases have been reported in the literature. We report a case of a 29-year-old lady presenting with a long history of chronic constipation, abdominal mass and repeated episodes of abdominal pain. The abdominal-pelvic computed tomography scan showed segmental bowel wall thickening thought to be small bowel, and dilatation with stasis of intraluminal content. The provisional diagnosis was small bowel duplication. She was scheduled for single port laparoscopic resection. However, a T-shaped tubular colonic duplication at sigmoid colon was found intraoperatively. Resection of the large T-shaped tubular colonic duplication containing multiple impacted large fecaloma and primary anastomosis was performed. There was no perioperative complication. We report, herein, the case of a T-shaped tubular colonic duplication at sigmoid colon in an adult who was successfully treated through mini-laparotomy assisted by single port laparoscopic surgery. PMID:22403754

  4. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  5. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: a dialysis study of circadian variation and stress-induced modulation.

    PubMed

    Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain

    2012-05-03

    Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  7. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, Thomas C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  8. Acquired proximal renal tubulopathy in dogs exposed to a common dried chicken treat: retrospective study of 108 cases (2007-2009).

    PubMed

    Thompson, M F; Fleeman, L M; Kessell, A E; Steenhard, L A; Foster, S F

    2013-09-01

    Proximal renal tubulopathy was reported in Australian dogs with markedly increased frequency from September 2007. Two veterinarian-completed surveys were launched in response to an increased incidence of acquired proximal renal tubulopathy in dogs. The selection criterion for inclusion was glucosuria with blood glucose < 10 mmol/L. Data collected included signalment, presenting signs, history of feeding treats, results of urinalysis and blood tests, treatment and time to resolution of clinical signs. A total of 108 affected dogs were studied. All had been fed the same brand of dried chicken treats, made in China, for a median of 12 weeks (range, 0.3-78 weeks). Small breeds (< 10 kg) accounted for 88% of cases. Common presenting signs included polyuria/polydipsia (76%), lethargy (73%), inappetence (65%) and vomiting (54%). Common biochemical findings included euglycaemia (74%; 71/96), hypoglycaemia (23%; 22/96), acidosis (77%; 20/26), hypokalaemia (45%; 38/84), hypophosphataemia (37%; 28/75) and azotaemia (27%; 23/85). In addition to discontinuation of treats, 64 dogs received medical treatment, including intravenous fluids (52%) and oral electrolyte, amino acid or vitamin supplements. Six dogs died or were euthanased. Two dogs were necropsied. Histopathological findings consisted of proximal tubular necrosis accompanied by regeneration. Time to resolution of clinical signs in 35 survivors available for follow-up was < 2 weeks (n = 8), 2-4 weeks (n = 2), 5-7 weeks (n = 5) and 2-6 months (n = 10). Of the 108 dogs with acquired proximal renal tubulopathy contemporaneous with chicken treat consumption, most survived but many required aggressive supportive care. The treats likely contained a toxin targeting the proximal renal tubules. Diet history and urinalysis were vital for diagnosis. © 2013 Australian Veterinary Association.

  9. Synthesis and adsorption properties of hollow tubular alumina fibers

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Kazantsev, S. O.; Glazkova, E. A.

    2017-12-01

    In this study, composite glass fibers coated with alumina nanoplates and hollow tubular alumina fibers with a diameter of 400-500 nm are synthesized based on glass fiber templated hydrothermal strategy. Porous coatings on glass fibers and hollow fibers consist of cross-linked alumina nanoplates with the size of 100-200 nm and thickness of 2-5 nm. Their formation is attributed to the template-induced heterogeneous growth of alumina nanoplates on glass fibers of the B-06-F type. It is important that composite glass fibers and hollow tubular fibers have opposite surface charges and exhibit selective sorption characteristics towards anionic and cationic dyes.

  10. Hot fire test results of subscale tubular combustion chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1992-01-01

    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.

  11. Reference values of renal tubular function tests are dependent on age and kidney function.

    PubMed

    Bech, Anneke P; Wetzels, Jack F M; Nijenhuis, Tom

    2017-12-01

    Electrolyte disorders due to tubular disorders are rare, and knowledge about validated clinical diagnostic tools such as tubular function tests is sparse. Reference values for tubular function tests are based on studies with small sample size in young healthy volunteers. Patients with tubular disorders, however, frequently are older and can have a compromised renal function. We therefore evaluated four tubular function tests in individuals with different ages and renal function. We performed furosemide, thiazide, furosemide-fludrocortisone, and desmopressin tests in healthy individuals aged 18-50 years, healthy individuals aged more than 50 years and individuals with compromised renal function. For each tubular function test we included 10 individuals per group. The responses in young healthy individuals were in line with previously reported values in literature. The maximal increase in fractional chloride excretion after furosemide was below the lower limit of young healthy individuals in 5/10 older subjects and in 2/10 patients with compromised renal function. The maximal increase in fractional chloride excretion after thiazide was below the lower limit of young healthy individuals in 6/10 older subjects and in 7/10 patients with compromised renal function. Median maximal urine osmolality after desmopressin was 1002 mosmol/kg H 2 O in young healthy individuals, 820 mosmol/kg H 2 O in older subjects and 624 mosmol/kg H 2 O in patients with compromised renal function. Reference values for tubular function tests obtained in young healthy adults thus cannot simply be extrapolated to older patients or patients with compromised kidney function. Larger validation studies are needed to define true reference values in these patient categories. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study

    PubMed Central

    Chen, Huan; Zhao, Xinyuan; Qiu, Yu; Xu, Dengyou

    2017-01-01

    Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE) and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls. PMID:29479539

  13. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  14. Nano-tubular cellulose for bioprocess technology development.

    PubMed

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  15. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells.

    PubMed

    Kannan, Ram; Zhang, Ning; Sreekumar, Parameswaran G; Spee, Christine K; Rodriguez, Anthony; Barron, Ernesto; Hinton, David R

    2006-12-22

    To investigate whether oxidative stress modulates vascular endothelial growth factor (VEGF)-A and VEGF-C expression and polarized secretion in a human retinal pigment epithelium cell line (ARPE-19). Long-term culture of ARPE-19 cells in Dulbecco's modified Eagle medium (DMEM)/F12 containing 1% fetal bovine serum (FBS) on transwell filters (12 mm or 6 mm, pore size 0.4 microm) was performed to produce polarized retinal pigment epithelium (RPE) monolayers. The integrity of polarized monolayer was established by measurement of transepithelial resistance (TER) and presence of tight junctions assessed by zonula occludens (ZO-1) and occludin expression and apical Na/K ATPase localization. Paracellular permeability was studied using radiolabeled mannitol. Confluent cells were treated with tertiary butyl hydrogen peroxide (tBH) for varying durations (0-5 h) and doses (50-200 microM). VEGF-A and -C expression was evaluated by western blot and quantitative RT-PCR, while secretion to the apical and basolateral surfaces was quantitated by ELISA. Polarity of ARPE-19 cells was verified by the localization of tight junction proteins, ZO-1 and its binding partner occludin by confocal microscopy as well as by localization of Na,K-ATPase at the apical surface. The TER in confluent ARPE-19 cells averaged 48.7+/-2.1 Omega. cm(2) and tBH treatment (0-5 h) did not alter TER significantly (46.9+/-1.9 Omega. cm(2); p>0.05 versus controls) or ZO-1 expression. Whole cell mRNA in nonpolarized ARPE-19 increased with tBH at 5 h both for VEGF-A and VEGF-C and the increase was significant (p<0.05 vs controls). A similar, maximal increase at 5 h tBH treatment was also observed for VEGF-A and VEGF-C cellular protein levels. The secretion of VEGF-A and VEGF-C in nonpolarized ARPE showed an increase with tBH exposure. The levels of secretion of VEGF-A and -C were significantly higher in polarized monolayers and were stimulated significantly with tBH at both apical and basolateral domains. The

  16. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations

    PubMed Central

    Lichtenberg, Nina T.; Pennington, Zachary T.; Holley, Sandra M.; Greenfield, Venuz Y.; Levine, Michael S.

    2017-01-01

    To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are

  17. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    PubMed

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmes, Anja, E-mail: Anja.Wilmes@i-med.ac.at; Aschauer, Lydia; Limonciel, Alice

    Claudins are the major proteins of the tight junctions and the composition of claudin subtypes is decisive for the selective permeability of the paracellular route and thus tissue specific function. Their regulation is complex and subject to interference by several factors, including oxidative stress. Here we show that exposure of cultured human proximal tubule cells (RPTEC/TERT1) to the immunosuppressive drug cyclosporine A (CsA) induces an increase in transepithelial electrical resistance (TEER), a decrease in dome formation (on solid growth supports) and a decrease in water transport (on microporous growth supports). In addition, CsA induced a dramatic decrease in the mRNAmore » for the pore forming claudins -2 and -10, and the main subunits of the Na{sup +}/K{sup +} ATPase. Knock down of claudin 2 by shRNA had no discernable effect on TEER or dome formation but severely attenuated apical to basolateral water reabsorption when cultured on microporous filters. Generation of an osmotic gradient in the basolateral compartment rescued water transport in claudin 2 knock down cells. Inhibition of Na{sup +}/K{sup +} ATPase with ouabain prevented dome formation in both cell types. Taken together these results provide strong evidence that dome formation is primarily due to transcellular water transport following a solute osmotic gradient. However, in RPTEC/TERT1 cells cultured on filters under iso-osmotic conditions, water transport is primarily paracellular, most likely due to local increases in osmolarity in the intercellular space. In conclusion, this study provides strong evidence that claudin 2 is involved in paracellular water transport and that claudin 2 expression is sensitive to compound induced cellular stress. - Highlights: • Cyclosporine A increased TEER and decreased water transport in RPTEC/TERT1 cells. • Claudins 2 and 10 were decreased in response to cyclosporine A. • Knock down of claudin 2 inhibited water transport in proximal tubular cells.

  19. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.

    PubMed

    Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai

    2015-12-30

    By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.

  20. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    ERIC Educational Resources Information Center

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  1. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  2. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    NASA Technical Reports Server (NTRS)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  3. Method and apparatus for forming flues on tubular stock

    DOEpatents

    Beck, D.E.; Carson, C.

    1979-12-21

    The present invention is directed to a die mechanism utilized for forming flues on long, relatively narrow tubular stock. These flues are formed by displacing a die from within the tubular stock through perforations previously drilled through the tubular stock at selected locations. The drawing of the die upsets the material to form the flue of the desired configuration. The die is provided with a lubricating system which enables the lubricant to be dispensed uniformly about the entire periphery of the die in contact with the material being upset so as to assure the formation of the flues. Further, the lubricant is dispensed from within the die onto the peripheral surface of the latter at pressures in the range of about 2000 to 10,000 psi so as to assure the adequate lubrication of the die during the drawing operation. By injecting the lubricant at such high pressures, low viscosity liquid, such as water and/or alcohol, may be efficiently used as a lubricant and also provides a mechanism by which the lubricant may be evaporated from the surface of the flues at ambient conditions so as to negate the cleansing operations previously required prior to joining the flues to other conduit mechanisms by fusion welding and the like.

  4. Durability and robustness of tubular molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Kawase, Makoto

    2017-12-01

    One anticipated system for high-efficiency power generation is the combination of syngas from gasification and high temperature fuel cells. The system uses a pressurization system, and it takes into account poisoning by impurities in the syngas. The durability and robustness of the fuel cells used in this system are an important issue for commercial applications. This study focuses on tubular molten carbonate fuel cells (MCFCs), which seem to be relatively durable compared with conventional planar-type MCFCs. Various power generation tests were performed in order to evaluate the durability and robustness of the tubular MCFCs. After continuous generation tests at 0.3 MPa, the cell voltage decay rate was found to be 0.8 mV/1000 h at 0.2 A/cm2. Moreover, it was found to be possible to generate power stably with fuel gas containing 20 ppm H2S. When the differential pressure between the anode and cathode was set to 0.1 MPa, the power generation tests were performed without gas leakage. In addition, starting (heating) and stopping (cooling) could be done in a short period, meaning that the cold start/stop characteristics are favorable. Therefore, the tubular MCFC was confirmed to have the durability necessary for a power generation system.

  5. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    PubMed Central

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  6. The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Oh, Jinho; Choi, Hanho

    2010-06-01

    Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.

  7. Proximal Hypospadias

    PubMed Central

    Kraft, Kate H.; Shukla, Aseem R.; Canning, Douglas A.

    2011-01-01

    Hypospadias results from abnormal development of the penis that leaves the urethral meatus proximal to its normal glanular position. Meatal position may be located anywhere along the penile shaft, but more severe forms of hypospadias may have a urethral meatus located at the scrotum or perineum. The spectrum of abnormalities may also include ventral curvature of the penis, a dorsally redundant prepuce, and atrophic corpus spongiosum. Due to the severity of these abnormalities, proximal hypospadias often requires more extensive reconstruction in order to achieve an anatomically and functionally successful result. We review the spectrum of proximal hypospadias etiology, presentation, correction, and possible associated complications. PMID:21516286

  8. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    PubMed Central

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  9. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat.

    PubMed

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-08-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition.

  10. Lack of effect of non-steroid antiinflammatory drugs on lithium clearance and on delivery of tubular fluid to the loop of Henle in rats.

    PubMed

    Lassen, E; Thomsen, K; Sørensen, S S; Pedersen, E B

    1986-11-01

    This paper examines a possible interaction between non-steroid antiinflammatory drugs (NSAI drugs) and renal lithium clearance in conscious, unoperated rats with diabetes insipidus (Brattleboro strain) and ordinary Wistar rats. The drugs were given with the food for 5 days before clearance determinations in the following daily doses per kg body weight: acetylsalicyclic acid 115 mg/kg, phenylbutazone 20 mg/kg, indomethacin 5 mg/kg, and penicillamine 65 mg/kg. None of the drugs affected the lithium clearance. Also urine flow, sodium clearance, potassium clearance, and prostaglandin E2 excretion remained unaffected by the treatments. The results suggest that a continued lowering of lithium clearance cannot be produced, at least not by administration of the drugs with the food. Since lithium clearance is a quantitative measure of the delivery of tubular fluid from the proximal tubules to the loop of Henle, the results also suggest that chronic administration of NSAI drugs does not influence delivery from the proximal tubules in rats. The lowering of lithium clearance observed by others after administration of the drugs by injection or by gastric tube may have been transient, lasting only for a short period after each administration.

  11. A technical case report on use of tubular retractors for anterior cervical spine surgery.

    PubMed

    Kulkarni, Arvind G; Patel, Ankit; Ankith, N V

    2017-12-19

    The authors put-forth this technical report to establish the feasibility of performing an anterior cervical corpectomy and fusion (ACCF) and a two-level anterior cervical discectomy and fusion (ACDF) using a minimally invasive approach with tubular retractors. First case: cervical spondylotic myelopathy secondary to a large postero-inferiorly migrated disc treated with corpectomy and reconstruction with a mesh cage and locking plate. Second case: cervical disc herniation with radiculopathy treated with a two-level ACDF. Both cases were operated with minimally invasive approach with tubular retractor using a single incision. Technical aspects and clinical outcomes have been reported. No intra or post-operative complications were encountered. Intra-operative blood loss was negligible. The patients had a cosmetic scar on healing. Standard procedure of placement of tubular retractors is sufficient for adequate surgical exposure with minimal invasiveness. Minimally invasive approach to anterior cervical spine with tubular retractors is feasible. This is the first report on use of minimally invasive approach for ACCF and two-level ACDF.

  12. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  13. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  14. Glomerular and tubular damage markers in individuals with progressive albuminuria.

    PubMed

    Nauta, Ferdau L; Scheven, Lieneke; Meijer, Esther; van Oeveren, Wim; de Jong, Paul E; Bakker, Stephan J L; Gansevoort, Ron T

    2013-07-01

    Albuminuria is associated with risk for renal and cardiovascular disease. It is difficult to predict which persons will progress in albuminuria. This study investigated whether assessment of urinary markers associated with damage to different parts of the nephron may help identify individuals that will progress in albuminuria. Individuals were selected from a prospective community-based cohort study with serial follow-up and defined as "progressors" if they belonged to the quintile of participants with the most rapid annual increase in albuminuria, and reached an albuminuria ≥150 mg/d during follow-up. Patients with known renal disease or macroalbuminuria at baseline were excluded. Each progressor was matched to two control participants, based on baseline albuminuria, age, and sex. Furthermore, damage markers were measured in a separate set of healthy individuals. After a median follow-up of 8.6 years, 183 of 8394 participants met the criteria for progressive albuminuria. Baseline clinical characteristics were comparable between progressors and matched controls (n=366). Both had higher baseline albuminuria than the overall population. Urinary excretion of the glomerular damage marker IgG was significantly higher in progressors, whereas urinary excretion of proximal tubular damage markers and inflammatory markers was lower in these individuals compared with controls. Healthy individuals (n=109) had the lowest values for all urinary damage markers measured. These data suggest that albuminuria associated with markers of glomerular damage is more likely to progress, whereas albuminuria associated with markers of tubulointerstitial damage is more likely to remain stable.

  15. Pre-exposure Prophylaxis With Tenofovir Disoproxil Fumarate/Emtricitabine and Kidney Tubular Dysfunction in HIV-Uninfected Individuals.

    PubMed

    Jotwani, Vasantha; Scherzer, Rebecca; Glidden, David V; Mehrotra, Megha; Defechereux, Patricia; Liu, Albert; Gandhi, Monica; Bennett, Michael; Coca, Steven G; Parikh, Chirag R; Grant, Robert M; Shlipak, Michael G

    2018-06-01

    Pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) is becoming increasingly adopted for HIV prevention. Tenofovir can cause proximal tubular damage and chronic kidney disease in HIV-infected persons, but little is known regarding its nephrotoxic potential among HIV-uninfected persons. In this study, we evaluated the effects of PrEP on urine levels of the following: α1-microglobulin (α1m), a marker of impaired tubular reabsorption; albuminuria, a measure of glomerular injury; and total proteinuria. The Iniciativa Profilaxis Pre-Exposicion (iPrEx) study randomized HIV-seronegative men and transgender women who have sex with men to oral TDF/FTC or placebo. The iPrEx open-label extension (iPrEx-OLE) study enrolled former PrEP trial participants to receive open-label TDF/FTC. A cross-sectional analysis compared urine biomarker levels by study arm in iPrEx (N = 100 treatment arm, N = 100 placebo arm). Then, urine biomarker levels were compared before and after PrEP initiation in 109 participants of iPrEx-OLE. In iPrEx, there were no significant differences in urine α1m, albuminuria, or proteinuria by treatment arm. In iPrEx-OLE, after 24 weeks on PrEP, urine α1m and proteinuria increased by 21% [95% confidence interval (CI): 10 to 33] and 18% (95% CI: 8 to 28), respectively. The prevalence of detectable α1m increased from 44% to 65% (P < 0.001) and estimated glomerular filtration rate declined by 4 mL/min/1.73 m (P < 0.001). There was no significant change in albuminuria (6%; 95% CI: -7% to 20%). PrEP with TDF/FTC was associated with a statistically significant rise in urine α1m and proteinuria after 6 months, suggesting that PrEP may result in subclinical tubule dysfunction.

  16. Modulation of Memory Consolidation by the Basolateral Amygdala or Nucleus Accumbens Shell Requires Concurrent Dopamine Receptor Activation in Both Brain Regions

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the…

  17. Elastomer liners for geothermal tubulars Y267 EPDM Liner Program:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasuna, A.R.; Davis, D.L.; Flickinger, J.E.

    1987-12-01

    The elastomer, Y267 EPDM, has been identified as a hydrothermally stable material which can operate at temperatures in excess of 320/sup 0/C. The goal of the Y267 Liner Program was to demonstrate the feasibility of using this material as a liner for mild steel tubulars to prevent or mitigate corrosion. If successful, the usage of EPDM lined pipe by the geothermal community may have a significant impact on operating costs and serve as a viable alternative to the use of alloyed tubulars. Tooling procedures were developed under this program to mold a 0.64 cm (0.25'') thick Y267 EPDM liner intomore » a tubular test section 61 cm (2') in length and 19.1 cm (7.5'') in diameter (ID). A successful effort was made to identify a potential coupling agent to be used to bond the elastomer to the steel tubular wall. This agent was found to withstand the processing conditions associated with curing the elastomer at 288/sup 0/C and to retain a significant level of adhesive strength following hydrothermal testing in a synthetic brine at 260/sup 0/C for a period of 166 hours. Bonding tests were conducted on specimens of mild carbon steel and several alloys including Hastelloy C-276. An objective of the program was to field test the lined section of pipe mentioned above at a geothermal facility in the Imperial Valley. Though a test was conducted, problems encountered during the lining operation precluded an encouraging outcome. The results of the field demonstration were inconclusive. 6 refs., 13 figs., 13 tabs« less

  18. The epidermal growth factor receptor (EGF-R) is present on the basolateral, but not the apical, surface of enterocytes in the human gastrointestinal tract.

    PubMed Central

    Playford, R J; Hanby, A M; Gschmeissner, S; Peiffer, L P; Wright, N A; McGarrity, T

    1996-01-01

    BACKGROUND: While it is clear that luminal epidermal growth factor (EGF) stimulates repair of the damaged bowel, its significance in maintaining normal gut growth remains uncertain. If EGF is important in maintaining normal gut growth, the EGF receptor (EGF-R) should be present on the apical (luminal) surface in addition to the basolateral surface. AIMS/SUBJECTS/METHODS: This study examined the distribution of the EGF-R in the epithelium throughout the human gastro-intestinal tract using immunohistochemistry, electron microscopy, and western blotting of brush border preparations. RESULTS: Immunostaining of the oesophagus showed circumferential EGF-R positivity in the cells of the basal portions of the stratified squamous epithelium but surface cells were EGF-R negative. In the normal stomach, small intestine, and colon, immunostaining localised the receptor to the basolateral surface with the apical membranes being consistently negative. EGF-R positivity within the small intestine appeared to be almost entirely restricted to the proliferative (crypt) region. Western blotting demonstrated a 170 kDa protein in whole tissue homogenates but not in the brush border vesicle preparations. CONCLUSIONS: As the EGF-R is located only on the basolateral surfaces in the normal adult gastrointestinal tract, the major role of luminal EGF is probably to stimulate repair rather than to maintain normal gut growth. Images Figure 1 Figure 2 Figure 3 PMID:8977341

  19. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  20. Filament winding technique, experiment and simulation analysis on tubular structure

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  1. Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor.

    PubMed

    Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer

    2014-09-20

    An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 78 FR 56865 - Certain Oil Country Tubular Goods From India and Turkey: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Country Tubular Goods From India and Turkey: Postponement of Preliminary Determination in the... (202) 482-0189 (Turkey), AD/CVD Operations, Import Administration, International Trade Administration... the countervailing duty investigations of certain oil country tubular goods from India and Turkey.\\1...

  3. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    PubMed Central

    2008-01-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm)−1.

  4. Medullary nephrocalcinosis, distal renal tubular acidosis and polycythaemia in a patient with nephrotic syndrome.

    PubMed

    Karunarathne, Suneth; Udayakumara, Yapa; Govindapala, Dumitha; Fernando, Harshini

    2012-07-26

    Medullary nephrocalcinosis and distal renal tubular acidosis are closely associated and each can lead to the other. These clinical entities are rare in patients with nephrotic syndrome and polycythaemia is an unusual finding in such patients. We describe the presence of medullary nephrocalcinosis, distal renal tubular acidosis and polycythaemia in a patient with nephrotic syndrome due to minimal change disease. Proposed mechanisms of polycythaemia in patients with nephrotic syndrome and distal renal tubular acidosis include, increased erythropoietin production and secretion of interleukin 8 which in turn stimulate erythropoiesis. A 22 year old Sri Lankan Sinhala male with nephrotic syndrome due to minimal change disease was investigated for incidentally detected polycythaemia. Investigations revealed the presence of renal tubular acidosis type I and medullary nephrocalcinosis. Despite extensive investigation, a definite cause for polycythaemia was not found in this patient. Treatment with potassium and bicarbonate supplementation with potassium citrate led to correction of acidosis thereby avoiding the progression of nephrocalcinosis and harmful effects of chronic acidosis. The constellation of clinical and biochemical findings in this patient is unique but the pathogenesis of erythrocytosis is not clearly explained. The proposed mechanisms for erythrocytosis in other patients with proteinuria include increased erythropoietin secretion due to renal hypoxia and increased secretion of interleukin 8 from the kidney. This case illustrates that there may exist hitherto unknown connections between tubular and glomerular dysfunction in patients with nephrotic syndrome.

  5. Basolateral LPS inhibits NHE3 and HCO3− absorption through TLR4/MyD88-dependent ERK activation in medullary thick ascending limb

    PubMed Central

    Watts, Bruns A.; George, Thampi; Sherwood, Edward R.

    2011-01-01

    Sepsis is associated with defects in renal tubule function, but the underlying mechanisms are incompletely understood. Recently, we demonstrated that Gram-negative bacterial lipopolysaccharide (LPS) inhibits HCO3− absorption in the medullary thick ascending limb (MTAL) through activation of Toll-like receptor 4 (TLR4). Here, we examined the mechanisms responsible for inhibition of HCO3− absorption by basolateral LPS. Adding LPS to the bath decreased HCO3− absorption by 30% in rat and mouse MTALs perfused in vitro. The inhibition of HCO3− absorption was eliminated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK)/ERK inhibitors U0126 and PD98059. LPS induced a rapid (<15 min) and sustained (up to 60 min) increase in ERK phosphorylation in microdissected MTALs that was blocked by PD98059. The effects of basolateral LPS to activate ERK and inhibit HCO3− absorption were eliminated in MTALs from TLR4−/− and myeloid differentiation factor 88 (MyD88)−/− mice but were preserved in MTALs from TIR (Toll/interleukin-1 receptor) domain-containing adapter-inducing interferon-β (Trif)−/− mice. Basolateral LPS decreased apical Na+/H+ exchanger 3 NHE3 activity through a decrease in maximal velocity (Vmax). The inhibition of NHE3 by LPS was eliminated by MEK/ERK inhibitors. LPS inhibited HCO3− absorption despite the presence of physiological stimuli that activate ERK in the MTAL. We conclude that basolateral LPS inhibits HCO3− absorption in the MTAL through activation of a TLR4/MyD88/MEK/ERK pathway coupled to inhibition of NHE3. These studies identify NHE3 as a target of TLR4 signaling in the MTAL and show that bacterial molecules can impair the absorptive functions of renal tubules through inhibition of this exchanger. The ERK pathway links TLR4 to downstream modulation of ion transport proteins and represents a potential target for treatment of sepsis-induced renal tubule dysfunction. PMID:21881005

  6. Phorbol 12-myristate 13-acetate down-regulates Na,K-ATPase independent of its protein kinase C site: decrease in basolateral cell surface area.

    PubMed Central

    Beron, J; Forster, I; Beguin, P; Geering, K; Verrey, F

    1997-01-01

    The effect of protein kinase C (PKC) stimulation on the pump current (Ip) generated by the Na,K-ATPase was measured in A6 epithelia apically permeabilized with amphotericin B. Phorbol 12-myristate 13-acetate (PMA) produced a decrease in Ip carried by sodium pumps containing the endogenous Xenopus laevis or transfected Bufo marinus alpha 1 subunits (approximately 30% reduction within 25 min, maximum after 40 min) independent of the PKC phosphorylation site (T15A/S16A). In addition to this major effect of PMA, which was independent of the intracellular sodium concentration and was prevented by the PKC inhibitor bisindolylmaleimide GF 109203X (BIM), another BIM-resistant, PKC site-independent decrease was observed when the Ip was measured at low sodium concentrations (total reduction approximately 50% at 5 mM sodium). Using ouabain binding and cell surface biotinylation, stimulation of PKC was shown to reduce surface Na,K-ATPase by 14 to 20% within 25 min. The same treatment stimulated fluid phase endocytosis sevenfold and decreased by 16.5% the basolateral cell surface area measured by transepithelial capacitance measurements. In conclusion, PKC stimulation produces a decrease in sodium pump function which can be attributed, to a large extent, to a withdrawal of sodium pumps from the basolateral cell surface independent of their PKC site. This reduction of the number of sodium pumps is parallel to a decrease in basolateral membrane area. Images PMID:9188092

  7. Nano-Tubular Cellulose for Bioprocess Technology Development

    PubMed Central

    Koutinas, Athanasios A.; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M.; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in “cold pasteurization” processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc. PMID:22496794

  8. Comprehensive clinical approach to renal tubular acidosis.

    PubMed

    Sharma, Sonia; Gupta, Ankur; Saxena, Sanjiv

    2015-08-01

    Renal tubular acidosis (RTA) is essentially characterized by normal anion gap and hyperchloremic metabolic acidosis. It is important to understand that despite knowing the disease for 60-70 years, complexities in the laboratory tests and their interpretation still make clinicians cautious to diagnose and label types of tubular disorder. Hence, we are writing this mini-review to emphasize on the step wise approach to RTA with some understanding on its basic etiopathogenesis. This will definitely help to have an accurate interpretation of urine and blood reports in correlation with the clinical condition. RTA can be a primary or secondary defect and results either due to abnormality in bicarbonate ion absorption or hydrogen ion secretion. Primary defects are common in children due to gene mutation or idiopathic nature while secondary forms are more common in adults. We are focusing and explaining here in this review all the clinical and laboratory parameters which are essential for making the diagnosis of RTA and excluding the extrarenal causes of hyperchloremic, normal anion gap metabolic acidosis.

  9. Status report on the development of a tubular electron beam ion source

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.

    2004-05-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.

  10. Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off.

    PubMed Central

    Goligorsky, M S; DiBona, G F

    1993-01-01

    Reorientation of the alpha 3 subunit of integrins from predominantly basal to the apical cell surface of cultured renal tubular epithelial cells subjected to oxidant stress has previously been demonstrated. The present study was designed to assess functional competence of ectopically expressed apical integrins. Cell-cell adhesion assay revealed enhanced cytoatractant properties of stressed cells. Stressed epithelial cells exhibited specific recognition and binding of laminin-coated latex beads. These processes were inhibited with the peptide Gly-Arg-Gly-Asp-Asn-Pro (GRGDNP) suggesting a role of RGD-recognizing integrins in augmented adhesion to stressed cells. Given that such enhanced adhesion in in vivo acute renal failure may govern tubular obstruction by desquamated epithelium, a physiological marker of patency of tubular lumen, proximal tubular pressure, was monitored in rats subjected to 60 min of renal ischemia followed by reperfusion. Proximal tubular pressure increased 2-fold after 2 hr of reperfusion in animals that had undergone 60 min of ischemia. Infusion of GRGDNP into the renal artery during reperfusion period virtually abolished an increase in proximal tubular pressure observed in ischemic acute renal failure. These in vitro and in vivo findings are consistent with the hypothesis that RGD-recognizing integrins play an important role in the pathogenesis of tubular obstruction in ischemic acute renal failure. Images Fig. 2 Fig. 3 PMID:8516318

  11. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    PubMed

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH <5.3 with a plasma potassium threshold >3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical

  12. Smart concrete slabs with embedded tubular PZT transducers for damage detection

    NASA Astrophysics Data System (ADS)

    Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing

    2018-02-01

    The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.

  13. Renal tubular leakage complicating microcephalic osteodysplastic primordial dwarfism.

    PubMed Central

    Eason, J; Hall, C M; Trounce, J Q

    1995-01-01

    We describe a male infant with phenotypic and radiological features of microcephalic osteodysplastic primordial dwarfism type I/III. He showed severe osteoporosis and biochemical derangement owing to renal tubular leakage, which has not previously been reported in this condition. He died aged 5 months. Images PMID:7783178

  14. Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis

    PubMed Central

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-01-01

    Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis. PMID:24153433

  15. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis

    NASA Astrophysics Data System (ADS)

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-10-01

    Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.

  16. Basolateral Sorting of Furin in MDCK Cells Requires a Phenylalanine-Isoleucine Motif Together with an Acidic Amino Acid Cluster

    PubMed Central

    Simmen, Thomas; Nobile, Massimo; Bonifacino, Juan S.; Hunziker, Walter

    1999-01-01

    Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin. PMID:10082580

  17. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  18. Mechanism of epithelial lithium transport. Evidence for basolateral Na:Na and Na:Li exchange

    PubMed Central

    1983-01-01

    Measurement of transmural sodium fluxes across isolated, ouabain- inhibited turtle colon in the presence of a serosal-to-mucosal sodium gradient shows that in the absence of active transport the amiloride- sensitive cellular path contains at least two routes for the transmural movement of sodium and lithium, one a conductive path and the other a nonconductive, cation-exchange mechanism. The latter transport element can exchange lithium for sodium, and the countertransport of these two cations provides a mechanistic basis for the ability of tight epithelia to actively absorb lithium despite the low affinity of the basolateral Na/K-ATPase for this cation. PMID:6644269

  19. Investigation on the Effect of Initial Welding Imperfection on Fatigue strength of Tubular Member by FEM

    NASA Astrophysics Data System (ADS)

    Chang, Kyong-Ho; Shin, Wang Sub; Nguyen Van Vuong, Do; Lee, Chin Hyeong

    2018-04-01

    Steel tube structure is used for steel structure such as offshore platform, bridges and so on. Also, all circular members of tubular structures are mainly connected by welding. When the steel tubular structures are subjected to repeated loading, not only the load carrying capacity is reduced but also fatigue cracks may develop at the joint part of steel tubular members which are connected by welding. Carrying out welding, welding initial imperfection such as welding deformation and residual stress are inevitably generated at weld part. It was well known that the effect of welding residual and welding deformation on fatigue strength. However, It’s not clear which affects fatigue strength more. However, it’s difficult to clear the effect on fatigue strength by experiment. To clarify these effect, fatigue analysis was carried out by FEM which is based on continuum damage mechanics. On the other hand, coupled three-dimensional non-steady heat conduction analysis, and the thermal elastic-plastic analysis was carried out to reproduce the initial weld state of tubular member. From the result, not only the fatigue strength of welded tubular member but also the fatigue life could be found by FEM fatigue analysis.

  20. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.

    PubMed

    Lichtenberg, Nina T; Pennington, Zachary T; Holley, Sandra M; Greenfield, Venuz Y; Cepeda, Carlos; Levine, Michael S; Wassum, Kate M

    2017-08-30

    To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are

  1. Pediatric Tubular Pulmonary Heart Valve from Decellularized Engineered Tissue Tubes

    PubMed Central

    Reimer, Jay M.; Syedain, Zeeshan H.; Haynie, Bee H.T.; Tranquillo, Robert T.

    2015-01-01

    Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced “leaflets” in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (< 5%), and low systolic pressure gradients (< 2.5 mmHg) under pulmonary conditions. Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing. PMID:26036175

  2. Minimally Invasive Tubular Resection of Lumbar Synovial Cysts: Report of 40 Consecutive Cases.

    PubMed

    Birch, Barry D; Aoun, Rami James N; Elbert, Gregg A; Patel, Naresh P; Krishna, Chandan; Lyons, Mark K

    2016-10-01

    Lumbar synovial cysts are a relatively common clinical finding. Surgical treatment of symptomatic synovial cysts includes computed tomography-guided aspiration, open resection and minimally invasive tubular resection. We report our series of 40 consecutive minimally invasive microscopic tubular lumbar synovial cyst resections. Following Institutional Review Board approval, a retrospective analysis of 40 cases of minimally invasive microscopic tubular retractor synovial cyst resections at a single institution by a single surgeon (B.D.B.) was conducted. Gross total resection was performed in all cases. Patient characteristics, surgical operating time, complications, and outcomes were analyzed. Lumbar radiculopathy was the presenting symptoms in all but 1 patient, who presented with neurogenic claudication. The mean duration of symptoms was 6.5 months (range, 1-25 months), mean operating time was 58 minutes (range, 25-110 minutes), and mean blood loss was 20 mL (range, 5-50 mL). Seven patients required overnight observation. The median length of stay in the remaining 33 patients was 4 hours. There were 2 cerebrospinal fluid leaks repaired directly without sequelae. The mean follow-up duration was 80.7 months. Outcomes were good or excellent in 37 of the 40 patients, fair in 1 patient, and poor in 2 patients. Minimally invasive microscopic tubular retractor resection of lumbar synovial cysts can be done safely and with comparable outcomes and complication rates as open procedures with potentially reduced operative time, length of stay, and healthcare costs. Patient selection for microscopic tubular synovial cyst resection is based in part on the anatomy of the spine and synovial cyst and is critical when recommending minimally invasive vs. open resection to patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking

    PubMed Central

    Chaudhri, N.; Woods, C. A.; Sahuque, L.L.; Gill, T. M.; Janak, P.H.

    2014-01-01

    Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself, as well as serial connectivity between the basolateral amygdala (BLA) and nucleus accumbens core (NAC core), were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male, Long-Evans rats were trained to discriminate between two conditioned stimuli (CS) - a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 ml/CS+, 3.2 ml/session) and a CS− that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS− without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of gamma-amino-butyric-acid receptor agonists (0.1 mM muscimol and 1.0 mM baclofen; M/B; 0.3 µl/side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 µg/side), or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context. PMID:23758059

  4. Advanced proximal neoplasia of the colon in average-risk adults.

    PubMed

    Rabeneck, Linda; Paszat, Lawrence F; Hilsden, Robert J; McGregor, S Elizabeth; Hsieh, Eugene; M Tinmouth, Jill; Baxter, Nancy N; Saskin, Refik; Ruco, Arlinda; Stock, David

    2014-10-01

    Estimating risk for advanced proximal neoplasia (APN) based on distal colon findings can help identify asymptomatic persons who should undergo examination of the proximal colon after flexible sigmoidoscopy (FS) screening. We aimed to determine the risk of APN by most advanced distal finding among an average-risk screening population. Prospective, cross-sectional study. Teaching hospital and colorectal cancer screening center. A total of 4651 asymptomatic persons at average risk for colorectal cancer aged 50 to 74 years (54.4% women [n = 2529] with a mean [± standard deviation] age of 58.4 ± 6.2 years). All participants underwent a complete colonoscopy, including endoscopic removal of all polyps. We explored associations between several risk factors and APN. Logistic regression was used to identify independent predictors of APN. A total of 142 persons (3.1%) had APN, of whom 85 (1.8%) had isolated APN (with no distal findings). APN was associated with older age, a BMI >27 kg/m(2), smoking, distal advanced adenoma and/or cancer, and distal non-advanced tubular adenoma. Those with a distal advanced neoplasm were more than twice as likely to have APN compared with those without distal lesions. Distal findings used to estimate risk of APN were derived from colonoscopy rather than FS itself. In persons at average risk for colorectal cancer, the prevalence of isolated APN was low (1.8%). Use of distal findings to predict APN may not be the most effective strategy. However, incorporating factors such as age (>65 years), sex, BMI (>27 kg/m(2)), and smoking status, in addition to distal findings, should be considered for tailoring colonoscopy recommendations. Further evaluation of risk stratification approaches in other asymptomatic screening populations is warranted. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  5. Interaction between the Basolateral Amygdala and Dorsal Hippocampus Is Critical for Cocaine Memory Reconsolidation and Subsequent Drug Context-Induced Cocaine-Seeking Behaviorin Rats

    ERIC Educational Resources Information Center

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory…

  6. New Markers of Inflammation and Tubular Damage in Children with Chronic Kidney Disease.

    PubMed

    Musiał, Kinga; Bargenda, Agnieszka; Drożdż, Dorota; Zwolińska, Danuta

    2017-01-01

    Monocyte chemoattractant protein- (MCP-) 1, macrophage colony-stimulating factor (MCSF), and neopterin are connected with monocyte migration and transition into macrophages, leading to fibrosis and tubular damage in the course of CKD. The aim of the study was to analyze the applicability of urinary fractional excretion (FE) of MCP1, MCSF, and neopterin, as markers of inflammation and tubular damage, in children with CKD. The study group consisted of 61 children with CKD stages 1-5 and 23 age-matched controls. The serum and urine concentrations of MCP1, MCSF, and neopterin were assessed by ELISA and then the fractional excretion (FE) was calculated. FE MCSF and neopterin values exceeded 1% already in controls. FE MCSF rose significantly since CKD stages 1-2, FE neopterin since CKD stages 3-5. FE MCP1 was below 1% in healthy controls and in CKD stages 1-2, then increased significantly in CKD stages 3-5. The FE MCP-1 values show that inflammation precedes the tubular dysfunction. FE MCSF and FE neopterin may be considered new markers of the renal parenchyma progressive damage. Fractional excretion may become a useful tool in the assessment of inflammation and tubular damage in children with CKD.

  7. ISOLATION AND CHARACTERIZATION OF LAMELLAR BODIES AND TUBULAR MYELIN FROM RAT LUNG HOMOGENATES

    PubMed Central

    Gil, Joan; Reiss, Oscar K.

    1973-01-01

    Three surface-active fractions which differ in their morphology have been isolated from rat lung homogenates by ultracentrifugation in a discontinuous sucrose density gradient. In order of increasing density, the fractions consisted, as shown by electron microscopy, primarily of common myelin figures, lamellar bodies, and tubular myelin figures. The lipid of all three fractions contained approximately 94% polar lipids and 2% cholesterol. In the case of the common myelin figures and the lamellar bodies, the polar lipids consisted of 73% phosphatidylcholines, 9% phosphatidylserines and inositols, and 8% phosphatidylethanolamines. In the case of the tubular myelin figures, the respective percentages were 58, 19, and 5. Over 90% of the fatty acids of the lecithins of all three fractions were saturated. Electrophoresis of the proteins of the fractions in sodium dodecyl sulfate or Triton X-100 revealed that the lamellar bodies and the tubular myelin figures differed in the mobilities of their proteins. The common myelin figures, however, contained proteins from both of the other fractions. These data indicate that, whereas the lipids of the extracellular, alveolar surfactant(s) originate in the lamellar bodies, the proteins arise from another source. It is further postulated that the tubular myelin figures represent a liquid crystalline state of the alveolar surface-active lipoproteins. PMID:4726305

  8. Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis.

    PubMed

    Dolai, Subhankar; Liang, Tao; Orabi, Abrahim I; Holmyard, Douglas; Xie, Li; Greitzer-Antes, Dafna; Kang, Youhou; Xie, Huanli; Javed, Tanveer A; Lam, Patrick P; Rubin, Deborah C; Thorn, Peter; Gaisano, Herbert Y

    2018-05-01

    supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  10. Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion.

    PubMed

    Tresguerres, Martin; Parks, Scott K; Katoh, Fumi; Goss, Greg G

    2006-02-01

    We have previously shown that continuous intravenous infusion of NaHCO3 for 24 h ( approximately 1000 micromol kg(-1) h(-1)) results in the relocation of V-H+-ATPase from the cytoplasm to the basolateral membrane in the gills of the Pacific dogfish. To further investigate this putative base-secretive process we performed similar experiments with the addition of colchicine, an inhibitor of cytoskeleton-dependent cellular trafficking processes. Blood pH and plasma total CO2 were significantly higher in the colchicines-treated, HCO3- -infused fish compared with fish infused with HCO3- alone. The effect of colchicine was highest after 24 h of infusion (8.33+/-0.06 vs 8.02+/-0.03 pH units, 15.72+/-3.29 vs 6.74+/-1.34 mmol CO2 l(-1), N=5). Immunohistochemistry and western blotting confirmed that colchicine blocked the transit of V-H+-ATPase to the basolateral membrane. Furthermore, western blotting analyses from whole gill and cell membrane samples suggest that the short-term (6 h) response to alkaline stress consists of relocation of V-H+-ATPases already present in the cell to the basolateral membrane, while in the longer term (24 h) there is both relocation of preexistent enzyme and upregulation in the synthesis of new units. Our results strongly suggest that cellular relocation of V-H+-ATPase is necessary for enhanced HCO3- secretion across the gills of the Pacific dogfish.

  11. Modification of tubular ceramic membranes with carbon nanotubes using catalytic chemical vapor deposition.

    PubMed

    Tran, Duc Trung; Thieffry, Guillemette; Jacob, Matthieu; Batiot-Dupeyrat, Catherine; Teychene, Benoit

    2015-01-01

    In this study, carbon nanotubes (CNTs) were successfully grown on tubular ceramic membranes using the catalytic chemical vapor deposition (CCVD) method. CNTs were synthesized at 650°C for 3-6 h under a 120 mL min(-1) flow of C2H6 on ceramic membranes impregnated with iron salt. The synthesis procedure was beforehand optimized in terms of catalyst amount, impregnation duration and reaction temperature, using small pieces of tubular ceramic membranes. The yield, size and structure of the CNTs produced were characterized using thermogravimetric analysis and microscopic imaging techniques. Afterwards, preliminary filtration tests with alginate and phenol were performed on two modified tubular membranes. The results indicate that the addition of CNTs on the membrane material increased the permeability of ceramic membrane and its ability to reject alginate and adsorb phenol, yet decreased its fouling resistance.

  12. Exciton Level Structure and Dynamics in Tubular Porphyrin Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yan; Stradomska, Anna; Fong, Sarah

    2014-10-30

    We present an account of the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical spectroscopy and stochastic exciton modeling, we address both linear and nonlinear exciton absorption, relaxation pathways, and the role of disorder. The static disorder-dominated absorption and fluorescence line widths show little temperature dependence for the lowest excitons (Q band), which we successfully simulate using a model of exciton scattering on acoustic phonons in the host matrix. Temperature-dependent transient absorption of and fluorescence from the excitons in the tubular aggregates aremore » marked by nonexponential decays with time scales ranging from a few picoseconds to a few nanoseconds, reflecting complex relaxation mechanisms. Combined experimental and theoretical investigations indicate that nonradiative pathways induced by traps and defects dominate the relaxation of excitons in the tubular aggregates. We model the pumpprobe spectra and ascribe the excited-state absorption to transitions from one-exciton states to a manifold of mixed one- and two-exciton states. Our results demonstrate that while the delocalized Frenkel excitons (over 208 (1036) molecules for the optically dominant excitons in the Q (B) band) resulting from strong intermolecular coupling in these aggregates could potentially facilitate efficient energy transfer, fast relaxation due to defects and disorder probably present a major limitation for exciton transport over large distances.« less

  13. Comparison of two models for evaluation histopathology of experimental renal ischemia.

    PubMed

    Tirapelli, L F; Barione, D F; Trazzi, B F M; Tirapelli, D P C; Novas, P C; Silva, C S; Martinez, M; Costa, R S; Tucci, S; Suaid, H J; Cologna, A J; Martins, A C P

    2009-12-01

    Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARF. Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.

  14. Trypsin impaired epithelial barrier function and induced IL-8 secretion through basolateral PAR-2: a lesson from a stratified squamous epithelial model.

    PubMed

    Shan, Jing; Oshima, Tadayuki; Chen, Xin; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2012-11-15

    Immune-mediated injury by the protease-activated receptor-2-interleukin-8 (PAR-2-IL8) pathway may underlie the development of gastroesophageal reflux disease (GERD). However, the localization of PAR-2 and the mechanism of PAR-2 activation remain unclear. This study aimed to address these questions on an esophageal stratified squamous epithelial model and in the human esophageal mucosa of GERD patients. Normal human esophageal epithelial cells were cultured with the air-liquid interface system to establish the model. SLIGKV-NH2 (PAR-2 synthetic agonist), trypsin (PAR-2 natural activator), and weak acid (pH 4, 5, and 6) were added to either the apical or basolateral compartment to evaluate their effects on transepithelial electrical resistance (TEER) and IL-8 production. PAR-2 localization was examined both in the cell model and biopsies from GERD patients by immunohistochemistry. Apical trypsin stimulation induced IL-8 accompanied by decreased TEER in vitro, whereas the effective concentration from the basolateral side was 10 times lower. SLIGKV-NH2 from basolateral but not apical stimulation induced IL-8 production. Apical weak acid stimulation did not influence TEER or IL-8 production. Immunohistochemistry showed intense reactivity of PAR-2 in the basal and suprabasal layers after stimulation with trypsin. A similar PAR-2 reactivity that was mainly located at the basal and suprabasal layers was detected in GERD patients. In conclusion, the activation of the PAR-2-IL-8 pathway probably occurred at the basal and suprabasal layers, while the esophageal epithelial barrier may influence the activation of PAR-2. Under proton pump inhibitor therapy, refluxed trypsin may remain active and be a potential agent in the pathogenesis of refractory GERD.

  15. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels

    PubMed Central

    Alzamora, Rodrigo; O’Mahony, Fiona; Ko, Wing-Hung; Yip, Tiffany Wai-Nga; Carter, Derek; Irnaten, Mustapha; Harvey, Brian Joseph

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl− secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl− secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl− conductance or basolateral Na+–K+-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl− secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl− secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKCα-dependent pathway. PMID:21747769

  16. 76 FR 39071 - Certain Oil Country Tubular Goods From the People's Republic of China: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-944] Certain Oil Country Tubular... administrative review of the countervailing duty order on certain oil country tubular goods (``OCTG'') from the... subject to administrative protective order (``APO'') of their responsibility concerning the disposition of...

  17. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    PubMed Central

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  18. Hypervigilance for fear after basolateral amygdala damage in humans

    PubMed Central

    Terburg, D; Morgan, B E; Montoya, E R; Hooge, I T; Thornton, H B; Hariri, A R; Panksepp, J; Stein, D J; van Honk, J

    2012-01-01

    Recent rodent research has shown that the basolateral amygdala (BLA) inhibits unconditioned, or innate, fear. It is, however, unknown whether the BLA acts in similar ways in humans. In a group of five subjects with a rare genetic syndrome, that is, Urbach–Wiethe disease (UWD), we used a combination of structural and functional neuroimaging, and established focal, bilateral BLA damage, while other amygdala sub-regions are functionally intact. We tested the translational hypothesis that these BLA-damaged UWD-subjects are hypervigilant to facial expressions of fear, which are prototypical innate threat cues in humans. Our data indeed repeatedly confirm fear hypervigilance in these UWD subjects. They show hypervigilant responses to unconsciously presented fearful faces in a modified Stroop task. They attend longer to the eyes of dynamically displayed fearful faces in an eye-tracked emotion recognition task, and in that task recognize facial fear significantly better than control subjects. These findings provide the first direct evidence in humans in support of an inhibitory function of the BLA on the brain's threat vigilance system, which has important implications for the understanding of the amygdala's role in the disorders of fear and anxiety. PMID:22832959

  19. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    PubMed

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  20. Glomerular and Tubular Damage Markers in Individuals with Progressive Albuminuria

    PubMed Central

    Nauta, Ferdau L.; Scheven, Lieneke; Meijer, Esther; van Oeveren, Wim; de Jong, Paul E.; Bakker, Stephan J.L.

    2013-01-01

    Summary Background and objectives Albuminuria is associated with risk for renal and cardiovascular disease. It is difficult to predict which persons will progress in albuminuria. This study investigated whether assessment of urinary markers associated with damage to different parts of the nephron may help identify individuals that will progress in albuminuria. Design, setting, participants, & measurements Individuals were selected from a prospective community-based cohort study with serial follow-up and defined as “progressors” if they belonged to the quintile of participants with the most rapid annual increase in albuminuria, and reached an albuminuria ≥150 mg/d during follow-up. Patients with known renal disease or macroalbuminuria at baseline were excluded. Each progressor was matched to two control participants, based on baseline albuminuria, age, and sex. Furthermore, damage markers were measured in a separate set of healthy individuals. Results After a median follow-up of 8.6 years, 183 of 8394 participants met the criteria for progressive albuminuria. Baseline clinical characteristics were comparable between progressors and matched controls (n=366). Both had higher baseline albuminuria than the overall population. Urinary excretion of the glomerular damage marker IgG was significantly higher in progressors, whereas urinary excretion of proximal tubular damage markers and inflammatory markers was lower in these individuals compared with controls. Healthy individuals (n=109) had the lowest values for all urinary damage markers measured. Conclusions These data suggest that albuminuria associated with markers of glomerular damage is more likely to progress, whereas albuminuria associated with markers of tubulointerstitial damage is more likely to remain stable. PMID:23539232

  1. Tubular forms of papova viruses in human laryngeal papilloma.

    PubMed

    Arnold, W

    1979-01-01

    In two cases of recurrent laryngeal papillomatosis tubular forms of papova viruses could be observed. The same material revealed the close relation between nuclear chromatine and the release of particles, as well as a capsomere like substructure of the virions.

  2. Tenofovir Nephrotoxicity: 2011 Update

    PubMed Central

    Fernandez-Fernandez, Beatriz; Montoya-Ferrer, Ana; Sanz, Ana B.; Sanchez-Niño, Maria D.; Izquierdo, Maria C.; Poveda, Jonay; Sainz-Prestel, Valeria; Ortiz-Martin, Natalia; Parra-Rodriguez, Alejandro; Selgas, Rafael; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2011-01-01

    Tenofovir is an acyclic nucleotide analogue reverse-transcriptase inhibitor structurally similar to the nephrotoxic drugs adefovir and cidofovir. Tenofovir is widely used to treat HIV infection and approved for treatment of hepatitis B virus. Despite initial cell culture and clinical trials results supporting the renal safety of tenofovir, its clinical use is associated with a low, albeit significant, risk of kidney injury. Proximal tubular cell secretion of tenofovir explains the accumulation of the drug in these mitochondria-rich cells. Tenofovir nephrotoxicity is characterized by proximal tubular cell dysfunction that may be associated with acute kidney injury or chronic kidney disease. Withdrawal of the drug leads to improvement of analytical parameters that may be partial. Understanding the risk factors for nephrotoxicity and regular monitoring of proximal tubular dysfunction and serum creatinine in high-risk patients is required to minimize nephrotoxicity. Newer, structurally similar molecular derivatives that do not accumulate in proximal tubules are under study. PMID:21716719

  3. Mixed organic solvents induce renal injury in rats.

    PubMed

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  4. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  5. Proximal Junctional Kyphosis.

    PubMed

    Kim, Han Jo; Iyer, Sravisht

    2016-05-01

    Proximal junctional kyphosis (PJK) is a common complication following adult spinal deformity surgery. It is defined by two criteria: a proximal junctional sagittal Cobb angle (1) ≥ 10° and (2) at least 10° greater than the preoperative measurement. PJK is multifactorial in origin and likely stems from surgical, radiographic, and patient-related risk factors. The diagnosis of PJK represents a broad spectrum of disease ranging from asymptomatic patients with recurrence of deformity to those presenting with increased pain, functional deficit, and, in the most severe cases, neurologic deficits. Recent studies have demonstrated increased pain levels in select patients with PJK. In keeping with the broad spectrum of the disease, classification schemes are needed to better describe and stratify the severity of PJK. The most severe form is proximal junctional failure. A consensus on a uniform definition of proximal junctional failure is needed to allow for more systematic study of this phenomenon.

  6. Multiple Factors Influence Glomerular Albumin Permeability in Rats

    PubMed Central

    Sandoval, Ruben M.; Wagner, Mark C.; Patel, Monica; Campos-Bilderback, Silvia B.; Rhodes, George J.; Wang, Exing; Wean, Sarah E.; Clendenon, Sherry S.

    2012-01-01

    Different laboratories recently reported incongruous results describing the quantification of albumin filtration using two-photon microscopy. We investigated the factors that influence the glomerular sieving coefficient for albumin (GSCA) in an effort to explain these discordant reports and to develop standard operating procedures for determining GSCA. Multiple factors influenced GSCA, including the kidney depth of image acquisition (10–20 μm was appropriate), the selection of fluorophore (probes emitting longer wavelengths were superior), the selection of plasma regions for fluorescence measurements, the size and molecular dispersion characteristics of dextran polymers if used, dietary status, and the genetic strain of rat. Fasting reduced the GSCA in Simonsen Munich Wistar rats from 0.035±0.005 to 0.016±0.004 (P<0.01). Frömter Munich Wistar rats had a much lower GSCA in both the fed and the fasted states. Finally, we documented extensive albumin transcytosis with vesicular and tubular delivery to and fusion with the basolateral membrane in S1 proximal tubule cells. In summary, these results help explain the previously conflicting microscopy and micropuncture data describing albumin filtration and highlight the dynamic nature of glomerular albumin permeability. PMID:22223875

  7. [Current status of cadmium exposure among Japanese, especially regarding the safety standard for cadmium concentration in rice and adverse effects on proximal renal tubular function observed in farmers exposed to cadmium through consumption of self-grown rice].

    PubMed

    Horiguchi, Hyogo

    2012-01-01

    Because the staple food in Japan is rice, which absorbs cadmium (Cd) from the soil efficiently, rice is the main source of exposure to Cd in the Japanese population. In addition, there have been many Cd-contaminated farming areas in Japan. Therefore, a safety standard for the Cd concentration in rice was set as 0.4 ppm by the Japanese government. This safety standard has been followed for decades without any appropriate scientific or legal basis. However, recent epidemiological studies of female Japanese farmers exposed to Cd through self-grown rice, that is, a series of Japanese Multi-centered Environmental Toxicant Study (JMETS), showed evidence that the safety standard is appropriate. Therefore, general Japanese consumers are unlikely exposed to Cd excessively with the application of this safety standard, considering the trend of decreasing amount of rice consumed among the Japanese population. On the other hand, Japanese farmers were found to be at risk of Cd exposure through the consumption of self-grown rice with a high Cd concentration. Actually, the JMETS showed that female farmers at 70 years of age or older had a decreased proximal renal tubular function due to the high renal accumulation of Cd. On the basis of these findings, "medical examinations for Cd exposure" have recently been implemented for farmers residing in Cd-polluted areas in northern Japan. Because it has been estimated that such Cd-polluted areas are actually larger, it is necessary to implement medical examinations of more farmers there, particularly the elderly.

  8. Dynamic responses of concrete-filled steel tubular member under axial compression considering creep effect

    NASA Astrophysics Data System (ADS)

    Jiang, X. T.; Wang, Y. D.; Dai, C. H.; Ding, M.

    2017-08-01

    The finite element model of concrete-filled steel tubular member was established by the numerical analysis software considering material nonlinearity to analyze concrete creep effect on the dynamic responses of the member under axial compression and lateral impact. In the model, the constitutive model of core concrete is the plastic damage model, that of steel is the Von Mises yield criterion and kinematic hardening model, and the creep effect at different ages is equivalent to the change of concrete elastic modulus. Then the dynamic responses of concrete-filled steel tubular member considering creep effects was simulated, and the effects of creep on contact time, impact load, deflection, stress and strain were discussed. The fruits provide a scientific basis for the design of the impact resistance of concrete filled steel tubular members.

  9. Reduced cholesterol levels in renal membranes of undernourished rats may account for urinary Na⁺ loss.

    PubMed

    Oliveira, Fabiana S T; Vieira-Filho, Leucio D; Cabral, Edjair V; Sampaio, Luzia S; Silva, Paulo A; Carvalho, Vera C O; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Lima, Vera L M; Paixão, Ana D O

    2013-04-01

    It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.

  10. Development of Na-beta alumina batteries at Pacific Northwest National Laboratory: From tubular to planar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Li, Guosheng; Meinhardt, Kerry D.

    2016-07-28

    Na-beta alumina batteries are one of the most promising technologies for renewable energy storage and grid applications. Na-beta alumina batteries can be constructed in either tubular or planar designs, depending on the shape of the beta-alumina solid electrolyte. The tubular designs have been widely studied and developed since the 1960s primarily because of their ease of sealing. However, planar designs are considered superior to tubular designs in terms of power output, cell packing, ease of assembly, thermal management, and other characteristics. In this paper, we provide an overview on the basic battery electrochemistry, solid electrolyte synthesis and fabrication, battery designs,more » and future trends for further technology improvement.« less

  11. Distal Renal Tubular Acidosis in Infancy: A Bicarbonate Wasting State

    ERIC Educational Resources Information Center

    Rodriguez-Soriano, J.; And Others

    1975-01-01

    Studied were three unrelated infants with distal renal tubular acidosis (a condition characterized by an inability to acidify the urine to minimal pH levels resulting in the loss of bicarbonates). (DB)

  12. Bcl-2 protects tubular epithelial cells from ischemia reperfusion injury by inhibiting apoptosis.

    PubMed

    Suzuki, Chigure; Isaka, Yoshitaka; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Takabatake, Yoshitsugu; Ito, Takahito; Takahara, Shiro; Imai, Enyu

    2008-01-01

    Ischemia followed by reperfusion leads to severe organ injury and dysfunction. Inflammation is considered to be the most important cause of graft dysfunction in kidney transplantation subjected to ischemia. The mechanism that triggers inflammation and renal injury after ischemia remains to be elucidated; however, cellular stress may induce apoptosis during the first hours and days after transplantation, which might play a crucial role in early graft dysfunction. Bcl-2 is known to inhibit apoptosis induced by the etiological factors promoting ischemia and reperfusion injury. Accordingly, we hypothesized that an augmentation of the antiapoptotic factor Bcl-2 may thus protect tubular epithelial cells by inhibiting apoptosis, thereby ameliorating the subsequent tubulointerstitial injury. We examined the effects of Bcl-2 overexpression on ischemia-reperfusion (I/R) injury using Bcl-2 transgenic mice (Bcl-2 TG) and their wild-type littermates (WT). To investigate the effects of I/R injury, the left renal artery and vein were clamped for 45 min, followed by reperfusion for 0-96 h. Bcl-2 TG exhibited decreased active caspase protein in the tubular cells, which led to a reduction in TUNEL-positive apoptotic cells. Consequently, interstitial fibrosis and phenotypic changes were ameliorated in Bcl-2 TG. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R, and subsequent interstitial injury by inhibiting tubular apoptosis.

  13. Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages.

    PubMed

    Huang, Gaoshan; Wang, Jiyuan; Liu, Zhaoqian; Zhou, Dekai; Tian, Ziao; Xu, Borui; Li, Longqiu; Mei, Yongfeng

    2017-12-07

    Controllable locomotion in the micro-/nanoscale is challenging and attracts increasing research interest. Tubular microjets self-propelled by microbubbles are intensively investigated due to their high energy conversion efficiency, but the imperfection of the tubular geometry makes it harder to realize linear motion. Inspired by the macro rocket, we designed a tubular microjet with a grating-structured wall which mimics the guiding empennage of the macro rocket, and we found that the fluid can be effectively guided by the grooves. Both theoretical simulation and experimental work have been carried out, and the obtained results demonstrate that the stability margin of the grating-structured microjet can be enhanced. Compared with microjets with smooth walls, the structured microjets show an enhanced ability of moving linearly. In 10% H 2 O 2 , only 20% of the smooth microjets demonstrate linear trajectories, while 80% of the grating-structured microjets keep moving straight. The grating-structured microjet can maintain linear motion under external disturbance. We further propose to increase the stability by introducing a helical grating structure.

  14. A new tubular hot-wire CVD for diamond coating

    NASA Astrophysics Data System (ADS)

    Motahari, Hamid; Bellah, Samad Moemen; Malekfar, Rasoul

    2017-06-01

    A new tubular hot-wire chemical vapor deposition (HWCVD) system using a tubular quartz vacuum chamber has been fabricated. The filaments in this system can heat the substrate and act as a gas activator and thermally activator for gas species at the same time. The nano- and microcrystalline diamond coatings on the surface of steel AISI 316 substrates have been grown. To assess the results, SEM and FESEM images and Raman spectroscopy investigations have been applied. The results reveal that micro- and nanocrystalline diamond structures have been formed in the coatings, but the disordered diamond and some non-diamond phases, such as graphitic carbons, are also present in the coating layers. The analytical measurements show the growth of diamond films with well-faceted crystals in (111) direction. However, intrinsic stress, secondary nucleation, and poor adhesion are the main issues of future research for this new designed HWCVD.

  15. Tubular system volume changes in twitch fibres from toad and rat skeletal muscle assessed by confocal microscopy

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George

    2002-01-01

    The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sysVol) was 1.38 ± 0.09 % (n = 17), 1.41 ± 0.09 % (n = 12) and 0.83 ± 0.07 % (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sysVol decreased by 30 % when the tubular system was fully depolarized and decreased by 15 % when membrane cholesterol was depleted from the tubular system with methyl-β-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 μm. There was also an increase by 30 % and a decrease by 25 % in t-sysVol when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50 % hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sysVol expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9 % of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle. PMID:11790823

  16. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    PubMed

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  17. Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol.

    PubMed

    Bargmann, W; Krisch, B; Leonhardt, H

    1977-02-14

    Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed. Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.

  18. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less

  19. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    PubMed

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Economic Analysis of Anatomic Plating Versus Tubular Plating for the Treatment of Fibula Fractures.

    PubMed

    Chang, Gerard; Bhat, Suneel B; Raikin, Steven M; Kane, Justin M; Kay, Andrew; Ahmad, Jamal; Pedowitz, David I; Krieg, James

    2018-03-01

    Ankle fractures are among the most common injuries requiring operative management. Implant choices include one-third tubular plates and anatomically precontoured plates. Although cadaveric studies have not revealed biomechanical differences between various plate constructs, there are substantial cost differences. This study sought to characterize the economic implications of implant choice. A retrospective review was undertaken of 201 consecutive patients with operatively treated OTA type 44B and 44C ankles. A Nationwide Inpatient Sample query was performed to estimate the incidence of ankle fractures requiring fibular plating, and a Monte Carlo simulation was conducted with the estimated at-risk US population for associated plate-specific costs. The authors estimated an annual incidence of operatively treated ankle fractures in the United States of 59,029. The average cost was $90.86 (95% confidence interval, $90.84-$90.87) for a one-third tubular plate vs $746.97 (95% confidence interval, $746.55-$747.39) for an anatomic plate. Across the United States, use of only one-third tubular plating over anatomic plating would result in statistically significant savings of $38,729,517 (95% confidence interval, $38,704,773-$38,754,261; P<.0001). General use of one-third tubular plating instead of anatomic plating whenever possible for fibula fractures could result in cost savings of up to nearly $40 million annually in the United States. Unless clinically justifiable on a per-case basis, or until the advent of studies showing substantial clinical benefit, there currently is no reason for the increased expense from widespread use of anatomic plating for fractures amenable to one-third tubular plating. [Orthopedics. 2018; 41(2):e252-e256.]. Copyright 2018, SLACK Incorporated.

  1. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.

    PubMed

    Li, Fanghua; Liu, Zhiwen; Tang, Chengyuan; Cai, Juan; Dong, Zheng

    2018-01-22

    Cisplatin, a widely used cancer therapy drug, induces nephrotoxicity or acute kidney injury (AKI), but the underlying mechanism remains unclear, and renal protective approaches are not available. Fibroblast growth factor (FGF)21 is an endocrine factor that regulates glucose uptake, metabolism, and energy expenditure. However, recent work has also implicated FGF21 in cellular stress response under pathogenic conditions. The role and regulation of FGF21 in AKI are unclear. Here, we show that FGF21 was dramatically induced during cisplatin treatment of renal tubular cells in vitro and mouse kidneys in vivo. The inductive response was suppressed by pifithrin (a pharmacological inhibitor of P53), suggesting a role of P53 in FGF21 induction. In cultured renal tubular cells, knockdown of FGF21 aggravated cisplatin-induced apoptosis, whereas supplementation of recombinant FGF21 was protective. Consistently, recombinant FGF21 alleviated cisplatin-induced kidney dysfunction, tissue damage, and tubular apoptosis in mice. Mechanistically, FGF21 suppressed P53 induction and activation during cisplatin treatment. Together, these results indicate that FGF21 is induced during cisplatin nephrotoxicity to protect renal tubules, and recombinant FGF21 may have therapeutic potential.-Li, F., Liu, Z., Tang, C., Cai, J., Dong, Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.

  2. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    NASA Astrophysics Data System (ADS)

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.

  3. A narrow open tubular column for high efficiency liquid chromatographic separation.

    PubMed

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong

    2018-04-30

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.

  4. Soft Plumbing: Direct-Writing and Controllable Perfusion of Tubular Soft Materials

    NASA Astrophysics Data System (ADS)

    Guenther, Axel; Omoruwa, Patricia; Chen, Haotian; McAllister, Arianna; Jeronimo, Mark; Malladi, Shashi; Hakimi, Navid; Cao, Li; Ramchandran, Arun

    2016-11-01

    Tubular and ductular structures are abundant in tissues in a wide variety of diameters, wall thicknesses, and compositions. In spite of their relevance to engineered tissues, organs-on-chips and soft robotics, the rapid and consistent preparation of tubular structures remains a challenge. Here, we use a microfabricated printhead to direct-write biopolymeric tubes with dimensional and compositional control. A biopolymer solution is introduced to the center layer of the printhead, and the confining fluids to the top and the bottom layers. The radially flowing biopolymer solution is sandwiched between confining solutions that initiate gelation, initially assuming the shape of a funnel until emerging through a cylindrical confinement as a continuous biopolymer tube. Tubular constructs of sodium alginate and collagen I were obtained with inner diameters (0.6-2.2mm) and wall thicknesses (0.1-0.4mm) in favorable agreement with predictions of analytical models. We obtained homogeneous tubes with smooth and buckled walls and heterotypic constructs that possessed compositions that vary along the tube circumference or radius. Ductular soft materials were reversibly hosted in 3D printed fluidic devices for the perfusion at well-defined transmural pressures to explore the rich variety of dynamical features associated with collapsible tubes that include buckling, complete collapse, and self-oscillation.

  5. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction.

    PubMed

    Ju, Guan-qun; Cheng, Jun; Zhong, Liang; Wu, Shuai; Zou, Xiang-yu; Zhang, Guang-yuan; Gu, Di; Miao, Shuai; Zhu, Ying-jian; Sun, Jie; Du, Tao

    2015-01-01

    During acute kidney injury (AKI), tubular cell dedifferentiation initiates cell regeneration; hepatocyte growth factor (HGF) is involved in modulating cell dedifferentiation. Mesenchymal stem cell (MSC)-derived microvesicles (MVs) deliver RNA into injured tubular cells and alter their gene expression, thus regenerating these cells. We boldly speculated that MVs might induce HGF synthesis via RNA transfer, thereby facilitating tubular cell dedifferentiation and regeneration. In a rat model of unilateral AKI, the administration of MVs promoted kidney recovery. One of the mechanisms of action is the acceleration of tubular cell dedifferentiation and growth. Both in vivo and in vitro, rat HGF expression in damaged rat tubular cells was greatly enhanced by MV treatment. In addition, human HGF mRNA present in MVs was delivered into rat tubular cells and translated into the HGF protein as another mechanism of HGF induction. RNase treatment abrogated all MV effects. In the in vitro experimental setting, the conditioned medium of MV-treated injured tubular cells, which contains a higher concentration of HGF, strongly stimulated cell dedifferentiation and growth, as well as Erk1/2 signaling activation. Intriguingly, these effects were completely abrogated by either c-Met inhibitor or MEK inhibitor, suggesting that HGF induction is a crucial contributor to the acceleration of cell dedifferentiation and growth. All these findings indicate that MV-induced HGF synthesis in damaged tubular cells via RNA transfer facilitates cell dedifferentiation and growth, which are important regenerative mechanisms.

  7. Tubular electric heater with a thermocouple assembly

    DOEpatents

    House, R.K.; Williams, D.E.

    1975-08-01

    This patent relates to a thermocouple or other instrumentation which is installed within the walls of a tubular sheath surrounding a process device such as an electric heater. The sheath comprises two concentric tubes, one or both of which have a longitudinal, concave crease facing the other tube. The thermocouple is fixedly positioned within the crease and the outer tube is mechanically reduced to form an interference fit onto the inner tube. (auth)

  8. A tubular flux-switching permanent magnet machine

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.

    2008-04-01

    The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.

  9. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    PubMed

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. Complement activation in the tubulointerstitium: AKI, CKD, and in between.

    PubMed

    Brar, Jyoti E; Quigg, Richard J

    2014-10-01

    Complement activation is actively regulated to prevent injudicious activation, such as on peritubular endothelia and basolateral aspects of tubules. Miao et al. studied mice in which the key complement regulator, Crry, was deleted from tubular cells. This lacked functional consequence in unmanipulated animals. Yet, following ischemia-reperfusion, there was greater injury due to alternative pathway activation of C5. When the balance between complement activation and regulation is tipped towards the former, pathologic complement activation can ensue.

  11. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  12. Phyllotactic transformations as plastic deformations of tubular crystals with defects

    NASA Astrophysics Data System (ADS)

    Beller, Daniel; Nelson, David

    Tubular crystals are 2D lattices in cylindrical topologies, which could be realized as assemblies of colloidal particles, and occur naturally in biological microtubules and in single-walled carbon nanotubes. Their geometry can be understood in the language of phyllotaxis borrowed from botany. We study the mechanics of plastic deformations in tubular crystals in response to tensile stress, as mediated by the formation and separation of dislocation pairs in a triangular lattice. Dislocation motion allows the growth of one phyllotactic arrangement at the expense of another, offering a low-energy, stepwise mode of plastic deformation in response to external stresses. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, dislocation glide. The crystal's bending modulus is found to produce simple but important corrections to the tube's deformation mechanics.

  13. Surface wave resonance and chirality in a tubular cavity with metasurface design

    NASA Astrophysics Data System (ADS)

    Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng

    2018-06-01

    Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.

  14. Tisp40 deficiency attenuates renal ischemia reperfusion injury induced apoptosis of tubular epithelial cells.

    PubMed

    Qin, Cong; Xiao, Chengcheng; Su, Yang; Zheng, Haizhou; Xu, Tao; Lu, Jingxiao; Luo, Pengcheng; Zhang, Jie

    2017-10-01

    Renal ischemia reperfusion (IR) is a major cause of acute kidney injury (AKI) and no effective treatments have been established. Tisp40 is a transcription factor of the CREB/ATF family and involves in cell apoptosis, proliferation and differentiation, but its role in renal IR remains unknown. Here, we investigated the role of Tisp40 in renal IR injury. In vivo, Tisp40 knockout (KO) and wild-type (WT) mice were subjected to thirty minutes of bilateral renal ischemia and 48h reperfusion, the blood and kidneys were harvested for analysis. In vitro, Tisp40 overexpression and vector cells were subjected to hypoxia/reoxygenation (HR), the apoptosis rate and the expressions of related proteins were measured. Following IR, the expressions of Tisp40 protein, serum creatinine (sCr), blood urea nitrogen (BUN) and apoptosis of tubular cells were significantly increased in WT mice. However, Tisp40 deficiency significantly attenuated the increase of sCr, BUN and apoptosis of tubular cells. Following HR, apoptosis of tubular cells was increased in Tisp40 overexpression cells compared with vector cells. Mechanistically, Tisp40 promoted the expressions of C/EBP homologous protein (CHOP), Bax and Cleaved caspase3 and suppressed the expression of Bcl-2 in renal IR injury. In conclusion, Tisp40 aggravates tubular cells apoptosis in renal IR injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cocaine-conditioned place preference is predicted by previous anxiety-like behavior and is related to an increased number of neurons in the basolateral amygdala.

    PubMed

    Ladrón de Guevara-Miranda, David; Pavón, Francisco J; Serrano, Antonia; Rivera, Patricia; Estivill-Torrús, Guillermo; Suárez, Juan; Rodríguez de Fonseca, Fernando; Santín, Luis J; Castilla-Ortega, Estela

    2016-02-01

    The identification of behavioral traits that could predict an individual's susceptibility to engage in cocaine addiction is relevant for understanding and preventing this disorder, but investigations of cocaine addicts rarely allow us to determinate whether their behavioral attributes are a cause or a consequence of drug use. To study the behaviors that predict cocaine vulnerability, male C57BL/6J mice were examined in a battery of tests (the elevated plus maze, hole-board, novelty preference in the Y-Maze, episodic-like object recognition and forced swimming) prior to training in a cocaine-conditioned place preference (CPP) paradigm to assess the reinforcing value of the drug. In a second study, the anatomical basis of high and low CPP in the mouse brain was investigated by studying the number of neurons (neuronal nuclei-positive) in two addiction-related limbic regions (the medial prefrontal cortex and the basolateral amygdala) and the number of dopaminergic neurons (tyrosine hydroxylase-positive) in the ventral tegmental area by immunohistochemistry and stereology. Correlational analyses revealed that CPP behavior was successfully predicted by anxiety-like measures in the elevated plus maze (i.e., the more anxious mice showed more preference for the cocaine-paired compartment) but not by the other behaviors analyzed. In addition, increased numbers of neurons were found in the basolateral amygdala of the high CPP mice, a key brain center for anxiety and fear responses. The results support the theory that anxiety is a relevant factor for cocaine vulnerability, and the basolateral amygdala is a potential neurobiological substrate where both anxiety and cocaine vulnerability could overlap. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

    PubMed

    Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu

    2012-05-01

    1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

  17. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    PubMed Central

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  18. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming.

    PubMed

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.

  19. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming

    PubMed Central

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation. PMID:28672023

  20. Capacitive proximity sensor

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.