Science.gov

Sample records for psba gene family

  1. Low-Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria

    SciTech Connect

    Summerfield, Tina; Toepel, Jorg; Sherman, Louis A.

    2008-11-11

    Microarray analysis indicated low-O₂ conditions resulted in upregulation of psbA1, the normally low-abundance transcript that encodes the D1' protein of photosystem II in Synechocystis sp. PCC 6803. Using a ΔpsbA2:ΔpsbA3 strain, we show the psbA1 transcript is translated and the resultant D1' is inserted into functional PSII complexes. Two other cyanobacterial strains have psbA genes that were induced by low oxygen. In two of the three strains examined, psbA was part of an upregulated gene cluster including an alternative Rieske iron-sulfur protein. We conclude this cluster may represent an important adaptation to changing O₂ levels that cyanobacteria experience.

  2. Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco.

    PubMed

    Huo, Yongjin; Wang, Meiping; Wei, Yangyang; Xia, Zongliang

    2015-01-01

    The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde, and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn), stomatal conductance (Gs), and the maximal photochemical efficiency of PSII (Fv/Fm) during drought stress; indicating that OE of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing reactive oxygen species accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops. PMID:26793207

  3. An Atypical psbA Gene Encodes a Sentinel D1 Protein to Form a Physiologically Relevant Inactive Photosystem II Complex in Cyanobacteria*

    PubMed Central

    Wegener, Kimberly M.; Nagarajan, Aparna; Pakrasi, Himadri B.

    2015-01-01

    Photosystem II, a large membrane-bound enzyme complex in cyanobacteria and chloroplasts, mediates light-induced oxidation of water to molecular oxygen. The D1 protein of PSII, encoded by the psbA gene, provides multiple ligands for cofactors crucial to this enzymatic reaction. Cyanobacteria contain multiple psbA genes that respond to various physiological cues and environmental factors. Certain unicellular cyanobacterial cells, such as Cyanothece sp. ATCC 51142, are capable of nitrogen fixation, a highly oxygen-sensitive process, by separating oxygen evolution from nitrogen fixation using a day-night cycle. We have shown that c-psbA4, one of the five psbA orthologs in this cyanobacterium, is exclusively expressed during nighttime. Remarkably, the corresponding D1 isoform has replacements of a number of amino acids that are essential ligands for the catalytic Mn4CaO5 metal center for water oxidation by PSII. At least 30 cyanobacterial strains, most of which are known to have nitrogen fixing abilities, have similar psbA orthologs. We expressed the c-psbA4 gene from Cyanothece 51142 in a 4E-3 mutant strain of the model non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803, which lacks any psbA gene. The resultant strain could not grow photoautotrophically. Moreover, these Synechocystis 6803 cells were incapable of PSII-mediated oxygen evolution. Based on our findings, we have named this physiologically relevant, unusual D1 isoform sentinel D1. Sentinel D1 represents a new class of D1 protein that, when incorporated in a PSII complex, ensures that PSII cannot mediate water oxidation, thus allowing oxygen-sensitive processes such as nitrogen fixation to occur in cyanobacterial cells. PMID:25525275

  4. Expression of a higher plant psbA gene in Synechocystis 6803 yields a functional hybrid photosystem II reaction center complex.

    PubMed Central

    Nixon, P J; Rögner, M; Diner, B A

    1991-01-01

    The psbA gene codes for the D1 polypeptide of the photosystem II reaction center complex and is found in all photosynthetic organisms that carry out oxygenic photosynthesis. Here we describe the construction and characterization of a strain of the cyanobacterium Synechocystis sp PCC 6803 in which the three endogenous psbA genes are replaced by a single psbA gene from the chloroplast genome of the higher plant Poa annua. The resulting chimeric strain, KWPAS, grows photoautotrophically with a doubling time of 26 hours compared with 20 hours for wild-type Synechocystis 6803. The mutant oxidizes water to oxygen at light-saturated rates comparable with wild type, despite differences in 15% of the primary structure of D1 between these species. RNA gel blot analysis indicates the presence in KWPAS of a psbA transcript of approximately 1.25 kilobases, consistent with the chloroplast promoter also acting as a promoter in Synechocystis. By using antibodies specific for the carboxyl-terminal extension of the D1 polypeptide of higher plants, we showed that the D1 polypeptide synthesized by KWPAS is post-translationally modified at the carboxyl terminus, probably through processing. A detailed biophysical analysis of the chimeric photosystem II complex indicated that the rates of forward electron transfer are similar to wild type. The rates of charge recombination between the donor and acceptor sides of the reaction center are, however, accelerated by as much as a factor of nine (QA- to S2) and are the most likely explanation for the lower rate of photoautotrophic growth in the mutant. We conclude that the psbA gene from a higher plant can be expressed in cyanobacteria and its product processed and assembled into a functional chimeric photosystem II reaction center. PMID:1840918

  5. An integrated study of photochemical function and expression of a key photochemical gene (psbA) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica).

    PubMed

    Kong, Weidong; Li, Wei; Romancova, Ingrid; Prášil, Ondřej; Morgan-Kiss, Rachael M

    2014-08-01

    Lake Bonney is one of several permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica, which maintain the only year-round biological activity on the Antarctic continent. Vertically stratified populations of autotrophic microorganisms occupying the water columns are adapted to numerous extreme conditions, including very low light, hypersalinity, ultra-oligotrophy and low temperatures. In this study, we integrated molecular biology, microscopy, flow cytometry, and functional photochemical analyses of the photosynthetic communities residing in the east and west basins of dry valley Lake Bonney. Diversity and abundance of the psbA gene encoding a major protein of the photosystem II reaction center were monitored during the seasonal transition between Antarctic summer (24-h daylight) to winter (24-h darkness). Vertical trends through the photic zone in psbA abundance (DNA and mRNA) closely matched that of primary production in both lobes. Seasonal trends in psbA transcripts differed between the two lobes, with psbA expression in the west basin exhibiting a transient rise in early Fall. Last, using spectroscopic and flow cytometric analyses, we provide the first evidence that the Lake Bonney photosynthetic community is dominated by picophytoplankton that possess photosynthetic apparatus adapted to extreme shade. PMID:24499459

  6. Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three psbA genes and two forms of the D1 protein.

    PubMed Central

    Kulkarni, R D; Golden, S S

    1994-01-01

    The three psbA genes in the cyanobacterium Synechococcus sp. strain PCC 7942 encode two distinct forms of the D1 protein of photosystem II. The psbAI message, which encodes form I, dominates the psbA transcript pool at low to moderate light intensities; however, exposure to high light triggers a response in which the psbAI message is actively degraded while psbAII and psbAIII, which encode form II, are transcriptionally induced. We addressed whether these changes result from a generalized stress response and examined the consequence of light-responsive psbA regulation on the composition of D1 in thylakoid membranes. Heat shock and oxidative stress had some effect on levels of the three psbA transcripts but did not produce the responses generated by an increase in light intensity. Prolonged exposure to high light (24-h time course) was characterized by elevated levels of all psbA transcripts through maintenance of high levels of psbAII and psbAIII messages and a rebound of the psbAI transcript after its initial decline. Form II-encoding transcripts were enriched relative to those encoding form I at all high-light time points. Form II replaced form I in the thylakoid membrane at high light despite an abundance of psbAI transcript at later time points; this may be explained by the observed faster turnover of form I than form II in the membrane. We propose that form II is less susceptible to damage at high light and that this qualitative alteration, coupled with increased turnover of D1, protects the cells from photoinhibition. Images PMID:8106338

  7. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae.

    PubMed

    Fujii, Gaku; Imamura, Sousuke; Era, Atsuko; Miyagishima, Shin-ya; Hanaoka, Mitsumasa; Tanaka, Kan

    2015-05-01

    The plant organelle chloroplast originated from the endosymbiosis of a cyanobacterial-like photosynthetic bacterium, and still retains its own genome derived from this ancestor. We have been focusing on a unicellular red alga, Cyanidioschyzon merolae, as a model photosynthetic eukaryote. In this study, we analyzed the transcriptional specificity of SIG4, which is one of four nuclear-encoded chloroplast RNA polymerase sigma factors in this alga. Accumulation of the SIG4 protein was observed in response to nitrogen depletion or high light conditions. By comparing the chloroplast transcriptomes under nitrogen depletion and SIG4-overexpressing conditions, we identified several candidate genes as SIG4 targets. Together with the results of chromatin immunoprecipitation analysis, the promoters of the psbA (encoding the D1 protein of the photosystem II reaction center) and ycf17 (encoding a protein of the early light-inducible protein family) genes were shown to be direct activation targets. The phycobilisome (PBS) CpcB protein was decreased by SIG4 overexpression, which suggests the negative involvement of SIG4 in PBS accumulation. PMID:25883111

  8. A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: In vitro self-splicing and genetic evidence for maturase activity

    PubMed Central

    ODOM, OBED W.; SHENKENBERG, DAVID L.; GARCIA, JOSHUA A.; HERRIN, DAVID L.

    2004-01-01

    The majority of known group II introns are from chloroplast genomes, yet the first self-splicing group II intron from a chloroplast gene was reported only recently, from the psbA gene of the euglenoid, Euglena myxocylindracea. Herein, we describe a large (2.6-kb) group II intron from the psbA gene (psbA1) of a psychrophilic Chlamydomonas sp. from Antarctica that self-splices accurately in vitro. Remarkably, this intron, which also encodes an ORF with putative reverse transcriptase, maturase, and endonuclease domains, is in the same location, and is related to the E. myxocylindracea intron, as well as to group IIB2 introns from cyanobacteria. In vitro self-splicing of Chs.psbA1 occurred via a lariat, and required Mg2+ (>12 mM) and NH4+. Self-splicing was improved by deleting most of the ORF and by using pre-RNAs directly from transcription reactions, suggestive of a role for folding during transcription. Self-splicing of Chs.psbA1 pre-RNAs showed temperature optima of ~44°C, but with a broad shoulder on the low side of the peak; splicing was nearly absent at 50°C, indicative of thermolability. Splicing of wild-type Chs.psbA1 also occurred in Escherichia coli, but not when the ORF was disrupted by mutations, providing genetic evidence that it has maturase activity. This work provides the first description of a ribozyme from a psychrophilic organism. It also appears to provide a second instance of interkingdom horizontal transfer of this group IIB2 intron (or a close relative) from cyanobacteria to chloroplasts. PMID:15208445

  9. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts.

    PubMed

    Erinle, Kehinde Olajide; Jiang, Zhao; Ma, Bingbing; Li, Jinmei; Chen, Yukun; Ur-Rehman, Khalil; Shahla, Andleeb; Zhang, Ying

    2016-10-01

    Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented. PMID:27391035

  10. The Tll0287 protein is a hemoprotein associated with the PsbA2-Photosystem II complex in Thermosynechococcus elongatus.

    PubMed

    Boussac, Alain; Koyama, Kazumi; Sugiura, Miwa

    2013-10-01

    Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II (PSII) complex. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the environmental conditions. Among the 344 residues of PsbA, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2 and 27 between PsbA2 and PsbA3. In this study, we found a new hemoprotein that is expressed when the T. elongatus genome has only the psbA2 gene for D1. This hemoprotein was found in both the non-membrane proteins and associated to the purified PsbA2-PSII core complex. This protein could be removed by the washing of PSII with Tris-washing or CaCl2-washing. From MALDI-TOF/TOF spectrometry, N-terminal sequencing and MALDI-MS/MS analysis upon tryptic digestion, the new hemoprotein was identified to be the tll0287 gene product with a molecular mass close to 19kDa. Until now, tll0287 was registered as a gene encoding a hypothetical protein with an unknown function. From the amino acid sequence and the EPR spectrum the 5th and 6th axial ligands of the heme iron are the His145 and likely either the Tyr93, Tyr159 or Tyr165, respectively. From EPR, the heme containing Tll0287 protein associated to PsbA2-PSII corresponds to approximately 25% of the Cytc550 content whereas, from SDS page analysis, the total amount of Tll0287 with and without the heme seems almost in a stoichiometric amount with PsbA2-PSII. Homologous genes to tll0287 are found in several cyanobacteria. Possible roles for Tll0287 are suggested. PMID:23770319

  11. Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1.

    PubMed

    Sugiura, Miwa; Azami, Chizuko; Koyama, Kazumi; Rutherford, A William; Rappaport, Fabrice; Boussac, Alain

    2014-01-01

    In Photosystem II (PSII) of the cyanobacterium Thermosynechococcus elongatus, glutamate 130 in the high-light variant of the D1-subunit (PsbA3) was changed to glutamine in a strain lacking the two other genes for D1, psbA1 and psbA2. The resulting PSII (PsbA3/Glu130Gln) was compared with those from the "native" high-light (PsbA3-PSII) and low-light (PsbA1-PSII) variants, which differ by 21 amino acid including Glu130Gln. H-bonding from D1-Glu130Gln to the primary electron acceptor, PheophytinD1 (PheoD1), is known to affect the Em of the PheoD1/PheoD1(-) couple. The Gln130 mutation here had little effect on water splitting, charge accumulation and photosensitivity but did slow down S2QA(-) charge recombination and up-shift the thermoluminescence while increasing its yield. These changes were consistent with a ≈-30mV shift of the PheoD1/PheoD1(-)Em, similar to earlier single site-mutation results from other species and double the ≈-17mV shift seen for PsbA1-PSII versus PsbA3-PSII. This is attributed to the influence of the other 20 amino-acids that differ in PsbA3. A computational model for simulating S2QA(-) recombination matched the experimental trend: the S2QA(-) recombination rate in PsbA1-PSII differed only slightly from that in PsbA3-PSII, while in Glu130-PsbA3-PSII there was a more pronounced slowdown of the radical pair decay. The simulation predicted a major effect of the PheoD1/PheoD1(-) potential on (1)O2 yield (~60% in PsbA1-PSII, ~20% in PsbA3-PSII and ~7% in Gln130-PsbA3-PSII), reflecting differential sensitivities to high light. PMID:24060528

  12. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II.

    PubMed

    Ho, Ming-Yang; Shen, Gaozhong; Canniffe, Daniel P; Zhao, Chi; Bryant, Donald A

    2016-08-26

    Chlorophyll f (Chl f) permits some cyanobacteria to expand the spectral range for photosynthesis by absorbing far-red light. We used reverse genetics and heterologous expression to identify the enzyme for Chl f synthesis. Null mutants of "super-rogue" psbA4 genes, divergent paralogs of psbA genes encoding the D1 core subunit of photosystem II, abolished Chl f synthesis in two cyanobacteria that grow in far-red light. Heterologous expression of the psbA4 gene, which we rename chlF, enables Chl f biosynthesis in Synechococcus sp. PCC 7002. Because the reaction requires light, Chl f synthase is probably a photo-oxidoreductase that employs catalytically useful Chl a molecules, tyrosine YZ, and plastoquinone (as does photosystem II) but lacks a Mn4Ca1O5 cluster. Introduction of Chl f biosynthesis into crop plants could expand their ability to use solar energy. PMID:27386923

  13. The Zebrafish Annexin Gene Family

    PubMed Central

    Farber, Steven A.; De Rose, Robert A.; Olson, Eric S.; Halpern, Marnie E.

    2003-01-01

    The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes. PMID:12799347

  14. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species. PMID

  15. The MDM2 gene family.

    PubMed

    Mendoza, Michael; Mandani, Garni; Momand, Jamil

    2014-03-01

    MDM2 is an oncoprotein that blocks p53 tumor suppressor-mediated transcriptional transactivation, escorts p53 from the cell nucleus to the cytoplasm, and polyubiquitylates p53. Polyubiquitylated p53 is rapidly degraded in the cytoplasm by the 26S proteasome. MDM2 is abnormally upregulated in several types of cancers, especially those of mesenchymal origin. MDM4 is a homolog of MDM2 that also inhibits p53 by blocking p53-mediated transactivation. MDM4 is required for MDM2-mediated polyubiquitylated of p53 and is abnormally upregulated in several cancer types. MDM2 and MDM4 genes have been detected in all vertebrates to date and only a single gene homolog, named MDM, has been detected in some invertebrates. MDM2, MDM4, and MDM have similar gene structures, suggesting that MDM2 and MDM4 arose through a duplication event more than 440 million years ago. All members of this small MDM2 gene family contain a single really interesting new gene (RING) domain (with the possible exception of lancelet MDM) which places them in the RING-domain superfamily. Similar to MDM2, the vast majority of proteins with RING domains are E3 ubiquitin ligases. Other RING domain E3 ubiquitin ligases that target p53 are COP1, Pirh2, and MSL2. In this report, we present evidence that COP1, Pirh2, and MSL2 evolved independently of MDM2 and MDM4. We also show, through structure homology models of invertebrate MDM RING domains, that MDM2 is more evolutionarily conserved than MDM4. PMID:25372739

  16. Gene family matters: expanding the HGNC resource.

    PubMed

    Daugherty, Louise C; Seal, Ruth L; Wright, Mathew W; Bruford, Elspeth A

    2012-01-01

    The HUGO Gene Nomenclature Committee (HGNC) assigns approved gene symbols to human loci. There are currently over 33,000 approved gene symbols, the majority of which represent protein-coding genes, but we also name other locus types such as non-coding RNAs, pseudogenes and phenotypic loci. Where relevant, the HGNC organise these genes into gene families and groups. The HGNC website http://www.genenames.org/ is an online repository of HGNC-approved gene nomenclature and associated resources for human genes, and includes links to genomic, proteomic and phenotypic information. In addition to this, we also have dedicated gene family web pages and are currently expanding and generating more of these pages using data curated by the HGNC and from information derived from external resources that focus on particular gene families. Here, we review our current online resources with a particular focus on our gene family data, using it to highlight our new Gene Symbol Report and gene family data downloads. PMID:23245209

  17. Gene family matters: expanding the HGNC resource

    PubMed Central

    2012-01-01

    The HUGO Gene Nomenclature Committee (HGNC) assigns approved gene symbols to human loci. There are currently over 33,000 approved gene symbols, the majority of which represent protein-coding genes, but we also name other locus types such as non-coding RNAs, pseudogenes and phenotypic loci. Where relevant, the HGNC organise these genes into gene families and groups. The HGNC website http://www.genenames.org/ is an online repository of HGNC-approved gene nomenclature and associated resources for human genes, and includes links to genomic, proteomic and phenotypic information. In addition to this, we also have dedicated gene family web pages and are currently expanding and generating more of these pages using data curated by the HGNC and from information derived from external resources that focus on particular gene families. Here, we review our current online resources with a particular focus on our gene family data, using it to highlight our new Gene Symbol Report and gene family data downloads. PMID:23245209

  18. MGFD: the maize gene families database.

    PubMed

    Sheng, Lei; Jiang, Haiyang; Yan, Hanwei; Li, Xiaoyu; Lin, Yongxiang; Ye, Hui; Cheng, Beijiu

    2016-01-01

    Most gene families are transcription factor (TF) families, which have fundamental roles in almost all biological processes (development, growth and response to environmental factors) and have been employed to manipulate various types of metabolic, developmental and stress response pathways in plants. Maize (Zea mays) is one of the most important cereal crops in the world due its importance to human nutrition and health. Thus, identifying and annotating all the gene families in maize is an important primary step in defining their functions and understanding their roles in the regulation of diverse biological processes. In this study, we identified 96 predicted maize gene families and systematically characterized all 5826 of the genes in those families. We have also developed a comprehensive database of maize gene families (the MGFD). To further explore the functions of these gene families, we extensively annotated the genes, including such basic information as protein sequence features, gene structure, Gene Ontology classifications, phylogenetic relationships and expression profiles. The MGFD has a user-friendly web interface with multiple browse and search functions, as well as data downloading. The MGFD is freely available to users at http://mgfd.ahau.edu.cn/. Database URL: http://mgfd.ahau.edu.cn/. PMID:26896848

  19. MGFD: the maize gene families database

    PubMed Central

    Sheng, Lei; Jiang, Haiyang; Yan, Hanwei; Li, Xiaoyu; Lin, Yongxiang; Ye, Hui; Cheng, Beijiu

    2016-01-01

    Most gene families are transcription factor (TF) families, which have fundamental roles in almost all biological processes (development, growth and response to environmental factors) and have been employed to manipulate various types of metabolic, developmental and stress response pathways in plants. Maize (Zea mays) is one of the most important cereal crops in the world due its importance to human nutrition and health. Thus, identifying and annotating all the gene families in maize is an important primary step in defining their functions and understanding their roles in the regulation of diverse biological processes. In this study, we identified 96 predicted maize gene families and systematically characterized all 5826 of the genes in those families. We have also developed a comprehensive database of maize gene families (the MGFD). To further explore the functions of these gene families, we extensively annotated the genes, including such basic information as protein sequence features, gene structure, Gene Ontology classifications, phylogenetic relationships and expression profiles. The MGFD has a user-friendly web interface with multiple browse and search functions, as well as data downloading. The MGFD is freely available to users at http://mgfd.ahau.edu.cn/. Database URL: http://mgfd.ahau.edu.cn/ PMID:26896848

  20. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  1. Lineage-Specific Expansion of IFIT Gene Family: An Insight into Coevolution with IFN Gene Family

    PubMed Central

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  2. Dynamic actin gene family evolution in primates.

    PubMed

    Zhu, Liucun; Zhang, Ying; Hu, Yijun; Wen, Tieqiao; Wang, Qiang

    2013-01-01

    Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through "birth and death" model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves. PMID:23841080

  3. A review of the new HGNC gene family resource.

    PubMed

    Gray, Kristian A; Seal, Ruth L; Tweedie, Susan; Wright, Mathew W; Bruford, Elspeth A

    2016-01-01

    The HUGO Gene Nomenclature Committee (HGNC) approves unique gene symbols and names for human loci. As well as naming genomic loci, we manually curate genes into family sets based on shared characteristics such as function, homology or phenotype. Each HGNC gene family has its own dedicated gene family report on our website, www.genenames.org . We have recently redesigned these reports to support the visualisation and browsing of complex relationships between families and to provide extra curated information such as family descriptions, protein domain graphics and gene family aliases. Here, we review how our gene families are curated and explain how to view, search and download the gene family data. PMID:26842383

  4. Evolution of the Vertebrate Resistin Gene Family

    PubMed Central

    Hu, Qingda; Tan, Huanran; Irwin, David M.

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  5. Evolution of the Vertebrate Resistin Gene Family.

    PubMed

    Hu, Qingda; Tan, Huanran; Irwin, David M

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  6. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  7. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  8. The Dynein Gene Family in Chlamydomonas Reinhardtii

    PubMed Central

    Porter, M. E.; Knott, J. A.; Myster, S. H.; Farlow, S. J.

    1996-01-01

    To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (>13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations. PMID:8889521

  9. Secreted Metalloprotease Gene Family of Microsporum canis

    PubMed Central

    Brouta, Frédéric; Descamps, Frédéric; Monod, Michel; Vermout, Sandy; Losson, Bertrand; Mignon, Bernard

    2002-01-01

    Keratinolytic proteases secreted by dermatophytes are likely to be virulence-related factors. Microsporum canis, the main agent of dermatophytosis in dogs and cats, causes a zoonosis that is frequently reported. Using Aspergillus fumigatus metalloprotease genomic sequence (MEP) as a probe, three genes (MEP1, MEP2, and MEP3) were isolated from an M. canis genomic library. They presented a quite-high percentage of identity with both A. fumigatus MEP and Aspergillus oryzae neutral protease I genes. At the amino acid level, they all contained an HEXXH consensus sequence, confirming that these M. canis genes (MEP genes) encode a zinc-containing metalloprotease gene family. Furthermore, MEP3 was found to be the gene encoding a previously isolated M. canis 43.5-kDa keratinolytic metalloprotease, and was successfully expressed as an active recombinant enzyme in Pichia pastoris. Reverse transcriptase nested PCR performed on total RNA extracted from the hair of M. canis-infected guinea pigs showed that at least MEP2 and MEP3 are produced during the infection process. This is the first report describing the isolation of a gene family encoding potential virulence-related factors in dermatophytes. PMID:12228297

  10. Tobacco (Nicotiana tobaccum) nuclear transgenics with high copy number can express NPTII driven by the chloroplast psbA promoter.

    PubMed

    Ye, G N; Pang, S Z; Sanford, J C

    1996-03-01

    A chloroplast expression vector containing the NPTII gene under the control of apsbA promoter (psbA-NPTII) was constructed, and was biolistically delivered into both suspension cells and leaf strips of tobacco (Nicotiana tabaccum). Analyses of subsequently recovered kanamycin-resistant transgenic plants indicate that the psbA-NPTII gene was not located in the chloroplast, but was in the nucleus in very high copy number. This conclusion was based upon results from: (1) Southern hybridization analyses of chloroplast and nuclear DNAs using NPTII, chloroplast-marker, and nuclear-marker probes; (2) pulse-field gel electrophoresis; and (3) kanamycin screening of sexual progenies. This study suggests that the nuclear expression of the NPTII gene may have been associated with many copies of the psbA-NPTII construction. Very high copy number in the nucleus might either allow NPTII expression from the otherwise inadequate psbA promoter, or might increase the chance of recombining with upstream tobacco regulatory sequences. PMID:24178457

  11. NFAT Gene Family in Inflammation and Cancer

    PubMed Central

    Pan, M.-G.; Xiong, Y.; Chen, F.

    2013-01-01

    Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer. PMID:22950383

  12. The CLE gene family in Populus trichocarpa.

    PubMed

    Liu, Zhijun; Yang, Nan; Lv, Yanting; Pan, Lixia; Lv, Shuo; Han, Huibin; Wang, Guodong

    2016-06-01

    The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants. PMID:27232947

  13. The DMRT gene family in amphioxus.

    PubMed

    Wang, Fei; Yu, Yang; Ji, Dongrui; Li, Hongyan

    2012-01-01

    Doublesex and Mab-3-related transcription factor (DMRT) gene family is widely known for its involvement in sex determination and/or differentiation among different phyla. In this study, we identify eight DMRT genes in the cephalochordate amphioxus, a protochordate holding a key phylogenetic position. The eight DMRTs can be divided into two groups based on the conserved domain: BfDM044, BfDM045, BfDM55.1, BfDM115.1, and BfDM17.1 belong to the first group which have both DM and DMA domains, while BfDM246.1, BfDM084, and BfDM175 belong to the second group which have only DM domain. Most of the first group members have same genomic structure except BfDM17.1, while no regular pattern exists in the second group. Phylogenetic analysis of the DM domain sequences shows that DMRT genes in vertebrates form seven different independent clusters, and some even contain genes from invertebrates with high bootstrap. Notably, the first group members of amphioxus cluster with vertebrate DMRTs; while the second group members cluster into a single branch, which diverge from the vertebrate classes. The results suggest that several DMRT genes in vertebrates may evolve from homologous genes in invertebrates. As in nematode, drosophila, fish, and vertebrates, DMRT genes cluster is also found in amphioxus, which may be the result of gene duplication. Interspecific differences in the amphioxus DMRTs and sea squirt DMRTs may suggest post-speciation duplication of some DMRT genes. PMID:22702730

  14. Differential expression of myrosinase gene families.

    PubMed Central

    Lenman, M; Falk, A; Rödin, J; Höglund, A S; Ek, B; Rask, L

    1993-01-01

    In mature seeds of Brassica napus three major and three minor myrosinase isoenzymes were identified earlier. These myrosinases are known to be encoded by at least two different families of myrosinase genes, denoted MA and MB. In the work described in this paper the presence of different myrosinase isoenzymes in embryos, seedlings, and vegetative mature tissues of B. napus was studied and related to the expression of myrosinase MA and MB genes in the same tissues to facilitate future functional studies of these enzymes. In developing seeds, myrosinases of 75, 73, 70, 68, 66, and 65 kD were present. During seedling development there was a turnover of the myrosinase pool such that in 5-d-old seedlings the 75-, 70-, 66-, and 65-kD myrosinases were present, with the 70- and 75-kD myrosinases predominating. In 21-d-old seedlings the same myrosinases were present, but the 66- and 65-kD myrosinase species were most abundant. At flowering the mature organs of the plant contained only a 72-kD myrosinase. MA genes were expressed only in developing seeds, whereas MB genes were most highly expressed in seeds, seedling cotyledons, young leaves, and to a lesser extent other organs of the mature plant. During embryogenesis of B. napus, myrosinase MA and MB gene transcripts started to accumulate approximately 20 d after pollination and reached their highest level approximately 15 d later. MB transcripts accumulated to about 3 times the amount of MA transcripts. In situ hybridization analysis of B. napus embryos showed that MA transcripts were present predominatly in myrosin cells in the axis, whereas MB genes were expressed in myrosin cells of the entire embryo. The embryo axiz contained 75-, 70-, and 65-kD myrosinases, whereas the cotyledons contained mainly 70- and 65-kD myrosinases. Amino acid sequencing revealed the 75-kD myrosinase to be encoded by the MA gene family. The high degree of cell and tissue specificity of the expression of myrosinase genes suggests that studies of

  15. The tomato terpene synthase gene family.

    PubMed

    Falara, Vasiliki; Akhtar, Tariq A; Nguyen, Thuong T H; Spyropoulou, Eleni A; Bleeker, Petra M; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E; Schilmiller, Anthony L; Last, Robert L; Schuurink, Robert C; Pichersky, Eran

    2011-10-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  16. Serial Dissection of Parasite Gene Families.

    PubMed

    Bzik, David J

    2016-05-01

    Calcium ion signaling regulates central aspects of the biology controlling stage and life cycle transitions of apicomplexan parasites. In the current issue of Infection and Immunity, Long and coworkers (S. Long, Q. Wang, and L. D. Sibley, Infect Immun 84:1262-1273, 2016, http://dx.doi.org/10.1128/IAI.01173-15) describe a powerful genetic system enabling reliable serial genetic dissection of a large gene family encoding novel calcium-dependent protein kinases (CDPKs) that provides new insights into the roles of CDPKs during Toxoplasma gondii infection. PMID:26953326

  17. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  18. Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size

    PubMed Central

    Asselman, Jana; De Coninck, Dieter I. M.; Pfrender, Michael E.; De Schamphelaere, Karel A. C.

    2016-01-01

    The relation between gene body methylation and gene function remains elusive. Yet, our understanding of this relationship can contribute significant knowledge on how and why organisms target specific gene bodies for methylation. Here, we studied gene body methylation patterns in two Daphnia species. We observed both highly methylated genes and genes devoid of methylation in a background of low global methylation levels. A small but highly significant number of genes was highly methylated in both species. Remarkably, functional analyses indicate that variation in methylation within and between Daphnia species is primarily targeted to small gene families whereas large gene families tend to lack variation. The degree of sequence similarity could not explain the observed pattern. Furthermore, a significant negative correlation between gene family size and the degree of methylation suggests that gene body methylation may help regulate gene family expansion and functional diversification of gene families leading to phenotypic variation. PMID:27017526

  19. The yeast ubiquitin genes: a family of natural gene fusions.

    PubMed

    Ozkaynak, E; Finley, D; Solomon, M J; Varshavsky, A

    1987-05-01

    Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress. PMID:3038523

  20. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu; Li, Ting; Yin, Hengfu; Weston, David; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2013-03-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94,000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae-wide, angiosperm-specific, monocot-specific, dicot-specific, and those that were species-specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low-copy-number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g., photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein-protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  1. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu; Li, Ting; Yin, Hengfu; Weston, David; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2013-01-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both lowcopy- number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  2. The power-law distribution of gene family size is driven by the pseudogenisation rate's heterogeneity between gene families.

    PubMed

    Hughes, Timothy; Liberles, David A

    2008-05-15

    Genome sequencing has shown that the number of homologous gene families of a given size declines rapidly with family size. A power-law has been shown to provide the best mathematical description of this relationship. However, it remains unclear what evolutionary forces drive this observation. We use models of gene duplication, pseudogenisation and accumulation of replacement substitutions, which have been validated and parameterised using genomic data, to build a model of homologous gene evolution. We use this model to simulate the evolution of the distribution of gene family size and show that the power-law distribution is driven by the pseudogenisation rate's heterogeneity across gene families and its correlation within families. Moreover, we show that gene duplication and pseudogenisation are necessary and sufficient for the emergence of the power-law. PMID:18378100

  3. Complexity of the MSG gene family of Pneumocystis carinii

    PubMed Central

    Keely, Scott P; Stringer, James R

    2009-01-01

    Background The relationship between the parasitic fungus Pneumocystis carinii and its host, the laboratory rat, presumably involves features that allow the fungus to circumvent attacks by the immune system. It is hypothesized that the major surface glycoprotein (MSG) gene family endows Pneumocystis with the capacity to vary its surface. This gene family is comprised of approximately 80 genes, which each are approximately 3 kb long. Expression of the MSG gene family is regulated by a cis-dependent mechanism that involves a unique telomeric site in the genome called the expression site. Only the MSG gene adjacent to the expression site is represented by messenger RNA. Several P. carinii MSG genes have been sequenced, which showed that genes in the family can encode distinct isoforms of MSG. The vast majority of family members have not been characterized at the sequence level. Results The first 300 basepairs of MSG genes were subjected to analysis herein. Analysis of 581 MSG sequence reads from P. carinii genomic DNA yielded 281 different sequences. However, many of the sequence reads differed from others at only one site, a degree of variation consistent with that expected to be caused by error. Accounting for error reduced the number of truly distinct sequences observed to 158, roughly twice the number expected if the gene family contains 80 members. The size of the gene family was verified by PCR. The excess of distinct sequences appeared to be due to allelic variation. Discounting alleles, there were 73 different MSG genes observed. The 73 genes differed by 19% on average. Variable regions were rich in nucleotide differences that changed the encoded protein. The genes shared three regions in which at least 16 consecutive basepairs were invariant. There were numerous cases where two different genes were identical within a region that was variable among family members as a whole, suggesting recombination among family members. Conclusion A set of sequences that

  4. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.

    PubMed

    Shi, Tao

    2016-03-01

    Complicated history of gene duplication and loss brings challenge to molecular phylogenetic inference, especially in deep phylogenies. However, phylogenomic approaches, such as gene tree parsimony (GTP), show advantage over some other approaches in its ability to use gene families with duplications. GTP searches the 'optimal' species tree by minimizing the total cost of biological events such as duplications, but accuracy of GTP and phylogenetic signal in the context of different gene families with distinct histories of duplication and loss are unclear. To evaluate how different evolutionary properties of different gene families can impact on species tree inference, 3900 gene families from seven angiosperms encompassing a wide range of gene content, lineage-specific expansions and contractions were analyzed. It was found that the gene content and total duplication number in a gene family strongly influence species tree inference accuracy, with the highest accuracy achieved at either very low or very high gene content (or duplication number) and lowest accuracy centered in intermediate gene content (or duplication number), as the relationship can fit a binomial regression. Besides, for gene families of similar level of average gene content, those with relatively higher lineage-specific expansion or duplication rates tend to show lower accuracy. Additional correlation tests support that high accuracy for those gene families with large gene content may rely on abundant ancestral copies to provide many subtrees to resolve conflicts, whereas high accuracy for single or low copy gene families are just subject to sequence substitution per se. Very low accuracy reached by gene families of intermediate gene content or duplication number can be due to insufficient subtrees to resolve the conflicts from loss of alternative copies. As these evolutionary properties can significantly influence species tree accuracy, I discussed the potential weighting of the duplication cost by

  5. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers *

    PubMed Central

    Donowitz, Mark; Tse, C. Ming; Fuster, Daniel

    2013-01-01

    This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea PMID:23506868

  6. Potential phylogenetic utility of WRKY gene family members

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single and low copy nuclear genes represent a source of multiple, unlinked and independently-evolving loci, the ideal data set for molecular phylogenetic inference due to their high rate of synonymous substitution compared to chloroplast or mitochondrial genes. The WRKY gene family of transcription ...

  7. How Many Processed Pseudogenes Are Accumulated in a Gene Family?

    PubMed Central

    Walsh, James Bruce

    1985-01-01

    A simple kinetic model is developed that describes the accumulation of processed pseudogenes in a functional gene family. Insertion of new pseudogenes occurs at rate ν per gene and is countered by spontaneous deletion (at rate δ per DNA segment) of segments containing processed pseudogenes. If there are k functional genes in a gene family, the equilibrium number of processed pseudogenes is k(ν/δ), and the percentage of functional genes in the gene family at equilibrium is 1/[1 + (ν/δ)]. ν/δ values estimated for five gene families ranged from 1.7 to 15. This fairly narrow range suggests that the rates of formation and deletion of processed pseudogenes may be positively correlated for these families. If δ is sufficiently large relative to the per nucleotide mutation rate µ (δ > 20µ), processed pseudogenes will show high homology with each other, even in the absence of gene conversion between pseudogenes. We argue that formation of processed pseudogenes may share common pathways with transposable elements and retroviruses, creating the potential for correlated responses in the evolution of processed pseudogenes due to direct selection for control of transposable elements and/or retroviruses. Finally, we discuss the nature of the selective forces that may act directly or indirectly to influence the evolution of processed pseudogenes. Anything produced by evolution is bound to be a bit of a mess—S. Brenner PMID:2408963

  8. [Ice/ced-3 family gene and apoptosis].

    PubMed

    Miura, M

    1996-07-01

    Apoptosis is a process by which cells carry out their own execution by activating an orderly set of genetic and biochemical program. A genetic pathway of apoptosis has been identified in the nematode Caenorhabditis elegans. The ced-3 gene is required for all programmed cell death in C. elegans. Mammalian homolog of ced-3 has been identified as Ice family which is newly identified cysteine protease. Overexpression of Ice/ced-3 family gene can induce apoptosis in a variety of mammalian cells, and inhibitors of Ice/ced-3 family effectively prevent apoptosis induced by a variety of stimulus. Several housekeeping genes have been shown to be targets of Ice/ced-3 family gene, indicating that activation of Ice/ced-3 can induce irreversible fatal changes of cells. PMID:8741679

  9. Molecular Analysis of the Aedes aegypti Carboxypeptidase Gene Family

    PubMed Central

    Isoe, Jun; Zamora, Jorge; Miesfeld, Roger L.

    2009-01-01

    To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed Ae. aegypti genome, we cloned and characterized 18 Ae. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the Ae. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the Ae. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3-36 hours post-feeding depending on the gene. PMID:18977440

  10. The CBF gene family in apple (malus x domestica Borkh.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many vascular plants have evolved mechanisms for protecting themselves from freeze damage. One of the key pathways controlling higher plant responses to low temperature involves a family of genes which belong to the AP2 domain class of transcription factors. The promoters of many genes involved in...

  11. Family Lifestyles May Be as Important to Health as Genes

    MedlinePlus

    ... news/fullstory_160105.html Family Lifestyles May Be as Important to Health as Genes Shared habits and environment contribute to heart ... HealthDay News) -- Shared lifestyles and surroundings may play as strong a role as genes in diseases that ...

  12. Organization of the SUC gene family in Saccharomyces.

    PubMed Central

    Carlson, M; Botstein, D

    1983-01-01

    The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains. Images PMID:6843548

  13. The multifunctional SNM1 gene family: not just nucleases

    PubMed Central

    Yan, Yiyi; Akhter, Shamima; Zhang, Xiaoshan; Legerski, Randy

    2010-01-01

    The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-β-lactamase and β-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis. PMID:20528238

  14. Characterizations of 9p21 candidate genes in familial melanoma

    SciTech Connect

    Walker, G.J.; Flores, J.F.; Glendening, J.M.

    1994-09-01

    We have previously collected and characterized 16 melanoma families for the inheritance of a familial melanoma predisposition gene on 9p21. Clear evidence for genetic linkage has been detected in 8 of these families with the 9p21 markers D9S126 and 1FNA, while linkage of the remaining families to this region is less certain. A candidate for the 9p21 familial melanoma gene, the cyclin kinase inhibitor gene p16 (also known as the multiple tumor suppressor 1 (MTS1) gene), has been recently indentified. Notably, a nonsense mutation within the p16 gene has been detected in the lymphoblastoid cell line DNA from a dysplastic nevus syndrome (DNS), or familial melanoma, patient. The p16 gene is also known to be frequently deleted or mutated in a variety of tumor cell lines (including melanoma) and resides within a region that has been defined as harboring the 9p21 melanoma predisposition locus. This region is delineated on the distal side by the marker D9S736 (which resides just distal to the p16 gene) and extends in a proximal direction to the marker D9S171. Overall, the entire distance between these two loci is estimated at 3-5Mb. Preliminary analysis of our two largest 9p21-linked melanoma kindreds (by direct sequencing of PCR products) has not yet revealed mutations within the coding region of the p16 gene. Others have reported that 8/11 unrelated 9p21-linked melanoma families do not appear to carry p16 mutations; thus the possibility exists that p16 is not a melanoma susceptibility gene per se, although it appears to play some role in melanoma tumor progression. Our melanoma kindred DNAs are currently being analyzed by SSCP using primers that amplify exons of other candidate genes from the 9p21 region implicated in familial melanoma. These novel genes reside within a distinct critical region of homozygous loss in melanoma which is located >2 Mb from the p16 gene on 9p21.

  15. Evolution of the Sox gene family within the chordate phylum.

    PubMed

    Heenan, Phoebe; Zondag, Lisa; Wilson, Megan J

    2016-01-10

    The ancient Sox gene family is a group of related transcription factors that perform a number of essential functions during embryonic development. During evolution, this family has undergone considerable expansion, particularly within the vertebrate lineage. In vertebrates SOX proteins are required for the specification, development and/or morphogenesis of most vertebrate innovations. Tunicates and lancelets are evolutionarily positioned as the closest invertebrate relatives to the vertebrate group. By identifying their Sox gene complement we can begin to reconstruct the gene set of the last common chordate ancestor before the split into invertebrates and vertebrate groups. We have identified core SOX family members from the genomes of six invertebrate chordates. Using phylogenetic analysis we determined their evolutionary relationships. We propose that the last common ancestor of chordates had at least seven Sox genes, including the core suite of SoxB, C, D, E and F as well as SoxH. PMID:26361847

  16. The evolution of the vertebrate Dlx gene family.

    PubMed Central

    Stock, D W; Ellies, D L; Zhao, Z; Ekker, M; Ruddle, F H; Weiss, K M

    1996-01-01

    The vertebrate Dlx gene family consists of homeobox-containing transcription factors distributed in pairs on the same chromosomes as the Hox genes. To investigate the evolutionary history of Dlx genes, we have cloned five new zebrafish family members and have provided additional sequence information for two mouse genes. Phylogenetic analyses of Dlx gene sequences considered in the context of their chromosomal arrangements suggest that an initial tandem duplication produced a linked pair of Dlx genes after the divergence of chordates and arthropods but prior to the divergence of tunicates and vertebrates. This pair of Dlx genes was then duplicated in the chromosomal events that led to the four clusters of Hox genes characteristic of bony fish and tetrapods. It is possible that a pair of Dlx genes linked to the Hoxc cluster has been lost from mammals. We were unable to distinguish between independent duplication and retention of the ancestral state of bony vertebrates to explain the presence of a greater number of Dlx genes in zebrafish than mammals. Determination of the linkage relationship of these additional zebrafish Dlx genes to Hox clusters should help resolve this issue. PMID:8855272

  17. Evolution of the Hedgehog Gene Family

    PubMed Central

    Kumar, S.; Balczarek, K. A.; Lai, Z. C.

    1996-01-01

    Effective intercellular communication is an important feature in the development of multicellular organisms. Secreted hedgehog (hh) protein is essential for both long- and short-range cellular signaling required for body pattern formation in animals. In a molecular evolutionary study, we find that the vertebrate homologs of the Drosophila hh gene arose by two gene duplications: the first gave rise to Desert hh, whereas the second produced the Indian and Sonic hh genes. Both duplications occurred before the emergence of vertebrates and probably before the evolution of chordates. The amino-terminal fragment of the hh precursor, crucial in long- and short-range intercellular communication, evolves two to four times slower than the carboxyl-terminal fragment in both Drosophila hh and its vertebrate homologues, suggesting conservation of mechanism of hh action in animals. A majority of amino acid substitutions in the amino- and carboxyl-terminal fragments are conservative, but the carboxyl-terminal domain has undergone extensive insertion-deletion events while maintaining its autocleavage protease activity. Our results point to similarity of evolutionary constraints among sites of Drosophila and vertebrate hh homologs and suggest some future directions for understanding the role of hh genes in the evolution of developmental complexity in animals. PMID:8849902

  18. The smaller human VH gene families display remarkably little polymorphism.

    PubMed Central

    Sanz, I; Kelly, P; Williams, C; Scholl, S; Tucker, P; Capra, J D

    1989-01-01

    We report the nucleotide sequence of 30 distinct human VH gene segments from the VHIV, VHV and VHVI gene families. When these sequences were compared to previously published sequences from these smaller human VH families a surprisingly low level of polymorphism was noted. Two VHIV gene segments from unrelated individuals were identical to two previously published VHIV sequences. Five VHV sequences were identical and seven VHVI gene segments were identical. Where differences were found between the sequences, allele specific oligonucleotide probes were used to verify the germline nature of the change and to test for segregation in several large kindreds. These data provide evidence that at least some human VH gene segments are remarkably stable. Images PMID:2511001

  19. The ubiquilin gene family: evolutionary patterns and functional insights

    PubMed Central

    2014-01-01

    Background Ubiquilins are proteins that function as ubiquitin receptors in eukaryotes. Mutations in two ubiquilin-encoding genes have been linked to the genesis of neurodegenerative diseases. However, ubiquilin functions are still poorly understood. Results In this study, evolutionary and functional data are combined to determine the origin and diversification of the ubiquilin gene family and to characterize novel potential roles of ubiquilins in mammalian species, including humans. The analysis of more than six hundred sequences allowed characterizing ubiquilin diversity in all the main eukaryotic groups. Many organisms (e. g. fungi, many animals) have single ubiquilin genes, but duplications in animal, plant, alveolate and excavate species are described. Seven different ubiquilins have been detected in vertebrates. Two of them, here called UBQLN5 and UBQLN6, had not been hitherto described. Significantly, marsupial and eutherian mammals have the most complex ubiquilin gene families, composed of up to 6 genes. This exceptional mammalian-specific expansion is the result of the recent emergence of four new genes, three of them (UBQLN3, UBQLN5 and UBQLNL) with precise testis-specific expression patterns that indicate roles in the postmeiotic stages of spermatogenesis. A gene with related features has independently arisen in species of the Drosophila genus. Positive selection acting on some mammalian ubiquilins has been detected. Conclusions The ubiquilin gene family is highly conserved in eukaryotes. The infrequent lineage-specific amplifications observed may be linked to the emergence of novel functions in particular tissues. PMID:24674348

  20. Evolution of the YABBY gene family in seed plants.

    PubMed

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. PMID:26763689

  1. psbA mutation (Asn266 to Thr) in Senecio vulgaris L. confers resistance to several PS II-inhibiting herbicides.

    PubMed

    Park, Kee Woong; Mallory-Smith, Carol A

    2006-09-01

    DNA sequence analysis of the psbA gene encoding the D1 protein of photosystem II (PS II), the target site of PS II-inhibiting herbicides, identified a point mutation (Asn266 to Thr) in a bromoxynil-resistant Senecio vulgaris L. population collected from peppermint fields in Oregon. Although this mutation has been previously reported in Synechocystis, this is the first report of this particular point mutation in a higher plant exhibiting resistance to PS II-inhibiting herbicides. The resistant population displayed high-level resistance to bromoxynil and terbacil (R/S ratio 10.1 and 9.3, respectively) and low-level resistance to metribuzin and hexazinone (R/S ratio 4.2 and 2.6, respectively) when compared with the susceptible population. However, the population was not resistant to the triazine herbicides atrazine and simazine or to the urea herbicide diuron. A chlorophyll fluorescence assay confirmed the resistance levels and patterns of cross-resistance of the whole-plant studies. The resistant S. vulgaris plants produced fewer seeds. Differences in cross-resistance patterns to PS II-inhibiting herbicides and the difference in fitness cost could be exploited in a weed management program. PMID:16791906

  2. Exploiting Gene Families for Phylogenomic Analysis of Myzostomid Transcriptome Data

    PubMed Central

    Hartmann, Stefanie; Helm, Conrad; Nickel, Birgit; Meyer, Matthias; Struck, Torsten H.; Tiedemann, Ralph; Selbig, Joachim; Bleidorn, Christoph

    2012-01-01

    Background In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic) protostomes that are either placed with annelids or flatworms. Methodology Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic. PMID:22276131

  3. Promoter methylation of candidate genes associated with familial testicular cancer.

    PubMed

    Mirabello, Lisa; Kratz, Christian P; Savage, Sharon A; Greene, Mark H

    2012-01-01

    Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted. PMID:23050052

  4. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  5. Two mutations in LDLR gene were found in two Chinese families with familial hypercholesterolemia.

    PubMed

    Cheng, Xiaohuan; Ding, Junfa; Zheng, Fang; Zhou, Xin; Xiong, Chenling

    2009-11-01

    Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively. PMID:19020990

  6. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.

    PubMed

    Lagman, David; Sundström, Görel; Ocampo Daza, Daniel; Abalo, Xesús M; Larhammar, Dan

    2012-10-01

    Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations. PMID:22814267

  7. The d4 gene family in the human genome

    SciTech Connect

    Chestkov, A.V.; Baka, I.D.; Kost, M.V.

    1996-08-15

    The d4 domain, a novel zinc finger-like structural motif, was first revealed in the rat neuro-d4 protein. Here we demonstrate that the d4 domain is conserved in evolution and that three related genes form a d4 family in the human genome. The human neuro-d4 is very similar to rat neuro-d4 at both the amino acid and the nucleotide levels. Moreover, the same splice variants have been detected among rat and human neuro-d4 transcripts. This gene has been localized on chromosome 19, and two other genes, members of the d4 family isolated by screening of the human genomic library at low stringency, have been mapped to chromosomes 11 and 14. The gene on chromosome 11 is the homolog of the ubiquitously expressed mouse gene ubi-d4/requiem, which is required for cell death after deprivation of trophic factors. A gene with a conserved d4 domain has been found in the genome of the nematode Caenorhabditis elegans. The conservation of d4 proteins from nematodes to vertebrates suggests that they have a general importance, but a diversity of d4 proteins expressed in vertebrate nervous systems suggests that some family members have special functions. 11 refs., 2 figs.

  8. Analysis of the Prefoldin Gene Family in 14 Plant Species

    PubMed Central

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies. PMID:27014333

  9. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  10. Family size evolution in Drosophila chemosensory gene families: a comparative analysis with a critical appraisal of methods.

    PubMed

    Almeida, Francisca C; Sánchez-Gracia, Alejandro; Campos, Jose Luis; Rozas, Julio

    2014-07-01

    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process. PMID:24951565

  11. Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Giani, Vincent C.; Seaver, Elaine C.; Weisblat, David A.

    2010-01-01

    The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286–3305.; Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Curr Biol. 19:R215–R219.). As for many other gene families, evidence for expansion and/or contraction of the wnt family is available from deuterostomes (e.g., echinoderms and vertebrates [Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69:1073–1087.; Schubert M, Holland LZ, Holland ND, Jacobs DK. 2000. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 17:1896–1903.; Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR. 2006. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 300:121–131.]) and ecdysozoans (e.g., arthropods and nematodes [Eisenmann DM. 2005. Wnt signaling. WormBook. 1–17.; Bolognesi R, Farzana L, Fischer TD, Brown SJ. 2008. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol. 18:1624–1629.]), but little is known from the third major bilaterian group, the lophotrochozoans (e.g., mollusks and annelids [Prud'homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M. 2002. Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr Biol. 12:1395.]). To obtain a more comprehensive scenario of the evolutionary dynamics of this gene family, we exhaustively mined wnt gene sequences from the whole genome assemblies of a mollusk (Lottia gigantea) and two annelids (Capitella teleta and Helobdella robusta) and examined them by phylogenetic, genetic linkage, intron–exon structure, and embryonic

  12. Update on the Kelch-like (KLHL) gene family

    PubMed Central

    2013-01-01

    The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has no known function yet is of functional importance since mutations in this domain are associated with disease. Kelch domains form a tertiary structure of β-propellers that have a role in extracellular functions, morphology, and binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3 ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide valuable insights into basic biology and human disease. PMID:23676014

  13. The six family of homeobox genes in development and cancer.

    PubMed

    Christensen, Kimberly L; Patrick, Aaron N; McCoy, Erica L; Ford, Heide L

    2008-01-01

    The homeobox gene superfamily encodes transcription factors that act as master regulators of development through their ability to activate or repress a diverse range of downstream target genes. Numerous families exist within the homeobox gene superfamily, and are classified on the basis of conservation of their homeodomains as well as additional motifs that contribute to DNA binding and to interactions with other proteins. Members of one such family, the Six family, form a transcriptional complex with Eya and Dach proteins, and together these proteins make up part of the retinal determination network first identified in Drosophila. This network is highly conserved in both invertebrate and vertebrate species, where it influences the development of numerous organs in addition to the eye, primarily through regulation of cell proliferation, survival, migration, and invasion. Mutations in Six, Eya, and Dach genes have been identified in a variety of human genetic disorders, demonstrating their critical role in human development. In addition, aberrant expression of Six, Eya, and Dach occurs in numerous human tumors, and Six1, in particular, plays a causal role both in tumor initiation and in metastasis. Emerging evidence for the importance of Six family members and their cofactors in numerous human tumors suggests that targeting of this complex may be a novel and powerful means to inhibit both tumor growth and progression. PMID:19055944

  14. Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197).

    PubMed

    Mansur, M; Suárez, T; González, A E

    1998-02-01

    A family of genes encoding laccases has recently been described for the basidiomycete I-62 (CECT 20197). Transcript levels of genes lcc1, lcc2, and lcc3 were analyzed under four different culture conditions to study their expression patterns. Two of the laccase genes were clearly inducible by veratryl alcohol: the lcc1 gene is inducible in early stages of growth, and the lcc2 gene is also inducible but only when the organism reaches the stationary phase. Transcript levels for the third gene, lcc3, were uninduced by veratryl alcohol and repressed by glucose. PMID:16349507

  15. Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197)

    PubMed Central

    Mansur, Mariana; Suárez, Teresa; González, Aldo E.

    1998-01-01

    A family of genes encoding laccases has recently been described for the basidiomycete I-62 (CECT 20197). Transcript levels of genes lcc1, lcc2, and lcc3 were analyzed under four different culture conditions to study their expression patterns. Two of the laccase genes were clearly inducible by veratryl alcohol: the lcc1 gene is inducible in early stages of growth, and the lcc2 gene is also inducible but only when the organism reaches the stationary phase. Transcript levels for the third gene, lcc3, were uninduced by veratryl alcohol and repressed by glucose. PMID:16349507

  16. Neuregulin signaling in pieces--evolution of the gene family.

    PubMed

    Marchionni, Mark A

    2014-01-01

    Paracrine and juxtacrine signaling via proteins expressed on the cell surface are an integral part of metazoan biology. More than one-half billion years ago epidermal growth factor (EGF) and its cognate receptor formed a functional binding partnership, which has been conserved through evolution in essentially all eubilaterate members of the animal kingdom. Early chordates spawned offspring of these seminal genes to begin the creation of new gene families and an expanded cell-cell signaling network, which included the Neuregulin (NRG) ligands and the erbB receptors. First appearance of ancestral NRG, represented in a NRG4-like gene in the lancelet Branchiostoma floridae, appears to have: 1) occurred in the common chordate ancestor prior to the divergence of lancelets (amphioxus), and; 2) antedated the formation of the receptor gene family. Orthologues of NRG1 and multiple erbB receptors found in the sea lamprey Petromyzon marinus suggest that several key events, which were required to expand and diversify these gene families, occurred in the common ancestor of agnathostomes and jawed vertebrates. These important inventions surely played major roles in the acquisition of multiple apomorphic features of the emerging vertebrate lineage. PMID:24283952

  17. Effects of the Family Environment: Gene-Environment Interaction and Passive Gene-Environment Correlation

    ERIC Educational Resources Information Center

    Price, Thomas S.; Jaffee, Sara R.

    2008-01-01

    The classical twin study provides a useful resource for testing hypotheses about how the family environment influences children's development, including how genes can influence sensitivity to environmental effects. However, existing statistical models do not account for the possibility that children can inherit exposure to family environments…

  18. Two novel CAV3 gene mutations in Japanese families.

    PubMed

    Sugie, Kazuma; Murayama, Kumiko; Noguchi, Satoru; Murakami, Nobuyuki; Mochizuki, Mika; Hayashi, Yukiko K; Nonaka, Ikuya; Nishino, Ichizo

    2004-12-01

    Caveolin-3 deficiency is a rare, autosomal dominant, muscle disorder caused by caveolin-3 gene (CAV3) mutations and consists of four clinical phenotypes: limb-girdle muscular dystrophy type 1C (LGMD-1C), rippling muscle disease, distal myopathy, and familial hyperCKemia. So far, only 13 mutations have been reported. We here report two novel heterozygous mutations, 96C>G (N32K) and 128T>A (V43E), in the CAV3 gene in two unrelated Japanese families with LGMD-1C. Both probands presented with elevated serum CK level with calf muscle hypertrophy in their childhood but without apparent muscle weakness. However, their mothers showed mild limb-girdle weakness in addition to high CK level. Caveolin-3 was deficient and caveolae were lacking in muscles from both patients. Our data confirm that caveolin-3 deficiency causes LGMD-1C and expand the variability in CAV3 gene mutations. PMID:15564037

  19. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    ERIC Educational Resources Information Center

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  20. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families

    PubMed Central

    Vyas, Valmik K.; Barrasa, M. Inmaculada; Fink, Gerald R.

    2015-01-01

    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen. PMID:25977940

  1. Evolution of akirin family in gene and genome levels and coexpressed patterns among family members and rel gene in croaker.

    PubMed

    Liu, Tianxing; Gao, Yunhang; Xu, Tianjun

    2015-09-01

    Akirins, which are highly conserved nuclear proteins, are present throughout the metazoan and regulate innate immunity, embryogenesis, myogenesis, and carcinogenesis. This study reports all akirin genes from miiuy croaker and analyzes comprehensively the akirin gene family combined with akirin genes from other species. A second nuclear localization signal (NLS) is observed in akirin2 homologues, which is not in akirin1 homologues in all teleosts and most other vertebrates. Thus, we deduced that the loss of second NLS in akirin1 homologues in teleosts likely occurred in an ancestor to all Osteichthyes after splitting with cartilaginous fish. Significantly, the akirin2(2) gene included six exons interrupted by five introns in the miiuy croaker, which may be caused by the intron insertion event as a novel evidence for the variation of akirin gene structure in some species. In addition, comparison of the genomic neighborhood genes of akirin1, akirin2(1), and akirin2(2) demonstrates a strong level of conserved synteny across the teleost classes, which further proved the deduction of Macqueen and Johnston 2009 that the produce of akirin paralogues can be attributed to whole-genome duplications and the loss of some akirin paralogues after genome duplications. Furthermore, akirin gene family members and relish gene are ubiquitously expressed across all tissues, and their expression levels are increased in three immune tissues after infection with Vibrio anguillarum. Combined with the expression patterns of LEAP-1 and LEAP-2 from miiuy croaker, an intricate network of co-regulation among family members is established. Thus, it is further proved that akirins acted in concert with the relish protein to induce the expression of a subset of downstream pathway elements in the NF-kB dependent signaling pathway. PMID:25912355

  2. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  3. Early evolution of the LIM homeobox gene family

    SciTech Connect

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  4. Linkage analysis of candidate myelin genes in familial multiple sclerosis.

    PubMed

    Seboun, E; Oksenberg, J R; Rombos, A; Usuku, K; Goodkin, D E; Lincoln, R R; Wong, M; Pham-Dinh, D; Boesplug-Tanguy, O; Carsique, R; Fitoussi, R; Gartioux, C; Reyes, C; Ribierre, F; Faure, S; Fizames, C; Gyapay, G; Weissenbach, J; Dautigny, A; Rimmler, J B; Garcia, M E; Pericak-Vance, M A; Haines, J L; Hauser, S L

    1999-09-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. A complex genetic etiology is thought to underlie susceptibility to this disease. The present study was designed to analyze whether differences in genes that encode myelin proteins influence susceptibility to MS. We performed linkage analysis of MS to markers in chromosomal regions that include the genes encoding myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMGP), and myelin oligodendrocyte glycoprotein (MOG) in a well-characterized population of 65 multiplex MS families consisting of 399 total individuals, 169 affected with MS and 102 affected sibpairs. Physical mapping data permitted placement of MAG and PLP genes on the Genethon genetic map; all other genes were mapped on the Genethon genetic map by linkage analysis. For each gene, at least one marker within the gene and/or two tightly linked flanking markers were analyzed. Marker data analysis employed a combination of genetic trait model-dependent (parametric) and model-independent linkage methods. Results indicate that MAG, MBP, OMGP, and PLP genes do not have a significant genetic effect on susceptibility to MS in this population. As MOG resides within the MHC, a potential role of the MOG gene could not be excluded. PMID:10541588

  5. A conserved family of elav-like genes in vertebrates.

    PubMed Central

    Good, P J

    1995-01-01

    A large family of genes encodes proteins with RNA recognition motifs that are presumed to bind RNA and to function in posttranscriptional regulation. Neural-specific members of this family include elav, a gene required for correct differentiation and maintenance of neurons in Drosophila melanogaster, and a related gene, HuD, which is expressed in human neuronal cells. I have identified genes related to elav and HuD in Xenopus laevis, zebrafish, and mouse that define a family of four closely related vertebrate elav-like genes (elrA, elrB, elrC, and elrD) in fish, frogs, and mammals. In addition to protein sequence conservation, a segment of the 3'-untranslated sequence of elrD is also conserved, implying a functional role in elrD expression. In adult frogs, elrC and elrD are exclusively expressed in the brain, whereas elrB is expressed in brain, testis, and ovary. During Xenopus development, elrC and elrD RNAs are detected by late gastrula and late neurula stages, respectively, whereas a nervous system-specific elrB RNA species is expressed by early tadpole stage. Additional elrB transcripts are detected in the ovary and early embryo, demonstrating a maternal supply of mRNA and possibly of protein. These expression patterns suggest a role for different elav-like genes in early development and neuronal differentiation. Surprisingly, elrA is expressed in all adult tissues tested and at all times during development. Thus, the widely expressed elrA is expected to have a related function in all cells. Images Fig. 4 Fig. 5 PMID:7753842

  6. Comparative and Evolutionary Analysis of Major Peanut Allergen Gene Families

    PubMed Central

    Ratnaparkhe, Milind B.; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K.; Lemke, Cornelia; Compton, Rosana O.; Robertson, Jon; Gallo, Maria; Bertioli, David J.; Paterson, Andrew H.

    2014-01-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  7. Comparative and evolutionary analysis of major peanut allergen gene families.

    PubMed

    Ratnaparkhe, Milind B; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K; Lemke, Cornelia; Compton, Rosana O; Robertson, Jon; Gallo, Maria; Bertioli, David J; Paterson, Andrew H

    2014-09-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  8. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    PubMed

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  9. The Maize PIN Gene Family of Auxin Transporters.

    PubMed

    Forestan, Cristian; Farinati, Silvia; Varotto, Serena

    2012-01-01

    Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a-d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a-c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots. PMID:22639639

  10. Epigenetic balance of gene expression by Polycomb and COMPASS families.

    PubMed

    Piunti, Andrea; Shilatifard, Ali

    2016-06-01

    Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings. PMID:27257261

  11. Recent developments in focused library design: targeting gene-families.

    PubMed

    Miller, Jennifer L

    2006-01-01

    For many years, the most frequently optimized qualities of a screening library, or corporate compound collection, were size and diversity. Maximizing the number of diverse hits is the fundamental goal of such strategies. The ostensible justification that "bigger is better" is based on the large, estimated size of small-molecule space and the hypothesis that the notoriously low hit rates from high-throughput screening (HTS) could be overcome by brute force: i.e. by screening more compounds. Published, detailed studies about the success (or failure) of the brute-force strategy are rare, but it is well-known that it did not fulfill expectations. As a result, published reports in recent years have increasingly described methods for designing, selecting or synthesizing gene family-focused or -biased libraries. Moreover, many of the larger compound suppliers now sell such libraries, reflecting the growing interest in them from both the pharmaceutical and biotechnology markets. The trend towards gene family-focused libraries marks the emergence of a different hypothesis about how to increase HTS hit rates and also reflects an increasingly pragmatic focus on the management of screening libraries. An important, underlying assumption in this trend is that a high-quality, general-purpose screening library of manageable size is neither realizable nor desirable. Whether a biasing strategy based on a specific gene family will do a better job of meeting both the scientific and business needs of the drug discovery enterprise still remains to be seen, but it is certainly an active area of current research. This review focuses on the "who, what, why, when, and how" of the design of gene family-focused libraries. Particular attention is given to reports that discuss not only the techniques used, but also any results obtained. PMID:16454755

  12. The Nitrate Transporter (NRT) Gene Family in Poplar

    PubMed Central

    Bai, Hua; Euring, Dejuan; Volmer, Katharina; Janz, Dennis; Polle, Andrea

    2013-01-01

    Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth. PMID:23977227

  13. RASSF tumor suppressor gene family: biological functions and regulation.

    PubMed

    Volodko, Natalia; Gordon, Marilyn; Salla, Mohamed; Ghazaleh, Haya Abu; Baksh, Shairaz

    2014-08-19

    Genetic changes through allelic loss and nucleic acid or protein modifications are the main contributors to loss of function of tumor suppressor proteins. In particular, epigenetic silencing of genes by promoter hypermethylation is associated with increased tumor severity and poor survival. The RASSF (Ras association domain family) family of proteins consists of 10 members, many of which are tumor suppressor proteins that undergo loss of expression through promoter methylation in numerous types of cancers such as leukemia, melanoma, breast, prostate, neck, lung, brain, colorectal and kidney cancers. In addition to their tumor suppressor function, RASSF proteins act as scaffolding agents in microtubule stability, regulate mitotic cell division, modulate apoptosis, control cell migration and cell adhesion, and modulate NFκB activity and the duration of inflammation. The ubiquitous functions of these proteins highlight their importance in numerous physiological pathways. In this review, we will focus on the biological roles of the RASSF family members and their regulation. PMID:24607545

  14. Diverse roles of ERECTA family genes in plant development.

    PubMed

    Shpak, Elena D

    2013-12-01

    Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. Elena D. Shpak (Corresponding author). PMID:24016315

  15. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  16. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family

    SciTech Connect

    Kirchgessner, T.G.; Heinzmann, C.; Svenson, K.; Ameis, D.; Lusis, A.J. ); Chuat, J.C.; Etienne, J.; Guilhot, S.; Pilon, C.; D'Auriol, L.; Galibert, F. ); Schotz, M.C. Wadsworth Medical Center, Los Angeles, CA )

    1989-12-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning {approx} 30 kilobase. The first exon encodes the 5{prime}-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3{prime}-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5{prime}-flanking region were also determined. The authors compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events.

  17. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates. PMID:22210164

  18. Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited

    PubMed Central

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  19. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  20. Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns

    PubMed Central

    Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng

    2014-01-01

    F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786

  1. Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping

    PubMed Central

    LaJeunesse, Todd C.; Thornhill, Daniel J.

    2011-01-01

    Ribosomal DNA sequence data abounds from numerous studies on the dinoflagellate endosymbionts of corals, and yet the multi-copy nature and intragenomic variability of rRNA genes and spacers confound interpretations of symbiont diversity and ecology. Making consistent sense of extensive sequence variation in a meaningful ecological and evolutionary context would benefit from the application of additional genetic markers. Sequences of the non-coding region of the plastid psbA minicircle (psbAncr) were used to independently examine symbiont genotypic and species diversity found within and between colonies of Hawaiian reef corals in the genus Montipora. A single psbAncr haplotype was recovered in most samples through direct sequencing (∼80–90%) and members of the same internal transcribed spacer region 2 (ITS2) type were phylogenetically differentiated from other ITS2 types by substantial psbAncr sequence divergence. The repeated sequencing of bacterially-cloned fragments of psbAncr from samples and clonal cultures often recovered a single numerically common haplotype accompanied by rare, highly-similar, sequence variants. When sequence artifacts of cloning and intragenomic variation are factored out, these data indicate that most colonies harbored one dominant Symbiodinium genotype. The cloning and sequencing of ITS2 DNA amplified from these same samples recovered numerically abundant variants (that are diagnostic of distinct Symbiodinium lineages), but also generated a large amount of sequences comprising PCR/cloning artifacts combined with ancestral and/or rare variants that, if incorporated into phylogenetic reconstructions, confound how small sequence differences are interpreted. Finally, psbAncr sequence data from a broad sampling of Symbiodinium diversity obtained from various corals throughout the Indo-Pacific were concordant with ITS lineage membership (defined by denaturing gradient gel electrophoresis screening), yet exhibited substantially greater

  2. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    PubMed Central

    Li, Wei; Xu, Hanyun; Liu, Ying; Song, Lili; Guo, Changhong; Shu, Yongjun

    2016-01-01

    Mitogen-activated protein kinase kinase kinase (MAPKKK) is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome-wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high-throughput sequencing-data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA-seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome-wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula. PMID:27049397

  3. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula.

    PubMed

    Li, Wei; Xu, Hanyun; Liu, Ying; Song, Lili; Guo, Changhong; Shu, Yongjun

    2016-01-01

    Mitogen-activated protein kinase kinase kinase (MAPKKK) is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome-wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high-throughput sequencing-data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA-seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome-wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula. PMID:27049397

  4. Biofuel Potential of Plants Transformed Genetically with NAC Family Genes

    PubMed Central

    Singh, Sadhana; Grover, Atul; Nasim, M.

    2016-01-01

    NAC genes contribute to enhance survivability of plants under conditions of environmental stress and in secondary growth of the plants, thereby building biomass. Thus, genetic transformation of plants using NAC genes provides a possibility to tailor biofuel plants. Over-expression studies have indicated that NAC family genes can provide tolerance to various biotic and abiotic stresses, either by physiological or biochemical changes at the cellular level, or by affecting visible morphological and anatomical changes, for example, by development of lateral roots in a number of plants. Over-expression of these genes also work as triggers for development of secondary cell walls. In our laboratory, we have observed a NAC gene from Lepidium latifolium contributing to both enhanced biomass as well as cold stress tolerance of model plants tobacco. Thus, we have reviewed all the developments of genetic engineering using NAC genes which could enhance the traits required for biofuel plants, either by enhancing the stress tolerance or by enhancing the biomass of the plants. PMID:26858739

  5. Biofuel Potential of Plants Transformed Genetically with NAC Family Genes.

    PubMed

    Singh, Sadhana; Grover, Atul; Nasim, M

    2016-01-01

    NAC genes contribute to enhance survivability of plants under conditions of environmental stress and in secondary growth of the plants, thereby building biomass. Thus, genetic transformation of plants using NAC genes provides a possibility to tailor biofuel plants. Over-expression studies have indicated that NAC family genes can provide tolerance to various biotic and abiotic stresses, either by physiological or biochemical changes at the cellular level, or by affecting visible morphological and anatomical changes, for example, by development of lateral roots in a number of plants. Over-expression of these genes also work as triggers for development of secondary cell walls. In our laboratory, we have observed a NAC gene from Lepidium latifolium contributing to both enhanced biomass as well as cold stress tolerance of model plants tobacco. Thus, we have reviewed all the developments of genetic engineering using NAC genes which could enhance the traits required for biofuel plants, either by enhancing the stress tolerance or by enhancing the biomass of the plants. PMID:26858739

  6. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the αD-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the αA-globin gene), recurrent losses of αD-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  7. The Discoidin I Gene Family of Dictyostelium Discoideum Is Linked to Genes Regulating Its Expression

    PubMed Central

    Welker, D. L.

    1988-01-01

    The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on linkage group II. This evidence is consistent with the discoidin I genes forming a gene cluster that may be under the control of a single regulatory element. The discoidin I genes are linked to three genetic loci (disA, motA, daxA) that affect the expression of the discoidin I protein. Linkage of the gene family members to regulatory loci may be important in the coordinate maintenance of the gene family and regulatory loci. A duplication affecting the entire discoidin gene family is also linked to group II; this appears to be a small tandem duplication. This duplication was mapped using a DNA polymorphism generated by insertion of the Tdd-3 mobile genetic element into a Tdd-2 element flanking the γ gene. A probe for Tdd-2 identified a restriction fragment length polymorphism in strain AX3K that was consistent with generation by a previously proposed Tdd-3 insertion event. A putative duplication or rearrangement of a second Tdd-2 element on linkage group IV of strain AX3K was also identified. This is the first linkage information available for mobile genetic elements in D. discoideum. PMID:3402731

  8. Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family

    PubMed Central

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  9. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    PubMed

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  10. Polymorphism in the interferon-alpha gene family.

    PubMed Central

    Golovleva, I.; Kandefer-Szerszen, M.; Beckman, L.; Lundgren, E.

    1996-01-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases "nested" PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-alpha 1 and interferon-alpha 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. Images Figure 1 Figure 2 Figure 3 PMID:8751858

  11. Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family

    PubMed Central

    Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  12. Evolution of the vertebrate paralemmin gene family: ancient origin of gene duplicates suggests distinct functions.

    PubMed

    Hultqvist, Greta; Ocampo Daza, Daniel; Larhammar, Dan; Kilimann, Manfred W

    2012-01-01

    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates. PMID:22855693

  13. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  14. Functional analysis of the aquaporin gene family in Caenorhabditis elegans.

    PubMed

    Huang, Chunyi George; Lamitina, Todd; Agre, Peter; Strange, Kevin

    2007-05-01

    Aquaporin channels facilitate the transport of water, glycerol, and other small solutes across cell membranes. The physiological roles of many aquaporins remain unclear. To better understand aquaporin function, we characterized the aquaporin gene family in the nematode Caenorhabditis elegans. Eight canonical aquaporin-encoding genes (aqp) are present in the worm genome. Expression of aqp-2, aqp-3, aqp-4, aqp-6, or aqp-7 in Xenopus oocytes increased water permeability five- to sevenfold. Glycerol permeability was increased three to sevenfold by expression of aqp-1, aqp-3, or aqp-7. Green fluorescent protein transcriptional and translational reporters demonstrated that aqp genes are expressed in numerous C. elegans cell types, including the intestine, excretory cell, and hypodermis, which play important roles in whole animal osmoregulation. To define the role of C. elegans aquaporins in osmotic homeostasis, we isolated deletion alleles for four aqp genes, aqp-2, aqp-3, aqp-4, and aqp-8, which are expressed in osmoregulatory tissues and mediate water transport. Single, double, triple, and quadruple aqp mutant animals exhibited normal survival, development, growth, fertility, and movement under normal and hypertonic culture conditions. aqp-2;aqp-3;aqp-4;aqp-8 quadruple mutants exhibited a slight defect in recovery from hypotonic stress but survived hypotonic stress as well as wild-type animals. These results suggest that C. elegans aquaporins are not essential for whole animal osmoregulation and/or that deletion of aquaporin genes activates mechanisms that compensate for loss of water channel function. PMID:17229810

  15. Statistical framework for phylogenomic analysis of gene family expression profiles.

    PubMed

    Gu, Xun

    2004-05-01

    Microarray technology has produced massive expression data that are invaluable for investigating the genome-wide evolutionary pattern of gene expression. To this end, phylogenetic expression analysis is highly desirable. On the basis of the Brownian process, we developed a statistical framework (called the E(0) model), assuming the independent expression of evolution between lineages. Several evolutionary mechanisms are integrated to characterize the pattern of expression diversity after gene duplications, including gradual drift and dramatic shift (punctuated equilibrium). When the phylogeny of a gene family is given, we show that the likelihood function follows a multivariate normal distribution; the variance-covariance matrix is determined by the phylogenetic topology and evolutionary parameters. Maximum-likelihood methods for multiple microarray experiments are developed, and likelihood-ratio tests are designed for testing the evolutionary pattern of gene expression. To reconstruct the evolutionary trace of expression diversity after gene (or genome) duplications, we developed a Bayesian-based method and use the posterior mean as predictors. Potential applications in evolutionary genomics are discussed. PMID:15166175

  16. MMACHC gene mutation in familial hypogonadism with neurological symptoms.

    PubMed

    Shi, Changhe; Shang, Dandan; Sun, Shilei; Mao, Chengyuan; Qin, Jie; Luo, Haiyang; Shao, Mingwei; Chen, Zhengguang; Liu, Yutao; Liu, Xinjing; Song, Bo; Xu, Yuming

    2015-12-15

    Recent studies have convincingly documented that hypogonadism is a component of various hereditary disorders and is often recognized as an important clinical feature in combination with various neurological symptoms, yet, the causative genes in a few related families are still unknown. High-throughput sequencing has become an efficient method to identify causative genes in related complex hereditary disorders. In this study, we performed exome sequencing in a family presenting hypergonadotropic hypogonadism with neurological presentations of mental retardation, epilepsy, ataxia, and leukodystrophy. After bioinformatic analysis and Sanger sequencing validation, we identified compound heterozygous mutations: c.482G>A (p.R161Q) and c.609G>A (p.W203X) in MMACHC gene in this pedigree. MMACHC was previously confirmed to be responsible for methylmalonic aciduria (MMA) combined with homocystinuria, cblC type (cblC disease), a hereditary vitamin B12 metabolic disorder. Biochemical and gas chromatography-mass spectrometry (GC-MS) examinations in this pedigree further supported the cblC disease diagnosis. These results indicated that hypergonadotropic hypogonadism may be a novel clinical manifestation of cblC disease, but more reports on additional patients are needed to support this hypothesis. PMID:26283149

  17. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  18. Visualization of multiple alignments, phylogenies and gene family evolution.

    PubMed

    Procter, James B; Thompson, Julie; Letunic, Ivica; Creevey, Chris; Jossinet, Fabrice; Barton, Geoffrey J

    2010-03-01

    Software for visualizing sequence alignments and trees are essential tools for life scientists. In this review, we describe the major features and capabilities of a selection of stand-alone and web-based applications useful when investigating the function and evolution of a gene family. These range from simple viewers, to systems that provide sophisticated editing and analysis functions. We conclude with a discussion of the challenges that these tools now face due to the flood of next generation sequence data and the increasingly complex network of bioinformatics information sources. PMID:20195253

  19. Characterization of the Aspergillus nidulans septin (asp) gene family.

    PubMed Central

    Momany, M; Zhao, J; Lindsey, R; Westfall, P J

    2001-01-01

    Members of the septin gene family are involved in cytokinesis and the organization of new growth in organisms as diverse as yeast, fruit fly, worm, mouse, and human. Five septin genes have been cloned and sequenced from the model filamentous fungus A. nidulans. As expected, the A. nidulans septins contain the highly conserved GTP binding and coiled-coil domains seen in other septins. On the basis of hybridization of clones to a chromosome-specific library and correlation with an A. nidulans physical map, the septins are not clustered but are scattered throughout the genome. In phylogenetic analysis most fungal septins could be grouped with one of the prototypical S. cerevisiae septins, Cdc3, Cdc10, Cdc11, and Cdc12. Intron-exon structure was conserved within septin classes. The results of this study suggest that most fungal septins belong to one of four orthologous classes. PMID:11238387

  20. Management of asymptomatic gene carriers of transthyretin familial amyloid polyneuropathy.

    PubMed

    Schmidt, Hartmut H-J; Barroso, Fabio; González-Duarte, Alejandra; Conceição, Isabel; Obici, Laura; Keohane, Denis; Amass, Leslie

    2016-09-01

    Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare, severe, and irreversible, adult-onset, hereditary disorder caused by autosomal-dominant mutations in the TTR gene that increase the intrinsic propensity of transthyretin protein to misfold and deposit systemically as insoluble amyloid fibrils in nerve tissues, the heart, and other organs. TTR-FAP is characterized by relentless, progressively debilitating polyneuropathy, and leads to death, on average, within 10 years of symptom onset without treatment. With increased availability of disease-modifying treatment options for a wider spectrum of patients with TTR-FAP, timely detection of the disease may offer substantial clinical benefits. This review discusses mutation-specific predictive genetic testing in first-degree relatives of index patients diagnosed with TTR-FAP and the structured clinical follow-up of asymptomatic gene carriers for prompt diagnosis and early therapeutic intervention before accumulation of substantial damage. Muscle Nerve 54: 353-360, 2016. PMID:27273296

  1. The 239AB gene on chromosome 22: a novel member of an ancient gene family.

    PubMed

    Schwartz, F; Ota, T

    1997-07-18

    A novel family of genes expressed in human brain has recently been identified. Gene 239FB, transcribed extensively in fetal brain, was isolated from the chromosome 11p13 region associated with mental retardation component of the WAGR (Wilms tumor, aniridia, genitourinary anomalies, mental retardation) syndrome. This report presents a cDNA sequence and expression profile of a related gene, 239AB, isolated from adult brain library, that was mapped to chromosome 22. While similar in structure, the two genes differ in their expression pattern and may have different roles in central nervous system development and function. In contrast to the 239FB, which is expressed predominantly in fetal brain, the 239AB gene is transcribed in adult tissues. Both human genes encode novel proteins of unknown function that are highly conserved from Caenorhabditis elegans to birds and mammals. Phylogenetic analysis suggested that the two lineages of the ancient gene family represented by 239FB and 239AB have been in existence prior to the emergence of modern animals. PMID:9266672

  2. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  3. Repeated Evolution of Chimeric Fusion Genes in the β-Globin Gene Family of Laurasiatherian Mammals

    PubMed Central

    Gaudry, Michael J.; Storz, Jay F.; Butts, Gary Tyler; Campbell, Kevin L.; Hoffmann, Federico G.

    2014-01-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB “Lepore” deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived “anti-Lepore” duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20–100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  4. Alpha globin gene analysis in a Sardinian family with interacting alpha and beta thalassaemia genes.

    PubMed

    Melis, M A; Galanello, R; Cao, A

    1983-04-01

    This paper reports the results of alpha globin gene analysis in a Sardinian family with interacting alpha and beta thalassaemia genes. The propositus, who was identified in a newborn survey as he had 26.0% Hb Bart's and 74.0% Hb F, successively developed the clinical and haematological picture of a transfusion-dependent thalassaemia major. According to the haemoglobin pattern, restriction endonuclease analysis of the DNA from this patient showed the deletion of three of the four alpha-globin structural genes. Thus beta 0-thalassaemia homozygotes with the delection of three alpha-structural genes seem to have a severe clinical phenotype similar to that of patients with a full complement of four alpha-globin structural genes. PMID:6299325

  5. Molecular biology of the anion exchanger gene family.

    PubMed

    Kopito, R R

    1990-01-01

    The gene family of anion exchangers consists of at least four or five members, of which three have been characterized at the cDNA level. AE1-3 encode polypeptides that share significant homology with the erythrocyte anion exchanger, band 3 (AE1). Expression of cDNAs encoding these genes in heterologous systems confirms that this sequence similarity is reflected in the capacity to mediate reversible Cl/HCO3 exchange. While the NH2-terminal domain of band 3 is known to interact with several cytoplasmic proteins in erythrocytes, the function of the analogous domains of AE2 and AE3 remains unknown. The AE1 gene is expressed coordinately with other erythroid genes during erythropoiesis in both avian and mammalian erythroid progenitor cells. In addition, AE1 is expressed at the basolateral plasma membrane of the acid-secreting intercalated cells of the kidney. AE2 is expressed in a number of epithelial and nonepithelial cells; it may be expressed in the Golgi apparatus of some of these cells. AE3 is expressed in excitable tissues, including neurons and muscle. It is likely that these proteins play a role in regulation of intracellular pH and chloride in their respective tissue. Understanding of the physiological roles of these proteins, both for ion transport and for plasma membrane organization, remains a central issue. PMID:2289848

  6. Databases of homologous gene families for comparative genomics

    PubMed Central

    Penel, Simon; Arigon, Anne-Muriel; Dufayard, Jean-François; Sertier, Anne-Sophie; Daubin, Vincent; Duret, Laurent; Gouy, Manolo; Perrière, Guy

    2009-01-01

    Background Comparative genomics is a central step in many sequence analysis studies, from gene annotation and the identification of new functional regions in genomes, to the study of evolutionary processes at the molecular level (speciation, single gene or whole genome duplications, etc.) and phylogenetics. In that context, databases providing users high quality homologous families and sequence alignments as well as phylogenetic trees based on state of the art algorithms are becoming indispensable. Methods We developed an automated procedure allowing massive all-against-all similarity searches, gene clustering, multiple alignments computation, and phylogenetic trees construction and reconciliation. The application of this procedure to a very large set of sequences is possible through parallel computing on a large computer cluster. Results Three databases were developed using this procedure: HOVERGEN, HOGENOM and HOMOLENS. These databases share the same architecture but differ in their content. HOVERGEN contains sequences from vertebrates, HOGENOM is mainly devoted to completely sequenced microbial organisms, and HOMOLENS is devoted to metazoan genomes from Ensembl. Access to the databases is provided through Web query forms, a general retrieval system and a client-server graphical interface. The later can be used to perform tree-pattern based searches allowing, among other uses, to retrieve sets of orthologous genes. The three databases, as well as the software required to build and query them, can be used or downloaded from the PBIL (Pôle Bioinformatique Lyonnais) site at . PMID:19534752

  7. Molecular Evolution of the TET Gene Family in Mammals

    PubMed Central

    Akahori, Hiromichi; Guindon, Stéphane; Yoshizaki, Sumio; Muto, Yoshinori

    2015-01-01

    Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function. PMID:26633372

  8. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    SciTech Connect

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru . E-mail: ogura@gpo.kumamoto-u.ac.jp; Yamanaka, Kunitoshi . E-mail: yamanaka@gpo.kumamoto-u.ac.jp

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.

  9. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  10. Novel mutations in the emerin gene in Israeli families.

    PubMed

    Nevo, Y; Ahituv, S; Yaron, Y; Kedmi, M; Shomrat, R; Legum, C; Orr-Urtreger, A

    2001-06-01

    Emery-Dreifuss Muscular Dystrophy (EMD or EDMD) is a rare X-linked recessive disorder, characterized by progressive muscle wasting and weakness, contractures, and cardiomyopathy, manifesting as heart block. Mutation analysis at the EMD gene locus was performed in 4 unrelated Israeli families with X-linked EMD and in one sporadic case. In the 4 families 4 different mutations were found, 3 of which were novel. These included two frame shift mutations in exon 2 (333delT and 412insA) and one base pair substitution at the consensus +1 donor splice in intron 5 (1429G-->A). The fourth mutation in exon 6 (1675-1678delTCCG) has been previously described. No mutations were identified in the one sporadic case. Two of the three novel mutations were found in exon 2. A summary of the previously published mutations described in the EMD Mutation Database (http://www.path.cam.ac.uk/emd/) as well as the mutations described in our study suggest that the distribution of mutations in EMD gene is not entirely random and that exon 2 is prone to mutations. Hum Mutat 17:522, 2001. PMID:11385714

  11. Identification, Phylogeny, and Transcript of Chitinase Family Genes in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4 °C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  12. Distinct Functions of Egr Gene Family Members in Cognitive Processes

    PubMed Central

    Poirier, Roseline; Cheval, Hélène; Mailhes, Caroline; Garel, Sonia; Charnay, Patrick; Davis, Sabrina; Laroche, Serge

    2008-01-01

    The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory. We briefly outline evidence from mutant mice that Egr1 is required specifically for the consolidation of long-term memory, while Egr3 is primarily essential for short-term memory. We also review our own recent findings from newly generated forebrain-specific conditional Egr2 mutant mice, which revealed that Egr2, as opposed to Egr1 and Egr3, is dispensable for several forms of learning and memory and on the contrary can act as an inhibitory constraint for certain cognitive functions. The studies reviewed here highlight the fact that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain. PMID:18982106

  13. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    PubMed Central

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  14. The interleukin-1 family gene polymorphisms and Graves' disease.

    PubMed

    Khalilzadeh, O; Anvari, M; Esteghamati, A; Momen-Heravi, F; Mahmoudi, M; Rashidi, A; Amiri, H M; Ranjbar, M; Tabataba-Vakili, S; Amirzargar, A

    2010-09-01

    Genetic factors, including cytokine gene polymorphisms, are potential contributors to the pathogenesis of the Graves' disease (GD). We attempted in this study to determine the association between GD and the following polymorphisms in the interleukin-1 (IL-1) family genes: IL-1alpha (-889C/T), IL-1ss (-511C/T), IL-1ss (+3962C/T), IL-1R (Pst-1 1970C/T) and IL-1RA (Mspa-I 11100C/T). We studied 107 patients with an established diagnosis of GD and 140 healthy controls. Cytokine typing was performed by the polymerase chain reaction with sequence-specific primers assay. Genotype distributions among patients were in Hardy-Weinberg equilibrium for all polymorphisms. The frequency of the IL-1alpha -889T allele was significantly higher in patients than in controls (51.9% vs. 31.6%, OR=2.33, 95% CI=1.61-3.38; p<0.0001). The IL-1RA Msp-I 11100C allele was significantly more frequent in patients than in controls (50.0% vs. 22.9%, OR=3.38, 95% CI=2.29-4.97, p<0.0001). No significant associations were found for other polymorphisms. Although the IL-1 family has well-known roles in GD pathogenesis, the contributions of their genetic variations to the disease are unclear. In this study, we documented a highly significant association between GD and polymorphism in IL-1alpha and IL-1RA genes. Further studies in other populations are necessary to confirm our results. PMID:20400062

  15. Isolation and characterization of the chicken trypsinogen gene family.

    PubMed Central

    Wang, K; Gan, L; Lee, I; Hood, L

    1995-01-01

    Based on genomic Southern hybridizations and cDNA sequence analyses, the chicken trypsinogen gene family can be divided into two multi-member subfamilies, a six-member trypsinogen I subfamily which encodes the cationic trypsin isoenzymes and a three-member trypsinogen II subfamily which encodes the anionic trypsin isoenzymes. The chicken cDNA and genomic clones containing these two subfamilies were isolated and characterized by DNA sequence analysis. The results indicated that the chicken trypsinogen genes encoded a signal peptide of 15 to 16 amino acid residues, an activation peptide of 9 to 10 residues and a trypsin of 223 amino acid residues. The chicken trypsinogens contain all the common catalytic and structural features for trypsins, including the catalytic triad His, Asp and Ser and the six disulphide bonds. The trypsinogen I and II subfamilies share approximately 70% sequence identity at the nucleotide and amino acid level. The sequence comparison among chicken trypsinogen subfamily members and trypsin sequences from other species suggested that the chicken trypsinogen genes may have evolved in coincidental or concerted fashion. Images Figure 6 Figure 7 PMID:7733885

  16. CHCHD2 gene mutations in familial and sporadic Parkinson's disease.

    PubMed

    Shi, Chang-He; Mao, Cheng-Yuan; Zhang, Shu-Yu; Yang, Jing; Song, Bo; Wu, Ping; Zuo, Chuan-Tao; Liu, Yu-Tao; Ji, Yan; Yang, Zhi-Hua; Wu, Jun; Zhuang, Zheng-Ping; Xu, Yu-Ming

    2016-02-01

    Mutations in CHCHD2 gene have been reported in autosomal dominant Parkinson's disease (ADPD). However, there is still lack of evidence supported CHCHD2 mutations lead to ADPD in other populations. We performed whole exome sequencing, positron emission tomography (PET), and haplotype analyses in an ADPD pedigree and then comprehensively screened for CHCHD2 gene mutations in additional 18 familial parkinsonism pedigrees, 364 sporadic PD patients, and 384 healthy controls to assess the frequencies of known and novel rare nonsynonymous CHCHD2 mutations. We identified a heterozygous variant (c.182C>T; p.Thr61Ile) in the CHCHD2 gene in the ADPD pedigree. PET revealed a significant reduction in dopamine transporter binding in the putamen and caudate nucleus of the proband, similar to idiopathic PD. The single nucleotide variant 5C>T (Pro2Leu) in CHCHD2 was confirmed to have a significantly higher frequency among sporadic PD patients than controls. Our results confirm that ADPD can be caused by CHCHD2 mutations and show that the Pro2Leu variant in CHCHD2 may be a risk factor for sporadic PD in Chinese populations. PMID:26705026

  17. The SLEEPER genes: a transposase-derived angiosperm-specific gene family

    PubMed Central

    2012-01-01

    Background DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms. Results Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes) are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae) and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes. Conclusions We propose the ancestral SLEEPER gene was formed after a process of retro-transposition during the

  18. GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains.

    PubMed

    Wei, Chih-Hsuan; Kao, Hung-Yu; Lu, Zhiyong

    2015-01-01

    The automatic recognition of gene names and their associated database identifiers from biomedical text has been widely studied in recent years, as these tasks play an important role in many downstream text-mining applications. Despite significant previous research, only a small number of tools are publicly available and these tools are typically restricted to detecting only mention level gene names or only document level gene identifiers. In this work, we report GNormPlus: an end-to-end and open source system that handles both gene mention and identifier detection. We created a new corpus of 694 PubMed articles to support our development of GNormPlus, containing manual annotations for not only gene names and their identifiers, but also closely related concepts useful for gene name disambiguation, such as gene families and protein domains. GNormPlus integrates several advanced text-mining techniques, including SimConcept for resolving composite gene names. As a result, GNormPlus compares favorably to other state-of-the-art methods when evaluated on two widely used public benchmarking datasets, achieving 86.7% F1-score on the BioCreative II Gene Normalization task dataset and 50.1% F1-score on the BioCreative III Gene Normalization task dataset. The GNormPlus source code and its annotated corpus are freely available, and the results of applying GNormPlus to the entire PubMed are freely accessible through our web-based tool PubTator. PMID:26380306

  19. GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains

    PubMed Central

    Wei, Chih-Hsuan; Kao, Hung-Yu; Lu, Zhiyong

    2015-01-01

    The automatic recognition of gene names and their associated database identifiers from biomedical text has been widely studied in recent years, as these tasks play an important role in many downstream text-mining applications. Despite significant previous research, only a small number of tools are publicly available and these tools are typically restricted to detecting only mention level gene names or only document level gene identifiers. In this work, we report GNormPlus: an end-to-end and open source system that handles both gene mention and identifier detection. We created a new corpus of 694 PubMed articles to support our development of GNormPlus, containing manual annotations for not only gene names and their identifiers, but also closely related concepts useful for gene name disambiguation, such as gene families and protein domains. GNormPlus integrates several advanced text-mining techniques, including SimConcept for resolving composite gene names. As a result, GNormPlus compares favorably to other state-of-the-art methods when evaluated on two widely used public benchmarking datasets, achieving 86.7% F1-score on the BioCreative II Gene Normalization task dataset and 50.1% F1-score on the BioCreative III Gene Normalization task dataset. The GNormPlus source code and its annotated corpus are freely available, and the results of applying GNormPlus to the entire PubMed are freely accessible through our web-based tool PubTator. PMID:26380306

  20. The HIN-200 family: More than interferon-inducible genes?

    SciTech Connect

    Ludlow, Louise E.A.; Johnstone, Ricky W.; Clarke, Christopher J.P. . E-mail: chris.clarke@petermac.org

    2005-08-01

    The HIN-200 family was initially grouped together based on their hemopoietic expression, interferon-inducibility, nuclear localization, and characteristic 200 amino-acid domains. In this review, we performed a comprehensive search of genome databases and determined the location of previously characterized and predicted genes within the human, mouse, and rat HIN-200 loci. Several novel proteins were predicted in the mouse and rat. We also discuss recent advances in our understanding of this family of proteins and highlight the most important findings. In addition to a role in interferon biology, there is now good evidence supporting a role for these proteins as regulators of cell proliferation and differentiation. The activity of HIN-200 proteins is not restricted to the hemopoietic system as they are expressed and can function in a variety of other cells and tissues. The importance of HIN-200 proteins in disease now is beginning to be understood as they appear to be involved in autoimmunity and may act as tumor suppressor proteins.

  1. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping.

    PubMed

    LaJeunesse, Todd C; Thornhill, Daniel J

    2011-01-01

    Ribosomal DNA sequence data abounds from numerous studies on the dinoflagellate endosymbionts of corals, and yet the multi-copy nature and intragenomic variability of rRNA genes and spacers confound interpretations of symbiont diversity and ecology. Making consistent sense of extensive sequence variation in a meaningful ecological and evolutionary context would benefit from the application of additional genetic markers. Sequences of the non-coding region of the plastid psbA minicircle (psbA(ncr)) were used to independently examine symbiont genotypic and species diversity found within and between colonies of Hawaiian reef corals in the genus Montipora. A single psbA(ncr) haplotype was recovered in most samples through direct sequencing (~80-90%) and members of the same internal transcribed spacer region 2 (ITS2) type were phylogenetically differentiated from other ITS2 types by substantial psbA(ncr) sequence divergence. The repeated sequencing of bacterially-cloned fragments of psbA(ncr) from samples and clonal cultures often recovered a single numerically common haplotype accompanied by rare, highly-similar, sequence variants. When sequence artifacts of cloning and intragenomic variation are factored out, these data indicate that most colonies harbored one dominant Symbiodinium genotype. The cloning and sequencing of ITS2 DNA amplified from these same samples recovered numerically abundant variants (that are diagnostic of distinct Symbiodinium lineages), but also generated a large amount of sequences comprising PCR/cloning artifacts combined with ancestral and/or rare variants that, if incorporated into phylogenetic reconstructions, confound how small sequence differences are interpreted. Finally, psbA(ncr) sequence data from a broad sampling of Symbiodinium diversity obtained from various corals throughout the Indo-Pacific were concordant with ITS lineage membership (defined by denaturing gradient gel electrophoresis screening), yet exhibited substantially greater

  2. Identification of four new gene members of the KAP6 gene family in sheep

    PubMed Central

    Zhou, Huitong; Gong, Hua; Wang, Jiqing; Dyer, Jolon M.; Luo, Yuzhu; Hickford, Jon G. H.

    2016-01-01

    KAP6 is a high glycine-tyrosine keratin-associated protein (HGT-KAP) family. This family is thought to contain multiple genes. In this study, we used a KRTAP6 coding sequence to search the Ovine Genome (v3.1) and identified five homologous regions (R1–R5). All these regions contained an open reading frame, and they were either identical to, or highly similar to, sheep skin Expressed Sequence Tags (ESTs). Phylogenetic analysis revealed that R1–R5 were clustered with KAP6 sequences from different species and formed a group distinct to other HGT-KAPs. R1 was very similar to the characterised KRTAP6-1 sequence, but the remaining genes appeared to be new. PCR primers were designed to amplify and confirm the presence of these new genes. Amplicons were obtained for all of the 96 sheep investigated. Six, five, three and six PCR-SSCP patterns representing six, five, three and six DNA sequences were observed for KRTAP6-2 to KRTAP6-5 respectively. KRTAP6-2 and KRTAP6-4 had five and three SNPs respectively. Three SNPs and a 45-bp insertion/deletion were detected for KRTAP6-3, and five SNPs and an 18-bp insertion/deletion were identified for KRTAP6-5. Allele frequencies for these KAP6 genes differed between Merino and Romney sheep. PMID:27045687

  3. Identification of four new gene members of the KAP6 gene family in sheep.

    PubMed

    Zhou, Huitong; Gong, Hua; Wang, Jiqing; Dyer, Jolon M; Luo, Yuzhu; Hickford, Jon G H

    2016-01-01

    KAP6 is a high glycine-tyrosine keratin-associated protein (HGT-KAP) family. This family is thought to contain multiple genes. In this study, we used a KRTAP6 coding sequence to search the Ovine Genome (v3.1) and identified five homologous regions (R1-R5). All these regions contained an open reading frame, and they were either identical to, or highly similar to, sheep skin Expressed Sequence Tags (ESTs). Phylogenetic analysis revealed that R1-R5 were clustered with KAP6 sequences from different species and formed a group distinct to other HGT-KAPs. R1 was very similar to the characterised KRTAP6-1 sequence, but the remaining genes appeared to be new. PCR primers were designed to amplify and confirm the presence of these new genes. Amplicons were obtained for all of the 96 sheep investigated. Six, five, three and six PCR-SSCP patterns representing six, five, three and six DNA sequences were observed for KRTAP6-2 to KRTAP6-5 respectively. KRTAP6-2 and KRTAP6-4 had five and three SNPs respectively. Three SNPs and a 45-bp insertion/deletion were detected for KRTAP6-3, and five SNPs and an 18-bp insertion/deletion were identified for KRTAP6-5. Allele frequencies for these KAP6 genes differed between Merino and Romney sheep. PMID:27045687

  4. Cloning and characterisation of JAZ gene family in Hevea brasiliensis.

    PubMed

    Hong, H; Xiao, H; Yuan, H; Zhai, J; Huang, X

    2015-05-01

    Mechanical wounding or treatment with exogenous jasmonates (JA) induces differentiation of the laticifer in Hevea brasiliensis. JA is a key signal for latex biosynthesis and wounding response in the rubber tree. Identification of JAZ (jasmonate ZIM-domain) family of proteins that repress JA responses has facilitated rapid progress in understanding how this lipid-derived hormone controls gene expression and related physiological processes in plants. In this work, the full-length cDNAs of six JAZ genes were cloned from H. brasiliensis (termed HbJAZ). These HbJAZ have different lengths and sequence diversity, but all of them contain Jas and ZIM domains, and two of them contain an ERF-associated amphiphilic repression (EAR) motif in the N-terminal. Real-time RT-PCR analyses revealed that HbJAZ have different expression patterns and tissue specificity. Four HbJAZ were up-regulated, one was down-regulated, while two were less effected by rubber tapping treatment, suggesting that they might play distinct roles in the wounding response. A yeast two-hybrid assay revealed that HbJAZ proteins interact with each other to form homologous or heterogeneous dimer complexes, indicating that the HbJAZ proteins may expand their function through diverse JAZ-JAZ interactions. This work lays a foundation for identification of the JA signalling pathway and molecular mechanisms of latex biosynthesis in rubber trees. PMID:25399518

  5. Gene family level comparative analysis of gene expression in mammals validates the ortholog conjecture.

    PubMed

    Rogozin, Igor B; Managadze, David; Shabalina, Svetlana A; Koonin, Eugene V

    2014-04-01

    The ortholog conjecture (OC), which is central to functional annotation of genomes, posits that orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of Gene Ontology (GO) annotations and expression profiles, among within-species paralogs compared with orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. However, several subsequent studies suggest that GO annotations and microarray data could artificially inflate functional similarity between paralogs from the same organism. We sought to test the OC using approaches distinct from those used in previous studies. Analysis of a large RNAseq data set from multiple human and mouse tissues shows that expression similarity (correlations coefficients, rank's, or Z-scores) between orthologs is substantially greater than that for between-species paralogs with the same sequence divergence, in agreement with the OC and the results of recent detailed analyses. These findings are further corroborated by a fine-grain analysis in which expression profiles of orthologs and paralogs were compared separately for individual gene families. Expression profiles of within-species paralogs are more strongly correlated than profiles of orthologs but it is shown that this is caused by high background noise, that is, correlation between profiles of unrelated genes in the same organism. Z-scores and rank scores show a nonmonotonic dependence of expression profile similarity on sequence divergence. This complexity of gene expression evolution after duplication might be at least partially caused by selection for protein dosage rebalancing following gene duplication. PMID:24610837

  6. Evolution of the multifaceted eukaryotic akirin gene family

    PubMed Central

    Macqueen, Daniel J; Johnston, Ian A

    2009-01-01

    Background Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes. Results akirin genes are present throughout the metazoa and arose before the separation of animal, plant and fungi lineages. Using comprehensive phylogenetic analysis, coupled with comparisons of conserved synteny and genomic organisation, we show that the intron-exon structure of metazoan akirin genes was established prior to the bilateria and that a single proto-orthologue duplicated in the vertebrates, before the gnathostome-agnathan separation, producing akirin1 and akirin2. Phylogenetic analyses of seven vertebrate gene families with members in chromosomal proximity to both akirin1 and akirin2 were compatible with a common duplication event affecting the genomic neighbourhood of the akirin proto-orthologue. A further duplication of akirins occurred in the teleost lineage and was followed by lineage-specific patterns of paralogue loss. Remarkably, akirins have been independently characterised by five research groups under different aliases and a comparison of the available literature revealed diverse functions, generally in regulating gene expression. For example, akirin was characterised in arthropods as subolesin, an important growth factor and in Drosophila as bhringi, which has an essential myogenic role. In vertebrates, akirin1 was named mighty in mice and was shown to regulate myogenesis, whereas akirin2 was characterised as FBI1 in rats and promoted carcinogenesis, acting as a transcriptional repressor when bound to a 14-3-3 protein. Both vertebrate Akirins have evolved under comparably strict constraints of purifying selection, although a likelihood ratio test predicted that functional divergence has occurred between paralogues. Bayesian and maximum likelihood tests identified amino-acid positions where the rate of

  7. Multiple lineage specific expansions within the guanylyl cyclase gene family

    PubMed Central

    Fitzpatrick, David A; O'Halloran, Damien M; Burnell, Ann M

    2006-01-01

    the GC gene family during metazoan evolution. Our phylogenetic analyses reveal that the rGC and sGC multi-domain proteins evolved early in eumetazoan evolution. Subsequent gene duplications, tissue specific expression patterns and lineage specific expansions resulted in the evolution of new networks of interaction and new biological functions associated with the maintenance of organismal complexity and homeostasis. PMID:16549024

  8. MicroSyn: a user friendly tool for detection of microsynteny in a gene family

    SciTech Connect

    Cai, Bin; Yang, Xiaohan; Tuskan, Gerald A; Cheng, Zong-Ming

    2011-01-01

    Background: The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those non-traditional gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes. Results: We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: http://fcsb.njau.edu. cn/microsyn/. Conclusions: Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in Populus trichocarpa were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.

  9. Roles of ZIC family genes in human gastric cancer.

    PubMed

    Ma, Gang; Dai, Weijie; Sang, Aiyu; Yang, Xiaozhong; Li, Qianjun

    2016-07-01

    The human zinc finger of the cerebellum (ZIC)family genes, comprised of 5 members, which are vertebrate homologues of the Drosophila odd-paired gene and encode zinc-finger transcription factors, have been shown to be involved in various diseases, including cancer. However, the roles of ZICs in human gastric cancer (GC) have not yet been fully elucidated. This study aimed to investigate the expression patterns of ZICs and determine their clinical significance in GC. The mRNA and protein expression levels of ZIC1-5 were detected by RT-qPCR and western blot analysis, respectively using 60 pairs of human GC and matched normal mucosa tissues. The expression pattern and subcellular localization of ZIC1 in 160 pairs of human GC and matched normal mucosa tissues were verified by immunohistochemistry. Moreover, the associations of ZIC1 expression with various clinicopathological characteristics and patient prognosis were evaluated. The mRNA and protein expression levels of ZIC1 were both found to be significantly decreased in the GC tissues compared to matched normal mucosa tissues (GC vs. normal, 2.15±0.69 vs. 4.28±0.95; P<0.001); however, ZIC2-5 expression exhibited no significant difference between the cancer and normal tissue samples. In addition, the downregulation of ZIC1 (ZIC1-low) was more frequently observed in the GC tissues with positive lymph node metastasis (P=0.006), an advanced TNM stage (P<0.001) and a great depth of invasion (P=0.01). Notably, a low ZIC1 expression was significantly associated with a poor disease-free and overall survival. Furthermore, multivariate analysis revealed that ZIC1 expression was an independent prognostic marker for patients with GC. In conclusion, among the human ZIC family genes, the dysregulation of ZIC1, but not of ZIC2, ZIC3, ZIC4 and ZIC5, may play a crucial role in the progression of GC. ZIC1 may thus serve as a novel molecular marker to predict the progression, survival and relapse of patients with GC. PMID

  10. Characterization of the inositol monophosphatase gene family in Arabidopsis

    PubMed Central

    Nourbakhsh, Aida; Collakova, Eva; Gillaspy, Glenda E.

    2015-01-01

    Synthesis of myo-inositol is crucial in multicellular eukaryotes for production of phosphatidylinositol and inositol phosphate signaling molecules. The myo-inositol monophosphatase (IMP) enzyme is required for the synthesis of myo-inositol, breakdown of inositol (1,4,5)-trisphosphate, a second messenger involved in Ca2+ signaling, and synthesis of L-galactose, a precursor of ascorbic acid. Two myo-inositol monophosphatase -like (IMPL) genes in Arabidopsis encode chloroplast proteins with homology to the prokaryotic IMPs and one of these, IMPL2, can complement a bacterial histidinol 1-phosphate phosphatase mutant defective in histidine synthesis, indicating an important role for IMPL2 in amino acid synthesis. To delineate how this small gene family functions in inositol synthesis and metabolism, we sought to compare recombinant enzyme activities, expression patterns, and impact of genetic loss-of-function mutations for each. Our data show that purified IMPL2 protein is an active histidinol-phosphate phosphatase enzyme in contrast to the IMPL1 enzyme, which has the ability to hydrolyze D-galactose 1-phosphate, and D-myo-inositol 1-phosphate, a breakdown product of D-inositol (1,4,5) trisphosphate. Expression studies indicated that all three genes are expressed in multiple tissues, however, IMPL1 expression is restricted to above-ground tissues only. Identification and characterization of impl1 and impl2 mutants revealed no viable mutants for IMPL1, while two different impl2 mutants were identified and shown to be severely compromised in growth, which can be rescued by histidine. Analyses of metabolite levels in impl2 and complemented mutants reveals impl2 mutant growth is impacted by alterations in the histidine biosynthesis pathway, but does not impact myo-inositol synthesis. Together, these data indicate that IMPL2 functions in the histidine biosynthetic pathway, while IMP and IMPL1 catalyze the hydrolysis of inositol- and galactose-phosphates in the plant cell

  11. Genetic Variations of NLR family genes in Behcet's Disease.

    PubMed

    Li, Lin; Yu, Hongsong; Jiang, Yanni; Deng, Bolin; Bai, Lin; Kijlstra, Aize; Yang, Peizeng

    2016-01-01

    This study aimed to investigate whether single nucleotide polymorphisms (SNPs) of five NLR family genes (NOD1, NOD2, NLRP1, NLRP3 and CIITA) are associated with Behcet's disease (BD) in a Chinese Han population. The study was carried out in 950 BD patients and 1440 controls for 19 SNPs in the selected NLR genes. In the first-stage study, significantly decreased frequencies of the CIITA//rs12932187 C allele (Pc = 1.668E-02) and NOD1//rs2075818 G allele (Pc = 4.694E-02) were found in BD patients as compared to controls . After performing a second stage validation study and combination of data we confirmed the association of CIITA//rs12932187 and NOD1//rs2075818 with BD. In CIITA//rs12932187, the frequencies of the CC genotype and C allele were significantly lower in BD than in controls (Pc = 3.331E-06; Pc = 6.004E-07, respectively). In NOD1//rs2075818, the GG genotype and G allele showed significantly decreased frequencies in BD patients when compared to controls (Pc = 1.022E-02; Pc = 6.811E-05, respectively). Functional experiments showed that carriers with the CC genotype in CIITA//rs12932187 had a lower CIITA mRNA expression level and an enhanced IL-10 secretion as compared to GG and CG carriers. This study provides evidence that the CIITA and NOD1 gene are involved in the susceptibility to Behcet's disease. PMID:26833430

  12. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

    PubMed Central

    Peng, Duo; Kurup, Samarchith P.; Yao, Phil Y.; Minning, Todd A.

    2014-01-01

    ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. PMID:25550322

  13. Characterization of the p16 gene in the mouse: Evidence for a large gene family

    SciTech Connect

    Fountain, J.W.; Giendening, J.M.; Flores, J.F.

    1994-09-01

    The p16 gene product is an inhibitor of the cyclin-dependent kinase 4 (CDK4)/cyclin D complex. When uninhibited, the CDK4/cyclin D complex participates in the phosphorylation of the retinoblastoma (RB) protein and renders it inactive. Upon inactivation of the RB protein, transition from the G{sub 1} to the S phase of mitosis occurs and results in cellular proliferation. Thus, p16 is presumed to act as a negative regulator of cell growth by preventing the phosphorylation, and thereby subsequent inactivation, of RB by CDK4/cyclin D. Recently, the p16 gene (also known as the multiple tumor suppressor 1 (MTS1) gene) has been mapped to chromosome 9p21 and found to be deleted or mutated in a number of tumor cell lines. These findings support the role of p16 as a growth inhibitor or tumor suppressor gene and suggest that the mutation of this gene may have global implications in carcinogenesis. We have chosen to test the functional significance of p16 mutations in vivo through the generation of a mouse mutant for p16. In preparation for this undertaking, eight apparently independent (as judged by restriction enzyme digestion and differential hybridization) mouse genomic embryonic stem cell clones have been identified using exon 2 from the human p16 gene as a probe. The identification of these multiple nonoverlapping clones was not entirely surprising since the reduced stringency hybridization of a zoo blot with the same probe also revealed 10-15 positive EcoRI fragments in all species tested, including human, monkey, cow, dog, cat, rabbit, hamster, mouse, chicken and D. melanogaster. Taken together, these findings suggest that the p16 gene is a member of a large gene family. The location of these genomic clones, as well as their potential expression in the mouse, is currently under investigation.

  14. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    SciTech Connect

    Kamb, A.; Weir, M.; Rudy, B.; Varmus, H.; Kenyon, C. )

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this method to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.

  15. Genome-Wide Analysis Reveals Diverged Patterns of Codon Bias, Gene Expression, and Rates of Sequence Evolution in Picea Gene Families

    PubMed Central

    De La Torre, Amanda R.; Lin, Yao-Cheng; Van de Peer, Yves; Ingvarsson, Pär K.

    2015-01-01

    The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms. PMID:25747252

  16. Genomic organization of the human NSP gene, prototype of a novel gene family encoding reticulons

    SciTech Connect

    Roebroek, A.J.M.; Ayoubi, T.A.Y.; Velde, H.J.K. van de; Schoenmakers, E.F.P.M.; Pauli, I.G.L.; Van De Ven, W.J.M.

    1996-03-01

    Recently, cDNA cloning and expression of three mRNA variants of the human NSP gene were described. This neuroendocrine-specific gene encodes three NSP protein isoforms with unique amino-terminal parts, but common carboxy-terminal parts. The proteins, with yet unknown function, are associated with the endoplasmic reticulum and therefore are named NSP reticulons. Potentially, these proteins are neuroendocrine markers of a novel category in human lung cancer diagnosis. Here, the genomic organization of this gene was studied by analysis of genomic clones isolated from lambda phage and YAC libraries. The NSP exons were found to be dispersed over a genomic region of about 275 kb. The present elucidation of the genomic organization of the NSP gene explains the generation of NSP mRNA variants encoding NSP protein isoforms. Multiple promoters rather than alternative splicing of internal exons seem to be involved in this diversity. Furthermore, comparison of NSP genomic and cDNA sequences with databank nucleotide sequences resulted in the discovery of other human members of this novel family of reticulons encoding genes. 25 refs., 4 figs.

  17. The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression

    PubMed Central

    Astudillo, Carolina; Fernandez, Andrea C.; Blair, Matthew W.; Cichy, Karen A.

    2013-01-01

    Zinc is an essential mineral for humans and plants and is involved in many physiological and biochemical processes. In humans, Zn deficiency has been associated with retarded growth and reduction of immune response. In plants, Zn is an essential component of more than 300 enzymes including RNA polymerase, alkaline phosphatase, alcohol dehydrogenase, Cu/Zn superoxidase dismutase, and carbonic anhydrase. The accumulation of Zn in plants involves many genes and characterization of the role of these genes will be useful in biofortification. Here we report the identification and phlyogenetic and sequence characterization of the 23 members of the ZIP (ZRT, IRT like protein) family of metal transporters and three transcription factors of the bZIP family in Phaseolus vulgaris L. Expression patterns of seven of these genes were characterized in two bean genotypes (G19833 and DOR364) under two Zn treatments. Tissue analyzed included roots and leaves at vegetative and flowering stages, and pods at 20 days after flowering. Four of the genes, PvZIP12, PvZIP13, PvZIP16, and Pv bZIP1, showed differential expression based on tissue, Zn treatment, and/or genotype. PvZIP12 and PvZIP13 were both more highly expressed in G19833 than DOR364. PvZIP12 was most highly expressed in vegetative leaves under the Zn (−) treatment. PvZIP16 was highly expressed in leaf tissue, especially leaf tissue at flowering stage grown in the Zn (−) treatment. Pv bZIP1 was most highly expressed in leaf and pod tissue. The 23 PvZIP genes and three bZIP genes were mapped on the DOR364 × G19833 linkage map. PvZIP12, PvZIP13, and PvZIP18, Pv bZIP2, and Pv bZIP3 were located near QTLs for Zn accumulation in the seed. Based on the expression and mapping results, PvZIP12 is a good candidate gene for increasing seed Zn concentration and increase understanding of the role of ZIP genes in metal uptake, distribution, and accumulation of zinc in P. vulgaris. PMID:23908661

  18. Ortho2ExpressMatrix—a web server that interprets cross-species gene expression data by gene family information

    PubMed Central

    2011-01-01

    Background The study of gene families is pivotal for the understanding of gene evolution across different organisms and such phylogenetic background is often used to infer biochemical functions of genes. Modern high-throughput experiments offer the possibility to analyze the entire transcriptome of an organism; however, it is often difficult to deduct functional information from that data. Results To improve functional interpretation of gene expression we introduce Ortho2ExpressMatrix, a novel tool that integrates complex gene family information, computed from sequence similarity, with comparative gene expression profiles of two pre-selected biological objects: gene families are displayed with two-dimensional matrices. Parameters of the tool are object type (two organisms, two individuals, two tissues, etc.), type of computational gene family inference, experimental meta-data, microarray platform, gene annotation level and genome build. Family information in Ortho2ExpressMatrix bases on computationally different protein family approaches such as EnsemblCompara, InParanoid, SYSTERS and Ensembl Family. Currently, respective all-against-all associations are available for five species: human, mouse, worm, fruit fly and yeast. Additionally, microRNA expression can be examined with respect to miRBase or TargetScan families. The visualization, which is typical for Ortho2ExpressMatrix, is performed as matrix view that displays functional traits of genes (differential expression) as well as sequence similarity of protein family members (BLAST e-values) in colour codes. Such translations are intended to facilitate the user's perception of the research object. Conclusions Ortho2ExpressMatrix integrates gene family information with genome-wide expression data in order to enhance functional interpretation of high-throughput analyses on diseases, environmental factors, or genetic modification or compound treatment experiments. The tool explores differential gene expression in

  19. The IQD Gene Family in Soybean: Structure, Phylogeny, Evolution and Expression

    PubMed Central

    Ma, Hui; Chen, Xue; Li, Yuan; Wang, Yiyi; Xiang, Yan

    2014-01-01

    Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1–67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I–IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1–3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development. PMID:25343341

  20. Evolutionary Diversification of the Vertebrate Transferrin Multi-gene Family

    PubMed Central

    Hughes, Austin L.; Friedman, Robert

    2014-01-01

    In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (1) S, the mammalian serotransferrins; (2) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (3) L, the mammalian lactoferrins; (4) O, the ovotransferrins of birds and reptiles; (4) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (5) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (1) in the common ancestor of the M subfamily; (2) in the common ancestor of the M-like subfamily; and (3) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed a unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense. PMID:25142446

  1. The Limits of Family Influence: Genes, Experience, and Behavior.

    ERIC Educational Resources Information Center

    Rowe, David C.

    This book examines socialization science, which is the empirical effort to understand how children acquire traits from their families and cultures. This work proposes that one part of the family influence process--broad differences in family environments, except for those that are neglectful, abusive, or without opportunity--may exert little…

  2. Multiple members of the plasminogen-apolipoprotein(a) gene family associated with thrombosis

    SciTech Connect

    Ichinose, Akitada )

    1992-03-31

    Plasminogen and apolipoprotein(a) (apo(a)) are closely related plasma proteins that are associated with hereditary thrombophilia. Low plasminogen levels are found in some patients who developed venous thrombosis, while a population with high plasma concentrations of apo(a) have a higher incidence of arterial thrombosis. Two different gene coding for human apo(a) have been isolated and characterized in order to study and compare these genes with four other closely related genes in the plasminogen-apo(a) gene family. These include the gene coding for plasminogen, two unique plasminogen-related genes, and a gene coding for hepatocyte growth factor. Nucleotide sequence analysis of these genes revealed that the exons and their boundaries of these genes for plasminogen and apo(a), and the plasminogen-related genes, differ only 1-5% in sequence. The types of exon/intron junctions and positions of introns in the molecules are also exactly identical, suggesting that these genes have evolved from an ancestral plasminogen gene via duplication and exon shuffling. By utilizing these results, gene-specific probes have been designed for the analysis of each of the genes in this gene family. The plasminogen and two apo(a) genes were all localized to chromosome 6 by employing the gene-specific primers and genomic DNAs from human-hamster cell hybrids. These data also make it possible to characterize the apo(a) and plasminogen genes in individuals by in vitro amplification.

  3. Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana

    PubMed Central

    McDowell, J. M.; Huang, S.; McKinney, E. C.; An, Y. Q.; Meagher, R. B.

    1996-01-01

    Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions. PMID:8852856

  4. Multi-gene phylogenetic analyses of New Zealand coralline algae: Corallinapetra Novaezelandiae gen. et sp. nov. and recognition of the Hapalidiales ord. nov.

    PubMed

    Nelson, Wendy A; Sutherland, Judith E; Farr, Tracy J; Hart, Darren R; Neill, Kate F; Kim, Hee Jeong; Yoon, Hwan Su

    2015-06-01

    Coralline red algae from the New Zealand region were investigated in a study focused on documenting regional diversity. We present a multi-gene analysis using sequence data obtained for four genes (nSSU, psaA, psbA, rbcL) from 68 samples. The study revealed cryptic diversity at both genus and species levels, confirming and providing further evidence of problems with current taxonomic concepts in the Corallinophycidae. In addition, a new genus Corallinapetra novaezelandiae gen. et sp. nov. is erected for material from northern New Zealand. Corallinapetra is excluded from all currently recognized families and orders within the Corallinophycidae and thus represents a previously unrecognized lineage within this subclass. We discuss rank in the Corallinophycidae and propose the order Hapalidiales. PMID:26986662

  5. Out of the Water: Origin and Diversification of the LBD Gene Family

    PubMed Central

    Chanderbali, Andre S.; He, Fengmei; Soltis, Pamela S.; Soltis, Douglas E.

    2015-01-01

    LBD (LATERAL ORGAN BOUNDARIES DOMAIN) genes are essential to the developmental programs of many fundamental plant organs and function in some of the basic metabolic pathways of plants. However, our historical perspective on the roles of LBD genes during plant evolution has, heretofore, been fragmentary. Here, we show that the LBD gene family underwent an initial radiation that established five gene lineages in the ancestral genome of most charophyte algae and land plants. By inference, the LBD gene family originated after the emergence of the green plants (Viridiplantae), but prior to the diversification of most extant streptophytes. After this initial radiation, we find limited instances of gene family diversification in land plants until successive rounds of expansion in the ancestors of seed plants and flowering plants. The most dynamic phases of LBD gene evolution, therefore, trace to the aquatic ancestors of embryophytes followed by relatively recent lineage-specific expansions on land. PMID:25839188

  6. Out of the Water: Origin and Diversification of the LBD Gene Family.

    PubMed

    Chanderbali, Andre S; He, Fengmei; Soltis, Pamela S; Soltis, Douglas E

    2015-08-01

    LBD (lateral organ boundaries domain) genes are essential to the developmental programs of many fundamental plant organs and function in some of the basic metabolic pathways of plants. However, our historical perspective on the roles of LBD genes during plant evolution has, heretofore, been fragmentary. Here, we show that the LBD gene family underwent an initial radiation that established five gene lineages in the ancestral genome of most charophyte algae and land plants. By inference, the LBD gene family originated after the emergence of the green plants (Viridiplantae), but prior to the diversification of most extant streptophytes. After this initial radiation, we find limited instances of gene family diversification in land plants until successive rounds of expansion in the ancestors of seed plants and flowering plants. The most dynamic phases of LBD gene evolution, therefore, trace to the aquatic ancestors of embryophytes followed by relatively recent lineage-specific expansions on land. PMID:25839188

  7. Identification and distribution of the NBS-LRR gene family in the cassava genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analyzing the genomic organization of resistance genes i...

  8. Atypical course in individuals from Spanish families with benign familial infantile seizures and mutations in the PRRT2 gene.

    PubMed

    Guerrero-López, Rosa; Ortega-Moreno, Laura; Giráldez, Beatriz G; Alarcón-Morcillo, Cristina; Sánchez-Martín, Gema; Nieto-Barrera, Manuel; Gutiérrez-Delicado, Eva; Gómez-Garre, Pilar; Martínez-Bermejo, Antonio; García-Peñas, Juan J; Serratosa, José M

    2014-10-01

    A benign prognosis has been claimed in benign familial infantile seizures (BFIS). However, few studies have assessed the long-term evolution of these patients. The objective of this study is to describe atypical courses and presentations in BFIS families with mutations in PRRT2 gene. We studied clinically affected individuals from five BFIS Spanish families. We found mutations in PRRT2 in all 5 families. A non-BFIS phenotype or an atypical BFIS course was found in 9/25 (36%) patients harbouring a PRRT2 mutation. Atypical features included neonatal onset, mild hemiparesis, learning difficulties or mental retardation, and recurrent seizures during adulthood. We also report a novel PRRT2 mutation (c.121_122delGT). In BFIS families an atypical phenotype was present in a high percentage of the patients. These findings expand the clinical spectrum of PRRT2 mutations including non-benign epileptic phenotypes. PMID:25060993

  9. Six family of homeobox genes and related mechanisms in tumorigenesis protocols.

    PubMed

    Armat, Marzieh; Ramezani, Fatemeh; Molavi, Ommoleila; Sabzichi, Mehdi; Samadi, Nasser

    2016-06-01

    In recent years, the homeobox gene superfamily has been introduced as a master regulator in downstream target genes related to cell development and proliferation. An indispensable role of this family involved in organogenesis development has been widely demonstrated since expression of Six family led to a distinct increase in development of various organs. These functions of Six family genes are primarily based on structure as well as regulatory role in response to external or internal stimuli. In addition to these roles, mutation or aberrant expression of Six family plays a fundamental role in initiation of carcinogenesis, a multistep process including transformation, proliferation, angiogenesis, migration, and metastasis. This suggests that the Six superfamily members can be considered as novel target molecules to inhibit tumor growth and progression. This review focuses on the structure, function, and mechanisms of the Six family in cancer processes and possible strategies to apply these family members for diagnostic, prognostic, and therapeutic purposes. PMID:27056337

  10. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    PubMed

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes. PMID:26530637

  11. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  12. Massive expansion of Ubiquitination-related gene families within the Chlamydiae.

    PubMed

    Domman, Daryl; Collingro, Astrid; Lagkouvardos, Ilias; Gehre, Lena; Weinmaier, Thomas; Rattei, Thomas; Subtil, Agathe; Horn, Matthias

    2014-11-01

    Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify. PMID:25069652

  13. Massive Expansion of Ubiquitination-Related Gene Families within the Chlamydiae

    PubMed Central

    Domman, Daryl; Collingro, Astrid; Lagkouvardos, Ilias; Gehre, Lena; Weinmaier, Thomas; Rattei, Thomas; Subtil, Agathe; Horn, Matthias

    2014-01-01

    Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify. PMID:25069652

  14. Disruption of Individual Members of Arabidopsis Syntaxin Gene Families Indicates Each Has Essential Functions

    PubMed Central

    Sanderfoot, Anton A.; Pilgrim, Marsha; Adam, Luc; Raikhel, Natasha V.

    2001-01-01

    Syntaxins are a large group of proteins found in all eukaryotes involved in the fusion of transport vesicles to target membranes. Twenty-four syntaxins grouped into 10 gene families are found in the model plant Arabidopsis thaliana, each group containing one to five paralogous members. The Arabidopsis SYP2 and SYP4 gene families contain three members each that share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) orthologs of the SYP2 and SYP4 gene families (Pep12p and Tlg2p, respectively) indicate that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruptions in two genes from each family, finding that disruption of individual syntaxins from these families is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption with its cognate transgene indicated that the lethality is linked to the loss of the single syntaxin gene. Thus, it is clear that each syntaxin in the SYP2 and SYP4 families serves an essential nonredundant function. PMID:11251103

  15. Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean.

    PubMed

    Zhang, Dayong; Wan, Qun; He, Xiaolan; Ning, Lihua; Huang, Yihong; Xu, Zhaolong; Liu, Jia; Shao, Hongbo

    2016-10-15

    Ankyrin repeats (ANK) gene family are common in diverse organisms and play important roles in cell growth, development and response to environmental stresses. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis, rice and maize. However, little is known about the ANK genes in the whole soybean genome. In this study, we described the identification and structural characterization of 162ANK genes in soybean (GmANK). Then, comprehensive bioinformatics analyses of GmANK genes family were performed including gene locus, phylogenetic, domain composition analysis, chromosomal localization and expression profiling. Domain composition analyses showed that GmANK proteins formed eleven subfamilies in soybean. In sicilo expression analysis of these GmANK genes demonstrated that GmANK genes show a diverse/various expression pattern, suggesting that functional diversification of GmANK genes family. Based on digital gene expression profile (DGEP) data between cultivated soybean and wild type under salt treatment, some GmANKs related to salt/drought response were investigated. Moreover, the expression pattern and subcellular localization of GmANK6 were performed. The results will provide important clues to explore ANK genes expression and function in future studies in soybean. PMID:27335162

  16. Sequence and expression analysis of the AMT gene family in poplar.

    PubMed

    Wu, Xiangyu; Yang, Han; Qu, Chunpu; Xu, Zhiru; Li, Wei; Hao, Bingqing; Yang, Chuanping; Sun, Guangyu; Liu, Guanjun

    2015-01-01

    Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. These proteins are encoded by an ancient gene family with many members. The molecular characteristics and evolutionary history of AMTs in woody plants are still poorly understood. We comprehensively evaluated the AMT gene family in the latest release of the Populus trichocarpa genome (version 3.0; Phytozome 9.0), and identified 16 AMT genes. These genes formed four clusters; AMT1 (7 genes), AMT2 (2 genes), AMT3 (2 genes), and AMT4 (5 genes). Evolutionary analyses suggested that the Populus AMT gene family has expanded via whole-genome duplication events. Among the 16 AMT genes, 15 genes are located on 11 chromosomes of Populus. Expression analyses showed that 14 AMT genes were vegetative organs expressed; AMT1;1/1;3/1;6/3;2 and AMT1;1/1;2/2;2/3;1 had high transcript accumulation level in the leaves and roots, respectively and strongly changes under the nitrogen-dependent experiments. The results imply the functional roles of AMT genes in ammonium absorption in poplar. PMID:26052331

  17. Sequence and expression analysis of the AMT gene family in poplar

    PubMed Central

    Wu, Xiangyu; Yang, Han; Qu, Chunpu; Xu, Zhiru; Li, Wei; Hao, Bingqing; Yang, Chuanping; Sun, Guangyu; Liu, Guanjun

    2015-01-01

    Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. These proteins are encoded by an ancient gene family with many members. The molecular characteristics and evolutionary history of AMTs in woody plants are still poorly understood. We comprehensively evaluated the AMT gene family in the latest release of the Populus trichocarpa genome (version 3.0; Phytozome 9.0), and identified 16 AMT genes. These genes formed four clusters; AMT1 (7 genes), AMT2 (2 genes), AMT3 (2 genes), and AMT4 (5 genes). Evolutionary analyses suggested that the Populus AMT gene family has expanded via whole-genome duplication events. Among the 16 AMT genes, 15 genes are located on 11 chromosomes of Populus. Expression analyses showed that 14 AMT genes were vegetative organs expressed; AMT1;1/1;3/1;6/3;2 and AMT1;1/1;2/2;2/3;1 had high transcript accumulation level in the leaves and roots, respectively and strongly changes under the nitrogen-dependent experiments. The results imply the functional roles of AMT genes in ammonium absorption in poplar. PMID:26052331

  18. Identification of a Novel Gig2 Gene Family Specific to Non-Amniote Vertebrates

    PubMed Central

    Zhang, Yi-Bing; Liu, Ting-Kai; Jiang, Jun; Shi, Jun; Liu, Ying; Li, Shun; Gui, Jian-Fang

    2013-01-01

    Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates. PMID:23593256

  19. Holding blame at bay? ‘Gene talk' in family members' accounts of schizophrenia aetiology

    PubMed Central

    Callard, Felicity; Rose, Diana; Hanif, Emma-Louise; Quigley, Jody; Greenwood, Kathryn; Wykes, Til

    2012-01-01

    We provide the first detailed analysis of how, for what purposes and with what consequences people related to someone with a diagnosis of schizophrenia use ‘gene talk'. The article analyses findings from a qualitative interview study conducted in London and involving 19 participants (mostly women). We transcribed the interviews verbatim and analysed them using grounded theory methods. We analyse how and for what purposes participants mobilized ‘gene talk' in their affectively freighted encounter with an unknown interviewer. Gene talk served to (re)position blame and guilt, and was simultaneously used imaginatively to forge family history narratives. Family members used ‘gene talk' to recruit forebears with no psychiatric diagnosis into a family history of mental illness, and presented the origins of the diagnosed family member's schizophrenia as lying temporally before, and hence beyond the agency of the immediate family. Gene talk was also used in attempts to dislodge the distressing figure of the schizophrenia-inducing mother. ‘Gene talk', however, ultimately displaced, rather than resolved, the (self-)blame of many family members, particularly mothers. Our article challenges the commonly expressed view that genetic accounts will absolve family members' sense of (self-)blame in relation to their relative's/relatives' diagnosis. PMID:23227107

  20. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  1. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.)

    PubMed Central

    Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I–III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  2. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling

    PubMed Central

    Witmer, Kathrin; Schmid, Christoph D; Brancucci, Nicolas M B; Luah, Yen-Hoon; Preiser, Peter R; Bozdech, Zbynek; Voss, Till S

    2012-01-01

    Summary The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites. PMID:22435676

  3. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling.

    PubMed

    Witmer, Kathrin; Schmid, Christoph D; Brancucci, Nicolas M B; Luah, Yen-Hoon; Preiser, Peter R; Bozdech, Zbynek; Voss, Till S

    2012-04-01

    The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites. PMID:22435676

  4. "It's good to know": experiences of gene identification and result disclosure in familial epilepsies.

    PubMed

    Vears, Danya F; Dunn, Karen L; Wake, Samantha A; Scheffer, Ingrid E

    2015-05-01

    Recognition of the role of genetics in the epilepsies has increased dramatically, impacting on clinical practice across many epilepsy syndromes. There is limited research investigating the impact of gene identification on individuals and families with epilepsy. While research has focused on the impact of delivering genetic information to families at the time of diagnosis in genetic diseases more broadly, little is known about how genetic results in epileptic diseases influences people's lives many years after it has been conveyed. This study used qualitative methods to explore the experience of receiving a genetic result in people with familial epilepsy. Interviews were conducted with individuals with familial epilepsies in whom the underlying genetic mutation had been identified. Recorded interviews underwent thematic analysis. 20 individuals from three families with different epilepsy syndromes and causative genes were interviewed. Multiple generations within families were studied. The mean time from receiving the genetic result prior to interview was 10.9 years (range 5-14 years). Three major themes were identified: 1) living with epilepsy: an individual's experience of the severity of epilepsy in their family influenced their view. 2) Clinical utility of the test: participants expressed varying reactions to receiving a genetic result. While for some it provided helpful information and relief, others were not surprised by the finding given the familial context. Some valued the use of genetic information for reproductive decision-making, particularly in the setting of severely affected family members. While altruistic reasons for participating in genetic research were discussed, participants emphasised the benefit of participation to them and their families. 3) 'Talking about the family genes': individuals reported poor communication between family members about their epilepsy and its genetic implications. The results provide important insights into the family

  5. Evidence for gene conversion in the amylase multigene family of Drosophila pseudoobscura.

    PubMed

    Popadić, A; Anderson, W W

    1995-07-01

    The alpha-amylase (Amy) multigene family in Drosophila pseudoobscura is located on the third chromosome, which is polymorphic for more than 40 inverted gene arrangements. The number of copies in this family ranges from one to three, depending on the arrangement in question. A previous study of the three Amy genes from the Standard (ST) arrangement suggested either that duplicated copies (Amy2 and Amy3) are functionally constrained or that they are undergoing gene conversion with Amy1. In order to elucidate further the pattern of molecular evolution in this family, we cloned and sequenced four additional Amy genes, two from the Santa Cruz (SC) and two from the Chiricahua (CH) gene arrangement. Of the two alternatives, only the hypothesis of gene conversion is supported by the sequence analysis. The homogenization effect of gene conversion has been strongest in SC, whose copies differ by only two nucleotides, less noticeable in ST, and negligible in the CH. Furthermore, the action of gene conversion is apparently localized, occurring only in the coding region. Interestingly, these results concur with the findings of other workers for the duplicated Amy genes in the Drosophila melanogaster group. Thus, the occurrence of gene conversion in the Amy multigene family seems to be a common feature in the Drosophila species studied so far. PMID:7659012

  6. [HOXB gene family and functions of hematopoietic stem/progenitor cells--review].

    PubMed

    Tang, Yu-Hong; Wang, Cheng-Ya

    2005-04-01

    Recently, many researches indicated the important role played by homeobox (HOX) gene family in normal hematopoiesis. As a kind of transcription factors, HOX gene products regulate and control the expression of target genes by binding to special DNA sequences. HOXB, a member of HOX gene family, especially HOXB(4), interests people greatly. It has been found that its expression relates closely to the self-renewal of hematopoietic stem cells and effective proliferation of hematopoietic progenitor cells. This review presents some new research progress in this area. PMID:15854307

  7. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification.

    PubMed

    Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A

    2014-01-21

    Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. PMID:24120993

  8. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori

    PubMed Central

    Xia, Ai-Hua; Zhou, Qing-Xiang; Yu, Lin-Lin; Li, Wei-Guo; Yi, Yong-Zhu; Zhang, Yao-Zhou; Zhang, Zhi-Fang

    2006-01-01

    Background The major royal jelly proteins/yellow (MRJP/YELLOW) family possesses several physiological and chemical functions in the development of Apis mellifera and Drosophila melanogaster. Each protein of the family has a conserved domain named MRJP. However, there is no report of MRJP/YELLOW family proteins in the Lepidoptera. Results Using the YELLOW protein sequence in Drosophila melanogaster to BLAST silkworm EST database, we found a gene family composed of seven members with a conserved MRJP domain each and named it YELLOW protein family of Bombyx mori. We completed the cDNA sequences with RACE method. The protein of each member possesses a MRJP domain and a putative cleavable signal peptide consisting of a hydrophobic sequence. In view of genetic evolution, the whole Bm YELLOW protein family composes a monophyletic group, which is distinctly separate from Drosophila melanogaster and Apis mellifera. We then showed the tissue expression profiles of Bm YELLOW protein family genes by RT-PCR. Conclusion A Bombyx mori YELLOW protein family is found to be composed of at least seven members. The low homogeneity and unique pattern of gene expression by each member among the family ensure us to prophesy that the members of Bm YELLOW protein family would play some important physiological functions in silkworm development. PMID:16884544

  9. Ultra Large Gene Families: A Matter of Adaptation or Genomic Parasites?

    PubMed

    Schiffer, Philipp H; Gravemeyer, Jan; Rauscher, Martina; Wiehe, Thomas

    2016-01-01

    Gene duplication is an important mechanism of molecular evolution. It offers a fast track to modification, diversification, redundancy or rescue of gene function. However, duplication may also be neutral or (slightly) deleterious, and often ends in pseudo-geneisation. Here, we investigate the phylogenetic distribution of ultra large gene families on long and short evolutionary time scales. In particular, we focus on a family of NACHT-domain and leucine-rich-repeat-containing (NLR)-genes, which we previously found in large numbers to occupy one chromosome arm of the zebrafish genome. We were interested to see whether such a tight clustering is characteristic for ultra large gene families. Our data reconfirm that most gene family inflations are lineage-specific, but we can only identify very few gene clusters. Based on our observations we hypothesise that, beyond a certain size threshold, ultra large gene families continue to proliferate in a mechanism we term "run-away evolution". This process might ultimately lead to the failure of genomic integrity and drive species to extinction. PMID:27509525

  10. Locus for a human hereditary cataract is closely linked to the. gamma. -crystallin gene family

    SciTech Connect

    Lubsen, N.H.; Renwick, J.H.; Tsui, L.C.; Breitman, M.L.; Schoenmakers, J.G.G.

    1987-01-01

    Within the human ..gamma..-crystallin gene cluster polymorphic Taq I sites are present. These give rise to three sets of allelic fragments from the ..gamma..-crystallin genes. Together these restriction fragment length polymorphisms define eight possible haplotypes, three of which (Q, R, and S) were found in the Dutch and English population. A fourth haplotype (P) was detected within a family in which a hereditary Coppock-like cataract of the embryonic lens nucleus occurs in heterozygotes. Haplotype P was found only in family members who suffered from cataract, and all family members who suffered from cataract had haplotype P. The absolute correlation between the presence of haplotype P and cataract within this family shows that the ..gamma..-crystallin gene cluster and the locus for the Coppock-like cataract are closely linked. This linkage provides genetic evidence that the primary cause of a cataract in humans could possibly be a lesion in a crystallin gene.

  11. CRDB: database of chemosensory receptor gene families in vertebrate.

    PubMed

    Dong, Dong; Jin, Ke; Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates. PMID:22393364

  12. Identification and analysis of the TIFY gene family in Gossypium raimondii.

    PubMed

    He, D H; Lei, Z P; Tang, B S; Xing, H Y; Zhao, J X; Jing, Y L

    2015-01-01

    The highly conserved TIFY domain is included in the TIFY protein family of transcription factors, which is important in plant development. Here, 28 TIFY family genes were identified in the Gossypium raimondii genome and classified into JAZ (15 genes), ZML (8), PPD (3), and TIFY (2). The normal (TIF[F/Y]XG) motif was dominant in the TIFY family, excluding the ZML subfamily, in which TLSFXG was prevalent. TIFY family genes were unevenly distributed in the G. raimondii genome, with TIFY clusters present on chromosome 9. Phylogenetic analysis indicated abundant variations in the G. raimondii TIFY family, which were most closely related to those in Theobroma cacao among 5 species. Exon-intron organization and intron phases were homologous within each subfamily, correlating with their phylogeny. Intra-species synteny analyses indicated that genomic duplication contributed to the expansion of the TIFY family. Inter-species synteny analyses indicated that synteny regions involved in G. raimondii TIFY family genes were also present in the comparison of G. raimondii vs Arabidopsis thaliana or T. cacao, signifying that these genes had common ancestors and play the same or similar roles in biological processes. Greater synteny was present in the comparison of G. raimondii vs T. cacao than of G. raimondii vs A. thaliana. The expression patterns of TIFY family genes were characterized and most TIFY family genes were indicated to be involved in fiber development. Our study provides new data related to the evolution of TIFYs and their role as important regulators of transcription; these data can be useful for fiber development. PMID:26345949

  13. Four novel MSH2 / MLH1 gene mutations in portuguese HNPCC families.

    PubMed

    Isidro, G; Veiga, I; Matos, P; Almeida, S; Bizarro, S; Marshall, B; Baptista, M; Leite, J; Regateiro, F; Soares, J; Castedo, S; Boavida, M G

    2000-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is considered to be determined by germline mutations in the mismatch repair (MMR) genes, especially MSH2 and MLH1. While screening for mutations in these two genes in HNPCC portuguese families, 3 previously unreported MSH2 and 1 MLH1 mutations have been identified in families meeting strict Amsterdam criteria. Hum Mutat 15:116, 2000. PMID:10612836

  14. Asr genes belong to a gene family comprising at least three closely linked loci on chromosome 4 in tomato.

    PubMed

    Rossi, M; Lijavetzky, D; Bernacchi, D; Hopp, H E; Iusem, N

    1996-09-25

    Asr1, Asr2 and Asr3 are three homologous clones isolated from tomato whose expression is believed to be regulated by abscisic acid (ABA); the corresponding genes thus participate in physiological and developmental processes such as responses of leaf and root to water stress, and fruit ripening. In this report, results obtained with Near Isogenic Lines reveal that Asr1, Asr2 and Asr3 represent three different loci. In addition, we map these genes on the restriction fragment length polymorphism (RFLP) map of the tomato genome by using an F2 population derived from an interspecific hybrid cross L. esculentum x L. penelli. RFLP data allow us to map these genes on chromosome 4, suggesting that they belong to a gene family. The elucidation of the genomic organization of the Asr gene family may help in understanding the role of its members in the response to osmotic stress, as well as in fruit ripening, at the molecular level. PMID:8879251

  15. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  16. First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm.

    PubMed

    van de Luijtgaarden, Koen M; Heijsman, Daphne; Maugeri, Alessandra; Weiss, Marjan M; Verhagen, Hence J M; IJpma, Arne; Brüggenwirth, Hennie T; Majoor-Krakauer, Danielle

    2015-08-01

    Genetic causes for abdominal aortic aneurysm (AAA) have not been identified and the role of genes associated with familial thoracic aneurysms in AAA has not been explored. We analyzed nine genes associated with familial thoracic aortic aneurysms, the vascular Ehlers-Danlos gene COL3A1 and the MTHFR p.Ala222Val variant in 155 AAA patients. The thoracic aneurysm genes selected for this study were the transforming growth factor-beta pathway genes EFEMP2, FBN1, SMAD3, TGBF2, TGFBR1, TGFBR2, and the smooth muscle cells genes ACTA2, MYH11 and MYLK. Sanger sequencing of all coding exons and exon-intron boundaries of these genes was performed. Patients with at least one first-degree relative with an aortic aneurysm were classified as familial AAA (n = 99), the others as sporadic AAA. We found 47 different rare heterozygous variants in eight genes: two pathogenic, one likely pathogenic, twenty-one variants of unknown significance (VUS) and twenty-three unlikely pathogenic variants. In familial AAA we found one pathogenic and segregating variant (COL3A1 p.Arg491X), one likely pathogenic and segregating (MYH11 p.Arg254Cys), and fifteen VUS. In sporadic patients we found one pathogenic (TGFBR2 p.Ile525Phefs*18) and seven VUS. Thirteen patients had two or more variants. These results show a previously unknown association and overlapping genetic defects between AAA and familial thoracic aneurysms, indicating that genetic testing may help to identify the cause of familial and sporadic AAA. In this view, genetic testing of these genes specifically or in a genome-wide approach may help to identify the cause of familial and sporadic AAA. PMID:26017485

  17. Phylogenetic and evolutionary analysis of the PLUNC gene family

    PubMed Central

    Bingle, Colin D.; LeClair, Elizabeth E.; Havard, Suzanne; Bingle, Lynne; Gillingham, Paul; Craven, C. Jeremy

    2004-01-01

    The PLUNC family of human proteins are candidate host defense proteins expressed in the upper airways. The family subdivides into short (SPLUNC) and long (LPLUNC) proteins, which contain domains predicted to be structurally similar to one or both of the domains of bactericidal/permeability-increasing protein (BPI), respectively. In this article we use analysis of the human, mouse, and rat genomes and other sequence data to examine the relationships between the PLUNC family proteins from humans and other species, and between these proteins and members of the BPI family. We show that PLUNC family clusters exist in the mouse and rat, with the most significant diversification in the locus occurring for the short PLUNC family proteins. Clear orthologous relationships are established for the majority of the proteins, and ambiguities are identified. Completion of the prediction of the LPLUNC4 proteins reveals that these proteins contain approximately a 150-residue insertion encoded by an additional exon. This insertion, which is predicted to be largely unstructured, replaces the structure homologous to the 40s hairpin of BPI. We show that the exon encoding this region is anomalously variable in size across the LPLUNC proteins, suggesting that this region is key to functional specificity. We further show that the mouse and human PLUNC family orthologs are evolving rapidly, which supports the hypothesis that these proteins are involved in host defense. Intriguingly, this rapid evolution between the human and mouse sequences is replaced by intense purifying selection in a large portion of the N-terminal domain of LPLUNC4. Our data provide a basis for future functional studies of this novel protein family. PMID:14739326

  18. Divergence of genes encoding non-specific lipid transfer proteins in the poaceae family.

    PubMed

    Jang, Cheol Seong; Jung, Jae Hyeong; Yim, Won Cheol; Lee, Byung-Moo; Seo, Yong Weon; Kim, Wook

    2007-10-31

    The genes encoding non-specific lipid transfer proteins (nsLTPs), members of a small multigene family, show a complex pattern of expressional regulation, suggesting that some diversification may have resulted from changes in their expression after duplication. In this study, the evolution of nsLTP genes within the Poaceae family was characterized via a survey of the pseudogenes and unigenes encoding the nsLTP in rice pseudomolecules and the NCBI unigene database. nsLTP-rich regions were detected in the distal portions of rice chromosomes 11 and 12; these may have resulted from the most recent large segmental duplication in the rice genome. Two independent tandem duplications were shown to occur within the nsLTP-rich regions of rice. The genomic distribution of the nsLTP genes in the rice genome differs from that in wheat. This may be attributed to gene migration, chromosomal rearrangement, and/or differential gene loss. The genomic distribution pattern of nsLTP genes in the Poaceae family points to the existence of some differences among cereal nsLTP genes, all of which diverged from an ancient gene. The unigenes encoding nsLTPs in each cereal species are clustered into five groups. The somewhat different distribution of nsLTP-encoding EST clones between the groups across cereal species imply that independent duplication(s) followed by subfunctionalization (and/or neofunctionalization) of the nsLTP gene family in each species occurred during speciation. PMID:17978574

  19. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  20. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  1. Cognitive Functioning in Affected Sibling Pairs with ADHD: Familial Clustering and Dopamine Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Rich, Erika Carpenter; Ishii, Janeen; McGough, James; McCracken, James; Nelson, Stanley; Smalley, Susan L.

    2008-01-01

    Background: This paper examines familiality and candidate gene associations of cognitive measures as potential endophenotypes in attention-deficit/hyperactivity disorder (ADHD). Methods: The sample consists of 540 participants, aged 6 to 18, who were diagnosed with ADHD from 251 families recruited for a larger genetic study of ADHD. All members of…

  2. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease.

    PubMed

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  3. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  4. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  5. AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis

    PubMed Central

    Li, Wei; Li, YaWei; Zhang, Lusi; Guo, Hui; Tian, Di; Li, Ying; Peng, Yu; Zheng, Yu; Dai, Yuliang; Xia, Kun; Lan, Xinqiang; Wang, Bing; Hu, Zhengmao

    2016-01-01

    Background Adolescent idiopathic scoliosis exhibits high heritability and is one of the most common spinal deformities found in adolescent populations. However, little is known about the disease-causing genes in families with adolescent idiopathic scoliosis exhibiting Mendelian inheritance. Objective The aim of this study was to identify the causative gene in a family with adolescent idiopathic scoliosis. Methods Whole-exome sequencing was performed on this family to identify the candidate gene. Sanger sequencing was conducted to validate the candidate mutations and familial segregation. Real-time QPCR was used to measure the expression level of the possible causative gene. Results We identified the mutation c.2645A>C (p.E882A) within the AKAP2 gene, which cosegregated with the adolescent idiopathic scoliosis phenotypes. AKAP2 is located in a previously reported linkage locus (IS4) on chromosome 9q31.2–q34.2 and has been implicated in skeletal development. The mutation was absent in dbSNP144, ESP6500 and 503 ethnicity-matched controls. Real-time QPCR revealed that the mRNA expression level in the patients was increased significantly compared with the family controls (p<0.0001). Conclusions AKAP2 was therefore implicated as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. Further studies should be conducted to validate the results from the perspective of both the genetics and pathogenesis of this disease. PMID:26989089

  6. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    PubMed Central

    2010-01-01

    Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via

  7. Structure of the omega-gliadin gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The '-gliadins are one of the classes of wheat seed storage proteins, but are the least characterized. In this report, an analysis is made of all available '-gliadin DNA sequences including '-gliadins genes within a large genomic clone, previously reported gene sequences, and ESTs identified from th...

  8. Gene-Environment Interplay, Family Relationships, and Child Adjustment

    ERIC Educational Resources Information Center

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene-environment interplay, including genotype-environment correlation (rGE) and genotype x environment…

  9. Sequence homologies in the protamine gene family of rainbow trout.

    PubMed Central

    Aiken, J M; McKenzie, D; Zhao, H Z; States, J C; Dixon, G H

    1983-01-01

    We have sequenced five different rainbow trout protamine genes plus their flanking regions. The genes are not clustered and do not contain intervening sequences. There is an extremely high degree of sequence conservation in the coding and 3' untranslated regions of the gene. Downstream sequences exhibit little homology though conserved regions are found 250 base pairs 3' to the gene. There are four regions upstream of the gene that are highly conserved in the six clones, including the canonical Goldberg - Hogness box which is 45 base pairs 5' to the coding region. A second homologous region is found 90 bases upstream. Although in the same approximate location as the CAAT box found upstream of other genes, it does not contain the canonical CAAT sequence. Further upstream of the protamine genes at -115 there is an A-T rich sequence while a 25 base pair conserved sequence is located 150 bases upstream. In addition we report the presence of a potential Z-DNA region of predominantly A-C repeats approximately one kilobase downstream of one of the genes. Images PMID:6308564

  10. Duplication of OsHAP family genes and their association with heading date in rice

    PubMed Central

    Li, Qiuping; Yan, Wenhao; Chen, Huaxia; Tan, Cong; Han, Zhongmin; Yao, Wen; Li, Guangwei; Yuan, Mengqi; Xing, Yongzhong

    2016-01-01

    Heterotrimeric Heme Activator Protein (HAP) family genes are involved in the regulation of flowering in plants. It is not clear how many HAP genes regulate heading date in rice. In this study, we identified 35 HAP genes, including seven newly identified genes, and performed gene duplication and candidate gene-based association analyses. Analyses showed that segmental duplication and tandem duplication are the main mechanisms of HAP gene duplication. Expression profiling and functional identification indicated that duplication probably diversifies the functions of HAP genes. A nucleotide diversity analysis revealed that 13 HAP genes underwent selection. A candidate gene-based association analysis detected four HAP genes related to heading date. An investigation of transgenic plants or mutants of 23 HAP genes confirmed that overexpression of at least four genes delayed heading date under long-day conditions, including the previously cloned Ghd8/OsHAP3H. Our results indicate that the large number of HAP genes in rice was mainly produced by gene duplication, and a few HAP genes function to regulate heading date. Selection of HAP genes is probably caused by their diverse functions rather than regulation of heading. PMID:26798026

  11. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  12. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Librado, Pablo; Chang, Tien-Hao; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-05-01

    Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan. PMID:25637935

  13. Evolution of the Insect Desaturase Gene Family with an Emphasis on Social Hymenoptera

    PubMed Central

    Helmkampf, Martin; Cash, Elizabeth; Gadau, Jürgen

    2015-01-01

    Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes. PMID:25425561

  14. Evolution of the insect desaturase gene family with an emphasis on social Hymenoptera.

    PubMed

    Helmkampf, Martin; Cash, Elizabeth; Gadau, Jürgen

    2015-02-01

    Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes. PMID:25425561

  15. Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence.

    PubMed

    Grzywacz, Anna; Samochowiec, Agnieszka; Ciechanowicz, Andrzej; Samochowiec, Jerzy

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to a family of proteins related to the nerve growth factor family, which are responsible for the proliferation, survival and differentiation of neurons. BDNF is thought to be involved in the pathogenesis of bipolar disorder, schizophrenia, eating disorders and addiction. We hypothesize that a functionally relevant polymorphism of the BDNF gene promoter may be associated with the pathogenesis of alcohol dependence. We performed an association study of 141 families with alcohol dependence. One hundred and thirty-eight healthy control subjects were matched based on ethnicity and gender. An association between the BDNF Val66Met gene polymorphism and alcoholism was not found. PMID:21098877

  16. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the auxin/indole-3-acetic acid (Aux/IAA) gene family encode proteins to mediate the responses of auxin gene expression and to regulate various aspects of plant morphological development. In this paper, we report the identification of nine cDNAs that contain complete open reading frame (OR...

  17. Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.

    PubMed

    Skinner, Michael K; Rawls, Alan; Wilson-Rawls, Jeanne; Roalson, Eric H

    2010-07-01

    A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes (Stevens et al., 2008). All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. PMID:20219281

  18. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family. PMID:26440085

  19. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns.

    PubMed

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  20. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    PubMed Central

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  1. Distribution of the mammalian Stat gene family in mouse chromosomes

    SciTech Connect

    Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-09-01

    Studies of transcriptional activation by interferons and a variety of cytokines have led to the identification of a family of proteins that serve as signal transducers and activators of transcription, Stats. Here, we report that the seven mouse Stat loci map in three clusters, with each cluster located on a different mouse autosome. The data suggest that the family has arisen via a tandem duplication of the ancestral locus, followed by dispersion of the linked loci to different mouse chromosomes. 28 refs., 1 fig., 1 tab.

  2. Familial migraine: Exclusion of the susceptibility gene from the reported locus of familial hemiplegic migraine on 19p

    SciTech Connect

    Hovatta, I.; Peltonen, L.; Kallela, M.; Faerkkilae, M.

    1994-10-01

    Genetic isolates are highly useful in analyses of the molecular background of complex diseases since the enrichment of a limited number of predisposing genes can be predicted in representative families or in specific geographical regions. It has been suggested that the pathophysiology and etiology of familial hemiplegic migraine (FHM) and typical migraine with aura are most probably the same. Recent assignment of FHM locus to chromosome 19p in two French families makes it now possible to test this hypothesis. We report here linkage data on four families with multiple cases of migraine disorder originating from the genetically isolated population of Finland. We were interested to discover whether the migraine in these families would also show linkage to the markers on 19p. We could exclude a region of 50 cM, flanking the reported FHM locus, as a site of migraine locus in our four families. It seems evident that locus heterogeneity exists between different diagnostic classes of migraine spectrum of diseases and also between different ethnic groups. 10 refs., 2 figs., 1 tab.

  3. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  4. Identification of four novel genes contributing to familial elevated plasma HDL cholesterol in humans.

    PubMed

    Singaraja, Roshni R; Tietjen, Ian; Hovingh, G Kees; Franchini, Patrick L; Radomski, Chris; Wong, Kenny; vanHeek, Margaret; Stylianou, Ioannis M; Lin, Linus; Wang, Liangsu; Mitnaul, Lyndon; Hubbard, Brian; Winther, Michael; Mattice, Maryanne; Legendre, Annick; Sherrington, Robin; Kastelein, John J; Akinsanya, Karen; Plump, Andrew; Hayden, Michael R

    2014-08-01

    While genetic determinants strongly influence HDL cholesterol (HDLc) levels, most genetic causes underlying variation in HDLc remain unknown. We aimed to identify novel rare mutations with large effects in candidate genes contributing to extreme HDLc in humans, utilizing family-based Mendelian genetics. We performed next-generation sequencing of 456 candidate HDLc-regulating genes in 200 unrelated probands with extremely low (≤10th percentile) or high (≥90th percentile) HDLc. Probands were excluded if known mutations existed in the established HDLc-regulating genes ABCA1, APOA1, LCAT, cholesteryl ester transfer protein (CETP), endothelial lipase (LIPG), and UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2). We identified 93 novel coding or splice-site variants in 72 candidate genes. Each variant was genotyped in the proband's family. Family-based association analyses were performed for variants with sufficient power to detect significance at P < 0.05 with a total of 627 family members being assessed. Mutations in the genes glucokinase regulatory protein (GCKR), RNase L (RNASEL), leukocyte immunoglobulin-like receptor 3 (LILRA3), and dynein axonemal heavy chain 10 (DNAH10) segregated with elevated HDLc levels in families, while no mutations associated with low HDLc. Taken together, we have identified mutations in four novel genes that may play a role in regulating HDLc levels in humans. PMID:24891332

  5. Duplications and losses in gene families of rust pathogens highlight putative effectors

    PubMed Central

    Pendleton, Amanda L.; Smith, Katherine E.; Feau, Nicolas; Martin, Francis M.; Grigoriev, Igor V.; Hamelin, Richard; Nelson, C. Dana; Burleigh, J. Gordon; Davis, John M.

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity. PMID:25018762

  6. The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms.

    PubMed

    Tadmor, T; Bejar, J; Attias, D; Mischenko, E; Sabo, E; Neufeld, G; Vadasz, Z

    2013-05-01

    Myeloproliferative neoplasms (MPNs) are malignant disorders originating from clonal expansion of a single neoplastic stem cell and characteristically show an increase in bone marrow reticulin fibers. Lysyl oxidases (LOXs) are copper-dependent amine oxidases that play a critical role in the biogenesis of connective tissue by crosslinking extracellular matrix proteins, collagen and elastin. Expression of LOX gene family members is increased in disorders associated with increased fibrosis. To evaluate involvement of LOX gene family in various MPNs. In-situ hybridization was used to detect Lysyl-Oxidase family members in bone marrow biopsies from patients with different MPNs. We compared normal bone marrows and those from patients with polycythemia vera, essential thrombocythemia, chronic myeloid leukemia, and primary myelofibrosis (PMF). Serum levels of lysyl-oxidase from patients with PMF and healthy controls were also examined. LOX gene family was not detected in normal bone marrows. All members of the LOX gene family were over expressed in PMF. In other MPNs a differential pattern of expression was observed. Differences in gene expression were statistically significant (P < 0.010). The medianserum LOX levels in normal controls was 28.4 ± 2.5 ng\\ml and 44.6 ± 9.44 ng\\ml in PMF (P = 0.02). The varying pattern of expression of LOX genes may reflect differences in the pathophysiology of bone marrow fibrosis in these MPNs. These observations could be used as the basis for future targeted therapy directed against bone marrow fibrosis. PMID:23494965

  7. Genomic Characterization of the LEED..PEEDs, a Gene Family Unique to the Medicago Lineage

    PubMed Central

    Trujillo, Diana I.; Silverstein, Kevin A. T.; Young, Nevin D.

    2014-01-01

    The LEED..PEED (LP) gene family in Medicago truncatula (A17) is composed of 13 genes coding small putatively secreted peptides with one to two conserved domains of negatively charged residues. This family is not present in the genomes of Glycine max, Lotus japonicus, or the IRLC species Cicer arietinum. LP genes were also not detected in a Trifolium pratense draft genome or Pisum sativum nodule transcriptome, which were sequenced de novo in this study, suggesting that the LP gene family arose within the past 25 million years. M. truncatula accession HM056 has 13 LP genes with high similarity to those in A17, whereas M. truncatula ssp. tricycla (R108) and M. sativa have 11 and 10 LP gene copies, respectively. In M. truncatula A17, 12 LP genes are located on chromosome 7 within a 93-kb window, whereas one LP gene copy is located on chromosome 4. A phylogenetic analysis of the gene family is consistent with most gene duplications occurring prior to Medicago speciation events, mainly through local tandem duplications and one distant duplication across chromosomes. Synteny comparisons between R108 and A17 confirm that gene order is conserved between the two subspecies, although a further duplication occurred solely in A17. In M. truncatula A17, all 13 LPs are exclusively transcribed in nodules and absent from other plant tissues, including roots, leaves, flowers, seeds, seed shells, and pods. The recent expansion of LP genes in Medicago spp. and their timing and location of expression suggest a novel function in nodulation, possibly as an aftermath of the evolution of bacteroid terminal differentiation or potentially associated with rhizobial–host specificity. PMID:25155275

  8. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu

    PubMed Central

    Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  9. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.

    PubMed

    Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  10. Isolation and expression of a novel alligator gene belonging to the Sox gene family.

    PubMed

    Zheng, Jifang; Hu, Nan; Zhu, Muyuan; Nu, Yaqing; Liu, Zhen

    2009-02-01

    Sox genes share a highly conserved DNA-binding motif, the HMG (high mobility group)-box domain, and have diverse roles in vertebrate embryonic development. A novel SRY-related cDNA (temporarily called Sox33) isolated from the Chinese alligator (Alligator sinensis) is 1,819 bp in length, with an open reading frame from 220 to 1113 bp, encoding a protein of 298 amino acids. Two putative polyadenylation signal sequences (AATAAA) are present upstream of the poly(A) tail in the 3' UTR (at 1255-1260 and 1774-1779). The putative protein contains an HMG-box domain most closely related to hSox12, mSox4, rtSox11, and mSox11 homologs, indicating that alligator Sox33 belongs to group C in the Sox gene family. Alligator adult and developing tissues were tested for Sox33 mRNA by independent Northern blots using a 336-bp probe (at 907-1243) between the HMG-box and the poly(A) site I and a 277-bp probe (at 1477-1754) between the two polyadenylation sites. Two transcripts (1.3 kb and 1.8 kb) in developing brain and one (1.8 kb) in adult brain were identified by the 336-bp probe; only one transcript (1.8 kb) in developing and adult brains was detected by the 277-bp probe. The results suggest that alligator Sox33 may use a different polyadenylation mechanism in the developing brain and play a role in the development and maintenance of the nervous system. PMID:19169861

  11. Mutations of von Willebrand factor gene in families with von Willebrand disease in the Aland Islands

    SciTech Connect

    Zhang, Z.P.; Blombaeck, M.; Anvret, M. ); Nyman, D. )

    1993-09-01

    Patients with von Willebrand disease in four families in the Aland Islands, including the original family that was described in 1926 by the Finnish physician von Willebrand, were screened for mutations in the Swedish hot-spot' regions (exons 18, 28, 32, 43, and 45) of the von Willebrand factor gene. One cytosine deletion in exon 18 was detected in each of these families. Linkage analysis and genealogical studies suggest that the deletion present in these four families probably has an origin in common with the mutations in the Swedish patients. Apart from the deletion in exon 18, two close transitions (G [yields] A at S1263 and C [yields] T at P1266) in exon 28 on the same chromosome were identified in one individual who married into the original family and in his two children. The transitions could be due to a recombination between the von Willebrand factor gene and its pseudogene. 24 refs., 3 figs., 3 tabs.

  12. Interferon induced IFIT family genes in host antiviral defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  13. Role of Murine Cytomegalovirus US22 Gene Family Members in Replication in Macrophages

    PubMed Central

    Ménard, Carine; Wagner, Markus; Ruzsics, Zsolt; Holak, Karina; Brune, Wolfram; Campbell, Ann E.; Koszinowski, Ulrich H.

    2003-01-01

    The large cytomegalovirus (CMV) US22 gene family, found in all betaherpesviruses, comprises 12 members in both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV). Conserved sequence motifs suggested a common ancestry and related functions for these gene products. Two members of this family, m140 and m141, were recently shown to affect MCMV replication on macrophages. To test the role of all US22 members in cell tropism, we analyzed the growth properties in different cell types of MCMV mutants carrying transposon insertions in all 12 US22 gene family members. When necessary, additional targeted mutants with gene deletions, ATG deletions, and ectopic gene revertants were constructed. Mutants with disruption of genes M23, M24, m25.1, m25.2, and m128 (ie2) showed no obvious growth phenotype, whereas growth of M43 mutants was reduced in a number of cell lines. Genes m142 and m143 were shown to be essential for virus replication. Growth of mutants with insertions into genes M36, m139, m140, and m141 in macrophages was severely affected. The common phenotype of the m139, m140, and m141 mutants was explained by an interaction at the protein level. The M36-dependent macrophage growth phenotype could be explained by the antiapoptotic function of the gene that was required for growth on macrophages but not for growth on other cell types. Together, the comprehensive set of mutants of the US22 gene family suggests that individual family members have diverged through evolution to serve a variety of functions for the virus. PMID:12719548

  14. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    PubMed Central

    2009-01-01

    Background As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement. Results We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the Poaceae family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and Arabidopsis. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine Arabidopsis mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis. Conclusion The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots

  15. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants

    PubMed Central

    Morant, Marc; Hehn, Alain; Werck-Reichhart, Danièle

    2002-01-01

    Background Availability of genomewide information on an increasing but still limited number of plants offers the possibility of identifying orthologues, or related genes, in species with major economical impact and complex genomes. In this paper we exploit the recently described CODEHOP primer design and PCR strategy for targeted isolation of homologues in large gene families. Results The method was tested with two different objectives. The first was to analyze the evolution of the CYP98 family of cytochrome P450 genes involved in 3-hydroxylation of phenolic compounds and lignification in a broad range of plant species. The second was to isolate an orthologue of the sorghum glucosyl transferase UGT85B1 and to determine the complexity of the UGT85 family in wheat. P450s of the CYP98 family or closely related sequences were found in all vascular plants. No related sequence was found in moss. Neither extensive duplication of the CYP98 genes nor an orthologue of UGT85B1 were found in wheat. The UGT85A subfamily was however found to be highly variable in wheat. Conclusions Our data are in agreement with the implication of CYP98s in lignification and the evolution of 3-hydroxylation of lignin precursors with vascular plants. High conservation of the CYP98 family strongly argues in favour of an essential function in plant development. Conversely, high duplication and diversification of the UGT85A gene family in wheat suggests its involvement in adaptative response and provides a valuable pool of genes for biotechnological applications. This work demonstrates the high potential of the CODEHOP strategy for the exploration of large gene families in plants. PMID:12153706

  16. The Vertebrate RCAN Gene Family: Novel Insights into Evolution, Structure and Regulation

    PubMed Central

    Serrano-Candelas, Eva; Farré, Domènec; Aranguren-Ibáñez, Álvaro; Martínez-Høyer, Sergio; Pérez-Riba, Mercè

    2014-01-01

    Recently there has been much interest in the Regulators of Calcineurin (RCAN) proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1). How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5′ region of the genes, the existence of antisense transcripts (NAT) associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies. PMID:24465593

  17. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    PubMed Central

    Podar, Mircea; Eads, Jonathan R; Richardson, Toby H

    2005-01-01

    Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with. PMID:16083508

  18. Seminalplasmin: recent evolution of another member of the neuropeptide Y gene family.

    PubMed Central

    Herzog, H; Hort, Y; Schneider, R; Shine, J

    1995-01-01

    Seminalplasmin, the major basic protein of bull semen, an important regulator of calcium transport in bovine sperm and a positive modulator of the zona pellucida-induced acrosome reaction, is shown to be a recently created member of the neuropeptide Y gene family. Sequence analysis of the bovine peptide YY-pancreatic polypeptide gene cluster reveals an unexpected and extensive homology between seminalplasmin and the neuropeptide Y gene family, at the level of both gene structure and primary amino acid and nucleotide sequences. The extremely high degree of homology to the peptide YY gene, in both coding and especially noncoding regions, suggests that the seminalplasmin gene has arisen by a very recent gene duplication of the bovine peptide YY gene. Despite the more than 95% nucleotide sequence identity, a few specific mutations in the seminalplasmin gene have resulted in both the loss of the amino- and carboxyl-terminal cleavage sites characteristic of all other members of the neuropeptide Y family and the acquisition of a function apparently unrelated to the neurotransmitter/endocrine role of peptide YY. PMID:7831336

  19. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. PMID:26940488

  20. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  1. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  2. Characterization of the Avian Trojan Gene Family Reveals Contrasting Evolutionary Constraints

    PubMed Central

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    “Trojan” is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules. PMID:25803627

  3. Identification of a novel mutation in the presenilin 1 gene in a Chinese Alzheimer's disease family.

    PubMed

    Deng, Bo; Lian, Yan; Wang, Xin; Zeng, Fan; Jiao, Bin; Wang, Ye-Ran; Liang, Chun-Rong; Liu, Yu-Hui; Bu, Xian-Le; Yao, Xiu-Qing; Zhu, Chi; Shen, Lu; Zhou, Hua-Dong; Zhang, Tao; Wang, Yan-Jiang

    2014-10-01

    This study has identified a gene mutation in a Chinese family with Alzheimer's disease (AD). Family members were screened by a set of medical examinations and neuropsychological tests. Their DNA was extracted from blood cells and sequenced for gene mutation in the amyloid precursor protein (APP), the presenilin 1 (PS1) and the presenilin 2 (PS2) genes. Genetic analysis showed that the AD patients in the family harbored a T to G missense mutation at the position 314 in exon 4 of the PS1 gene, resulting in a change of F105C in amino acid sequence. Clinical manifestation of these patients included memory loss, counting difficulty, personality change, disorientation, dyscalculia, agnosia, aphasia, and apraxia, which was similar to that of the familial AD (FAD) patients harboring other PS1 mutations. We intend to add a novel mutation F105C of the PS1 gene to the pool of FAD mutations. With the current available genetic data, mutations of the PS1 gene account for the majority of gene mutations in Chinese FAD. PMID:24737487

  4. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  5. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  6. Evolutionary analysis of the jacalin-related lectin family genes in 11 fishes.

    PubMed

    Cao, Jun; Lv, Yueqing

    2016-09-01

    Jacalin-related lectins are a type of carbohydrate-binding proteins, which are distributed across a wide variety of organisms and involved in some important biological processes. The evolution of this gene family in fishes is unknown. Here, 47 putative jacalin genes in 11 fish species were identified and divided into 4 groups through phylogenetic analysis. Conserved gene organization and motif distribution existed in each group, suggesting their functional conservation. Some fishes have eleven jacalin genes, while others have only one or zero gene in their genomes, suggesting dynamic changes in the number of jacalin genes during the evolution of fishes. Intragenic recombination played a key role in the evolution of jacalin genes. Synteny analyses of jacalin genes in some fishes implied conserved and dynamic evolution characteristics of this gene family and related genome segments. Moreover, a few functional divergence sites were identified within each group pairs. Divergent expression profiles of the zebra fish jacalin genes were further investigated in different stresses. The results provided a foundation for exploring the characterization of the jacalin genes in fishes and will offer insights for additional functional studies. PMID:27514782

  7. Familial Lymphoproliferative Malignancies and Tandem Duplication of NF1 Gene.

    PubMed

    Fernandes, Gustavo; Souto, Mirela; Costa, Frederico; Oliveira, Edite; Garicochea, Bernardo

    2014-01-01

    Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1) which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who presented with few clinical signs of neurofibromatosis type 1 and a conspicuous personal and familiar history of different types of cancer, especially lymphoproliferative malignancies. The coding region of the NF-1 gene was analyzed by real-time polymerase chain reaction and direct sequencing. Multiplex ligation-dependent probe amplification was performed to detect the number of mutant copies. The NF1 gene analysis showed the following alterations: mosaic duplication of NF1, TRAF4, and MYO1D. Fluorescence in situ hybridization using probes (RP5-1002G3 and RP5-92689) flanking NF1 gene in 17q11.2 and CEP17 for 17q11.11.1 was performed. There were three signals (RP5-1002G3conRP5-92689) in the interphases analyzed and two signals (RP5-1002G3conRP5-92689) in 93% of cells. These findings show a tandem duplication of 17q11.2. Conclusion. The case suggests the possibility that NF1 gene duplication may be associated with a phenotype characterized by lymphoproliferative disorders. PMID:25580325

  8. [Familial Mediterranean fever--from gene test to clinical aspects].

    PubMed

    Sudeck, H

    2000-10-26

    Familial Mediterranean Fever (FMF) is a genetically defined disease affecting mostly families of jewish, turkish or armenian origin whose ancestors originate from the mediterranean basin. The first officially acknowledged description was given by SIEGAL in 1945 but previous cases were reported since 1908. The main clinical signs which are very varying in intensity and appearance are periodic attacks of fever with peritonitis, pleurisy and arthritis. The classical but not always found complication is amyloidosis with renal failure which is preventable by lifelong colchicine therapy. By using a novel genetest it is now possible to definitely diagnose FMF instead of relying on a diagnosis made merely by exclusion. This will emphasize the use of colchicine and should bring us nearer to the pathophysiology of this interesting disease. PMID:11103618

  9. Tandem repeat distribution of gene transcripts in three plant families

    PubMed Central

    2009-01-01

    Tandem repeats (microsatellites or SSRs) are molecular markers with great potential for plant genetic studies. Modern strategies include the transfer of these markers among widely studied and orphan species. In silico analyses allow for studying distribution patterns of microsatellites and predicting which motifs would be more amenable to interspecies transfer. Transcribed sequences (Unigene) from ten species of three plant families were surveyed for the occurrence of micro and minisatellites. Transcripts from different species displayed different rates of tandem repeat occurrence, ranging from 1.47% to 11.28%. Both similar and different patterns were found within and among plant families. The results also indicate a lack of association between genome size and tandem repeat fractions in expressed regions. The conservation of motifs among species and its implication on genome evolution and dynamics are discussed. PMID:21637460

  10. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage. PMID:25216934