Science.gov

Sample records for pseudokinase domain target

  1. Receptor Tyrosine Kinases with Intracellular Pseudokinase Domains

    PubMed Central

    Mendrola, Jeannine M.; Shi, Fumin; Park, Jin H.; Lemmon, Mark A.

    2013-01-01

    As with other groups of protein kinases, approximately 10% of the receptor tyrosine kinases (RTKs) in the human proteome contain intracellular pseudokinases that lack one or more conserved catalytically important residues. These include ErbB3, a member of the epidermal growth factor receptor (EGFR) family, and a series of unconventional Wnt receptors. We recently showed that, despite its reputation as a pseudokinase, the ErbB3 tyrosine kinase domain (TKD) does retain significant – albeit weak – kinase activity. This led us to suggest that a subgroup of RTKs may be able to signal even with very inefficient kinases. Recent work suggests that this is not the case, however. Other pseudokinase RTKs have not revealed significant kinase activity, and mutations that impair ErbB3’s weak kinase activity have not so far been found to exhibit signaling defects. These findings therefore point to models in which the TKDs of pseudokinase RTKs participate in receptor signaling by allosterically regulating associated kinases (such as ErbB3 regulation of ErbB2) and/or function as regulated ‘scaffolds’ for other intermolecular interactions central to signal propagation. Further structural and functional studies – particularly of the pseudokinase RTKs involved in Wnt signaling – are required to shed new light on these intriguing signaling mechanisms. PMID:23863174

  2. Tribbles pseudokinases: novel targets for chemical biology and drug discovery?

    PubMed

    Foulkes, Daniel M; Byrne, Dominic P; Bailey, Fiona P; Eyers, Patrick A

    2015-10-01

    Tribbles (TRIB) proteins are pseudokinase mediators of eukaryotic signalling that have evolved important roles in lipoprotein metabolism, immune function and cellular differentiation and proliferation. In addition, an evolutionary-conserved modulation of PI3K/AKT signalling pathways highlights them as novel and rather unusual pharmaceutical targets. The three human TRIB family members are uniquely defined by an acidic pseudokinase domain containing a 'broken' α C-helix and a MEK (MAPK/ERK)-binding site at the end of the putative C-lobe and a distinct C-terminal peptide motif that interacts directly with a small subset of cellular E3 ubiquitin ligases. This latter interaction drives proteasomal-dependent degradation of networks of transcription factors, whose rate of turnover determines the biological attributes of individual TRIB family members. Defining the function of individual Tribs has been made possible through evaluation of individual TRIB knockout mice, siRNA/overexpression approaches and genetic screening in flies, where the single TRIB gene was originally described 15 years ago. The rapidly maturing TRIB field is primed to exploit chemical biology approaches to evaluate endogenous TRIB signalling events in intact cells. This will help define how TRIB-driven protein-protein interactions and the atypical TRIB ATP-binding site, fit into cellular signalling modules in experimental scenarios where TRIB-signalling complexes remain unperturbed. In this mini-review, we discuss how small molecules can reveal rate-limiting signalling outputs and functions of Tribs in cells and intact organisms, perhaps serving as guides for the development of new drugs. We predict that appropriate small molecule TRIB ligands will further accelerate the transition of TRIB pseudokinase analysis into the mainstream of cell signalling. PMID:26517930

  3. Pharmacological Targeting of the Pseudokinase Her3

    PubMed Central

    Xie, Ting; Lim, Sang Min; Westover, Kenneth D.; Dodge, Michael E.; Ercan, Dalia; Ficarro, Scott B.; Udayakumar, Durga; Gurbani, Deepak; Tae, Hyun Seop; Riddle, Steven M.; Sim, Taebo; Marto, Jarrod A.; Jänne, Pasi A.; Crews, Craig M.; Gray, Nathanael S.

    2014-01-01

    Her3 (ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be “undruggable” using ATP-competitive small molecules because it lacks significant kinase activity. Here we report the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3 dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3 dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and the approximately 60 other pseudokinases found in human cells. PMID:25326665

  4. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.

    PubMed

    Hammarén, Henrik M; Ungureanu, Daniela; Grisouard, Jean; Skoda, Radek C; Hubbard, Stevan R; Silvennoinen, Olli

    2015-04-14

    Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase-kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches. PMID:25825724

  5. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain.

    PubMed

    Tokarski, John S; Zupa-Fernandez, Adriana; Tredup, Jeffrey A; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R; Wu, Sophie; Edavettal, Suzanne C; Hong, Yang; Witmer, Mark R; Elkin, Lisa L; Blat, Yuval; Pitts, William J; Weinstein, David S; Burke, James R

    2015-04-24

    Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719

  6. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).

    PubMed

    Min, Xiaoshan; Ungureanu, Daniela; Maxwell, Sarah; Hammarén, Henrik; Thibault, Steve; Hillert, Ellin-Kristina; Ayres, Merrill; Greenfield, Brad; Eksterowicz, John; Gabel, Chris; Walker, Nigel; Silvennoinen, Olli; Wang, Zhulun

    2015-11-01

    JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications. PMID:26359499

  7. Nucleotide-binding mechanisms in pseudokinases

    PubMed Central

    Hammarén, Henrik M.; Virtanen, Anniina T.; Silvennoinen, Olli

    2015-01-01

    Pseudokinases are classified by the lack of one or several of the highly conserved motifs involved in nucleotide (nt) binding or catalytic activity of protein kinases (PKs). Pseudokinases represent ∼10% of the human kinome and they are found in all evolutionary classes of kinases. It has become evident that pseudokinases, which were initially considered somewhat peculiar dead kinases, are important components in several signalling cascades. Furthermore, several pseudokinases have been linked to human diseases, particularly cancer, which is raising interest for therapeutic approaches towards these proteins. The ATP-binding pocket is a well-established drug target and elucidation of the mechanism and properties of nt binding in pseudokinases is of significant interest and importance. Recent studies have demonstrated that members of the pseudokinase family are very diverse in structure as well as in their ability and mechanism to bind nts or perform phosphoryl transfer reactions. This diversity also precludes prediction of pseudokinase function, or the importance of nt binding for said function, based on primary sequence alone. Currently available data indicate that ∼40% of pseudokinases are able to bind nts, whereas only few are able to catalyse occasional phosphoryl transfer. Pseudokinases employ diverse mechanisms to bind nts, which usually occurs at low, but physiological, affinity. ATP binding serves often a structural role but in most cases the functional roles are not precisely known. In the present review, we discuss the various mechanisms that pseudokinases employ for nt binding and how this often low-affinity binding can be accurately analysed. PMID:26589967

  8. Enhanced Interaction between Pseudokinase and Kinase Domains in Gcn2 stimulates eIF2α Phosphorylation in Starved Cells

    PubMed Central

    Lageix, Sebastien; Rothenburg, Stefan; Dever, Thomas E.; Hinnebusch, Alan G.

    2014-01-01

    The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn− substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd− substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd− substitutions enhance YKD-KD interactions in vitro, whereas Gcn− substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd− substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD. PMID:24811037

  9. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells.

    PubMed

    Lageix, Sebastien; Rothenburg, Stefan; Dever, Thomas E; Hinnebusch, Alan G

    2014-05-01

    The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn- substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd- substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd- substitutions enhance YKD-KD interactions in vitro, whereas Gcn- substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd- substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD. PMID:24811037

  10. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.

    PubMed

    Bailey, Fiona P; Byrne, Dominic P; Oruganty, Krishnadev; Eyers, Claire E; Novotny, Christopher J; Shokat, Kevan M; Kannan, Natarajan; Eyers, Patrick A

    2015-04-01

    The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an 'analogue-sensitive' (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery. PMID:25583260

  11. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner

    PubMed Central

    Bailey, Fiona P.; Byrne, Dominic P.; Oruganty, Krishnadev; Eyers, Claire E.; Novotny, Christopher J.; Shokat, Kevan M.; Kannan, Natarajan; Eyers, Patrick A.

    2016-01-01

    The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the ‘pseudocatalytic’ domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an ‘analogue-sensitive’ (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery. PMID:25583260

  12. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    PubMed

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  13. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    PubMed Central

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2013-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase–FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  14. SCYL pseudokinases in neuronal function and survival

    PubMed Central

    Pelletier, Stephane

    2016-01-01

    The generation of mice lacking SCYL1 or SCYL2 and the identification of Scyl1 as the causative gene in the motor neuron disease mouse model muscle deficient (Scyl1mdf/mdf) demonstrated the importance of the SCY1-like family of protein pseudokinases in neuronal function and survival. Several essential cellular processes such as intracellular trafficking and nuclear tRNA export are thought to be regulated by SCYL proteins. However, whether deregulation of these processes contributes to the neurodegenerative processes associated with the loss of SCYL proteins is still unclear. Here, I briefly review the evidence supporting that SCYL proteins play a role in these processes and discuss their possible involvement in the neuronal functions of SCYL proteins. I also propose ways to determine the importance of these pathways for the functions of SCYL proteins in vivo. PMID:26981075

  15. SCYL pseudokinases in neuronal function and survival.

    PubMed

    Pelletier, Stephane

    2016-01-01

    The generation of mice lacking SCYL1 or SCYL2 and the identification of Scyl1 as the causative gene in the motor neuron disease mouse model muscle deficient (Scyl1(mdf/mdf) ) demonstrated the importance of the SCY1-like family of protein pseudokinases in neuronal function and survival. Several essential cellular processes such as intracellular trafficking and nuclear tRNA export are thought to be regulated by SCYL proteins. However, whether deregulation of these processes contributes to the neurodegenerative processes associated with the loss of SCYL proteins is still unclear. Here, I briefly review the evidence supporting that SCYL proteins play a role in these processes and discuss their possible involvement in the neuronal functions of SCYL proteins. I also propose ways to determine the importance of these pathways for the functions of SCYL proteins in vivo. PMID:26981075

  16. Molecular Basis of Kindlin-2 Binding to Integrin-linked Kinase Pseudokinase for Regulating Cell Adhesion*

    PubMed Central

    Fukuda, Koichi; Bledzka, Kamila; Yang, Jun; Perera, H. Dhanuja; Plow, Edward F.; Qin, Jun

    2014-01-01

    Integrin-linked kinase (ILK) is a distinct intracellular adaptor essential for integrin-mediated cell-extracellular matrix adhesion, cell spreading, and migration. Acting as a major docking platform in focal adhesions, ILK engages many proteins to dynamically link integrins with the cytoskeleton, but the underlying mechanism remains elusive. Here, we have characterized the interaction of ILK with kindlin-2, a key regulator for integrin bidirectional signaling. We show that human kindlin-2 binds to human ILK with high affinity. Using systematic mapping approaches, we have identified a major ILK binding site involving a 20-residue fragment (residues 339–358) in kindlin-2. NMR-based analysis reveals a helical conformation of this fragment that utilizes its leucine-rich surface to recognize the ILK pseudokinase domain in a mode that is distinct from another ILK pseudokinase domain binding protein, α-parvin. Structure-based mutational experiments further demonstrate that the kindlin-2 binding to ILK is crucial for the kindlin-2 localization to focal adhesions and cell spreading (integrin outside-in signaling) but dispensable for the kindlin-2-mediated integrin activation (integrin inside-out signaling). These data define a specific mode of the kindlin-2/ILK interaction with mechanistic implications as to how it spatiotemporally mediates integrin signaling and cell adhesion. PMID:25160619

  17. Targeting SH2 domains in breast cancer

    PubMed Central

    Morlacchi, Pietro; Robertson, Fredika M; Klostergaard, Jim; McMurray, John S

    2014-01-01

    Breast cancer is among the most commonly diagnosed cancer types in women worldwide and is the second leading cause of cancer-related disease in the USA. SH2 domains recruit signaling proteins to phosphotyrosine residues on aberrantly activated growth factor and cytokine receptors and contribute to cancer cell cycling, metastasis, angiogenesis and so on. Herein we review phosphopeptide mimetic and small-molecule approaches targeting the SH2 domains of Grb2, Grb7 and STAT3 that inhibit their targets and reduce proliferation in in vitro breast cancer models. Only STAT3 inhibitors have been evaluated in in vivo models and have led to tumor reduction. Taken together, these studies suggest that targeting SH2 domains is an important approach to the treatment of breast cancer. PMID:25495984

  18. Discoidin Domains as Emerging Therapeutic Targets.

    PubMed

    Villoutreix, Bruno O; Miteva, Maria A

    2016-08-01

    Discoidin (DS) domains are found in eukaryotic and prokaryotic extracellular and transmembrane multidomain proteins. These small domains play different functional roles and can interact with phospholipids, glycans, and proteins, including collagens. DS domain-containing proteins are often involved in cellular adhesion, migration, proliferation, and matrix-remodeling events, while some play a major role in blood coagulation. Mutations in DS domains have been associated with various disease conditions. This review provides an update on the structure, function, and modulation of the DS domains, with a special emphasis on two circulating blood coagulation cofactors, factor V and factor VIII, and the transmembrane neuropilin receptors that have been targeted for inhibition by biologics and small chemical compounds. PMID:27372370

  19. Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line

    PubMed Central

    Bogomolovas, Julijus; Gasch, Alexander; Simkovic, Felix; Rigden, Daniel J.; Labeit, Siegfried; Mayans, Olga

    2014-01-01

    Striated muscle tissues undergo adaptive remodelling in response to mechanical load. This process involves the myofilament titin and, specifically, its kinase domain (TK; titin kinase) that translates mechanical signals into regulatory pathways of gene expression in the myofibril. TK mechanosensing appears mediated by a C-terminal regulatory tail (CRD) that sterically inhibits its active site. Allegedly, stretch-induced unfolding of this tail during muscle function releases TK inhibition and leads to its catalytic activation. However, the cellular pathway of TK is poorly understood and substrates proposed to date remain controversial. TK's best-established substrate is Tcap, a small structural protein of the Z-disc believed to link TK to myofibrillogenesis. Here, we show that TK is a pseudokinase with undetectable levels of catalysis and, therefore, that Tcap is not its substrate. Inactivity is the result of two atypical residues in TK's active site, M34 and E147, that do not appear compatible with canonical kinase patterns. While not mediating stretch-dependent phospho-transfers, TK binds the E3 ubiquitin ligase MuRF1 that promotes sarcomeric ubiquitination in a stress-induced manner. Given previous evidence of MuRF2 interaction, we propose that the cellular role of TK is to act as a conformationally regulated scaffold that functionally couples the ubiquitin ligases MuRF1 and MuRF2, thereby coordinating muscle-specific ubiquitination pathways and myofibril trophicity. Finally, we suggest that an evolutionary dichotomy of kinases/pseudokinases has occurred in TK-like kinases, where invertebrate members are active enzymes but vertebrate counterparts perform their signalling function as pseudokinase scaffolds. PMID:24850911

  20. Domain definition and target classification for CASP6.

    PubMed

    Tress, Michael; Tai, Chin-Hsien; Wang, Guoli; Ezkurdia, Iakes; López, Gonzalo; Valencia, Alfonso; Lee, Byungkook; Dunbrack, Roland L

    2005-01-01

    Assessment of structure predictions in CASP6 was based on single domains isolated from experimentally determined structures, which were categorized into comparative modeling, fold recognition, and new fold targets. Domain definitions were defined upon visual examination of the structures with the aid of automated domain-parsing programs. Domain categorization was determined by comparison of the target structures with those in the Protein Data Bank at the time each target expired and a variety of sequence and structure-based methods to determine potential homologous relationships. PMID:16187342

  1. Generating target system specifications from a domain model using CLIPS

    NASA Technical Reports Server (NTRS)

    Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry

    1991-01-01

    The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).

  2. Thioaptamers Targeting Dengue Virus Type-2 Envelope Protein Domain III

    PubMed Central

    Gandham, Sai Hari A.; Volk, David E.; Rao, Lokesh G. L.; Neerathilingam, Muniasamy; Gorenstein, David G.

    2014-01-01

    Thioaptamers targeting the dengue-2 virus (DENV-2) envelope protein domain III (EDIII) were developed. EDIII, which contains epitopes for binding neutralizing antibodies, is the putative host-receptor binding domain and is thus an attractive target for development of vaccines, anti-viral therapeutic and diagnostic agents. Thioaptamer DENTA-1 bound to DENV-2 EDIII adjacent to a known neutralizing antibody binding site with a dissociation constant of 154 nM. PMID:25261724

  3. The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading

    PubMed Central

    Kim, Elliot W.; Nadipuram, Santhosh M.; Tetlow, Ashley L.; Barshop, William D.; Liu, Philip T.; Wohlschlegel, James A.

    2016-01-01

    ABSTRACT Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe

  4. Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis

    PubMed Central

    Somssich, Marc; Bleckmann, Andrea; Simon, Rüdiger

    2016-01-01

    Stem cell maintenance in plants depends on the activity of small secreted signaling peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family, which, in the shoot, act through at least three kinds of receptor complexes, CLAVATA1 (CLV1) homomers, CLAVATA2 (CLV2) / CORYNE (CRN) heteromers, and CLV1/CLV2/CRN multimers. In the root, the CLV2/CRN receptor complexes function in the proximal meristem to transmit signals from the CLE peptide CLE40. While CLV1 consists of an extracellular receptor domain and an intracellular kinase domain, CLV2, a leucine-rich repeat (LRR) receptor-like protein, and CRN, a protein kinase, have to interact to form a receptor–kinase complex. The kinase domain of CRN has been reported to be catalytically inactive, and it is not yet known how the CLV2/CRN complex can relay the perceived signal into the cells, and whether the kinase domain is necessary for signal transduction at all. In this study we show that the kinase domain of CRN is actively involved in CLV3 signal transduction in the shoot apical meristem of Arabidopsis, but it is dispensable for CRN protein function in root meristem maintenance. Hence, we provide an example of a catalytically inactive pseudokinase that is involved in two homologous pathways, but functions in distinctively different ways in each of them. PMID:27229734

  5. The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action.

    PubMed

    Salazar, María; Lorente, Mar; García-Taboada, Elena; Hernández-Tiedra, Sonia; Davila, David; Francis, Sheila E; Guzmán, Manuel; Kiss-Toth, Endre; Velasco, Guillermo

    2013-10-01

    Δ(9)-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer. This effect relies, at least in part, on the up-regulation of several endoplasmic reticulum stress-related proteins including the pseudokinase tribbles homologue-3 (TRIB3), which leads in turn to the inhibition of the AKT/mTORC1 axis and the subsequent stimulation of autophagy-mediated apoptosis in tumor cells. Here, we took advantage of the use of cells derived from Trib3-deficient mice to investigate the precise mechanisms by which TRIB3 regulates the anti-cancer action of THC. Our data show that RasV(12)/E1A-transformed embryonic fibroblasts derived from Trib3-deficient mice are resistant to THC-induced cell death. We also show that genetic inactivation of this protein abolishes the ability of THC to inhibit the phosphorylation of AKT and several of its downstream targets, including those involved in the regulation of the AKT/mammalian target of rapamycin complex 1 (mTORC1) axis. Our data support the idea that THC-induced TRIB3 up-regulation inhibits AKT phosphorylation by regulating the accessibility of AKT to its upstream activatory kinase (the mammalian target of rapamycin complex 2; mTORC2). Finally, we found that tumors generated by inoculation of Trib3-deficient cells in nude mice are resistant to THC anticancer action. Altogether, the observations presented here strongly support that TRIB3 plays a crucial role on THC anti-neoplastic activity. This article is part of a Special Issue entitled Lipid Metabolism in Cancer. PMID:23567453

  6. Superdiffusive motion of membrane-targeting C2 domains

    PubMed Central

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-01-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations. PMID:26639944

  7. Superdiffusive motion of membrane-targeting C2 domains

    NASA Astrophysics Data System (ADS)

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-12-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.

  8. Coverage Assessment and Target Tracking in 3D Domains

    PubMed Central

    Boudriga, Noureddine; Hamdi, Mohamed; Iyengar, Sitharama

    2011-01-01

    Recent advances in integrated electronic devices motivated the use of Wireless Sensor Networks (WSNs) in many applications including domain surveillance and mobile target tracking, where a number of sensors are scattered within a sensitive region to detect the presence of intruders and forward related events to some analysis center(s). Obviously, sensor deployment should guarantee an optimal event detection rate and should reduce coverage holes. Most of the coverage control approaches proposed in the literature deal with two-dimensional zones and do not develop strategies to handle coverage in three-dimensional domains, which is becoming a requirement for many applications including water monitoring, indoor surveillance, and projectile tracking. This paper proposes efficient techniques to detect coverage holes in a 3D domain using a finite set of sensors, repair the holes, and track hostile targets. To this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract by deformation. We show in particular that, through a set of iterative transformations of the Vietoris complex corresponding to the deployed sensors, the number of coverage holes can be computed with a low complexity. Mobility strategies are also proposed to repair holes by moving appropriately sensors towards the uncovered zones. The tracking objective is to set a non-uniform WSN coverage within the monitored domain to allow detecting the target(s) by the set of sensors. We show, in particular, how the proposed algorithms adapt to cope with obstacles. Simulation experiments are carried out to analyze the efficiency of the proposed models. To our knowledge, repairing and tracking is addressed for the first time in 3D spaces with different sensor coverage schemes. PMID:22163733

  9. Ab Initio Modeling and Experimental Assessment of Janus Kinase 2 (JAK2) Kinase-Pseudokinase Complex Structure

    PubMed Central

    McClendon, Christopher L.; Huang, Lily Jun-shen; Huang, Niu

    2013-01-01

    The Janus Kinase 2 (JAK2) plays essential roles in transmitting signals from multiple cytokine receptors, and constitutive activation of JAK2 results in hematopoietic disorders and oncogenesis. JAK2 kinase activity is negatively regulated by its pseudokinase domain (JH2), where the gain-of-function mutation V617F that causes myeloproliferative neoplasms resides. In the absence of a crystal structure of full-length JAK2, how JH2 inhibits the kinase domain (JH1), and how V617F hyperactivates JAK2 remain elusive. We modeled the JAK2 JH1–JH2 complex structure using a novel informatics-guided protein-protein docking strategy. A detailed JAK2 JH2-mediated auto-inhibition mechanism is proposed, where JH2 traps the activation loop of JH1 in an inactive conformation and blocks the movement of kinase αC helix through critical hydrophobic contacts and extensive electrostatic interactions. These stabilizing interactions are less favorable in JAK2-V617F. Notably, several predicted binding interfacial residues in JH2 were confirmed to hyperactivate JAK2 kinase activity in site-directed mutagenesis and BaF3/EpoR cell transformation studies. Although there may exist other JH2-mediated mechanisms to control JH1, our JH1–JH2 structural model represents a verifiable working hypothesis for further experimental studies to elucidate the role of JH2 in regulating JAK2 in both normal and pathological settings. PMID:23592968

  10. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules.

    PubMed

    Di Michele, Michela; Stes, Elisabeth; Vandermarliere, Elien; Arora, Rohit; Astorga-Wells, Juan; Vandenbussche, Jonathan; van Heerde, Erika; Zubarev, Roman; Bonnet, Pascal; Linders, Joannes T M; Jacoby, Edgar; Brehmer, Dirk; Martens, Lennart; Gevaert, Kris

    2015-10-01

    Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases. PMID:26293246

  11. Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets.

    PubMed

    Wuttig, Andreas; Kanka, Mario; Kreuzer, Hans Jürgen; Riesenberg, Rainer

    2010-12-20

    For applications in the domain of digital holographic microscopy, we present a fast algorithm to propagate scalar wave fields from a small source area to an extended, parallel target area of coarser sampling pitch, using the first Rayleigh-Sommerfeld diffraction formula. Our algorithm can take full advantage of the fast Fourier transform by decomposing the convolution kernel of the propagation into several convolution kernel patches. Using partial overlapping of the patches together with a soft blending function, the Fourier spectrum of these patches can be reduced to a low number of significant components, which can be stored in a compact sparse array structure. This allows for rapid evaluation of the partial convolution results by skipping over negligible components through the Fourier domain pointwise multiplication and direct mapping of the remaining multiplication results into a Fourier domain representation of the coarsly sampled target patch. The algorithm has been verified experimentally at a numerical aperture of 0.62, not showing any significant resolution limitations. PMID:21196980

  12. Targeting the inhibitor of Apoptosis Protein BIR3 binding domains.

    PubMed

    Jaquith, James B

    2014-05-01

    The Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors. Several research teams have advanced compounds that bind the highly conserved BIR3 domains of the IAPs into clinical trials, as single agents and in combination with standard of care. This patent review highlights the medicinal chemistry strategies that have been applied to the development of clinical compounds. PMID:24998289

  13. EH domain proteins regulate cardiac membrane protein targeting

    PubMed Central

    Gudmundsson, Hjalti; Hund, Thomas J.; Wright, Patrick J.; Kline, Crystal F.; Snyder, Jedidiah S.; Qian, Lan; Koval, Olha M.; Cunha, Shane R.; George, Manju; Rainey, Mark A.; Kashef, Farshid E.; Dun, Wen; Boyden, Penelope A.; Anderson, Mark E.; Band, Hamid; Mohler, Peter J.

    2010-01-01

    Rationale Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. Objective We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. Methods and Results We report the initial characterization of a large family of membrane trafficking proteins in human heart. We employed a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified four members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are co-expressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. Conclusions Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin

  14. Targeting a KH-domain protein with RNA decoys.

    PubMed Central

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-01-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435

  15. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  16. Knowledge-based approach for generating target system specifications from a domain model

    NASA Technical Reports Server (NTRS)

    Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan

    1992-01-01

    Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.

  17. Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

    PubMed Central

    Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren

    2014-01-01

    Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136

  18. Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation

    PubMed Central

    Salazar, M; Lorente, M; García-Taboada, E; Pérez Gómez, E; Dávila, D; Zúñiga-García, P; María Flores, J; Rodríguez, A; Hegedus, Z; Mosén-Ansorena, D; Aransay, A M; Hernández-Tiedra, S; López-Valero, I; Quintanilla, M; Sánchez, C; Iovanna, J L; Dusetti, N; Guzmán, M; Francis, S E; Carracedo, A; Kiss-Toth, E; Velasco, G

    2015-01-01

    Tribbles pseudokinase-3 (TRIB3) has been proposed to act as an inhibitor of AKT although the precise molecular basis of this activity and whether the loss of TRIB3 contributes to cancer initiation and progression remain to be clarified. In this study, by using a wide array of in vitro and in vivo approaches, including a Trib3 knockout mouse, we demonstrate that TRIB3 has a tumor-suppressing role. We also find that the mechanism by which TRIB3 loss enhances tumorigenesis relies on the dysregulation of the phosphorylation of AKT by the mTORC2 complex, which leads to an enhanced phosphorylation of AKT on Ser473 and the subsequent hyperphosphorylation and inactivation of the transcription factor FOXO3. These observations support the notion that loss of TRIB3 is associated with a more aggressive phenotype in various types of tumors by enhancing the activity of the mTORC2/AKT/FOXO axis. PMID:25168244

  19. T cell immunoglobulin domain and mucin domain-3 as an emerging target for immunotherapy in cancer management

    PubMed Central

    Yoneda, Akihiro; Jinushi, Masahisa

    2013-01-01

    Cancer-induced immunosuppression significantly impacts tumors, rendering them the ability to acquire aggressive and treatment-resistant phenotypes. The recent clinical success of drugs targeting the immunosuppressive machinery of tumors highlights the importance of identifying novel drugs that effectively augment antitumor immunity and elicit clinical remission in advanced tumors. T cell immunoglobulin domain and mucin domain-3 (TIM-3) is a critical immunoregulatory molecule that links pattern recognition-mediated innate sensing with antigen-specific immune responses. Recent evidence has elucidated the potential utility of drugs targeting TIM-3 in inducing antitumor responses, particularly in synergy with conventional anticancer regimens. Herein, we provide a comprehensive overview, as well as future perspectives, regarding the role of TIM-3 as an emerging target that may improve clinical responses for cancer patients.

  20. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells.

    PubMed

    Kwaks, T H J; Sewalt, R G A B; van Blokland, R; Siersma, T J; Kasiem, M; Kelder, A; Otte, A P

    2005-01-12

    Silencing of transfected genes in mammalian cells is a fundamental problem that probably involves the (in)accessibility status of chromatin. A potential solution to this problem is to provide a cell with protein factors that make the chromatin of a promoter more open or accessible for transcription. We tested this by targeting such proteins to different promoters. We found that targeting the p300 histone acetyltransferase (HAT) domain to strong viral or cellular promoters is sufficient to result in higher expression levels of a reporter protein. In contrast, targeting the chromatin-remodeling factor Brahma does not result in stable, higher protein expression levels. The long-term effects of the targeted p300HAT domain on protein expression levels are positively reinforced, when also anti-repressor elements are applied to flank the reporter construct. These elements were previously shown to be potent blockers of chromatin-associated repressors. The simultaneous application of the targeted p300HAT domain and anti-repressor elements conveys long-term stability to protein expression. Whereas no copy number dependency is achieved by targeting of the p300HAT domain alone, copy number dependency is improved when anti-repressor elements are included. We conclude that targeting of protein domains such as HAT domains helps to facilitate expression of transfected genes in mammalian cells. However, the simultaneous application of other genomic elements such as the anti-repressor elements prevents silencing more efficiently. PMID:15607223

  1. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    SciTech Connect

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  2. The Pyk2 FERM domain: a Novel Therapeutic Target

    PubMed Central

    Lipinski, Christopher A.; Loftus, Joseph C.

    2009-01-01

    Importance of the field The focal adhesion tyrosine kinases FAK and Pyk2 are uniquely situated to act as critical mediators for the activation of signaling pathways that regulate cell migration, proliferation, and survival. By coordinating adhesion and cytoskeletal dynamics with survival and growth signaling, FAK and Pyk2 represent molecular therapeutic targets in cancer as malignant cells often exhibit defects in these processes. Areas covered in this review This review examines the structure and function of the focal adhesion kinase Pyk2 and intends to provide a rationale for the employ of modulating strategies that include both catalytic and extra-catalytic approaches that have been developed in the last 3–5 years. What the reader will gain Targeting tyrosine kinases in oncology has focused on the ATP binding pocket as means to inhibit catalytic activity and down-regulate pathways involved in tumor invasion. This review will discuss the available catalytic inhibitors and compare them to the alternative approach of targeting protein-protein interactions that regulate kinase activity Take home message Development of specific catalytic inhibitors of the focal adhesion kinases has improved but significant challenges remain. Thus, approaches that inhibit the effector function of Pyk2 by targeting regulatory modules can increase specificity and will be a welcome asset to the therapeutic arena. PMID:20001213

  3. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity.

    PubMed

    Chong, P Andrew; Lin, Hong; Wrana, Jeffrey L; Forman-Kay, Julie D

    2010-10-26

    Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-β receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2 with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short isoform of Smurf1 recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer Smurf1 isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7 peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by isoform switching. PMID:20937913

  4. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  5. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia

    PubMed Central

    Dong, Wei; Zhang, Xuejing; Liu, Weijie; Chen, Yi-jiun; Huang, Juan; Austin, Erin; Celotto, Alicia M.; Jiang, Wendy Z.; Palladino, Michael J.; Jiang, Yu; Hammond, Gerald R.V.

    2015-01-01

    Lethal giant larvae (Lgl) plays essential and conserved functions in regulating both cell polarity and tumorigenesis in Drosophila melanogaster and vertebrates. It is well recognized that plasma membrane (PM) or cell cortex localization is crucial for Lgl function in vivo, but its membrane-targeting mechanisms remain poorly understood. Here, we discovered that hypoxia acutely and reversibly inhibits Lgl PM targeting through a posttranslational mechanism that is independent of the well-characterized atypical protein kinase C (aPKC) or Aurora kinase–mediated phosphorylations. Instead, we identified an evolutionarily conserved polybasic (PB) domain that targets Lgl to the PM via electrostatic binding to membrane phosphatidylinositol phosphates. Such PB domain–mediated PM targeting is inhibited by hypoxia, which reduces inositol phospholipid levels on the PM through adenosine triphosphate depletion. Moreover, Lgl PB domain contains all the identified phosphorylation sites of aPKC and Aurora kinases, providing a molecular mechanism by which phosphorylations neutralize the positive charges on the PB domain to inhibit Lgl PM targeting. PMID:26483556

  6. Identification of novel targets of MYC whose transcription requires the essential MbII domain.

    PubMed

    Zhang, Xiao-yong; DeSalle, Lauren M; McMahon, Steven B

    2006-02-01

    The MYC oncoprotein is among the most potent regulators of cell cycle progression and malignant transformation in human cells. Current models suggest that much of MYC's role in these processes is related to its ability to regulate the transcription of downstream target genes that encode the ultimate effector proteins. In addition to its carboxy-terminal DNA binding and dimerization domains, an enigmatic motif in the amino terminus termed MbII is required for all of MYC's biological activities. In spite of historical observations demonstrating the absolute requirement for MbII in these biological functions, clues implicating this domain in target gene transcription have only recently appeared. Based on this emerging link between MbII and transcriptional activation, we hypothesized that the identification of individual MYC targets whose transactivation requires MbII would help define the essential downstream effectors of MYC in transformation and cell cycle progression. In hopes of directly identifying new MbII-dependent MYC target genes, an expression profiling screen was conducted. This screen resulted in our identification of ten novel downstream targets of MYC. As a proof of principle, we recently demonstrated using RNAi-mediated depletion that one of these targets, the metastasis regulator MTA1, is absolutely required for MYC mediated transformation. Here we report the identity of these previously uncharacterized MYC targets and discuss their potential roles in MYC function. In addition, we attempt to reconcile the historical and contemporary evidence linking MbII to transcriptional activation. PMID:16434883

  7. Role of Tribbles Pseudokinase 1 (TRIB1) in human hepatocyte metabolism.

    PubMed

    Soubeyrand, Sébastien; Martinuk, Amy; Naing, Thet; Lau, Paulina; McPherson, Ruth

    2016-02-01

    Genome-wide association studies for plasma triglycerides and hepatic steatosis identified a risk locus on chromosome 8q24 close to the TRIB1 gene, encoding Tribbles Pseudokinase 1 (TRIB1). In previous studies conducted in murine models, hepatic over-expression of Trib1 was shown to increase fatty acid oxidation and decrease triglyceride synthesis whereas Trib1 knockdown mice exhibited hypertriglyceridemia. Here we have examined the impact of TRIB1 suppression in human and mouse hepatocytes. Examination of a panel of lipid regulator transcripts revealed species-specific effects, prompting us to focus on human models for the remainder of the study. Acute knockdown of TRIB1 in human primary hepatocytes resulted in decreased expression of MTTP and APOB, required for very low density lipoprotein (VLDL) assembly although particle secretion was not significantly affected. A parallel analysis performed in HepG2 revealed reduced MTTP, but not APOB, protein as a result of TRIB1 suppression. Global gene expression changes of human primary hepatocytes upon TRIB1 suppression were analyzed by clustering algorithms and found to be consistent with dysregulation of several pathways fundamental to liver function, including altered CEBPA and B transcript levels and impaired glucose handling. Indeed, TRIB1 expression in HepG2 cells was found to be inversely proportional to glucose concentration. Lastly TRIB1 downregulation in primary hepatocytes was associated with suppression of the HNF4A axis. In HepG2 cells, TRIB1 suppression resulted in reduced HNF4A protein levels while HNF4A suppression increased TRIB1 expression. Taken together these studies reveal an important role for TRIB1 in human hepatocyte biology. PMID:26657055

  8. Characterization of the MUC1-C Cytoplasmic Domain as a Cancer Target

    PubMed Central

    Raina, Deepak; Agarwal, Praveen; Lee, James; Bharti, Ajit; McKnight, C. James; Sharma, Pankaj; Kharbanda, Surender; Kufe, Donald

    2015-01-01

    Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly expressed in diverse human carcinomas and certain hematologic malignancies. The oncogenic MUC1 transmembrane C-terminal subunit (MUC1-C) functions in part by transducing growth and survival signals from cell surface receptors. However, little is known about the structure of the MUC1-C cytoplasmic domain as a potential drug target. Using methods for structural predictions, our results indicate that a highly conserved CQCRRK sequence, which is adjacent to the cell membrane, forms a small pocket that exposes the two cysteine residues for forming disulfide bonds. By contrast, the remainder of the MUC1-C cytoplasmic domain has no apparent structure, consistent with an intrinsically disordered protein. Our studies thus focused on targeting the MUC1 CQCRRK region. The results show that L- and D-amino acid CQCRRK-containing peptides bind directly to the CQC motif. We further show that the D-amino acid peptide, designated GO-203, blocks homodimerization of the MUC1-C cytoplasmic domain in vitro and in transfected cells. Moreover, GO-203 binds directly to endogenous MUC1-C in breast and lung cancer cells. Colocalization studies further demonstrate that GO-203 predominantly binds to MUC1-C at the cell membrane. These findings support the further development of agents that target the MUC1-C cytoplasmic domain CQC motif and thereby MUC1-C function in cancer cells. PMID:26267657

  9. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain.

    PubMed

    Hussack, Greg; Arbabi-Ghahroudi, Mehdi; van Faassen, Henk; Songer, J Glenn; Ng, Kenneth K-S; MacKenzie, Roger; Tanha, Jamshid

    2011-03-18

    Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract. PMID:21216961

  10. Target search kinetics of self-propelled particles in a confining domain

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Chen, Yuhao; Yu, Wancheng; Luo, Kaifu

    2016-05-01

    We present a numerical investigation of the search kinetics of self-propelled particles (SPPs) to a target located at the center or at the boundary of a confining domain. When searching a target located at the center of a circular confining domain, the search efficiency of SPPs is improved compared to that of Brownian particles if the rotational diffusion is not too slow. In this case, the mean search time τ could be minimized with proper combinations of the characteristic rotation time τθ and the self-propulsion velocity v0. It is further shown to be a consequence of the interplay between the enhanced diffusion and the thigmotactism (boundary-following behavior) of SPPs due to the self-propulsion. However, for a target located at the boundary of the circular confining domain, we find that the search process is continuing to be accelerated with increasing τθ or v0. Our results highlight the role of the target position in the search kinetics, and open up new opportunities to optimize the search process of SPPs by taking accurate controls over their motions.

  11. Target search kinetics of self-propelled particles in a confining domain.

    PubMed

    Wang, Jiajun; Chen, Yuhao; Yu, Wancheng; Luo, Kaifu

    2016-05-28

    We present a numerical investigation of the search kinetics of self-propelled particles (SPPs) to a target located at the center or at the boundary of a confining domain. When searching a target located at the center of a circular confining domain, the search efficiency of SPPs is improved compared to that of Brownian particles if the rotational diffusion is not too slow. In this case, the mean search time τ could be minimized with proper combinations of the characteristic rotation time τθ and the self-propulsion velocity v0. It is further shown to be a consequence of the interplay between the enhanced diffusion and the thigmotactism (boundary-following behavior) of SPPs due to the self-propulsion. However, for a target located at the boundary of the circular confining domain, we find that the search process is continuing to be accelerated with increasing τθ or v0. Our results highlight the role of the target position in the search kinetics, and open up new opportunities to optimize the search process of SPPs by taking accurate controls over their motions. PMID:27250320

  12. Analysis of the Protein Domain and Domain Architecture Content in Fungi and Its Application in the Search of New Antifungal Targets

    PubMed Central

    Barrera, Alejandro; Alastruey-Izquierdo, Ana; Martín, María J.; Cuesta, Isabel; Vizcaíno, Juan Antonio

    2014-01-01

    Over the past several years fungal infections have shown an increasing incidence in the susceptible population, and caused high mortality rates. In parallel, multi-resistant fungi are emerging in human infections. Therefore, the identification of new potential antifungal targets is a priority. The first task of this study was to analyse the protein domain and domain architecture content of the 137 fungal proteomes (corresponding to 111 species) available in UniProtKB (UniProt KnowledgeBase) by January 2013. The resulting list of core and exclusive domain and domain architectures is provided in this paper. It delineates the different levels of fungal taxonomic classification: phylum, subphylum, order, genus and species. The analysis highlighted Aspergillus as the most diverse genus in terms of exclusive domain content. In addition, we also investigated which domains could be considered promiscuous in the different organisms. As an application of this analysis, we explored three different ways to detect potential targets for antifungal drugs. First, we compared the domain and domain architecture content of the human and fungal proteomes, and identified those domains and domain architectures only present in fungi. Secondly, we looked for information regarding fungal pathways in public repositories, where proteins containing promiscuous domains could be involved. Three pathways were identified as a result: lovastatin biosynthesis, xylan degradation and biosynthesis of siroheme. Finally, we classified a subset of the studied fungi in five groups depending on their occurrence in clinical samples. We then looked for exclusive domains in the groups that were more relevant clinically and determined which of them had the potential to bind small molecules. Overall, this study provides a comprehensive analysis of the available fungal proteomes and shows three approaches that can be used as a first step in the detection of new antifungal targets. PMID:25033262

  13. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.

    PubMed

    Wright, Patrick R; Georg, Jens; Mann, Martin; Sorescu, Dragos A; Richter, Andreas S; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R; Backofen, Rolf

    2014-07-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  14. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains

    PubMed Central

    Wright, Patrick R.; Georg, Jens; Mann, Martin; Sorescu, Dragos A.; Richter, Andreas S.; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R.; Backofen, Rolf

    2014-01-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  15. Rotavirus NSP1 Mediates Degradation of Interferon Regulatory Factors through Targeting of the Dimerization Domain

    PubMed Central

    Arnold, Michelle M.; Barro, Mario

    2013-01-01

    Rotavirus nonstructural protein NSP1 can inhibit expression of interferon (IFN) and IFN-stimulated gene products by inducing proteasome-mediated degradation of IFN-regulatory factors (IRFs), including IRF3, IRF5, and IRF7. All IRF proteins share an N-terminal DNA-binding domain (DBD), and IRF3, IRF5, and IRF7 contain a similar C-proximal IRF association domain (IAD) that mediates IRF dimerization. An autoinhibitory domain (ID) at the extreme C terminus interacts with the IAD, burying residues necessary for IRF dimerization. Phosphorylation of serine/threonine residues in the ID induces charge repulsions that unmask the IAD, enabling IRF dimerization and subsequent nuclear translocation. To define the region of IRF proteins targeted for degradation by NSP1, we generated IRF3 and IRF7 truncation mutants and transiently expressed each with simian SA11-4F NSP1. These assays indicated that the IAD represented a necessary and sufficient target for degradation. Because NSP1 did not mediate degradation of truncated forms of the IAD, NSP1 likely requires a structurally intact IAD for recognition and targeting of IRF proteins. IRF9, which contains an IAD-like region that directs interactions with signal inducer and activator of transcription (STAT) proteins, was also targeted for degradation by NSP1, while IRF1, which lacks an IAD, was not. Analysis of mutant forms of IRF3 unable to undergo dimerization or that were constitutively dimeric showed that both were targeted for degradation by NSP1. These results indicate that SA11-4F NSP1 can induce degradation of inactive and activated forms of IAD-containing IRF proteins (IRF3 to IRF9), allowing a multipronged attack on IFN-based pathways that promote antiviral innate and adaptive immune responses. PMID:23824805

  16. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition

    PubMed Central

    Hoverter, Nate P.; Zeller, Michael D.; McQuade, Miriam M.; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M.; Hertel, Klemens J.; Baldi, Pierre; Waterman, Marian L.

    2014-01-01

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. PMID:25414359

  17. Targeting Three Distinct HER2 Domains with a Recombinant Antibody Mixture Overcomes Trastuzumab Resistance.

    PubMed

    Pedersen, Mikkel W; Jacobsen, Helle J; Koefoed, Klaus; Dahlman, Anna; Kjær, Ida; Poulsen, Thomas T; Meijer, Per-Johan; Nielsen, Lars S; Horak, Ivan D; Lantto, Johan; Kragh, Michael

    2015-03-01

    HER2 plays an important role in the development and maintenance of the malignant phenotype of several human cancers. As such, it is a frequently pursued therapeutic target and two antibodies targeting HER2 have been clinically approved, trastuzumab and pertuzumab. It has been suggested that optimal inhibition of HER2 is achieved when utilizing two or more antibodies targeting nonoverlapping epitopes. Superior clinical activity of the trastuzumab plus pertuzumab combination in metastatic breast cancer supports this hypothesis. Because trastuzumab and pertuzumab were not codeveloped, there may be potential for further optimizing HER2 targeting. The study herein evaluated functional activity of anti-HER2 antibody combinations identifying optimal epitope combinations that provide efficacious HER2 inhibition. High-affinity antibodies to all four extracellular domains on HER2 were identified and tested for ability to inhibit growth of different HER2-dependent tumor cell lines. An antibody mixture targeting three HER2 subdomains proved to be superior to trastuzumab, pertuzumab, or a combination in vitro and to trastuzumab in two in vivo models. Specifically, the tripartite antibody mixture induced efficient HER2 internalization and degradation demonstrating increased sensitivity in cell lines with HER2 amplification and high EGFR levels. When compared with individual and clinically approved mAbs, the synergistic tripartite antibody targeting HER2 subdomains I, II, and IV demonstrates superior anticancer activity. PMID:25612619

  18. Crystal Structures of Free and Ligand-Bound Focal Adhesion Targeting Domain of Pyk2

    SciTech Connect

    Lulo, J.; Yuzawa, S; Schlessinger, J

    2009-01-01

    Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the a1a4 and a2a3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.

  19. Determination of the functional domains involved in nucleolar targeting of nucleolin.

    PubMed Central

    Créancier, L; Prats, H; Zanibellato, C; Amalric, F; Bugler, B

    1993-01-01

    Nucleolin (713 aa), a major nucleolar protein, presents two structural domains: a N-terminus implicated in interaction with chromatin and a C-terminus containing four RNA-binding domains (RRMs) and a glycine/arginine-rich domain mainly involved in pre-rRNA packaging. Furthermore, nucleolin was shown to shuttle between cytoplasm and nucleolus. To get an insight on the nature of nuclear and nucleolar localization signals, a set of nucleolin deletion mutants in fusion with the prokaryotic chloramphenicol acetyltransferase (CAT) were constructed, and the resulting chimeric proteins were recognized by anti-CAT antibodies. First, a nuclear location signal bipartite and composed of two short basic stretches separated by eleven residues was characterized. Deletion of either motifs renders the protein cytoplasmic. Second, by deleting one or more domains implicated in nucleolin association either with DNA, RNA, or proteins, we demonstrated that nucleolar accumulation requires, in addition to the nuclear localization sequence, at least two of the five RRMs in presence or absence of N-terminus. However, in presence of only one RRM the N-terminus allowed a partial targeting of the chimeric protein to the nucleolus. Images PMID:8167407

  20. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  1. In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains

    PubMed Central

    Brewer, Frances K.; Follit, Courtney A.; Vogel, Pia D.

    2014-01-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578

  2. Modifying the substrate specificity of Carcinoscorpius rotundicauda serine protease inhibitor domain 1 to target thrombin.

    PubMed

    Giri, Pankaj Kumar; Tang, Xuhua; Thangamani, Saravanan; Shenoy, Rajesh T; Ding, Jeak Ling; Swaminathan, Kunchithapadam; Sivaraman, J

    2010-01-01

    Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identified in the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. Full length and domain 2 of CrSPI-1 display powerful inhibitory activities against subtilisin. However, the structure and function of CrSPI-1 domain-1 (D1) remain unknown. Here, we report the crystal structure of CrSPI-1-D1 refined up to 2.0 Å resolution. Despite the close structural homology of CrSPI-1-D1 to rhodniin-D1 (a known thrombin inhibitor), the CrSPI-1-D1 does not inhibit thrombin. This prompted us to modify the selectivity of CrSPI-1-D1 specifically towards thrombin. We illustrate the use of structural information of CrSPI-1-D1 to modify this domain into a potent thrombin inhibitor with IC(50) of 26.3 nM. In addition, these studies demonstrate that, besides the rigid conformation of the reactive site loop of the inhibitor, the sequence is the most important determinant of the specificity of the inhibitor. This study will lead to the significant application to modify a multi-domain inhibitor protein to target several proteases. PMID:21188150

  3. Modifying the Substrate Specificity of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 to Target Thrombin

    PubMed Central

    Giri, Pankaj Kumar; Tang, Xuhua; Thangamani, Saravanan; Shenoy, Rajesh T.; Ding, Jeak Ling; Swaminathan, Kunchithapadam; Sivaraman, J.

    2010-01-01

    Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identified in the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. Full length and domain 2 of CrSPI-1 display powerful inhibitory activities against subtilisin. However, the structure and function of CrSPI-1 domain-1 (D1) remain unknown. Here, we report the crystal structure of CrSPI-1-D1 refined up to 2.0 Å resolution. Despite the close structural homology of CrSPI-1-D1 to rhodniin-D1 (a known thrombin inhibitor), the CrSPI-1-D1 does not inhibit thrombin. This prompted us to modify the selectivity of CrSPI-1-D1 specifically towards thrombin. We illustrate the use of structural information of CrSPI-1-D1 to modify this domain into a potent thrombin inhibitor with IC50 of 26.3 nM. In addition, these studies demonstrate that, besides the rigid conformation of the reactive site loop of the inhibitor, the sequence is the most important determinant of the specificity of the inhibitor. This study will lead to the significant application to modify a multi-domain inhibitor protein to target several proteases. PMID:21188150

  4. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  5. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

    PubMed Central

    Jun, Kyu-Yeon; Kwon, Youngjoo

    2016-01-01

    There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed. PMID:27582553

  6. Sushi Domain-Containing Protein 3: A Potential Target for Breast Cancer.

    PubMed

    Yu, Zhenghong; Jiang, Enze; Wang, Xinxing; Shi, Yaqin; Shangguan, Anna Junjie; Zhang, Luo; Li, Jie

    2015-06-01

    Aromatase inhibitors (AIs) are the most effective endocrine treatment for estrogen receptor α-positive (ERα+) postmenopausal breast cancer. Identification of biomarkers that are able to predict AIs responsiveness of patients is a key for successful treatment. The currently used biomarkers for tamoxifen responsiveness, which including ERα as well as progesterone receptor can only predict part of the potential responders to AIs treatment. Sushi domain-containing protein 3 (SUSD3) is a potential novel biomarker of AIs responsiveness. The lack of SUSD3 expression in breast cancer tissue can be an important predictor for non-responsiveness to AI. Here we reviewed the property and function of SUSD3, its usage as a biomarker and the practicability for SUSD3 to become a target for immune therapy. We suggest this protein can be potentially measured or targeted for prevention, diagnostic, and therapeutic purposes for estrogen or progesterone-dependent disorders including breast cancer in women. PMID:25556073

  7. Inactivation of Multiple Bacterial Histidine Kinases by Targeting the ATP-Binding Domain

    PubMed Central

    2015-01-01

    Antibacterial agents that exploit new targets will be required to combat the perpetual rise of bacterial resistance to current antibiotics. We are exploring the inhibition of histidine kinases, constituents of two-component systems. Two-component systems are the primary signaling pathways that bacteria utilize to respond to their environment. They are ubiquitous in bacteria and trigger various pathogenic mechanisms. To attenuate these signaling pathways, we sought to broadly target the histidine kinase family by focusing on their highly conserved ATP-binding domain. Development of a fluorescence polarization displacement assay facilitated high-throughput screening of ∼53 000 diverse small molecules for binding to the ATP-binding pocket. Of these compounds, nine inhibited the catalytic activity of two or more histidine kinases. These scaffolds could provide valuable starting points for the design of broadly effective HK inhibitors, global reduction of bacterial signaling, and ultimately, a class of antibiotics that function by a new mechanism of action. PMID:25531939

  8. DNA damage targets PKC{eta} to the nuclear membrane via its C1b domain

    SciTech Connect

    Tamarkin, Ana; Zurgil, Udi; Braiman, Alex; Hai, Naama; Krasnitsky, Ella; Maissel, Adva; Ben-Ari, Assaf; Yankelovich, Liat; Livneh, Etta

    2011-06-10

    Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKC{eta}, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKC{eta} is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKC{eta} expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKC{eta}, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKC{eta} to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.

  9. Time domain investigation of transceiver functions using a known reference target.

    PubMed

    Feuillade, C; Meredith, R W; Chotiros, N P; Clay, C S

    2002-12-01

    During August 1998, a bottom scattering tank experiment was performed at the Applied Research Laboratory, University of Texas to measure wideband acoustic reverberation from multiple objects (e.g., cobbles and pebbles) placed on a sediment simulation of the sea floor. In preparation for processing and analyzing the experimental data, time domain scattering measurements made with stainless steel and glass balls suspended in the water column were used to calibrate the sonar transceiver system by deconvolving the theoretical impulse response for steel and glass spheres, obtained via the Faran elastic sphere scattering model, from the scattered time signals. It is the analysis of these calibration measurements which forms the subject of this paper. Results show the critical importance of accurate input-output system calibrations for time domain sound scattering research, and successfully demonstrate a time domain method for accurately calibrating the complete sonar transceiver function, i.e., both the amplitude and time dependence, using a known reference target. The work has implications for boundary and volume scattering applications. PMID:12508990

  10. Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain

    PubMed Central

    Vervliet, Tim; Lemmens, Irma; Vandermarliere, Elien; Decrock, Elke; Ivanova, Hristina; Monaco, Giovanni; Sorrentino, Vincenzo; Kasri, Nael Nadif; Missiaen, Ludwig; Martens, Lennart; De Smedt, Humbert; Leybaert, Luc; Parys, Jan B.; Tavernier, Jan; Bultynck, Geert

    2015-01-01

    Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca2+-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca2+ release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XLK87D mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca2+ release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction. PMID:25872771

  11. Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets

    PubMed Central

    Díaz-Moreno, Irene; Hollingworth, David; Kelly, Geoff; Martin, Stephen; García-Mayoral, MaríaFlor; Briata, Paola; Gherzi, Roberto; Ramos, Andres

    2010-01-01

    KSRP is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for cellular proliferation and inflammatory response factors. The selectivity of this mRNA degradation mechanism relies on KSRP recognition of AU-rich elements in the mRNA 3′UTR, that is mediated by KSRP’s KH domains. Our structural analysis shows that the inter-domain linker orients the two central KH domains of KSRP—and their RNA-binding surfaces—creating a two-domain unit. We also show that this inter-domain arrangement is important to the interaction with KSRP’s RNA targets. PMID:20385598

  12. Effects of gender-related domain violations and sexual orientation on perceptions of male and female targets: an analogue study.

    PubMed

    Blashill, Aaron J; Powlishta, Kimberly K

    2012-10-01

    The current study examined factors that influenced heterosexual male and female raters' evaluations of male and female targets who were gay or heterosexual, and who displayed varying gender roles (i.e., typical vs. atypical) in multiple domains (i.e., activities, traits, and appearance). Participants were 305 undergraduate students from a private, midwestern Jesuit institution who read vignettes describing one of 24 target types and then rated the target on possession of positive and negative characteristics, psychological adjustment, and on measures reflecting the participants' anticipated behavior toward or comfort with the target. Results showed that gender atypical appearance and activity attributes (but not traits) were viewed more negatively than their gender typical counterparts. It was also found that male participants in particular viewed gay male targets as less desirable than lesbian and heterosexual male targets. These findings suggest a nuanced approach for understanding sexual prejudice, which incorporates a complex relationship among sex, gender, sexual orientation, and domain of gendered attributes. PMID:22722956

  13. Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge

    PubMed Central

    Cardoso, Francisco Miguel; Ibañez, Lorena Itatí; Van den Hoecke, Silvie; De Baets, Sarah; Smet, Anouk; Roose, Kenny; Schepens, Bert; Descamps, Francis J.; Fiers, Walter; Muyldermans, Serge

    2014-01-01

    ABSTRACT Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses

  14. AKAP350C targets to mitochondria via a novel amphipathic alpha helical domain

    PubMed Central

    Mason, Twila A; Goldenring, James R; Kolobova, Elena

    2014-01-01

    Mitochondria regulate metabolism and homeostasis within cells. Mitochondria are also very dynamic organelles, constantly undergoing fission and fusion. The importance of maintaining proper mitochondrial dynamics is evident in the various diseases associated with defects in these processes. Protein kinase A (PKA) is a key regulator of mitochondrial dynamics. PKA is spatially regulated by A-Kinase Anchoring Proteins (AKAPs). We completed cloning of a novel AKAP350 isoform, AKAP350C. Immunostaining for endogenous AKAP350C showed localization to mitochondria. The carboxyl-terminal 54-amino acid sequence unique to AKAP350C contains a novel amphipathic alpha helical mitochondrial-targeting domain. AKAP350C co-localizes with Mff (mitochondrial fission protein) and mitofusins 1 and 2 (mitochondrial fusion proteins), and likely regulates mitochondrial dynamics by scaffolding PKA and mitochondrial fission and fusion proteins. PMID:25610720

  15. Structure-Guided Discovery of Antitubercular Agents That Target the Gyrase ATPase Domain.

    PubMed

    Jeankumar, Variam U; Saxena, Shalini; Vats, Rahul; Reshma, Rudraraju Srilakshmi; Janupally, Renuka; Kulkarni, Pushkar; Yogeeswari, Perumal; Sriram, Dharmarajan

    2016-03-01

    In this study we explored the pharmaceutically underexploited ATPase domain of DNA gyrase (GyrB) as a potential platform for developing novel agents that target Mycobacterium tuberculosis. In this effort a combination of ligand- and structure-based pharmacophore modeling was used to identify structurally diverse small-molecule inhibitors of the mycobacterial GyrB domain based on the crystal structure of the enzyme with a pyrrolamide inhibitor (PDB ID: 4BAE). Pharmacophore modeling and subsequent in vitro screening resulted in an initial hit compound 5 [(E)-5-(5-(2-(1H-benzo[d]imidazol-2-yl)-2-cyanovinyl)furan-2-yl)isophthalic acid; IC50 =4.6±0.1 μm], which was subsequently tailored through a combination of molecular modeling and synthetic chemistry to yield the optimized lead compound 24 [(E)-3-(5-(2-cyano-2-(5-methyl-1H-benzo[d]imidazol-2-yl)vinyl)thiophen-2-yl)benzoic acid; IC50 =0.3±0.2 μm], which was found to display considerable in vitro efficacy against the purified GyrB enzyme and potency against the H37 Rv strain of M. tuberculosis. Structural handles were also identified that will provide a suitable foundation for further optimization of these potent analogues. PMID:26805396

  16. Magnetic domain wall tweezers: a new tool for mechanobiology studies on individual target cells.

    PubMed

    Monticelli, M; Conca, D V; Albisetti, E; Torti, A; Sharma, P P; Kidiyoor, G; Barozzi, S; Parazzoli, D; Ciarletta, P; Lupi, M; Petti, D; Bertacco, R

    2016-08-01

    In vitro tests are of fundamental importance for investigating cell mechanisms in response to mechanical stimuli or the impact of the genotype on cell mechanical properties. In particular, the application of controlled forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in the emerging field of mechanobiology. Here, we present an on-chip device based on magnetic domain wall manipulators, which allows the application of finely controlled and localized forces on target living cells. In particular, we demonstrate the application of a magnetic force in the order of hundreds of pN on the membrane of HeLa cells cultured on-chip, via manipulation of 1 μm superparamagnetic beads. Such a mechanical stimulus produces a sizable local indentation of the cellular membrane of about 2 μm. Upon evaluation of the beads' position within the magnetic field originated by the domain wall, the force applied during the experiments is accurately quantified via micromagnetic simulations. The obtained value is in good agreement with that calculated by the application of an elastic model to the cellular membrane. PMID:27364187

  17. Proposed docking interface between peptidoglycan and the target recognition domain of zoocin A

    SciTech Connect

    Chen, Yinghua; Simmonds, Robin S.; Timkovich, Russell

    2013-11-15

    Highlights: •Peptidoglycan added to zoocin rTRD perturbs NMR resonances around W115. •Simulations predict docking to a shallow surface groove near W115. •The docking interface is similar to mammalian antibody–antigen sites. •EDTA binds to a distinct surface site. -- Abstract: A docking model is proposed for the target recognition domain of the lytic exoenzyme zoocin A with the peptidoglycan on the outer cell surface of sensitive bacterial strains. Solubilized fragments from such peptidoglycans perturb specific backbone and side chain amide resonances in the recombinant form of the domain designated rTRD as detected in two-dimensional {sup 1}H–{sup 15}N correlation NMR spectra. The affected residues comprise a shallow surface cleft on the protein surface near W115, N53, N117, and Q105 among others, which interacts with the peptide portion of the peptidoglycan. Calculations with AutoDock Vina provide models of the docking interface. There is approximate homology between the rTDR-peptidoglycan docking site and the antigen binding site of Fab antibodies with the immunoglobin fold. EDTA was also found to bind to rTRD, but at a site distinct from the proposed peptidoglycan docking site.

  18. Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura

    PubMed Central

    Zheng, X. Long; Wu, Haifeng M.; Shang, Dezhi; Falls, Erica; Skipwith, Christopher G.; Cataland, Spero R.; Bennett, Charles L.; Kwaan, Hau C.

    2010-01-01

    Background Type G immunoglobulins against ADAMTS13 are the primary cause of acquired (idiopathic) thrombotic thrombocytopenic purpura. However, the domains of ADAMTS13 which the type G anti-ADAMT13 immunoglobulins target have not been investigated in a large cohort of patients with thrombotic thrombocytopenic purpura. Design and Methods Sixty-seven patients with acquired idiopathic thrombotic thrombocytopenic purpura were prospectively collected from three major U.S. centers. An enzyme-linked immunosorbent assay determined plasma concentrations of anti-ADAMTS13 type G immunoglobulins, whereas immunoprecipitation plus western blotting determined the binding domains of these type G immunoglobulins. Results Plasma anti-ADAMTS13 type G immunoglobulins from 67 patients all bound full-length ADAMTS13 and a variant truncated after the eighth TSP1 repeat (delCUB). Approximately 97% (65/67) of patients harbored type G immunoglobulins targeted against a variant truncated after the spacer domain (MDTCS). However, only 12% of patients’ samples reacted with a variant lacking the Cys-rich and spacer domains (MDT). In addition, approximately 37%, 31%, and 46% of patients’ type G immunoglobulins interacted with the ADAMTS13 fragment containing TSP1 2-8 repeats (T2-8), CUB domains, and TSP1 5-8 repeats plus CUB domains (T5-8CUB), respectively. The presence of type G immunoglobulins targeted against the T2-8 and/or CUB domains was inversely correlated with the patients’ platelet counts on admission. Conclusions This multicenter study further demonstrated that the multiple domains of ADAMTS13, particularly the Cys-rich and spacer domains, are frequently targeted by anti-ADAMTS13 type G immunoglobulins in patients with acquired (idiopathic) thrombotic thrombocytopenic purpura. Our data shed more light on the pathogenesis of acquired thrombotic thrombocytopenic purpura and provide further rationales for adjunctive immunotherapy. PMID:20378566

  19. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  20. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment

    PubMed Central

    Logsdon, Glennis A.; Barrey, Evelyne J.; Bassett, Emily A.; DeNizio, Jamie E.; Guo, Lucie Y.; Panchenko, Tanya; Dawicki-McKenna, Jennine M.; Heun, Patrick

    2015-01-01

    The centromere—defined by the presence of nucleosomes containing the histone H3 variant, CENP-A—is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity. PMID:25713413

  1. Molecular functions of the TLE tetramerization domain in Wnt target gene repression

    PubMed Central

    Chodaparambil, Jayanth V; Pate, Kira T; Hepler, Margretta R D; Tsai, Becky P; Muthurajan, Uma M; Luger, Karolin; Waterman, Marian L; Weis, William I

    2014-01-01

    Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation–repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression. PMID:24596249

  2. Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo

    PubMed Central

    Milde, Stefan; Fox, A. Nicole; Freeman, Marc R.; Coleman, Michael P.

    2013-01-01

    The NAD-synthesising enzyme Nmnat2 is a critical survival factor for axons in vitro and in vivo. We recently reported that loss of axonal transport vesicle association through mutations in its isoform-specific targeting and interaction domain (ISTID) reduces Nmnat2 ubiquitination, prolongs its half-life and boosts its axon protective capacity in primary culture neurons. Here, we report evidence for a role of ISTID sequences in tuning Nmnat2 localisation, stability and protective capacity in vivo. Deletion of central ISTID sequences abolishes vesicle association and increases protein stability of fluorescently tagged, transgenic Nmnat2 in mouse peripheral axons in vivo. Overexpression of fluorescently tagged Nmnat2 significantly delays Wallerian degeneration in these mice. Furthermore, while mammalian Nmnat2 is unable to protect transected Drosophila olfactory receptor neuron axons in vivo, mutant Nmnat2s lacking ISTID regions substantially delay Wallerian degeneration. Together, our results establish Nmnat2 localisation and turnover as a valuable target for modulating axon degeneration in vivo. PMID:23995269

  3. Possible domains responsible for intracellular targeting and insulin-dependent translocation of glucose transporter type 4.

    PubMed Central

    Ishii, K; Hayashi, H; Todaka, M; Kamohara, S; Kanai, F; Jinnouchi, H; Wang, L; Ebina, Y

    1995-01-01

    Translocation of the type 4 glucose transporter (GLUT4) to the cell surface from an intracellular pool is the major mechanism of insulin-stimulated glucose uptake in insulin-target cells. We developed a highly sensitive and quantitative method to detect GLUT4 immunologically on the surface of intact cells, using c-myc epitope-tagged GLUT4 (GLUT4myc). We constructed c-myc epitope-tagged glucose transporter type 1 (GLUT1myc) and found that the GLUT1myc was also translocated to the cell surface of Chinese hamster ovary cells, 3T3-L1 fibroblasts and NIH 3T3 cells, in response to insulin, but the degree of translocation was less than that of GLUT4myc. Since GLUT1 and GLUT4 have different intracellular distributions and different degrees of insulin-stimulated translocation, we examined the domains of GLUT4, using c-myc epitope-tagged chimeric glucose transporters between these two isoforms. The results indicated that, (1) all the cytoplasmic N-terminal region, middle intracellular loop and cytoplasmic C-terminal region of GLUT4 have independent intracellular targeting signals, (2) these sequences for intracellular targeting of GLUT4 were not sufficient to determine GLUT4 translocation in response to insulin, and (3) the N-terminal half of GLUT4 devoid both of cytoplasmic N-terminus and of middle intracellular loop seems to be necessary for insulin-stimulated GLUT4 translocation. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7543750

  4. Cobinamides Are Novel Coactivators of Nitric Oxide Receptor That Target Soluble Guanylyl Cyclase Catalytic Domain

    PubMed Central

    Sharina, Iraida; Sobolevsky, Michael; Doursout, Marie-Francoise; Gryko, Dorota

    2012-01-01

    Soluble guanylyl cyclase (sGC), a ubiquitously expressed heme-containing receptor for nitric oxide (NO), is a key mediator of NO-dependent processes. In addition to NO, a number of synthetic compounds that target the heme-binding region of sGC and activate it in a NO-independent fashion have been described. We report here that dicyanocobinamide (CN2-Cbi), a naturally occurring intermediate of vitamin B12 synthesis, acts as a sGC coactivator both in vitro and in intact cells. Heme depletion or heme oxidation does not affect CN2-Cbi-dependent activation. Deletion mutagenesis demonstrates that CN2-Cbi targets a new regulatory site and functions though a novel mechanism of sGC activation. Unlike all known sGC regulators that target the N-terminal regulatory regions, CN2-Cbi directly targets the catalytic domain of sGC, resembling the effect of forskolin on adenylyl cyclases. CN2-Cbi synergistically enhances sGC activation by NO-independent regulators 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY41-2272), 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]-acid (cinaciguat or BAY58-2667), and 5-chloro-2-(5-chloro-thiophene-2-sulfonylamino-N-(4-(morpholine-4-sulfonyl)-phenyl)-benzamide sodium salt (ataciguat or HMR-1766). BAY41-2272 and CN2-Cbi act reciprocally by decreasing the EC50 values. CN2-Cbi increases intracellular cGMP levels and displays vasorelaxing activity in phenylephrine-constricted rat aortic rings in an endothelium-independent manner. Both effects are synergistically potentiated by BAY41-2272. These studies uncover a new mode of sGC regulation and provide a new tool for understanding the mechanism of sGC activation and function. CN2-Cbi also offers new possibilities for its therapeutic applications in augmenting the effect of other sGC-targeting drugs. PMID:22171090

  5. A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III–IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId

    PubMed Central

    Kikuchi, Kunio; Umehara, Takuya; Fukuda, Kotaro; Kuno, Atsushi; Hasegawa, Tsunemi; Nishikawa, Satoshi

    2005-01-01

    The hepatitis C virus (HCV) has a positive single-stranded RNA genome, and translation starts within the internal ribosome entry site (IRES) in a cap-independent manner. The IRES is well conserved among HCV subtypes and has a unique structure consisting of four domains. We used an in vitro selection procedure to isolate RNA aptamers capable of binding to the IRES domains III–IV. The aptamers that were obtained shared the consensus sequence ACCCA, which is complementary to the apical loop of domain IIId that is known to be a critical region of IRES-dependent translation. This convergence suggests that domain IIId is preferentially selected in an RNA–RNA interaction. Mutation analysis showed that the aptamer binding was sequence and structure dependent. One of the aptamers inhibited translation both in vitro and in vivo. Our results indicate that domain IIId is a suitable target site for HCV blockage and that rationally designed RNA aptamers have great potential as anti-HCV drugs. PMID:15681618

  6. Enhancement of the Seed-Target Recognition Step in RNA Silencing by a PIWI/MID Domain Protein

    PubMed Central

    Parker, James S.; Parizotto, Eneida A.; Wang, Muhan; Roe, S. Mark; Barford, David

    2009-01-01

    Summary Target recognition in RNA silencing is governed by the “seed sequence” of a guide RNA strand associated with the PIWI/MID domain of an Argonaute protein in RISC. Using a reconstituted in vitro target recognition system, we show that a model PIWI/MID domain protein confers position-dependent tightening and loosening of guide-strand-target interactions. Over the seed sequence, the interaction affinity is enhanced up to ˜300-fold. Enhancement is achieved through a reduced entropy penalty for the interaction. In contrast, interactions 3′ of the seed are inhibited. We quantified mismatched target recognition inside and outside the seed, revealing amplified discrimination at the third position in the seed mediated by the PIWI/MID domain. Thus, association of the guide strand with the PIWI/MID domain generates an enhanced affinity anchor site over the seed that can promote fidelity in target recognition and stabilize and guide the assembly of the active silencing complex. PMID:19187762

  7. Utilizing Nanobody Technology to Target Non-Immunodominant Domains of VAR2CSA

    PubMed Central

    Nielsen, Morten A.; Theander, Thor G.; Magez, Stefan

    2014-01-01

    Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA. PMID:24465459

  8. Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain.

    PubMed

    Litvak, Vladimir; Shaul, Yoav D; Shulewitz, Mark; Amarilio, Roy; Carmon, Shari; Lev, Sima

    2002-09-01

    Nir2, like its Drosophila homolog retinal degeneration B (RdgB), contains an N-terminal phosphatidylinositol-transfer protein (PI-TP)-like domain. Previous studies have suggested that RdgB plays an important role in the fly phototransduction cascade and that its PI-transfer domain is critical for this function. In this domain, a specific mutation, T59E, induces a dominant retinal degeneration phenotype. Here we show that a similar mutation, T59E in the human Nir2 protein, targets Nir2 to spherical cytosolic structures identified as lipid droplets by the lipophilic dye Nile red. A truncated Nir2T59E mutant consisting of only the PI-transfer domain was also targeted to lipid droplets, whereas neither the wild-type Nir2 nor the Nir2T59A mutant was associated with lipid droplets under regular growth conditions. However, oleic-acid treatment caused translocation of wild-type Nir2, but not translocation of the T59A mutant, to lipid droplets. This treatment also induced partial targeting of endogenous Nir2, which is mainly associated with the Golgi apparatus, to lipid droplets. Targeting of Nir2 to lipid droplets was attributed to its enhanced threonine phosphorylation. These results suggest that a specific threonine within the PI-transfer domain of Nir2 provides a regulatory site for targeting to lipid droplets. In conjunction with the role of PI-TPs in lipid transport, this targeting may affect intracellular lipid trafficking and distribution and may provide the molecular basis underlying the dominant effect of the RdgB-T59E mutant on retinal degeneration. PMID:12225667

  9. TM9 family proteins control surface targeting of glycine-rich transmembrane domains.

    PubMed

    Perrin, Jackie; Le Coadic, Marion; Vernay, Alexandre; Dias, Marco; Gopaldass, Navin; Ouertatani-Sakouhi, Hajer; Cosson, Pierre

    2015-07-01

    TM9 family proteins (also named Phg1 proteins) have been previously shown to control cell adhesion by determining the cell surface localization of adhesion proteins such as the Dictyostelium SibA protein. Here, we show that the glycine-rich transmembrane domain (TMD) of SibA is sufficient to confer Phg1A-dependent surface targeting to a reporter protein. Accordingly, in Dictyostelium phg1A-knockout (KO) cells, proteins with glycine-rich TMDs were less efficiently transported out of the endoplasmic reticulum (ER) and to the cell surface. Phg1A, as well as its human ortholog TM9SF4 specifically associated with glycine-rich TMDs. In human cells, genetic inactivation of TM9SF4 resulted in an increased retention of glycine-rich TMDs in the endoplasmic reticulum, whereas TM9SF4 overexpression enhanced their surface localization. The bulk of the TM9SF4 protein was localized in the Golgi complex and a proximity-ligation assay suggested that it might interact with glycine-rich TMDs. Taken together, these results suggest that one of the main roles of TM9 proteins is to serve as intramembrane cargo receptors controlling exocytosis and surface localization of a subset of membrane proteins. PMID:25999474

  10. TM9 family proteins control surface targeting of glycine-rich transmembrane domains

    PubMed Central

    Perrin, Jackie; Le Coadic, Marion; Vernay, Alexandre; Dias, Marco; Gopaldass, Navin; Ouertatani-Sakouhi, Hajer; Cosson, Pierre

    2015-01-01

    ABSTRACT TM9 family proteins (also named Phg1 proteins) have been previously shown to control cell adhesion by determining the cell surface localization of adhesion proteins such as the Dictyostelium SibA protein. Here, we show that the glycine-rich transmembrane domain (TMD) of SibA is sufficient to confer Phg1A-dependent surface targeting to a reporter protein. Accordingly, in Dictyostelium phg1A-knockout (KO) cells, proteins with glycine-rich TMDs were less efficiently transported out of the endoplasmic reticulum (ER) and to the cell surface. Phg1A, as well as its human ortholog TM9SF4 specifically associated with glycine-rich TMDs. In human cells, genetic inactivation of TM9SF4 resulted in an increased retention of glycine-rich TMDs in the endoplasmic reticulum, whereas TM9SF4 overexpression enhanced their surface localization. The bulk of the TM9SF4 protein was localized in the Golgi complex and a proximity-ligation assay suggested that it might interact with glycine-rich TMDs. Taken together, these results suggest that one of the main roles of TM9 proteins is to serve as intramembrane cargo receptors controlling exocytosis and surface localization of a subset of membrane proteins. PMID:25999474

  11. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target.

    PubMed

    Monaghan, Amy E; McEwan, Iain J

    2016-01-01

    The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa. PMID:27212126

  12. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target

    PubMed Central

    Monaghan, Amy E; McEwan, Iain J

    2016-01-01

    The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa. PMID:27212126

  13. Structure-based Discovery of Novel Small Molecule Wnt Signaling Inhibitors by Targeting the Cysteine-rich Domain of Frizzled*

    PubMed Central

    Lee, Ho-Jin; Bao, Ju; Miller, Ami; Zhang, Chi; Wu, Jibo; Baday, Yiressy C.; Guibao, Cristina; Li, Lin; Wu, Dianqing; Zheng, Jie J.

    2015-01-01

    Frizzled is the earliest discovered glycosylated Wnt protein receptor and is critical for the initiation of Wnt signaling. Antagonizing Frizzled is effective in inhibiting the growth of multiple tumor types. The extracellular N terminus of Frizzled contains a conserved cysteine-rich domain that directly interacts with Wnt ligands. Structure-based virtual screening and cell-based assays were used to identify five small molecules that can inhibit canonical Wnt signaling and have low IC50 values in the micromolar range. NMR experiments confirmed that these compounds specifically bind to the Wnt binding site on the Frizzled8 cysteine-rich domain with submicromolar dissociation constants. Our study confirms the feasibility of targeting the Frizzled cysteine-rich domain as an effective way of regulating canonical Wnt signaling. These small molecules can be further optimized into more potent therapeutic agents for regulating abnormal Wnt signaling by targeting Frizzled. PMID:26504084

  14. Modulators of Hepatic Lipoprotein Metabolism Identified in a Search for Small-Molecule Inducers of Tribbles Pseudokinase 1 Expression

    PubMed Central

    Nagiec, Marek M.; Skepner, Adam P.; Negri, Joseph; Eichhorn, Michelle; Kuperwasser, Nicolas; Comer, Eamon; Muncipinto, Giovanni; Subramanian, Aravind; Clish, Clary; Musunuru, Kiran; Duvall, Jeremy R.; Foley, Michael; Perez, Jose R.; Palmer, Michelle A. J.

    2015-01-01

    Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1) to the risk of coronary artery disease (CAD). Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS)-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging. PMID:25811180

  15. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets

    PubMed Central

    Shvartsman, Dmitry E.; Donaldson, John C.; Diaz, Begoña; Gutman, Orit; Martin, G. Steven; Henis, Yoav I.

    2007-01-01

    Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src–GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src. PMID:17698610

  16. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection

    PubMed Central

    Niu, Dongdong; Lii, Yifan E.; Chellappan, Padmanabhan; Lei, Lei; Peralta, Karl; Jiang, Chunhao; Guo, Jianhua; Coaker, Gitta; Jin, Hailing

    2016-01-01

    Plant small RNAs play important roles in gene regulation during pathogen infection. Here we show that miR863-3p is induced by the bacterial pathogen Pseudomonas syringae carrying various effectors. Early during infection, miR863-3p silences two negative regulators of plant defence, atypical receptor-like pseudokinase1 (ARLPK1) and ARLPK2, both lacking extracellular domains and kinase activity, through mRNA degradation to promote immunity. ARLPK1 associates with, and may function through another negative immune regulator ARLPK1-interacting receptor-like kinase 1 (AKIK1), an active kinase with an extracellular domain. Later during infection, miR863-3p silences SERRATE, which is essential for miRNA accumulation and positively regulates defence, through translational inhibition. This results in decreased miR863-3p levels, thus forming a negative feedback loop to attenuate immune responses after successful defence. This is an example of a miRNA that sequentially targets both negative and positive regulators of immunity through two modes of action to fine-tune the timing and amplitude of defence responses. PMID:27108563

  17. Structure of the Pseudokinase VRK3 Reveals a Degraded Catalytic Site, a Highly Conserved Kinase Fold, and a Putative Regulatory Binding Site

    PubMed Central

    Scheeff, Eric D.; Eswaran, Jeyanthy; Bunkoczi, Gabor; Knapp, Stefan; Manning, Gerard

    2009-01-01

    Summary About 10% of all protein kinases are predicted to be enzymatically inactive pseudokinases, but the structural details of kinase inactivation have remained unclear. We present the first structure of a pseudokinase, VRK3, and that of its closest active relative, VRK2. Profound changes to the active site region underlie the loss of catalytic activity, and VRK3 cannot bind ATP because of residue substitutions in the binding pocket. However, VRK3 still shares striking structural similarity with VRK2, and appears to be locked in a pseudoactive conformation. VRK3 also conserves residue interactions that are surprising in the absence of enzymatic function; these appear to play important architectural roles required for the residual functions of VRK3. Remarkably, VRK3 has an “inverted” pattern of sequence conservation: although the active site is poorly conserved, portions of the molecular surface show very high conservation, suggesting that they form key interactions that explain the evolutionary retention of VRK3. PMID:19141289

  18. Basic Residues in the Matrix Domain and Multimerization Target Murine Leukemia Virus Gag to the Virological Synapse

    PubMed Central

    Li, Fei; Jin, Jing; Herrmann, Christin

    2013-01-01

    Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672–7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific “acidic” interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization. PMID:23616653

  19. Identification of small-molecule compounds targeting the dishevelled PDZ domain by virtual screening and binding studies.

    PubMed

    Choi, Jiwon; Ma, SongLing; Kim, Hyun-Yi; Yun, Ji-Hye; Heo, Jung-Nyoung; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2016-08-01

    The Dishevelled (Dvl) protein, which conveys signals from receptors to the downstream effectors, is a critical constituent of the Wnt/β-catenin signaling pathway. Because the PDZ domain of Dvl protein functions through associations with a wide range of protein partners, Dvl protein involved in the Wnt signaling pathway has been considered to be therapeutic targets in cancers. In this study, we performed structure-based pharmacophore model of the Dvl PDZ domain to discover novel small-molecule binders and identified eight compounds with micromolar affinity. The most potent compound identified, BMD4702, efficiently bound to the Dvl PDZ domain with 11.2μM affinity and had a 0.186μM KD value according to surface plasmon resonance and fluorescence spectroscopy, respectively. Combining both structural-kinetic relationship analyses and docking studies, we fourmulated that the ligand-binding site is composed of three H-bonds and three hydrophobic features. Thus, our approach led to the identification of potent binders of the Dvl PDZ domain and the findings provide novel insights into structure-based approaches to design high-affinity binders for the Dvl PDZ domain. PMID:27112452

  20. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  1. Synthesis and evaluation of hybrid molecules targeting the vinca domain of tubulin.

    PubMed

    Gherbovet, O; Sánchez-Murcia, Pedro A; García Alvarez, M C; Bignon, J; Thoret, S; Gago, F; Roussi, F

    2015-03-14

    Some hybrids of vinca alkaloids and phomopsin A, linked by a glycine pattern, have been synthesized in one or two steps, by an insertion reaction and shown to inhibit microtubule assembly. These compounds have been elaborated in order to interact with both the "vinca site" and the "peptide site" of the vinca domain in tubulin. Two out of three hybrids are potent inhibitors of microtubules assembly and they present good cytotoxicity against different cell lines. Molecular modelling studies show that they could bind, within the vinca domain, in similar spatial regions as those of vinca and phomopsin thanks to the flexibility provided by the glycine linker used to elaborate these hybrids. PMID:25634805

  2. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD

    PubMed Central

    Baas, A.F.; Boudeau, J.; Sapkota, G.P.; Smit, L.; Medema, R.; Morrice, N.A.; Alessi, D.R.; Clevers, H.C.

    2003-01-01

    The LKB1 gene encodes a serine/threonine kinase mutated in Peutz–Jeghers cancer syndrome. Despite several proposed models for LKB1 function in development and in tumour suppression, the detailed molecular action of LKB1 remains undefined. Here, we report the identification and characterization of an LKB1-specific adaptor protein and substrate, STRAD (STe20 Related ADaptor). STRAD consists of a STE20- like kinase domain, but lacks several residues that are indispensable for intrinsic catalytic activity. Endo genous LKB1 and STRAD form a complex in which STRAD activates LKB1, resulting in phosphorylation of both partners. STRAD determines the subcellular localization of wild-type, but not mutant LKB1, translocating it from nucleus to cytoplasm. One LKB1 mutation previously identified in a Peutz–Jeghers family that does not compromise its kinase activity is shown here to interfere with LKB1 binding to STRAD, and hence with STRAD-dependent regulation. Removal of endogenous STRAD by siRNA abrogates the LKB1-induced G1 arrest. Our results imply that STRAD plays a key role in regulating the tumour suppressor activities of LKB1. PMID:12805220

  3. Targeted Disruption of the Intracellular Domain of Receptor FgfrL1 in Mice

    PubMed Central

    Bluteau, Gilles; Zhuang, Lei; Amann, Ruth; Trueb, Beat

    2014-01-01

    FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1. PMID:25126760

  4. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C.

    PubMed Central

    Yang, C H; Tomkiel, J; Saitoh, H; Johnson, D H; Earnshaw, W C

    1996-01-01

    The kinetochore in eukaryotes serves as the chromosomal site of attachment for microtubules of the mitotic spindle and directs the movements necessary for proper chromosome segregation. In mammalian cells, the kinetochore is a highly differentiated trilaminar structure situated at the surface of the centromeric heterochromatin. CENP-C is a basic, DNA-binding protein that localizes to the inner kinetochore plate, the region that abuts the heterochromatin. Microinjection experiments using antibodies specific for CENP-C have demonstrated that this protein is required for the assembly and/or stability of the kinetochore as well as for a timely transition through mitosis. From these observations, it has been suggested that CENP-C is a structural protein that is involved in the organization or the kinetochore. In this report, we wished to identify and map the functional domains of CENP-C. Analysis of CENP-C truncation mutants expressed in vivo demonstrated that CENP-C possesses an autonomous centromere-targeting domain situated at the central region of the CENP-C polypeptide. Similarly, in vitro assays revealed that a region of CENP-C with the ability to bind DNA is also located at the center of the CENP-C molecule, where it overlaps the centromere-targeting domain. PMID:8668174

  5. Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI.

    PubMed

    Sheldon, Paul J; Busarow, Sara B; Hutchinson, C Richard

    2002-04-01

    Streptomyces antibiotic regulatory proteins (SARPs) constitute a novel family of transcriptional activators that control the expression of several diverse anti-biotic biosynthetic gene clusters. The Streptomyces peucetius DnrI protein, one of only a handful of these proteins yet discovered, controls the biosynthesis of the polyketide antitumour antibiotics daunorubicin and doxorubicin. Recently, comparative analyses have revealed significant similarities among the predicted DNA-binding domains of the SARPs and the C-terminal DNA-binding domain of the OmpR family of regulatory proteins. Using the crystal structure of the OmpR-binding domain as a template, DnrI was mapped by truncation and site-directed mutagenesis. Several highly conserved residues within the N-terminus are crucial for DNA binding and protein function. Tandemly arranged heptameric imperfect repeat sequences are found within the -35 promoter regions of target genes. Substitutions for each nucleotide within the repeats of the dnrG-dpsABCD promoter were performed by site-directed mutagenesis. The mutant promoter fragments were found to have modified binding characteristics in gel mobility shift assays. The spacing between the repeat target sequences is also critical for successful occupation by DnrI and, therefore, competent transcriptional activation of the dnrG-dpsABCD operon. PMID:11972782

  6. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    SciTech Connect

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K.

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.

  7. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    SciTech Connect

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H.

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  8. Fast analysis of wide-band scattering from electrically large targets with time-domain parabolic equation method

    NASA Astrophysics Data System (ADS)

    He, Zi; Chen, Ru-Shan

    2016-03-01

    An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.

  9. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    PubMed Central

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. PMID:26935805

  10. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    NASA Astrophysics Data System (ADS)

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-03-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  11. Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery.

    PubMed

    Kothiwale, Sandeepkumar; Borza, Corina M; Lowe, Edward W; Pozzi, Ambra; Meiler, Jens

    2015-02-01

    Discoidin domain receptor (DDR) 1 and 2 are transmembrane receptors that belong to the family of receptor tyrosine kinases (RTK). Upon collagen binding, DDRs transduce cellular signaling involved in various cell functions, including cell adhesion, proliferation, differentiation, migration, and matrix homeostasis. Altered DDR function resulting from either mutations or overexpression has been implicated in several types of disease, including atherosclerosis, inflammation, cancer, and tissue fibrosis. Several established inhibitors, such as imatinib, dasatinib, and nilotinib, originally developed as Abelson murine leukemia (Abl) kinase inhibitors, have been found to inhibit DDR kinase activity. As we review here, recent discoveries of novel inhibitors and their co-crystal structure with the DDR1 kinase domain have made structure-based drug discovery for DDR1 amenable. PMID:25284748

  12. Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery

    PubMed Central

    Kothiwale, Sandeepkumar; Borza, Corina M.; Lowe, Will; Pozzi, Ambra; Meiler, Jens

    2014-01-01

    Discoidin domain receptor (DDR) 1 and 2 are transmembrane receptors that belong to the family of receptor tyrosine kinases (RTK). Upon collagen binding, DDRs transduce cellular signaling involved in various cell functions, including cell adhesion, proliferation, differentiation, migration, and matrix homeostasis. Altered DDR function resulting from either mutations or overexpression has been implicated in several types of disease, including atherosclerosis, inflammation, cancer, and tissue fibrosis. Several established inhibitors, such as imatinib, dasatinib, and nilotinib, originally developed as Abelson murine leukemia (Abl) kinase inhibitors, have been found to inhibit DDR kinase activity. As we review here, recent discoveries of novel inhibitors and their co-crystal structure with the DDR1 kinase domain have made structure-based drug discovery for DDR1 amenable. PMID:25284748

  13. PERIPARTUM DEPRESSION AND ANXIETY AS AN INTEGRATIVE CROSS DOMAIN TARGET FOR PSYCHIATRIC PREVENTATIVE MEASURES

    PubMed Central

    Babb, Jessica A.; Deligiannidis, Kristina M.; Murgatroyd, Christopher A.

    2014-01-01

    Exposure to high levels of early life stress has been identified as a potent risk factor for neurodevelopmental delays in infants, behavioral problems and autism in children, but also for several psychiatric illnesses in adulthood, such as depression, anxiety, autism, and posttraumatic stress disorder. Despite having robust adverse effects on both mother and infant, the pathophysiology of peripartum depression and anxiety are poorly understood. The objective of this review is to highlight the advantages of using an integrated approach addressing several behavioral domains in both animal and clinical studies of peripartum depression and anxiety. It is postulated that a greater focus on integrated cross domain studies will lead to advances in treatments and preventative measures for several disorders associated with peripartum depression and anxiety. PMID:24709228

  14. Targeting of Tumor Necrosis Factor Receptor 1 to Low Density Plasma Membrane Domains in Human Endothelial Cells*

    PubMed Central

    D'Alessio, Alessio; Kluger, Martin S.; Li, Jie H.; Al-Lamki, Rafia; Bradley, John R.; Pober, Jordan S.

    2010-01-01

    TNFR1 (tumor necrosis factor receptor 1) localizes to caveolae of human endothelial-derived EA.hy926 cells. Transduced TNFR1 molecules lacking amino acid residues 229–244 (spanning the transmembrane/intercellular boundary) are expressed on the cell surface equivalently to full-length TNFR1 molecules but incompletely localize to caveolae. A peptide containing this sequence pulls down CAV-1 (caveolin-1) and TNFR1 from cell lysates but fails to do so following disruption of caveolae with methyl-β-cyclodextrin. We previously reported that methyl-β-cyclodextrin eliminates caveolae and blocks tumor necrosis factor (TNF)-induced internalization of TNFR1 but not TNF-induced activation of NF-κB in EA.hy926 cells. Both CAV-1 and FLOT-2 (flotillin-2), organizing proteins of caveolae and lipid rafts, respectively, associate with caveolae in EA.hy926 cells. Small interfering RNA-mediated knockdown of CAV-1 but not FLOT-2 strikingly reduces caveolae number. Both knockdowns reduce total TNFR1 protein expression, but neither prevents TNFR1 localization to low density membrane domains, TNF-induced internalization of TNFR1, or NF-κB activation by TNF. Both CAV-1 and FLOT-2 knockdowns reduce TNF-mediated activation of stress-activated protein kinase (SAPK). However, both knockdowns reduce expression of TRAF2 (TNF receptor-associated factor-2) protein, and small interfering RNA targeting of TRAF2 also selectively inhibits SAPK activation. We conclude that TNFR1 contains a membrane-proximal sequence that targets the receptor to caveolae/lipid rafts. Neither TNFR1 targeting to nor internalization from these low density membrane domains depends upon CAV-1 or FLOT-2. Furthermore, both NF-κB and SAPK activation appear independent of both TNFR1 localization to low density membrane domains and to TNF-induced receptor internalization. PMID:20511226

  15. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies

    NASA Astrophysics Data System (ADS)

    Zarschler, K.; Prapainop, K.; Mahon, E.; Rocks, L.; Bramini, M.; Kelly, P. M.; Stephan, H.; Dawson, K. A.

    2014-05-01

    For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including

  16. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  17. Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain

    PubMed Central

    Banappagari, Sashikanth; McCall, Alecia; Fontenot, Krystal; Vicente, M. Graca H.; Gujar, Amit; Satyanarayanajois, Seetharama

    2013-01-01

    Among the EGFRs, HER2 is a major heterodimer partner and also has important implications in the formation of particular tumors. Interaction of HER2 protein with other EGFR proteins can be modulated by small molecule ligands and, hence, these protein-protein interactions play a key role in biochemical reactions related to control of cell growth. A peptidomimetic (compound 5-1) that binds to HER2 protein extracellular domain and inhibits protein-protein interactions of EGFRs was conjugated with BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene). Conjugation of BODIPY to the peptidomimetic was investigated by different approaches. The conjugate was characterized for its ability to bind to HER2 overexpressing SKBR-3 and BT-474 cells. Furthermore, cellular uptake of conjugate of BODIPY was studied in the presence of membrane tracker and Lyso tracker using confocal microscopy. Our results suggested that fluorescently labeled compound 5-7 binds to the extracellular domain and stays in the membrane for nearly 24 h. After 24 h there is an indication of internalization of the conjugate. Inhibition of protein-protein interaction and downstream signaling effect of compound 5-1 was also studied by proximity ligation assay and western blot analysis. Results suggested that compound 5-1 inhibits protein-protein interactions of HER2-HER3 and phosphorylation of HER2 in a time-dependent manner. PMID:23688700

  18. Alternatively Spliced EDA Domain of Fibronectin Is a Target for Pharmacodelivery Applications in Inflammatory Bowel Disease.

    PubMed

    Bootz, Franziska; Schmid, Anja Sophie; Neri, Dario

    2015-08-01

    The antibody-based pharmacodelivery of cytokines to sites of disease has been extensively studied for various indications but not for the treatment of inflammatory bowel diseases. Here, we report that the alternatively spliced EDA domain of fibronectin, a marker of angiogenesis and of tissue remodeling, is expressed in the dextran sodium sulfate mouse model of colitis and in patients with inflammatory bowel conditions, while being virtually undetectable in most normal adult tissues. Radiolabeled preparations of the F8 antibody, specific to the EDA domain of fibronectin, were shown to selectively localize to sites of inflammation in mice with colitis, as revealed by autoradiographic analysis. Fusion proteins of the F8 antibody with various murine payloads (interleukin-4, the p40 subunit of interleukin-12, interleukin-13) were administered to mice with colitis. IL12p40-F8 mediated an anti-inflammatory activity, which was comparable with the one of cyclosporine, whereas F8-IL4 did not inhibit colitis and F8-IL13 worsened the inflammatory conditions. PMID:25993691

  19. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    PubMed

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized. PMID:26993052

  20. Differential tumor-targeting abilities of three single-domain antibody formats.

    PubMed

    Bell, Andrea; Wang, Zheng J; Arbabi-Ghahroudi, Mehdi; Chang, Tingtung A; Durocher, Yves; Trojahn, Ulrike; Baardsnes, Jason; Jaramillo, Maria L; Li, Shenghua; Baral, Toya N; O'Connor-McCourt, Maureen; Mackenzie, Roger; Zhang, Jianbing

    2010-03-01

    The large molecular size of antibody drugs is considered one major factor preventing them from becoming more efficient therapeutics. Variable regions of heavy chain antibodies (HCAbs), or single-domain antibodies (sdAbs), are ideal building blocks for smaller antibodies due to their molecular size and enhanced stability. In the search for better antibody formats for in vivo imaging and/or therapy of cancer, three types of sdAb-based molecules directed against epidermal growth factor receptor (EGFR) were constructed, characterized and tested. Eleven sdAbs were isolated from a phage display library constructed from the sdAb repertoire of a llama immunized with a variant of EGFR. A pentameric sdAb, or pentabody, V2C-EG2 was constructed by fusing one of the sdAbs, EG2, to a pentamerization protein domain. A chimeric HCAb (cHCAb), EG2-hFc, was constructed by fusing EG2 to the fragment crystallizable (Fc) of human IgG1. Whereas EG2 and V2C-EG2 localized mainly in the kidneys after i.v. injection, EG2-hFc exhibited excellent tumor accumulation, and this was largely attributed to its long serum half life, which is comparable to that of IgGs. The moderate size (approximately 80 kDa) and intact human Fc make HCAbs a unique antibody format which may outperform whole IgGs as imaging and therapeutic reagents. PMID:19716651

  1. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition

    PubMed Central

    Ogi, Hiroo; Goto, Greicy H.; Ghosh, Avik; Zencir, Sevil; Henry, Everett; Sugimoto, Katsunori

    2015-01-01

    Two large phosphatidylinositol 3-kinase–related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins. PMID:26246601

  2. Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein--localization of a targeting domain.

    PubMed

    Söderqvist, H; Imreh, G; Kihlmark, M; Linnman, C; Ringertz, N; Hallberg, E

    1997-12-15

    The 121-kDa pore membrane protein (POM121) is a bitopic integral membrane protein specifically located in the pore membrane domain of the nuclear envelope with its short N-terminal tail exposed on the luminal side and its major C-terminal portion adjoining the nuclear pore complex. In order to locate a signal for targeting of POM121 to the nuclear pores, we overexpressed selected regions of POM121 alone or fused to the green fluorescent protein (GFP) in transiently transfected COS-1 cells or in a stably transfected neuroblastoma cell line. Microscopic analysis of the GFP fluorescence or immunostaining was used to determine the intracellular distribution of the overexpressed proteins. The endofluorescent GFP tag had no effect on the distribution of POM121, since the chimerical POM121-GFP fusion protein was correctly targeted to the nuclear pores of both COS-1 cells and neuroblastoma cells. Based on the differentiated intracellular sorting of the POM121 variants, we conclude that the first 128 amino acids of POM121 contains signals for targeting to the continuous endoplasmic reticulum/nuclear envelope membrane system but not specifically to the nuclear pores and that a specific nuclear pore targeting signal is located between amino acids 129 and 618 in the endoplasmically exposed portion of POM121. PMID:9461306

  3. Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space.

    PubMed

    Wang, Jianying; Joshi, Sneha; Korkin, Dmitry; Mitchum, Melissa G

    2010-12-01

    Effector proteins expressed in the esophageal gland cells of cyst nematodes are delivered into plant cells through a hollow, protrusible stylet. Although evidence indicates that effector proteins function in the cytoplasm of the syncytium, technical constraints have made it difficult to directly determine where nematode effector proteins are initially delivered: cytoplasm, extracellular space, or both. Recently, we demonstrated that soybean cyst nematode CLE (HgCLE) propeptides are delivered to the cytoplasm of syncytial cells. Genetic and biochemical analyses indicate that the variable domain (VD) sequence is then required for targeting cytoplasmically delivered nematode CLEs to the apoplast where they function as ligand mimics of endogenous plant CLE peptides. The fact that nematode CLEs are targeted through the gland cell secretory pathway and delivered as mature propeptides into plant cells makes it impossible for these proteins to be subsequently delivered to the extracellular space via co-translational translocation through the endoplasmic reticulum (ER) secretory pathway of the host cell. However, when expressed in transgenic plants, if the mature nematode CLE propeptide harbored a functional cryptic signal peptide, it could possibly traffic to the apoplast through the ER secretory pathway by co-translational translocation. Here, we present evidence that VDI, the N-terminal sequence of the variable domain of HgCLE2, is sufficient for trafficking CLE peptides to the apoplast and that trafficking is indeed through an alternative pathway other than co-translational translocation. PMID:21150256

  4. Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors

    PubMed Central

    Baker, Theresa; Nerle, Sujata; Pritchard, Justin; Zhao, Boyang; Rivera, Victor M.

    2015-01-01

    Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i. PMID:26360609

  5. GT-2: a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity.

    PubMed Central

    Dehesh, K; Hung, H; Tepperman, J M; Quail, P H

    1992-01-01

    A triplet of adjacent, highly similar GT motifs in the phyA promoter of rice functions to support maximal expression of this gene. We have obtained a recombinant clone that encodes a full-length nuclear protein, designated GT-2, which binds specifically to these target sequences. This novel protein contains acidic, basic and proline- + glutamine-rich regions, as well as two autonomous DNA-binding domains, one NH2-terminal and the other COOH-terminal, that discriminate with high resolution between the three GT motifs. A duplicated sequence of 75 amino acids, present once in each DNA-binding domain, appears likely to mediate DNA target element recognition. Each copy of this duplicated protein sequence is predicted to form three amphipathic alpha-helices separated from each other by two short loops. The absence of sequence similarity to other known proteins suggests that this predicted structural unit, which we term the trihelix motif, might be representative of a new class of DNA-binding proteins. Images PMID:1396594

  6. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription

    PubMed Central

    Aydin, Özge Z.; Marteijn, Jurgen A.; Ribeiro-Silva, Cristina; Rodríguez López, Aida; Wijgers, Nils; Smeenk, Godelieve; van Attikum, Haico; Poot, Raymond A.; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA. PMID:24990377

  7. Antithrombotic effects of synthetic peptides targeting various functional domains of thrombin.

    PubMed Central

    Kelly, A B; Maraganore, J M; Bourdon, P; Hanson, S R; Harker, L A

    1992-01-01

    To determine in vivo functional roles for thrombin's structural domains, we have compared the relative antithrombotic and antihemostatic effects of (i) catalytic-site antithrombin peptide, D-Phe-Pro-Arg; (ii) exosite antithrombin peptide, the C-terminal tyrosine-sulfated dodecapeptide of hirudin; and (iii) bifunctional antithrombin peptide, a 20-mer peptide combining catalytic-site antithrombin peptide and exosite antithrombin peptide with a polyglycyl linker. All three peptides inhibited thrombin-mediated platelet aggregation and fibrin formation in vitro. In vivo thrombus formation was measured in real time as 111In-labeled platelet deposition and 125I-labeled fibrin accumulation on thrombogenic segments incorporated into chronic exteriorized arteriovenous access shunts in baboons. Under low flow conditions, the continuous infusion of peptides reduced thrombus formation onto collagen-coated tubing by half at doses (ID50) and corresponding concentrations (IC50) of 800 nmol per kg per min and 400 nmol/ml for catalytic-site antithrombin peptide, greater than 1250 nmol per kg per min and greater than 1500 mumol/ml for exosite antithrombin peptide, and 50 nmol per kg per min and 25 nmol/ml for bifunctional antithrombin peptide. Under arterial flow conditions, systemically administered bifunctional antithrombin peptide decreased thrombus formation in a dose-dependent manner for segments of collagen-coated tubing or prosthetic vascular graft ID50 and IC50 values of 120 nmol per kg per min and 15 nmol/ml; this dose also produced intermediate inhibition of hemostatic function [bleeding time, 21 +/- 3 min vs. 4.5 +/- 0.5 min (baseline values); P less than 0.001; activated partial thromboplastin time, 285 +/- 13 sec vs. 31 +/- 3 sec (baseline), P less than 0.001]. In contrast, thrombus formation onto segments of endarterectomized aorta was potently decreased by bifunctional antithrombin peptide with an ID50 value of 2.4 nmol per kg per min and an IC50 value of 0.75 nmol

  8. Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production.

    PubMed

    McAndrew, Ryan P; Peralta-Yahya, Pamela P; DeGiovanni, Andy; Pereira, Jose H; Hadi, Masood Z; Keasling, Jay D; Adams, Paul D

    2011-12-01

    The sesquiterpene bisabolene was recently identified as a biosynthetic precursor to bisabolane, an advanced biofuel with physicochemical properties similar to those of D2 diesel. High-titer microbial bisabolene production was achieved using Abies grandis α-bisabolene synthase (AgBIS). Here, we report the structure of AgBIS, a three-domain plant sesquiterpene synthase, crystallized in its apo form and bound to five different inhibitors. Structural and biochemical characterization of the AgBIS terpene synthase Class I active site leads us to propose a catalytic mechanism for the cyclization of farnesyl diphosphate into bisabolene via a bisabolyl cation intermediate. Further, we describe the nonfunctional AgBIS Class II active site whose high similarity to bifunctional diterpene synthases makes it an important link in understanding terpene synthase evolution. Practically, the AgBIS crystal structure is important in future protein engineering efforts to increase the microbial production of bisabolene. PMID:22153510

  9. Probing Dense Plasmas Created from Intense Irradiation of Solid Target in the XUV Domain

    SciTech Connect

    Dobosz, S.; Doumy, G.; Stabile, H.; Monot, P.; Bougeard, M.; Reau, F.; Martin, Ph.

    2006-04-07

    In this paper, electronic density and temperature have been inferred from XUV transmission through hot solid-density plasma created by high temporal contrast femtosecond irradiation of thin plastic foil target in the 1018W/cm2 intensity range. High order harmonics generated in pulsed gas jet are used as a probe beam. The initial plasma parameters are determined with an accuracy better than 15% on the 100fs time scale, by comparison of the transmission of two consecutive harmonics.

  10. Targeted yield concept and a framework of fertilizer recommendation in irrigated rice domains of subtropical India.

    PubMed

    Bera, R; Seal, A; Bhattacharyya, P; Das, T H; Sarkar, D; Kangjoo, K

    2006-12-01

    Soil test crop response (STCR) correlation studies were carried out in Vindhyan alluvial plain during 2001 to 2004 taking IR-36 as test crop to quantify rice production in the context of the variability of soil properties and use of balanced fertilizers based on targeted yield concept. The soils were developed on gently sloping alluvial plain with different physiographic settings and notable variation in drainage condition. Soil properties show moderate variation in texture (loamy to clay), organic carbon content (4.4 to 9.8 g/kg), cation exchange capacity (10.2 to 22.4 cmol (p+)/kg) and pH (5.3 to 6.4). Soil fertility status for N is low to medium (224 to 348 kg/ha), P is medium to high (87 to 320 kg/ha) and K ranges from medium to high (158 to 678 kg/ha). Database regarding nutrient requirement in kg/t of grain produce (NR), the percent contribution from the soil available nutrients [CS (%)] and the percent contribution from the applied fertilizer nutrients [CF (%)] were computed for calibrating and formulating fertilizer recommendations. Validity of the yield target for 7 and 8 t/ha was tested in farmers' fields and yields targets varied at less than 10%. The percent achievement of targets aimed at different level was more than 90%, indicating soil test based fertilizer recommendation approach was economically viable within the agro-ecological zone with relatively uniform cropping practices and socio-economic conditions. PMID:17111464

  11. The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function.

    PubMed

    Ohtani, Yoshiaki; Miyata, Mariko; Hashimoto, Kouichi; Tabata, Toshihide; Kishimoto, Yasushi; Fukaya, Masahiro; Kase, Daisuke; Kassai, Hidetoshi; Nakao, Kazuki; Hirata, Tatsumi; Watanabe, Masahiko; Kano, Masanobu; Aiba, Atsu

    2014-02-12

    The metabotropic glutamate receptor subtype 1 (mGluR1, Grm1) in cerebellar Purkinje cells (PCs) is essential for motor coordination and motor learning. At the synaptic level, mGluR1 has a critical role in long-term synaptic depression (LTD) at parallel fiber (PF)-PC synapses, and in developmental elimination of climbing fiber (CF)-PC synapses. mGluR1a, a predominant splice variant in PCs, has a long carboxyl (C)-terminal domain that interacts with Homer scaffolding proteins. Cerebellar roles of the C-terminal domain at both synaptic and behavior levels remain poorly understood. To address this question, we introduced a short variant, mGluR1b, which lacks this domain into PCs of mGluR1-knock-out (KO) mice (mGluR1b-rescue mice). In mGluR1b-rescue mice, mGluR1b showed dispersed perisynaptic distribution in PC spines. Importantly, mGluR1b-rescue mice exhibited impairments in inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca(2+) release, CF synapse elimination, LTD induction, and delay eyeblink conditioning: they showed normal transient receptor potential canonical (TRPC) currents and normal motor coordination. In contrast, PC-specific rescue of mGluR1a restored all cerebellar defects of mGluR1-KO mice. We conclude that the long C-terminal domain of mGluR1a is required for the proper perisynaptic targeting of mGluR1, IP3R-mediated Ca(2+) release, CF synapse elimination, LTD, and motor learning, but not for TRPC currents and motor coordination. PMID:24523559

  12. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.

    PubMed

    Matos, Rute Gonçalves; Barbas, Ana; Arraiano, Cecília Maria

    2009-10-15

    The RNase II superfamily is a ubiquitous family of exoribonucleases that are essential for RNA metabolism. RNase II and RNase R degrade RNA in the 3'-->5' direction in a processive and sequence-independent manner. However, although RNase R is capable of degrading highly structured RNAs, the RNase II activity is impaired by the presence of secondary structures. RNase II and RNase R share structural properties and have a similar modular domain organization. The eukaryotic RNase II homologue, Rrp44/Dis3, is the catalytic subunit of the exosome, one of the most important protein complexes involved in the maintenance of the correct levels of cellular RNAs. In the present study, we constructed truncated RNase II and RNase R proteins and point mutants and characterized them regarding their exoribonucleolytic activity and RNA-binding ability. We report that Asp280 is crucial for RNase R activity without affecting RNA binding. When Tyr324 was changed to alanine, the final product changed from 2 to 5 nt in length, showing that this residue is responsible for setting the end-product. We have shown that the RNB domain of RNase II has catalytic activity. The most striking result is that the RNase R RNB domain itself degrades double-stranded substrates even in the absence of a 3'-overhang. Moreover, we have demonstrated for the first time that the substrate recognition of RNase R depends on the RNA-binding domains that target the degradation of RNAs that are 'tagged' by a 3'-tail. These results can have important implications for the study of poly(A)-dependent RNA degradation mechanisms. PMID:19630750

  13. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation

    PubMed Central

    Hennig, Janosch; Zou, Peijian; Nössner, Elfriede; Ling, Paul D.; Sattler, Michael; Kempkes, Bettina

    2015-01-01

    Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics. PMID:26024477

  14. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall.

    PubMed

    Li, Jian-Gang; Liu, Hong-Xia; Cao, Jing; Chen, Li-Feng; Gu, Chun; Allen, Caitilyn; Guo, Jian-Hua

    2010-05-01

    Harpins are extracellular glycine-rich proteins eliciting a hypersensitive response (HR). In this study, we identified a new harpin, PopW, from Ralstonia solanacearum strain ZJ3721. This 380-amino-acid protein is acidic, rich in glycine and serine, and lacks cysteine. When infiltrated into the leaves of tobacco (non-host), PopW induced a rapid tissue collapse via a heat-stable but protease-sensitive HR-eliciting activity. PopW has an N-terminal harpin domain (residues 1-159) and a C-terminal pectate lyase (PL) domain (residues 160-366); its HR-eliciting activity depends on its N-terminal domain. Analyses of subcellular localization and plasmolysis demonstrated that PopW targeted the onion cell wall. This was further confirmed by its ability to specifically bind to calcium pectate, a major component of the plant cell wall. However, PopW had no detectable PL activity. Western blotting revealed that PopW was secreted by the type III secretion system in an hrpB-dependent manner. Gene sequencing indicated that popW is conserved among 20 diverse strains of R. solanacearum. A popW-deficient mutant retained the ability of wild-type strain ZJ3721 to elicit HR in tobacco and to cause wilt disease in tomato (a host). We conclude that PopW is a new cell wall-associated, hrpB-dependent, two-domain harpin that is conserved across the R. solanacearum species complex. PMID:20447285

  15. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain.

    PubMed

    Mistry, Pragnesh; Laird, Michelle H W; Schwarz, Ryan S; Greene, Shannon; Dyson, Tristan; Snyder, Greg A; Xiao, Tsan Sam; Chauhan, Jay; Fletcher, Steven; Toshchakov, Vladimir Y; MacKerell, Alexander D; Vogel, Stefanie N

    2015-04-28

    Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. PMID:25870276

  16. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation.

    PubMed

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  17. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  18. AlzPlatform: An Alzheimer’s Disease Domain-Specific Chemogenomics Knowledgebase for Polypharmacology and Target Identification Research

    PubMed Central

    2015-01-01

    Alzheimer’s disease (AD) is one of the most complicated progressive neurodegeneration diseases that involve many genes, proteins, and their complex interactions. No effective medicines or treatments are available yet to stop or reverse the progression of the disease due to its polygenic nature. To facilitate discovery of new AD drugs and better understand the AD neurosignaling pathways involved, we have constructed an Alzheimer’s disease domain-specific chemogenomics knowledgebase, AlzPlatform (www.cbligand.org/AD/) with cloud computing and sourcing functions. AlzPlatform is implemented with powerful computational algorithms, including our established TargetHunter, HTDocking, and BBB Predictor for target identification and polypharmacology analysis for AD research. The platform has assembled various AD-related chemogenomics data records, including 928 genes and 320 proteins related to AD, 194 AD drugs approved or in clinical trials, and 405 188 chemicals associated with 1 023 137 records of reported bioactivities from 38 284 corresponding bioassays and 10 050 references. Furthermore, we have demonstrated the application of the AlzPlatform in three case studies for identification of multitargets and polypharmacology analysis of FDA-approved drugs and also for screening and prediction of new AD active small chemical molecules and potential novel AD drug targets by our established TargetHunter and/or HTDocking programs. The predictions were confirmed by reported bioactivity data and our in vitro experimental validation. Overall, AlzPlatform will enrich our knowledge for AD target identification, drug discovery, and polypharmacology analyses and, also, facilitate the chemogenomics data sharing and information exchange/communications in aid of new anti-AD drug discovery and development. PMID:24597646

  19. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis

    PubMed Central

    Sekiguchi, Takaya; Takemoto, Ai; Takagi, Satoshi; Takatori, Kazuki; Sato, Shigeo; Takami, Miho; Fujita, Naoya

    2016-01-01

    Podoplanin/Aggrus is a sialoglycoprotein expressed in various cancers. We previously identified podoplanin as a key factor in tumor-induced platelet aggregation. Podoplanin-mediated platelet aggregation enhances tumor growth and metastasis by secreting growth factors and by forming tumor emboli in the microvasculature. Thus, precise analysis of the mechanisms of podoplanin-mediated platelet aggregation is critical for developing anti-tumor therapies. Here we report the discovery of a novel platelet aggregation-inducing domain, PLAG4 (81-EDLPT-85). PLAG4 has high homology to the previously reported PLAG3 and contributes to the binding of its platelet receptor CLEC-2. Mutant analyses indicated that PLAG4 exhibits a predominant platelet-aggregating function relative to PLAG3 and that conserved Glu81/Asp82/Thr85 residues in PLAG4 are indispensable for CLEC-2 binding. By establishing anti-PLAG4-neutralizing monoclonal antibodies, we confirmed its role in CLEC-2 binding, platelet aggregation, and tumor emboli formation. Our results suggest the requirement of simultaneous inhibition of PLAG3/4 for complete suppression of podoplanin-mediated tumor growth and metastasis. PMID:26684030

  20. Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process

    SciTech Connect

    Wang, Cong; Dai, Jinghong; Sun, Zhaorui; Shi, Chaowen; Cao, Honghui; and others

    2015-02-01

    In this study, we determined the effects of transforming growth factor-beta (TGF-β) and Wnt/β-catenin signaling on myofibroblast differentiation of NIH/3T3 fibroblasts in vitro and evaluated the therapeutic efficacy of NSC668036 in bleomycin-induced pulmonary fibrosis murine model. In vitro study, NSC668036, a small organic inhibitor of the PDZ domain in Dvl, suppressed β-catenin-driven gene transcription and abolished TGF-β1-induced migration, expression of collagen I and α-smooth muscle actin (α-SMA) in fibroblasts. In vivo study, we found that NSC668036 significantly suppressed accumulation of collagen I, α-SMA, and TGF-β1 but increased the expression of CK19, Occludin and E-cadherin that can inhibit pulmonary fibrogenesis. Because fibrotic lung exhibit aberrant activation of Wnt/β-catenin signaling, these data collectively suggest that inhibition of Wnt/β-catenin signaling at the Dvl level may be an effective approach to the treatment of fibrotic lung diseases. - Highlights: • NSC668036 inhibited the proliferation and migration of NIH/3T3 fibroblasts. • NSC668036 suppressed the Wnt/β-catenin signaling pathway. • TGF-β-induced stimulation of profibrotic responses were inhibited by NSC668036. • NSC668036 can inhibit the development of bleomycin-induced pulmonary fibrosis.

  1. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A

    PubMed Central

    Luo, Rongcan; Wang, Yongqing; Xu, Peng; Cao, Guangming; Zhao, Yangyu; Shao, Xuan; Li, Yu-xia; Chang, Cheng; Peng, Chun; Wang, Yan-ling

    2016-01-01

    Preeclampsia, a relatively common pregnancy disorder, is a major contributor to maternal mortality and morbidity worldwide. An elevation in microRNA-210 (miR-210) expression in the placenta has been reported to be associated with preeclampsia. Our bioinformatic analysis showed that thrombospondin type I domain containing 7A (THSD7A) is a predicted target for miR-210. The aim of this study was to determine whether miR-210 is involved in preeclampsia through its targeting of THSD7A in human placental trophoblasts. In preeclamptic placental tissues, THSD7A levels were significantly downregulated, and were inversely correlated with the levels of miR-210. THSD7A was validated as a direct target of miR-210 using quantitative real time PCR (qRT-PCR), Western blotting, and dual luciferase assays in HTR8/SVneo cells. Transwell insert invasion assays showed that THSD7A mediated the invasion-inhibitory effect of miR-210 in HTR8/SVneo cells. Interestingly, hypoxia markedly increased miR-210 expression while suppressing THSD7A expression in a time-dependent manner in HTR8/SVneo cells. This study provides novel data on the function of THSD7A in human placental cells, and extends our knowledge of how miR-210 is involved in the development of the preeclampsia. PMID:26796133

  2. A Bivalent Tarantula Toxin Activates the Capsaicin Receptor, TRPV1, by Targeting the Outer Pore Domain

    PubMed Central

    Bohlen, Christopher J.; Priel, Avi; Zhou, Sharleen; King, David; Siemens, Jan; Julius, David

    2010-01-01

    SUMMARY Toxins have evolved to target regions of membrane ion channels that underlie ligand binding, gating, or ion permeation, and have thus served as invaluable tools for probing channel structure and function. Here we describe a peptide toxin from the Earth Tiger tarantula that selectively and irreversibly activates the capsaicin- and heat-sensitive channel, TRPV1. This high avidity interaction derives from a unique tandem repeat structure of the toxin that endows it with an antibody-like bivalency, illustrating a new paradigm in toxin structure and evolution. The ‘double-knot’ toxin traps TRPV1 in the open state by interacting with residues in the presumptive pore-forming region of the channel, highlighting the importance of conformational changes in the outer pore region of TRP channels during activation. PMID:20510930

  3. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing.

    PubMed

    Li, H; Bingham, P M

    1991-10-18

    Two unrelated pre-mRNA splicing regulators-suppressor-of-white-apricot (su(wa)) and transformer (tra)-contain distinctive, approximately 120 amino acid arginine/serine (RS)-rich domains. Deletion of the su(wa) RS domain eliminates function. Replacement with the tra RS domain restores su(wa) function to nearly wild-type levels. Replacement with a 10 amino acid simple nuclear entry signal allows partial, inefficient function. Thus, the su(wa) RS domain apparently serves a generic function(s) subsuming nuclear entry. Moreover, immunocytochemical studies demonstrate that both RS domains specifically direct localization of a fused reporter protein to a punctate subnuclear compartment shown previously to be enriched in several constitutive splicing components. We propose that RS domains are a new class of targeting signals directing concentration of proteins in a subnuclear compartment implicated in splicing metabolism. PMID:1655279

  4. Modular Organization of α-Toxins from Scorpion Venom Mirrors Domain Structure of Their Targets, Sodium Channels*

    PubMed Central

    Chugunov, Anton O.; Koromyslova, Anna D.; Berkut, Antonina A.; Peigneur, Steve; Tytgat, Jan; Polyansky, Anton A.; Pentkovsky, Vladimir M.; Vassilevski, Alexander A.; Grishin, Eugene V.; Efremov, Roman G.

    2013-01-01

    To gain success in the evolutionary “arms race,” venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Navs) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Navs is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid “core module” is supplemented with the “specificity module” (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Navs suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Navs. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Navs. PMID:23637230

  5. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain.

    PubMed

    Vieux-Rochas, Maxence; Fabre, Pierre J; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-04-14

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments. PMID:25825760

  6. Cross-Protection of Influenza A Virus Infection by a DNA Aptamer Targeting the PA Endonuclease Domain

    PubMed Central

    Yuan, Shuofeng; Zhang, Naru; Singh, Kailash; Shuai, Huiping; Chu, Hin; Zhou, Jie; Chow, Billy K. C.

    2015-01-01

    Amino acid residues in the N-terminal of the PA subunit (PAN) of the influenza A virus polymerase play critical roles in endonuclease activity, protein stability, and viral RNA (vRNA) promoter binding. In addition, PAN is highly conserved among different subtypes of influenza virus, which suggests PAN to be a desired target in the development of anti-influenza agents. We selected DNA aptamers targeting the intact PA protein or the PAN domain of an H5N1 virus strain using systematic evolution of ligands by exponential enrichment (SELEX). The binding affinities of selected aptamers were measured, followed by an evaluation of in vitro endonuclease inhibitory activity. Next, the antiviral effects of enriched aptamers against influenza A virus infections were examined. A total of three aptamers targeting PA and six aptamers targeting PAN were selected. Our data demonstrated that all three PA-selected aptamers neither inhibited endonuclease activity nor exhibited antiviral efficacy, whereas four of the six PAN-selected aptamers inhibited both endonuclease activity and H5N1 virus infection. Among the four effective aptamers, one exhibited cross-protection against infections of H1N1, H5N1, H7N7, and H7N9 influenza viruses, with a 50% inhibitory concentration (IC50) of around 10 nM. Notably, this aptamer was identified at the 5th round but disappeared after the 10th round of selection, suggesting that the identification and evaluation of aptamers at early rounds of selection may be highly helpful for screening effective aptamers. Overall, our study provides novel insights for screening and developing effective aptamers for use as anti-influenza drugs. PMID:25918143

  7. Distinct protein domains regulate ciliary targeting and function of C. elegans PKD-2

    PubMed Central

    Knobel, Karla M.; Peden, Erik M.; Barr, Maureen M.

    2008-01-01

    TRPP2 (transient receptor potential polycystin-2) channels function in a range of cells where they are localized to specific subcellular regions including the endoplasmic reticulum (ER) and primary cilium. In humans, TRPP2/PC-2 mutations severely compromise kidney function and give rise to autosomal dominant polycystic kidney disease (ADPKD). The Caenorhabditis elegans TRPP2 homolog, PKD-2, is restricted to the somatodendritic (cell body and dendrite) and ciliary compartment of male specific sensory neurons. Within these neurons PKD-2 function is required for sensation. To understand the mechanisms regulating TRPP2 subcellular distribution and activity, we performed in vivo structure-function-localization studies using C. elegans as a model system. Our data demonstrate that somatodendritic and ciliary targeting requires the transmembrane (TM) region of PKD-2and that the PKD-2 cytosolic termini regulate subcellular distribution and function. Within neuronal cell bodies, PKD-2 colocalizes with the OSM-9 TRP vanilloid (TRPV) channel, suggesting that these TRPP and TRPV channels may function in a common process. When human TRPP2/PC-2 is heterologously expressed in transgenic C. elegans animals, PC-2 does not visibly localize to cilia but does partially rescue pkd-2 null mutant defects, suggesting that human PC-2 and PKD-2 are functional homologs. PMID:18037411

  8. Calcium Influx of Mast Cells Is Inhibited by Aptamers Targeting the First Extracellular Domain of Orai1

    PubMed Central

    Sun, Renshan; Yang, Yongqiang; Ran, Xinze; Yang, Tao

    2016-01-01

    Using the systematic evolution of ligands by exponential enrichment (SELEX) method, we identified oligonucleotides that bind to the first extracellular domain of the Orai1 protein with high affinities and high specificities. These ligands were isolated from a random single-strand DNA (ssDNA) library with 40 randomized sequence positions, using synthesized peptides with amino acid sequences identical to the first extracellular domain of the Orai1 protein as the targets for SELEX selection. Seven aptamers were obtained after 12 rounds of SELEX. An enzyme-linked oligonucleotide assay (ELONA) was performed to determine the affinities of the aptamers. Aptamer Y1 had the highest affinity (Kd = 1.72×10−8 mol/L) and was selected for functional experiments in mast cells. Using LAD2 cells with the human high-affinity IgE receptor and Ca2+ release activation channel (CRAC), we demonstrated that Aptamer Y1 blocked IgE-mediated β-hexosaminidase release from cells triggered by biotin-IgE and streptavidin. A specific binding assay showed that Aptamer Y1 not only bound the Orai1 peptide specifically but also that the Orai1 peptide did not bind significantly to other random oligonucleotide molecules. Furthermore, Aptamer Y1 regulation of intracellular Ca2+ mobilization was investigated by probing intracellular Ca2+ with a Fluo-4-AM fluorescent probe. We found that Aptamer Y1 inhibits Ca2+ influx into antigen-activated mast cells. These results indicate that the target of Aptamer Y1 in the degranulation pathway is upstream of Ca2+ influx. Therefore, these oligonucleotide agents represent a novel class of CRAC inhibitors that may be useful in the fight against allergic diseases. PMID:27390850

  9. Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9

    PubMed Central

    2011-01-01

    proteins. Conclusion These findings support the identification of a class of ERK-targeted molecules that can induce apoptosis in transformed cells by inhibiting ERK-mediated phosphorylation and inactivation of pro-apoptotic proteins. PMID:21219631

  10. Targeting of a distinctive protein-serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor.

    PubMed Central

    Chinkers, M

    1994-01-01

    Protein kinase-related domains of unknown function are present in the JAK family of protein tyrosine kinases and in receptor/guanylyl cyclases. I used the yeast two-hybrid system to screen for proteins interacting with the kinase-like domain of the atrial natriuretic peptide (ANP) receptor/guanylyl cyclase. A yeast strain was constructed expressing a fusion of this kinase-like domain to the lexA DNA-binding domain and containing a HIS3 gene under the control of lexA upstream activating sequences. These yeast cells were transformed with a plasmid library of mouse embryo cDNA fragments fused to the VP16 transcriptional activation domain. Cells containing VP16-fusion proteins interacting with the lexA-kinase-like domain fusion protein were selected by growth in the absence of histidine. A partial-length cDNA clone isolated by using this approach encoded a protein that interacted specifically with the ANP-receptor protein kinase-like domain both in yeast cells and in vitro. Tissue-specific expression of a 2.2-kb mRNA hybridizing to this cDNA paralleled the known pattern of ANP-receptor mRNA expression. A full-length cDNA clone isolated from a rat lung library was predicted to encode a 55-kDa protein containing at its amino terminus a targeting domain that binds to the ANP-receptor kinase-like domain and containing at its carboxyl terminus a putative protein-serine phosphatase domain. This protein is a possible candidate for the phosphatase involved in desensitizing the ANP receptor. Targeting of regulatory proteins may be an important function of protein kinase-like domains. Images PMID:7972012

  11. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    SciTech Connect

    Yun, Sang-Moon; Moulaei, Tinoush; Lim, Dan; Bang, Jeong K.; Park, Jung-Eun; Shenoy, Shilpa R.; Liu, Fa; Kang, Young H.; Liao, Chenzhong; Soung, Nak-Kyun; Lee, Sunhee; Yoon, Do-Young; Lim, Yoongho; Lee, Dong-Hee; Otaka, Akira; Appella, Ettore; McMahon, James B.; Nicklaus, Marc C.; Burke, Jr., Terrence R.; Yaffe, Michael B.; Wlodawer, Alexander; Lee, Kyung S.

    2009-09-14

    Polo-like kinase-1 (Plk1) has a pivotal role in cell proliferation and is considered a potential target for anticancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interact with the PBD of human PLK1, but not those of the closely related PLK2 and PLK3. Comparative binding studies and analyses of crystal structures of the PLK1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high-affinity anchor, whereas the N-terminal residues are crucial for providing specificity and affinity to the interaction. Inhibition of the PLK1 PBD by phosphothreonine mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. The mode of interaction between the minimal peptide and PBD may provide a template for designing therapeutic agents that target PLK1.

  12. Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Lixin; Zhang, Miao; Yu, Ping

    2011-03-01

    We report imaging studies on site-specific peptide-targeting in tumor tissues using newly developed optical peptide probes and spectral-domain optical coherence tomography (SD-OCT). The system used two broadband superluminescent light emission diodes with different central wavelengths. An electro-optic modulation in the reference beam was used to get full-range deep imaging inside tumor tissues. The optical probes were based on Bombesin (BBN) that is a fourteen amino acid peptide. BBN has high binding affinity to gastrin-releasing peptide (GRP) receptors overexpressed on several human cancer cell lines. Fluorescence BBN probes were developed by conjugating the last eight residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), with Alexa Flour 680 or Alexa Fluor 750 dye molecules via amino acid linker -G-G-G. The SD-OCT imaging can identify normal tissue and tumor tissue through the difference in scattering coefficient, and trace the BBN conjugate probes through the absorption of the dye molecules using the twowavelength algorithm. We performed the specific uptake and receptor-blocking experiments of the optical BBN probes in severely compromised immunodeficient mouse model bearing human PC-3 prostate tumor xenografts. Tumor and muscle tissues were collected and used for SD-OCT imaging. The SD-OCT images showed fluorescence traces of the BBN probes in the peptide-targeted tumor tissues. Our results demonstrated that SD-OCT is a potential tool for preclinical and clinical early cancer detection.

  13. Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease.

    PubMed

    Kandalaft, Hiba; Hussack, Greg; Aubry, Annie; van Faassen, Henk; Guan, Yonghong; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Logan, Susan M; Tanha, Jamshid

    2015-10-01

    Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (K D = 3-6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease. PMID:25936376

  14. Monoclonal antibodies targeting ST2L Domain 1 or Domain 3 differentially modulate IL-33-induced cytokine release by human mast cell and basophilic cell lines.

    PubMed

    Fursov, Natalie; Lu, Jin; Healy, Catherine; Wu, Sheng-Jiun; Lacy, Eilyn; Filer, Angela; Li, Yawei; Liu, Changbao; Lamb, Roberta; Jones, Brian; Reddy, Ramachandra; Petley, Ted; Duffy, Karen

    2016-07-01

    The cell-surface receptor ST2L triggers cytokine release by immune cells upon exposure to its ligand IL-33. To study the effect of ST2L-dependent signaling in different cell types, we generated antagonist antibodies that bind different receptor domains. We sought to characterize their activities in vitro using both transfected cells as well as basophil and mast cell lines that endogenously express the ST2L receptor. We found that antibodies binding Domain 1 versus Domain 3 of ST2L differentially impacted IL-33-induced cytokine release by mast cells but not the basophilic cell line. Analysis of gene expression in each cell type in the presence and absence of the Domain 1 and Domain 3 mAbs revealed distinct signaling pathways triggered in response to IL-33 as well as to each anti-ST2L antibody. We concluded that perturbing the ST2L/IL-33/IL-1RAcP complex using antibodies directed to different domains of ST2L have a cell-type-specific impact on cytokine release, and may indicate the association of additional receptors to the ST2L/IL-33/IL-1RAcP complex in mast cells. PMID:27294560

  15. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin.

    PubMed

    Demartis, S; Tarli, L; Borsi, L; Zardi, L; Neri, D

    2001-04-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. PMID:11357506

  16. Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine.

    PubMed

    Liu, Shuo; Jiang, Ji; Li, Lin; Amato, Nicholas J; Wang, Zi; Wang, Yinsheng

    2015-10-01

    Arsenic toxicity is a serious public health problem worldwide that brings more than 100 million people into the risk of arsenic exposure from groundwater and food contamination. Although there is accumulating evidence linking arsenic exposure with aberrant cytosine methylation in the global genome or at specific genomic loci, very few have investigated the impact of arsenic on the oxidation of 5-methylcytosine (5-mC) mediated by the Ten-eleven translocation (Tet) family of proteins. Owing to the high binding affinity of As(III) toward cysteine residues, we reasoned that the highly conserved C3H-type zinc fingers situated in Tet proteins may constitute potential targets for arsenic binding. Herein, we found that arsenite could bind directly to the zinc fingers of Tet proteins in vitro and in cells, and this interaction substantially impaired the catalytic efficiency of Tet proteins in oxidizing 5-mC to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC). Treatments with arsenite also led to a dose-dependent decrease in the level of 5-hmC, but not 5-mC, in DNA isolated from HEK293T cells overexpressing the catalytic domain of any of the three Tet proteins and from mouse embryonic stem cells. Together, our study unveiled, for the first time, that arsenite could alter epigenetic signaling by targeting the zinc fingers of Tet proteins and perturbing the Tet-mediated oxidation of 5-mC in vitro and in cells. Our results offer important mechanistic understanding of arsenic epigenotoxicity and carcinogenesis in mammalian systems and may lead to novel approaches for the chemoprevention of arsenic toxicity. PMID:26355596

  17. Analysis of Usp DNA binding domain targeting reveals critical determinants of the ecdysone receptor complex interaction with the response element.

    PubMed

    Grad, I; Niedziela-Majka, A; Kochman, M; Ozyhar, A

    2001-07-01

    The steroid hormone, 20-hydroxyecdysone (20E), directs Drosophila metamorphosis via a heterodimeric receptor formed by two members of the nuclear hormone receptors superfamily, the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. Our previous study [Niedziela-Majka, A., Kochman, M., Ozyhar, A. (2000) Eur. J. Biochem. 267, 507-519] on EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) suggested that UspDBD may act as a specific anchor that preferentially binds the 5' half-site of the pseudo-palindromic response element from the hsp27 gene promoter and thus locates the heterocomplex in the defined orientation. Here, we analyzed in detail the determinants of the UspDBD interaction with the hsp27 element. The roles of individual amino acids in the putative DNA recognition alpha helix and the roles of the base pairs of the UspDBD target sequence have been probed by site-directed mutagenesis. The results show how the hsp27 element specifies UspDBD binding and thus the polar assembly of the UspDBD/EcRDBD heterocomplex. It is suggested how possible nucleotide deviations within the 5' half-site of the element may be used for the fine-tuning of the 20E-response element specificity and consequently the physiological response. PMID:11432742

  18. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    PubMed Central

    Yun, Sang-Moon; Moulaei, Tinoush; Lim, Dan; Bang, Jeong K.; Park, Jung-Eun; Shenoy, Shilpa R.; Liu, Fa; Kang, Young Hwi; Liao, Chenzhong; Soung, Nak-Kyun; Lee, Sunhee; Yoon, Do-Young; Lim, Yoongho; Lee, Dong-Hee; Otaka, Akira; Appella, Ettore; McMahon, James B.; Nicklaus, Marc C.; Burke, Terrence R.; Yaffe, Michael B.; Wlodawer, Alexander; Lee, Kyung S.

    2009-01-01

    Plk1 plays a pivotal role in cell proliferation and is considered an attractive target for anti-cancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope-binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interacted with the PBD of Plk1, but not the two closely-related Plk2 and Plk3. Comparative binding studies and analyses of crystal structures of the Plk1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high affinity anchor, whereas the N-terminal residues are critical for providing both specificity and affinity to the interaction. Inhibition of the Plk1 PBD by phospho-Thr mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. Thus, the mode of the minimal peptide and PBD interaction may provide a template for designing anti-Plk1 therapeutic agents. PMID:19597481

  19. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets.

    PubMed

    Zhang, Shoudong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1-1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1-1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci. PMID:26666962

  20. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    PubMed Central

    Zhang, Shoudong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci. PMID:26666962

  1. Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos

    PubMed Central

    Hauptmann, Giselbert; Söll, Iris; Krautz, Robert; Theopold, Ulrich

    2016-01-01

    To analyze gene regulatory networks active during embryonic development and organogenesis it is essential to precisely define how the different genes are expressed in spatial relation to each other in situ. Multi-target chromogenic whole-mount in situ hybridization (MC-WISH) greatly facilitates the instant comparison of gene expression patterns, as it allows distinctive visualization of different mRNA species in contrasting colors in the same sample specimen. This provides the possibility to relate gene expression domains topographically to each other with high accuracy and to define unique and overlapping expression sites. In the presented protocol, we describe a MC-WISH procedure for comparing mRNA expression patterns of different genes in Drosophila embryos. Up to three RNA probes, each specific for another gene and labeled by a different hapten, are simultaneously hybridized to the embryo samples and subsequently detected by alkaline phosphatase-based colorimetric immunohistochemistry. The described procedure is detailed here for Drosophila, but works equally well with zebrafish embryos. PMID:26862978

  2. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition. PMID:26435515

  3. The interaction between the pleckstrin homology domain of ceramide kinase and phosphatidylinositol 4,5-bisphosphate regulates the plasma membrane targeting and ceramide 1-phosphate levels

    SciTech Connect

    Kim, Tack-Joong; Mitsutake, Susumu; Igarashi, Yasuyuki . E-mail: yigarash@pharm.hokudai.ac.jp

    2006-04-07

    Ceramide kinase (CERK) converts ceramide to ceramide-1-phosphate (C1P), which has recently emerged as a new bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. Although the PH domain was previously demonstrated to be an important domain for the subcellular localization of CERK, the precise properties of this domain remained unclear. In this study, we reveal that the PH domain of CERK exhibits high affinity for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P{sub 2}), among other lipids. Furthermore, in COS7 cells, GFP-fused CERK translocated rapidly from the cytoplasm to the plasma membrane in response to hyper-osmotic stress, which is known to increase the intracellular PI(4,5)P{sub 2} levels, whereas a PH domain deletion mutant did not. Additionally, in [{sup 32}P]orthophosphate-labeled COS7 cells, the translocation of CERK to the plasma membrane induced a 2.8-fold increase in C1P levels. The study presented here provides insight into the crucial role of the CERK-PH domain in plasma membrane targeting, through its binding to PI(4,5)P{sub 2}, and subsequent induction of C1P production in the vicinity of the membrane.

  4. Molecular design and structural optimization of potent peptide hydroxamate inhibitors to selectively target human ADAM metallopeptidase domain 17.

    PubMed

    Wang, Zhengting; Wang, Lei; Fan, Rong; Zhou, Jie; Zhong, Jie

    2016-04-01

    Human ADAMs (a disintegrin and metalloproteinases) have been established as an attractive therapeutic target of inflammatory disorders such as inflammatory bowel disease (IBD). The ADAM metallopeptidase domain 17 (ADAM17 or TACE) and its close relative ADAM10 are two of the most important ADAM members that share high conservation in sequence, structure and function, but exhibit subtle difference in regulation of downstream cell signaling events. Here, we described a systematic protocol that combined computational modeling and experimental assay to discover novel peptide hydroxamate derivatives as potent and selective inhibitors for ADAM17 over ADAM10. In the procedure, a virtual combinatorial library of peptide hydroxamate compounds was generated by exploiting intermolecular interactions involved in crystal and modeled structures. The library was examined in detail to identify few promising candidates with both high affinity to ADAM17 and low affinity to ADAM10, which were then tested in vitro with enzyme inhibition assay. Consequently, two peptide hydroxamates Hxm-Phe-Ser-Asn and Hxm-Phe-Arg-Gln were found to exhibit potent inhibition against ADAM17 (Ki=92 and 47nM, respectively) and strong selectivity for ADAM17 over ADAM10 (∼7-fold and ∼5-fold, S=0.86 and 0.71, respectively). The structural basis and energetic property of ADAM17 and ADAM10 interactions with the designed inhibitors were also investigated systematically. It is found that the exquisite network of nonbonded interactions involving the side chains of peptide hydroxamates is primarily responsible for inhibitor selectivity, while the coordination interactions and hydrogen bonds formed by the hydroxamate moiety and backbone of peptide hydroxamates confer high affinity to inhibitor binding. PMID:26709988

  5. Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation.

    PubMed

    Myrianthopoulos, Vassilios; Cartron, Pierre Francois; Liutkevičiūtė, Zita; Klimašauskas, Saulius; Matulis, Daumantas; Bronner, Christian; Martinet, Nadine; Mikros, Emmanuel

    2016-05-23

    Ubiquitin-like protein UHRF1 that contains PHD and RING finger domain 1 is a key epigenetic protein enabling maintenance of the DNA methylation status through replication. A tandem virtual screening approach was implemented for identifying small molecules able to bind the 5-methylcytosine pocket of UHRF1 and inhibit its functionality. The NCI/DTP small molecules Repository was screened in silico by a combined protocol implementing structure-based and ligand-based methodologies. Consensus ranking was utilized to select a set of 27 top-ranked compounds that were subsequently evaluated experimentally in a stepwise manner for their ability to demethylate DNA in cellulo using PCR-MS and HPLC-MS/MS. The most active molecules were further assessed in a cell-based setting by the Proximity Ligation In Situ Assay and the ApoTome technology. Both evaluations confirmed that the DNMT1/UHRF1 interactions were significantly reduced after 4 h of incubation of U251 glioma cells with the most potent compound NSC232003, showing a 50% interaction inhibition at 15 μM as well as induction of global DNA cytosine demethylation as measured by ELISA. This is the first report of a chemical tool that targets UHRF1 and modulates DNA methylation in a cell context by potentially disrupting DNMT1/UHRF1 interactions. Compound NSC232003, a uracil derivative freely available by the NCI/DTP Repository, provides a versatile lead for developing highly potent and cell-permeable UHRF1 inhibitors that will enable dissection of DNA methylation inheritance. PMID:27049577

  6. Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe

    PubMed Central

    Li, John J.; Cao, Chune; Fixsen, Sarah M.; Young, Janet M.; Bando, Hisanori; Elde, Nels C.; Katsuma, Susumu; Dever, Thomas E.; Sicheri, Frank

    2015-01-01

    Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKRKD) but not eIF2α. The PKRKD–PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the “eIF2α kinase C-lobe mimic” (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKRKD. We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)–like eIF2α kinase. PMID:26216977

  7. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    SciTech Connect

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A.

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  8. Enhancement of hERG channel activity by scFv antibody fragments targeted to the PAS domain.

    PubMed

    Harley, Carol A; Starek, Greg; Jones, David K; Fernandes, Andreia S; Robertson, Gail A; Morais-Cabral, João H

    2016-08-30

    The human human ether-à-go-go-related gene (hERG) potassium channel plays a critical role in the repolarization of the cardiac action potential. Changes in hERG channel function underlie long QT syndrome (LQTS) and are associated with cardiac arrhythmias and sudden death. A striking feature of this channel and KCNH channels in general is the presence of an N-terminal Per-Arnt-Sim (PAS) domain. In other proteins, PAS domains bind ligands and modulate effector domains. However, the PAS domains of KCNH channels are orphan receptors. We have uncovered a family of positive modulators of hERG that specifically bind to the PAS domain. We generated two single-chain variable fragments (scFvs) that recognize different epitopes on the PAS domain. Both antibodies increase the rate of deactivation but have different effects on channel activation and inactivation. Importantly, we show that both antibodies, on binding to the PAS domain, increase the total amount of current that permeates the channel during a ventricular action potential and significantly reduce the action potential duration recorded in human cardiomyocytes. Overall, these molecules constitute a previously unidentified class of positive modulators and establish that allosteric modulation of hERG channel function through ligand binding to the PAS domain can be attained. PMID:27516548

  9. The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members

    PubMed Central

    Verger, Alexis; Baert, Jean-Luc; Verreman, Kathye; Dewitte, Frédérique; Ferreira, Elisabeth; Lens, Zoé; de Launoit, Yvan; Villeret, Vincent; Monté, Didier

    2013-01-01

    PEA3, ERM and ER81 belong to the PEA3 subfamily of Ets transcription factors and play important roles in a number of tissue-specific processes. Transcriptional activation by PEA3 subfamily factors requires their characteristic amino-terminal acidic transactivation domain (TAD). However, the cellular targets of this domain remain largely unknown. Using ERM as a prototype, we show that the minimal N-terminal TAD activates transcription by contacting the activator interacting domain (ACID)/Prostate tumor overexpressed protein 1 (PTOV) domain of the Mediator complex subunit MED25. We further show that depletion of MED25 disrupts the association of ERM with the Mediator in vitro. Small interfering RNA-mediated knockdown of MED25 as well as the overexpression of MED25-ACID and MED25-VWA domains efficiently inhibit the transcriptional activity of ERM. Moreover, mutations of amino acid residues that prevent binding of MED25 to ERM strongly reduce transactivation by ERM. Finally we show that siRNA depletion of MED25 diminishes PEA3-driven expression of MMP-1 and Mediator recruitment. In conclusion, this study identifies the PEA3 group members as the first human transcriptional factors that interact with the MED25 ACID/PTOV domain and establishes MED25 as a crucial transducer of their transactivation potential. PMID:23531547

  10. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2

    PubMed Central

    Lavik, Andrew R.; Greenberg, Edward; Choudhary, Yuvraj; Smith, Mitchell R.; McColl, Karen S.; Pink, John; Reu, Frederic J.; Matsuyama, Shigemi; Distelhorst, Clark W.

    2015-01-01

    Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP3Rs), inhibiting pro-apoptotic Ca2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP3R interaction and thus inducing Ca2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton’s tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP3R interaction. PMID:26317541

  11. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2.

    PubMed

    Lavik, Andrew R; Zhong, Fei; Chang, Ming-Jin; Greenberg, Edward; Choudhary, Yuvraj; Smith, Mitchell R; McColl, Karen S; Pink, John; Reu, Frederic J; Matsuyama, Shigemi; Distelhorst, Clark W

    2015-09-29

    Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP3Rs), inhibiting pro-apoptotic Ca2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP3R interaction and thus inducing Ca2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton's tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP3R interaction. PMID:26317541

  12. The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis.

    PubMed

    Allen, Mark D; Freund, Stefan M V; Zinzalla, Giovanna; Bycroft, Mark

    2015-07-01

    SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins. PMID:26073604

  13. The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis

    PubMed Central

    Allen, Mark D.; Freund, Stefan M.V.; Zinzalla, Giovanna; Bycroft, Mark

    2015-01-01

    Summary SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins. PMID:26073604

  14. Sub-Domains of Ricin’s B Subunit as Targets of Toxin Neutralizing and Non-Neutralizing Monoclonal Antibodies

    PubMed Central

    Yermakova, Anastasiya; Vance, David J.; Mantis, Nicholas J.

    2012-01-01

    The B subunit (RTB) of ricin toxin is a galactose (Gal)−/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs). All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicty assay and to partially (or completely) block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB’s high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB’s sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin. PMID:22984492

  15. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor.

    PubMed

    Sahu, Sarata C; Swanson, Kurt A; Kang, Richard S; Huang, Kai; Brubaker, Kurt; Ratcliff, Kathleen; Radhakrishnan, Ishwar

    2008-02-01

    The recruitment of chromatin-modifying coregulator complexes by transcription factors to specific sites of the genome constitutes an important step in many eukaryotic transcriptional regulatory pathways. The histone deacetylase-associated Sin3 corepressor complex is recruited by a large and diverse array of transcription factors through direct interactions with the N-terminal PAH domains of Sin3. Here, we describe the solution structures of the mSin3A PAH1 domain in the apo form and when bound to SAP25, a component of the corepressor complex. Unlike the apo-mSin3A PAH2 domain, the apo-PAH1 domain is conformationally pure and is largely, but not completely, folded. Portions of the interacting segments of both mSin3A PAH1 and SAP25 undergo folding upon complex formation. SAP25 binds through an amphipathic helix to a predominantly hydrophobic cleft on the surface of PAH1. Remarkably, the orientation of the helix is reversed compared to that adopted by NRSF, a transcription factor unrelated to SAP25, upon binding to the mSin3B PAH1 domain. The reversal in helical orientations is correlated with a reversal in the underlying PAH1-interaction motifs, echoing a theme previously described for the mSin3A PAH2 domain. The definition of these so-called type I and type II PAH1-interaction motifs has allowed us to predict the precise location of these motifs within previously experimentally characterized PAH1 binders. Finally, we explore the specificity determinants of protein-protein interactions involving the PAH1 and PAH2 domains. These studies reveal that even conservative replacements of PAH2 residues with equivalent PAH1 residues are sufficient to alter the affinity and specificity of these protein-protein interactions dramatically. PMID:18089292

  16. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng; Sun, Ying-Pu

    2016-06-01

    The recognition and association between Ca(2+)/calmodulin-activated protein kinase II-α (CaMKIIα) and multi-PDZ domain protein 1 (MUPP1) plays an important role in sperm acrosome reaction and human fertilization, which is mediated by the binding of CaMKIIα's C-terminal tail to one or more PDZ domains of the scaffolding protein MUPP1. In this study, we attempt to identify the CaMKIIα-interacting MUPP1 PDZ domains and to design peptide ligands that can potently target and then competitively disrupt such interaction. Here, a synthetic biology approach was proposed to systematically characterize the structural basis, energetic property, dynamic behavior and biological implication underlying the intermolecular interactions between the C-terminal peptide of CaMKIIα and all the 13 PDZ domains of MUPP1. These domains can be grouped into four clusters in terms of their sequence, structure and physiochemical profile; different clusters appear to recognize different classes of PDZ-binding motifs. The cluster 3 includes two members, i.e. MUPP1 PDZ 5 and 11 domains, which were suggested to bind class II motif Φ-X-Φ(-COOH) of the C-terminal peptide SGAPSV(-COOH) of CaMKIIα. Subsequently, the two domains were experimentally measured as the moderate- and high-affinity binders of the peptide by using fluorescence titration (dissociation constants K d = 25.2 ± 4.6 and 0.47 ± 0.08 µM for peptide binding to PDZ 5 and 11, respectively), which was in line with theoretical prediction (binding free energies ΔG total = -7.6 and -9.2 kcal/mol for peptide binding to PDZ 5 and 11, respectively). A systematic mutation of SGAPSV(-COOH) residues suggested few favorable amino acids at different residue positions of the peptide, which were then combined to generate a number of potent peptide mutants for PDZ 11 domain. Consequently, two peptides (SIAPNV(-COOH) and SIVMNV(-COOH)) were identified to have considerably improved affinity with K d increase by ~tenfold relative to

  17. Essential Role of the EF-hand Domain in Targeting Sperm Phospholipase Cζ to Membrane Phosphatidylinositol 4,5-Bisphosphate (PIP2).

    PubMed

    Nomikos, Michail; Sanders, Jessica R; Parthimos, Dimitris; Buntwal, Luke; Calver, Brian L; Stamatiadis, Panagiotis; Smith, Adrian; Clue, Matthew; Sideratou, Zili; Swann, Karl; Lai, F Anthony

    2015-12-01

    Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca(2+) oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca(2+) oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca(2+) oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca(2+) sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca(2+) frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca(2+) oscillation inducing activity. PMID

  18. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin.

    PubMed Central

    Schäfer, W; Stroh, A; Berghöfer, S; Seiler, J; Vey, M; Kruse, M L; Kern, H F; Klenk, H D; Garten, W

    1995-01-01

    Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface. Images PMID:7781597

  19. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies. PMID:25233799

  20. Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein

    PubMed Central

    Kiss, Katalin; Kucsma, Nora; Brozik, Anna; Tusnady, Gabor E.; Bergam, Ptissam; vanNiel, Guillaume; Szakacs, Gergely

    2015-01-01

    ATP-binding cassette, subfamily B (ABCB) 6 is a homodimeric ATP-binding cassette (ABC) transporter present in the plasma membrane and in the intracellular organelles. The intracellular localization of ABCB6 has been a matter of debate, as it has been suggested to reside in the mitochondria and the endo-lysosomal system. Using a variety of imaging modalities, including confocal microscopy and EM, we confirm the endo-lysosomal localization of ABCB6 and show that the protein is internalized from the plasma membrane through endocytosis, to be distributed to multivesicular bodies and lysosomes. In addition to the canonical nucleotide-binding domain (NBD) and transmembrane domain (TMD), ABCB6 contains a unique N-terminal TMD (TMD0), which does not show sequence homology to known proteins. We investigated the functional role of these domains through the molecular dissection of ABCB6. We find that the folding, dimerization, membrane insertion and ATP binding/hydrolysis of the core–ABCB6 complex devoid of TMD0 are preserved. However, in contrast with the full-length transporter, the core–ABCB6 construct is retained at the plasma membrane and does not appear in Rab5-positive endosomes. TMD0 is directly targeted to the lysosomes, without passage to the plasma membrane. Collectively, our results reveal that TMD0 represents an independently folding unit, which is dispensable for catalysis, but has a crucial role in the lysosomal targeting of ABCB6. PMID:25627919

  1. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target.

    PubMed

    Tomecki, Rafal; Drazkowska, Karolina; Kucinski, Iwo; Stodus, Krystian; Szczesny, Roman J; Gruchota, Jakub; Owczarek, Ewelina P; Kalisiak, Katarzyna; Dziembowski, Andrzej

    2014-01-01

    hDIS3 is a mainly nuclear, catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) active domains. Mutations in hDIS3 have been found in ∼10% of patients with multiple myeloma (MM). Here, we show that these mutations interfere with hDIS3 exonucleolytic activity. Yeast harboring corresponding mutations in DIS3 show growth inhibition and changes in nuclear RNA metabolism typical for exosome dysfunction. Construction of a conditional DIS3 knockout in the chicken DT40 cell line revealed that DIS3 is essential for cell survival, indicating that its function cannot be replaced by other exosome-associated nucleases: hDIS3L and hRRP6. Moreover, HEK293-derived cells, in which depletion of endogenous wild-type hDIS3 was complemented with exogenously expressed MM hDIS3 mutants, proliferate at a slower rate and exhibit aberrant RNA metabolism. Importantly, MM mutations are synthetically lethal with the hDIS3 PIN domain catalytic mutation both in yeast and human cells. Since mutations in PIN domain alone have little effect on cell physiology, our results predict the hDIS3 PIN domain as a potential drug target for MM patients with hDIS3 mutations. It is an interesting example of intramolecular synthetic lethality with putative therapeutic potential in humans. PMID:24150935

  2. Expression and purification of an adenylation domain from a eukaryotic nonribosomal peptide synthetase: using structural genomics tools for a challenging target.

    PubMed

    Lee, T Verne; Lott, J Shaun; Johnson, Richard D; Arcus, Vickery L

    2010-12-01

    Nonribosomal peptide synthetases (NRPSs) are large multimodular and multidomain enzymes that are involved in synthesising an array of molecules that are important in human and animal health. NRPSs are found in both bacteria and fungi but most of the research to date has focused on the bacterial enzymes. This is largely due to the technical challenges in producing active fungal NRPSs, which stem from their large size and multidomain nature. In order to target fungal NRPS domains for biochemical and structural characterisation, we tackled this challenge by using the cloning and expression tools of structural genomics to screen the many variables that can influence the expression and purification of proteins. Using these tools we have screened 32 constructs containing 16 different fungal NRPS domains or domain combinations for expression and solubility. Two of these yielded soluble protein with one, the third adenylation domain of the SidN NRPS (SidNA3) from the grass endophyte Neotyphodium lolii, being tractable for purification using Ni-affinity resin. The initial purified protein exhibited poor solution behaviour but optimisation of the expression construct and the buffer conditions used for purification, resulted in stable recombinant protein suitable for biochemical characterisation, crystallisation and structure determination. PMID:20716446

  3. The FF4 and FF5 Domains of Transcription Elongation Regulator 1 (TCERG1) Target Proteins to the Periphery of Speckles*

    PubMed Central

    Sánchez-Hernández, Noemí; Ruiz, Lidia; Sánchez-Álvarez, Miguel; Montes, Marta; Macias, Maria J.; Hernández-Munain, Cristina; Suñé, Carlos

    2012-01-01

    Transcription elongation regulator 1 (TCERG1) is a human factor implicated in interactions with the spliceosome as a coupler of transcription and splicing. The protein is highly concentrated at the interface between speckles (the compartments enriched in splicing factors) and nearby transcription sites. Here, we identified the FF4 and FF5 domains of TCERG1 as the amino acid sequences required to direct this protein to the periphery of nuclear speckles, where coordinated transcription/RNA processing events occur. Consistent with our localization data, we observed that the FF4 and FF5 pair is required to fold in solution, thus suggesting that the pair forms a functional unit. When added to heterologous proteins, the FF4-FF5 pair is capable of targeting the resulting fusion protein to speckles. This represents, to our knowledge, the first description of a targeting signal for the localization of proteins to sites peripheral to speckled domains. Moreover, this “speckle periphery-targeting signal” contributes to the regulation of alternative splicing decisions of a reporter pre-mRNA in vivo. PMID:22453921

  4. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  5. Reciprocal regulation between O-GlcNAcylation and tribbles pseudokinase 2 (TRIB2) maintains transformative phenotypes in liver cancer cells.

    PubMed

    Yao, Bingjie; Xu, Yanli; Wang, Jiayi; Qiao, Yongxia; Zhang, Yue; Zhang, Xiao; Chen, Yan; Wu, Qi; Zhao, Yinghui; Zhu, Guoqing; Sun, Fenyong; Li, Zhi; Yuan, Hong

    2016-11-01

    TRIB2 has been identified as an onco-protein, and O-GlcNAcylation of target proteins has been reported to stimulate transformative phenotypes in liver cancer cells. However, the relationships between TRIB2 and O-GlcNAcylation are still unknown. The aim of this study was to investigate whether and how O-GlcNAcylation and TRIB2 regulate each other. We found that stimulation of O-GlcNAcylation elevates TRIB2 by enhancing its protein stability. TRIB2 can be O-GlcNAcylated by the hexosamine biosynthesis pathway (HBP). Also, O-GlcNAcylation boosting of transformative phenotypes of liver cancer cells might occur in a TRIB2-dependent manner. Interestingly, TRIB2 stimulated the metabolism of HBP, demonstrating that TRIB2 has positive feedback on O-GlcNAcylation. Notably, TRIB2 was found to maintain the stability of guanylate cyclase 1 alpha 3 (GUCY1A3), a key component of HBP, by interacting GUCY1A3 and reducing its ubiquitination. Importantly, TRIB2-dependent regulation of metabolism, transformative phenotypes, and O-GlcNAcylation all rely on GUCY1A3. Mouse experiments demonstrate that O-GlcNAcylation of TRIB2 is much higher in the livers of diabetic mice compared to control mice, suggesting that O-GlcNAcylation of TRIB2 might be critical for diabetes-associated liver cancer. Collectively, we have uncovered a positive auto-regulatory feedback between O-GlcNAcylation and TRIB2, which might be regarded as a promising therapeutic target for liver cancer. PMID:27515988

  6. Targeting to Transcriptionally Active Loci by the Hydrophilic N-Terminal Domain of Drosophila DNA Topoisomerase I

    PubMed Central

    Shaiu, Wen-Ling; Hsieh, Tao-shih

    1998-01-01

    DNA topoisomerase I (topo I) from Drosophila melanogaster contains a nonconserved, hydrophilic N-terminal domain of about 430 residues upstream of the conserved core domains. Deletion of this N terminus did not affect the catalytic activity of topo I, while further removal of sequences into the conserved regions inactivated its enzymatic activity. We have investigated the cellular function of the Drosophila topo I N-terminal domain with top1-lacZ transgenes. There was at least one putative nuclear localization signal within the first 315 residues of the N-terminal domain that allows efficient import of the large chimeric proteins into Drosophila nuclei. The top1-lacZ fusion proteins colocalized with RNA polymerase II (pol II) at developmental puffs on the polytene chromosomes. Either topo I or the top1-lacZ fusion protein was colocalized with RNA pol II in some but not all of the nonpuff, interband loci. However, the fusion proteins as well as RNA pol II were recruited to heat shock puffs during heat treatment, and they returned to the developmental puffs after recovery from heat shock. By immunoprecipitation, we showed that two of the largest subunits of RNA pol II coprecipitated with the N-terminal 315-residue fusion protein by using antibodies against β-galactosidase. These data suggest that the topo I fusion protein can be localized to the transcriptional complex on chromatin and that the N-terminal 315 residues were sufficient to respond to cellular processes, especially during the reprogramming of gene expression. PMID:9632819

  7. Protein phosphatase PP1/GLC7 interaction domain in yeast eIF2γ bypasses targeting subunit requirement for eIF2α dephosphorylation.

    PubMed

    Rojas, Margarito; Gingras, Anne-Claude; Dever, Thomas E

    2014-04-01

    Whereas the protein kinases GCN2, HRI, PKR, and PERK specifically phosphorylate eukaryotic translation initiation factor 2 (eIF2α) on Ser51 to regulate global and gene-specific mRNA translation, eIF2α is dephosphorylated by the broadly acting serine/threonine protein phosphatase 1 (PP1). In mammalian cells, the regulatory subunits GADD34 and CReP target PP1 to dephosphorylate eIF2α; however, as there are no homologs of these targeting subunits in yeast, it is unclear how GLC7, the functional homolog of PP1 in yeast, is recruited to dephosphorylate eIF2α. Here, we show that a novel N-terminal extension on yeast eIF2γ contains a PP1-binding motif (KKVAF) that enables eIF2γ to pull down GLC7 and target it to dephosphorylate eIF2α. Truncation or point mutations designed to eliminate the KKVAF motif in eIF2γ impair eIF2α dephosphorylation in vivo and in vitro and enhance expression of GCN4. Replacement of the N terminus of eIF2γ with the GLC7-binding domain from GAC1 or fusion of heterologous dimerization domains to eIF2γ and GLC7, respectively, maintained eIF2α phosphorylation at basal levels. Taken together, these results indicate that, in contrast to the paradigm of distinct PP1-targeting or regulatory subunits, the unique N terminus of yeast eIF2γ functions in cis to target GLC7 to dephosphorylate eIF2α. PMID:24706853

  8. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore.

    PubMed

    Marquardt, Joseph R; Perkins, Jennifer L; Beuoy, Kyle J; Fisk, Harold A

    2016-07-12

    Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus. PMID:27339139

  9. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    NASA Astrophysics Data System (ADS)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  10. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome

    PubMed Central

    Luo, Xi; Wasilko, David J.; Liu, Yao; Sun, Jiayi; Wu, Xiaochun; Luo, Zhao-Qing; Mao, Yuxin

    2015-01-01

    The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells. PMID

  11. Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines.

    PubMed

    Jiang, Shibo; Lu, Lu; Liu, Qi; Xu, Wei; Du, Lanying

    2012-08-01

    A number of emerging and re-emerging viruses have caused epidemics or pandemics of infectious diseases leading to major devastations throughout human history. Therefore, developing effective and safe vaccines against these viruses is clearly important for the protection of at-risk populations. Our previous studies have shown that the receptor-binding domain (RBD) in the spike protein of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is a key target for the development of SARS vaccines. In this review, we highlight some key advances in the development of antiviral vaccines targeting the RBDs of spike proteins of emerging and re-emerging viruses, using SARS-CoV, influenza virus, Hendra virus (HeV) and Nipah virus (NiV) as examples. PMID:26038424

  12. DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference

    PubMed Central

    2015-01-01

    Background The identification of drug-target interactions (DTI) is a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Algorithms may aim to design new therapies based on a single approved drug or a combination of them. Recently, recommendation methods relying on network-based inference in connection with knowledge coming from the specific domain have been proposed. Description Here we propose a web-based interface to the DT-Hybrid algorithm, which applies a recommendation technique based on bipartite network projection implementing resources transfer within the network. This technique combined with domain-specific knowledge expressing drugs and targets similarity is used to compute recommendations for each drug. Our web interface allows the users: (i) to browse all the predictions inferred by the algorithm; (ii) to upload their custom data on which they wish to obtain a prediction through a DT-Hybrid based pipeline; (iii) to help in the early stages of drug combinations, repositioning, substitution, or resistance studies by finding drugs that can act simultaneously on multiple targets in a multi-pathway environment. Our system is periodically synchronized with DrugBank and updated accordingly. The website is free, open to all users, and available at http://alpha.dmi.unict.it/dtweb/. Conclusions Our web interface allows users to search and visualize information on drugs and targets eventually providing their own data to compute a list of predictions. The user can visualize information about the characteristics of each drug, a list of predicted and validated targets, associated enzymes and transporters. A table containing key information and GO classification allows the users to perform their own analysis on our data. A special interface for data submission allows the execution of a pipeline, based on DT-Hybrid, predicting new targets with the corresponding p

  13. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence

    PubMed Central

    Heintz, Udo; Schlichting, Ilme

    2016-01-01

    The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics. DOI: http://dx.doi.org/10.7554/eLife.11860.001 PMID:26754770

  14. Interference with RUNX1/ETO Leukemogenic Function by Cell-Penetrating Peptides Targeting the NHR2 Oligomerization Domain

    PubMed Central

    Bartel, Yvonne; Grez, Manuel; Wichmann, Christian

    2013-01-01

    The leukemia-associated fusion protein RUNX1/ETO is generated by the chromosomal translocation t(8;21) which appears in about 12% of all de novo acute myeloid leukemias (AMLs). Essential for the oncogenic potential of RUNX1/ETO is the oligomerization of the chimeric fusion protein through the nervy homology region 2 (NHR2) within ETO. In previous studies, we have shown that the intracellular expression of peptides containing the NHR2 domain inhibits RUNX1/ETO oligomerization, thereby preventing cell proliferation and inducing differentiation of RUNX1/ETO transformed cells. Here, we show that introduction of a recombinant TAT-NHR2 fusion polypeptide into the RUNX1/ETO growth-dependent myeloid cell line Kasumi-1 results in decreased cell proliferation and increased numbers of apoptotic cells. This effect was highly specific and mediated by binding the TAT-NHR2 peptide to ETO sequences, as TAT-polypeptides containing the oligomerization domain of BCR did not affect cell proliferation or apoptosis in Kasumi-1 cells. Thus, the selective interference with NHR2-mediated oligomerization by peptides represents a challenging but promising strategy for the inhibition of the leukemogenic potential of RUNX1/ETO in t(8;21)-positive leukemia. PMID:23865046

  15. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization

    PubMed Central

    Sugio, Akiko; MacLean, Allyson M; Hogenhout, Saskia A

    2014-01-01

    Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei.To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants.SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11.Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants. PMID:24552625

  16. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization.

    PubMed

    Sugio, Akiko; MacLean, Allyson M; Hogenhout, Saskia A

    2014-05-01

    Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei. To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants. SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11. Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants. PMID:24552625

  17. Resveratrol induces apoptosis by directly targeting Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1)

    PubMed Central

    Oi, Naomi; Yuan, Jian; Malakhova, Margarita; Luo, Kuntian; Li, Yunhui; Ryu, Joohyun; Zhang, Lei; Bode, Ann M.; Xu, Zengguang; Li, Yan; Lou, Zhenkun; Dong, Zigang

    2014-01-01

    Resveratrol possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol (RSVL)-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53 and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1. PMID:24998844

  18. Preferential entry of botulinum neurotoxin A Hc domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine.

    PubMed

    Couesnon, Aurélie; Molgó, Jordi; Connan, Chloé; Popoff, Michel R

    2012-01-01

    Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain) which interacts with cell surface receptor(s). We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90-120 min) in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined. PMID:22438808

  19. Testing ERBB2 p.L755S kinase domain mutation as a druggable target in a patient with advanced colorectal cancer

    PubMed Central

    Aung, Kyaw L.; Stockley, Tracy L.; Serra, Stefano; Kamel-Reid, Suzanne; Bedard, Philippe L.; Siu, Lillian L.

    2016-01-01

    Recent advances in molecular profiling technologies allow genetic driver events in individual tumors to be identified. The hypothesis behind this ongoing molecular profiling effort is that improvement in patients’ clinical outcomes will be achieved by inhibiting these discovered genetic driver events with matched targeted drugs. This hypothesis is currently being tested in oncology clinics with variable early results. Herein, we present our experience with a case of advanced colorectal cancer (CRC) with an ERBB2 p.L755S kinase domain mutation, a BRAF p.N581S mutation, and an APC p.Q1429fs mutation, together with a brief review of the literature describing the biological and clinical significance of ERRB2 kinase domain mutations in CRC. The patient was treated with trastuzumab combined with infusional 5-fluorouracil and leucovorin based on the presence of ERBB2 p.L755S kinase mutation in the tumor and based on the available evidence at the time when standard treatment options had been exhausted. However, there was no therapeutic response illustrating the challenges we face in managing patients with potentially targetable mutations where results from functional in vitro and in vivo studies lag behind those of genomic sequencing studies. Also lagging behind are clinical utility data from oncology clinics, hampering rapid therapeutic advances. Our case also highlights the logistical barriers associated with getting the most optimal therapeutic agents to the right patient in this era of personalized therapeutics based on cancer genomics. PMID:27626067

  20. Testing ERBB2 p.L755S kinase domain mutation as a druggable target in a patient with advanced colorectal cancer.

    PubMed

    Aung, Kyaw L; Stockley, Tracy L; Serra, Stefano; Kamel-Reid, Suzanne; Bedard, Philippe L; Siu, Lillian L

    2016-09-01

    Recent advances in molecular profiling technologies allow genetic driver events in individual tumors to be identified. The hypothesis behind this ongoing molecular profiling effort is that improvement in patients' clinical outcomes will be achieved by inhibiting these discovered genetic driver events with matched targeted drugs. This hypothesis is currently being tested in oncology clinics with variable early results. Herein, we present our experience with a case of advanced colorectal cancer (CRC) with an ERBB2 p.L755S kinase domain mutation, a BRAF p.N581S mutation, and an APC p.Q1429fs mutation, together with a brief review of the literature describing the biological and clinical significance of ERRB2 kinase domain mutations in CRC. The patient was treated with trastuzumab combined with infusional 5-fluorouracil and leucovorin based on the presence of ERBB2 p.L755S kinase mutation in the tumor and based on the available evidence at the time when standard treatment options had been exhausted. However, there was no therapeutic response illustrating the challenges we face in managing patients with potentially targetable mutations where results from functional in vitro and in vivo studies lag behind those of genomic sequencing studies. Also lagging behind are clinical utility data from oncology clinics, hampering rapid therapeutic advances. Our case also highlights the logistical barriers associated with getting the most optimal therapeutic agents to the right patient in this era of personalized therapeutics based on cancer genomics. PMID:27626067

  1. The N-terminal 209-aa domain of high molecular- weight 4.1R isoforms abrogates 4.1R targeting to the nucleus

    PubMed Central

    Luque, Carlos M.; Lallena, María-José; Pérez-Ferreiro, Carmen M.; de Isidro, Yolanda; De Cárcer, Guillermo; Alonso, Miguel A.; Correas, Isabel

    1999-01-01

    An extensive repertoire of protein 4.1R isoforms is predominantly generated by alternative pre-mRNA splicing and differential usage of two translation initiation sites. The usage of the most upstream ATG (ATG-1) generates isoforms containing N-terminal extensions of up to 209 aa compared with those translated from the downstream ATG (ATG-2). To characterize nonerythroid 4.1R proteins translated from ATG-1 and analyze their intracellular localization, we cloned 4.1R cDNAs containing this translation initiation site. Six different clones were isolated from the nucleated human MOLT-4 T-cell line by reverse transcriptase–PCR techniques. Transient expression of the six ATG-1-translated 4.1R isoforms tagged with a c-Myc epitope revealed that all of them predominantly distributed to the plasma membrane and the endoplasmic reticulum. Staining of MOLT-4 cell plasma membranes but not nuclei was also observed by immunofluorescence microscopy by using an antibody specific to the N-terminal extension. Consistent with this, the antibody reacted with a major endogenous protein of ≈145 kDa present in nonnuclear but absent from nuclear fractions prepared from MOLT-4 cells. Because these data suggested that ATG-1-translated 4.1R isoforms were predominantly excluded from the nucleus, we fused the 209-aa domain to nuclear 4.1R isoforms encoded from ATG-2 and observed that this domain inhibited their nuclear targeting. All these results indicate that the N-terminal domain of ATG-1-translated 4.1R isoforms plays a pivotal role in differential targeting of proteins 4.1R. PMID:10611314

  2. Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain

    SciTech Connect

    Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami; Ohnishi, Jun; Ohki, Takehiro; Tsuda, Shinya

    2009-08-01

    The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.

  3. Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling

    PubMed Central

    van Kasteren, Puck B.; Beugeling, Corrine; Ninaber, Dennis K.; Frias-Staheli, Natalia; van Boheemen, Sander; García-Sastre, Adolfo; Snijder, Eric J.

    2012-01-01

    The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I. PMID:22072774

  4. Monoclonal And Single Domain Antibodies Targeting β-Integrin Subunits Block Sexual Transmission of HIV-1 in in vitro and in vivo Model Systems

    PubMed Central

    Guedon, Janet Tai; Luo, Kun; Zhang, Hong; Markham, Richard B.

    2015-01-01

    Background Poor adherence to prevention regimens for gel-based anti-HIV-1 microbicides has been a major obstacle to more effective pre-exposure prophylaxis. Concern persists that the antiretroviral drug containing microbicides might promote development of antiretroviral resistance. Methods Using in vitro transwell systems and a humanized mouse model of HIV-1 sexual transmission, we examined, as candidate microbicides, antibodies targeting the heterodimeric leukocyte function associated antigen 1 (LFA-1), a non-virally encoded protein acquired by the virus that also plays a critical role cell movement across endothelial and epithelial barriers. LFA-1 specific single domain variable regions from alpaca heavy-chain only antibodies (VHH) were identified and evaluated for their ability to inhibit HIV-1 transmission in the in vitro transwell system. Results Monoclonal antibodies targeting the CD11a and CD18 components of LFA-1 significantly reduced cell-free and cell-associated HIV-1 transmission in the in vitro transwell culture system and prevented virus transmission in the humanized mouse model of vaginal transmission. The broadly neutralizing monoclonal antibody b12 was unable to block transmission of cell-free virus. CD11a-specific VHH were isolated and expressed and the purified variable region protein domains reduced in vitro transepithelial transmission with an efficacy comparable to that of the CD11a monoclonal antibody. Conclusions Targeting integrins acquired by HIV-1 during budding and which are critical to interactions between epithelial cells and lymphocytes can reduce viral movement across epithelial barriers and prevent transmission in a humanized mouse model of sexual transmission. VHH capable of being produced by transformed bacteria can significantly reduce transepithelial virus transmission in in vitro model systems. PMID:25828964

  5. Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and Topoisomerase IV.

    PubMed

    Manchester, John I; Dussault, Daemian D; Rose, Jonathan A; Boriack-Sjodin, P Ann; Uria-Nickelsen, Maria; Ioannidis, Georgine; Bist, Shanta; Fleming, Paul; Hull, Kenneth G

    2012-08-01

    We present the discovery and optimization of a novel series of bacterial topoisomerase inhibitors. Starting from a virtual screening hit, activity was optimized through a combination of structure-based design and physical property optimization. Synthesis of fewer than a dozen compounds was required to achieve inhibition of the growth of methicillin-resistant Staphyloccus aureus (MRSA) at compound concentrations of 1.56 μM. These compounds simultaneously inhibit DNA gyrase and Topoisomerase IV at similar nanomolar concentrations, reducing the likelihood of the spontaneous occurrence of target-based mutations resulting in antibiotic resistance, an increasing threat in the treatment of serious infections. PMID:22814212

  6. Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos

    PubMed Central

    Madissoon, Elo; Jouhilahti, Eeva-Mari; Vesterlund, Liselotte; Töhönen, Virpi; Krjutškov, Kaarel; Petropoulous, Sophie; Einarsdottir, Elisabet; Linnarsson, Sten; Lanner, Fredrik; Månsson, Robert; Hovatta, Outi; Bürglin, Thomas R.; Katayama, Shintaro; Kere, Juha

    2016-01-01

    PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1, CPHX2, ARGFX) or repressors (DPRX, DUXA, TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development. PMID:27412763

  7. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  8. Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor

    PubMed Central

    Lubkowski, Jacek; Yang, Fan; Alexandratos, Jerry; Wlodawer, Alexander; Zhao, He; Burke, Terrence R.; Neamati, Nouri; Pommier, Yves; Merkel, George; Skalka, Anna Marie

    1998-01-01

    The x-ray structures of an inhibitor complex of the catalytic core domain of avian sarcoma virus integrase (ASV IN) were solved at 1.9- to 2.0-Å resolution at two pH values, with and without Mn2+ cations. This inhibitor (Y-3), originally identified in a screen for inhibitors of the catalytic activity of HIV type 1 integrase (HIV-1 IN), was found in the present study to be active against ASV IN as well as HIV-1 IN. The Y-3 molecule is located in close proximity to the enzyme active site, interacts with the flexible loop, alters loop conformation, and affects the conformations of active site residues. As crystallized, a Y-3 molecule stacks against its symmetry-related mate. Preincubation of IN with metal cations does not prevent inhibition, and Y-3 binding does not prevent binding of divalent cations to IN. Three compounds chemically related to Y-3 also were investigated, but no binding was observed in the crystals. Our results identify the structural elements of the inhibitor that likely determine its binding properties. PMID:9560188

  9. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions.

    PubMed

    Sakai, H; Yasugi, T; Benson, J D; Dowhanick, J J; Howley, P M

    1996-03-01

    The E2 gene products of papillomavirus play key roles in viral replication, both as regulators of viral transcription and as auxiliary factors that act with E1 in viral DNA replication. We have carried out a detailed structure-function analysis of conserved amino acids within the N-terminal domain of the human papillomavirus type 16 (HPV16) E2 protein. These mutants were tested for their transcriptional activation activities as well as transient DNA replication and E1 binding activities. Analysis of the stably expressed mutants revealed that the transcriptional activation and replication activities of HPV16 E2 could be dissociated. The 173A mutant was defective for the transcriptional activation function but retained wild-type DNA replication activity, whereas the E39A mutant wild-type transcriptional activation function but was defective in transient DNA replication assays. The E39A mutant was also defective for HPV16 E1 binding in vitro, suggesting that the ability of E2 protein to form a complex with E1 appears to be essential for its function as an auxiliary replication factor. PMID:8627680

  10. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9.

    PubMed

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-11-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. PMID:26342467

  11. High-Throughput Screening (HTS) by NMR Guided Identification of Novel Agents Targeting the Protein Docking Domain of YopH.

    PubMed

    Bottini, Angel; Wu, Bainan; Barile, Elisa; De, Surya K; Leone, Marilisa; Pellecchia, Maurizio

    2016-04-19

    Recently we described a novel approach, named high-throughput screening (HTS) by NMR that allows the identification, from large combinatorial peptide libraries, of potent and selective peptide mimetics against a given target. Here, we deployed the "HTS by NMR" approach for the design of novel peptoid sequences targeting the N-terminal domain of Yersinia outer protein H (YopH-NT), a bacterial toxin essential for the virulence of Yersinia pestis. We aimed at disrupting the protein-protein interactions between YopH-NT and its cellular substrates, with the goal of inhibiting indirectly YopH enzymatic function. These studies resulted in a novel agent of sequence Ac-F-pY-cPG-d-P-NH2 (pY=phosphotyrosine; cPG=cyclopentyl glycine) with a Kd value against YopH-NT of 310 nm. We demonstrated that such a pharmacological inhibitor of YopH-NT results in the inhibition of the dephosphorylation by full-length YopH of a cellular substrate. Hence, potentially this agent represents a valuable stepping stone for the development of novel therapeutics against Yersinia infections. The data reported further demonstrate the utility of the HTS by NMR approach in deriving novel peptide mimetics targeting protein-protein interactions. PMID:26592695

  12. Characterization of a Broadly Neutralizing Monoclonal Antibody That Targets the Fusion Domain of Group 2 Influenza A Virus Hemagglutinin

    PubMed Central

    Tan, Gene S.; Lee, Peter S.; Hoffman, Ryan M. B.; Mazel-Sanchez, Beryl; Krammer, Florian; Leon, Paul E.; Ward, Andrew B.; Wilson, Ian A.

    2014-01-01

    ABSTRACT Due to continuous changes to its antigenic regions, influenza viruses can evade immune detection and cause a significant amount of morbidity and mortality around the world. Influenza vaccinations can protect against disease but must be annually reformulated to match the current circulating strains. In the development of a broad-spectrum influenza vaccine, the elucidation of conserved epitopes is paramount. To this end, we designed an immunization strategy in mice to boost the humoral response against conserved regions of the hemagglutinin (HA) glycoprotein. Of note, generation and identification of broadly neutralizing antibodies that target group 2 HAs are rare and thus far have yielded only a few monoclonal antibodies (MAbs). Here, we demonstrate that mouse MAb 9H10 has broad and potent in vitro neutralizing activity against H3 and H10 group 2 influenza A subtypes. In the mouse model, MAb 9H10 protects mice against two divergent mouse-adapted H3N2 strains, in both pre- and postexposure administration regimens. In vitro and cell-free assays suggest that MAb 9H10 inhibits viral replication by blocking HA-dependent fusion of the viral and endosomal membranes early in the replication cycle and by disrupting viral particle egress in the late stage of infection. Interestingly, electron microscopy reconstructions of MAb 9H10 bound to the HA reveal that it binds a similar binding footprint to MAbs CR8020 and CR8043. IMPORTANCE The influenza hemagglutinin is the major antigenic target of the humoral immune response. However, due to continuous antigenic changes that occur on the surface of this glycoprotein, influenza viruses can escape the immune system and cause significant disease to the host. Toward the development of broad-spectrum therapeutics and vaccines against influenza virus, elucidation of conserved regions of influenza viruses is crucial. Thus, defining these types of epitopes through the generation and characterization of broadly neutralizing

  13. The HP1a Disordered C-terminus and Chromo Shadow Domain Cooperate to Select Target Peptide Partners

    PubMed Central

    Mendez, Deanna L.; Kim, Daesung; Chruszcz, Maksymilian; Stephens, Gena E.; Minor, Wladek

    2011-01-01

    Drosophila melanogaster Heterochromatin Protein 1a (HP1a) is essential for compacted heterochromatin structure and associated gene silencing. Its chromo shadow domain (CSD) is well-known for binding to peptides that contain a PXVXL motif. Heterochromatin protein 2 (HP2) is a nonhistone chromosomal protein that associates with HP1a in the pericentric heterochromatin, telomeres and the fourth chromosome. Using NMR spectroscopy, fluorescence polarization and site-directed mutagenesis, we identified an LCVKI motif in HP2 that binds to the HP1a CSD. The binding affinity of the HP2 fragment is approximately two orders of magnitude higher than that of peptides from PIWI (with a PRVKV motif), AF10 (with a PLVVL motif), or CG15356 (with LYPLL and LSIVA motifs). To delineate differential interactions of the HP1a CSD, we characterized its structure, backbone dynamics and dimerization constant. We find that the dimerization constant is bracketed by the affinities of HP2 and PIWI, which dock to the same HP1a homodimer surface. This suggests that HP2, but not PIWI, interaction can drive homodimerization of HP1a. Interestingly, the integrity of the disordered C-terminal extension (CTE) of HP1a is essential for discriminatory binding, whereas swapping the PXVXL motifs does not confer specificity. Serine phosphorylation at the peptide binding surface of the CSD is thought to regulate heterochromatin assembly. Glutamic acid substitution at these sites destabilizes HP1a dimers, but improves the interaction with both binding partners. Our studies underscore the importance of CSD dimerization and cooperation with the CTE in forming distinct complexes of HP1a. PMID:21472955

  14. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target?

    PubMed

    Vivier, Delphine; Bennis, Khalil; Lesage, Florian; Ducki, Sylvie

    2016-06-01

    Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating. PMID:26588045

  15. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

    PubMed Central

    Bengtsson, Anja; Joergensen, Louise; Rask, Thomas S.; Olsen, Rebecca W.; Andersen, Marianne A.; Turner, Louise; Theander, Thor G.; Higgins, Matthew K.; Craig, Alister; Brown, Alan

    2013-01-01

    Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1–binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1–binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding–like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum–exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1–specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration. PMID:23209327

  16. The cytoplasmic domain of Vamp4 and Vamp5 is responsible for their correct subcellular targeting: the N-terminal extenSion of VAMP4 contains a dominant autonomous targeting signal for the trans-Golgi network.

    PubMed

    Zeng, Qi; Tran, Thi Ton Hoai; Tan, Hui-Xian; Hong, Wanjin

    2003-06-20

    SNAREs represent a superfamily of proteins responsible for the last stage of docking and subsequent fusion in diverse intracellular membrane transport events. The Vamp subfamily of SNAREs contains 7 members (Vamp1, Vamp2, Vamp3/cellubrevin, Vamp4, Vamp5, Vamp7/Ti-Vamp, and Vamp8/endobrevin) that are distributed in various post-Golgi structures. Vamp4 and Vamp5 are distributed predominantly in the trans-Golgi network (TGN) and the plasma membrane, respectively. When C-terminally tagged with enhanced green fluorescent protein, the majority of Vamp4 and Vamp5 is correctly targeted to the TGN and plasma membrane, respectively. Swapping the N-terminal cytoplasmic region and the C-terminal membrane anchor domain between Vamp4 and Vamp5 demonstrates that the N-terminal cytoplasmic region of these two SNAREs contains the correct subcellular targeting information. As compared with Vamp5, Vamp4 contains an N-terminal extension of 51 residues. Appending this 51-residue N-terminal extension onto the N terminus of Vamp5 results in targeting of the chimeric protein to the TGN, suggesting that this N-terminal extension of Vamp4 contains a dominant and autonomous targeting signal for the TGN. Analysis of deletion mutants of this N-terminal region suggests that this TGN-targeting signal is encompassed within a smaller region consisting of a di-Leu motif followed by two acidic clusters. The essential role of the di-Leu motif and the second acidic cluster was then established by site-directed mutagenesis. PMID:12682051

  17. The same site on the integrase-binding domain of lens epithelium–derived growth factor is a therapeutic target for MLL leukemia and HIV

    PubMed Central

    Murai, Marcelo J.; Pollock, Jonathan; He, Shihan; Miao, Hongzhi; Purohit, Trupta; Yokom, Adam; Hess, Jay L.; Muntean, Andrew G.; Grembecka, Jolanta

    2014-01-01

    Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV. PMID:25305204

  18. Site-Selective Monitoring of the Interaction of the SRA Domain of UHRF1 with Target DNA Sequences Labeled with 2-Aminopurine.

    PubMed

    Greiner, Vanille J; Kovalenko, Lesia; Humbert, Nicolas; Richert, Ludovic; Birck, Catherine; Ruff, Marc; Zaporozhets, Olga A; Dhe-Paganon, Sirano; Bronner, Christian; Mély, Yves

    2015-10-01

    UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility. Moreover, significant restriction of the local motion of residues flanking the methylcytosine in the HM duplex suggested that these residues are more rigidly bound to SRA, in line with a slightly higher affinity of the HM duplex as compared to that of the NM or BM duplex. Our results are consistent with a "reader" role, in which the SRA domain scans DNA sequences for hemimethylated CpG sites without perturbation of the structure of contacted nucleotides. PMID:26368281

  19. Structure of the Brachydanio Rerio Polo-Like Kinase 1 (Plk1) Catalytic Domain in Complex With An Extended Inhibitor Targeting the Adaptive Pocket of the Enzyme

    SciTech Connect

    Elling, R.A.; Fucini, R.V.; Hanan, E.J.; Barr, K.J.; Zhu, J.; Paulvannan, K.; Yang, W.; Romanowski, M.J.

    2009-05-18

    Polo-like kinase 1 (Plk1) is a member of the Polo-like kinase family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. The catalytic domain of this enzyme shares significant primary amino-acid homology and structural similarity with another mitotic kinase, Aurora A. While screening an Aurora A library of ATP-competitive compounds, a urea-containing inhibitor with low affinity for mouse Aurora A but with submicromolar potency for human and zebrafish Plk1 (hPlk1 and zPlk1, respectively) was identified. A crystal structure of the zebrafish Plk1 kinase domain-inhibitor complex reveals that the small molecule occupies the purine pocket and extends past the catalytic lysine into the adaptive region of the active site. Analysis of the structures of this protein-inhibitor complex and of similar small molecules cocrystallized with other kinases facilitates understanding of the specificity of the inhibitor for Plk1 and documents for the first time that Plk1 can accommodate extended ATP-competitive compounds that project toward the adaptive pocket and help the enzyme order its activation segment.

  20. The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo.

    PubMed

    Lasarte, Juan J; Casares, Noelia; Gorraiz, Marta; Hervás-Stubbs, Sandra; Arribillaga, Laura; Mansilla, Cristina; Durantez, Maika; Llopiz, Diana; Sarobe, Pablo; Borrás-Cuesta, Francisco; Prieto, Jesús; Leclerc, Claude

    2007-01-15

    Vaccination strategies based on the in vivo targeting of Ags to dendritic cells (DCs) are needed to improve the induction of specific T cell immunity against tumors and infectious agents. In this study, we have used a recombinant protein encompassing the extra domain A from fibronectin (EDA), an endogenous ligand for TLR4, to deliver Ags to TLR4-expressing DC. The purified EDA protein was shown to bind to TLR4-expressing HEK293 cells and to activate the TLR4 signaling pathway. EDA also stimulated the production by DC of proinflammatory cytokines such as IL-12 or TNF-alpha and induced their maturation in vitro and in vivo. A fusion protein between EDA and a cytotoxic T cell epitope from OVA efficiently presented this epitope to specific T cells and induced the in vivo activation of a strong and specific CTL response. Moreover, a fusion protein containing EDA and the full OVA also improved OVA presentation by DC and induced CTL responses in vivo. These EDA recombinant proteins protected mice from a challenge with tumor cells expressing OVA. These results strongly suggest that the fibronectin extra domain A may serve as a suitable Ag carrier for the development of antiviral or antitumoral vaccines. PMID:17202335

  1. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms.

    PubMed

    Deshpande, A; Reddy, M M; Schade, G O M; Ray, A; Chowdary, T K; Griffin, J D; Sattler, M

    2012-04-01

    The transforming JAK2V617F kinase is frequently associated with myeloproliferative neoplasms and thought to be instrumental for the overproduction of myeloid lineage cells. Several small molecule drugs targeting JAK2 are currently in clinical development for treatment in these diseases. We performed a high-throughput in vitro screen to identify point mutations in JAK2V617F that would be predicted to have potential clinical relevance and associated with drug resistance to the JAK2 inhibitor ruxolitinib (INCB018424). Seven libraries of mutagenized JAK2V617F cDNA were screened to specifically identify mutations in the predicted drug-binding region that would confer resistance to ruxolitinib, using a BaF3 cell-based assay. We identified five different non-synonymous point mutations that conferred drug resistance. Cells containing mutations had a 9- to 33-fold higher EC(50) for ruxolitinib compared with native JAK2V617F. Our results further indicated that these mutations also conferred cross-resistance to all JAK2 kinase inhibitors tested, including AZD1480, TG101348, lestaurtinib (CEP-701) and CYT-387. Surprisingly, introduction of the 'gatekeeper' mutation (M929I) in JAK2V617F affected only ruxolitinib sensitivity (fourfold increase in EC(50)). These results suggest that JAK2 inhibitors currently in clinical trials may be prone to resistance as a result of point mutations and caution should be exercised when administering these drugs. PMID:21926964

  2. Interaction of 14-3-3 proteins with the Estrogen Receptor Alpha F domain provides a drug target interface

    PubMed Central

    De Vries-van Leeuwen, Ingrid J.; da Costa Pereira, Daniel; Flach, Koen D.; Piersma, Sander R.; Haase, Christian; Bier, David; Yalcin, Zeliha; Michalides, Rob; Feenstra, K. Anton; Jiménez, Connie R.; de Greef, Tom F. A.; Brunsveld, Luc; Ottmann, Christian; Zwart, Wilbert; de Boer, Albertus H.

    2013-01-01

    Estrogen receptor alpha (ERα) is involved in numerous physiological and pathological processes, including breast cancer. Breast cancer therapy is therefore currently directed at inhibiting the transcriptional potency of ERα, either by blocking estrogen production through aromatase inhibitors or antiestrogens that compete for hormone binding. Due to resistance, new treatment modalities are needed and as ERα dimerization is essential for its activity, interference with receptor dimerization offers a new opportunity to exploit in drug design. Here we describe a unique mechanism of how ERα dimerization is negatively controlled by interaction with 14-3-3 proteins at the extreme C terminus of the receptor. Moreover, the small-molecule fusicoccin (FC) stabilizes this ERα/14-3-3 interaction. Cocrystallization of the trimeric ERα/14-3-3/FC complex provides the structural basis for this stabilization and shows the importance of phosphorylation of the penultimate Threonine (ERα-T594) for high-affinity interaction. We confirm that T594 is a distinct ERα phosphorylation site in the breast cancer cell line MCF-7 using a phospho-T594–specific antibody and by mass spectrometry. In line with its ERα/14-3-3 interaction stabilizing effect, fusicoccin reduces the estradiol-stimulated ERα dimerization, inhibits ERα/chromatin interactions and downstream gene expression, resulting in decreased cell proliferation. Herewith, a unique functional phosphosite and an alternative regulation mechanism of ERα are provided, together with a small molecule that selectively targets this ERα/14-3-3 interface. PMID:23676274

  3. Targeting the Transient Receptor Potential Vanilloid Type 1 (TRPV1) Assembly Domain Attenuates Inflammation-induced Hypersensitivity*

    PubMed Central

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-01-01

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

  4. Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity.

    PubMed

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-06-13

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

  5. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7

    PubMed Central

    Capar, Adam; Zheng, Hong; Frappier, Lori; Saridakis, Vivian

    2015-01-01

    Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity. PMID:26046769

  6. Structure–Activity Studies of Phosphopeptidomimetic Prodrugs Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 3 (Stat3)

    PubMed Central

    Mandal, Pijus K.; Ren, Zhiyong; Chen, Xiaomin; Kaluarachchi, Kumar; Liao, Warren S.-L.; McMurray, John S.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat3) transmits signals from growth factors and interleukin-6 family cytokines by binding to their receptors via its Src homology 2 (SH2) domain. This results in phosphorylation of Tyr705, dimerization, translocation to the nucleus, and regulation of transcription of downstream genes. Stat3 is constitutively activated in several human cancers and is a target for anti-cancer drug design. We have shown previously phosphorylation of Tyr705 in intact cancer cells can be inhibited with prodrugs of phosphopeptide mimics targeting the SH2 domain. In a series of prodrugs consisting of bis-pivaloyloxymethyl esters of 4′-phosphonodifluoromethyl cinnamoyl-Haic-Gln-NHBn, appending methyl group to the β-position of the cinnamate increased potency ca. twofold, which paralleled the increase in affinity of the corresponding phosphopeptide models. However, dramatic increases in potency were observed when the C-terminal C(O)NHBn of Gln-NHBn was replaced with a simple methyl group. In this communication we continue to explore the effects of structural modifications of prodrugs on their ability to inhibit Tyr705 phosphorylation. A set of 4-substituted prolines incorporated into β-methyl-4-phosphocinnamoyl-leucinyl-Xaa-4-aminopentamide model peptides exhibited affinities of 88–317 nM by fluorescence polarization (Pro IC50 = 156 nM). In corresponding prodrugs, Pro inhibited constitutive Stat3 phosphorylation at 10 μM in MDA-MB-468 breast tumor cells. However, 4,4-difluoroproline and 4,4-dimethylproline resulted in complete inhibition at 0.5 μM. These results suggest that the prodrug with native proline undergoes metabolism that those with substituted prolines do not. In conclusion, changes in structure with minimal impact on intrinsic affinity can nevertheless have profound effects on the cellular potency of prodrug inhibitors of Stat3. PMID:24707243

  7. Conserved Structural Domains in FoxD4L1, a Neural Forkhead Box Transcription Factor, Are Required to Repress or Activate Target Genes

    PubMed Central

    Klein, Steven L.; Neilson, Karen M.; Orban, John; Yaklichkin, Sergey; Hoffbauer, Jennifer; Mood, Kathy; Daar, Ira O.; Moody, Sally A.

    2013-01-01

    FoxD4L1 is a forkhead transcription factor that expands the neural ectoderm by down-regulating genes that promote the onset of neural differentiation and up-regulating genes that maintain proliferative neural precursors in an immature state. We previously demonstrated that binding of Grg4 to an Eh-1 motif enhances the ability of FoxD4L1 to down-regulate target neural genes but does not account for all of its repressive activity. Herein we analyzed the protein sequence for additional interaction motifs and secondary structure. Eight conserved motifs were identified in the C-terminal region of fish and frog proteins. Extending the analysis to mammals identified a high scoring motif downstream of the Eh-1 domain that contains a tryptophan residue implicated in protein-protein interactions. In addition, secondary structure prediction programs predicted an α-helical structure overlapping with amphibian-specific Motif 6 in Xenopus, and similarly located α-helical structures in other vertebrate FoxD proteins. We tested functionality of this site by inducing a glutamine-to-proline substitution expected to break the predicted α-helical structure; this significantly reduced FoxD4L1’s ability to repress zic3 and irx1. Because this mutation does not interfere with Grg4 binding, these results demonstrate that at least two regions, the Eh-1 motif and a more C-terminal predicted α-helical/Motif 6 site, additively contribute to repression. In the N-terminal region we previously identified a 14 amino acid motif that is required for the up-regulation of target genes. Secondary structure prediction programs predicted a short β-strand separating two acidic domains. Mutant constructs show that the β-strand itself is not required for transcriptional activation. Instead, activation depends upon a glycine residue that is predicted to provide sufficient flexibility to bring the two acidic domains into close proximity. These results identify conserved predicted motifs with secondary

  8. Adaptive Immunity against Leishmania Nucleoside Hydrolase Maps Its C-Terminal Domain as the Target of the CD4+ T Cell–Driven Protective Response

    PubMed Central

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P.; Travassos, Luiz R.; Palatnik, Marcos; da Silva Soares, Irene; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B.

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for

  9. Fusion of the BCL9 HD2 domain to E1A increases the cytopathic effect of an oncolytic adenovirus that targets colon cancer cells

    PubMed Central

    Fuerer, Christophe; Homicsko, Krisztian; Lukashev, Alexander N; Pittet, Anne-Laure; Iggo, Richard D

    2006-01-01

    downstream of β-catenin are limiting for viral replication and toxicity in these cells. The approach of fusing E1A to a protein domain implicated in oncogenic signaling could be used to selectively increase the activity of oncolytic viruses targeting several other pathways defective in cancer. PMID:17020613

  10. Targeting of glycoprotein I (gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule.

    PubMed Central

    Zhu, Z; Hao, Y; Gershon, M D; Ambron, R T; Gershon, A A

    1996-01-01

    Previous studies suggested that varicella-zoster virus (VZV) envelope glycoproteins (gps) are selectively transported to the trans-Golgi network (TGN) and that the cytosolic domain of gpI (gE) targets it to the TGN. To identify targeting signals in the gpI cytosolic domain, intracellular protein trafficking was studied in transfected cells expressing chimeric proteins in which a full-length or mutated gpI cytosolic domain was fused to the gpI transmembrane domain and interleukin-2 receptor (tac) ectodomain. Expressed protein was visualized with antibodies to tac. A targeting sequence (AYRV) and a second, acidic amino acid-rich region of the gpI cytosolic domain (putative signal patch) were each sufficient to cause expressed protein to colocalize with TGN markers. This targeting was lost when the tyrosine of the AYRV sequence was replaced with glycine or lysine, when arginine was replaced with glutamic acid, or when valine was substituted with lysine. In contrast, tyrosine could be replaced by phenylalanine and valine could be substituted with leucine. Mutation of alanine to aspartic acid or deletion of alanine abolished TGN targeting. Exposure of transfected cells to antibodies to the tac ectodomain revealed that the TCN targeting of expressed tac-gpI chimeric proteins occurred as a result of selective retrieval from the plasmalemma. These data suggest that the AYRV sequence and a second signaling patch in the cytosolic domain of gpI are responsible for its targeting to the TGN. The observations also support the hypothesis that the TGN plays a critical role in the envelopment of VZV. PMID:8794291

  11. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF.

    PubMed

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  12. Mapping Targetable Sites on Human Telomerase RNA Pseudoknot/Template Domain Using 2′-OMe RNA-interacting Polynucleotide (RIPtide) Microarrays*

    PubMed Central

    Gude, Lourdes; Berkovitch, Shaunna S.; Santos, Webster L.; Kutchukian, Peter S.; Pawloski, Adam R.; Kuimelis, Robert; McGall, Glenn; Verdine, Gregory L.

    2012-01-01

    Most cellular RNAs engage in intrastrand base-pairing that gives rise to complex three-dimensional folds. This self-pairing presents an impediment toward binding of the RNA by nucleic acid-based ligands. An important step in the discovery of RNA-targeting ligands is therefore to identify those regions in a folded RNA that are accessible toward the nucleic acid-based ligand. Because the folding of RNA targets can involve interactions between nonadjacent regions and employ both Watson-Crick and non-Watson-Crick base-pairing, screening of candidate binder ensembles is typically necessary. Microarray-based screening approaches have shown great promise in this regard and have suggested that achieving complete sequence coverage would be a valuable attribute of a next generation system. Here, we report a custom microarray displaying a library of RNA-interacting polynucleotides comprising all possible 2′-OMe RNA sequences from 4- to 8-nucleotides in length. We demonstrate the utility of this array in identifying RNA-interacting polynucleotides that bind tightly and specifically to the highly conserved, functionally essential template/pseudoknot domain of human telomerase RNA and that inhibit telomerase function in vitro. PMID:22451672

  13. Distinct functional and conformational states of the human lymphoid tyrosine phosphatase catalytic domain can be targeted by choice of the inhibitor chemotype.

    PubMed

    Vidović, Dušica; Xie, Yuli; Rinderspacher, Alison; Deng, Shi-Xian; Landry, Donald W; Chung, Caty; Smith, Deborah H; Tautz, Lutz; Schürer, Stephan C

    2011-09-01

    The lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, has recently been identified as a promising drug target for human autoimmunity diseases. Like the majority of protein-tyrosine phosphatases LYP can adopt two functionally distinct forms determined by the conformation of the WPD-loop. The WPD-loop plays an important role in the catalytic dephosphorylation by protein-tyrosine phosphatases. Here we investigate the binding modes of two chemotypes of small molecule LYP inhibitors with respect to both protein conformations using computational modeling. To evaluate binding in the active form, we built a LYP protein structure model of high quality. Our results suggest that the two different compound classes investigated, bind to different conformations of the LYP phosphatase domain. Binding to the closed form is facilitated by an interaction with Asp195 in the WPD-loop, presumably stabilizing the active conformation. The analysis presented here is relevant for the design of inhibitors that specifically target either the closed or the open conformation of LYP in order to achieve better selectivity over phosphatases with similar binding sites. PMID:21904909

  14. Inhibition of NF-κB activation with designed ankyrin-repeat proteins targeting the ubiquitin-binding/oligomerization domain of NEMO

    PubMed Central

    Wyler, Emanuel; Kaminska, Monika; Coïc, Yves-Marie; Baleux, Françoise; Véron, Michel; Agou, Fabrice

    2007-01-01

    The link between the NF-κB signal transduction pathway and cancer is now well established. Inhibiting this pathway is therefore a promising approach in the treatment of certain cancers through a pro-apoptotic effect in malignant cells. Owing to its central role in the pathway, the IκB kinase (IKK) complex is a privileged target for designing inhibitors. Previously, we showed that oligomerization of NEMO is necessary for IKK activation and defined a minimal oligomerization domain (CC2-LZ) for NEMO, and we developed NEMO peptides inhibiting NF-κB activation at the level of the IKK complex. To improve the low-affinity inhibitors, we used ribosome display to select small and stable proteins with high affinity against the individual CC2-LZ because the entire NEMO protein is poorly soluble. Several binders with affinities in the low nanomolar range were obtained. When expressed in human cells, some of the selected molecules, despite their partial degradation, inhibited TNF-α-mediated NF-κB activation while having no effect on the basal activity. Controls with a naive library member or null plasmid had no effect. Furthermore, we could show that this NF-κB inhibition occurs through a specific interaction between the binders and the endogenous NEMO, resulting in decreased IKK activation. These results indicate that in vitro selections with the NEMO subdomain alone as a target may be sufficient to lead to interesting compounds that are able to inhibit NF-κB activation. PMID:17766391

  15. (99m) Tc-labeled tetramer and pentamer of single-domain antibody for targeting epidermal growth factor receptor in xenografted tumors.

    PubMed

    Li, Chongjiao; Feng, Hongyan; Xia, Xiaotian; Wang, Lifei; Gao, Bin; Zhang, Yongxue; Lan, Xiaoli

    2016-06-30

    The single-domain antibody EG2 can be fused with right-handed coiled-coil (RHCC) and human cartilage oligomeric matrix protein (COMP), to form the multivalent antibodies EG2-RHCC and EG2-COMP. We labeled these two antibodies with (99m) Tc and assessed their targeting efficiency for epidermal growth factor receptor (EGFR). Cell binding, uptake, efflux, and blocking studies were performed with EGFR high- and/or low-expressing cells with (99m) Tc-labeled EG2-RHCC or EG2-COMP. Single photon-emission computed tomography (SPECT) imaging and biodistribution studies were further carried out. Both (99m) Tc-EG2-RHCC and (99m) Tc-EG2-COMP can specially bind to EGFR in vitro. SPECT imaging showed that A431, which expresses high levels of EGFR, was clearly visible 6 h after (99m) Tc-EG2-COMP injection; however, it was not detectable after administration of (99m) Tc-EG2-RHCC. Uptake of both antibodies by the non-EGFR-secreting OCM-1 tumors was low. EG2-COMP shows promise in identifying EGFR over-expression in tumors; however, EG2-RHCC may not be suitable for targeting EGFR in vivo. PMID:27123559

  16. Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors.

    PubMed

    Masaoka, Takashi; Zhao, Haiyan; Hirsch, Danielle R; D'Erasmo, Michael P; Meck, Christine; Varnado, Brittany; Gupta, Ankit; Meyers, Marvin J; Baines, Joel; Beutler, John A; Murelli, Ryan P; Tang, Liang; Le Grice, Stuart F J

    2016-02-01

    The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized. Crystallography also provided a working model for DNA occupancy of the nuclease active site, suggesting potential protein-nucleic acid contacts over a region of ∼ 14 bp. In this work, we extend crystallographic analysis by examining pUL15C-mediated hydrolysis of short, closely related DNA duplexes. In addition to defining a minimal substrate length, this strategy facilitated construction of a dual-probe fluorescence assay for rapid kinetic analysis of wild-type and mutant nucleases. On the basis of its proposed role in binding the phosphate backbone, studies with pUL15C variant Lys700Ala showed that this mutation affected neither binding of duplex DNA nor binding of small molecule to the active site but caused a 17-fold reduction in the turnover rate (kcat), possibly by slowing conversion of the enzyme-substrate complex to the enzyme-product complex and/or inhibiting dissociation from the hydrolysis product. Finally, with a view of pUL15-associated nuclease activity as an antiviral target, the dual-probe fluorescence assay, in combination with differential scanning fluorimetry, was used to demonstrate inhibition by several classes of small molecules that target divalent metal at the active site. PMID:26829613

  17. Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells.

    PubMed

    Tögel, Lars; Nightingale, Rebecca; Chueh, Anderly C; Jayachandran, Aparna; Tran, Hoanh; Phesse, Toby; Wu, Rui; Sieber, Oliver M; Arango, Diego; Dhillon, Amardeep S; Dawson, Mark A; Diez-Dacal, Beatriz; Gahman, Timothy C; Filippakopoulos, Panagis; Shiau, Andrew K; Mariadason, John M

    2016-06-01

    Inhibitors of the bromodomain and extraterminal domain (BET) protein family attenuate the proliferation of several tumor cell lines. These effects are mediated, at least in part, through repression of c-MYC. In colorectal cancer, overexpression of c-MYC due to hyperactive WNT/β-catenin/TCF signaling is a key driver of tumor progression; however, effective strategies to target this oncogene remain elusive. Here, we investigated the effect of BET inhibitors (BETi) on colorectal cancer cell proliferation and c-MYC expression. Treatment of 20 colorectal cancer cell lines with the BETi JQ1 identified a subset of highly sensitive lines. JQ1 sensitivity was higher in cell lines with microsatellite instability but was not associated with the CpG island methylator phenotype, c-MYC expression or amplification status, BET protein expression, or mutation status of TP53, KRAS/BRAF, or PIK3CA/PTEN Conversely, JQ1 sensitivity correlated significantly with the magnitude of c-MYC mRNA and protein repression. JQ1-mediated c-MYC repression was not due to generalized attenuation of β-catenin/TCF-mediated transcription, as JQ1 had minimal effects on other β-catenin/TCF target genes or β-catenin/TCF reporter activity. BETi preferentially target super-enhancer-regulated genes, and a super-enhancer in c-MYC was recently identified in HCT116 cells to which BRD4 and effector transcription factors of the WNT/β-catenin/TCF and MEK/ERK pathways are recruited. Combined targeting of c-MYC with JQ1 and inhibitors of these pathways additively repressed c-MYC and proliferation of HCT116 cells. These findings demonstrate that BETi downregulate c-MYC expression and inhibit colorectal cancer cell proliferation and identify strategies for enhancing the effects of BETi on c-MYC repression by combinatorial targeting the c-MYC super-enhancer. Mol Cancer Ther; 15(6); 1217-26. ©2016 AACR. PMID:26983878

  18. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc 'spacer' domain in the extracellular moiety of chimeric antigen receptors avoids 'off-target' activation and unintended initiation of an innate immune response.

    PubMed

    Hombach, A; Hombach, A A; Abken, H

    2010-10-01

    Chimeric antigen receptors (CARs, immunoreceptors) are frequently used to redirect T cells with pre-defined specificity, in particular towards tumour cells for use in adoptive immunotherapy of malignant diseases. Specific targeting is mediated by an extracellularly located antibody-derived binding domain, which is joined to the transmembrane and intracellular CD3ζ moiety for T-cell activation. Stable CAR expression in T cells, however, requires a spacer domain interposed between the binding and the transmembrane domain and which is commonly the constant IgG1 Fc domain. We here revealed that CARs with Fc spacer domain bind to IgG Fc gamma receptors (FcγRs), thereby unintentionally activating innate immune cells, including monocytes and natural killer (NK) cells, which consequently secrete high amounts of pro-inflammatory cytokines. Engineered T cells, on the other hand, are likewise activated by FcγR binding resulting in cytokine secretion and lysis of monocytes and NK cells independently of the redirected specificity. To reduce FcγR binding, we modified the spacer domain without affecting CAR expression and antigen binding. Engineered with the modified CAR, T cells are not activated in presence of FcγR(+) cells, thereby minimizing the risk of off-target activation while preserving their redirected targeting specificity. PMID:20555360

  19. Development and Use of Assay Conditions Suited to Screening for and Profiling of SET-Domain-Targeted Inhibitors of the MLL/SET1 Family of Lysine Methyltransferases

    PubMed Central

    Ferry, Joseph J.; Smith, Robert F.; Denney, Natalie; Walsh, Colin P.; McCauley, Lauren; Qian, Jie; Ma, Haiching; Horiuchi, Kurumi Y.

    2015-01-01

    Abstract Methylation of histone H3 lysine-4 (H3K4) is an important, regulatory, epigenetic post-translational modification associated with actively transcribed genes. In humans, the principal mediators of this modification are part of the MLL/SET1 family of methyltransferases, which comprises six members, MLLs1–4 and SET1A/SET1B. Aberrations in the structure, expression, and regulation of these enzymes are implicated in various disease states, making them important potential targets for drug discovery, particularly for oncology indications. The MLL/SET1 family members are most enzymatically active when part of a “core complex,” the catalytic SET-domain-containing subunits bound to a subcomplex consisting of the proteins WDR5, RbBP5, Ash2L and a homodimer of DPY-30 (WRAD2). The necessity of MLL/SET1 members to bind WRAD2 for full activity is the basis of a particular drug development strategy, which seeks to disrupt the interaction between the MLL/SET1 subunits and WDR5. This strategy is not without its theoretical and practical drawbacks, some of which relate to the ease with which complexes of Escherichia coli-expressed MLL/SET1 and WRAD2 fall apart. As an alternative strategy, we explore ways to stabilize the complex, focusing on the use of an excess of WRAD2 to drive the binding equilibria toward complex formation while maintaining low concentrations of the catalytic subunits. The purpose of this approach is to seek inhibitors that bind the SET domain, an approach proven successful with the related, but inherently more stable, enhancer of zeste homolog 2 (EZH2) complex. PMID:26065558

  20. Targeting zinc finger domains with small molecules: solution structure and binding studies of the RanBP2-type zinc finger of RBM5

    PubMed Central

    Farina, Biancamaria; Fattorusso, Roberto

    2012-01-01

    The RNA Binding Motif protein 5 (RBM5), also known as Luca15 or H37, is a component of prespliceosomal complexes, that regulates the alternative splicing of several mRNAs, such as Fas and caspase-2. The rbm5 gene is located at the 2p21.3 chromosomal region, which is strongly associated with lung cancer and many other cancers. Both increased and decreased levels of RBM5 can play a role in tumor progression. In particular, down-regulation of rbm5 is involved in lung cancer and other cancers upon Ras activation, and, also, represents a molecular signature associated with metastasis in various solid tumors. On the other hand, up-regulation of rbm5 occurs in breast and ovarian cancer. Moreover, RBM5 was also found to be involved in the early stage of the HIV-1 viral cycle, representing a potential target for the treatment of the HIV-1 infection. While the molecular basis for RNA recognition and ubiquitin interaction have been structurally characterized, small molecules binding this ZF domain that may contribute to characterize their activity and to develop potential therapeutic agents have not been yet reported. Via an NMR screening of a fragment library we identified several binders and the complex of the most promising one, named compound 1, with the RBM5 ZF1 was structurally characterized in solution. Interestingly, the binding mechanism reveals that compound 1 occupies the RNA binding pocket and is therefore able to compete with the RNA to bind RBM5 RanBP2-type ZF domain, as indicated by NMR studies. PMID:22162216

  1. Rationally Targeted Mutations at the V1V2 Domain of the HIV-1 Envelope to Augment Virus Neutralization by Anti-V1V2 Monoclonal Antibodies.

    PubMed

    Shen, Guomiao; Upadhyay, Chitra; Zhang, Jing; Pan, Ruimin; Zolla-Pazner, Susan; Kong, Xiang-Peng; Hioe, Catarina E

    2015-01-01

    HIV-1 envelope glycoproteins (Env) are the only viral antigens present on the virus surface and serve as the key targets for virus-neutralizing antibodies. However, HIV-1 deploys multiple strategies to shield the vulnerable sites on its Env from neutralizing antibodies. The V1V2 domain located at the apex of the HIV-1 Env spike is known to encompass highly variable loops, but V1V2 also contains immunogenic conserved elements recognized by cross-reactive antibodies. This study evaluates human monoclonal antibodies (mAbs) against V2 epitopes which overlap with the conserved integrin α4β7-binding LDV/I motif, designated as the V2i (integrin) epitopes. We postulate that the V2i Abs have weak or no neutralizing activities because the V2i epitopes are often occluded from antibody recognition. To gain insights into the mechanisms of the V2i occlusion, we evaluated three elements at the distal end of the V1V2 domain shown in the structure of V2i epitope complexed with mAb 830A to be important for antibody recognition of the V2i epitope. Amino-acid substitutions at position 179 that restore the LDV/I motif had minimal effects on virus sensitivity to neutralization by most V2i mAbs. However, a charge change at position 153 in the V1 region significantly increased sensitivity of subtype C virus ZM109 to most V2i mAbs. Separately, a disulfide bond introduced to stabilize the hypervariable region of V2 loop also enhanced virus neutralization by some V2i mAbs, but the effects varied depending on the virus. These data demonstrate that multiple elements within the V1V2 domain act independently and in a virus-dependent fashion to govern the antibody recognition and accessibility of V2i epitopes, suggesting the need for multi-pronged strategies to counter the escape and the shielding mechanisms obstructing the V2i Abs from neutralizing HIV-1. PMID:26491873

  2. Targeting RING domains of Mdm2–MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells

    PubMed Central

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-01-01

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2–p53 interface or MdmX ((MDM4), mouse double minute 4)–p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2–MdmX really interesting new gene (RING)–RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2–MdmX RING–RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2–MdmX RING domain inhibitors)) that specifically inhibit Mdm2–MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2–MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2–MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development. PMID:26720344

  3. Nephroblastoma overexpressed (NOV/CCN3) gene: a paired-domain-specific PAX3-FKHR transcription target that promotes survival and motility in alveolar rhabdomyosarcoma cells.

    PubMed

    Zhang, Y; Wang, C

    2011-08-11

    The CCN (Cy61, CTGF and NOV) family of proteins is a group of matricellular biomolecules involved in both physiological and pathological processes. Elevated expression of the CCN3 (also known as NOV, Nephroblastoma overexpressed) gene has been detected in clinical samples of the skeletal muscle cancer rhabdomyosarcoma, with the highest expression found in the alveolar subtype (aRMS). Over 80% of aRMSs are characterized by a chromosomal translocation-derived fusion transcription factor PAX3-FKHR. In this study, we linked elevated CCN3 levels in aRMS cells to PAX3-FKHR expression. We found reduced CCN3 levels in aRMS cells following small interfering RNA knockdown of PAX3-FKHR, and increased CCN3 levels in C2 myoblasts following ectopic expression of PAX3-FKHR. Promoter, electrophoretic mobility shift assay and chromatin immunoprecipitation analyses confirmed that the CCN3 gene was a direct target for PAX3-FKHR transcriptional activation through a paired-domain DNA sequence in the first intron of the CCN3 gene. To determine the function of CCN3, we showed that knockdown and ectopic expression of CCN3 decreased survival and increased differentiation in aRMS cells, respectively. In addition, we found that exogenously supplied CCN3 protein promoted aRMS cell adhesion, migration and Matrigel invasion. Taken together, data from this study have (1) provided a mechanistic basis for the CCN3 overexpression in aRMS cells, and (2) identified CCN3 as an autocrine/paracrine factor that contributes to the aggressive behavior of aRMS cells, perhaps through a positive feedback loop. Thus, CCN3 may be an attractive target for therapeutic intervention in aRMS. PMID:21423212

  4. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria.

    PubMed

    Curran, Jerry; Musa, Hassan; Kline, Crystal F; Makara, Michael A; Little, Sean C; Higgins, John D; Hund, Thomas J; Band, Hamid; Mohler, Peter J

    2015-05-01

    Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca(2+) channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca(2+) current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca(2+) channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction. PMID:25825486

  5. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria*

    PubMed Central

    Curran, Jerry; Musa, Hassan; Kline, Crystal F.; Makara, Michael A.; Little, Sean C.; Higgins, John D.; Hund, Thomas J.; Band, Hamid; Mohler, Peter J.

    2015-01-01

    Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction. PMID:25825486

  6. A Novel Multivalent, Single-Domain Antibody Targeting TcdA and TcdB Prevents Fulminant Clostridium difficile Infection in Mice

    PubMed Central

    Yang, Zhiyong; Schmidt, Diane; Liu, Weilong; Li, Shan; Shi, Lianfa; Sheng, Jinliang; Chen, Kevin; Yu, Hua; Tremblay, Jacqueline M.; Chen, Xinhua; Piepenbrink, Kurt H.; Sundberg, Eric J.; Kelly, Ciaran P.; Bai, Guang; Shoemaker, Charles B.; Feng, Hanping

    2014-01-01

    The incidence of Clostridium difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. In this study, we generated a novel, potently neutralizing, tetravalent, and bispecific antibody composed of 2 heavy-chain-only VH (VHH) binding domains against both TcdA and TcdB (designated “ABA”) that reverses fulminant CDI in mice infected with an epidemic 027 strain after a single injection of the antibody. We demonstrated that ABA bound to both toxins simultaneously and displayed a significantly enhanced neutralizing activity both in vitro and in vivo. Additionally, ABA was able to broadly neutralize toxins from clinical C. difficile isolates that express both TcdA and TcdB but failed to neutralize the toxin from TcdA−TcdB+ C. difficile strains. This study thus provides a rationale for the development of multivalent VHHs that target both toxins and are broadly neutralizing for treating severe CDI. PMID:24683195

  7. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  8. The replication foci targeting sequence (RFTS) of DNMT1 functions as a potent histone H3 binding domain regulated by autoinhibition.

    PubMed

    Misaki, Toshinori; Yamaguchi, Luna; Sun, Jia; Orii, Minami; Nishiyama, Atsuya; Nakanishi, Makoto

    2016-02-12

    DNA methyltransferase 1 (DNMT1) plays an essential role in propagation of the DNA methylation pattern to daughter cells. The replication foci targeting sequence (RFTS) of DNMT1 is required for the recruitment of DNMT1 to DNA methylation sites through direct binding to ubiquitylated histone H3 mediated by UHRF1 (Ubiquitin-like containing PHD and RING finger domains 1). Recently, it has been reported that the RFTS plugs the catalytic pocket of DNMT1 in an intermediated manner and inhibits its DNA methyltransferase activity. However, it is unclear whether this binding affects RFTS function in terms of recruitment to DNA methylation sites. Using Xenopus egg extracts, we demonstrate here that abrogation of the interaction between the RFTS and the catalytic center of DNMT1, by deletion of the C-terminal portion or disruption of the hydrogen bond, results in non-ubiquitylated histone H3 binding and abnormal accumulation of DNMT1 on the chromatin. Interestingly, DNMT1 mutants identified in patients with a neurodegenerative disease, ADCA-DN, bound to non-ubiquitylated histone H3 and accumulated on chromatin during S phase in Xenopus egg extracts. These results suggest that the interaction between the RFTS and the catalytic center of DNMT1 serves as an autoinhibitory mechanism for suppressing the histone H3 binding of DNMT1 and ensuring the accurate recruitment of DNMT1 to sites of DNA methylation. The autoinhibitory mechanism may play an important role in the regulation of gene expression in neurogenesis. PMID:26774338

  9. Protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH Domain of Akt1

    PubMed Central

    Deyle, Kaycie M.; Farrow, Blake; Hee, Ying Qiao; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-01-01

    Ligands that can selectively bind to proteins with single amino acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wildtype. However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical, synthetic epitope-targeting strategy which we used to discover a 5-mer peptide with selectivity for the E17K transforming point mutation in the Pleckstrin Homology Domain of the Akt1 oncoprotein. A fragment of Akt1 containing the E17K mutation and a I19[Propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that covalently clicked onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to wildtype, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 substrate. PMID:25901825

  10. Enhanced cellular uptake of a TAT-conjugated peptide inhibitor targeting the polo-box domain of polo-like kinase 1.

    PubMed

    Kim, Sung Min; Chae, Min Kyung; Lee, Chulhyun; Yim, Min Su; Bang, Jeong Kyu; Ryu, Eun Kyoung

    2014-11-01

    In the last decade, drug delivery systems using biologically active molecules for cellular uptake of therapeutic targets have been studied for application and testing in clinical trials. For instance, the transactivator of transcription (TAT) peptide, or cell-penetrating peptide, was shown to deliver a variety of cargoes, including proteins, peptides, and nucleic acids. Polo-like kinase 1 (Plk1) plays key roles in the regulation of cell cycle events (e.g., mitotic progression). Plk1 was also shown to be activated and highly expressed in proliferating cells such as tumor cells. Amongst these phosphopeptides, Pro-Leu-His-Ser-p-Thr (PLHSpT), which is the minimal sequence for polo-box domain (PBD) binding, was shown to have an inhibitory effect and to induce apoptotic cell death. However, the phosphopeptide showed low cell membrane penetration. Thus, in our study, we synthesized Plk1 inhibitor TAT-PLHSpT to improve agent internalization into cells. TAT-PLHSpT was shown to internalize into the nucleus. The conjugation of TAT with PLHSpT inhibited cancer cell growth and survival. Moreover, it showed an increase in cellular uptake and inhibition of Plk1 kinase activity. Further studies are needed for biological evaluation of the new peptide in tumor-bearing animal models (in vivo). Our results prove that TAT-PLHSpT is a good candidate for specific PBD binding of Plk1 as a therapeutic agent for humans. PMID:25151148