Science.gov

Sample records for psychrophilic enrichment cultures

  1. Phylogenetic Analysis of Anaerobic Psychrophilic Enrichment Cultures Obtained from a Greenland Glacier Ice Core

    PubMed Central

    Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.

    2003-01-01

    The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at −9°C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 × 107 cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at −2°C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years. PMID:12676695

  2. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier ice core

    NASA Technical Reports Server (NTRS)

    Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.

    2003-01-01

    The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at -9 degrees C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 x 10(7) cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at -2 degrees C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years.

  3. Psychrophiles

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khawar S.; Williams, Timothy J.; Wilkins, David; Yau, Sheree; Allen, Michelle A.; Brown, Mark V.; Lauro, Federico M.; Cavicchioli, Ricardo

    2013-05-01

    Psychrophilic (cold-adapted) microorganisms make a major contribution to Earth's biomass and perform critical roles in global biogeochemical cycles. The vast extent and environmental diversity of Earth's cold biosphere has selected for equally diverse microbial assemblages that can include archaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of enzymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents. In this review, we examine the ecology of Antarctic psychrophiles, physiological adaptation of psychrophiles, and properties of cold-adapted proteins, and we provide a view of how these characteristics inform studies of astrobiology.

  4. Cultural Enrichment through Community Action.

    ERIC Educational Resources Information Center

    Wilson, O. J.

    This project was conceived as a technique for helping to eliminate a cultural void in the areas of art, music, and theatre in the service area of Western Kentucky University. To implement this concept, demonstrations were conducted in art, music, theatre, and in library and lecture resources in 16 counties over a four-year period. The attendance…

  5. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--HOME ECONOMICS.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN HOME ECONOMICS. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE, AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH…

  6. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--SCIENCE.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN SCIENCE. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE, AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH SCHOOLS. THE…

  7. CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--INDUSTRIAL ARTS.

    ERIC Educational Resources Information Center

    BROWN, ROBERT M.; AND OTHERS

    THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN INDUSTRIAL ARTS. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE, AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH…

  8. Psychrophilic and mesophilic fungi in frozen food products.

    PubMed

    KUEHN, H H; GUNDERSON, M F

    1963-07-01

    The mold flora of certain frozen pastries and chicken pies was investigated. Molds were determined qualitatively or quantitatively, or both, by preparing pour plates of the blended product and incubating the plates at various temperatures. The mesophilic fungal flora developed on plates incubated at 10 and 20 C, whereas psychrophilic fungi were obtained on plates incubated at 0 and 5 C. About 2,000 cultures of fungi, representing about 100 different species, were isolated from various products. Four different brands of blueberry, two brands of cherry pastries, two brands of apple, and one brand of raspberry pastries were examined. In addition, two brands of chicken pies were studied. Blueberry pastries had a much higher total fungal population than the other products, although different brands of blueberry pastries varied considerably. Blueberry pastries had from 347 to 1,586 psychrophilic fungi per g. Cherry pastries had about 70 to 110 psychrophiles per g, and apple pastries had 19 to 92 psychrophiles per g. Chicken pies contained very few psychrophilic fungi, about 15 per g. Aureobasidium pullulans was recovered most frequently. About 90% of the psychrophilic fungi found in blueberry products was A. pullulans. Depending upon the brand of cherry pastry, either Phoma spp. or A. pullulans was the most common fungus present. Apple pastries also displayed brand variation, but were unique in having many mesophilic aspergilli. This genus was generally absent from other products. The Penicillium content of apple pastries was also rather high; 50% of the psychrophilic flora was represented by this genus. The psychrophilic fungal flora of chicken pies was composed primarily of penicillia (50%) and Chrysosporium pannorum (46%). PMID:13927344

  9. Enrichment of DNRA bacteria in a continuous culture.

    PubMed

    van den Berg, Eveline M; van Dongen, Udo; Abbas, Ben; van Loosdrecht, Mark Cm

    2015-10-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are competing microbial nitrate-reduction processes. The occurrence of DNRA has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in a laboratory reactor, yet no successful DNRA enrichment culture has been described. We showed that a stable DNRA-dominated enrichment culture can be obtained in a chemostat system. The enrichment was based on the hypothesis that nitrate limitation is the dominant factor in selecting for DNRA. First, a conventional denitrifying culture was enriched from activated sludge, with acetate and nitrate as substrates. Next, the acetate concentration in the medium was increased to obtain nitrate-limiting conditions. As a result, conversions shifted from denitrification to DNRA. In this selection of a DNRA culture, two important factors were the nitrate limitation and a relatively low dilution rate (0.026 h(-1)). The culture was a highly enriched population of Deltaproteobacteria most closely related to Geobacter lovleyi, based on 16S rRNA gene sequencing (97% similarity). We established a stable and reproducible cultivation method for the enrichment of DNRA bacteria in a continuously operated reactor system. This enrichment method allows to further investigate the DNRA process and address the factors for competition between DNRA and denitrification, or other N-conversion pathways. PMID:25909972

  10. Quantitative Ecology of Psychrophilic Microorganisms

    PubMed Central

    Stokes, J. L; Redmond, Mary L.

    1966-01-01

    To obtain information on the importance of psychrophiles in nature, 95 samples of soil, water, mud, and various foods were quantitatively assayed for their content of psychrophilic bacteria and fungi and also for mesophilic and thermophilic bacteria and fungi. Thousands to millions of psychrophilic bacteria were present per gram of soil and represented 0.5 to 86% of the bacterial population. Also, about 25% of the fungi in uncultivated soil were psychrophilic. In stream and river water, psychrophilic bacteria constituted 16 to 47% of the bacterial population; in lake water, 41 to 76%; and in lake mud, 11 to 33%. Large numbers of psychrophilic bacteria were present in dairy products, meats, and other foods, and accounted for 35 to 93% of the bacterial population of meats. In contrast, thermophilic bacteria usually comprised 1% or less of the bacterial population in all of the materials examined. The data indicate that psychrophiles are both ubiquitous and numerous in nature, and probably play important roles in the cycles of matter. PMID:5914497

  11. 21 CFR 866.2330 - Enriched culture medium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched...

  12. 21 CFR 866.2330 - Enriched culture medium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched...

  13. 21 CFR 866.2330 - Enriched culture medium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched...

  14. 21 CFR 866.2330 - Enriched culture medium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched...

  15. 21 CFR 866.2330 - Enriched culture medium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Enriched culture medium. 866.2330 Section 866.2330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched...

  16. Mineralization of trichloroethylene by heterotrophic enrichment cultures

    SciTech Connect

    Phelps, T.J.; Ringelberg, D.; Mikell, A.T.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Microbial consortia capable of aerobically degrading greater than 99% of 50 mg/l exogenous trichloroethylene (TCE) have been enriched from TCE contaminated subsurface sediments. Concentrations of TCE greater than 300 mg/l were not degraded nor was TCE used as a sole energy source. Successful electron donors for growth included tryptone-yeast extract, methanol, methane or propane. The optimum temperature for growth was 22--37 C and the ph optimum was 7.0--8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride and possibly chloroform.

  17. Protein Chips for Detection of Salmonella spp. from Enrichment Culture.

    PubMed

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  18. Protein Chips for Detection of Salmonella spp. from Enrichment Culture

    PubMed Central

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  19. Culture of Piscirickettsia salmonis on enriched blood agar.

    PubMed

    Mauel, Michael J; Ware, Cynthia; Smith, Pedro A

    2008-03-01

    Piscirickettsia salmonis is the etiologic agent of piscirickettsiosis, an economically significant disease of fish. Isolation of P. salmonis by culturing on fish cell lines has been the standard technique since the initial isolation of the organism. The ability to grow P. salmonis on artificial media would relieve facilities of the cost of maintaining cell lines, permit isolation at fish culture sites with fewer contamination problems, and allow easier transport of isolates to diagnostic facilities for confirmation assays. This report describes the successful culture of P. salmonis on enriched blood agar. PMID:18319435

  20. Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture.

    PubMed

    Moralejo-Gárate, Helena; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; Palmeiro-Sánchez, Tania; van Loosdrecht, Mark C M

    2014-12-01

    Waste-based polyhydroxyalkanoate (PHA) production by bacterial enrichments generally follows a three step strategy in which first the wastewater is converted into a volatile fatty acid rich stream that is subsequently used as substrate in a selector and biopolymer production units. In this work, a bacterial community with high biopolymer production capacity was enriched using glycerol, a non-fermented substrate. The substrate versatility and PHA production capacity of this community was studied using glucose, lactate, acetate and xylitol as substrate. Except for xylitol, very high PHA producing capacities were obtained. The PHA accumulation was comparable or even higher than with glycerol as substrate. This is the first study that established a high PHA content (≈70 wt%) with glucose as substrate in a microbial enrichment culture. The results presented in this study support the development of replacing pure culture based PHA production by bacterial enrichment cultures. A process where mixtures of substrates can be easily handled and the acidification step can potentially be avoided is described. PMID:25213684

  1. [Reductive Dechlorination of Trichloroethylene by Benzoate-Enriched Anaerobic Cultures].

    PubMed

    Li, Jiang-wei; Yang, Xiao-yong; Hu, An-yi; Yu, Chang-ping

    2015-10-01

    Gas chromatography was used to monitor the reductive dechlorination of trichloroethylene (TCE) by anaerobic enrichment cultures with benzoate as the sole carbon source. The 454 pyrosequencing technique was used to investigate the microbial community and the real-time quantitative PCR was used to quantify the gene copies of Dehalococcoides spp. (DHC). The results showed that TCE was dechlorinated to vinyl chloride along with the formation of methane in 94 days. The anaerobic enrichment cultures exhibited a high diversity, which were classified into 16 phyla, 33 classes, 52 orders, 88 families and 129 genera, while 51.2% of them belonged to unclassified group, which inferred that there were a large portion of bacteria with unknown functional in this system. Degradation of TCE was accomplished by reductive dechlorinating and other functional populations, and the DHC which carried tceA gene could be the dominant reductive dechlorinating populations in the system. PMID:26841609

  2. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture.

    PubMed Central

    González, J M; Whitman, W B; Hodson, R E; Moran, M A

    1996-01-01

    Culturable bacteria that were numerically important members of a marine enrichment community were identified and characterized phylogenetically. Selective and nonselective isolation methods were used to obtain 133 culturable bacterial isolates from model marine communities enriched with the high-molecular-weight (lignin-rich) fraction of pulp mill effluent. The culture collection was screened against community DNA from the lignin enrichments by whole-genome hybridization methods, and three marine bacterial isolates were identified as being numerically important in the communities. One isolate was in the alpha-subclass of Proteobacteria, and the other two were in the gamma-subclass of Proteobacteria. Isolate-specific 16S rRNA oligonucleotide probes designed to precisely quantify the isolates in the lignin enrichment communities indicated contributions ranging from 2 to 32% of enrichment DNA, values nearly identical to those originally obtained by the simpler whole-genome hybridization method. Two 16S rRNA sequences closely related to that of one of the isolates, although not identical, were amplified via PCR from the seawater sample originally used to inoculate the enrichment medium. Partial sequences of 14 other isolates revealed significant phylogenetic diversity and unusual sequences among the culturable lignin enrichment bacteria, with the Proteobacteria, Cytophaga-Flavobacterium, and gram-positive groups represented. PMID:8953714

  3. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    USGS Publications Warehouse

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2.

  4. Enriching the Student Experience Through a Collaborative Cultural Learning Model.

    PubMed

    McInally, Wendy; Metcalfe, Sharon; Garner, Bonnie

    2015-01-01

    This article provides a knowledge and understanding of an international, collaborative, cultural learning model for students from the United States and Scotland. Internationalizing the student experience has been instrumental for student learning for the past eight years. Both countries have developed programs that have enriched and enhanced the overall student learning experience, mainly through the sharing of evidence-based care in both hospital and community settings. Student learning is at the heart of this international model, and through practice learning, leadership, and reflective practice, student immersion in global health care and practice is immense. Moving forward, we are seeking new opportunities to explore learning partnerships to provide this collaborative cultural learning experience. PMID:26376575

  5. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. PMID:25280176

  6. Effect of Enrichment Medium on Real-time Detection of Salmonella enterica from Lettuce and Tomato Enrichment Cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    vThree commonly used enrichment broths for detection of Salmonella (Buffered Peptone Water – BPW, Tryptic Soy Broth – TSB, and Universal Preenrichment Broth – UPB) were compared for use in real time SYBR Green PCR detection of Salmonella introduced into enrichment cultures made from store bought let...

  7. Biotechnological uses of enzymes from psychrophiles

    PubMed Central

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  8. Selective Enrichment Media Bias the Types of Salmonella enterica Strains Isolated from Mixed Strain Cultures and Complex Enrichment Broths

    PubMed Central

    Gorski, Lisa

    2012-01-01

    For foodborne outbreak investigations it can be difficult to isolate the relevant strain from food and/or environmental sources. If the sample is contaminated by more than one strain of the pathogen the relevant strain might be missed. In this study mixed cultures of Salmonella enterica were grown in one set of standard enrichment media to see if culture bias patterns emerged. Nineteen strains representing four serogroups and ten serotypes were compared in four-strain mixtures in Salmonella-only and in cattle fecal culture enrichment backgrounds using Salmonella enrichment media. One or more strain(s) emerged as dominant in each mixture. No serotype was most fit, but strains of serogroups C2 and E were more likely to dominate enrichment culture mixtures than strains of serogroups B or C1. Different versions of Rappaport-Vassiliadis (RV) medium gave different patterns of strain dominance in both Salmonella-only and fecal enrichment culture backgrounds. The fittest strains belonged to serogroups C1, C2, and E, and included strains of S. Infantis, S. Thompson S. Newport, S. 6,8:d:-, and S. Give. Strains of serogroup B, which included serotypes often seen in outbreaks such as S. Typhimurium, S. Saintpaul, and S. Schwarzengrund were less likely to emerge as dominant strains in the mixtures when using standard RV as part of the enrichment. Using a more nutrient-rich version of RV as part of the protocol led to a different pattern of strains emerging, however some were still present in very low numbers in the resulting population. These results indicate that outbreak investigations of food and/or other environmental samples should include multiple enrichment protocols to ensure isolation of target strains of Salmonella. PMID:22496847

  9. Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture.

    PubMed

    Wang, Ru; Zheng, Ping; Xing, Ya-Juan; Zhang, Meng; Ghulam, Abbas; Zhao, Zhi-Qing; Li, Wei; Wang, Lan

    2014-05-01

    Heterotrophic denitrifying enriched culture (DEC) from a lab-scale high-rate denitrifying reactor was discovered to perform nitrate-dependent anaerobic ferrous oxidation (NAFO). The DEC was systematically investigated to reveal their denitrification activity, their NAFO activity, and the predominant microbial population. The DEC was capable of heterotrophic denitrification with methanol as the electron donor, and autotrophic denitrification with ferrous salt as the electron donor named NAFO. The conversion ratios of ferrous-Fe and nitrate-N were 87.41 and 98.74 %, and the consumption Fe/N ratio was 2.3:1 (mol/mol). The maximum reaction velocity and half saturation constant of Fe were 412.54 mg/(l h) and 8,276.44 mg/l, and the counterparts of N were 20.87 mg/(l h) and 322.58 mg/l, respectively. The predominant bacteria were Hyphomicrobium, Thauera, and Flavobacterium, and the predominant archaea were Methanomethylovorans, Methanohalophilus, and Methanolobus. The discovery of NAFO by heterotrophic DEC is significant for the development of wastewater treatment and the biogeochemical iron cycle and nitrogen cycle. PMID:24619339

  10. Co-Enriching Microflora Associated with Culture Based Methods to Detect Salmonella from Tomato Phyllosphere

    PubMed Central

    Ottesen, Andrea R.; Gonzalez, Antonio; Bell, Rebecca; Arce, Caroline; Rideout, Steven; Allard, Marc; Evans, Peter; Strain, Errol; Musser, Steven; Knight, Rob; Brown, Eric; Pettengill, James B.

    2013-01-01

    The ability to detect a specific organism from a complex environment is vitally important to many fields of public health, including food safety. For example, tomatoes have been implicated numerous times as vehicles of foodborne outbreaks due to strains of Salmonella but few studies have ever recovered Salmonella from a tomato phyllosphere environment. Precision of culturing techniques that target agents associated with outbreaks depend on numerous factors. One important factor to better understand is which species co-enrich during enrichment procedures and how microbial dynamics may impede or enhance detection of target pathogens. We used a shotgun sequence approach to describe taxa associated with samples pre-enrichment and throughout the enrichment steps of the Bacteriological Analytical Manual's (BAM) protocol for detection of Salmonella from environmental tomato samples. Recent work has shown that during efforts to enrich Salmonella (Proteobacteria) from tomato field samples, Firmicute genera are also co-enriched and at least one co-enriching Firmicute genus (Paenibacillus sp.) can inhibit and even kills strains of Salmonella. Here we provide a baseline description of microflora that co-culture during detection efforts and the utility of a bioinformatic approach to detect specific taxa from metagenomic sequence data. We observed that uncultured samples clustered together with distinct taxonomic profiles relative to the three cultured treatments (Universal Pre-enrichment broth (UPB), Tetrathionate (TT), and Rappaport-Vassiliadis (RV)). There was little consistency among samples exposed to the same culturing medias, suggesting significant microbial differences in starting matrices or stochasticity associated with enrichment processes. Interestingly, Paenibacillus sp. (Salmonella inhibitor) was significantly enriched from uncultured to cultured (UPB) samples. Also of interest was the sequence based identification of a number of sequences as Salmonella despite

  11. Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227.

    PubMed Central

    Bagley, D M; Gossett, J M

    1995-01-01

    The effects of methanol addition and consumption on chloroform degradation rate and product distribution in methanogenic methanol enrichment cultures and in cultures of Methanosarcina barkeri 227 were investigated. Degradation of chloroform with initial concentrations up to 27.3 microM in enrichment cultures and 4.8 microM in pure cultures was stimulated by the addition of methanol. However, methanol consumption was inhibited by as little as 2.5 microM chloroform in enrichment cultures and 0.8 microM chloroform in pure cultures, suggesting that the presence of methanol, not its exact concentration or consumption rate, was the most significant variable affecting chloroform degradation rate. Methanol addition also significantly increased the number of moles of dichloromethane produced per mole of chloroform consumed. In enrichment cultures, the number of moles of dichloromethane produced per mole of chloroform consumed ranged from 0.7 (methanol consumption essentially uninhibited) to 0.35 (methanol consumption significantly inhibited) to less than 0.2 (methanol not added to the culture). In pure cultures, the number of moles of dichloromethane produced per mole of chloroform consumed was 0.47 when methanol was added and 0.24 when no methanol was added. Studies with [14C]chloroform in both enrichment and pure cultures confirmed that methanol metabolism stimulated dichloromethane production compared with CO2 production. The results indicate that while the addition of methanol significantly stimulated chloroform degradation in both methanogenic methanol enrichment cultures and cultures of M. barkeri 227, the prospects for use of methanol as a growth substrate for anaerobic chloroform-degrading systems may be limited unless the increased production of undesirable chloroform degradation products and the inhibition of methanol consumption can be mitigated. PMID:7574627

  12. Thermally Stable Amylases from Antarctic Psychrophilic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrolysis of starch in cold environments by psychrophilic species of bacteria is believed to be accomplished through the production of special cold-adapted amylases. These amylases are reportedly thermally labile with low (<40 deg C) temperature optima and high specific activities at 0 to 25 deg C....

  13. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture

    PubMed Central

    Zheng, Shiling; Zhang, Hongxia; Li, Ying; Zhang, Hua; Wang, Oumei; Zhang, Jun; Liu, Fanghua

    2015-01-01

    Methanosaeta harundinacea and Methanosarcina barkeri, known as classic acetoclastic methanogens, are capable of directly accepting electrons from Geobacter metallireducens for the reduction of carbon dioxide to methane, having been revealed as direct interspecies electron transfer (DIET) in the laboratory co-cultures. However, whether their co-occurrences are ubiquitous in the iron (III)-reducing environments and the other species of acetoclastic methanogens such as Methanosarcina mazei are capable of DIET are still unknown. Instead of initiating the co-cultures with pure cultures, two-step cultivation was employed to selectively enrich iron (III)-reducing microorganisms in a coastal gold mining river, Jiehe River, with rich iron content in the sediments. First, iron (III) reducers including Geobacteraceae were successfully enriched by 3-months successive culture on amorphous Fe(III) oxides as electron acceptor and acetate as electron donor. High-throughput Illumina sequencing, terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures actively contained the bacteria belong to Geobacteraceae and Bacilli, exclusively dominated by the archaea belong to Methanosarcinaceae. Second, the enrichment cultures including methanogens and Geobacteraceae were transferred with ethanol as alternative electron donor. Remarkably, aggregates were successively formed in the enrichments after three transfers. The results revealed by RNA-based analysis demonstrate that the co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture. Furthermore, the aggregates, as close physical contact, formed in the enrichment culture, indicate that DIET could be a possible option for interspecies electron transfer in the aggregates. PMID:26441876

  14. An Effectiveness Study of a Culturally Enriched School-Based CBT Anxiety Prevention Program

    ERIC Educational Resources Information Center

    Miller, Lynn D.; Laye-Gindhu, Aviva; Bennett, Joanna L.; Liu, Yan; Gold, Stephenie; March, John S.; Olson, Brent F.; Waechtler, Vanessa E.

    2011-01-01

    Anxiety disorders are prevalent in the school-aged population and are present across cultural groups. Scant research exists on culturally relevant prevention and intervention programs for mental health problems in the Aboriginal populations. An established cognitive behavioral program, FRIENDS for Life, was enriched to include content that was…

  15. Characterization of an Enriched Anaerobic Culture Having Ability to Dechlorinate TCE

    NASA Astrophysics Data System (ADS)

    Ise, K.; Suto, K.; Inoue, C.

    2007-03-01

    An anaerobic mixed microbial culture was enriched from soil and groundwater taken from a site contaminated with trichloroethene (TCE). This enrichment culture could dechlorinate TCE sequentially to cis-dichloroethene (cis-DCE), vinyl chloride (VC), and ethene rapidly within 2 weeks. This enrichment culture could utilize various organic compounds, such as methanol, ethanol, and sodium acetate and so on, as electron donor. This culture had maintained high ability of TCE dechlorination for about 3 years since the start of enrichment cultivation. The optimum pH value for the dechlorination activity of this culture, which reacts from TCE to ethene, was 6.7. However above the pH value 7.1, it lost the dechlorination ability of cis-DCE and VC. So cis-DCE was remained at that pH conditions. From the DNA sequencing analysis of 16SrRNA gene, this enrichment culture includes Dehalococcoides sp. which has the ability to dechlorinate TCE to VC completely with hydrogen. It suggested that this Dehalococcoides sp. takes part in the dechlorination of chloroethenes.

  16. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  17. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides.

    PubMed

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-10-30

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca(2+) enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ~100 nm in size are found in Ca(2+)-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory. PMID:26101258

  18. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides

    PubMed Central

    Hori, Shin-ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-01-01

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca2+ enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ∼100 nm in size are found in Ca2+-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory. PMID:26101258

  19. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1974-01-01

    The ability of psychrophilic microorganisms to grow in some of the environmental conditions suggested for Mars is studied with particular attention given to the effects of moisture and nutrients on growth. Results of growth with the slide culture technique are presented and indicate that this technique can be a rapid and sensitive technique for demonstration of microbial growth under various environmental conditions. Additional soil samples have been obtained from Cape Kennedy, and results of these assays at various low temperatures for psychrophilic populations are presented. The heat resistance of some of the psychrophilic sporeformers have been determined. Psychrophilic organisms were isolated from the teflon ribbons at Cape Kennedy and characterization of these was begun. In addition, heat survivors from the teflon ribbons are being investigated, and partial characterizations of these are presented.

  20. Inupiaq Cultural Enrichment Program. Junior High-High School.

    ERIC Educational Resources Information Center

    Ahngasuk, Margaret; And Others

    Part of a project to teach Inupiaq culture and language, the teacher's guide contains 18 lessons about survival. The lessons focus on survival on ice, water, and land; hunting gear; fall and early winter weather; emergency shelters; landmarks; traditional clothing; land and water transportation; first aid; search and rescue; sewing; traditional…

  1. Enrichment Culture of Hydrogen Fermentation Microorganisms and Analysis of Microbial Communities

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyu; Matsumoto, Akiko; Ohnishi, Akihiro; Sakamoto, Masaru; Fujimoto, Naoshi; Suzuki, Masaharu

    The present study was aimed at enrichment of hydrogen fermentative microflora that can utilize garbage as fermentation substrate. It was shown that stable hydrogen fermentation was performed using enriched microbes from sewage sludge compost. During the enrichment culture, the microflora were analyzed by the FISH method and the PCR-DGGE method. As a result, predominant microbes of hydrogen production were determined to be from the genus Clostridium belonging to a Gram positive Low G+C group. Furthermore, it was supposed that genus Bacillus contributed to the stability of hydrogen productivity from garbage by genus Clostridium. In the batch culture, under pH control at 6.0, it was ascertained that enriched microflora obtained from sewage sludge compost had sufficient hydrogen productivity using garbage, and yielded 2.03mol-H2/mol-hexose. It is supposed that the microflora of sewage sludge compost is effective as inoculum of the hydrogen fermentation system when using garbage as substrate.

  2. Preparation of Rodent Primary Cultures for Neuron–Glia, Mixed Glia, Enriched Microglia, and Reconstituted Cultures with Microglia

    PubMed Central

    Chen, Shih-Heng; Oyarzabal, Esteban A.; Hong, Jau-Shyong

    2016-01-01

    Microglia, neurons, and macroglia (astrocytes and oligodendrocytes) are the major cell types in the central nervous system. In the past decades, primary microglia-enriched cultures have been widely used to study the biological functions of microglia in vitro. In order to study the interactions between microglia and other brain cells, neuron–glia, neuron–microglia, and mixed glia cultures were developed. The aim of this chapter is to provide basic and adaptable protocols for the preparation of these microglia-containing primary cultures from rodent. Meanwhile, we also want to provide a collection of tips from our collective experiences doing primary brain cell cultures. PMID:23813383

  3. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions.

    PubMed

    Bae, Hee-Sung; Yamagishi, Takao; Suwa, Yuichi

    2002-01-01

    Although chlorophenol (CP) degradation has been studied, no bacterium responsible for degradation of CP under denitrifying conditions has been isolated. Moreover, little substantial evidence for anaerobic degradation of CPs coupled with denitrification is available even for mixed cultures. Degradation of CP [2-CP, 3-CP, 4-CP, 2,4-dichlorophenol (DCP) or 2,6-DCP] under denitrifying conditions was examined in anaerobic batch culture inoculated with activated sludge. Although 3-CP, 4-CP, 2,4-DCP and 2,6-DCP were not stably degraded, 2-CP was degraded and its degradation capability was sustained in a subculture. However, the rate of 2-CP degradation was not significantly enhanced by subculturing. In 2-CP-degrading cultures, nitrate was consumed stoichiometrically and concomitantly during 2-CP degradation, and a dechlorination intermediate was not detected, suggesting that 2-CP degradation was coupled with nitrate reduction. A 2-CP-degrading enrichment culture degraded 2-CP in the presence of nitrate, but did not in the absence of nitrate or the presence of sulfate. This suggests that the enrichment culture strictly requires nitrate for degradation of 2-CP. The apparent specific growth rate of the 2-CP degrading species was 0.0139 d(-1). Thus the apparent doubling time of the 2-CP-degrading population in the enrichment culture was greater than 50 d, which may explain difficulty in enrichment and isolation of micro-organisms responsible for CP degradation under denitrifying conditions. PMID:11782514

  4. Newly cultured bacteria with broad diversity isolated from 8 week continuous culture enrichments of cow feces on complex polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the fascinating functions of the mammalian intestinal microbiota is the fermentation of plant cell wall components. Eight week continuous culture enrichments of cow feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were ...

  5. Enrichment of Denitrifying Methane-Oxidizing Microorganisms Using Up-Flow Continuous Reactors and Batch Cultures

    PubMed Central

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L−1·day−1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89–91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia. PMID:25545013

  6. Establishment of polychlorinated biphenyl-degrading enrichment culture with predominantly meta dechlorination

    SciTech Connect

    Morris, P.J.; Mohn, W.W.; Quensen, J.F. III; Tiedje, J.M.; Boyd, S.A. )

    1992-09-01

    Enrichment of polychlorinated biphenyl (PCB)-dechlorinating microorganisms from PCB-contaminated sediments from the Upper Hudson River, N.Y., was attempted. The enrichment strategy was to use pyruvate as the electron donor and dechlorination of Aroclor 1242 as the electron acceptor. The enrichment medium also contained non-PCB-contaminated Hudson River sediments, which were required for the PCB-dechlorinating activity. An enrichment culture (that had stable PCBT-dechlorinating activity over nine serial transfers during 1 year) was established under these conditions; however, the rate of dechlorination did not increase after the second serial transfer. Dechlorination occurred primarily from the meta positions of the biphenyl molecule. Hydrogen could be substituted for pyruvate as the electron donor with equal activity, but when acetate was used as the electron donor a delay in dechlorination was observed. Sulfate and bromethane sulfonate inhibited dechlorination activity. The pyruvate-Aroclor 1242 enrichment also dechlorinated Aroclors 1248, 1254, and 1260; the extent of chlorine removed was the greatest for Aroclor 1254. For comparison, nonautoclaved non-PCB-contaminated Hudson River sediments used in the assay also dechlorinated Aroclors, but only after 12 to 16 weeks of incubation. This suggests that PCB-dechlorinating organisms were also present in these sediments but in numbers lower than those in the enrichment culture.

  7. Characterization of a Highly Enriched Dehalococcoides-Containing Culture That Grows on Vinyl Chloride and Trichloroethene

    PubMed Central

    Duhamel, Melanie; Mo, Kaiguo; Edwards, Elizabeth A.

    2004-01-01

    A highly enriched culture that reductively dechlorinates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) to ethene without methanogenesis is described. The Dehalococcoides strain in this enrichment culture had a yield of (5.6 ± 1.4) × 108 16S rRNA gene copies/μmol of Cl− when grown on VC and hydrogen. Unlike the other VC-degrading cultures described in the literature, strains VS and BAV1, this culture maintained the ability to grow on TCE with a yield of (3.6 ± 1.3) × 108 16S rRNA gene copies/μmol of Cl−. The yields on an electron-equivalent basis measured for the culture grown on TCE and on VC were not significantly different, indicating that both substrates supported growth equally well. PCR followed by denaturing gradient gel electrophoresis, cloning, and phylogenetic analyses revealed that this culture contained one Dehalococcoides 16S rRNA gene sequence, designated KB-1/VC, that was identical (over 1,386 bp) to the sequences of previously described organisms FL2 and CBDB1. A second Dehalococcoides sequence found in separate KB-1 enrichment cultures maintained on cDCE, TCE, and tetrachloroethene was no longer present in the VC-H2 enrichment culture. This second Dehalococcoides sequence was identical to that of BAV1. As neither FL2 nor CBDB1 can dechlorinate VC to ethene in a growth-related fashion, it is clear that current 16S rRNA gene-based analyses do not provide sufficient information to distinguish between metabolically diverse members of the Dehalococcoides group. PMID:15345442

  8. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds.

    PubMed

    Palomeras, Sònia; Rabionet, Marc; Ferrer, Inés; Sarrats, Ariadna; Garcia-Romeu, Maria Luisa; Puig, Teresa; Ciurana, Joaquim

    2016-01-01

    The cancer stem cell (CSC) population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs' phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone) (PCL), a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI) was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control). Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population. PMID:27120585

  9. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil.

    PubMed

    Smith, Daniel; Alvey, Sam; Crowley, David E

    2005-07-01

    Atrazine degradation previously has been shown to be carried out by individual bacterial species or by relatively simple consortia that have been isolated using enrichment cultures. Here, the degradative pathway for atrazine was examined for a complex 8-membered enrichment culture. The species composition of the culture was determined by PCR-DGGE. The bacterial species included Agrobacterium tumefaciens, Caulobacter crescentus, Pseudomonas putida, Sphingomonas yaniokuyae, Nocardia sp., Rhizobium sp., Flavobacterium oryzihabitans, and Variovorax paradoxus. All of the isolates were screened for the presence of known genes that function for atrazine degradation including atzA,-B,-C,-D,-E,-F and trzD,-N. Dechlorination of atrazine, which was obligatory for complete mineralization, was carried out exclusively by Nocardia sp., which contained the trzN gene. Following dechlorination, the resulting product, hydroxyatrazine was further degraded via two separate pathways. In one pathway Nocardia converted hydroxyatrazine to N-ethylammelide via an unidentified gene product. In the second pathway, hydroxyatrazine generated by Nocardia sp. was hydrolyzed to N-isopropylammelide by Rhizobium sp., which contained the atzB gene. Each member of the enrichment culture contained atzC, which is responsible for ring cleavage, but none of the isolates carried the atzD,-E, or -F genes. Each member further contained either trzD or exhibited urease activity. The enrichment culture was destabilized by loss of Nocardia sp. when grown on ethylamine, ethylammelide, and cyanuric acid, after which the consortium was no longer able to degrade atrazine. The analysis of this enrichment culture highlights the broad level bacterial community interactions that may be involved in atrazine degradation in nature. PMID:16329946

  10. Using Enrichment Clusters to Address the Needs of Culturally and Linguistically Diverse Learners

    ERIC Educational Resources Information Center

    Allen, Jennifer K.; Robbins, Margaret A.; Payne, Yolanda Denise; Brown, Katherine Backes

    2016-01-01

    Using data from teacher interviews, classroom observations, and a professional development workshop, this article explains how one component of the schoolwide enrichment model (SEM) has been implemented at a culturally diverse elementary school serving primarily Latina/o and African American students. Based on a broadened conception of giftedness,…

  11. Broad diversity and newly cultured bacterial isolates from enrichment of pig feces on complex polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the fascinating functions of the mammalian intestinal microbiota is the fermentation of plant cell wall components. We used 8 week continuous culture enrichments of pig feces with cellulose and xylan/pectin to isolated bacteria from this community. A total of 575 bacterial isolates were class...

  12. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  13. Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing.

    PubMed

    Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui

    2014-02-01

    Triclosan, a widely used antimicrobial agent, is an emerging contaminant in the environment. Despite its antimicrobial character, biodegradation of triclosan has been observed in pure cultures, soils and activated sludge. However, little is known about the microorganisms responsible for the degradation in mixed cultures. In this study, active triclosan degraders in a triclosan-degrading enrichment culture were identified using stable isotope probing (SIP) with universally (13)C-labeled triclosan. Eleven clones contributed from active microorganisms capable of uptake the (13)C in triclosan were identified. None of these clones were similar to known triclosan-degraders/utilizers. These clones distributed among α-, β-, or γ-Proteobacteria: one belonging to Defluvibacter (α-Proteobacteria), seven belonging to Alicycliphilus (β-Proteobacteria), and three belonging to Stenotrophomonas (γ-Proteobacteria). Successive additions of triclosan caused a significant shift in the microbial community structure of the enrichment culture, with dominant ribotypes belonging to the genera Alicycliphilus and Defluvibacter. Application of SIP has successfully identified diverse uncultivable triclosan-degrading microorganisms in an activated sludge enrichment culture. The results of this study not only contributed to our understanding of the microbial ecology of triclosan biodegradation in wastewater, but also suggested that triclosan degraders are more phylogenetically diverse than previously reported. PMID:23592331

  14. Anaerobic degradation of p-Xylene by a sulfate-reducing enrichment culture.

    PubMed

    Morasch, Barbara; Meckenstock, Rainer U

    2005-08-01

    A strictly anaerobic enrichment culture was obtained with p-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. p-Xylene was completely oxidized to CO(2). The enrichment culture depended on Fe(II) in the medium as a scavenger of the produced sulfide. 4-Methylbenzylsuccinic acid and 4-methylphenylitaconic acid were identified in supernatants of cultures indicating that degradation of p-xylene was initiated by fumarate addition to one of the methyl groups. Therefore, p-xylene degradation probably proceeds analogously to toluene degradation by Thauera aromatica or anaerobic degradation pathways for o- and m-xylene. PMID:16049661

  15. Circulating tumour cells in patients with urothelial tumours: Enrichment and in vitro culture

    PubMed Central

    Kolostova, Katarina; Cegan, Martin; Bobek, Vladimir

    2014-01-01

    Introduction: Results of clinical trials have demonstrated that circulating tumour cells (CTCs) are frequently detected in patients with urothelial tumours. The monitoring of CTCs has the potential to improve therapeutic management at an early stage and also to identify patients with increased risk of tumour progression or recurrence before the onset of clinically detected metastasis. In this study, we report a new effectively simplified methodology for a separation and in vitro culturing of viable CTCs from peripheral blood. Method: We include patients diagnosed with 3 types of urothelial tumours (prostate cancer, urinary bladder cancer, and kidney cancer). A size-based separation method for viable CTC - enrichment from unclothed peripheral blood has been introduced (MetaCell, Ostrava, Czech Republic). The enriched CTCs fraction was cultured directly on the separation membrane, or transferred from the membrane and cultured on any plastic surface or a microscopic slide. Results: We report a successful application of a CTCs isolation procedure in patients with urothelial cancers. The CTCs captured on the membrane are enriched with a remarkable proliferation potential. This has enabled us to set up in vitro cell cultures from the viable CTCs unaffected by any fixation buffers, antibodies or lysing solutions. Next, the CTCs were cultured in vitro for a minimum of 10 to 14 days to enable further downstream analysis (e.g., immunohistochemistry). Conclusion: We demonstrated an efficient CTCs capture platform, based on a cell size separation principle. Furthermore, we report an ability to culture the enriched cells – a critical requirement for post-isolation cellular analysis. PMID:25408812

  16. Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils.

    PubMed

    Wilson, Sandra L; Grogan, Paul; Walker, Virginia K

    2012-04-01

    Freeze-thaw stress has previously been shown to alter soil community structure and function. We sought to further investigate this stress on enriched microbial consortia with the aim of identifying microbes with ice-associating adaptations that facilitate survival. Enrichments were established to obtain culturable psychrotolerant microbes from soil samples from the latitudinal extremes of the Canadian Shield plateau. The resulting consortia were subjected to consecutive freeze-thaw cycles, and survivors were putatively identified by their 16S rRNA gene sequences. Even though the northerly site was exposed to longer, colder winters and large spring-time temperature fluctuations, the selective regime similarly affected both enriched consortia. Quantitative PCR and metagenomic sequencing were used to determine the frequency of a subset of the resistant microbes in the original enrichments. The metagenomes showed 22 initial genera, only 6 survived and these were not dominant prior to selection. When survivors were assayed for ice recrystallization inhibition and ice nucleation activities, over 60% had at least one of these properties. These phenotypes were not more prevalent in the northern enrichment, indicating that regarding these adaptations, the enrichment strategy yielded seemingly functionally similar consortia from each site. PMID:22435705

  17. Erythrocyte Enrichment in Hematopoietic Progenitor Cell Cultures Based on Magnetic Susceptibility of the Hemoglobin

    PubMed Central

    Jin, Xiaoxia; Abbot, Stewart; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Zhao, Rui; Kameneva, Marina V.; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2012-01-01

    Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. PMID:22952572

  18. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures

    SciTech Connect

    Bagley, D.M.; Gossett, J.M. )

    1990-08-01

    Tetrachloroethene, also known as perchloroethylene, was reductively dechlorinated to trichloroethene and cis-1,2-dichloroethene by laboratory sulfate-reducing enrichment cultures. The causative organism or group was not identified. However, tetrachloroethene was dechlorinated to trichloroethene in 50 mM bromoethane-sulfonate-inhibited enrichments and to trichloroethene and cis-1,2-dichloroethene in 3 mM fluoroacetate-inhibited enrichments. Overall transformation varied from 92% tetrachloroethene removal in 13 days to 22% removal in 65 days, depending on conditions of the inoculum, inhibitor used, and auxilliary substrate used. Neither lactate, acetate, methanol, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, succinic acid, nor hydrogen appeared directly to support tetrachloroethene dechlorination, although lactate-fed inocula demonstrated longer-term dechlorinating capability.

  19. Microbial characterization of anode-respiring bacteria within biofilms developed from cultures previously enriched in dissimilatory metal-reducing bacteria.

    PubMed

    Pierra, Mélanie; Carmona-Martínez, Alessandro A; Trably, Eric; Godon, Jean-Jacques; Bernet, Nicolas

    2015-11-01

    This work evaluated the use of a culture enriched in DMRB as a strategy to enrich ARB on anodes. DMRB were enriched with Fe(III) as final electron acceptor and then transferred to a potentiostatically-controlled system with an anode as sole final electron acceptor. Three successive iron-enrichment cultures were carried out. The first step of enrichment revealed a successful selection of the high current-producing ARB Geoalkalibacter subterraneus. After few successive enrichment steps, the microbial community analysis in electroactive biofilms showed a significant divergence with an impact on the biofilm electroactivity. Enrichment of ARB in electroactive biofilms through the pre-selection of DMRB should therefore be carefully considered. PMID:26182995

  20. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    PubMed

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals. PMID:25749914

  1. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria.

    PubMed

    Biosca, Elena G; Flores, Raquel; Santander, Ricardo D; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  2. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    PubMed Central

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  3. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture.

    PubMed Central

    Shima, J; Takase, S; Takahashi, Y; Iwai, Y; Fujimoto, H; Yamazaki, M; Ochi, K

    1997-01-01

    A mixed microbial culture capable of metabolizing deoxynivalenol was obtained from soil samples by an enrichment culture procedure. A bacterium (strain E3-39) isolated from the enrichment culture completely removed exogenously supplied deoxynivalenol from culture medium after incubation for 1 day. On the basis of morphological, physiological, and phylogenetic studies, strain E3-39 was classified as a bacterium belonging to the Agrobacterium-Rhizobium group. Thin-layer chromatographic analysis indicated the presence of one major and two minor metabolites of deoxynivalenol in ethyl acetate extracts of the E3-39 culture filtrates. The main metabolite was identified as 3-keto-4-deoxynivalenol by mass spectroscopy and 1H and 13C nuclear magnetic resonance analysis. The immunosuppressive toxicity of 3-keto-4-deoxynivalenol was evaluated by means of a bioassay based on the mitogen-induced and mitogen-free proliferations of mouse spleen lymphocytes. This compound exhibited a remarkably decreased (to less than one tenth) immunosuppressive toxicity relative to deoxynivalenol, indicating that the 3-OH group in deoxynivalenol is likely to be involved in exerting its immunosuppressive toxicity. Strain E3-39 was also capable of transforming 3-acetyldeoxynivalenol but not nivalenol and fusarenon-X. PMID:9327545

  4. Impact of non-storing biomass on PHA production: an enrichment culture on acetate and methanol.

    PubMed

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2014-11-01

    The use of enrichment cultures for polyhydroxyalkanoate (PHA) production from substrate mixtures such as wastewater inevitably results in the establishment of a non-PHA-storing population besides the PHA-producing bacteria. This reduces the maximum PHA content that can be established, and increases downstream-processing costs. The aim of this study was to investigate the impact of non-storing biomass on the PHA production process. A microbial culture was enriched in a sequencing batch reactor fed with acetate and methanol. Methanol served as model substrate for compounds unsuitable for PHA production. The enrichment was dominated by Plasticicumulans acidivorans, a known PHA producer, and Methylobacillus flagellatus, an obligate methylotroph that cannot store PHA. As expected, the presence of the non-storing population lowered the maximum PHA content of the culture, from more than 80 to 66wt.%. To mimic a nitrogen-rich waste stream, additional accumulation experiments were performed with continuous supply of carbon and ammonium. In these experiments P. acidivorans still accumulated large amounts of PHA, but unrestricted growth of the non-storing, methylotrophic population reduced the maximum overall PHA content to 52wt.%. Besides ammonium limitation, other strategies to restrict the fraction of non-storing biomass should be developed. The mixture of acetate and methanol is a useful model substrate for the development of such strategies. PMID:24802855

  5. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples.

    PubMed

    Tan, Boonfei; Fowler, S Jane; Abu Laban, Nidal; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia; Gieg, Lisa M

    2015-09-01

    Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities. PMID:25734684

  6. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples

    PubMed Central

    Tan, Boonfei; Jane Fowler, S; Laban, Nidal Abu; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia; Gieg, Lisa M

    2015-01-01

    Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities. PMID:25734684

  7. Neuronal-enriched cultures from embryonic rat ventral mesencephalon for pharmacological studies of dopamine neurons.

    PubMed

    Pardo, B; Paíno, C L; Casarejos, M J; Mena, M A

    1997-05-01

    The method described herein provides a convenient and rapid procedure to obtain enriched neuronal cultures containing reproducible numbers of dopamine (DA) cells. These cultures allow experimental paradigms designed to study the effect of drugs on DA neurons without astroglial mediation. Neuronal-enriched cultures are prepared from the mesencephalon of rat embryos at the 14th day of gestation (E14). At that moment, DA cells of the developing substantia nigra are located ventrally at the level of the mesencephalic flexure. Because the neurons of the pars compacta are mostly born between E12 and E15, E14 corresponds to an optimal stage for obtaining a high survival of DA cells. A defined medium (EF12) allows the maturation of DA neurons and reduces drastically the number of astrocytes. After 7 days in vitro (DIV) in EF12, the cultures contain 2-5% astrocytes (GFAP+ cells) and DA neurons represent 0.5-2% of the cells, as assessed by immunostaining to tyrosine hydroxylase (TH). The function of DA neurons is assessed by [3H]DA uptake and of those non-DA neurons by the high affinity [3H]GABA uptake. Cell survival is assessed by Trypan blue dye exclusion. PMID:9385075

  8. Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture

    SciTech Connect

    Boopathy, R.; Manning, J.

    1997-08-01

    The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incomplete oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.

  9. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.

    PubMed

    Suneethi, S; Joseph, Kurian

    2011-01-01

    Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine. PMID:20729077

  10. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils.

    PubMed

    Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael

    2015-07-01

    Cypermethrin is widely used for insect control; however, its toxicity toward aquatic life requires its complete removal from contaminated areas where the natural degradation ability of microbes can be utilized. Agricultural soil with extensive history of CM application was used to prepare enrichment cultures using cypermethrin as sole carbon source for isolation of cypermethrin degrading bacteria and bacterial community analysis using PCR-DGGE of 16 S rRNA gene. DGGE analysis revealed that dominant members of CM enrichment culture were associated with α-proteobacteria followed by γ-proteobacteria, Firmicutes, and Actinobacteria. Three potential CM-degrading isolates identified as Ochrobactrum anthropi JCm1, Bacillus megaterium JCm2, and Rhodococcus sp. JCm5 degraded 86-100% of CM (100 mg L(-1) ) within 10 days. These isolates were also able to degrade other pyrethroids, carbofuran, and cypermethrin degradation products. Enzyme activity assays revealed that enzymes involved in CM-degradation were inducible and showed activity when strains were grown on cypermethrin. Degradation kinetics of cypermethrin (200 mg kg(-1)) in soils inoculated with isolates JCm1, JCm2, and JCm5 suggested time-dependent disappearance of cypermethrin with rate constants of 0.0516, 0.0425, and 0.0807 d(-1), respectively, following first order rate kinetics. The isolated bacterial strains were among dominant genera selected under CM enriched conditions and represent valuable candidates for in situ bioremediation of contaminated soils and waters. PMID:25656248

  11. Rapid diagnosis of cholera by coagglutination test using 4-h fecal enrichment cultures.

    PubMed Central

    Rahman, M; Sack, D A; Mahmood, S; Hossain, A

    1987-01-01

    A simple, rapid, and reliable method to detect Vibrio cholerae in fecal specimens would assist in the management of cases of severe diarrhea, especially since most such cases occur in areas with minimal laboratory facilities. A coagglutination test was used to detect V. cholerae antigen in bile-peptone broth incubated with feces. In the technique, Staphylococcus aureus Cowan 1 coated with anti-V. cholerae O1 antiserum was tested with cultures incubated for 4 h. When 165 specimens were tested, the sensitivity, specificity, and accuracy of the test, compared with standard culture methods, were 97, 99, and 98%, respectively. These promising results were better than those of dark-field microscopy using the same specimens, and the test was logistically easy to perform. The coagglutination test using enrichment broth culture of feces is a simple and rapid method which may be used to confirm a diagnosis of cholera. PMID:3693549

  12. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph; Six, N. Frank (Technical Monitor)

    2001-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryo-preserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 T. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  13. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph

    2002-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  14. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2012-11-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO(2) , biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO(2) to CH(4) by addition of H(2) . Enrichment at thermophilic temperature (55°C) resulted in CO(2) and H(2) bioconversion rate of 320 mL CH(4) /(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed by PCR-DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH(4) content, around 95% at steady-state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH(4) content to around 90%. Further study showed that by decreasing the gas-liquid mass transfer by increasing the stirring speed of the mixture the CH(4) content was increased to around 95%. Finally, the CH(4) content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day). PMID:22615033

  15. Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.

    PubMed

    He, Shaomei; Tominski, Claudia; Kappler, Andreas; Behrens, Sebastian; Roden, Eric E

    2016-05-01

    Nitrate-dependent ferrous iron [Fe(II)] oxidation (NDFO) is a well-recognized chemolithotrophic pathway in anoxic sediments. The neutrophilic chemolithoautotrophic enrichment culture KS originally obtained from a freshwater sediment (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl Environ Microbiol 62:1458-1460, 1996) has been used as a model system to study NDFO. However, the primary Fe(II) oxidizer in this culture has not been isolated, despite extensive efforts to do so. Here, we present a metagenomic analysis of this enrichment culture in order to gain insight into electron transfer pathways and the roles of different bacteria in the culture. We obtained a near-complete genome of the primary Fe(II) oxidizer, a species in the familyGallionellaceae, and draft genomes from its flanking community members. A search of the putative extracellular electron transfer pathways in these genomes led to the identification of a homolog of the MtoAB complex [a porin-multiheme cytochromecsystem identified in neutrophilic microaerobic Fe(II)-oxidizingSideroxydans lithotrophicusES-1] in aGallionellaceaesp., and findings of other putative genes involving cytochromecand multicopper oxidases, such as Cyc2 and OmpB. Genome-enabled metabolic reconstruction revealed that thisGallionellaceaesp. lacks nitric oxide and nitrous oxide reductase genes and may partner with flanking populations capable of complete denitrification to avoid toxic metabolite accumulation, which may explain its resistance to growth in pure culture. This and other revealed interspecies interactions and metabolic interdependencies in nitrogen and carbon metabolisms may allow these organisms to cooperate effectively to achieve robust chemolithoautotrophic NDFO. Overall, the results significantly expand our knowledge of NDFO and suggest a range of genetic targets for further exploration. PMID:26896135

  16. Molecular Characterization and In Situ Quantification of Anoxic Arsenite Oxidizing Denitrifying Enrichment Cultures

    PubMed Central

    Sun, Wenjie; Sierra, Reyes; Fernandez, Nuria; Sanz, Jose Luis; Amils, Ricardo; Legatzki, Antje; Maier, Raina M.; Field, Jim A.

    2015-01-01

    To explore bacteria involved in the oxidation of arsenite (As(III)) under denitrifying conditions, three enrichment cultures (ECs) and one mixed culture (MC) were characterized that originated from anaerobic environmental samples. The oxidation of As(III) (0.5 mM) was dependent on NO3− addition and N2-formation was dependent on As(III) addition. The ratio of N2-N formed to As(III) fed approximated the expected stoichiometry of 2.5. A 16S rRNA gene clone library analysis revealed three predominant phylotypes. The first, related to the genus Azoarcus from the division β-Proteobacteria, was found in the three ECs. The other two predominant phylotypes were closely related to the genera Acidovorax and Diaphorobacter within the Comamonadaceae family of β-Proteobacteria and one of these was present in all of the cultures examined. Fluorescent in situ hybridization (FISH) confirmed that Azoarcus accounted for a large fraction of bacteria present in the ECs. The Azoarcus clones had 96% sequence homology with Azoarcus sp. strain DAO1, an isolate previously reported to oxidize As(III) with nitrate. FISH analysis also confirmed that Comamonadaceae were present in all cultures. Pure cultures of Azoarcus and Diaphorobacter were isolated and shown to be responsible for nitrate-dependent As(III) oxidation. These results taken as a whole suggest that bacteria within the genus Azoarcus and the family Comamonadaceae are involved in the observed anoxic oxidation of As(III). PMID:19187211

  17. Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition.

    PubMed

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2014-02-01

    The effect of individual and combined mixed culture on dark fermentative hydrogen production performance was investigated. Mixed cultures from cow dung (C1), sewage sludge (C2), and pig slurry (C3) were enriched under strict anaerobic conditions at 37°C with glucose as the sole carbon source. Biochemical hydrogen production test in peptone-yeast-glucose (PYG) and basal medium was performed for individual mixed cultures (C1, C2 and C3) and their combinations (C1-C2, C2-C3, C1-C3 and C1-C2-C3) at a glucose concentration of 10 g/L, 37°C and initial pH 7. Maximum hydrogen yields (HY) of 2.0 and 1.86 [Formula: see text] by C2, and 1.98 and 1.95 mol(H2)/mol(glucose) by C2-C3 were obtained in PYG and basal medium, respectively. Butyrate and acetate were the major soluble metabolites produced by all the cultures, and the ratio of butyrate to acetate was ∼2 fold higher in basal medium than PYG medium, indicating strong influence of media formulation on glucose catabolism. The major hydrogen-producing bacterial strains, observed in all mixed cultures, belonged to Clostridium butyricum, C. saccharobutylicum, C. tertium and C. perfringens. The hydrogen production performance of the combined mixed culture (C2-C3) was further evaluated on beverage wastewater (10 g/L) at pH 7 and 37°C. The results showed an HY of 1.92 mol(H2)/mol(glucose-equivalent). Experimental evidence suggests that hydrogen fermentation by mixed culture combination could be a novel strategy to improve the HY from industrial wastewater. PMID:24095211

  18. Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices

    PubMed Central

    Borlak, Jürgen; Singh, Prafull Kumar; Rittelmeyer, Ina

    2015-01-01

    Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency

  19. Modeling PHA-producing microbial enrichment cultures--towards a generalized model with predictive power.

    PubMed

    Tamis, Jelmer; Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2014-06-25

    Polyhydroxyalkanoate (PHA) production from waste streams using microbial enrichment cultures is a promising option for cost price reduction of this biopolymer. For proper understanding and successful optimization of the process, a consistent mechanistic model for PHA conversion by microbial enrichment cultures is needed. However, there is still a lack of mechanistic expressions describing the dynamics of the feast-famine process. The scope of this article is to provide an overview of the current models, investigate points of improvement, and contribute concepts for creation of a generalized model with more predictive value for the feast-famine process. Based on experimental data available in literature we have proposed model improvements for (i) modeling mixed substrates uptake, (ii) growth in the feast phase, (iii) switching between feast and famine phase, (iv) PHA degradation and (v) modeling the accumulation phase. Finally, we provide an example of a simple uniform model. Herewith we aim to give an impulse to the establishment of a generalized model. PMID:24333144

  20. DEPENDENCE OF A HIGH-RATE, PCE-DECHLORINATING ENRICHMENT CULTURE ON METHANOGENIC ACTIVITY. (R825549C053)

    EPA Science Inventory

    The role served by the presence of methanogenic activity within a tetrachloroethene (PCE)-dechlorinating culture was investigated through a series of supplementation experiments. An acclimated lactate-enrichment culture (LEC 1) capable of rapidly converting PCE to ethene was s...

  1. Genomics of an extreme psychrophile, Psychromonas ingrahamii

    SciTech Connect

    Riley, Monica; Staley, James T.; Danchin, Antoine; Wang, T.; Brettin, Tom; Hauser, Loren John; Land, Miriam L; Thompson, Linda S

    2008-05-01

    Background: The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results: Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion: The results of this genomic analysis provide a

  2. Genomics of an extreme psychrophile, Psychromonas ingrahamii

    PubMed Central

    Riley, Monica; Staley, James T; Danchin, Antoine; Wang, Ting Zhang; Brettin, Thomas S; Hauser, Loren J; Land, Miriam L; Thompson, Linda S

    2008-01-01

    Background The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion The results of this genomic analysis provide a

  3. Robustness of an aerobic metabolically vinyl chloride degrading bacterial enrichment culture.

    PubMed

    Zhao, He-Ping; Schmidt, Kathrin R; Lohner, Svenja; Tiehm, Andreas

    2011-01-01

    Degradation of the lower chlorinated ethenes is crucial to the application of natural attenuation or in situ bioremediation on chlorinated ethene contaminated sites. Recently, within mixtures of several chloroethenes as they can occur in contaminated groundwater inhibiting effects on aerobic chloroethene degradation have been shown. The current study demonstrated that metabolic vinyl chloride (VC) degradation by an enrichment culture originating from groundwater was not affected by an equimolar concentration (50 μM) of cis-1,2-dichloroethene (cDCE). Only cDCE concentrations at a ratio of 2.4:1 (initial cDCE to VC concentration) caused minor inhibition of VC degradation. Furthermore, the degradation of VC was not affected by the presence of trans-1,2-dichloroethene (tDCE), 1,1-dichloroethene (1,1-DCE), trichloroethene (TCE), and tetrachloroethene (PCE) in equimolar concentrations (50 μM). Only cDCE and tDCE were cometabolically degraded in small amounts. The VC-degrading culture demonstrated a broad pH tolerance from 5 to 9 with an optimum between 6 and 7. Results also showed that the culture could degrade VC concentrations up to 1,800 μM (110 mg/L). PMID:22020471

  4. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures.

    PubMed

    Arbeli, Ziv; Garcia-Bonilla, Erika; Pardo, Cindy; Hidalgo, Kelly; Velásquez, Trigal; Peña, Luis; C, Eliana Ramos; Avila-Arias, Helena; Molano-Gonzalez, Nicolás; Brandão, Pedro F B; Roldan, Fabio

    2016-05-01

    Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT. PMID:26832872

  5. Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures

    USGS Publications Warehouse

    Goodwin, K.D.; Schaefer, J.K.; Oremland, R.S.

    1998-01-01

    Bacterial oxidation of 14CH2Br2 and 14CH3Br was measured in freshwater, estuarine, seawater, and hypersaline-alkaline samples. In general, bacteria from the various sites oxidized similar amounts of 14CH2Br2 and comparatively less 14CH3Br. Bacterial oxidation of 14CH3Br was rapid in freshwater samples compared to bacterial oxidation of 14CH3Br in more saline waters. Freshwater was also the only site in which methyl fluoride-sensitive bacteria (e.g., methanotrophs or nitrifiers) governed brominated methane oxidation. Half-life calculations indicated that bacterial oxidation of CH2Br2 was potentially significant in all of the waters tested. In contrast, only in freshwater was bacterial oxidation of CH3Br as fast as chemical removal. The values calculated for more saline sites suggested that bacterial oxidation of CH3Br was relatively slow compared to chemical and physical loss mechanisms. However, enrichment cultures demonstrated that bacteria in seawater can rapidly oxidize brominated methanes. Two distinct cultures of nonmethanotrophic methylotrophs were recovered; one of these cultures was able to utilize CH2Br2 as a sole carbon source, and the other was able to utilize CH3Br as a sole carbon source.

  6. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture.

    PubMed

    Callac, Nolwenn; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Pignet, Patricia; Chéron, Sandrine; Fouquet, Yves; Rommevaux-Jestin, Céline; Godfroy, Anne

    2015-05-01

    Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems. PMID:25778451

  7. Some like it cold: understanding the survival strategies of psychrophiles

    PubMed Central

    De Maayer, Pieter; Anderson, Dominique; Cary, Craig; Cowan, Don A

    2014-01-01

    Much of the Earth’s surface, both marine and terrestrial, is either periodically or permanently cold. Although habitats that are largely or continuously frozen are generally considered to be inhospitable to life, psychrophilic organisms have managed to survive in these environments. This is attributed to their innate adaptive capacity to cope with cold and its associated stresses. Here, we review the various environmental, physiological and molecular adaptations that psychrophilic microorganisms use to thrive under adverse conditions. We also discuss the impact of modern “omic” technologies in developing an improved understanding of these adaptations, highlighting recent work in this growing field. PMID:24671034

  8. Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures.

    PubMed

    Houghton, J L; Seyfried, W E; Banta, A B; Reysenbach, A-L

    2007-03-01

    A continuous culture bioreactor was developed to enrich for nitrate and sulfate reducing thermophiles under in situ deep-sea pressures. The ultimate objective of this experimental design was to be able to study microbial activities at chemical and physical conditions relevant to seafloor hydrothermal vents. Sulfide, sulfate and oxide minerals from sampled seafloor vent-chimney structures [East Pacific Rise (9 degrees 46'N)] served as source mineral and microbial inoculum for enrichment culturing using nitrate and sulfate-enriched media at 70 and 90 degrees C and 250 bars. Changes in microbial diversity during the continuous reaction flow were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA gene fragments. Time series changes in fluid chemistry were also monitored throughout the experiment to assess the feedback between mineral-fluid reaction and metabolic processes. Data indicate a shift from the dominance of epsilon Proteobacteria in the initial inoculum to the several Aquificales-like phylotypes in nitrate-reducing enrichment media and Thermodesulfobacteriales in the sulfate-reducing enrichment media. Methanogens were detected in the original sulfide sample and grew in selected sulfate-enriched experiments. Microbial interactions with anhydrite and pyrrhotite in the chimney material resulted in measurable changes in fluid chemistry despite a fluid residence time only 75 min in the reactor. Changes in temperature rather than source material resulted in greater differences in microbial enrichments and mediated geochemical reactions. PMID:17221162

  9. Differential Adhesion Selection for Enrichment of Tendon-Derived Progenitor Cells During In Vitro Culture.

    PubMed

    Durgam, Sushmitha; Schuster, Brooke; Cymerman, Anna; Stewart, Allison; Stewart, Matthew

    2016-08-01

    Preplating, a technique used to separate rapidly adherent fibroblasts from the less-adherent progenitor cells, has been used successfully to isolate skeletal muscle-derived stem cells. The objective of this study was to determine if preplating could also be applied to enrich tendon-derived progenitor cells (TDPCs) before monolayer expansion. Cell suspensions obtained by collagenase digestion of equine lateral digital extensor tendon were serially transferred into adherent plates every 12 h for 4 days. TDPC fractions obtained from initial (TPP0), third (TPP3), and seventh (TPP7) preplate were passaged twice and used for subsequent analyses. Growth/proliferation and basal tenogenic gene expression of the three TDPC fractions were largely similar. Preplating and subsequent monolayer expansion did not alter the immunophenotype (CD29(+), CD44(+), CD90(+), and CD45(-)) and trilineage differentiation capacity of TDPC fractions. Overall, TDPCs were robustly osteogenic, but exhibited comparatively weak adipogenic and chondrogenic capacities. These outcomes indicate that preplating does not enrich for tendon-derived progenitors during in vitro culture, and "whole tendon digest"-derived cells are as appropriate for cell-based therapies. PMID:27406327

  10. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture.

    PubMed

    Cheng, Liang; Cord-Ruwisch, Ralf

    2013-10-01

    In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2 M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10 h with urease levels of about 60 μmol min⁻¹ ml⁻¹ culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field. PMID:23892419

  11. Study of selenocompounds from selenium-enriched culture of edible sprouts.

    PubMed

    Funes-Collado, Virginia; Morell-Garcia, Albert; Rubio, Roser; López-Sánchez, José Fermín

    2013-12-15

    Selenium is recognised as an essential micronutrient for humans and animals. One of the main sources of selenocompounds in the human diet is vegetables. Therefore, this study deals with the Se species present in different edible sprouts grown in Se-enriched media. We grew alfalfa, lentil and soy in a hydroponic system amended with soluble salts, containing the same proportion of Se, in the form of Se(VI) and Se(IV). Total Se in the sprouts was determined by acidic digestion in a microwave system and by ICP/MS. Se speciation was carried out by enzymatic extraction (Protease XIV) and measured by LC-ICP/MS. The study shows that the Se content of plants depends on the content in the growth culture, and that part of the inorganic Se was biotransformed mainly into SeMet. These results contribute to our understanding of the uptake of inorganic Se and its biotransformation by edible plants. PMID:23993543

  12. Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater

    SciTech Connect

    Nielsen, R.B.; Keasling, J.D.

    1999-01-20

    A microbial culture enriched from a trichloroethene-contaminated groundwater aquifer reductively dechlorinated trichloroethene (TCE) and tetrachloroethene (PCE) to ethene. Initial PCE dechlorination rate studies indicated a first-order dependence with respect to substrate at low PCE concentrations, and a zero-order dependence at high concentrations. Studies of TCE and vinyl chloride (VC) dechlorination indicated a first-order dependence at all substrate concentrations. VC had little or no effect on the initial rate of TCE dechlorination. With subsaturating concentrations of chlorinated ethenes, nearly stoichiometric amounts of the toxic intermediate vinyl chloride accumulated prior to its dechlorination to ethene. In contrast, under saturating conditions, in which a dense, nonaqueous-phase liquid existed in equilibrium with the aqueous phase, the chlorinated ethene was dechlorinated to ethene, at a rapid rate, with the accumulation of relatively small amounts of chlorinated intermediates.

  13. Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle.

    PubMed

    Gagen, Emma J; Padmanabha, Jagadish; Denman, Stuart E; McSweeney, Christopher S

    2015-07-01

    Molecular information suggests that there is a broad diversity of acetogens in the rumen, distinct from any currently isolated acetogens. We combined molecular analysis with enrichment culture techniques to investigate this diversity further. Methane-inhibited, hydrogenotrophic enrichment cultures produced acetate as the dominant end product. Acetyl-CoA synthase gene analysis revealed putative acetogens in the cultures affiliated with the Lachnospiraceae and Ruminococcaceae as has been found in other rumen studies. No formyltetrahydrofolate synthetase genes affiliating with acetogens or with 'homoacetogen similarity' scores >90% were identified. To further investigate the hydrogenotrophic populations in these cultures and link functional gene information with 16S rRNA gene identity, cultures were subcultured quickly, twice, through medium without exogenous hydrogen, followed by incubation without exogenous hydrogen. Comparison of cultures lacking hydrogen and their parent cultures revealed novel Lachnospiraceae and Ruminococcaceae that diminished in the absence of hydrogen, supporting the hypothesis that they were likely the predominant acetogens in the enrichments. Interestingly, a range of Bacteroidetes rrs sequences that demonstrated <86% identity to any named isolate also diminished in cultures lacking hydrogen. Acetogens or sulphate reducers from the Bacteroidetes have not been reported previously; therefore this observation requires further investigation. PMID:26109360

  14. Rapid and Specific Detection of Salmonella spp. in Animal Feed Samples by PCR after Culture Enrichment

    PubMed Central

    Löfström, Charlotta; Knutsson, Rickard; Axelsson, Charlotta Engdahl; Rådström, Peter

    2004-01-01

    A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain. PMID:14711627

  15. Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures.

    PubMed

    Callaghan, Amy V; Davidova, Irene A; Savage-Ashlock, Kristen; Parisi, Victoria A; Gieg, Lisa M; Suflita, Joseph M; Kukor, Jerome J; Wawrik, Boris

    2010-10-01

    Hydrocarbon-degrading microorganisms play an important role in the natural attenuation of spilled petroleum in a variety of anoxic environments. The role of benzylsuccinate synthase (BSS) in aromatic hydrocarbon degradation and its use as a biomarker for field investigations are well documented. The recent discovery of alkylsuccinate synthase (ASS) allows the opportunity to test whether its encoding gene, assA, can serve as a comparable biomarker of anaerobic alkane degradation. Degenerate assA- and bssA-targeted PCR primers were designed in order to survey the diversity of genes associated with aromatic and aliphatic hydrocarbon biodegradation in petroleum-impacted environments and enrichment cultures. DNA was extracted from an anaerobic alkane-degrading isolate (Desulfoglaeba alkenexedens ALDC), hydrocarbon-contaminated river and aquifer sediments, a paraffin-degrading enrichment, and a propane-utilizing mixed culture. Partial assA and bssA genes were PCR amplified, cloned, and sequenced, yielding several novel clades of assA genes. These data expand the range of alkane-degrading conditions for which relevant gene sequences are available and indicate that considerable diversity of assA genes can be found in hydrocarbon-impacted environments. The detection of genes associated with anaerobic alkane degradation in conjunction with the in situ detection of alkylsuccinate metabolites was also demonstrated. Comparable molecular signals of assA/bssA were not found when environmental metagenome databases of uncontaminated sites were searched. These data confirm that the assA gene is a useful biomarker for anaerobic alkane metabolism. PMID:20504044

  16. Selective Enrichment Yields Robust Ethene-Producing Dechlorinating Cultures from Microcosms Stalled at cis-Dichloroethene

    PubMed Central

    Delgado, Anca G.; Kang, Dae-Wook; Nelson, Katherine G.; Fajardo-Williams, Devyn; Miceli, Joseph F.; Done, Hansa Y.; Popat, Sudeep C.; Krajmalnik-Brown, Rosa

    2014-01-01

    Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation. However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 109 Dehalococcoides mccartyi cells mL−1. Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better

  17. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.

    PubMed

    Jahn, Michael K; Haderlein, Stefan B; Meckenstock, Rainer U

    2005-06-01

    Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread contaminants in groundwater. We examined the anaerobic degradation of BTEX compounds with amorphous ferric oxide as electron acceptor. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electron balances showed a complete anaerobic oxidation of the aromatic compounds to CO2. This is the first report on the anaerobic degradation of o-xylene and ethylbenzene in sediment-free iron-reducing enrichment cultures. PMID:15933041

  18. Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and o-Xylene in Sediment-Free Iron-Reducing Enrichment Cultures

    PubMed Central

    Jahn, Michael K.; Haderlein, Stefan B.; Meckenstock, Rainer U.

    2005-01-01

    Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread contaminants in groundwater. We examined the anaerobic degradation of BTEX compounds with amorphous ferric oxide as electron acceptor. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electron balances showed a complete anaerobic oxidation of the aromatic compounds to CO2. This is the first report on the anaerobic degradation of o-xylene and ethylbenzene in sediment-free iron-reducing enrichment cultures. PMID:15933041

  19. Anaerobic Cometabolic Conversion of Benzothiophene by a Sulfate-Reducing Enrichment Culture and in a Tar-Oil-Contaminated Aquifer†

    PubMed Central

    Annweiler, Eva; Michaelis, Walter; Meckenstock, Rainer U.

    2001-01-01

    Anaerobic cometabolic conversion of benzothiophene was studied with a sulfate-reducing enrichment culture growing with naphthalene as the sole source of carbon and energy. The sulfate-reducing bacteria were not able to grow with benzothiophene as the primary substrate. Metabolite analysis was performed with culture supernatants obtained by cometabolization experiments and revealed the formation of three isomeric carboxybenzothiophenes. Two isomers were identified as 2-carboxybenzothiophene and 5-carboxybenzothiophene. In some experiments, further reduced dihydrocarboxybenzothiophene was identified. No other products of benzothiophene degradation could be determined. In isotope-labeling experiments with a [13C]bicarbonate-buffered culture medium, carboxybenzothiophenes which were significantly enriched in the 13C content of the carboxyl group were formed, indicating the addition of a C1 unit from bicarbonate to benzothiophene as the initial activation reaction. This finding was consistent with the results of earlier studies on anaerobic naphthalene degradation with the same culture, and we therefore propose that benzothiophene was cometabolically converted by the same enzyme system. Groundwater analyses of the tar-oil-contaminated aquifer from which the naphthalene-degrading enrichment culture was isolated exhibited the same carboxybenzothiophene isomers as the culture supernatants. In addition, the benzothiophene degradation products, in particular, dihydrocarboxybenzothiophene, were significantly enriched in the contaminated groundwater to concentrations almost the same as those of the parent compound, benzothiophene. The identification of identical metabolites of benzothiophene conversion in the sulfate-reducing enrichment culture and in the contaminated aquifer indicated that the same enzymatic reactions were responsible for the conversion of benzothiophene in situ. PMID:11679329

  20. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture.

    PubMed

    Davidova, Irene A; Gieg, Lisa M; Nanny, Mark; Kropp, Kevin G; Suflita, Joseph M

    2005-12-01

    Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were used to study the metabolism of deuterated n-alkanes (C6 to C12) and 1-13C-labeled n-hexane by a highly enriched sulfate-reducing bacterial culture. All substrates were activated via fumarate addition to form the corresponding alkylsuccinic acid derivatives as transient metabolites. Formation of d14-hexylsuccinic acid in cell extracts from exogenously added, fully deuterated n-hexane confirmed that this reaction was the initial step in anaerobic alkane metabolism. Analysis of resting cell suspensions amended with 1-13C-labeled n-hexane confirmed that addition of the fumarate occurred at the C-2 carbon of the parent substrate. Subsequent metabolism of hexylsuccinic acid resulted in the formation of 4-methyloctanoic acid, and 3-hydroxy-4-methyloctanoic acid was tentatively identified. We also found that 13C nuclei from 1-13C-labeled n-hexane became incorporated into the succinyl portion of the initial metabolite in a manner that indicated that 13C-labeled fumarate was formed and recycled during alkane metabolism. Collectively, the findings obtained with a sulfate-reducing culture using isotopically labeled alkanes augment and support the previously proposed pathway (H. Wilkes, R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel, Arch. Microbiol. 177:235-243, 2002) for metabolism of deuterated n-hexane by a denitrifying bacterium. PMID:16332800

  1. RDX biodegradation by a methanogenic enrichment culture obtained from an explosives manufacturing wastewater treatment plant

    SciTech Connect

    Adrian, N.R.; Sutherland, K.

    1998-12-01

    This study examined the biodegradation of RDX in wastewater from an industrial wastewater treatment plant at the Holston Army Ammunition Plant in Kingsport, TN. Serum bottles containing 100 ml of a basal salts medium amended with 10 percent (v/v) sludge from the anoxic filter at the plant were amended with RDX and incubated under methanogenic conditions. Biodegradation intermediates corresponding to the mono-, di-, and trinitroso- RDX were observed. A methanogenic enrichment culture, derived from the wastewater, biodegraded 25% micrometer RDX in less than 16 days when ethanol was supplied as an electron donor. Methane production in the ethanol amended bottles was only observed after RDX had been depleted, while RDX unamended controls experienced no lag in methane production. The addition of 5 mM BESA to the culture inhibited methane production, but not RDX and ethanol degradation. These findings demonstrate the importance of adding reduced cosubstrates to enhance RDX biodegradation, and support the hypothesis that RDX is serving as a terminal electron acceptor in methanogenic environments.

  2. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  3. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2015-04-01

    This study evaluated the chronic impact of tetracycline on biomass with enriched nitrifying community sustained in a lab-scale activated sludge system. For this purpose, a fill and draw reactor fed with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia was sustained at a sludge age of 15 days. At steady-state, the reactor operation was continued with a daily tetracycline dosing of 50 mg/L for more than 40 days, with periodic monitoring of the microbial composition, the nitrifying bacteria abundance, as well as the amoA and 16S rRNA gene activity, using molecular techniques. Changes in the kinetics of nitrification were quantified by modelling concentration profiles of major nitrogen fractions and oxygen uptake rate profiles derived from parallel batch experiments. Activated sludge modeling results indicated inhibitory impact of tetracycline on the growth of nitrifiers with a significant increase of the half saturation coefficients in corresponding rate equations. Tetracycline also inactivated biomass components of the enriched culture at a gradually increasing rate with time of exposure, leading to total collapse of nitrification. Molecular analyses revealed significant changes in the composition of the microbial community throughout the observation period. They also showed that continuous exposure to tetracycline inflicted significant reduction in amoA mRNA and 16S rRNA levels directly affecting nitrification. The chronic impact was much more pronounced on the ammonia oxidizing bacteria (AOB) community. These observations explained the basis of numerical changes identified in the growth kinetics of nitrifiers under stress conditions. PMID:25616640

  4. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures

    PubMed Central

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-01-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  5. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures.

    PubMed

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-12-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4-6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  6. MICROBIAL REDUCTIVE DECHLORINATION OF HEXACHLORO-1,3-BUTADIENE IN A METHANOGENIC ENRICHMENT CULTURE. (R825513C007)

    EPA Science Inventory

    Sequential reductive dechlorination of hexachloro-1,3-butadiene (HCBD) was achieved by a mixed, methanogenic culture enriched from a contaminated estuarine sediment. Both methanol and lactate served as carbon and electron sources. Methanol was stoichiometrically converted to m...

  7. Enrichment culture for the isolation of Campylobacter spp: Effects of incubation conditions and the inclusion of blood in selective broths.

    PubMed

    Williams, Lisa K; Jørgensen, Frieda; Grogono-Thomas, Rose; Humphrey, Tom J

    2009-03-31

    Isolation of Campylobacter spp. using enrichment culture is time consuming and complex. Reducing the time taken to confirm the presence or absence of Campylobacter spp. would have many advantages for diagnostic, commercial and research applications. Rapid techniques such as real-time PCR can detect campylobacters from complex samples but blood in enrichment culture can inhibit the PCR reaction, if applied directly to enriched samples. The aim of this study was to investigate the effect of blood in enrichment culture on the isolation of campylobacters from chicken caeca, carcass rinses and bootsock (gauze sock walked through a broiler chicken house) samples using Bolton broth. The effect of incubation temperature (37 degrees C or 41.5 degrees C for 48 h, or 37 degrees C for 4 h then transfer to 41.5 degrees C for 44 h) and method of generating atmosphere (incubation of container in jar gassed with microaerobic atmosphere or incubation of container with small headspace and tightly screwed lid in an aerobic atmosphere) with and without blood on isolation from chicken carcass rinses and chicken faeces was also investigated. The presence of blood in enrichment culture did not improve the isolation of campylobacters from chicken faeces or bootsock samples but significantly improved recovery from chicken carcass rinse samples. There was no significant effect of the method used to generate incubation atmosphere. Isolation rates did also not depend significantly on whether broths were incubated at 37 or 41.5 degrees C for 24 or 48 h. Overall, the presence of blood in such media is not essential, although isolation can vary depending on sample type and enrichment method used. PMID:19217181

  8. The Learning Effects of an Ecology Enrichment Summer Program on Gifted Students from Mainstream and Diverse Cultural Backgrounds: A Preliminary Study

    ERIC Educational Resources Information Center

    Wang, Wen-Ling; Wu, Jiun-Wei; Lin, Yu-Chin

    2006-01-01

    Enrichment is one of the important educational models for gifted students. However, the research on gifted enrichment programs rarely leads to instructional interventions for culturally diverse students. The purposes of this study were: (a) to propose an ecology enrichment summer program for gifted students from mainstream and diverse cultural…

  9. Kinetics of 1,2-Dichloroethane and 1,2-Dibromoethane Biodegradation in Anaerobic Enrichment Cultures

    PubMed Central

    Yu, Rong; Peethambaram, Hari S.; Falta, Ronald W.; Verce, Matthew F.; Henderson, James K.; Bagwell, Christopher E.; Brigmon, Robin L.

    2013-01-01

    1,2-Dichloroethane (1,2-DCA) and 1,2-dibromoethane (ethylene dibromide [EDB]) contaminate groundwater at many hazardous waste sites. The objectives of this study were to measure yields, maximum specific growth rates (μ̂), and half-saturation coefficients (KS) in enrichment cultures that use 1,2-DCA and EDB as terminal electron acceptors and lactate as the electron donor and to evaluate if the presence of EDB has an effect on the kinetics of 1,2-DCA dehalogenation and vice versa. Biodegradation was evaluated at the high concentrations found at some industrial sites (>10 mg/liter) and at lower concentrations found at former leaded-gasoline sites (1.9 to 3.7 mg/liter). At higher concentrations, the Dehalococcoides yield was 1 order of magnitude higher when bacteria were grown with 1,2-DCA than when they were grown with EDB, while μ̂'s were similar for the two compounds, ranging from 0.19 to 0.52 day−1 with 1,2-DCA to 0.28 to 0.36 day−1 for EDB. KS was larger for 1,2-DCA (15 to 25 mg/liter) than for EDB (1.8 to 3.7 mg/liter). In treatments that received both compounds, EDB was always consumed first and adversely impacted the kinetics of 1,2-DCA utilization. Furthermore, 1,2-DCA dechlorination was interrupted by the addition of EDB at a concentration 100 times lower than that of the remaining 1,2-DCA; use of 1,2-DCA did not resume until the EDB level decreased close to its maximum contaminant level (MCL). In lower-concentration experiments, the preferential consumption of EDB over 1,2-DCA was confirmed; both compounds were eventually dehalogenated to their respective MCLs (5 μg/liter for 1,2-DCA, 0.05 μg/liter for EDB). The enrichment culture grown with 1,2-DCA has the advantage of a more rapid transition to 1,2-DCA after EDB is consumed. PMID:23263950

  10. Growth and enrichment of pentachlorophenol-degrading microorganisms in the nutristat, a substrate concentration-controlled continuous culture.

    PubMed Central

    Rutgers, M; Bogte, J J; Breure, A M; van Andel, J G

    1993-01-01

    The nutristat, a substrate concentration-controlled continuous culture, was used to grow pentachlorophenol (PCP)-degrading microorganisms. The PCP concentration control system consisted of on-line measurement of the PCP concentration in the culture vessel with a tangential filter and a flowthrough spectrophotometer. With PCP concentrations between 45 and 77 microM, a stable situation was established in the nutristat, with an average dilution rate of 0.035 +/- 0.003 h-1. Compared with those of fed-batch cultures and chemostat cultures, the growth rates of microorganisms in the PCP nutristat were significantly higher, leading to considerable time savings in the enrichment procedure. In addition, PCP accumulation to severe inhibitory levels in the culture is prevented because the set point determines the (maximum) PCP concentration in the culture. The use of the nutristat as a tool for the growth of bacteria that degrade toxic compounds is discussed. PMID:8250560

  11. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.

    PubMed

    Tan, BoonFei; Semple, Kathleen; Foght, Julia

    2015-05-01

    A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites. During active methanogenesis with the mixed alkanes, reverse-transcription PCR confirmed the expression of functional genes (assA and bssA) associated with hydrocarbon addition to fumarate. Pyrosequencing of 16S rRNA genes amplified during active alkane degradation revealed enrichment of Clostridia (particularly Peptococcaceae) and methanogenic Archaea (Methanosaetaceae and Methanomicrobiaceae). Methanogenic cultures transferred into medium containing sulphate produced sulphide, depleted n-alkanes and produced the corresponding succinylated alkane metabolites, but were slow to degrade 2-methylpentane and methylcyclopentane; these cultures were enriched in Deltaproteobacteria rather than Clostridia. 3-Methylpentane was not degraded by any cultures. Thus, nominally methanogenic oil sands tailings harbour dynamic and versatile hydrocarbon-degrading fermentative syntrophs and sulphate reducers capable of degrading n-, iso- and cyclo-alkanes by addition to fumarate. PMID:25873461

  12. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene. PMID:26054614

  13. Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes

    PubMed Central

    Liang, Xiaoming; Molenda, Olivia; Tang, Shuiquan

    2015-01-01

    Many reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on trichloroethene (TCE), as well as subcultures maintained on the intermediates cis-dichloroethene (cDCE) and vinyl chloride (VC). KB-1 contains a TCE-to-cDCE dechlorinating Geobacter and several Dehalococcoides strains that together harbor many of the known chloroethene reductases. Expressed RDases were identified using blue native polyacrylamide gel electrophoresis, enzyme assays in gel slices, and peptide sequencing. As anticipated but never previously quantified, the RDase from Geobacter was only detected transiently at the beginning of TCE dechlorination. The Dehalococcoides RDase VcrA and smaller amounts of TceA were expressed in the parent KB-1 culture during complete dechlorination of TCE to ethene regardless of time point or amended substrate. The Dehalococcoides RDase BvcA was only detected in enrichments maintained on cDCE as growth substrates, in roughly equal abundance to VcrA. Only VcrA was detected in subcultures enriched on VC. Enzyme assays revealed that 1,1-DCE, a substrate not used for culture enrichment, afforded the highest specific activity. trans-DCE was substantially dechlorinated only by extracts from cDCE enrichments expressing BvcA. RDase gene distribution indicated enrichment of different strains of Dehalococcoides as a function of electron acceptor TCE, cDCE, or VC. Each chloroethene reductase has distinct substrate preferences leading to strain selection in mixed communities. PMID:25934625

  14. Isolation of Methylophaga spp. from Marine Dimethylsulfide-Degrading Enrichment Cultures and Identification of Polypeptides Induced during Growth on Dimethylsulfide▿

    PubMed Central

    Schäfer, Hendrik

    2007-01-01

    Dimethylsulfide (DMS)-degrading enrichment cultures were established from samples of coastal seawater, nonaxenic Emiliania huxleyi cultures, and mixed marine methyl halide-degrading enrichment cultures. Bacterial populations from a broad phylogenetic range were identified in the mixed DMS-degrading enrichment cultures by denaturing gradient gel electrophoresis (DGGE). Sequences of dominant DGGE bands were similar to those of members of the genera Methylophaga and Alcanivorax. Several closely related Methylophaga strains were obtained that were able to grow on DMS as the carbon and energy source. Roseobacter-related populations were detected in some of the enrichment cultures; however, none of the Roseobacter group isolates that were tested were able to grow on DMS. Oxidation of DMS by Methylophaga sp. strain DMS010 was not affected by addition of the inhibitor chloroform or methyl tert-butyl ether, suggesting that DMS metabolism may occur by a route different from those described for Thiobacillus species and other unidentified marine isolates. Addition of DMS and methanethiol to whole-cell suspensions of strain DMS010 induced oxygen uptake when strain DMS010 was grown on DMS but not in cells grown on methanol. The apparent Kms of strain DMS010 for DMS and for methanethiol were 2.1 and 4.6 μM, respectively, when grown on DMS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the biomass of strain DMS010 and analysis of peptide bands by mass spectrometry techniques and N-terminal sequencing provided the first insight into the identity of polypeptides induced during growth on DMS. These included XoxF, a homolog of the large subunit of methanol dehydrogenase for which a biological role has not been identified previously. PMID:17322322

  15. Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures.

    PubMed

    Ahire, Kedar C; Kapadnis, Balu P; Kulkarni, Girish J; Shouche, Yogesh S; Deopurkar, Rajendra L

    2012-02-01

    Tributyl phosphate (TBP) is an organophosphorous compound, used extensively (3000-5000 tonnes/annum) as a solvent for nuclear fuel processing and as a base stock in the formulation of fire-resistant aircraft hydraulic fluids and other applications. Because of its wide applications and relative stability in the natural environment TBP poses the problem of pollution and health hazards. In the present study, fifteen potent bacterial strains capable of using tributyl phosphate (TBP) as sole carbon and phosphorus source were isolated from enrichment cultures. These isolates were identified on the basis of biochemical and morphological characteristics and 16S rRNA gene sequence analysis. Phylogenetic analysis of 16S rRNA gene sequences revealed that two isolates belonged to class Bacilli and thirteen to β and γ-Proteobacteria. All these isolates were found to be members of genera Alcaligenes, Providencia, Delftia, Ralstonia, and Bacillus. These isolates were able to tolerate and degrade up to 5 mM TBP, the highest concentration reported to date. The GC-MS method was developed to monitor TBP degradation. Two strains, Providencia sp. BGW4 and Delftia sp. BGW1 showed respectively, 61.0 ± 2.8% and 57.0 ± 2.0% TBP degradation within 4 days. The degradation rate constants, calculated by first order kinetic model were between 0.0024 and 0.0099 h(-1). These bacterial strains are novel for TBP degradation and could be used as an important bioresource for efficient decontamination of TBP polluted waste streams. PMID:21755325

  16. PCR amplification of Bartonella koehlerae from human blood and enrichment blood cultures

    PubMed Central

    2010-01-01

    Background Cats appear to be the primary reservoir host for Bartonella koehlerae, an alpha Proteobacteria that is most likely transmitted among cat populations by fleas (Ctenocephalides felis). Bartonella koehlerae has caused endocarditis in a dog and in one human patient from Israel, but other clinically relevant reports involving this bacterium are lacking. Despite publication of numerous, worldwide epidemiological studies designed to determine the prevalence of Bartonella spp. bacteremia in cats, B. koehlerae has never been isolated using conventional blood agar plates. To date, successful isolation of B. koehlerae from cats and from the one human endocarditis patient has consistently required the use of chocolate agar plates. Results In this study, Bartonella koehlerae bacteremia was documented in eight immunocompetent patients by PCR amplification and DNA sequencing, either prior to or after enrichment blood culture using Bartonella alpha Proteobacteria growth medium. Presenting symptoms most often included fatigue, insomnia, joint pain, headache, memory loss, and muscle pain. Four patients were also infected with Bartonella vinsonii subsp. berkhoffii genotype II. After molecular documentation of B. koehlerae infection in these patients, a serological test was developed and serum samples were tested retrospectively. Bartonella koehlerae antibodies were not detected (titers < 1:16) in 30 healthy human control sera, whereas five of eight patient samples had B. koehlerae antibody titers of 1:64 or greater. Conclusions Although biased by a study population consisting of individuals with extensive arthropod and animal exposure, the results of this study suggest that B. koehlerae bacteremia is more common in immunocompetent people than has been previously suspected. Future studies should more thoroughly define modes of transmission and risk factors for acquiring infection with B. koehlerae. In addition, studies are needed to determine if B. koehlerae is a cause or

  17. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater.

    PubMed

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2013-03-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet microfiltration membranes was operated at psychrophilic temperature (15 °C) treating simulated and actual domestic wastewater (DWW). Chemical oxygen demand (COD) removal during simulated DWW operation averaged 92 ± 5% corresponding to an average permeate COD of 36 ± 21 mg/L. Dissolved methane in the permeate stream represented a substantial fraction (40-50%) of the total methane generated by the system due to methane solubility at psychrophilic temperatures and oversaturation relative to Henry's law. During actual DWW operation, COD removal averaged 69 ± 10%. The permeate COD and 5-day biochemical oxygen demand (BOD(5)) averaged 76 ± 10 mg/L and 24 ± 3 mg/L, respectively, indicating compliance with the U.S. EPA's standard for secondary effluent (30 mg/L BOD(5)). Membrane fouling was managed using biogas sparging and permeate backflushing and a flux greater than 7 LMH was maintained for 30 days. Comparative fouling experiments suggested that the combination of the two fouling control measures was more effective than either fouling prevention method alone. A UniFrac based comparison of bacterial and archaeal microbial communities in the AnMBR and three different inocula using pyrosequencing targeting 16S rRNA genes suggested that mesophilic inocula are suitable for seeding psychrophilic AnMBRs treating low strength wastewater. Overall, the research described relatively stable COD removal, acceptable flux, and the ability to seed a psychrophilic AnMBR with mesophilic inocula, indicating future potential for the technology in practice, particularly in cold and temperate climates where DWW temperatures are low during part of the year. PMID:23295067

  18. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  19. Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures.

    PubMed Central

    Evans, P J; Mang, D T; Young, L Y

    1991-01-01

    Seven different sources of inocula that included sediments, contaminated soils, groundwater, process effluent, and sludge were used to establish enrichment cultures of denitrifying bacteria on benzene, toluene, and xylenes in the absence of molecular oxygen. All of the enrichment cultures demonstrated complete depletion of toluene and partial depletion of o-xylene within 3 months of incubation. The depletion of o-xylene was correlated to and dependent on the metabolism of toluene. No losses of benzene, p-xylene, or m-xylene were observed in these initial enrichment cultures. However, m-xylene was degraded by a subculture that was incubated on m-xylene alone. Complete carbon, nitrogen, and electron balances were determined for the degradation of toluene and m-xylene. These balances showed that these compounds were mineralized with greater than 50% conversion to CO2 and significant assimilation into biomass. Additionally, the oxidation of these compounds was shown to be dependent on nitrate reduction and denitrification. These microbial degradative capabilities appear to be widespread, since the widely varied inoculum sources all yielded similar results. PMID:2014990

  20. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole

  1. Evaluation of culture media for selective enrichment and isolation of Salmonella in seafood.

    PubMed

    Kumar, Rakesh; Surendran, Poothuvallil K; Thampuran, Nirmala

    2010-01-01

    Seafood, including fish, shrimp, clam, crab, mussel, oyster, lobster, squid, octopus, and cuttlefish samples, was used to compare the recovery of Salmonella serovars by different selective enrichment and isolation media. The samples were selectively enriched in Rappaport-Vassiliadis (RV) broth and tetrathionate broth (TT), followed by selective isolation on Hektoen enteric (HE) agar, xylose lysine desoxycholate (XLD) agar, bismuth sulfite (BS) agar, and Brilliant Green (BG) agar media. Of 443 seafood samples analyzed, 108 were found to be contaminated with Salmonella. The role of selective enrichment in Salmonella spp. recovery with RV medium was distinctly high (70%) compared to TT broth (30%). The selective enrichment in RV broth followed by selective isolation on XLD, HE, BS, and BG agar recovered Salmonella at levels of 56, 41, 28, and 16%, respectively. Similarly, after enrichment in TT broth, XLD and HE agars recovered 27 and 23% respectively. The recovery of Salmonella with enrichment in TT followed by isolation on BS and BG was abysmally low at 4.6 and 5%, respectively. There was no significant difference (P > 0.05) in the recovery of Salmonella using the combinations of XLD and HE media with selective enrichment in RV broth. However, performance difference (P < 0.05) was observed in the recovery when BS and BG with RV, and XLD, HE, BS, and BG agars with TT broth were used. The present study showed that the combination of RV with XLD was the most efficient media for isolation of Salmonella from seafood when compared to other isolation media combinations. PMID:21140659

  2. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    SciTech Connect

    Massé, Daniel I. Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.

  3. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes.

    PubMed

    Brotherus, J; Renkonen, O

    1977-03-01

    Homogenates of cultured hamster fibroblasts (BHK 21 cells) were fractionated by differential centrifugation into six main fractions: nuclear, mitochondrial, light mitochondrial, microsomal, soluble, and floating. The contents of several lipids and some marker enzymes were measured. According to the enzyme distributions, lysosomes were enriched both in the floating fraction and in the light mitochondrial fraction. Lysobisphosphatidic acid was enriched in the floating fraction more than tenfold relative to phospholipid. Cholesteryl esters and triglycerides were the main constituents of the fraction (70% of total lipids). Lysobisphosphatidic acid, triglycerides, and cholesteryl esters were enriched also in the light mitochondrial fraction. Their distribution patterns were different from those of the other lipids. Electron microscopy showed that the floating fraction contained numerous lipofuscin-like particles with darkly stained peripheries and with core regions staining like droplets of neutral lipids. Similar particles, frequently containing prominent multilamellar formations, were also common in intact cells. They contained cytochemically identified acid phosphatase. We conclude that lysobisphosphatidic acid was enriched in the lysosomes of the BHK cells and that the lysosomes also contained variable amounts of neutral lipids in the form of intralysosomal droplets. PMID:845501

  4. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Santegoeds, C. M.; Nold, S. C.; Ramsing, N. B.; Ferris, M. J.; Bateson, M. M.

    1997-01-01

    We have begun to examine the basis for incongruence between hot spring microbial mat populations detected by cultivation or by 16S rRNA methods. We used denaturing gradient gel electrophoresis (DGGE) to monitor enrichments and isolates plated therefrom. At near extincting inoculum dilutions we observed Chloroflexus-like and cyanobacterial populations whose 16S rRNA sequences have been detected in the 'New Pit' Spring Chloroflexus mat and the Octopus Spring cyanobacterial mat. Cyanobacterial populations enriched from 44 to 54 degrees C and 56 to 63 degrees C samples at near habitat temperatures were similar to those previously detected in mat samples of comparable temperatures. However, a lower temperature enrichment from the higher temperature sample selected for the populations found in the lower temperature sample. Three Thermus populations detected by both DGGE and isolation exemplify even more how enrichment may bias our view of community structure. The most abundant population was adapted to the habitat temperature (50 degrees C), while populations adapted to 65 degrees C and 70 degrees C were 10(2)- and 10(4)-fold less abundant, respectively. However, enrichment at 70 degrees C favored the least abundant strain. Inoculum dilution and incubation at the habitat temperature favored the more numerically relevant populations. We enriched many other aerobic chemoorganotrophic populations at various inoculum dilutions and substrate concentrations, most of whose 16S rRNA sequences have not been detected in mats. A common feature of numerically relevant cyanobacterial, Chloroflexus-like and aerobic chemorganotrophic populations, is that they grow poorly and resist cultivation on solidified medium, suggesting plating bias, and that the medium composition and incubation conditions may not reflect the natural microenvironments these populations inhabit.

  5. Anaerobic Biotransformation of High Concentrations of Chloroform by an Enrichment Culture and Two Bacterial Isolates ▿ †

    PubMed Central

    Shan, Huifeng; Kurtz, Harry D.; Mykytczuk, Nadia; Trevors, Jack T.; Freedman, David L.

    2010-01-01

    A fermentative enrichment culture (designated DHM-1) was developed that is capable of cometabolically biotransforming high concentrations of chloroform (CF) to nontoxic end products. Two Pantoea spp. were isolated from DHM-1 that also possess this dechlorination capability. Following acclimation to increasing levels of CF, corn syrup-grown DHM-1 was able to transform over 500 mg/liter CF in the presence of vitamin B12 (approximately 3% of CF on a molar basis) at a rate as high as 22 mg/liter/day in a mineral salts medium. CO, CO2, and organic acids were the predominant biodegradation products, suggesting that hydrolytic reactions predominate during CF transformation. DHM-1 was capable of growing on corn syrup in the presence of high concentrations of CF (as may be present near contaminant source zones in groundwater), which makes it a promising culture for bioaugmentation. Strains DHM-1B and DHM-1T transform CF at rates similar to that of the DHM-1 enrichment culture. The ability of these strains to grow in the presence of high concentrations of CF appears to be related to alteration of membrane fluidity or homeoviscous and homeophasic adaptation. PMID:20693443

  6. Enrichment and Molecular Characterization of a Bacterial Culture That Degrades Methoxy-Methyl Urea Herbicides and Their Aniline Derivatives

    PubMed Central

    El-Fantroussi, Said

    2000-01-01

    Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3,4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37°C, 3,4-dichloroaniline was transformed only at 28°C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates. PMID:11097876

  7. Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability.

    PubMed

    Wei, Xiao-Meng; He, Ruo; Chen, Min; Su, Yao; Ma, Ruo-Chan

    2016-04-01

    Methanotrophs not only play an important role in mitigating CH4 emissions from the environment, but also provide a large quantity of CH4-derived carbon to their habitats. In this study, the distribution of CH4-derived carbon and microbial community was investigated in a consortium enriched at three O2 tensions, i.e., the initial O2 concentrations of 2.5 % (LO-2), 5 % (LO-1), and 21 % (v/v) (HO). The results showed that compared with the O2-limiting environments (2.5 and 5 %), more CH4-derived carbon was converted into CO2 and biomass under the O2 sufficient condition (21 %). Besides biomass and CO2, a high conversion efficiency of CH4-derived carbon to dissolved organic carbon was detected in the cultures, especially in LO-2. Quantitative PCR and Miseq sequencing both showed that the abundance of methanotroph increased with the increasing O2 concentrations. Type II methanotroph Methylocystis dominated in the enrichment cultures, accounting for 54.8, 48.1, and 36.9 % of the total bacterial 16S rRNA gene sequencing reads in HO, LO-1, and LO-2, respectively. Methylotrophs, mainly including Methylophilus, Methylovorus, Hyphomicrobium, and Methylobacillus, were also abundant in the cultures. Compared with the O2 sufficient condition (21 %), higher microbial biodiversity (i.e., higher Simpson and lower Shannon indexes) was detected in LO-2 enriched at the initial O2 concentration of 2.5 %. These findings indicated that compared with the O2 sufficient condition, more CH4-derived carbon was exuded into the environments and promoted the growth of non-methanotrophic microbes in O2-limiting environments. PMID:26728286

  8. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    NASA Technical Reports Server (NTRS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  9. Anaerobic psychrophiles from Lake Zub and Lake Untersee, Antarctica

    NASA Astrophysics Data System (ADS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-08-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 μm. This new isolate is a mesophile with the maximum temperature of growth at 40°C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7 % (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3°C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18 °C, and growth at 22 °C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates

  10. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  11. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  12. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  13. Biotransformation of halogenated nonylphenols with sphingobium xenophagum bayram and a nonylphenol-degrading soil-enrichment culture.

    PubMed

    Li, Yongmei; Montgomery-Brown, John; Reinhard, Martin

    2011-02-01

    When discharged in chlorinated wastewater, alkylphenol ethoxylate metabolites (APEMs) are often discharged in halogenated form (XAPEMs, X = Cl, or Br). The potential environmental impact of XAPEM release was assessed by studying the biotransformation of halogenated nonylphenol by Sphingobium xenophagum Bayram and a soil-enrichment culture. S. xenophagum Bayram transformed chlorinated nonylphenol (ClNP) slowly and nearly completely to form nonyl alcohol; the monobrominated nonylphenol (BrNP) and dibrominated nonylphenol were transformed cometabolically with nonylphenol (NP) as the primary substrate. The presence of either ClNP or BrNP in the S. xenophagum Bayram cultures retarded the transformation of nonhalogenated NP. NP-degrading soil cultures transformed nonhalogenated NP to a mixture of nonyl alcohols but were not capable of transforming either ClNP or BrNP. The presence of either ClNP or BrNP retarded the transformation of nonhalogenated NP in the soil cultures, as was observed in S. xenophagum Bayram cultures. Predicting the environmental fate of alkylphenol ethoxylate residues requires considering APEM halogenation during effluent chlorination and inhibitory effects as well as the refractory nature of halogenated metabolites. PMID:20677004

  14. Degradation of Trimethylbenzene Isomers by an Enrichment Culture under N(inf2)O-Reducing Conditions

    PubMed Central

    Haner, A.; Hohener, P.; Zeyer, J.

    1997-01-01

    A microbial culture enriched from a diesel fuel-contaminated aquifer was able to grow on 1,3,5-trimethylbenzene (1,3,5-TMB) and 1,2,4-TMB under N(inf2)O-reducing conditions, but it did not degrade 1,2,3-TMB. The oxidation of 1,3,5-TMB to CO(inf2) was coupled to the production of biomass and the reduction of N(inf2)O. N(inf2)O was used to avoid toxic effects caused by NO(inf2)(sup-) accumulation during growth with NO(inf3)(sup-) as the electron acceptor. In addition to 1,3,5-TMB and 1,2,4-TMB, the culture degraded toluene, m-xylene, p-xylene, 3-ethyltoluene, and 4-ethyltoluene. PMID:16535546

  15. Microbial succession in response to pollutants in batch-enrichment culture.

    PubMed

    Jiao, Shuo; Chen, Weimin; Wang, Entao; Wang, Junman; Liu, Zhenshan; Li, Yining; Wei, Gehong

    2016-01-01

    As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments. PMID:26905741

  16. Microbial succession in response to pollutants in batch-enrichment culture

    PubMed Central

    Jiao, Shuo; Chen, Weimin; Wang, Entao; Wang, Junman; Liu, Zhenshan; Li, Yining; Wei, Gehong

    2016-01-01

    As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments. PMID:26905741

  17. Signatures of Autotrophic and Heterotrophic Metabolic Activity in Enrichment Cultures from a Sulphur Oxidizing Acid Mine Site

    NASA Astrophysics Data System (ADS)

    Slater, G. F.; Bernier, L.; Cowie, B. R.; Warren, L. A.

    2006-12-01

    Delineating the role of microorganisms in geochemical processes of interest in natural environments requires the development of tools that provide the ability to distinguish amongst microbial activity associated with different metabolic guilds. The gap between phylogenetic characterization and phenotypic understanding remains, underscoring the need to consider alternative methods. Compound specific analysis of cellular components has the potential to differentiate between active metabolic processes supporting microbial communities and may be especially useful in extreme environments. The goal of this study was to determine whether the phospholipids fatty acid (PLFA) distribution and isotopic signatures associated with autotrophs and heterotrophs enriched from an acid mine drainage (AMD) system differed, and further whether natural consortial autotrophic isolates showed similar signatures to autotrophic pure strains of Acidithiobacillus ferrooxidans and A. thiooxidans. Two distinct initial enrichments with tetrathionate and CO2 yielded primarily autotrophic (95%) Acidithiobaccillus spp. sulphur oxidizing communities. The remaining microbial members of theses enrichments (<5%) were morphologically distinct and heterotrophic, as subculture of the consortial isolates in a medium amended with glucose but without tetrathionate selectively resulted in their visible growth. PLFA profiles and δ13C signatures from autotrophic (1) natural enrichments, pure cultures of (2) A. ferrooxidans and (3) A. thiooxidans were similar, but collectively differed from those of the natural heterotrophic enrichment cultures. The PLFA profiles for the heterotrophic communities were made up of primarily (88-99%) C16:0 and two isomers of C18:1. In contrast, the autotrophic communities had high proportions of C16:1 (up to 18%) as well as cyclo C17 and cyclo C19 PLFA that combined comprised 18 to 58% of the observed PLFA. The δ13C signatures of the PLFA also differed strongly between the two

  18. In-storage psychrophilic anaerobic digestion: acclimated microbial kinetics.

    PubMed

    King, Susan; Courvoisier, Pierre; Guiot, Serge; Barrington, Suzelle

    2012-01-01

    In-storage psychrophilic anaerobic digestion develops by microbial acclimation in covered swine-manure storage tanks, producing CH4 and stabilizing organic matter. To optimize the system's performance, the process kinetics must be understood. The objective of this study was to evaluate kinetic parameters describing the major stages in the digestion process, and to investigate the effect of temperature acclimation on these parameters. Specific activity tests were performed using manure inocula and five substrates at three incubation temperatures. Extant substrate activities were determined analytically for each case, and intrinsic kinetic parameters for glucose uptake were estimated by grid search fitting to the Monod model. The results demonstrate that this acclimated microbial community exhibits different kinetic parameters to those of the mesophilic communities currently modelled in the literature, with increased activity at low temperatures, varying with substrate and temperature. For glucose, the higher uptake is accompanied by lower microbial yield and half-saturation constant. Decomposing these values suggests that active psychrophilic and mesophilic microbial populations co-exist within the community. This work also confirms that a new method of assessing microbial substrate kinetics must be developed for manure microbial communities, separating microbial mass from other suspended organics. PMID:22988638

  19. Psychrophilic Enzymes: From Folding to Function and Biotechnology

    PubMed Central

    Feller, Georges

    2013-01-01

    Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted. PMID:24278781

  20. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk.

    PubMed

    Laiño, Jonathan Emiliano; Juarez del Valle, Marianela; Savoy de Giori, Graciela; LeBlanc, Jean Guy Joseph

    2014-11-17

    The ability of 55 strains from different Lactobacillus species to produce folate was investigated. In order to evaluate folic acid productivity, lactobacilli were cultivated in the folate-free culture medium (FACM). Most of the tested strains needed folate for growth. The production and the extent of vitamin accumulation were distinctive features of individual strains. Lactobacillus amylovorus CRL887 was selected for further studies because of its ability to produce significantly higher concentrations of vitamin (81.2 ± 5.4 μg/L). The safety of this newly identified folate producing strain was evaluated through healthy experimental mice. No bacterial translocation was detected in liver and spleen after consumption of CRL887 during 7 days and no undesirable side effects were observed in the animals that received this strain. This strain in co-culture with previously selected folate producing starter cultures (Lactobacillus bulgaricus CRL871, and Streptococcus thermophilus CRL803 and CRL415) yielded a yogurt containing high folate concentrations (263.1 ± 2.4 μg/L); a single portion of which would provide 15% of the recommended dietary allowance. This is the first report where a Lactobacillus amylovorus strain was successfully used as co-culture for natural folate bio-enrichment of fermented milk. PMID:25217720

  1. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    PubMed Central

    Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose

  2. A New Protocol to Detect Multiple Foodborne Pathogens with PCR Dipstick DNA Chromatography after a Six-Hour Enrichment Culture in a Broad-Range Food Pathogen Enrichment Broth

    PubMed Central

    Hayashi, Masahiro; Natori, Tatsuya; Kubota-Hayashi, Sayoko; Miyata, Machiko; Ohkusu, Kiyofumi; Kurazono, Hisao; Makino, Souichi; Ezaki, Takayuki

    2013-01-01

    A quick foodborne pathogen screening method after six-hour enrichment culture with a broad-range food pathogen enrichment broth is described. Pathogenic factors of Salmonella enterica, Shigella spp., enteroinvasive Escherichia coli, and enterohemorrhagic E. coli are amplified with a cocktail primer and rapid polymerase chain reaction (PCR), which finishes amplification in 30 min. The PCR amplicon was differentiated with a dipstick DNA chromatography assay in 5–10 min. Starting from a four- to six-hour enrichment culture, this assay was finished within 45 min. Detection sensitivity of this protocol was less than 2.5 CFU/25 g for S. enterica and 3.3 CFU/25 g for enterohemorrhagic E. coli in spiked ground meat experiments. PMID:24364031

  3. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

    PubMed Central

    Solomon, Robinson David Jebakumar; Kumar, Amit; Satheeja Santhi, Velayudhan

    2013-01-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process. PMID:24302716

  4. Comparative genomics of "Dehalococcoides ethenogenes" 195 and an enrichment culture containing unsequenced "Dehalococcoides" strains.

    PubMed

    West, Kimberlee A; Johnson, David R; Hu, Ping; DeSantis, Todd Z; Brodie, Eoin L; Lee, Patrick K H; Feil, Helene; Andersen, Gary L; Zinder, Stephen H; Alvarez-Cohen, Lisa

    2008-06-01

    Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of "Dehalococcoides ethenogenes" 195. This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray results revealed that the genes associated with central metabolism, including an apparently incomplete carbon fixation pathway, cobalamin-salvaging system, nitrogen fixation pathway, and five hydrogenase complexes, are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase, tceA, was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria, which is essential in developing effective strategies for the bioremediation of PCE and TCE in the environment. PMID:18359838

  5. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8(T).

    PubMed

    Gentile, G; Bonsignore, M; Santisi, S; Catalfamo, M; Giuliano, L; Genovese, L; Yakimov, M M; Denaro, R; Genovese, M; Cappello, S

    2016-04-15

    The present study is focused on assessing the growth and hydrocarbon-degrading capability of the psychrophilic strain Oleispira antarctica RB-8(T). This study considered six hydrocarbon mixtures that were tested for 22days at two different cultivation temperatures (4 and 15°C). During the incubation period, six sub-aliquots of each culture at different times were processed for total bacterial abundance and GC-FID (gas chromatography-flame ionization detection) hydrocarbon analysis. Results from DNA extraction and DAPI (4',6-diamidino-2-phenylindole) staining showed a linear increase during the first 18days of the experiment in almost all the substrates used; both techniques showed a good match, but the difference in values obtained was approximately one order of magnitude. GC-FID results revealed a substantial hydrocarbon degradation rate in almost all hydrocarbon sources and in particular at 15°C rather than 4°C (for commercial oil engine, oily waste, fuel jet, and crude oil). A more efficient degradation was observed in cultures grown with diesel and bilge water at 4°C. PMID:26912198

  6. Culturally Diverse Literature: Enriching Variety in an Era of Common Core State Standards

    ERIC Educational Resources Information Center

    Boyd, Fenice B.; Causey, Lauren L.; Galda, Lee

    2015-01-01

    The authors argue for the overwhelming importance of finding and including culturally diverse literature into the curricula teachers are authorized to teach. They discuss the implications of use and offer ideas on how to identify quality literature to include in classroom and school libraries.

  7. Afro-Hispanic Literature: Cultural and Literary Enrichment for the Foreign Language Classroom.

    ERIC Educational Resources Information Center

    Cyrus, Stanley A.; Legge, June M.

    Millions of people of African descent in Spanish-speaking countries are commonly omitted from the cultural, literary, and linguistic content of Spanish classes. Afro-Spanish literature can be integrated into the Spanish curriculum from the first year. This literature is not easily defined, but does reflect and aid in understanding the black…

  8. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  9. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    PubMed Central

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 ± 0.06, 1.0 ± 0.13 and 0.4 ± 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation. PMID:24920064

  10. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms.

    PubMed

    Bengtsson, Simon; Pisco, Ana R; Reis, Maria A M; Lemos, Paulo C

    2010-02-01

    Batch production of polyhydroxyalkanoates (PHAs) under aerobic conditions by an open mixed culture enriched in glycogen accumulating organisms (GAOs) with fermented sugar cane molasses as substrate was studied. The produced polymers contained five types of monomers, namely 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxy-2-methylvalerate (3H2MV) and the medium chain length monomer 3-hydroxyhexanoate (3HHx). With fermented molasses as substrate, PHA was produced under concurrent consumption of stored glycogen with yields of 0.47-0.66 C-mol PHA per C-mol of total carbon substrate and with rates up to 0.65 C-mol/C-molX h. In order to investigate the role of glycogen during aerobic PHA accumulation in GAOs, synthetic single volatile fatty acids (VFAs) were used as substrates and it was found that the fate of glycogen was dependent on the type of VFA being consumed. Aerobic PHA accumulation occurred under concurrent glycogen consumption with acetate as substrate and under minor concurrent glycogen production with propionate as substrate. With butyrate and valerate as substrates, PHA accumulation occurred with the glycogen pool unaffected. The composition of the PHA was dependent on the VFA composition of the fermented molasses and was 56-70 mol-% 3HB, 13-43 mol-% 3HV, 1-23 mol-% 3HHx and 0-2 mol-% 3H2MB and 3H2MV. The high polymer yields and production rates suggest that enrichment of GAOs can be a fruitful strategy for mixed culture production of PHA from waste substrates. PMID:19958801

  11. The action of calcitonin on the TM4 Sertoli cell line and on rat Sertoli cell-enriched cultures.

    PubMed

    Nakhla, A M; Mather, J P; Jäne, O A; Bardin, C W

    1989-01-01

    The effects of synthetic salmon calcitonin on primary Sertoli cell-enriched cultures and on an established cell line (TM4 cells, derived from immature mouse Sertoli cells) were studied. Synthetic salmon calcitonin stimulated the conversion of [3H]adenine to [3H]cyclic AMP in both cell systems. In addition, this peptide stimulated the secretion of rABP in primary Sertoli cell-enriched cultures prepared from rat testis. Calcitonin also increased the total concentration of both androgen and estrogen receptors in TM4 cells. Because cAMP analogs decreased androgen and estrogen receptor concentrations, the effect of calcitonin on sex steroid receptors may not be mediated by its effect on cyclic AMP in these cells. The possibility that the action of synthetic salmon calcitonin on the receptors might be mediated by a change in cellular Ca2+ was investigated. Lowering extracellular Ca2+ concentrations from 1.5 mM to less than 0.01 mM markedly reduced the concentration of androgen and estrogen receptors; restoration of Ca2+ to 1.5 mM returned receptor levels to normal. When the receptor concentrations were decreased by lowering extracellular Ca2+ concentrations to 0.5 mM, treatment with the calcium ionophore, A23187, restored receptor levels to normal. Although the calcium channel blocker, verapamil, decreased receptor levels, calcitonin partially counteracted its effect. Trifluoperazine, an inhibitor of calmodulin, also diminished androgen and estrogen receptor, levels in the cytosol of TM4 cells. It was concluded that calcitonin stimulates the formation of cyclic AMP and the secretion of rABP by Sertoli cells. This peptide also increases the concentration of androgen and estrogen receptors, possibly by a mechanism that is, in part, Ca2+ -mediated. These results, along with those on Leydig cells, suggest that calcitonin could be a regulator of testicular function. PMID:2550404

  12. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2016-09-01

    This study investigated the chronic impact of sulfamethoxazole (SMX) on activated sludge sustaining an enriched nitrifying biomass. For this purpose, a laboratory scale fill and draw reactor was operated with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia at a sludge age of 15 days. Additionally, the biomass was exposed to a daily SMX dose of 50 mg/L once the reactor reached steady-state conditions. The reactor performance and microbial composition were monitored for 37 days with conventional parameters and molecular techniques based on the gene for ammonia monooxygenase subunit A (amoA) and the prokaryotic 16S rRNA gene. Denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene cloning analyses suggested a microbial community change concurrent with the addition of SMX. Specifically, quantitative polymerase chain reaction analyses (qPCR/RT-qPCR) revealed a significant reduction in the levels and activity of ammonia oxidizing bacteria (AOB). However, the acclimation period ended with high amoA mRNA levels and improved nitrification efficiency. Partial degradation of SMX by heterotrophic bacteria was also observed. PMID:27235775

  13. Isolation and identification of histone H3 protein enriched in microvesicles secreted from cultured sebocytes.

    PubMed

    Nagai, Ayako; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Sumida, Michihiro

    2005-06-01

    Secretion of microvesicles, defined as sebosomes, containing lipid particles were discovered for the first time in cultured sebocytes. After reaching confluency, hamster-cloned sebocytes released bubble-like microvesicles with a diameter range of 0.5-5.0 microm. They had a complex structure containing multiple Oil Red O-stainable particles. The lipid components of the microvesicles were large amounts of squalene both of hamster-cloned and rat primary cultured sebocytes. The microvesicles contained a concentrated 17-kDa cationic protein, which was soluble in sulfate buffer including Nonidet P-40 at pH 1.5. As the protein bound tightly to heparin-Sepharose and eluted with 1.5 M NaCl, it was further purified from a SDS-PAGE gel. Peptide sequencing identified the protein to be histone H3. Polyclonal antibodies against the purified protein detected the antigen in the microvesicles both in the hamster-cloned and rat primary cultured sebocytes. The antibodies demonstrated a distribution of the protein within the nucleus, cytoplasm, and precursor microvesicles. When a gene construct encoding histone H3-enhanced green fluorescent protein was transfected to the sebocytes, fluorescence of the fusion proteins was detected within both the nucleus and the precursor microvesicles of the cytoplasm. The distribution of heparan sulfate was evident in the microvesicles, and it suggested the possibility that the histone H3 protein was recruited and then condensed to the secreted microvesicles by the molecules. In addition, the 14-3-3 protein, which was detected in the microvesicles, also may help incorporate the histone H3 protein in the microvesicles because it can bind to both histone and lipid particles. PMID:15746254

  14. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria.

    PubMed Central

    Wagener, S; Schink, B

    1988-01-01

    Linear alkyl ethoxylates (polyethylene glycol alkyl ethers) were fermented completely to methane and CO2 in enrichment cultures inoculated with anoxic sewage sludge. Long-chain fatty acids were released as intermediates. No degradation was found with polypropylene glycol and polypropylene glycol-containing surfactants. Two types of primary ethoxylate-degrading bacteria were isolated and characterized. Both degraded polyethylene glycols with molecular weights of 1,000 completely. Strain KoB35 fermented polyethylene glycol, ethoxyethanol, and lactate to acetate and propionate and was assigned to the described species Pelobacter propionicus. Strain KoB58 converted polyethylene glycol and many other substrates to acetate only and was assigned to the genus Acetobacterium. The pathways of anaerobic degradation of nonionic surfactants are discussed with respect to their limitations and the various groups of bacteria involved. Images PMID:3355141

  15. Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture

    PubMed Central

    Kamp, Anja; Stief, Peter; Schulz-Vogt, Heide N.

    2006-01-01

    A lithotrophic freshwater Beggiatoa strain was enriched in O2-H2S gradient tubes to investigate its ability to oxidize sulfide with NO3− as an alternative electron acceptor. The gradient tubes contained different NO3− concentrations, and the chemotactic response of the Beggiatoa mats was observed. The effects of the Beggiatoa sp. on vertical gradients of O2, H2S, pH, and NO3− were determined with microsensors. The more NO3− that was added to the agar, the deeper the Beggiatoa filaments glided into anoxic agar layers, suggesting that the Beggiatoa sp. used NO3− to oxidize sulfide at depths below the depth that O2 penetrated. In the presence of NO3− Beggiatoa formed thick mats (>8 mm), compared to the thin mats (ca. 0.4 mm) that were formed when no NO3− was added. These thick mats spatially separated O2 and sulfide but not NO3− and sulfide, and therefore NO3− must have served as the electron acceptor for sulfide oxidation. This interpretation is consistent with a fourfold-lower O2 flux and a twofold-higher sulfide flux into the NO3−-exposed mats compared to the fluxes for controls without NO3−. Additionally, a pronounced pH maximum was observed within the Beggiatoa mat; such a pH maximum is known to occur when sulfide is oxidized to S0 with NO3− as the electron acceptor. PMID:16820468

  16. Enhancement of phenolics, resveratrol and antioxidant activity by nitrogen enrichment in cell suspension culture of Vitis vinifera.

    PubMed

    Sae-Lee, Napaporn; Kerdchoechuen, Orapin; Laohakunjit, Natta

    2014-01-01

    Ammonium nitrate (NH4NO3), an important nitrogen source (34% N), has been used as an elicitor to stimulate plant growth and development as well as induce secondary metabolites under controlled conditions. In the present paper, we investigated the enhancement of cell biomass, total phenolics, resveratrol levels, and antioxidant activity of Vitis vinifera cv. Pok Dum by nitrogen enrichment (MS medium supplemented with NH4NO3 at 0, 500, 1,000, 5,000 and 10,000 mg/L). The highest accumulations of biomass, phenolics and resveratrol contents were observed at 8.8-fold (86.6 g DW/L), 15.9-fold (71.91 mg GAE/g DW) and 5.6-fold (277.89 µg/g DW) by the 14th day, in the medium supplemented with 500 mg/L NH4NO3. Moreover, the antioxidant activities of cultured grape cells estimated by the DPPH· and ABTS·+ assay were positively correlated with phenolics and resveratrol, and the maximum activity was also observed in cultured cells with 500 mg/L NH4NO3 at 176.11 and 267.79 mmol TE/100 g DW, respectively. PMID:24962393

  17. Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat.

    PubMed Central

    Ferris, M J; Ruff-Roberts, A L; Kopczynski, E D; Bateson, M M; Ward, D M

    1996-01-01

    Recent molecular studies have shown a great disparity between naturally occurring and cultivated microorganisms. We investigated the basis for disparity by studying thermophilic unicellular cyanobacteria whose morphologic simplicity suggested that a single cosmopolitan species exists in hot spring microbial mats worldwide. We found that partial 16S rRNA sequences for all thermophilic Synechococcus culture collection strains from diverse habitats are identical. Through oligonucleotide probe analysis and cultivation, we provide evidence that this species is strongly selected for in laboratory culture to the exclusion of many more-predominant cyanobacterial species coexisting in the Octopus Spring mat in Yellowstone National Park. The phylogenetic diversity among Octopus Spring cyanobacteria is of similar magnitude to that exhibited by all cyanobacteria so far investigated. We obtained axenic isolates of two predominant cyanobacterial species by diluting inocula prior to enrichment. One isolate has a 16S rRNA sequence we have not yet detected by cloning. The other has a 16S rRNA sequence identical to a new cloned sequence we report herein. This is the first cultivated species whose 16S rRNA sequence has been detected in this mat system by cloning. We infer that biodiversity within this community is linked to guild structure. PMID:11536748

  18. Enriching the Content Provided by Cultural Catalogues with Data from Institutional Repositories

    NASA Astrophysics Data System (ADS)

    Rodríguez Miranda, Á.; Valle Melón, J. M.; Porcal-Gonzalo, M. C.

    2013-07-01

    Institutional repositories play a key role in universities and research centers for the preservation and dissemination of the knowledge generated or collected by these agents. Part of the information contained is related with Cultural Heritage and, therefore, it could be taken into account by thematic catalogues such as Europeana. In this paper, the opportunities and limitations of this connection are considered and presented by means of an ongoing case at the University of the Basque Country's institutional repository. In particular, we will deal with the information gathered about San Prudencio's Monastery (Clavijo, Spain), which includes a wide range of data from original datasets (photographs, pointclouds, coordinates, sketches and so on) up to finals results (reports, plans, 3D models, papers and so on).

  19. More Than "Getting Us Through:" A Case Study in Cultural Capital Enrichment of Underrepresented Minority Undergraduates.

    PubMed

    Ovink, Sarah M; Veazey, Brian D

    2011-01-01

    Minority students continue to be underrepresented among those who seek graduate and professional degrees in the sciences. Much previous research has focused on academic preparation. Equally important, however, are the psychological-social barriers and lack of institutional support encountered by many minority students. We present a case study of a university-sponsored intervention program for minority science majors that addresses not only academics, but also socialization into the academic community, networking, and the ability to practice newfound skills and dispositions through undergraduate research. In examining this case, we suggest that concerted, formal efforts toward expanding habitus and thereby augmenting cultural and social capital may have positive effects for underrepresented minority (URM) college students' academic and career prospects. Moreover, we argue that these differences complement the gains program participants make in academic preparedness, showing that attention to academics alone may be insufficient for addressing longstanding inequities in science career attainment among URM students. PMID:24954971

  20. Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre.

    PubMed

    Zhang, Li; Wang, Yan; Liang, Jing; Song, Qinghao; Zhang, Xiao-Hua

    2016-09-01

    The deep-sea water of the South Pacific Gyre (SPG, 20°S-45°S) is a cold and ultra-oligotrophic environment that is the source of cold-adapted enzymes. However, the characteristic features of psychrophilic enzymes derived from culturable microbes in the SPG remained largely unknown. In this study, the degradation properties of 174 cultures from the deep water of the SPG were used to determine the diversity of cold-adapted enzymes. Thus, the abilities to degrade polysaccharides, proteins, lipids, and DNA at 4, 16, and 28 °C were investigated. Most of the isolates showed one or more extracellular enzyme activities, including amylase, chitinase, cellulase, lipase, lecithinase, caseinase, gelatinase, and DNase at 4, 16, and 28 °C. Moreover, nearly 85.6 % of the isolates produced cold-adapted enzymes at 4 °C. The psychrophilic enzyme-producing isolates distributed primarily in Alteromonas and Pseudoalteromonas genera of the Gammaproteobacteria. Pseudoalteromonas degraded 9 types of macromolecules but not cellulose, Alteromonas secreted 8 enzymes except for cellulase and chitinase. Interestingly, the enzymatic activities of Gammaproteobacteria isolates at 4 °C were higher than those observed at 16 or 28 °C. In addition, we cloned and expressed a gene encoding an α-amylase (Amy2235) from Luteimonas abyssi XH031(T), and examined the properties of the recombinant protein. These cold-active enzymes may have huge potential for academic research and industrial applications. In addition, the capacity of the isolates to degrade various types of organic matter may indicate their unique ecological roles in the elemental biogeochemical cycling of the deep biosphere. PMID:27342115

  1. Characterization of Fe (III)-reducing enrichment culture and isolation of Fe (III)-reducing bacterium Enterobacter sp. L6 from marine sediment.

    PubMed

    Liu, Hongyan; Wang, Hongyu

    2016-07-01

    To enrich the Fe (III)-reducing bacteria, sludge from marine sediment was inoculated into the medium using Fe (OH)3 as the sole electron acceptor. Efficiency of Fe (III) reduction and composition of Fe (III)-reducing enrichment culture were analyzed. The results indicated that the Fe (III)-reducing enrichment culture with the dominant bacteria relating to Clostridium and Enterobacter sp. had high Fe (III) reduction of (2.73 ± 0.13) mmol/L-Fe (II). A new Fe (III)-reducing bacterium was isolated from the Fe (III)-reducing enrichment culture and identified as Enterobacter sp. L6 by 16S rRNA gene sequence analysis. The Fe (III)-reducing ability of strain L6 under different culture conditions was investigated. The results indicated that strain L6 had high Fe (III)-reducing activity using glucose and pyruvate as carbon sources. Strain L6 could reduce Fe (III) at the range of NaCl concentrations tested and had the highest Fe (III) reduction of (4.63 ± 0.27) mmol/L Fe (II) at the NaCl concentration of 4 g/L. This strain L6 could reduce Fe (III) with unique properties in adaptability to salt variation, which indicated that it can be used as a model organism to study Fe (III)-reducing activity isolated from marine environment. PMID:26896316

  2. Using Culture beyond Its Borders: The Use of Content-Enriched Instruction and the Effects of Input Enhancement on Learning in High School French Classes

    ERIC Educational Resources Information Center

    Grim, Frédérique

    2014-01-01

    The American Council on the Teaching of Foreign Languages Standards emphasizes the integration of Communication, Cultures, Connections, Comparisons, and Communities within teaching. "Content-enriched instruction" aims at teaching linguistic forms within content and eases the implementation of the five Cs. The focus is at beginning levels…

  3. Predator-Specific Enrichment of Actinobacteria from a Cosmopolitan Freshwater Clade in Mixed Continuous Culture

    PubMed Central

    Pernthaler, Jakob; Posch, Thomas; S̆imek, Karel; Vrba, Jaroslav; Pernthaler, Annelie; Glöckner, Frank Oliver; Nübel, Ulrich; Psenner, Roland; Amann, Rudolf

    2001-01-01

    We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyte Cryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial populations were followed in the experimental communities. Although the composition and stability of the two microbial communities differed, numerous members of the first assemblage could again be detected during the second experiment. The introduction of a size-selectively feeding mixotrophic nanoflagellate (Ochromonas sp.) always resulted in an immediate bloom of a single phylotype population of members of the class Actinobacteria (Ac1). These bacteria were phylogenetically affiliated with an uncultured lineage of gram-positive bacteria that have been found in freshwater habitats only. The Ac1 cells were close to the average size of freshwater bacterioplankton and significantly smaller than any of the other experimental community members. In contrast, no increase of the Ac1 population was observed in vessels exposed to the bacterivorous ciliate Cyclidium glaucoma. However, when the Ochromonas sp. was added after the establishment of C. glaucoma, the proportion of population Ac1 within the microbial community rapidly increased. Populations of a beta proteobacterial phylotype related to an Aquabacterium sp. decreased relative to the total bacterial communities following the addition of either predator, albeit to different extents. The community structure of pelagic microbial assemblages can therefore be influenced by the taxonomic composition of the predator community. PMID:11319094

  4. The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth-promoting properties of the cultured isolates.

    PubMed

    Zhou, Guang-Can; Wang, Ying; Ma, Yuan; Zhai, Shan; Zhou, Ling-Yan; Dai, Yi-Jun; Yuan, Sheng

    2014-01-01

    A soil enrichment culture (SEC) rapidly degraded 96% of 200 mg L(-1) neonicotinoid insecticide thiamethoxam (TMX) in MSM broth within 30 d; therefore, its metabolic pathway of TMX, bacterial diversity and plant growth-promoting rhizobacteria (PGPR) activities of the cultured isolates were studied. The SEC transformed TMX via the nitro reduction pathway to form nitrso, urea metabolites and via cleavage of the oxadiazine cycle to form a new metabolite, hydroxyl CLO-tri. In addition, 16S rRNA gene-denaturing gradient gel electrophoresis analysis revealed that uncultured rhizobacteria are predominant in the SEC broth and that 77.8% of the identified bacteria belonged to uncultured bacteria. A total of 31 cultured bacterial strains including six genera (Achromobacter, Agromyces, Ensifer, Mesorhizobium, Microbacterium and Pseudoxanthomonas) were isolated from the SEC broth. The 12 strains of Ensifer adhaerens have the ability to degrade TMX. All six selected bacteria showed PGPR activities. E. adhaerens TMX-23 and Agromyces mediolanus TMX-25 produced indole-3-acetic acid, whereas E. adhaerens TMX-23 and Mesorhizobium alhagi TMX-36 are N2-fixing bacteria. The six-isolated microbes were tolerant to 200 mg L(-1) TMX, and the growth of E. adhaerens was significantly enhanced by TMX, whereas that of Achromobacter sp. TMX-5 and Microbacterium sp.TMX-6 were enhanced slightly. The present study will help to explain the fate of TMX in the environment and its microbial degradation mechanism, as well as to facilitate future investigations of the mechanism through which TMX enhances plant vigor. PMID:24762175

  5. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  6. Geochemical diversity in S processes mediated by culture-adapted and environmental-enrichments of Acidithiobacillus spp.

    NASA Astrophysics Data System (ADS)

    Bernier, Luc; Warren, Lesley A.

    2007-12-01

    Coupled S speciation and acid generation resulting from S processing associated with five different microbial treatments, all primarily Acidithiobacillus spp. (i.e. autotrophic S-oxidizers) were evaluated in batch laboratory experiments. Microbial treatments included two culture-adapted strains, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, their consortia and two environmental enrichments from a mine tailings lake that were determined to be >95% Acidithiobacillus spp., by whole-cell fluorescent hybridization. Using batch experiments simulating acidic mine waters with no carbon amendments, acid generation, and S speciation associated with the oxidation of three S substrates (thiosulfate, tetrathionate, and elemental S) were evaluated. Aseptic controls showed no observable pH decrease over the experimental time course (1 month) for all three S compounds examined. In contrast, pH decreased in all microbial treatments from starting pH values of 4 to 2 or less for all three S substrates. Results show a non-linear relationship between the pH dynamics of the batch cultures and their corresponding sulfate concentrations, and indicate how known microbial S processing pathways have opposite impacts, ultimately on pH dynamics. Associated geochemical modeling indicated negligible abiogenic processes contributing to the observed results, indicating strong microbial control of acid generation extending over pH ranges from 4 to less than 2. However, the observed acid generation rates and associated S speciation were both microbial treatment and substrate-specific. Results reveal a number of novel insights regarding microbial catalysis of S oxidation: (1) metabolic diversity in S processing, as evidenced by the observed geochemical signatures in S chemical speciation and rates of acid generation amongst phylogenetically similar organisms (to the genus level); (2) consortial impacts differ from those of individual strain members; (3) environmental enrichments

  7. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  8. Anaerobic Oxidation of n-Dodecane by an Addition Reaction in a Sulfate-Reducing Bacterial Enrichment Culture

    PubMed Central

    Kropp, Kevin G.; Davidova, Irene A.; Suflita, Joseph M.

    2000-01-01

    We identified trace metabolites produced during the anaerobic biodegradation of H26- and D26-n-dodecane by an enrichment culture that mineralizes these compounds in a sulfate-dependent fashion. The metabolites are dodecylsuccinic acids that, in the case of the perdeuterated substrate, retain all of the deuterium atoms. The deuterium retention and the gas chromatography-mass spectrometry fragmentation patterns of the derivatized metabolites suggest that they are formed by C—H or C—D addition across the double bond of fumarate. As trimethylsilyl esters, two nearly coeluting metabolites of equal abundance with nearly identical mass spectra were detected from each of H26- and D26-dodecane, but as methyl esters, only a single metabolite peak was detected for each parent substrate. An authentic standard of protonated n-dodecylsuccinic acid that was synthesized and derivatized by the two methods had the same fragmentation patterns as the metabolites of H26-dodecane. However, the standard gave only a single peak for each ester type and gas chromatographic retention times different from those of the derivatized metabolites. This suggests that the succinyl moiety in the dodecylsuccinic acid metabolites is attached not at the terminal methyl group of the alkane but at a subterminal position. The detection of two equally abundant trimethylsilyl-esterified metabolites in culture extracts suggests that the analysis is resolving diastereomers which have the succinyl moiety located at the same subterminal carbon in two different absolute configurations. Alternatively, there may be more than one methylene group in the alkane that undergoes the proposed fumarate addition reaction, giving at least two structural isomers in equal amounts. PMID:11097919

  9. Draft Genome Sequence of Sporosarcina globispora W 25T (DSM 4), a Psychrophilic Bacterium Isolated from Soil and River Water

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai; Ge, Ci-bin

    2015-01-01

    Sporosarcina globispora W 25T (DSM 4) is a Gram-positive, round-spore-forming, and psychrophilic bacterium. Here, we report the 5.66-Mb genome sequence of S. globispora W 25T, which will accelerate the application of this psychrophile and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494677

  10. Rapid and Specific Enrichment of Culturable Gram Negative Bacteria Using Non-Lethal Copper-Free Click Chemistry Coupled with Magnetic Beads Separation

    PubMed Central

    Fugier, Emilie; Dumont, Audrey; Malleron, Annie; Poquet, Enora; Mas Pons, Jordi; Baron, Aurélie; Vauzeilles, Boris; Dukan, Sam

    2015-01-01

    Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope. PMID:26061695

  11. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site. PMID:10080917

  12. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    PubMed

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  13. Psychrophilic, mesophilic, and thermophilic triosephosphate isomerases from three clostridial species.

    PubMed Central

    Shing, Y W; Akagi, J M; Himes, R H

    1975-01-01

    Triosephosphate isomerase was purified to homogeneity as judged by analytical gel electrophoresis from clostridium sp. strain 69, clostridium pasteurianum, and C. thermosaccharolyticum, which grow optimally at 18, 37, and 55 C, respectively. Comparative studies on these purified proteins showed that they had the same molecular weight (53,000) and subunit molecular weight (26,500). They were equally susceptible to the active site-directed inhibitor, glycidol phosphate. However, their temperature and pH optima, as well as their stabilities to heat, urea, and sodium dodecyl sulfate, differed. The proteins also had different mobilities in acrylamide gel electrophoresis. This difference in ionic character was also reflected in the elution behavior of the enzymes from hydroxyapatite and in the isoelectric points determined by isoelectric focusing in acrylamide gel. The amino acid composition of these proteins showed that the thermophilic enzyme contains a greater amount of proline than the other enzymes. The ratio of acidic amino acids to basic amino acids was 1.79, 1.38, and 1.66 for the thermophilic mesophilic and psychrophilic enzymes, respectively. This is consistent with the relative isoelectric point values of these three enzymes. Images PMID:235509

  14. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile.

    PubMed

    Dorador, Cristina; Busekow, Annika; Vila, Irma; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-05-01

    We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures. PMID:18305895

  15. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    PubMed

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model. PMID:26054616

  16. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    PubMed

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. PMID:25209638

  17. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H

    PubMed Central

    Harvilla, Paul B.; Wolcott, Holly N.

    2014-01-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth’s ecosystems are at temperatures ≤ 5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: 4O1W). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  18. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H.

    PubMed

    Harvilla, Paul B; Wolcott, Holly N; Magyar, John S

    2014-06-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth's ecosystems are at temperatures ≤5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: ). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  19. Deep-sea oil plume enriches psychrophilic oil-degrading bacteria

    SciTech Connect

    Hazen, T.C.; Dubinsky, E.A.; DeSantis, T.Z.; Andersen, G.L.; Piceno, Y.M.; Singh, N.; Jansson, J.K.; Probst, A.; Borglin, S.E.; Fortney, J.L.; Stringfellow, W.T.; Bill, M.; Conrad, M.S.; Tom, L.M.; Chavarria, K.L.; Alusi, T.R.; Lamendella, R.; Joyner, D.C.; Spier, C.; Auer, M.; Zemla, M.L.; Chakraborty, R.; Sonnenthal, E.L.; D'haeseleer, P.; Holman, H.-Y. N.; Osman, S.; Lu, Z.; Van Nostrand, J.D.; Deng, Y.; Zhou, J.; Mason, O.U.

    2010-09-01

    The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous {gamma}-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5 C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.

  20. Psychrophilic and psychrotolerant fungi on bats and the presence of Geomyces spp. on bat wings prior to the arrival of white nose syndrome.

    PubMed

    Johnson, Lynnaun J A N; Miller, Andrew N; McCleery, Robert A; McClanahan, Rod; Kath, Joseph A; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2013-09-01

    Since 2006, Geomyces destructans, the causative agent of white nose syndrome (WNS), has killed over 5.7 million bats in North America. The current hypothesis suggests that this novel fungus is an invasive species from Europe, but little is known about the diversity within the genus Geomyces and its distribution on bats in the United States. We documented the psychrophilic and psychrotolerant fungal flora of hibernating bats prior to the arrival of WNS using culture-based techniques. A total of 149 cultures, which were obtained from 30 bats in five bat hibernacula located in four caves and one mine, were sequenced for the entire internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA) region. Approximately 53 operational taxonomic units (OTUs) at 97% similarity were recovered from bat wings, with the community dominated by fungi within the genera Cladosporium, Fusarium, Geomyces, Mortierella, Penicillium, and Trichosporon. Eleven Geomyces isolates were obtained and placed in at least seven distinct Geomyces clades based on maximum-likelihood phylogenetic analyses. Temperature experiments revealed that all Geomyces strains isolated are psychrotolerant, unlike G. destructans, which is a true psychrophile. Our results confirm that a large diversity of fungi, including several Geomyces isolates, occurs on bats prior to the arrival of WNS. Most of these isolates were obtained from damaged wings. Additional studies need to be conducted to determine potential ecological roles of these abundant Geomyces strains isolated from bats. PMID:23811520

  1. Psychrophilic versus psychrotolerant bacteria--occurrence and significance in polar and temperate marine habitats.

    PubMed

    Helmke, E; Weyland, H

    2004-07-01

    The numerical dominance and ecological role of psychrophilic bacteria in bottom sediments, sea ice, surface water and melt pools of the polar oceans were investigated using isolates, colony forming units (CFU) and metabolic activities. All sediment samples of the Southern Ocean studied showed a clear numerical dominance of cold-loving bacteria. In Arctic sediments underlying the influence of cold polar water bodies psychrophiles prevailed also but they were less dominant in sediments influenced by the warm Atlantic Water. A predominance of psychrophiles was further found in consolidated Antarctic sea ice as well as in multiyear Arctic sea ice and in melt pools on top of Arctic ice floes. A less uniform adaptation response was, however, met in polar surface waters. In the very northern part of the Fram Strait (Arctic Ocean) we found bacterial counts and activities at 1 degree C exceeding those at 22 degrees C. In surface water of the Weddell Sea (Southern Ocean) psychrophiles also dominated numerically in early autumn but the dominance declined obviously with the onset of winter-water and a decrease of chlorphyll a. Otherwise in surface water of the Southern Ocean CFUs were higher at 22 degrees C than at 1 degree C while activities were vice versa indicating at least a functional dominance of psychrophiles. Even in the temperate sediments of the German Bight true psychrophiles were present and a clear shift towards cold adapted communities in winter observed. Among the polar bacteria a more pronounced cold adaptation of Antarctic in comparison with Arctic isolates was obtained. The results and literature data indicate that stenothermic cold adapted bacteria play a significant role in the global marine environment. On the basis of the temperature response of our isolates from different habitats it is suggested to expand the definition of Morita in order to meet the cold adaptation strategies of the bacteria in the various cold habitats. PMID:15559972

  2. Overexpression, purification, and enthalpy of unfolding of ferricytochrome c552 from a psychrophilic microorganism

    PubMed Central

    Oswald, Victoria F.; Chen, WeiTing; Harvilla, Paul B.; Magyar, John S.

    2013-01-01

    The psychrophilic, hydrocarbonoclastic microorganism Colwellia psychrerythraea is important in global nutrient cycling and bioremediation. In order to investigate how this organism can live so efficiently at low temperatures (~4 °C), thermal denaturation studies of a small electron transfer protein from Colwellia were performed. Colwellia cytochrome c552 was overexpressed in E. coli, isolated, purified, and characterized by UV-visible absorption spectroscopy. The melting temperature (Tm) and the van’t Hoff enthalpy (ΔHvH) were determined. These values suggest an unexpectedly high stability for this psychrophilic cytochrome. PMID:24275750

  3. Comparison of polymerase chain reaction methods and plating for analysis of enriched cultures of Listeria monocytogenes when using the ISO11290-1 method.

    PubMed

    Dalmasso, Marion; Bolocan, Andrei Sorin; Hernandez, Marta; Kapetanakou, Anastasia E; Kuchta, Tomáš; Manios, Stavros G; Melero, Beatriz; Minarovičová, Jana; Muhterem, Meryem; Nicolau, Anca Ioana; Rovira, Jordi; Skandamis, Panagiotis N; Stessl, Beatrix; Wagner, Martin; Jordan, Kieran; Rodríguez-Lázaro, David

    2014-03-01

    Analysis for Listeria monocytogenes by ISO11290-1 is time-consuming, entailing two enrichment steps and subsequent plating on agar plates, taking five days without isolate confirmation. The aim of this study was to determine if a polymerase chain reaction (PCR) assay could be used for analysis of the first and second enrichment broths, saving four or two days, respectively. In a comprehensive approach involving six European laboratories, PCR and traditional plating of both enrichment broths from the ISO11290-1 method were compared for the detection of L. monocytogenes in 872 food, raw material and processing environment samples from 13 different dairy and meat food chains. After the first and second enrichments, total DNA was extracted from the enriched cultures and analysed for the presence of L. monocytogenes DNA by PCR. DNA extraction by chaotropic solid-phase extraction (spin column-based silica) combined with real-time PCR (RTi-PCR) was required as it was shown that crude DNA extraction applying sonication lysis and boiling followed by traditional gel-based PCR resulted in fewer positive results than plating. The RTi-PCR results were compared to plating, as defined by the ISO11290-1 method. For first and second enrichments, 90% of the samples gave the same results by RTi-PCR and plating, whatever the RTi-PCR method used. For the samples that gave different results, plating was significantly more accurate for detection of positive samples than RTi-PCR from the first enrichment, but RTi-PCR detected a greater number of positive samples than plating from the second enrichment, regardless of the RTi-PCR method used. RTi-PCR was more accurate for non-food contact surface and food contact surface samples than for food and raw material samples especially from the first enrichment, probably because of sample matrix interference. Even though RTi-PCR analysis of the first enrichment showed less positive results than plating, in outbreak scenarios where a rapid result is

  4. Growth of in vitro Oncidesa plantlets cultured under cold cathode fluorescent lamps with super-elevated CO2 enrichment

    PubMed Central

    Norikane, Atsushi; Teixeira da Silva, Jaime A.; Tanaka, Michio

    2013-01-01

    As interest in how to increase biomass production through biotechnological means gains traction, focus is turning towards the use of photoautotrophic micropropagation under elevated levels of carbon dioxide (CO2) to maximize plant growth and productivity. The effect of super-elevated CO2 with cold cathode fluorescent lamps (CCFLs) on the photoautotrophic growth of Oncidesa in vitro has been studied using a gas-permeable film culture vessel, the ‘Vitron’. The growth of Oncidesa (formerly Oncidesa Gower Ramsey ‘U-1’) plantlets on Vacin and Went (VW) medium was stimulated by 10 000 μmol mol−1 CO2. In particular, increasing the photosynthetic photon flux density (PPFD) from 45 to 60 μmol m−2 s−1 under 10 000 μmol mol−1 CO2 in the growth chamber remarkably increased the number of leaves and roots, and shoot and root fresh and dry weights compared with plantlets under the same level of CO2 under low PPFD (45 μmol m−2 s−1). However, there was a remarkable decrease in photosynthetic capacity, and chlorosis and browning of leaves. In stark contrast, plantlets grown on Kyoto medium at 10 000 μmol mol−1 CO2 under high PPFD had a higher photosynthetic rate than plantlets grown on VW medium, and no chlorosis or browning was observed. Furthermore, shoot growth was remarkably enhanced. Therefore, super-elevated CO2 (10 000 μmol mol−1) enrichment and growth under CCFLs can positively affect the efficiency and quality of commercial production of clonal Oncidesa plantlets.

  5. Preparation of Glycerol-Enriched Yeast Culture and Its Effect on Blood Metabolites and Ruminal Fermentation in Goats

    PubMed Central

    Ye, Gengping; Zhu, Yongxing; Liu, Jin; Chen, Xingxiang; Huang, Kehe

    2014-01-01

    The aim of this study was to isolate a glycerol-producing yeast strain from nature to prepare glycerol-enriched yeast culture (GY), and preliminarily evaluate the effects of GY on blood metabolites and ruminal fermentation in goats. During the trial, six isolates were isolated from unprocessed honey, and only two isolates with higher glycerol yield were identified by analysis of 26S ribosomal DNA sequences. One of the two isolates was identified as Saccharomyces cerevisiae, a direct-fed microbe permitted by the FDA. This isolate was used to prepare GY. The fermentation parameters were optimized through single-factor and orthogonal design methods to maximize the glycerol yield and biomass. The final GY contained 38.7±0.6 g/L glycerol and 12.6±0.5 g/L biomass. In vivo, eight castrated male goats with ruminal fistula were used in a replicated 4×4 Latin square experiment with four consecutive periods of 15 d. Treatments were as follows: control, LGY, MGY, and HGY with 0, 100, 200, and 300 mL GY per goat per day, respectively. The GY was added in two equal portions at 08∶00 and 17∶00 through ruminal fistula. Samples of blood and ruminal fluid were collected on the last one and two days of each period, respectively. Results showed that the plasma concentrations of triglyceride and total cholesterol were not affected by the supplemented GY. Compared with the control, goats supplemented with MGY and HGY had significantly higher (P<0.05) concentrations of plasma glucose and total protein, ruminal volatile fatty acid and molar proportion of propionate, and significantly lower (P<0.05) ruminal pH and ammonia nitrogen. These parameters changed linearly with increasing GY supplementation level (P<0.05). In conclusion, GY has great potential to be developed as a feed additive with dual effects of glycerol and yeast for ruminants. PMID:24709881

  6. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community

    PubMed Central

    2012-01-01

    Background The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions. A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth. Results The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the ∂-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth. Conclusions Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms’ identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures. PMID:22823523

  7. Changes in glucose fermentation pathways by an enriched bacterial culture in response to regulated dissolved H2 concentrations.

    PubMed

    Zheng, Hang; Zeng, Raymond J; Duke, Mikel C; O'Sullivan, Cathryn A; Clarke, William P

    2015-06-01

    It is well established that metabolic pathways in the fermentation of organic waste are primarily controlled by dissolved H2 concentrations, but there is no reported study that compares observed and predicted shifts in fermentation pathways induced by manipulating the dissolved H2 concentration. A perfusion system is presented that was developed to control dissolved H2 concentrations in the continuous fermentation of glucose by a culture highly enriched towards Thermoanaerobacterium thermosaccharolyticum (86 ± 9% relative abundance) from an originally diverse consortia in the leachate of a laboratory digester fed with municipal solid waste. Media from a 2.5 L CSTR was drawn through sintered steel membrane filters to retain biomass, allowing vigorous sparging in a separate chamber without cellular disruption. Through a combination of sparging and variations in glucose feeding rate from 0.8 to 0.2 g/L/d, a range of steady state fermentations were performed with dissolved H2 concentrations as low as an equivalent equilibrated H2 partial pressure of 3 kPa. Trends in product formation rates were simulated using a H2 regulation partitioning model. The model correctly predicted the direction of products redistribution in response to H2 concentration changes and the acetate and butyrate formation rates when H2 concentrations were less than 6 kPa. However, the model over-estimated acetate, ethanol and butanol productions at the expense of butyrate production at higher H2 concentrations. The H2 yield at the lowest dissolved H2 concentration was 2.67 ± 0.08 mol H2 /mol glucose, over 300% higher than the yield achieved in a CSTR operated without sparging. PMID:25545692

  8. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China

    PubMed Central

    Sun, Shiyong; Dong, Faqin; Ehrlich, Hermann; Zhao, Xueqing; Liu, Mingxue; Dai, Qunwei; Li, Qiongfang; An, Dejun; Dong, Hailiang

    2014-01-01

    Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3− etching and provide template for forming travertine when water re-flowing, in warm season. PMID:25522049

  9. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  10. Draft Genome Sequence of Acetobacterium bakii DSM 8239, a Potential Psychrophilic Chemical Producer through Syngas Fermentation

    PubMed Central

    Hwang, Soonkyu; Song, Yoseb

    2015-01-01

    Acetobacterium bakii DSM 8239 is an anaerobic, psychrophilic, and chemolithoautotrophic bacterium that is a potential platform for producing commodity chemicals from syngas fermentation. We report here the draft genome sequence of A. bakii DSM 8239 (4.14 Mb) to elucidate its physiological and metabolic properties related to syngas fermentation. PMID:26404601

  11. Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505

    PubMed Central

    Margolles, Abelardo; Gueimonde, Miguel

    2012-01-01

    Planococcus antarcticus DSM 14505 is a psychrophile bacterium that was isolated from cyanobacterial mat samples, originally collected from ponds in McMurdo, Antarctica. This orange-pigmented bacterium grows at 4°C and may possess interesting enzymatic activities at low temperatures. Here we report the first genomic sequence of P. antarcticus DSM 14505. PMID:22843594

  12. Complete Genome Sequence of Psychrobacter alimentarius PAMC 27889, a Psychrophile Isolated from an Antarctic Rock Sample.

    PubMed

    Lee, Jaejin; Kwon, Miye; Yang, Jae Young; Woo, Jusun; Lee, Hong Kum; Hong, Soon Gyu; Kim, Ok-Sun

    2016-01-01

    Psychrobacter alimentarius PAMC 27889, a Gram-negative, psychrophilic bacterium, was isolated from an Antarctic rock sample. Here, we report the complete genome of P. alimentarius PAMC 27889, which has the nonmevalonate methylerythritol phosphate pathway of terpenoid biosynthesis and a complete gene cluster for benzoate degradation. PMID:27445386

  13. Metabolic influence of psychrophilic diatoms on travertines at the Huanglong natural scenic district of China.

    PubMed

    Sun, Shiyong; Dong, Faqin; Ehrlich, Hermann; Zhao, Xueqing; Liu, Mingxue; Dai, Qunwei; Li, Qiongfang; An, Dejun; Dong, Hailiang

    2014-12-01

    Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season.Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite.Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3− etching and provide template for forming travertine when water re-flowing, in warm season. PMID:25590097

  14. Metabolic influence of psychrophilic diatoms on travertines at the Huanglong Natural Scenic District of China.

    PubMed

    Sun, Shiyong; Dong, Faqin; Ehrlich, Hermann; Zhao, Xueqing; Liu, Mingxue; Dai, Qunwei; Li, Qiongfang; An, Dejun; Dong, Hailiang

    2014-01-01

    Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3- etching and provide template for forming travertine when water re-flowing, in warm season. PMID:25522049

  15. Catalase Activity of Psychrophilic Bacteria Grown at 2 and 30 C1

    PubMed Central

    Frank, Hilmer A.; Ishibashi, Sandra T.; Reid, Ann; Ito, June S.

    1963-01-01

    Catalase activity was measured in resting-cell suspensions of psychrophilic bacteria grown at 2 and at 30 C. Enzyme activity decreased in both cell-suspension types as harvest age increased. At comparable physiological age, cells grown at 2 C had more catalase than cells grown at 30 C. PMID:13959237

  16. Complete Genome Sequence of Psychrobacter alimentarius PAMC 27889, a Psychrophile Isolated from an Antarctic Rock Sample

    PubMed Central

    Lee, Jaejin; Kwon, Miye; Yang, Jae Young; Woo, Jusun; Lee, Hong Kum; Hong, Soon Gyu

    2016-01-01

    Psychrobacter alimentarius PAMC 27889, a Gram-negative, psychrophilic bacterium, was isolated from an Antarctic rock sample. Here, we report the complete genome of P. alimentarius PAMC 27889, which has the nonmevalonate methylerythritol phosphate pathway of terpenoid biosynthesis and a complete gene cluster for benzoate degradation. PMID:27445386

  17. Distribution of Microorganisms in Deep-Sea Hydrothermal Vent Chimneys Investigated by Whole-Cell Hybridization and Enrichment Culture of Thermophilic Subpopulations

    PubMed Central

    Harmsen, H.; Prieur, D.; Jeanthon, C.

    1997-01-01

    The microbial community structure of hydrothermal vent chimneys was evaluated by the combined use of enrichment cultures and whole-cell hybridizations with fluorescently labeled 16S rRNA-based oligonucleotide probes. Chimneys were collected during the Microsmoke cruise on the Mid-Atlantic Ridge and were subsampled on board and stored under reduced conditions or fixed. For estimation of culturable thermophiles, selective media were inoculated by dilution series of the samples and incubated at 65, 80, and 95(deg)C. To analyze the microbial diversity of the samples, cells were extracted from the fixed chimney structure samples and hybridized with domain- and kingdom-specific probes. Quantification of the extracted cells was assessed by whole-cell hybridization on membrane filters. By both methods, the largest amounts of microorganisms were found in the upper and outer parts of the chimneys, although even the inner parts contained culturable and detectable amounts of cells. Different morphotypes of thermophilic and hyperthermophilic microorganisms were enriched and detected in samples. Our data clearly indicate that the morphological diversity observed by using whole-cell hybridization is much larger than that assessed by use of culture-based enrichments. This new approach, including culture-independent and -dependent methods to study hydrothermal vent chimneys, showed an uneven distribution of a diverse microbial community. Application of lower-level specific probes for known families and genera within each domain by our approach will be useful to reveal the real extent and nature of the chimney microbial diversity and to support cultivation attempts. PMID:16535655

  18. Degradation of Polycyclic Aromatic Hydrocarbons at Low Temperature under Aerobic and Nitrate-Reducing Conditions in Enrichment Cultures from Northern Soils

    PubMed Central

    Eriksson, Mikael; Sodersten, Erik; Yu, Zhongtang; Dalhammar, Gunnel; Mohn, William W.

    2003-01-01

    The potential for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at low temperature and under anaerobic conditions is not well understood, but such biodegradation would be very useful for remediation of polluted sites. Biodegradation of a mixture of 11 different PAHs with two to five aromatic rings, each at a concentration of 10 μg/ml, was studied in enrichment cultures inoculated with samples of four northern soils. Under aerobic conditions, low temperature severely limited PAH biodegradation. After 90 days, aerobic cultures at 20°C removed 52 to 88% of the PAHs. The most extensive PAH degradation under aerobic conditions at 7°C, 53% removal, occurred in a culture from creosote-contaminated soil. Low temperature did not substantially limit PAH biodegradation under nitrate-reducing conditions. Under nitrate-reducing conditions, naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene were degraded. The most extensive PAH degradation under nitrate-reducing conditions at 7°C, 39% removal, occurred in a culture from fuel-contaminated Arctic soil. In separate transfer cultures from the above Arctic soil, incubated anaerobically at 7°C, removal of 2-methylnaphthalene and fluorene was stoichiometrically coupled to nitrate removal. Ribosomal intergenic spacer analysis suggested that enrichment resulted in a few predominant bacterial populations, including members of the genera Acidovorax, Bordetella, Pseudomonas, Sphingomonas, and Variovorax. Predominant populations from different soils often included phylotypes with nearly identical partial 16S rRNA gene sequences (i.e., same genus) but never included phylotypes with identical ribosomal intergenic spacers (i.e., different species or subspecies). The composition of the enriched communities appeared to be more affected by presence of oxygen, than by temperature or source of the inoculum. PMID:12514005

  19. Characterization of an H{sub 2}-utilizing enrichment culture that reductivity dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis

    SciTech Connect

    Maymo-Gatell, X.; Tandoi, V.; Zinder, S.H.

    1995-11-01

    We have been studying an anaerobic enrichment culture which, by using methanol as an electron donor, dechlorinates tetrachloroethene (PCE) to vinyl chloride and ethene. Our previous results indicated that H{sub 2} was the direct electron donor for reductive dechlorination of PCE by the methanol-PCE culture. Most-probable-number counts performed on this culture indicated low numbers ({le}10{sup 4}/ml) of sulfidogens, methanol-utilizing acetogens, fermentative heterotrophs, and PCE dechlorinators using H{sub 2}{center_dot}-PCE culture used PCE at increasing rates over time when transferred to fresh medium and could be transferred indefinitely with H{sub 2} as the electron donor-acceptor pair for energy conservation growth. Sustained PCE dechlorination by this culture was supported by supplementation with 0.05 mg of vitamin B{sub 12} per liter, 25% (vol/vol) anaerobic digestor sludge supernatant,and 2 mM acetate, which presumably served as a carbon source. Neither methanol nor acetate could serve as an electron donor for dechlorination by the H{sub 2}-PCE culture, and it did not produce CH{sub 4} or acetate from H{sub 2}-CO{sub 2} or methanol, indicating the absense of methanogenic and acetogenic bacteria. Microscopic observations of the purified H{sub 2}-PCE culture showed only two major morphotypes: irregular cocci and small rods. 31 refs., 6 figs., 2 tabs.

  20. A new cell culture protocol for enrichment and genetic modification of adult canine Schwann cells suitable for peripheral nerve tissue engineering.

    PubMed

    Haastert, K; Seef, P; Stein, V M; Tipold, A; Grothe, C

    2009-08-01

    Easily applicable techniques are presented to obtain high numbers of enriched canine Schwann cells (cSC) in a short time-window. The potential of adult SC for tissue engineering of peripheral nerves and ex vivo gene therapy is obvious from physiological events taking place after peripheral nerve transection [Haastert, K., Grothe, C., 2007. Gene therapy in peripheral nerve reconstruction approaches. Curr. Gene Ther. 7, 221-228]. The presented techniques were modified from a protocol for cultivation and expansion of adult cSC by others [Pauls, J., Nolte, C., Forterre, F., Brunnberg, L., 2004. Cultivation and expansion of canine Schwann cells using reexplantation. Berl. Munch. Tierarztl. Wochenschr. 117, 341-352] and own experiences in rodent and human SC cultivation and transfection [Haastert, K., Mauritz, C., Chaturvedi, S., Grothe, C., 2007. Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat. Protoc. 2, 99-104]. A purity of about 80% cSC achieved by immunopanning techniques and selective culture conditions is 2.5 fold higher as previously reported (Pauls et al., 2004). Additionally, highly enriched cSC populations are available in 3-4 weeks, only half the time period reported previously (Pauls et al., 2004). Furthermore, electroporation and genetic modification of cSC is reported for the first time. PMID:19232653

  1. Stepwise Adaptations to Low Temperature as Revealed by Multiple Mutants of Psychrophilic α-Amylase from Antarctic Bacterium*

    PubMed Central

    Cipolla, Alexandre; D'Amico, Salvino; Barumandzadeh, Roya; Matagne, André; Feller, Georges

    2011-01-01

    The mutants Mut5 and Mut5CC from a psychrophilic α-amylase bear representative stabilizing interactions found in the heat-stable porcine pancreatic α-amylase but lacking in the cold-active enzyme from an Antarctic bacterium. From an evolutionary perspective, these mutants can be regarded as structural intermediates between the psychrophilic and the mesophilic enzymes. We found that these engineered interactions improve all the investigated parameters related to protein stability as follows: compactness; kinetically driven stability; thermodynamic stability; resistance toward chemical denaturation, and the kinetics of unfolding/refolding. Concomitantly to this improved stability, both mutants have lost the kinetic optimization to low temperature activity displayed by the parent psychrophilic enzyme. These results provide strong experimental support to the hypothesis assuming that the disappearance of stabilizing interactions in psychrophilic enzymes increases the amplitude of concerted motions required by catalysis and the dynamics of active site residues at low temperature, leading to a higher activity. PMID:21900238

  2. Enrichment of umbilical cord blood mononuclears with hemopoietic precursors in co-culture with mesenchymal stromal cells from human adipose tissue.

    PubMed

    Maslova, E V; Andreeva, E R; Andrianova, I V; Bobyleva, P I; Romanov, Yu A; Kabaeva, N V; Balashova, E E; Ryaskina, S S; Dugina, T N; Buravkova, L B

    2014-02-01

    We demonstrated the possibility of enrichment of umbilical cord blood mononuclear fraction with early non-differentiated precursors under conditions of co-culturing with mesenchymal stromal cells from the human adipose tissue. It was established that umbilical cord blood mononuclear cells adhered to mesenchymal stromal cell feeder and then proliferate and differentiate into hemopoietic cells. In comparison with the initial umbilical cord blood mononuclear fraction, the cell population obtained after 7-day expansion contained 2-fold more CFU and 33.4 ± 9.5 and 24.2 ± 11.2% CD34(+) and CD133(+) cells, respectively, which corresponds to enrichment of precursor cell population by 148 ± 60. The proposed scheme of expansion of hemopoietic cells from umbilical cord blood is economically expedient and can widely used in biology and medicine. PMID:24771453

  3. Determination of alachlor and its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched-sampling coupled to high-performance liquid chromatography.

    PubMed

    Chen, Chi-Zen; Yan, Cheing-Tong; Kumar, Ponnusamy Vinoth; Huang, Jenn-Wen; Jen, Jen-Fon

    2011-08-10

    In this study, a simple and novel microdialysis sampling technique incorporating hollow fiber liquid phase microextraction (HF-LPME) coupled online to high-performance liquid chromatography (HPLC) for the one-step sample pretreatment and direct determination of alachlor (2-chloro-2',6'-diethyl-N -(methoxymethyl)acetanilide) and its metabolite 2,6-diethylaniline (2,6-DEA) in microbial culture medium has been developed. A reversed-phase C-18 column was utilized to separate alachlor and 2,6-DEA from other species using an acetonitrile/water mixture (1:1) containing 0.1 M phosphate buffer solution at pH 7.0 as the mobile phase. Detection was carried out with a UV detector operated at 210 nm. Parameters that influenced the enrichment efficiency of online HF-LPME sampling, including the length of the hollow fiber, the perfusion solvent and its flow rate, the pH, and the salt added in sample solution, as well as chromatographic conditions were thoroughly optimized. Under optimal conditions, excellent enrichment efficiency was achieved by the microdialysis of a sample solution (pH 7.0) using hexane as perfusate at the flow rate of 4 μL/min. Detection limits were 72 and 14 ng/mL for alachlor and 2,6-DEA, respectively. The enrichment factors were 403 and 386 (RSD < 5%) for alachlor and 2,6-DEA, respectively, when extraction was performed by using a 40 cm regenerated cellulose hollow fiber and hexane as perfusion solvent at the flow rate of 0.1 μL/min. The proposed method provides a sensitive, flexible, fast, and eco-friendly procedure to enrich and determine alachlor and its metabolite (2,6-DEA) in microbial culture medium. PMID:21707080

  4. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  5. Epidemiology of Salmonella sp. in California cull dairy cattle: prevalence of fecal shedding and diagnostic accuracy of pooled enriched broth culture of fecal samples

    PubMed Central

    Abu Aboud, Omran A.; Adaska, John M.; Williams, Deniece R.; Rossitto, Paul V.; Champagne, John D.; Lehenbauer, Terry W.; Atwill, Robert; Li, Xunde

    2016-01-01

    Background The primary objective of this cross-sectional study was to estimate the crude, seasonal and cull-reason stratified prevalence of Salmonella fecal shedding in cull dairy cattle on seven California dairies. A secondary objective was to estimate and compare the relative sensitivity (Se) and specificity (Sp) for pools of 5 and 10 enriched broth cultures of fecal samples for Salmonella sp. detection. Methods Seven dairy farms located in the San Joaquin Valley of California were identified and enrolled in the study as a convenience sample. Cull cows were identified for fecal sampling once during each season between 2014 and 2015, specifically during spring, summer, fall, and winter, and 10 cows were randomly selected for fecal sampling at the day of their sale. In addition, study personnel completed a survey based on responses of the herd manager to questions related to the previous four month’s herd management. Fecal samples were frozen until testing for Salmonella. After overnight enrichment in liquid broth, pools of enrichment broth (EBP) were created for 5 and 10 samples. All individual and pooled broths were cultured on selective media with putative Salmonella colonies confirmed by biochemical testing before being serogrouped and serotyped. Results A total of 249 cull cows were enrolled into the study and their fecal samples tested for Salmonella. The survey-weighted period prevalence of fecal shedding of all Salmonella sp. in the cull cow samples across all study herds and the entire study period was 3.42% (N = 249; SE 1.07). The within herd prevalence of Salmonella shed in feces did not differ over the four study seasons (P = 0.074). The Se of culture of EBP of five samples was 62.5% (SE = 17.12), which was not statistically different from the Se of culture of EBP of 10 (37.5%, SE = 17.12, P = 0.48). The Sp of culture of EBP of five samples was 95.24% (SE = 3.29) and for pools of 10 samples was 100.00% (SE = 0). There was no statistical difference

  6. INTERMITTENT OPPORTUNITIES, SOME OBSERVATIONS AND HYPOTHESES RELATING TO AN EDUCATIONAL ENRICHMENT SUMMER PROGRAM FOR SOME CULTURALLY DEPRIVED CHILDREN OF BOSTON.

    ERIC Educational Resources Information Center

    HOZID, JOSEPH L.

    THIS RESEARCH INVESTIGATED WHY DISADVANTAGED STUDENTS CHOSE TO ATTEND OR NOT TO ATTEND A SUMMER ENRICHMENT PROGRAM. INTERVIEWS WERE CONDUCTED WITH A SAMPLE OF GIRLS AND THEIR MOTHERS TO DETERMINE THE INFLUENCE OF SCHOOL AND FAMILY ON THEIR CHOICE. SOME OF THE SPECIFIC FACTORS AFFECTING THEIR ATTENDING WERE CONSIDERED IN PLANNING THE PROGRAM FOR…

  7. Alternative anaerobic enrichments to the bacteriological analytical manual culture method for isolation of Shigella sonnei from selected types of fresh produce.

    PubMed

    Jacobson, Andrew P; Thunberg, Richard L; Johnson, Mildred L; Hammack, Thomas S; Andrews, Wallace H

    2004-01-01

    Alternative methods of reducing oxygen during anaerobic enrichment in the Bacteriological Analytical Manual (BAM) Shigella culture method were evaluated and compared to the current and less practical GasPak method. The alternative anaerobic methods included the use of reducing agents in Shigella broth and reducing culture container headspace volume to minimize atmospheric effects on oxygen concentration in Shigella broth during enrichment. The reducing agents evaluated were sodium thioglycollate, L-cystine, L-cysteine, titanium(III) citrate, and dithiothreitol, each at concentrations of 0.1, 0.05, and 0.01%. The use of Oxyrase for Broth with the enrichment medium (Shigella broth) was evaluated at concentrations of 10, 20 and 30 microL/mL. Recoveries of chill- and freeze-stressed S. sonnei strains 357 and 20143 were determined with each anaerobic method, including the GasPak method, using inoculation levels ranging from 10(0)to 10(3) cells. For each anaerobic method, strain, inoculation level, and stress type, 5 replicate enrichments were evaluated by streaking to MacConkey agar for isolation. The numbers of cultures with each method from which S. sonnei was isolated were used to compare the alternative anaerobic methods to the GasPak method. The alternative anaerobic method with which chill- and freeze-stressed S. sonnei strains 357 and 20143 were isolated most consistently was the use of Oxyrase for Broth in Shigella broth at a concentration of 20 microL/mL. This method was compared to the GasPak anaerobic method in evaluations on the recovery of S. sonnei strains 357 and 20143 from artificially contaminated test portions of parsley, cilantro, green onions, strawberries, carrots, and celery. A third anaerobic method included the use of 0.5 cm mineral oil overlay on cultures containing Oxyrase for Broth at concentrations of 20 microL/mL. Recovery rates of strain 357 were significantly greater (p < 0.05) with the GasPak method than with Oxyrase for Broth, with and

  8. Cloning and expression of phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Jaafar, Nardiah Rizwana; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul; Mahadi, Nor Muhammad

    2015-09-01

    The conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). Better understanding of metabolic reactions performed by this enzyme has been studied extensively in prokaryotes and eukaryotes. Here, we report a phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica. cDNA encoding for PGM from G. antarctica PI12, a psychrophilic yeast isolated from sea ice at Casey Station, Antarctica was amplified. The gene was then cloned into a cloning vector and sequenced, which verified its identity as the gene putatively encoding for PGM. The recombinant protein was expressed in Escherichia coli BL21 (DE3) as inclusion bodies and this was confirmed by SDS-PAGE and Western blot.

  9. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica

    USGS Publications Warehouse

    Rodriguez, Russell J.; Connell, L.; Redman, R.; Barrett, A.; Iszard, M.; Fonseca, A.

    2010-01-01

    During a survey of the culturable soil fungal population in samples collected in Taylor Valley, South Victoria Land, Antarctica, 13 basidiomycetous yeast strains with orange-coloured colonies were isolated. Phylogenetic analyses of internal transcribed spacer (ITS) and partial LSU rRNA gene sequences showed that the strains belong to the Dioszegia clade of the Tremellales (Tremellomycetes, Agaricomycotina), but did not correspond to any of the hitherto recognized species. Two novel species, Dioszegia antarctica sp. nov. (type strain ANT-03-116T =CBS 10920T =PYCC 5970T) and Dioszegia cryoxerica sp. nov. (type strain ANT-03-071T =CBS 10919T =PYCC 5967T), are described to accommodate ten and three of these strains, respectively. Analysis of ITS sequences demonstrated intrastrain sequence heterogeneity in D. cryoxerica. The latter species is also notable for producing true hyphae with clamp connections and haustoria. However, no sexual structures were observed. The two novel species can be considered obligate psychrophiles, since they failed to grow above 20 °C and grew best between 10 and 15 °C.

  10. Neuron-enriched cultures of adult rat dorsal root ganglia: establishment, characterization, survival, and neuropeptide expression in response to trophic factors.

    PubMed

    Grothe, C; Unsicker, K

    1987-01-01

    It is unknown whether adult dorsal root ganglion (DRG) neurons require trophic factors for their survival and maintenance of neuropeptide phenotypes. We have established and characterized neuron-enriched cultures of adult rat DRGs and investigated their responses to nerve growth factor (NGF), ciliary neuronotrophic factor (CNTF), pig brain extract (PBE, crude fraction of brain-derived neuronotrophic factor, BDNF), and laminin (LN). DRGs were dissected from levels C1 through L6 and dissociated and freed from myelin fragments and most satellite (S-100-immunoreactive) cells by centrifugation on Percoll and preplating. The enriched neurons, characterized by their morphology and immunoreactivity for neuron-specific enolase, constituted a population representative of the in vivo situation with regard to expression of substance P (SP), somatostatin (SOM), and cholecystokinin-8 (CCK) immunoreactivities. In the absence of trophic factors and using polyornithine (PORN) as a substratum, 60-70% of the neurons present initially (0.5 days) had died after 7 days. LN as a substratum did not prevent a 30% loss of neurons up to day 4.5, but it subsequently maintained DRG neurons at a plateau. This behavior might reflect a cotrophic effect of LN and factors provided by non-neuronal cells, whose proliferation between 4.5 and 7 days could not be prevented by addition of mitotic inhibitors of gamma-irradiation. CNTF, but not NGF, slightly enhanced survival at 7 days on either PORN or LN. No neuronal losses were found in non-enriched cultures or when enriched neurons were supplemented with PBE, indicating that non-neuronal cells and PBE provide factor(s) essential for adult DRG neuron survival. Proportions of SP-, SOM-, and CCK-immunoreactive cells were unaltered under any experimental condition, with the exception of a numerical decline in SP cells in 7-day cultures with LN, but not PORN, as the substratum. Our data, considered in the context of recent in vivo and vitro studies, suggest

  11. Adaptational properties and applications of cold-active lipases from psychrophilic bacteria.

    PubMed

    Maiangwa, Jonathan; Ali, Mohd Shukuri Mohamad; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Shariff, Fairolniza Mohd; Leow, Thean Chor

    2015-03-01

    Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications. PMID:25472009

  12. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features

    PubMed Central

    Sweet, Charles R.; Alpuche, Giancarlo M.; Landis, Corinne A.; Sandman, Benjamin C.

    2014-01-01

    Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide), a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME) GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2-) units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments. PMID:25010385

  13. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater. PMID:14640233

  14. Purification and Characterization of a Psychrophilic, Calcium-Induced, Growth-Phase-Dependent Metalloprotease from the Fish Pathogen Flavobacterium psychrophilum

    PubMed Central

    Secades, P.; Alvarez, B.; Guijarro, J. A.

    2001-01-01

    Flavobacterium psychrophilum is a fish pathogen that commonly affects salmonids. This bacterium produced an extracellular protease with an estimated molecular mass of 55 kDa. This enzyme, designated Fpp1 (F. psychrophilum protease 1), was purified to electrophoretic homogeneity from the culture supernatant by using ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic chromatography, and size exclusion chromatography. On the basis of its biochemical characteristics, Fpp1 can be included in the group of metalloproteases that have an optimum pH for activity of 6.5 and are inhibited by 1,10-phenanthroline, EDTA, or EGTA but not by phenylmethylsulfonyl fluoride. Fpp1 activity was dependent on calcium ions not only for its activity but also for its thermal stability. In addition to calcium, strontium and barium can activate the protein. The enzyme showed typical psychrophilic behavior; it had an activation energy of 5.58 kcal/mol and was more active at temperatures between 25 and 40°C, and its activity decreased rapidly at 45°C. Fpp1 cleaved gelatin, laminin, fibronectin, fibrinogen, collagen type IV, and, to a lesser extent, collagen types I and II. Fpp1 also degraded actin and myosin, basic elements of the fish muscular system. The presence of this enzyme in culture media was specifically dependent on the calcium concentration. Fpp1 production started early in the exponential growth phase and reached a maximum during this period. Addition of calcium during the stationary phase did not induce Fpp1 production at all. Besides calcium and the growth phase, temperature also seems to play a role in production of Fpp1. In this study we found that production of Fpp1 depends on factors such as calcium concentration, growth phase of the culture, and temperature. The combination of these parameters corresponds to the combination in the natural host during outbreaks of disease caused by F. psychrophilum. Consequently, we suggest that environmental host

  15. Complete genome sequence of Methylophilus sp. TWE2 isolated from methane oxidation enrichment culture of tap-water.

    PubMed

    Xia, Fei; Zou, Bin; Shen, Cong; Zhu, Ting; Gao, Xin-Hua; Quan, Zhe-Xue

    2015-10-10

    The non-methane-utilizing methylotroph, Methylophilus sp. TWE2, was isolated from tap-water during the enrichment of methanotrophs with methane. The complete genome sequence of strain TWE2 showed that this bacterium may convert methanol to formaldehyde via catalysis of methanol dehydrogenase (MDH), after which formaldehyde would be assimilated to biomass through the ribulose monophosphate (RuMP) pathway or dissimilated via the tetrahydromethanopterin (H4MPT) pathway. The deficiency of glycolysis and the TCA cycle indicate that strain TWE2 may be an obligate methylotroph. This is the first complete genome sequence of the genus Methylophilus. PMID:26253961

  16. Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System

    PubMed Central

    Hui, Chin Wai; Zhang, Yang; Herrup, Karl

    2016-01-01

    Chronic inflammation is associated with activated microglia and reactive astrocytes and plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s. Both in vivo and in vitro studies have demonstrated that inflammatory cytokine responses to immune challenges contribute to neuronal death during neurodegeneration. In order to investigate the role of glial cells in this phenomenon, we developed a modified method to remove the non-neuronal cells in primary cultures of E16.5 mouse cortex. We modified previously reported methods as we found that a brief treatment with the thymidine analog, 5-fluorodeoxyuridine (FdU), is sufficient to substantially deplete dividing non-neuronal cells in primary cultures. Cell cycle and glial markers confirm the loss of ~99% of all microglia, astrocytes and oligodendrocyte precursor cells (OPCs). More importantly, under this milder treatment, the neurons suffered neither cell loss nor any morphological defects up to 2.5 weeks later; both pre- and post-synaptic markers were retained. Further, neurons in FdU-treated cultures remained responsive to excitotoxicity induced by glutamate application. The immunobiology of the FdU culture, however, was significantly changed. Compared with mixed culture, the protein levels of NFκB p65 and the gene expression of several cytokine receptors were altered. Individual cytokines or conditioned medium from β-amyloid-stimulated THP-1 cells that were, potent neurotoxins in normal, mixed cultures, were virtually inactive in the absence of glial cells. The results highlight the importance of our glial-depleted culture system and identifies and offer unexpected insights into the complexity of -brain neuroinflammation. PMID:26788729

  17. TANK CULTURE OF SUNSHINE BASS MORONE CHRYSOPS X M. SAXATILIS FINGERLINGS WITH THREE CONCENTRATIONS OF ENRICHED ROTIFERS AND ARTEMIA NAUPLII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunshine bass Morone chrysops X M. saxatilis fry are obligate zooplankton consumers. They begin to eat rotifers at 4 days post hatch but soon switch to larger zooplankton. For tank culture, the rotifer Brachionus plicatus appears to be a suitable first food. Within a few days the fry may be switche...

  18. Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis.

    PubMed

    Parvizpour, Sepideh; Razmara, Jafar; Jomah, Ashraf Fadhil; Shamsir, Mohd Shahir; Illias, Rosli Mohd

    2015-03-01

    Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature. PMID:25721655

  19. Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea†

    PubMed Central

    Edwards, K. J.; Rogers, D. R.; Wirsen, C. O.; McCollom, T. M.

    2003-01-01

    We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (∼10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea. PMID:12732565

  20. Morphological and Molecular Characterizations of Psychrophilic Fungus Geomyces destructans from New York Bats with White Nose Syndrome (WNS)

    PubMed Central

    Chaturvedi, Vishnu; Springer, Deborah J.; Behr, Melissa J.; Ramani, Rama; Li, Xiaojiang; Peck, Marcia K.; Ren, Ping; Bopp, Dianna J.; Wood, Britta; Samsonoff, William A.; Butchkoski, Calvin M.; Hicks, Alan C.; Stone, Ward B.; Rudd, Robert J.; Chaturvedi, Sudha

    2010-01-01

    Background Massive die-offs of little brown bats (Myotis lucifugus) have been occurring since 2006 in hibernation sites around Albany, New York, and this problem has spread to other States in the Northeastern United States. White cottony fungal growth is seen on the snouts of affected animals, a prominent sign of White Nose Syndrome (WNS). A previous report described the involvement of the fungus Geomyces destructans in WNS, but an identical fungus was recently isolated in France from a bat that was evidently healthy. The fungus has been recovered sparsely despite plentiful availability of afflicted animals. Methodology/Principal Findings We have investigated 100 bat and environmental samples from eight affected sites in 2008. Our findings provide strong evidence for an etiologic role of G. destructans in bat WNS. (i) Direct smears from bat snouts, Periodic Acid Schiff-stained tissue sections from infected tissues, and scanning electron micrographs of bat tissues all showed fungal structures similar to those of G. destructans. (ii) G. destructans DNA was directly amplified from infected bat tissues, (iii) Isolations of G. destructans in cultures from infected bat tissues showed 100% DNA match with the fungus present in positive tissue samples. (iv) RAPD patterns for all G. destructans cultures isolated from two sites were indistinguishable. (v) The fungal isolates showed psychrophilic growth. (vi) We identified in vitro proteolytic activities suggestive of known fungal pathogenic traits in G. destructans. Conclusions/Significance Further studies are needed to understand whether G. destructans WNS is a symptom or a trigger for bat mass mortality. The availability of well-characterized G. destructans strains should promote an understanding of bat–fungus relationships, and should aid in the screening of biological and chemical control agents. PMID:20520731

  1. Protein enrichment of grain sorghum by submerged culture of the amylolytic yeastsSchwanniomyces occidentalis andLipomyces kononenkoae.

    PubMed

    Horn, C H; du Preez, J C; Kilian, S G

    1992-07-01

    Cultivation of aSchwanniomyces occidentalis derepressed mutant in a 10% (w/v) gelatinized grain sorghum slurry increased the crude protein content of the biomass from an initial value of 12% to 41% (dry) within 20 h, with no detectable residual starch. Co-cultivation ofCandida utilis with theS. occidentalis mutant improved the final crude protein content to 47% within 18 h, whereas a co-culture ofC. utilis with aLipomyces kononenkoae mutant resulted in a cultivation time of 50 h with a significantly lower protein content and a low final α-amylase activity. In a 15% (w/v) grain sorghum slurry aC. utilis/S. occidentalis co-culture increased the protein content to about 44% within 30 h. Yeast cultivation increased the lysine and threonine content of the final biomass considerably. PMID:24425515

  2. Identification of bacteria in enrichment cultures of sulfate reducers in the Cariaco Basin water column employing Denaturing Gradient Gel Electrophoresis of 16S ribosomal RNA gene fragments

    PubMed Central

    2013-01-01

    Background The Cariaco Basin is characterized by pronounced and predictable vertical layering of microbial communities dominated by reduced sulfur species at and below the redox transition zone. Marine water samples were collected in May, 2005 and 2006, at the sampling stations A (10°30′ N, 64°40′ W), B (10°40′ N, 64°45′ W) and D (10°43’N, 64°32’W) from different depths, including surface, redox interface, and anoxic zones. In order to enrich for sulfate reducing bacteria (SRB), water samples were inoculated into anaerobic media amended with lactate or acetate as carbon source. To analyze the composition of enrichment cultures, we performed DNA extraction, PCR-DGGE, and sequencing of selected bands. Results DGGE results indicate that many bacterial genera were present that are associated with the sulfur cycle, including Desulfovibrio spp., as well as heterotrophs belonging to Vibrio, Enterobacter, Shewanella, Fusobacterium, Marinifilum, Mariniliabilia, and Spirochaeta. These bacterial populations are related to sulfur coupling and carbon cycles in an environment of variable redox conditions and oxygen availability. Conclusions In our studies, we found an association of SRB-like Desulfovibrio with Vibrio species and other genera that have a previously defined relevant role in sulfur transformation and coupling of carbon and sulfur cycles in an environment where there are variable redox conditions and oxygen availability. This study provides new information about microbial species that were culturable on media for SRB at anaerobic conditions at several locations and water depths in the Cariaco Basin. PMID:23981583

  3. Stable Carbon Isotope Fractionation During 1,2-Dichloropropane-to-Propene Transformation by an Enrichment Culture Containing Dehalogenimonas Strains and a dcpA Gene.

    PubMed

    Martín-González, L; Mortan, S Hatijah; Rosell, M; Parladé, E; Martínez-Alonso, M; Gaju, N; Caminal, G; Adrian, L; Marco-Urrea, E

    2015-07-21

    A stable enrichment culture derived from Besòs river estuary sediments stoichiometrically dechlorinated 1,2-dichloropropane (1,2-DCP) to propene. Sequential transfers in defined anaerobic medium with the inhibitor bromoethanesulfonate produced a sediment-free culture dechlorinating 1,2-DCP in the absence of methanogenesis. Application of previously published genus-specific primers targeting 16S rRNA gene sequences revealed the presence of a Dehalogenimonas strain, and no amplification was obtained with Dehalococcoides-specific primers. The partial sequence of the 16S rRNA amplicon was 100% identical with Dehalogenimonas alkenigignens strain IP3-3. Also, dcpA, a gene described to encode a corrinoid-containing 1,2-DCP reductive dehalogenase was detected. Resistance of the dehalogenating activity to vancomycin, exclusive conversion of vicinally chlorinated alkanes, and tolerance to short-term oxygen exposure is consistent with the hypothesis that a Dehalogenimonas strain is responsible for 1,2-DCP conversion in the culture. Quantitative PCR showed a positive correlation between the number of Dehalogenimonas 16S rRNA genes copies in the culture and consumption of 1,2-DCP. Compound specific isotope analysis revealed that the Dehalogenimonas-catalyzed carbon isotopic fractionation (εC(bulk)) of the 1,2-DCP-to-propene reaction was -15.0 ± 0.7‰ under both methanogenic and nonmethanogenic conditions. This study demonstrates that carbon isotope fractionation is a valuable approach for monitoring in situ 1,2-DCP reductive dechlorination by Dehalogenimonas strains. PMID:26111261

  4. Short communication: Viability of culture organisms in honey-enriched acidophilus-bifidus-thermophilus (ABT)-type fermented camel milk.

    PubMed

    Varga, L; Süle, J; Nagy, P

    2014-11-01

    The aim of this research was to monitor the survival during refrigerated storage of Lactobacillus acidophilus LA-5 (A), Bifidobacterium animalis ssp. lactis BB-12 (B), and Streptococcus thermophilus CHCC 742/2130 (T) in cultured dairy foods made from camel and, for comparison, cow milks supplemented with black locust (Robinia pseudoacacia L.) honey and fermented by an acidophilus-bifidus-thermophilus (ABT)-type culture. Two liters of dromedary camel milk and 2 L of cow milk were heated to 90 °C and held for 10 min, then cooled to 40 °C. One half of both types of milk was fortified with black locust honey at the rate of 5.0% (wt/vol), whereas the other half was devoid of honey and served as a control. The camel and cow milks with and without honey were subsequently inoculated with ABT-5 culture and were fermented at 37 °C until a pH value of 4.6 was reached. Thereafter, the probiotic fermented milks were cooled to 15 °C in ice water and were each separated into 18 fractions that were transferred in sterile, tightly capped centrifuge tubes. After 24 h of cooling at 8 °C (d 0), the samples were stored at refrigeration temperature (4 °C). Three tubes of all 4 products (i.e., fermented camel and cow milks with and without honey) were taken at each sampling time (i.e., following 0, 7, 14, 21, 28, and 35 d of storage), and the counts of characteristic microorganisms and those of certain spoilage microbes (yeasts, molds, coliforms, Escherichia coli) were enumerated. The entire experimental program was repeated twice. The results showed that addition of black locust honey at 5% to heat-treated camel and cow milks did not influence the growth and survival of starter streptococci during production and subsequent refrigerated storage of fermented ABT milks. In contrast, honey improved retention of viability of B. animalis ssp. lactis BB-12 in the camel milk-based product during storage at 4 °C up to 5 wk. No spoilage organisms were detected in any of the samples tested

  5. Structural and chemical modification of Fe-rich smectite associated with microbial Fe-respiration by psychrophilic bacteria in King George Island, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jung, J.; Kim, J. Y.; Lim, H. S.; Lee, Y. K.; Kim, O. S.; Park, K.; Lee, J.; Yoon, H.; Kim, J. W.

    2015-12-01

    Biotic/abiotic redox reaction is a ubiquitous process in a mineral alteration and an elemental cycling in the sediments/ocean. The role of psychrophiles in clay mineral alteration was tested in the soil for the seven sites from the coast to the inland at Barton Peninsula. Batch experiments of microbe-mineral interaction under the various temperatures (4 ℃, 15 ℃) that mimics the Antarctic condition were performed to understand the mechanism of biogeochemical alteration of clay minerals. After 12 months incubation of the bulk surface soil samples in the M1 minimal medium, the extent of Fe reduction was reached up to 49 and 42 % at 4 ℃ and 15 ℃. The increase in CEC corresponds to the extent of Fe reduction. Moreover, precipitations of secondary phase mineral such as vivianite were observed only in 12 months enrichment samples at 4 ℃ and 15 ℃. Sulfate reducing bacteria and Fe-reducing bacteria capable of reducing Fe were identified by 16S rRNA pyrosequencing. The Fe reduction coupled to oxidation of organic matter might be enhanced by cooperation of a consortium of Sulfate reducing bacteria and Fe-reducing bacteria. Moreover, Nitrate reducing bacteria which have an ability to oxidize ferrous iron anaerobically with nitrate reduction were identified at 15 ℃. The lower values observed in the extent of Fe reduction at 15 ℃ may be associated with Fe-oxidation induced by nitrate reduction.In order to verify the mechanism of microbial Fe reduction in clay minerals at low temperatures (4 and 15 ℃), Fe-rich Nontronite (NAu-1) and Psychrophilic bacteria were incubated for 4 months in anaerobic condition. Total structural Fe in NAu-1 is 16.4 % and 99.6 % of the total Fe is ferric. The extent of Fe reduction in nontronite was reached up to 11.5 % and 11 % at 4 ℃ and 15 ℃, respectively. The structural modification of biologically Fe-reduced nontronite was observed in the (001) peak shift to the lower 2 theta indicating the layer collapse associated with K

  6. Psychrophilic pseudomonas in antarctic freshwater lake at stornes peninsula, larsemann hills over east Antarctica.

    PubMed

    Chauhan, Abhishek; Bharti, Pawan K; Goyal, Pankaj; Varma, Ajit; Jindal, Tanu

    2015-01-01

    The Larsemann Hills is an ice-free area of approximately 50 km(2), located halfway between the Vestfold Hills and the Amery Ice Shelf on the south-eastern coast of Prydz Bay, Princess Elizabeth Land, East Antarctica (69º30'S, 76º19'58″E). The ice-free area consists of two major peninsulas (Stornes and Broknes), four minor peninsulas, and approximately 130 islands. The Larsemann Hills area contains more than 150 lakes at different Islands and Peninsulas. Nine lake water samples were collected in a gamma sterilized bottles and were kept in an ice pack to prevent any changes in the microbial flora of the samples during the transportation. The water samples were transported to the lab in vertical position maintaining the temperature 1-4 °C with ice pack enveloped conditions. Samples were studied for Psychrophilic bacterial count, Pseudomonas spp., Staphylococcus aureus, Salmonella and Total MPN Coliform per 100 ml. Psychrophillic counts were found in the range of 12 cfu to 1.6 × 10(2) cfu in all the samples. MPN Coliform per 100 ml was found to be absent in all the samples. No growth and characteristics colonies observed when tested for Salmonella and S.aureus. Pseudomonas sp. was found in ST-2 lake water sample as characteristics colonies (Optimum Growth) were observed on selective media at 22 and 25 °C. Further several biochemical tests were also performed to confirm the presence of this Potential Psychrophilic Pseudomonas sp. for its further application in Science and Technology. PMID:26543717

  7. The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions.

    PubMed

    Morgan-Kiss, Rachael M; Ivanov, Alexander G; Huner, Norman P A

    2002-01-01

    State I-State II transitions were monitored in vivo and in vitro in the Antarctic, psychrophillic, green alga, Chlamydomonas subcaudata, as changes in the low-temperature (77 K) chlorophyll fluorescence emission maxima at 722 nm (F722) relative to 699 nm (F699). As expected, the control mesophillic species, Chlamydomonas reinhardtii, was able to modulate the light energy distribution between photosystem II and photosystem I in response to exposure to four different conditions: (i) dark/anaerobic conditions, (ii) a change in Mg2+ concentration, (iii) red light, and (iv) increased incubation temperature. This was correlated with the ability to phosphorylate both of its major light-harvesting polypeptides. In contrast, exposure of C. subcaudata to the same four conditions induced minimum alterations in the 77 K fluorescence emission spectra, which was correlated with the ability to phosphorylate only one of its major light-harvesting polypeptides. Thus, C. subcaudata appears to be deficient in the ability to undergo a State I-State II transition. Functionally, this is associated with alterations in the apparent redox status of the intersystem electron transport chain and with higher rates of photosystem I cyclic electron transport in the psychrophile than in the mesophile, based on in vivo P700 measurements. Structurally, this deficiency is associated with reduced levels of Psa A/B relative to D1, the absence of specific photosystem I light-harvesting polypeptides [R.M. Morgan et al. (1998) Photosynth Res 56:303-314] and a cytochrome b6/f complex that exhibits a form of cytochrome f that is approximately 7 kDa smaller than that observed in C. reinhardtii. We conclude that the Antarctic psychrophile, C. subcaudata, is an example of a natural variant deficient in State I-State II transitions. PMID:11859846

  8. A simple method to quickly and simultaneously purify and enrich intact rat brain microcapillaries and endothelial and glial cells for ex vivo studies and cell culture.

    PubMed

    Lenhard, Thorsten; Hülsermann, Uta; Martinez-Torres, Francisco; Fricker, Gert; Meyding-Lamadé, Uta

    2013-06-26

    The blood-brain barrier is morphologically composed of cerebral microcapillary endothelium through its tight junctions. It serves as a mechanical, metabolic and cellular barrier and can also protect the brain from pathogen invasion. Many brain diseases involve a disturbance of blood-brain barrier function either as a consequence of a noxa or as primary failure. In vitro models of the blood-brain barrier are suitable tools to study drug transport, pathogen transmigration and leukocyte diapedesis across the cerebral endothelium. Such models have previously been derived mainly from porcine or bovine brain tissues. We describe here a simple method by which rat cerebral microcapillaries and cells of glial origin can be quickly and simultaneously purified. By using a capillary fragment size restriction method based on glass bead columns different fractions can be separated: vital, long capillary fragments for ex vivo uptake studies and smaller capillary fragments for endothelial culture. Furthermore, fractions can be obtained for astroglial and oligodendroglial cell cultures. With this method both microcapillary enrichment and glial cell purification are quickly achieved, which reduces expenditure, number of required animals and laboratory working time. PMID:23665392

  9. Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases.

    PubMed

    Gabor, Esther M; de Vries, Erik J; Janssen, Dick B

    2004-09-01

    To obtain new amidases of biocatalytic relevance, we used microorganisms indigenous to different types of soil and sediment as a source of DNA for the construction of environmental gene banks, following two different strategies. In one case, DNA was isolated from soil without preceding cultivation to preserve a high degree of (phylo)genetic diversity. Alternatively, DNA samples were obtained from enrichment cultures, which is thought to reduce the number of clones required to find a target enzyme. To selectively sustain the growth of organisms exhibiting amidase activity, cultures were supplied with a single amide or a mixture of different aromatic and non-aromatic acetamide and glycine amide derivatives as the only nitrogen source. Metagenomic DNA was cloned into a high-copy plasmid vector and transferred to E. coli, and the resulting gene banks were searched for positives by growth selection. In this way, we isolated a number of recombinant E. coli strains with a stable phenotype, each expressing an amidase with a distinct substrate profile. One of these clones was found to produce a new and highly active penicillin amidase, a promising biocatalyst that may allow higher yields in the enzymatic synthesis of beta-lactam antibiotics. PMID:15305920

  10. UV Radiation and Visible Light Induce hsp70 Gene Expression in the Antarctic Psychrophilic Ciliate Euplotes focardii.

    PubMed

    Fulgentini, Lorenzo; Passini, Valerio; Colombetti, Giuliano; Miceli, Cristina; La Terza, Antonietta; Marangoni, Roberto

    2015-08-01

    The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point. PMID:25666535

  11. The social cost of coastal erosion. Using cultural theory to enrich the interpretation of stated preference data.

    NASA Astrophysics Data System (ADS)

    Kontogianni, A.; Tourkolias, C.; Vousdoukas, M.; Skourtos, M.

    2012-04-01

    Natural coastal processes are to a great extent modified by proximity to man-made structures. Engineered interventions, port facilities, housing and industrial infrastructure, all can increase the coastline fluctuations significantly relative to those along a long unobstructed coastline. As a consequence, coastlines are increasingly exposed to coastal erosion, a phenomenon defined as the encroachment of land by the sea after averaging over a period, which is sufficiently long to eliminate the impacts of weather, storm events and local sediment dynamics. In order to provide cost effective management of coastal erosion it is crucial to estimate both the benefits and costs associated with various management alternatives. The initiatives on Integrated Coastal Zone Manegment in Europe, but also the upcoming Marine Strategy Framwork Directive would benefit greatly from a proliferation of socioeconomic information to assist decision makers who must weigh the impacts of various types of coastal improvement and the cost of beach protection/restoration. In that spirit, the objective of the present research is to report the results of a survey undertaken in two resort beaches on the island of Lesvos (Greece), designed to estimate public preferences for avoiding coastal erosion. A mixed methodological approach is employed by combining an open-ended contingent valuation survey with cultural theory of risk perception. The empirical models to analyze individual choices of erosion control programs and the associated welfare measures are presented, followed by the discussion of model specification and estimation issues, and the results of the data analysis. Some concluding remarks are then presented. By choosing this approach we aim at improving our understanding of preference structure for avoiding public risk, accepted level of risk and perceptions thereof. The framework can also be used for assessing the social cost of extreme weather events such as storm surges in the coastal

  12. Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria

    PubMed Central

    Duplantis, Barry N.; Puckett, Stephanie M.; Rosey, Everett L.; Ameiss, Keith A.; Hartman, Angela D.; Pearce, Stephanie C.

    2015-01-01

    Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. PMID:26187965

  13. Psychrophilic one- and two-step systems for pre-treatment of winery waste water.

    PubMed

    Kalyuzhnyi, S V; Gladchenko, M A; Sklyar, V I; Kizimenko, Y S; Shcherbakov, S S

    2001-01-01

    The operation performance of a single and two (in series) laboratory UASB reactors (working volume of 2.7 l, recycle ratio varied from 1:1 to 1:18) treating diluted wine vinasse was investigated under psychrophilic conditions (4-10 degrees C). For a single UASB reactor seeded with granular sludge, the average organic loading rates (OLR) applied were 4.7, 3.7 and 1.7 g COD/l/d (hydraulic retention times (HRTs) were around 1 d) at 9-11, 6-7 and 4-5 degrees C, respectively. The average total COD removal for preacidified vinasse wastewater was around 60% for all the temperature regimes tested. For two UASB reactors in series, the average total COD removal for treatment of non-preacidified wastewater exceeded 70% (the average OLRs for a whole system were 2.2, 1.8 and 1.3 g COD/l/d under HRTs of 2 days at 10, 7 and 4 degrees C, respectively). In situ determinations of kinetic sludge characteristics (Vm and Km) revealed the existence of substantial mass-transfer limitations for the soluble substrates inside the reactor sludge bed. Therefore an application of higher recycle rations is essential for enhancement of UASB pre-treatment under psychrophilic conditions. The produced anaerobic effluents were shown to be efficiently post-treated aerobically--final effluent COD concentrations were around 0.1 g/l. PMID:11579923

  14. Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain

    PubMed Central

    Li, Jiang; Hu, Qiushi; Li, Yuquan; Xu, Yuan

    2015-01-01

    An extracellular β-agarase was purified from Pseudoalteromonas sp. NJ21, a Psychrophilic agar-degrading bacterium isolated from Antarctic Prydz Bay sediments. The purified agarase (Aga21) revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of 80 kDa. The optimum pH and temperature of the agarase were 8.0 and 30 °C, respectively. However, it maintained as much as 85% of the maximum activities at 10 °C. Significant activation of the agarase was observed in the presence of Mg2+, Mn2+, K+; Ca2+, Na+, Ba2+, Zn2+, Cu2+, Co2+, Fe2+, Sr2+ and EDTA inhibited the enzyme activity. The enzymatic hydrolyzed product of agar was characterized as neoagarobiose. Furthermore, this work is the first evidence of cold-adapted agarase in Antarctic psychrophilic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries. PMID:26413048

  15. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    PubMed

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. PMID:26507125

  16. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  17. Purification and characterization of a cold-adapted pullulanase from a psychrophilic bacterial isolate.

    PubMed

    Qoura, Farah; Elleuche, Skander; Brueck, Thomas; Antranikian, Garabed

    2014-11-01

    There is a considerable potential of cold-active biocatalysts for versatile industrial applications. A psychrophilic bacterial strain, Shewanella arctica 40-3, has been isolated from arctic sea ice and was shown to exhibit pullulan-degrading activity. Purification of a monomeric, 150-kDa pullulanase was achieved using a five-step purification approach. The native enzyme was purified 50.0-fold to a final specific activity of 3.0 U/mg. The enzyme was active at a broad range of temperature (10-50 °C) and pH (5-9). Optimal activity was determined at 45 °C and pH 7. The presence of various metal ions is tolerated by the pullulanase, while detergents resulted in decreased activity. Complete conversion of pullulan to maltotriose as the sole product and N-terminal amino acid sequence indicated that the enzyme is a type-I pullulanase and belongs to rarely characterized pullulan-degrading enzymes from psychrophiles. PMID:25069876

  18. Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic.

    PubMed

    Singh, Purnima; Kapse, Neelam; Arora, Preeti; Singh, Shiv Mohan; Dhakephalkar, Prashant K

    2015-06-01

    Obligate psychrophilic, Cryobacterium sp. MLB-32, was isolated from cryoconite holes of high Arctic glaciers. Here, we report the first draft genome sequence of the putative novel species of the genus Cryobacterium, providing opportunities for biotechnological and agricultural exploitation of its genome features. PMID:25659801

  19. Enriching Number Knowledge

    ERIC Educational Resources Information Center

    Mack, Nancy K.

    2011-01-01

    Exploring number systems of other cultures can be an enjoyable learning experience that enriches students' knowledge of numbers and number systems in important ways. It helps students deepen mental computation fluency, knowledge of place value, and equivalent representations for numbers. This article describes how the author designed her…

  20. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.

    PubMed

    Laban, Nidal Abu; Dao, Anh; Foght, Julia

    2015-05-01

    Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions. Total DNA was subjected to isopycnic ultracentrifugation followed by gradient fraction analysis using terminal restriction fragment length polymorphism (T-RFLP) and construction of 16S rRNA, benzylsuccinate synthase (bssA) and dissimilatory sulfite reductase (dsrB) gene clone libraries. T-RFLP analysis plus sequencing and in silico digestion of cloned taxonomic and functional genes revealed that Clostridiales, particularly Desulfosporosinus (136 bp T-RF) contained bssA genes and were key toluene degraders during methanogenesis dominated by Methanosaeta. Deltaproteobacterial Desulfobulbaceae (157 bp T-RF) became dominant under sulfidogenic conditions, likely because the Desulfosporosinus T-RF 136 apparently lacks dsrB and therefore, unlike its close relatives, is presumed incapable of dissimilatory sulfate reduction. We infer incomplete oxidation of toluene by Desulfosporosinus in syntrophic association with Methanosaeta under methanogenic conditions, and complete toluene oxidation by Desulfobulbaceae during sulfate reduction. PMID:25873466

  1. Development and evaluation of a loop-mediated isothermal amplification assay combined with enrichment culture for rapid detection of very low numbers of Vibrio parahaemolyticus in seafood samples.

    PubMed

    Di, Huiling; Ye, Lei; Neogi, Sucharit Basu; Meng, Hecheng; Yan, He; Yamasaki, Shinji; Shi, Lei

    2015-01-01

    The aim of this study was to develop and evaluate a rapid and effective method to detect Vibrio parahaemolyticus, a leading pathogen causing seafood-borne gastroenteritis. A newly designed loop-mediated isothermal amplification (LAMP) assay including a short enrichment period was optimized. This assay correctly detected all the target strains (n=61) but none of the non-target strains (n=34). Very low numbers of V. parahaemolyticus (2 colony forming unit (CFU) per gram of seafood) could be detected within 3 h and the minimum time of the whole assay was only 5 h. Comparative screening of various seafood samples (n=70) indicated that the LAMP assay is superior to polymerase chain reaction (PCR) and conventional culture methods because it is more rapid and less complex. This highly sensitive LAMP assay can be applicable as the method of choice in large-scale and rapid screening of seafood and environmental samples to detect V. parahaemolyticus strains. PMID:25744462

  2. Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator ΔNp63α

    PubMed Central

    Portillo-Lara, Roberto; Alvarez, Mario Moisés

    2015-01-01

    Background Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Nevertheless, the development of specific therapies against CSCs is hindered by the scarcity of these cells in prostate tissues. Suspension culture systems have been reported to enrich CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying this phenomenon have not been fully explored. Methodology/Principal Findings We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene expression profiling was then carried out using the Cancer Reference panel and the nCounter system from NanoString Technologies. This analysis revealed several upregulated transcripts that can be further explored as potential diagnostic markers or therapeutic targets. Furthermore, functional annotation analysis suggests that ΔNp63α modulates the activation of developmental pathways responsible for the increased stem identity of cells growing in suspension cultures. Conclusions/Significance We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us to better understand the molecular pathways that underlie CSC pathophysiology. This platform can be readily adapted to enrich and assay actual patient samples, in order to design patient-specific therapies that are aimed particularly against CSCs. PMID:26110651

  3. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  4. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1973-01-01

    The sampling of soils from the manufacture and assembly areas of the Viking spacecraft is reported and the methodology employed in the analysis of these samples for psychrophilic microorganisms, and temperature studies on these organisms is outlined. Results showing the major types of organisms and the percentage of obligate psychrophiles in each sample are given and discussed. Emphasis in all areas is toward application of these results to the objectives of the planetary quarantine program.

  5. Dry-heat resistance of selected psychrophiles. [Viking lander in spacecraft sterilization

    NASA Technical Reports Server (NTRS)

    Winans, L.; Pflug, I. J.; Foster, T. L.

    1977-01-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 C with an ambient relative humidity of 50% at 22 C. The spores evaluated had a relatively low resistance to dry heat. D (110 C) values ranged from 7.5 to 122 min, whereas the D (125 C) values ranged from less than 1.0 to 9.8 min.

  6. Thermally Induced Leakage from Vibrio marinus, an Obligately Psychrophilic Marine Bacterium1

    PubMed Central

    Haight, Roger D.; Morita, Richard Y.

    1966-01-01

    Haight, Rodger D. (Oregon State University, Corvallis), and Richard Y. Morita. Thermally induced leakage from Vibrio marinus, an obligately psychrophilic bacterium. J. Bacteriol. 92:1388–1393. 1966.—Leakage of various cellular components into the surrounding menstruum occurred when Vibrio marinus was subjected to temperatures above 20 C (organism's maximal growth temperature). These materials, listed in decreasing rates of leakage, were identified as protein, deoxyribonucleic acid, ribonucleic acid, and amino acids. The amount of polar amino acids increased as the time and temperature of heat treatment were increased, whereas the nonpolar amino acids decreased. The ribonucleic acid in the supernatant fluid resulting from heat treatment was both polymeric and nonpolymeric. Leakage of cellular components may be one of the reasons that V. marinus MP-1 loses viability when exposed to temperatures above its maximal temperature for growth. PMID:5924270

  7. NOVEL ICE-BINDING PROTEINS FROM A PSYCHROPHILIC ANTARCTIC ALGA (CHLAMYDOMONADACEAE, CHLOROPHYCEAE)(1).

    PubMed

    Raymond, James A; Janech, Michael G; Fritsen, Christian H

    2009-02-01

    Many cold-adapted unicellular plants express ice-active proteins, but at present, only one type of such proteins has been described, and it shows no resemblance to higher plant antifreezes. Here, we describe four isoforms of a second and very active type of extracellular ice-binding protein (IBP) from a unicellular chlamydomonad alga collected from an Antarctic intertidal location. The alga is a euryhaline psychrophile that, based on sequences of the alpha tubulin gene and an IBP gene, appears to be the same as a snow alga collected on Petrel Island, Antarctica. The IBPs, which do not resemble any known antifreezes, have strong recrystallization inhibition activity and have an ability to slow the drainage of brine from sea ice. These properties, by maintaining liquid environments, may increase survival of the cells in freezing environments. The IBPs have a repeating TXT motif, which has previously been implicated in ice binding in insect antifreezes and a ryegrass antifreeze. PMID:27033652

  8. Identification of miniature plasmids in psychrophilic Arctic bacteria of the genus Variovorax.

    PubMed

    Ciok, Anna; Dziewit, Lukasz; Grzesiak, Jakub; Budzik, Karol; Gorniak, Dorota; Zdanowski, Marek K; Bartosik, Dariusz

    2016-04-01

    The Svalbard archipelago (Spitsbergen Island) is the northernmost landmass in the European Arctic and has a variety of small- and medium-sized glaciers. The plasmidome of eleven psychrophilic strains of Variovorax spp. isolated from the ice surface of Hans and Werenskiold Glaciers of Spitsbergen Island, was defined. This analysis revealed the presence of six plasmids whose nucleotide sequences have been determined. Four of them, exhibiting high reciprocal sequence similarity, possess unique structures, since their genomes lack any recognized genes. These miniature replicons, not exceeding 1 kb in size, include pHW69V1 (746 bp), which is the smallest autonomous replicon so far identified in free-living bacteria. The miniature plasmids share no similarity with known sequences present in the databases. In silico and experimental analyses identified conserved DNA regions essential for the initiation of replication of these replicons. PMID:26917781

  9. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments.

    PubMed

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries

  10. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments

    PubMed Central

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species