Science.gov

Sample records for ptb promotes formation

  1. Robot goniophotometry at PTB

    NASA Astrophysics Data System (ADS)

    Lindemann, M.; Maass, R.; Sauter, G.

    2015-04-01

    The total luminous flux of a light source is the complete integration of its spectral radiance distribution weighted with the photopic observer and taken over all parts of its surface and over the full solid angle of emittance. The spatial distributions are measured with various types of goniophotometers and the PTB robot goniophotometer is a new type with many unique features. It is built as an arrangement of three robots with arms of more than 6 m in length and with 7 degrees of freedom each. The extreme flexibility of the robots allows computer controlled tracks with variable radii and speeds up to 3 m and 1 m s-1, respectively. One robot aligns the light source and the two other robots move photometers and array spectrometers in their hemispheres simultaneously measuring planar illuminance and the related relative spectral distribution. The robot goniophotometer is optimized for the realisation of the luminous flux unit, the lumen and it is completely characterized in this report. The relevant properties and correction factors are explained, as well as the implementation of techniques for synchronisation and stabilisation of spatially resolved or integrated photometric and colorimetric quantities. Finally, all contributions are combined in the model of evaluation for the (total) luminous flux value and the measurement uncertainty associated with that value is evaluated in the presented uncertainty budget. The goniophotometric determination of the values for colorimetric quantities is explained for the total luminous flux and the spatially distributed radiant power.

  2. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination. PMID:27253271

  3. Diversity in protein recognition by PTB domains.

    PubMed

    Forman-Kay, J D; Pawson, T

    1999-12-01

    Phosphotyrosine-binding (PTB) domains were originally identified as modular domains that recognize phosphorylated Asn-Pro-Xxx-p Tyr-containing proteins. Recent binding and structural studies of PTB domain complexes with target peptides have revealed a number of deviations from the previously described mode of interaction, with respect to both the sequences of possible targets and their structures within the complexes. This diversity of recognition by PTB domains extends and strengthens our general understanding of modular binding domain recognition. PMID:10607674

  4. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing.

    PubMed

    Gromak, Natalia; Rideau, Alexis; Southby, Justine; Scadden, A D J; Gooding, Clare; Hüttelmaier, Stefan; Singer, Robert H; Smith, Christopher W J

    2003-12-01

    Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor. PMID:14633994

  5. INCOME INCONGRUITY, RACE AND PRETERM BIRTH (PTB)

    EPA Science Inventory

    Previous research using birth records has found income incongruity associated with adverse birth outcomes. The effects of negative income incongruity (reporting lower household income than the census tract median household income) on PTB (<37 weeks completed gestation) are examin...

  6. Promoting proximal formative assessment with relational discourse

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Close, Hunter G.; McKagan, Sarah B.

    2012-02-01

    The practice of proximal formative assessment - the continual, responsive attention to students' developing understanding as it is expressed in real time - depends on students' sharing their ideas with instructors and on teachers' attending to them. Rogerian psychology presents an account of the conditions under which proximal formative assessment may be promoted or inhibited: (1) Normal classroom conditions, characterized by evaluation and attention to learning targets, may present threats to students' sense of their own competence and value, causing them to conceal their ideas and reducing the potential for proximal formative assessment. (2) In contrast, discourse patterns characterized by positive anticipation and attention to learner ideas increase the potential for proximal formative assessment and promote self-directed learning. We present an analysis methodology based on these principles and demonstrate its utility for understanding episodes of university physics instruction.

  7. Cu(II) Promotes Amyloid Pore Formation

    PubMed Central

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A

    2015-01-01

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. PMID:26129772

  8. Cu(II) promotes amyloid pore formation

    SciTech Connect

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.

  9. Recent activities at PTB nanometer comparator

    NASA Astrophysics Data System (ADS)

    Flugge, Jens; Koning, Rainer; Bosse, Harald

    2003-11-01

    The PTB in cooperation with the Dr. Johannes Heidenhain GmbH built up a new length comparator with a measurement range of 610 mm for 1D length measurements on line scales, linear encoders and interferometers. The PTB nanometer comparator was retrofitted and now allows a stable operation of the interferometer. To investigate the actual measurement performance a few line scales and a linear encoder were measured and compared with results from other comparators. The results are discussed and recent developments at the nanometer comparator are described.

  10. Interactions between PTB RRMs induce slow motions and increase RNA binding affinity

    PubMed Central

    Maynard, Caroline M

    2010-01-01

    Polypyrimidine tract binding protein (PTB) participates in a variety of functions in eukaryotic cells, including alternative splicing, mRNA stabilization, and internal ribosomal entry site (IRES) mediated translation initiation. Its mechanism of RNA recognition is determined in part by the novel geometry of its two C-terminal RNA Recognition Motifs (RRM3 and RRM4), which interact with each other to form a stable complex (PTB1:34). This complex itself is unusual among RRMs, suggesting that it performs a specific function for the protein. In order to understand the advantage it provides to PTB, the fundamental properties of PTB1:34 are examined here as a comparative study of the complex and its two constituent RRMs. Both RRM3 and RRM4 adopt folded structures that NMR data show to be similar to their structure in PRB1:34. The RNA binding properties of the domains differ dramatically. The affinity of each separate RRM for polypyrimidine tracts is far weaker than that of PTB1:34, and simply mixing the two RRMs does not create an equivalent binding platform. 15N-NMR relaxation experiments show that PTB1:34 has slow, microsecond motions throughout both RRMs including the interdomain linker. This is in contrast to the individual domains, RRM3 and RRM4, where only a few backbone amides are flexible on this timescale. The slow backbone dynamics of PTB1:34, induced by packing of RRM3 and RRM4, could be essential for high affinity binding to a flexible polypyrimidine tract RNA and also provide entropic compensation for its own formation. PMID:20080103

  11. Structural and evolutionary division of phosphotyrosine binding (PTB) domains.

    PubMed

    Uhlik, Mark T; Temple, Brenda; Bencharit, Sompop; Kimple, Adam J; Siderovski, David P; Johnson, Gary L

    2005-01-01

    Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future. PMID:15567406

  12. PTB binds to the 3' untranslated region of the human astrovirus type 8: a possible role in viral replication.

    PubMed

    Espinosa-Hernández, Wendy; Velez-Uriza, Dora; Valdés, Jesús; Vélez-Del Valle, Cristina; Salas-Benito, Juan; Martínez-Contreras, Rebeca; García-Espítia, Matilde; Salas-Benito, Mariana; Vega-Almeida, Tania; De Nova-Ocampo, Mónica

    2014-01-01

    The 3' untranslated region (3'UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3'UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3'UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3'UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3'UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3'UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3'UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3'UTR HAstV-8 and is required or participates in viral replication. PMID:25406089

  13. PTB Binds to the 3’ Untranslated Region of the Human Astrovirus Type 8: A Possible Role in Viral Replication

    PubMed Central

    Espinosa-Hernández, Wendy; Velez-Uriza, Dora; Valdés, Jesús; Vélez-Del Valle, Cristina; Salas-Benito, Juan; Martínez-Contreras, Rebeca; García-Espítia, Matilde; Salas-Benito, Mariana; Vega-Almeida, Tania; De Nova-Ocampo, Mónica

    2014-01-01

    The 3′ untranslated region (3′UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3′UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3′UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3′UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3′UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3′UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3′UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3′UTR HAstV-8 and is required or participates in viral replication. PMID:25406089

  14. The spectral irradiance traceability chain at PTB

    SciTech Connect

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  15. The spectral irradiance traceability chain at PTB

    NASA Astrophysics Data System (ADS)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-01

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Système international d'unités, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  16. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-07-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

  17. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    PubMed Central

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-01-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway. PMID:27380928

  18. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells.

    PubMed

    Kraus, Hannes; Heiber, Michael C; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-01-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway. PMID:27380928

  19. Twist1-induced invadopodia formation promotes tumor metastasis

    PubMed Central

    Eckert, Mark A.; Lwin, Thinzar M.; Chang, Andrew T.; Kim, Jihoon; Danis, Etienne; Ohno-Machado, Lucila; Yang, Jing

    2011-01-01

    Summary The Twist1 transcription factor is known to promote tumor metastasis and induce Epithelial-Mesenchymal Transition (EMT). Here, we report that Twist1 is capable of promoting the formation of invadopodia, specialized membrane protrusions for extracellular matrix degradation. Twist1 induces PDGFRα expression, which in turn activates Src, to promote invadopodia formation. We show that Twist1 and PDGFRα are central mediators of invadopodia formation in response to various EMT-inducing signals. Induction of PDGFRα and invadopodia is essential for Twist1 to promote tumor metastasis. Consistent with PDGFRα being a direct transcriptional target of Twist1, coexpression of Twist1 and PDGFRα predicts poor survival in breast tumor patients. Therefore, invadopodia-mediated matrix degradation is a key function of Twist1 in promoting tumor metastasis. PMID:21397860

  20. Update on EUV radiometry at PTB

    NASA Astrophysics Data System (ADS)

    Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Haase, Anton; Knorr, Florian; Mentzel, Heiko; Puls, Jana; Schönstedt, Anja; Sintschuk, Michael; Soltwisch, Victor; Stadelhoff, Christian; Scholze, Frank

    2016-03-01

    The development of technology infrastructure for EUV Lithography (EUVL) still requires higher levels of technology readiness in many fields. A large number of new materials will need to be introduced. For example, development of EUV compatible pellicles to adopt an approved method from optical lithography for EUVL needs completely new thin membranes which have not been available before. To support these developments, PTB with its decades of experience [1] in EUV metrology [2] provides a wide range of actinic and non actinic measurements at in-band EUV wavelengths as well as out of band. Two dedicated, complimentary EUV beamlines [3] are available for radiometric [4,5] characterizations benefiting from small divergence or from adjustable spot size respectively. The wavelength range covered reaches from below 1 nm to 45 nm [6] for the EUV beamlines [7] to longer wavelengths if in addition the VUV beamline is employed. The standard spot size is 1 mm by 1 mm with an option to go as low as 0.1 mm to 0.1 mm. A separate beamline offers an exposure setup. Exposure power levels of 20 W/cm2 have been employed in the past, lower fluencies are available by attenuation or out of focus exposure. Owing to a differential pumping stage, the sample can be held under defined gas conditions during exposure. We present an updated overview on our instrumentation and analysis capabilities for EUV metrology and provide data for illustration.

  1. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

    2013-01-01

    Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

  2. Signals to promote myelin formation and repair

    PubMed Central

    Taveggia, Carla; Feltri, Maria Laura; Wrabetz, Lawrence

    2011-01-01

    The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. Few treatments are available for combating myelin damage in MS and related disorders. These treatments, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably result from early intervention with combinatorial therapies that target inflammation and other processes—for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS with a focus on differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling. PMID:20404842

  3. Status of the nanometer comparator at PTB

    NASA Astrophysics Data System (ADS)

    Fluegge, Jens; Koening, Rainer G.

    2001-10-01

    Due to increasing demands on the photolithography of integrated circuits and the progress of interferometric linear encoders, length measurement systems with a reproducibility under 3 nm are used in industry today, whereas the connection to the unit of length exhibits an uncertainty of about 25 nm. To resolve this problem a new one dimensional length comparator, the nanometer comparator, was developed in a cooperation between the Physikalisch-Technische Bundesanstalt (PTB), the Dr. Johannes Heidenhain GmbH and Werth Me#technik GmbH. The nanometer comparator will be able to perform one dimensional calibrations of photo masks, line-graduation scales, incremental linear encoders and laser interferometers in one axis up to a maximum length of 610 mm. To ensure the highest level of measurement performance, the interferometer is completely located in vacuum using metal bellows, whilst the calibration objects can be mounted under atmospheric conditions. The interferometer set-up compensates the dilatation and the bending of the granite base and minimizes the measurement circle of the comparator. This will minimize the influence of thermal and mechanical distortions. The interferometer design can be used with a heterodyne or a homodyne signal detection electronics. Due to their high power dissipation, the laser is arranged far apart from the comparator and light is fed to the interferometers by means of glass fibers. The light source is a frequency-doubled Nd:YAG laser frequency stabilized by an iodine absorption line. Different measuring systems for the structure localization can be attached to an universal sensor carrier on a solid bridge above the measuring carriage. Incremental reading heads and two photoelectric microscopes are now available for this purpose.

  4. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation. PMID:27392247

  5. P-selectin promotes neutrophil extracellular trap formation in mice.

    PubMed

    Etulain, Julia; Martinod, Kimberly; Wong, Siu Ling; Cifuni, Stephen M; Schattner, Mirta; Wagner, Denisa D

    2015-07-01

    Neutrophil extracellular traps (NETs) can be released in the vasculature. In addition to trapping microbes, they promote inflammatory and thrombotic diseases. Considering that P-selectin induces prothrombotic and proinflammatory signaling, we studied the role of this selectin in NET formation. NET formation (NETosis) was induced by thrombin-activated platelets rosetting with neutrophils and was inhibited by anti-P-selectin aptamer or anti-P-selectin glycoprotein ligand-1 (PSGL-1) inhibitory antibody but was not induced by platelets from P-selectin(-/-) mice. Moreover, NETosis was also promoted by P-selectin-immunoglobulin fusion protein but not by control immunoglobulin. We isolated neutrophils from mice engineered to overproduce soluble P-selectin (P-selectin(ΔCT/ΔCT) mice). Although the levels of circulating DNA and nucleosomes (indicative of spontaneous NETosis) were normal in these mice, basal neutrophil histone citrullination and presence of P-selectin on circulating neutrophils were elevated. NET formation after stimulation with platelet activating factor, ionomycin, or phorbol 12-myristate 13-acetate was significantly enhanced, indicating that the P-selectin(ΔCT/ΔCT) neutrophils were primed for NETosis. In summary, P-selectin, cellular or soluble, through binding to PSGL-1, promotes NETosis, suggesting that this pathway is a potential therapeutic target for NET-related diseases. PMID:25979951

  6. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.

    PubMed

    Simpson, Craig G; Lewandowska, Dominika; Liney, Michele; Davidson, Diane; Chapman, Sean; Fuller, John; McNicol, Jim; Shaw, Paul; Brown, John W S

    2014-07-01

    This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence. PMID:24749484

  7. Why stellar feedback promotes disc formation in simulated galaxies

    NASA Astrophysics Data System (ADS)

    Übler, Hannah; Naab, Thorsten; Oser, Ludwig; Aumer, Michael; Sales, Laura V.; White, Simon D. M.

    2014-09-01

    We study how feedback influences baryon infall on to galaxies using cosmological, zoom-in simulations of haloes with present mass Mvir = 6.9 × 1011 to 1.7 × 1012 M⊙. Starting at z = 4 from identical initial conditions, implementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because 50 per cent of the stars form in situ from recycled disc gas with angular momentum only weakly related to that of the z = 0 dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because 25-30 per cent of the total accreted gas is ejected entirely before z ˜ 1, removing primarily low angular momentum material which enriches the nearby intergalactic medium. Most recycled gas roughly conserves its angular momentum, but material ejected for long times and to large radii can gain significant angular momentum before re-accretion. These processes lower galaxy formation efficiency in addition to promoting disc formation.

  8. Allopurinol and oxypurinol promote osteoblast differentiation and increase bone formation

    PubMed Central

    Orriss, Isabel R.; Arnett, Timothy R.; George, Jacob; Witham, Miles D.

    2016-01-01

    Allopurinol and its active metabolite, oxypurinol are widely used in the treatment of gout and hyperuricemia. They inhibit xanthine oxidase (XO) an enzyme in the purine degradation pathway that converts xanthine to uric acid. This investigation examined the effect of allopurinol and oxypurinol on bone formation, cell number and viability, gene expression and enzyme activity in differentiating and mature, bone-forming osteoblasts. Although mRNA expression remained relatively constant, XO activity decreased over time with mature osteoblasts displaying reduced levels of uric acid (20% decrease). Treatment with allopurinol and oxypurinol (0.1–1 µM) reduced XO activity by up to 30%. At these concentrations, allopurinol and oxypurinol increased bone formation by osteoblasts ~4-fold and ~3-fold, respectively. Cell number and viability were unaffected. Both drugs increased tissue non-specific alkaline phosphatase (TNAP) activity up to 65%. Osteocalcin and TNAP mRNA expression was increased, 5-fold and 2-fold, respectively. Expression of NPP1, the enzyme responsible for generating the mineralisation inhibitor, pyrophosphate, was decreased 5-fold. Col1α1 mRNA expression and soluble collagen levels were unchanged. Osteoclast formation and resorptive activity were not affected by treatment with allopurinol or oxypurinol. Our data suggest that inhibition of XO activity promotes osteoblast differentiation, leading to increased bone formation in vitro. PMID:26968635

  9. Multi-protein Delivery by Nanodiamonds Promotes Bone Formation

    PubMed Central

    Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  10. Multi-protein delivery by nanodiamonds promotes bone formation.

    PubMed

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  11. Expression of perilipin 5 promotes lipid droplet formation in yeast.

    PubMed

    Mishra, Shirish; Schneiter, Roger

    2015-01-01

    Neutral lipids are packed into dedicated intracellular compartments termed lipid droplets (LDs). LDs are spherical structures delineated by an unusual lipid monolayer and they harbor a specific set of proteins, many of which function in lipid synthesis and lipid turnover. In mammals, LDs are covered by abundant scaffolding proteins, the perilipins (PLIN1-5). LDs in yeast are functionally similar to that of mammalian cells, but they lack the perilipins. We have previously shown that perilipins (PLIN1-3) are properly targeted to LDs when expressed in yeast and that they promote LD formation from the ER membrane enriched in neutral lipids. Here we address the question whether PLIN5 (OXPAT) has a similar function. Both human and murine PLIN5 were properly targeted to yeast LDs, but the protein localized to the cytosol and its steady-state level was reduced when expressed in yeast mutants lacking the capacity to synthesize storage lipids. When expressed in cells containing high levels of neutral lipids within the membrane of the endoplasmatic reticulum, PLIN5 promoted the formation of LDs. Interestingly, PLIN5 was properly targeted to LDs, irrespective of whether these LDs were filled with triacylglycerol or steryl esters, indicating that PLIN5 did not exhibit targeting specificity for a particular subtypes of LDs as was reported for mammalian cells. PMID:27066172

  12. Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons.

    PubMed

    Swanwick, Catherine Croft; Shapiro, Marietta E; Vicini, Stefano; Wenthold, Robert J

    2010-11-01

    Synapse malformation underlies numerous neurodevelopmental illnesses, including autism spectrum disorders. Here we identify the lipid raft protein flotillin-1 as a promoter of glutamatergic synapse formation. We cultured neurons from the hippocampus, a brain region important for learning and memory, and examined them at two weeks in vitro, a time period rich with synapse formation. Double-label immunocytochemistry of native flot-1 with glutamatergic and GABAergic synapse markers showed that flot-1 was preferentially colocalized with the glutamatergic presynaptic marker vesicular glutamate transporter 1 (VGLUT1), compared to the GABAergic presynaptic marker glutamic acid decarboxylase-65 (GAD-65). Triple-label immunocytochemistry of native flot-1, VGLUT1, and NR1, the obligatory subunit of NMDA receptors, indicates that Flot-1 was preferentially localized to synaptic rather than extrasynaptic NR1. Furthermore, electrophysiological results using whole-cell patch clamp showed that Flot-1 increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs), whereas amplitude and decay kinetics of either type of synaptic current was not affected. Corresponding immunocytochemical data confirmed that the number of glutamatergic synapses increased with flot-1 overexpression. Overall, our anatomical and physiological results show that flot-1 enhances the formation of glutamatergic synapses but not GABAergic synapses, suggesting that the role of flot-1 in neurodevelopmental disorders should be explored. PMID:20669324

  13. Promotion of follicular antrum formation by pig oocytes in vitro.

    PubMed

    Shen, X; Miyano, T; Kato, S

    1998-02-01

    Pig oocyte-cumulus-granulosa cell complexes (OCG complexes) from pig early antral follicles reorganise an antrum under the stimulation of FSH. The purpose of this study was to examine the role of the oocytes in antrum formation. In the first experiment, oocyte-cumulus complexes were removed from pig OCG complexes, and the antrum formation of parietal granulosa cells themselves (PGs) was examined. Antrum formation by sham-operated OCG complexes (OC/G complexes), in which the connections between the oocytes-cumulus complexes and the parietal granulosa cells had been disrupted, was also examined. The complexes were cultured for 8 days in collagen gels in the presence of 10 ng/ml FSH. Antra were formed in about 60% of the intact OCG complexes and the sham-operated OCG complexes, while only 20% of the PGs formed antra. In the second experiment, oocyte-cumulus complexes in the OCG complexes were replaced by denuded oocytes (O/G complexes) or Sephadex G-25 beads (B/G complexes) similar in diameter to the oocytes, and the two types of complexes were cultured under the same conditions. The O/G complexes formed antra to a similar extent as the OC/G complexes, whereas the B/G complexes scarcely formed any antra. The histological sections showed that the granulosa cells in the OC/G and O/G complexes were in intimate contact with each other and retained a shape similar to those in the ovarian follicles, while the granulosa cells in the PGs and B/G complexes became quite irregular in shape. These results suggest that pig oocytes promote contact between the granulosa cells to induce antrum formation in a physiological manner. PMID:9652071

  14. Diatom assemblages promote ice formation in large lakes.

    PubMed

    D'souza, N A; Kawarasaki, Y; Gantz, J D; Lee, R E; Beall, B F N; Shtarkman, Y M; Koçer, Z A; Rogers, S O; Wildschutte, H; Bullerjahn, G S; McKay, R M L

    2013-08-01

    We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (T(c)) as high as -3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world. PMID:23552624

  15. Diatom assemblages promote ice formation in large lakes

    PubMed Central

    D'souza, N A; Kawarasaki, Y; Gantz, J D; Lee, R E; Beall, B F N; Shtarkman, Y M; Koçer, Z A; Rogers, S O; Wildschutte, H; Bullerjahn, G S; McKay, R M L

    2013-01-01

    We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (Tc) as high as −3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world. PMID:23552624

  16. Optical-Fiber Power Meter Comparison Between NIST and PTB

    PubMed Central

    Vayshenker, I.; Haars, H.; Li, X.; Lehman, J. H.; Livigni, D. J.

    2003-01-01

    We describe the results of a comparison of reference standards between the National Institute of Standards and Technology (NIST-USA) and Physikalisch-Technische Bundesanstalt (PTB-Germany) at nominal wavelengths of 1300 nm and 1550 nm using an optical-fiber cable. Both laboratories used thermal detectors as reference standards. A novel temperature-controlled, optical-trap detector was used as a transfer standard to compare two reference standards. Measurement results showed differences of less than 1.5 × 10−3, which is within the combined uncertainty for both laboratories.

  17. Environmental stability of PTB7:PCBM bulk heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Arbab, Elhadi A. A.; Taleatu, Bidini; Mola, Genene T.

    2014-12-01

    The short life span of organic photovoltaic (OPV) cell in an ambient laboratory condition is one of the challenges hindering the realization of organic-based devices. The presence of moisture and oxygen in conjugated polymer matrix is the major factors responsible for the degradation of organic molecules. The chemical degradation of OPV cell generally depends on the nature of the semiconductor polymer used in the preparation of the devices. However, the lifespan of unprotected OPV cells often ranges in the order of few hours in simple laboratory environment. We are reporting here the lifetime of organic photovoltaic cell in ambient laboratory condition whose active layer is composed of PTB7:PCBM blend.

  18. Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation.

    PubMed

    Anderson, Michele J; Lin, Ying-Chi; Gillman, Aaron N; Parks, Patrick J; Schlievert, Patrick M; Peterson, Marnie L

    2012-01-01

    Staphylococcus aureus causes many diseases in humans, ranging from mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS). S. aureus may be asymptomatically carried in the anterior nares or vagina or on the skin, serving as a reservoir for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and the leading cause of TSS. The cytolysin α-toxin (also known as α-hemolysin or Hla) is the major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. The current study aims to characterize the differences between TSS USA200 strains [high (hla(+)) and low (hla(-)) α-toxin producers] in their ability to disrupt vaginal mucosal tissue and to characterize the subsequent infection. Tissue viability post-infection and biofilm formation of TSS USA200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hla(-)), MNPE (hla(+)), and MNPE isogenic hla knockout (hlaKO), were observed via LIVE/DEAD® staining and confocal microscopy. All TSS strains grew to similar bacterial densities (1-5 × 10(8) CFU) on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587 (hla(-)), MN8 (hla(-)), nor MNPE hlaKO formed biofilms. The latter strains were also less cytotoxic than wild-type MNPE. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. We speculate that α-toxin affects S. aureus phenotypic growth on vaginal mucosa by promoting tissue disruption and biofilm formation. Further, α-toxin mutants (hla(-)) are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic variants (HDPV). PMID:22919655

  19. Interferometry at the PTB Nanometer Comparator: design, status and development

    NASA Astrophysics Data System (ADS)

    Flügge, J.; Weichert, Ch.; Hu, H.; Köning, R.; Bosse, H.; Wiegmann, A.; Schulz, M.; Elster, C.; Geckeler, R. D.

    2008-10-01

    To minimize the measurement uncertainty of one dimensional length measurements on line scales, linear encoders and interferometers the PTB in cooperation with the Dr. Johannes Heidenhain GmbH had built up a new length comparator. The Nanometer Comparator [1,2] has already proven its performance during the measurements of incremental encoders and line scales with an expanded measurement uncertainty of below 5 nm [3,4,5]. Due to the introduction of double and multiple exposure in advanced lithography techniques the overlay and registration metrology requirements will drastically increase so that reference metrology tools need to be developed further to be able to follow the resulting decrease of the specifications. Therefore, the PTB further develops the new 1D vacuum comparator to add a measurement possibility for straightness and to reach a measurement accuracy in the sub nanometer range [6]. One key development will be the interferometric measurement of all six degrees of freedom of the measurement slide of the comparator. A new multi axis heterodyne interferometer electronics and optical interferometer designs minimizing nonlinearities by spatially separated beams are under development.

  20. Understanding the molecular basis of substrate binding specificity of PTB domains

    PubMed Central

    Sain, Neetu; Tiwari, Garima; Mohanty, Debasisa

    2016-01-01

    Protein-protein interactions mediated by phosphotyrosine binding (PTB) domains play a crucial role in various cellular processes. In order to understand the structural basis of substrate recognition by PTB domains, multiple explicit solvent atomistic simulations of 100ns duration have been carried out on 6 PTB-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these MD trajectories and residue based statistical pair potential score show good correlation with the experimental dissociation constants. Our analysis also shows that the modeled structures of PTB domains can be used to develop less compute intensive residue level statistical pair potential based approaches for predicting interaction partners of PTB domains. PMID:27526776

  1. PTB or not to be: promiscuous, tolerant and Bizarro domains come of age.

    PubMed

    Farooq, Amjad; Zhou, Ming-Ming

    2004-09-01

    PTB domains are protein modules that usually interact with the cytoplasmic tail of a wide variety of growth factor receptors. In so doing, they mediate the transduction of extracellular information to specific downstream targets within the cell that ultimately determine the fate of a number of important biological processes such as cell growth and differentiation, cell cycle regulation and apoptosis. Recent structural and functional studies of PTB domains from a variety of cellular proteins have begun to shed light on the molecular mechanisms of action of these important protein modules. In the present review, we provide an account of such studies and suggest that PTB domains can be subdivided into three distinct categories on the basis of their topological differences. We also discuss the various mechanisms employed by the PTB domains in recognition of a diverse set of ligands without a consensus sequence. Finally, we discuss the role of molecular plasticity as a possible determinant of functional versatility of PTB domains. PMID:15590561

  2. New PTB thermal neutron calibration facility: first results.

    PubMed

    Luszik-Bhadra, M; Reginatto, M; Wershofen, H; Wiegel, B; Zimbal, A

    2014-10-01

    A new thermal neutron calibration facility based on a moderator assembly has been set up at PTB. It consists of 16 (241)Am-Be radionuclide sources mounted in a graphite block, 1.5 m wide, 1.5 m high and 1.8 m deep. The sources are distributed to eight different positions, at a mean distance of ∼1.25 m from the front face of the moderator. The neutron field at the reference position, 30 cm in front of the moderator device and 75 cm above the floor, has been characterised using calculations, Bonner sphere measurements and gold foil activation. First results are shown. The field is highly thermalised: 99 % in terms of fluence. It is quite homogenous within a 20 cm×20 cm area, but the absolute value of the thermal neutron fluence rate is small and yields an ambient dose equivalent rate of 3 µSv h(-1). PMID:24403346

  3. Polarization resolved measurements with the new EUV ellipsometer of PTB

    NASA Astrophysics Data System (ADS)

    Soltwisch, Victor; Fischer, Andreas; Laubis, Christian; Stadelhoff, Christian; Scholze, Frank; Ullrich, Albrecht

    2015-03-01

    After having developed metrology with synchrotron radiation at the storage rings BESSY I and BESSY II for more than 25 years, particularly also for the characterization of EUV optical components and detectors, PTB extended its capabilities for EUV metrology with respect to polarization resolved measurements, particularly in the spectral region around 13.5 nm. With the development of larger numerical aperture optics for EUV and advanced illumination concepts for lithographic imaging, the polarization performance of the optical elements and EUV photomasks with respect to high-NA EUV imaging becomes ever more important. At PTB, we use monochromatized bending magnet radiation for the characterization of the optical elements because of the superior temporal stability and rapid tuneability of the wavelength. Thus the polarization of the radiation is almost linear, depending on the vertical beamline acceptance angle, and cannot be manipulated. Therefore, we decided to equip the soft X-ray beamline which delivers particularly well collimated and highly linearly polarized radiation with a sample manipulator which allows freely setting the orientation of the plane of deflection. Thus we are able to characterize samples in any orientation with respect to the linear polarized direction. We additionally can add a linear polarization analyzer working with a rotatable Brewster reflector to analyze the state of polarization of the reflected beam. We present first results on the polarization properties of EUV multilayer mirrors close to the Brewster angle where polarization selectivity up to s104 is predicted from model calculations. We also present polarization resolved measurements of the EUV diffraction of absorber line patterns at EUV photomasks.

  4. Type IV pili promote early biofilm formation by Clostridium difficile.

    PubMed

    Maldarelli, Grace A; Piepenbrink, Kurt H; Scott, Alison J; Freiberg, Jeffrey A; Song, Yang; Achermann, Yvonne; Ernst, Robert K; Shirtliff, Mark E; Sundberg, Eric J; Donnenberg, Michael S; von Rosenvinge, Erik C

    2016-08-01

    Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI. PMID:27369898

  5. The interaction of Kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to the JIP1-PTB domain

    PubMed Central

    2013-01-01

    Background The regulatory mechanisms of motor protein-dependent intracellular transport are still not fully understood. The kinesin-1-binding protein, JIP1, can function as an adaptor protein that links kinesin-1 and other JIP1-binding “cargo” proteins. However, it is unknown whether these “cargo” proteins influence the JIP1–kinesin-1 binding. Results We show here that JIP1–kinesin-1 binding in Neuro2a cells was dependent on conserved amino acid residues in the JIP1-phosphotyrosine binding (PTB) domain, including F687. In addition, mutation of F687 severely affected the neurite tip localization of JIP1. Proteomic analysis revealed another kinesin-1 binding protein, JIP3, as a major JIP1 binding protein. The association between JIP1 and JIP3 was dependent on the F687 residue in JIP1, and this association induced the formation of a stable ternary complex with kinesin-1. On the other hand, the binding of JIP1 and JIP3 was independent of kinesin-1 binding. We also show that other PTB binding proteins can interrupt the formation of the ternary complex. Conclusions The formation of the JIP1–kinesin-1 complex depends on the protein binding-status of the JIP1 PTB domain. This may imply a regulatory mechanism of kinesin-1-dependent intracellular transport. PMID:23496950

  6. From plane to spatial angles: PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Osten, Wolfgang

    2015-10-01

    Electronic autocollimators are utilised versatilely for non-contact angle measurements in applications like straightness measurements and profilometry. Yet, no calibration of the angle measurement of an autocollimator has been available when both its measurement axes are engaged. Additionally, autocollimators have been calibrated at fixed distances to the reflector, although its distance may vary during the use of an autocollimator. To extend the calibration capabilities of the Physikalisch-Technische Bundesanstalt (PTB) regarding spatial angles and variable distances, a novel calibration device has been set up: the spatial angle autocollimator calibrator (SAAC). In this paper, its concept and its mechanical realisation will be presented. The focus will be on the system's mathematical modelling and its application in spatial angle calibrations. The model considers the misalignments of the SAAC's components, including the non-orthogonalities of the measurement axes of the autocollimators and of the rotational axes of the tilting unit. It allows us to derive specific measurement procedures to determine the misalignments in situ and, in turn, to correct the measurements of the autocollimators. Finally, the realisation and the results of a traceable spatial angle calibration of an autocollimator will be presented. This is the first calibration of this type worldwide.

  7. A comparison of irradiance responsivity and thermodynamic temperature measurement between PTB and NIM

    SciTech Connect

    Lu, X.; Yuan, Z.; Anhalt, K.; Taubert, R. D.

    2013-09-11

    This paper describes a comparison between PTB and NIM in the field of absolute spectral-band radiometry and thermodynamic temperature measurement. For the comparison a NIM made interference filter radiometer with a centre wavelength of 633 nm was taken to PTB. The filter radiometer was calibrated at NIM and PTB with respect to spectral irradiance responsivity. For the integral value in the band-pass range an agreement of 0.1% was observed in both calibrations. In a next step, the 633 nm filter radiometer was used to measure the temperature of a high-temperature blackbody in comparison to an 800 nm filter radiometer of PTB in the temperature range between 1400 K and 2750 K. The thermodynamic temperature measured by the two filter radiometers agreed to within 0.2 K to 0.5 K with an estimated measurement uncertainty ranging between 0.1 K and 0.4 K (k=1)

  8. Long-term research in Inmetro on samples of quantum Hall resistance standards made by PTB

    NASA Astrophysics Data System (ADS)

    Carvalho, H. R.; Briones, R. E. M.; Pierz, K.; Gotz, M.

    2016-07-01

    This paper shows up to date results of Inmetro's investigations on aging effects of quantum Hall samples fabricated by PTB in the frame of a mutual scientific agreement established between the Brazilian and German National Metrology Institutes.

  9. Reactive oxygen species promote raft formation in T lymphocytes.

    PubMed

    Lu, Shu-Ping; Lin Feng, Ming-Hsien; Huang, Huey-Lan; Huang, Ya-Ching; Tsou, Wen-I; Lai, Ming-Zong

    2007-04-01

    Lipid rafts are involved in many cell biology events, yet the molecular mechanisms on how rafts are formed are poorly understood. In this study we probed the possible requirement of reactive oxygen species (ROS) for T-cell receptor (TCR)-induced lipid raft formation. Microscopy and biochemical analyses illustrated that blockage of ROS production, by superoxide dismutase-mimic MnTBAP, significantly reduced partitioning of LAT, phospho-LAT, and PLC-gamma in lipid rafts. Another antioxidant N-acetylcysteine (NAC) displayed a similar suppressive effect on the entry of phospho-LAT into raft microdomains. The involvement of ROS in TCR-mediated raft assembly was observed in T-cell hybridomas, T leukemia cells, and normal T cells. Removal of ROS was accompanied by an attenuated activation of LAT and PKCtheta, with reduced production of IL-2. Consistently, treating T cells with the ROS-producer tert-butyl hydrogen peroxide (TBHP) greatly enhanced membrane raft formation, distribution of phospho-LAT into lipid rafts, and increased IL-2 production. Our results indicate for the first time that ROS contribute to TCR-induced membrane raft formation. PMID:17349922

  10. Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT.

    PubMed

    Cho, Sung; Rolczynski, Brian S; Xu, Tao; Yu, Luping; Chen, Lin X

    2015-06-18

    Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast, P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion. PMID:25620363

  11. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis.

    PubMed

    Röhm, Marc; Grimm, Melissa J; D'Auria, Anthony C; Almyroudis, Nikolaos G; Segal, Brahm H; Urban, Constantin F

    2014-05-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  12. Native low density lipoprotein promotes lipid raft formation in macrophages

    PubMed Central

    SONG, JIAN; PING, LING-YAN; DUONG, DUC M.; GAO, XIAO-YAN; HE, CHUN-YAN; WEI, LEI; WU, JUN-ZHU

    2016-01-01

    Oxidized low-density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell-mediated LDL oxidation remain to be elucidated. The present study investigated whether native-LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl-β-cyclodextrin (MβCD), LDL-stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label-free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native-LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native-LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation. PMID:26781977

  13. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    PubMed

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-01

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations. PMID:26752338

  14. Hypoxia promotes vasculogenic mimicry formation by the Twist1-Bmi1 connection in hepatocellular carcinoma.

    PubMed

    Liu, Kun; Sun, Baocun; Zhao, Xiulan; Wang, Xudong; Li, Yanlei; Qiu, Zhiqiang; Liu, Tieju; Gu, Qiang; Dong, Xueyi; Zhang, Yanhui; Wang, Yong; Zhao, Nan

    2015-09-01

    Aggressive tumor cells can mimic embryonic vasculogenic networks and form vasculogenic mimicry (VM). Preliminary studies demonstrated that hypoxia can promote VM formation; however, the underlying mechanism remains unclear. The present study aimed to investigate the role of the Twist1‑Bmi1 connection in hypoxia‑induced VM formation and the underlying mechanism. In the in vitro experiments, western blot analysis demonstrated that hypoxia upregulated the expression of Twist1, Bmi1, epithelial‑mesenchymal transition (EMT) markers, stem cell markers and VM‑associated markers. The 3D culture assay showed that hypoxia promoted VM formation in hepatocellular carcinoma (HCC) cell lines. Using transfection and in vitro cell experiments, the Twist1‑Bmi1 connection was confirmed to have an important role in inducing EMT, cell stemness and VM formation. In the in vivo experiments, the murine hypoxia models were established via incomplete femoral artery ligation and the mechanism by which hypoxia promoted Twist1 and Bmi1 expression and led to VM formation was demonstrated by immunohistochemistry staining and endomucin/periodic acid Schiff double‑staining. In conclusion, hypoxia upregulate the expression of Twist1 and Bmi1, and these two proteins have an important role in inducing EMT and cancer cell stemness, which contributed to VM formation. PMID:26202447

  15. Bilateral Intercomparison of Spectral Directional Emissivity Measurement Between CENAM and PTB

    NASA Astrophysics Data System (ADS)

    Cárdenas-García, D.; Monte, C.

    2014-07-01

    Both Centro Nacional de Metrología (CENAM, Mexico) and Physikalisch-Technische Bundesanstalt (PTB, Germany) are national metrology institutes and provide the dissemination of the spectral directional emissivity as a calibration service. CENAM started this service recently. The emissivity measurement capability of PTB took part in two international comparisons performed in the past among other national institutes. The measurement instrumentation and techniques used for emissivity measurements at CENAM and PTB are both based on Fourier transform infrared spectrometers. Both setups are based on the principle of a spectral comparison of the radiances of the sample and blackbody radiator. In detail, the setups differ: CENAM has the capability of measuring the directional spectral emissivity normal to the sample surface, while PTB measures the directional spectral emissivity at angles of observation ranging from to , and provides the hemispherical spectral and total emissivity of samples as well. For this comparison, it was agreed to compare the value of the directional spectral emissivity normal to the sample surface obtained by CENAM with the one determined at an angle of by PTB. Four samples of different spectral directional emissivities were measured by the two institutes. For the samples, four copper disks with a diameter of 50 mm and a thickness of 5 mm were used. Three of them were coated with Comex 1402470 (white), 1402471 (aluminum), and 1402474 (black) paints, respectively, and the other one with Nextel 811-21 paint. Measurements were obtained for each sample at a temperature of about C, and in the spectral range from to ( to ). The description of the experimental setups used and the comparison results are presented in this paper. It was found that the results obtained at CENAM and at PTB agree well within the declared standard uncertainties.

  16. Insight into the mechanism of Sb promoted Cu(In,Ga)Se{sub 2} formation

    SciTech Connect

    Xiang, Yong Zhang, Xiaokun; Zhang, Shu

    2013-08-15

    Sb-doping has been demonstrated to be a new approach to promote Cu(In,Ga)Se{sub 2} (CIGS) thin film formation. To study the mechanism of Sb-promoted CIGS formation, we investigated the influence of Sb on the evolution of the critical intermediate Cu–Se phases, and found that Cu{sub 3}SbSe{sub 3} species was formed. Phase change of the as-prepared Cu–Se compounds at elevated temperature was determined using the differential scanning calorimetry analysis. For samples containing Sb, the melting decomposition occurred at 507.1 °C, along with aggregation of nanocrystals into a bulk, while the morphology of the sample without Sb barely changed after heating. This result suggests that the mobile Cu{sub 3}SbSe{sub 3} is likely the key intermediate responsible for Sb-promoted CIGS formation. Furthermore, we extended the scope of Sb-doping approach to solvothermal synthesis and CIGS nanocrystals were synthesized with significantly promoted kinetics in the presence of Sb. Based on these results, we propose the mechanism of Sb promoted CIGS formation. - Graphical abstract: Cu{sub 3}SbSe{sub 3} mobile phase is likely the key species to promote the formation of Cu(In,Ga)Se{sub 2}, and significantly promoting effect by Sb is also found in the synthesis of Cu(In,Ga)Se{sub 2} nanocrystals. Highlights: • In the presence of Sb, Cu{sub 3}SbSe{sub 3} is formed while synthesizing the essential intermediate Cu–Se compounds for Cu(In,Ga)Se{sub 2} materials. • Cu{sub 3}SbSe{sub 3} shows high mobility at elevated temperature. • Cu{sub 3}SbSe{sub 3} mobile phase is likely the key species to improve Cu(In,Ga)Se{sub 2} thin film formation. • A synthesis methodology is developed to produce Cu(In,Ga)Se{sub 2} nanocrystals with significantly promoted reaction kinetics.

  17. Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary.

    PubMed

    Chakraborty, Prabuddha; Roy, Shyamal K

    2015-01-01

    Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3. PMID:26219655

  18. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance

    PubMed Central

    Liston, Conor; Cichon, Joseph M; Jeanneteau, Freddy; Jia, Zhengping; Chao, Moses V; Gan, Wen-Biao

    2013-01-01

    Excessive glucocorticoid exposure during chronic stress causes synapse loss and learning impairment. Under normal physiological conditions, glucocorticoid activity oscillates in synchrony with the circadian rhythm. Whether and how endogenous glucocorticoid oscillations modulate synaptic plasticity and learning is unknown. Here we show that circadian glucocorticoid peaks promote postsynaptic dendritic spine formation in the mouse cortex after motor skill learning, whereas troughs are required for stabilizing newly formed spines that are important for long-term memory retention. Conversely, chronic and excessive exposure to glucocorticoids eliminates learning-associated new spines and disrupts previously acquired memories. Furthermore, we show that glucocorticoids promote rapid spine formation through a non-transcriptional mechanism by means of the LIM kinase–cofilin pathway and increase spine elimination through transcriptional mechanisms involving mineralocorticoid receptor activation. Together, these findings indicate that tightly regulated circadian glucocorticoid oscillations are important for learning-dependent synaptic formation and maintenance. They also delineate a new signaling mechanism underlying these effects. PMID:23624512

  19. Sleep promotes branch-specific formation of dendritic spines after learning.

    PubMed

    Yang, Guang; Lai, Cora Sau Wan; Cichon, Joseph; Ma, Lei; Li, Wei; Gan, Wen-Biao

    2014-06-01

    How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage. PMID:24904169

  20. Superacid-promoted ionization of alkanes without carbonium ion formation: a density functional theory study.

    PubMed

    Dinér, Peter

    2012-10-11

    The carbonium ion has been suggested to be the intermediate in superacid-promoted reactions (SbF(5)-HF) such as hydrogen-deuterium exchange and in the electrophilic C-H cleavage into hydrogen and the carbenium ion. In this study, the superacid-promoted C-H cleavage into hydrogen and the carbenium ion was studied using density functional theory (B3LYP and M062X) and ab initio methods (MP2 and CCSD). The calculations suggest that the superacid-promoted C-H cleavage proceeds via a concerted transition state leading to hydrogen (H(2)) and the carbenium ion without the formation of the elusive carbonium ion. The reactivity for the superacid-promoted C-H cleavage decreases upon going from isobutane (tertiary) > propane (secondary) > isobutane (primary) > propane (primary) > ethane > methane. PMID:22998332

  1. Thyroid dysfunction, either hyper or hypothyroidism, promotes gallstone formation by different mechanisms.

    PubMed

    Wang, Yong; Yu, Xing; Zhao, Qun-Zi; Zheng, Shu; Qing, Wen-Jie; Miao, Chun-di; Sanjay, Jaiswal

    2016-07-01

    We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis. PMID:27381728

  2. Thyroid dysfunction, either hyper or hypothyroidism, promotes gallstone formation by different mechanisms*

    PubMed Central

    Wang, Yong; Yu, Xing; Zhao, Qun-zi; Zheng, Shu; Qing, Wen-jie; Miao, Chun-di; Sanjay, Jaiswal

    2016-01-01

    We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis. PMID:27381728

  3. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling

    PubMed Central

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-01-01

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  4. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling.

    PubMed

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-09-15

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  5. In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus.

    PubMed

    Park, Sunjung; Lee, Haeryung; Park, Soochul

    2015-05-01

    Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a β-geo gene trap vector inserted into the 14th intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development. PMID:26018557

  6. SKAP2 Promotes Podosome Formation to Facilitate Tumor-Associated Macrophage Infiltration and Metastatic Progression.

    PubMed

    Tanaka, Masamitsu; Shimamura, Shintaro; Kuriyama, Sei; Maeda, Daichi; Goto, Akiteru; Aiba, Namiko

    2016-01-15

    Tumor-associated macrophages (TAM) play complex and pivotal roles during cancer progression. A subset of metastasis-associated macrophages accumulates within metastatic sites to promote the invasion and growth of tumor cells. Src kinase-associated phosphoprotein 2 (SKAP2), a substrate of Src family kinases, is highly expressed in macrophages from various tumors, but its contribution to the tumor-promoting behavior of TAMs is unknown. Here, we report that SKAP2 regulates podosome formation in macrophages to promote tumor invasion and metastasis. SKAP2 physically interacted with Wiskott-Aldrich syndrome protein (WASP) and localized to podosomes, which were rarely observed in SKAP2-null macrophages. The invasion of peritoneal macrophages derived from SKAP2-null mice was significantly reduced compared with wild-type macrophages, but could be rescued by the restoration of functional SKAP2 containing an intact tyrosine phosphorylation site and the ability to interact with WASP. Furthermore, SKAP2-null mice inoculated with lung cancer cells exhibited markedly decreased lung metastases characterized by reduced macrophage infiltration compared with wild-type mice. Moreover, intravenously injected SKAP2-null macrophages failed to efficiently infiltrate established tumors and promote their growth. Taken together, these findings reveal a novel mechanism by which macrophages assemble the appropriate motile machinery to infiltrate tumors and promote disease progression, and implicate SKAP2 as an attractive candidate for therapeutically targeting TAMs. PMID:26577701

  7. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  8. Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate

    SciTech Connect

    Hrbek, J.; Hoffmann, F.M.; Yang, Y.; Paul, J.; White, M.G.

    2010-07-15

    Conversion of carbon dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO{sub 2} + H{sub 2}O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO{sub 2} and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO{sub 2} to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures.

  9. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors

    PubMed Central

    Wu, Jianqiang; Patmore, Deanna M.; Jousma, Edwin; Eaves, David W.; Breving, Kimberly; Patel, Ami V.; Schwartz, Eric B.; Fuchs, James R.; Cripe, Timothy P.; Stemmer-Rachamimov, Anat O.; Ratner, Nancy

    2014-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) develop sporadically or in the context of neurofibromatosis type 1 (NF1). EGFR overexpression has been implicated in MPNST formation, but its precise role and relevant signaling pathways remain unknown. We found that EGFR overexpression promotes mouse neurofibroma transformation to aggressive MPNST (GEM-PNST). Immunohistochemistry demonstrated phosphorylated STAT3 (Tyr705) in both human MPNST and mouse GEM-PNST. A specific JAK2/STAT3 inhibitor FLLL32 delayed MPNST formation in an MPNST xenograft nude mouse model. STAT3 knockdown by shRNA prevented MPNST formation in vivo. Finally, reducing EGFR activity strongly reduced pSTAT3 in vivo. Thus, an EGFR-STAT3 pathway is necessary for MPNST transformation and establishment of MPNST xenografts growth but not for tumor maintenance. Efficacy of the FLLL32 pharmacological inhibitor in delaying MPNST growth suggests that combination therapies targeting JAK/STAT3 might be useful therapeutics. PMID:23318430

  10. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors.

    PubMed

    Wu, J; Patmore, D M; Jousma, E; Eaves, D W; Breving, K; Patel, A V; Schwartz, E B; Fuchs, J R; Cripe, T P; Stemmer-Rachamimov, A O; Ratner, N

    2014-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) develop sporadically or in the context of neurofibromatosis type 1. Epidermal growth factor receptor (EGFR) overexpression has been implicated in MPNST formation, but its precise role and relevant signaling pathways remain unknown. We found that EGFR overexpression promotes mouse neurofibroma transformation to aggressive MPNST (GEM-PNST). Immunohistochemistry demonstrated phosphorylated STAT3 (Tyr705) in both human MPNST and mouse GEM-PNST. A specific JAK2/STAT3 inhibitor FLLL32 delayed MPNST formation in an MPNST xenograft nude mouse model. STAT3 knockdown by shRNA prevented MPNST formation in vivo. Finally, reducing EGFR activity strongly reduced pSTAT3 in vivo. Thus, an EGFR-STAT3 pathway is necessary for MPNST transformation and establishment of MPNST xenografts growth but not for tumor maintenance. Efficacy of the FLLL32 pharmacological inhibitor in delaying MPNST growth suggests that combination therapies targeting JAK/STAT3 might be useful therapeutics. PMID:23318430

  11. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    PubMed

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. PMID:25089792

  12. Restricted Heterochromatin Formation Links NFATc2 Repressor Activity With Growth Promotion in Pancreatic Cancer

    PubMed Central

    BAUMGART, SANDRA; GLESEL, ELISABETH; SINGH, GARIMA; CHEN, NAI-MING; REUTLINGER, KRISTINA; ZHANG, JINSAN; BILLADEAU, DANIEL D.; FERNANDEZ-ZAPICO, MARTIN E.; GRESS, THOMAS M.; SINGH, SHIV K.; ELLENRIEDER, VOLKER

    2012-01-01

    BACKGROUND & AIMS Transcriptional silencing of the p15INK4b tumor suppressor pathway overcomes cellular protection against unrestrained proliferation in cancer. Here we show a novel pathway involving the oncogenic transcription factor nuclear factor of activated T cells (NFAT) c2 targeting a p15INK4b-mediated failsafe mechanism to promote pancreatic cancer tumor growth. METHODS Immunohistochemistry, real-time polymerase chain reaction, immunoblotting, and immunofluorescence microscopy were used for expression studies. Cancer growth was assessed in vitro by [3H]thymidine incorporation, colony formation assays, and in vivo using xenograft tumor models. Protein-protein interactions, promoter regulation, and local histone modifications were analyzed by immunoprecipitation, DNA pull-down, reporter, and chromatin immunoprecipitation assays. RESULTS Our study uncovered induction of NFATc2 in late-stage pancreatic intraepithelial neoplasia lesions with increased expression in tumor cell nuclei of advanced cancers. In the nucleus, NFATc2 targets the p15INK4b promoter for inducible heterochromatin formation and silencing. NFATc2 binding to its cognate promoter site induces stepwise recruitment of the histone methyltransferase Suv39H1, causes local H3K9 trimethylation, and allows docking of heterochromatin protein HP1γ to the repressor complex. Conversely, inactivation of NFATc2 disrupts this repressor complex assembly and local heterochromatin formation, resulting in restoration of p15INK4b expression and inhibition of pancreatic cancer growth in vitro and in vivo. CONCLUSIONS Here we describe a novel mechanism for NFATc2-mediated gene regulation and identify a functional link among its repressor activity, the silencing of the suppressor pathway p15INK4b, and its pancreatic cancer growth regulatory functions. Thus, we provide evidence that inactivation of oncogenic NFATc2 might be an attractive strategy in treatment of pancreatic cancer. PMID:22079596

  13. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling

    PubMed Central

    Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro

    2014-01-01

    Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332

  14. Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle Formation and Antibody Production following Intestinal Helminth Infection.

    PubMed

    Dubey, Lalit Kumar; Lebon, Luc; Mosconi, Ilaria; Yang, Chen-Ying; Scandella, Elke; Ludewig, Burkhard; Luther, Sanjiv A; Harris, Nicola L

    2016-05-17

    Secondary lymphoid tissues provide specialized niches for the initiation of adaptive immune responses and undergo a remarkable expansion in response to inflammatory stimuli. Although the formation of B cell follicles was previously thought to be restricted to the postnatal period, we observed that the draining mesenteric lymph nodes (mLN) of helminth-infected mice form an extensive number of new, centrally located, B cell follicles in response to IL-4Rα-dependent inflammation. IL-4Rα signaling promoted LTα1β2 (lymphotoxin) expression by B cells, which then interacted with CCL19 positive stromal cells to promote lymphoid enlargement and the formation of germinal center containing B cell follicles. Importantly, de novo follicle formation functioned to promote both total and parasite-specific antibody production. These data reveal a role for type 2 inflammation in promoting stromal cell remodeling and de novo follicle formation by promoting B cell-stromal cell crosstalk. PMID:27160906

  15. Proneural and Abdominal Hox Inputs Synergize to Promote Sensory Organ Formation in the Drosophila Abdomen

    PubMed Central

    Gutzwiller, Lisa M.; Witt, Lorraine M.; Gresser, Amy L.; Burns, Kevin A.; Cook, Tiffany A.; Gebelein, Brian

    2010-01-01

    The atonal (ato) proneural gene specifies a stereotypic number of sensory organ precursors (SOP) within each body segment of the Drosophila ectoderm. Surprisingly, the broad expression of Ato within the ectoderm results in only a modest increase in SOP formation, suggesting many cells are incompetent to become SOPs. Here, we show that the SOP promoting activity of Ato can be greatly enhanced by three factors: the Senseless (Sens) zinc finger protein, the Abdominal-A (Abd-A) Hox factor, and the epidermal growth factor (EGF) pathway. First, we show that expression of either Ato alone or with Sens induces twice as many SOPs in the abdomen as in the thorax, and do so at the expense of an abdomen-specific cell fate: the larval oenocytes. Second, we demonstrate that Ato stimulates abdominal SOP formation by synergizing with Abd-A to promote EGF ligand (Spitz) secretion and secondary SOP recruitment. However, we also found that Ato and Sens selectively enhance abdominal SOP development in a Spitz-independent manner, suggesting additional genetic interactions between this proneural pathway and Abd-A. Altogether, these experiments reveal that genetic interactions between EGF-signaling, Abd-A, and Sens enhance the SOP-promoting activity of Ato to stimulate region-specific neurogenesis in the Drosophila abdomen. PMID:20875816

  16. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  17. Polypyrimidine tract-binding protein (PTB) inhibits Hepatitis C virus internal ribosome entry site (HCV IRES)-mediated translation, but does not affect HCV replication.

    PubMed

    Tischendorf, J J W; Beger, C; Korf, M; Manns, M P; Krüger, M

    2004-10-01

    Polypyrimidine tract-binding protein (PTB) has previously been shown to affect Hepatitis C virus (HCV) IRES-mediated translation. In the present study we investigated the functional role of PTB for HCV translation, replication and chronic HCV infection. Bicistronic HCV IRES reporter plasmids and two different subgenomic replicons (bicistronic: pHCVrep1bBB7 (s1179I); monocistronic: pFK1-389/hyg-ubi/NS3-3'/5.1) were used to analyze the effects of PTB. Following transfection of plasmids expressing PTB RNA in sense or antisense orientation, translational activity and HCV RNA were analyzed by luciferase assay, quantitative real-time RT-PCR and northern blot analysis. Additionally, in liver tissue (n = 53) intrahepatic PTB RNA levels were determined by quantitative real-time RT-PCR. Significant inhibition of HCV IRES activity up to 42.6% was observed upon PTB sense RNA expression for HCV IRES reporter plasmids, while translational activity was enhanced up to 63.8% for PTB antisense RNA expression. In the HCV replicons PTB did not affect replication and no correlation was found between intrahepatic PTB mRNA levels and serum HCV RNA or histological changes in liver tissue of HCV infected patients. Although PTB inhibits HCV IRES-mediated translation from bicistronic reporter constructs, data obtained from two subgenomic HCV replicons and liver tissue do not indicate a significant role of PTB for HCV replication and chronic HCV infection. PMID:15669107

  18. Two cassava promoters related to vascular expression and storage root formation.

    PubMed

    Zhang, Peng; Bohl-Zenger, Susanne; Puonti-Kaerlas, Johanna; Potrykus, Ingo; Gruissem, Wilhelm

    2003-12-01

    Cassava ( Manihot esculenta Crantz) storage roots, organs accumulating large amounts of starch, develop from primary roots via secondary growth. The availability of promoters related to storage-root formation is a prerequisite for engineering root traits in cassava. Two cDNAs, c15 and c54, were identified from a storage-root cDNA library of cassava MCol1505 via differential screening. The transcripts of c15 and c54 were detected in storage roots but not in leaves by Northern analysis. Homology analysis of the deduced amino acid sequences showed that C15 is likely to be related to cytochrome P450 proteins, which are involved in the oxidative degradation of various compounds, while C54 may be related to Pt2L4, a cassava glutamic acid-rich protein. The promoter regions of c15 and c54 were isolated from the corresponding clones in a cassava genomic library. A 1,465-bp promoter fragment ( p15/1.5) of c15 and a 1,081-bp promoter region ( p54/1.0) of c54 were translationally fused to the uidA reporter gene, and introduced into cassava and Arabidopsis thaliana (L.) Heynh. The expression patterns of p15/1.5::uidA and p54/1.0::uidA in transgenic plants showed that both promoters are predominantly active in phloem, cambium and xylem vessels of vascular tissues from leaves, stems, and root systems. More importantly, strong beta-glucuronidase activity was also detected in the starch-rich parenchyma cells of transgenic storage roots. Our results demonstrate that the two promoters are related to vascular expression and secondary growth of storage roots in cassava. PMID:13680228

  19. Trilateral Intercomparison of Photometric Units Maintained at NIST (USA), NPL (UK), and PTB (Germany)

    PubMed Central

    Ohno, Yoshi; Goodman, Teresa; Sauter, Georg

    1999-01-01

    A trilateral intercomparison of photometric units between NIST (USA), NPL (UK), and PTB (Germany) has been conducted to update the knowledge of the relationship between the photometric units disseminated in the three countries. The luminous intensity unit (cd), the luminous responsivity scale (A/lx), and the luminous flux unit (lm) maintained at each laboratory were compared by circulating transfer standard lamps and photometers. The results showed that the relative luminous intensity values, with respect to the average, measured by NIST, NPL, and PTB were 1.0014, 1.0021, and 0.9966; the relative inverse values of the luminous responsivity (corresponding to illuminance) were 1.0023, 1.0011, and 0.9965; the relative luminous flux values were 0.9994, 1.0034, and 0.9972, respectively. The results agreed within the stated uncertainties of the units maintained at the three laboratories.

  20. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB

    PubMed Central

    Coelho, Miguel B; Attig, Jan; Bellora, Nicolás; König, Julian; Hallegger, Martina; Kayikci, Melis; Eyras, Eduardo; Ule, Jernej; Smith, Christopher WJ

    2015-01-01

    Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3. PMID:25599992

  1. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling.

    PubMed

    Li, C; Shi, C; Kim, J; Chen, Y; Ni, S; Jiang, L; Zheng, C; Li, D; Hou, J; Taichman, R S; Sun, H

    2015-03-01

    Recent studies have demonstrated that erythropoietin (EPO) has extensive nonhematopoietic biological functions. However, little is known about how EPO regulates bone formation, although several studies suggested that EPO can affect bone homeostasis. In this study, we investigated the effects of EPO on the communication between osteoclasts and osteoblasts through the ephrinB2/EphB4 signaling pathway. We found that EPO slightly promotes osteoblastic differentiation with the increased expression of EphB4 in ST2 cells. However, EPO increased the expression of Nfatc1 and ephrinB2 but decreased the expression of Mmp9 in RAW264.7 cells, resulting in an increase of ephrinB2-expressing osteoclasts and a decrease in resorption activity. The stimulation of ephrinB2/EphB4 signaling via ephrinB2-Fc significantly promoted EPO-mediated osteoblastic differentiation in ST2 cells. EphB4 knockdown through EphB4 shRNA inhibited EPO-mediated osteoblastic phenotypes. Furthermore, in vivo assays clearly demonstrated that EPO efficiently induces new bone formation in the alveolar bone regeneration model. Taken together, these results suggest that ephrinB2/EphB4 signaling may play an important role in EPO-mediated bone formation. PMID:25586589

  2. Substrate Binding Promotes Formation of the Skp1-Cul1-Fbxl3 (SCFFbxl3) Protein Complex*

    PubMed Central

    Yumimoto, Kanae; Muneoka, Tetsuya; Tsuboi, Tomohiro; Nakayama, Keiichi I.

    2013-01-01

    The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity. PMID:24085301

  3. Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli▿

    PubMed Central

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-01-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated. PMID:19168650

  4. Providing radiometric traceability for the calibration home base of DLR by PTB

    SciTech Connect

    Taubert, D. R.; Hollandt, J.; Sperfeld, P.; Pape, S.; Hoepe, A.; Hauer, K.-O.; Gege, P.; Schwarzmaier, T.; Lenhard, K.; Baumgartner, A.

    2013-05-10

    A dedicated calibration technique was applied for the calibration of the spectral radiance transfer standard (RASTA) of the German Aerospace Center (DLR) at the Physikalisch-Technische Bundesanstalt (PTB), consisting of two independent but complementing calibration procedures to provide redundancy and smallest possible calibration uncertainties. Procedure I included two calibration steps: In a first step the optical radiation source of RASTA, an FEL lamp, was calibrated in terms of its spectral irradiance E{sub {lambda}}({lambda}) in the wavelength range from 350 nm to 2400 nm using the PTB Spectral Irradiance Calibration Equipment (SPICE), while in a second step the spectral radiance factor {beta}{sub 0 Degree-Sign :45 Degree-Sign }({lambda}) of the RASTA reflection standard was calibrated in a 0 Degree-Sign :45 Degree-Sign -viewing geometry in the wavelength range from 350 nm to 1700 nm at the robot-based gonioreflectometer facility of PTB. The achieved relative standard uncertainties (k= 1) range from 0.6 % to 3.2 % and 0.1 % to 0.6 % respectively. Procedure II was completely independent from procedure I and allowed to cover the entire spectral range of RASTA from 350 nm to 2500 nm. In the second procedure, the 0 Degree-Sign :45 Degree-Sign -viewing geometry spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign }({lambda}) of RASTA was directly calibrated at the Spectral Radiance Comparator Facility (SRCF) of PTB. The relative uncertainties for this calibration procedure range from 0.8 % in the visible up to 7.5 % at 2500 nm (k= 1). In the overlapping spectral range of both calibration procedures the calculated spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign ,calc}({lambda}) from procedure I is in good agreement with the direct measurement of procedure II, i.e. well within the combined expanded uncertainties (k= 2) of both procedures.

  5. The organization of RNA contacts by PTB for regulation of FAS splicing

    PubMed Central

    Mickleburgh, Ian; Kafasla, Panagiota; Cherny, Dmitry; Llorian, Miriam; Curry, Stephen; Jackson, Richard J.; Smith, Christopher W.J.

    2014-01-01

    Post-transcriptional steps of gene expression are regulated by RNA binding proteins. Major progress has been made in characterizing RNA-protein interactions, from high resolution structures to transcriptome-wide profiling. Due to the inherent technical challenges, less attention has been paid to the way in which proteins with multiple RNA binding domains engage with target RNAs. We have investigated how the four RNA recognition motif (RRM) domains of Polypyrimidine tract binding (PTB) protein, a major splicing regulator, interact with FAS pre-mRNA under conditions in which PTB represses FAS exon 6 splicing. A combination of tethered hydroxyl radical probing, targeted inactivation of individual RRMs and single molecule analyses revealed an unequal division of labour between the four RRMs of PTB. RNA binding by RRM4 is the most important for function despite the low intrinsic binding specificity and the complete lack of effect of disrupting individual RRM4 contact points on the RNA. The ordered RRM3-4 di-domain packing provides an extended binding surface for RNA interacting at RRM4, via basic residues in the preceding linker. Our results illustrate how multiple alternative low-specificity binding configurations of RRM4 are consistent with repressor function as long as the overall ribonucleoprotein architecture provided by appropriate di-domain packing is maintained. PMID:24957602

  6. Benzothiazole Amphiphiles Promote the Formation of Dendritic Spines in Primary Hippocampal Neurons.

    PubMed

    Cifelli, Jessica L; Dozier, Lara; Chung, Tim S; Patrick, Gentry N; Yang, Jerry

    2016-06-01

    The majority of excitatory synapses in the brain exist on dendritic spines. Accordingly, the regulation of dendritic spine density in the hippocampus is thought to play a central role in learning and memory. The development of novel methods to control spine density could, therefore, have important implications for treatment of a host of neurodegenerative and developmental cognitive disorders. Herein, we report the design and evaluation of a new class of benzothiazole amphiphiles that exhibit a dose-dependent response leading to an increase in dendritic spine density in primary hippocampal neurons. Cell exposure studies reveal that the increase in spine density can persist for days in the presence of these compounds, but returns to normal spine density levels within 24 h when the compounds are removed, demonstrating the capability to reversibly control spinogenic activity. Time-lapse imaging of dissociated hippocampal neuronal cultures shows that these compounds promote a net increase in spine density through the formation of new spines. Biochemical studies support that promotion of spine formation by these compounds is accompanied by Ras activation. These spinogenic molecules were also capable of inhibiting a suspected mechanism for dendritic spine loss induced by Alzheimer-related aggregated amyloid-β peptides in primary neurons. Evaluation of this new group of spinogenic agents reveals that they also exhibit relatively low toxicity at concentrations displaying activity. Collectively, these results suggest that small molecules that promote spine formation could be potentially useful for ameliorating cognitive deficiencies associated with spine loss in neurodegenerative diseases such as Alzheimer disease, and may also find use as general cognitive enhancers. PMID:27022020

  7. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis

    PubMed Central

    Grootaert, Mandy OJ; da Costa Martins, Paula A; Bitsch, Nicole; Pintelon, Isabel; De Meyer, Guido RY; Martinet, Wim; Schrijvers, Dorien M

    2015-01-01

    Autophagy is triggered in vascular smooth muscle cells (VSMCs) of diseased arterial vessels. However, the role of VSMC autophagy in cardiovascular disease is poorly understood. Therefore, we investigated the effect of defective autophagy on VSMC survival and phenotype and its significance in the development of postinjury neointima formation and atherosclerosis. Tissue-specific deletion of the essential autophagy gene Atg7 in murine VSMCs (atg7−/− VSMCs) caused accumulation of SQSTM1/p62 and accelerated the development of stress-induced premature senescence as shown by cellular and nuclear hypertrophy, CDKN2A-RB-mediated G1 proliferative arrest and senescence-associated GLB1 activity. Transfection of SQSTM1-encoding plasmid DNA in Atg7+/+ VSMCs induced similar features, suggesting that accumulation of SQSTM1 promotes VSMC senescence. Interestingly, atg7−/− VSMCs were resistant to oxidative stress-induced cell death as compared to controls. This effect was attributed to nuclear translocation of the transcription factor NFE2L2 resulting in upregulation of several antioxidative enzymes. In vivo, defective VSMC autophagy led to upregulation of MMP9, TGFB and CXCL12 and promoted postinjury neointima formation and diet-induced atherogenesis. Lesions of VSMC-specific atg7 knockout mice were characterized by increased total collagen deposition, nuclear hypertrophy, CDKN2A upregulation, RB hypophosphorylation, and GLB1 activity, all features typical of cellular senescence. To conclude, autophagy is crucial for VSMC function, phenotype, and survival. Defective autophagy in VSMCs accelerates senescence and promotes ligation-induced neointima formation and diet-induced atherogenesis, implying that autophagy inhibition as therapeutic strategy in the treatment of neointimal stenosis and atherosclerosis would be unfavorable. Conversely, stimulation of autophagy could be a valuable new strategy in the treatment of arterial disease. PMID:26391655

  8. Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.

    PubMed

    Burke, Michael C; Li, Feng-Qian; Cyge, Benjamin; Arashiro, Takeshi; Brechbuhl, Heather M; Chen, Xingwang; Siller, Saul S; Weiss, Matthew A; O'Connell, Christopher B; Love, Damon; Westlake, Christopher J; Reynolds, Susan D; Kuriyama, Ryoko; Takemaru, Ken-Ichi

    2014-10-13

    Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells. PMID:25313408

  9. Antiphospholipid Antibodies Attenuate Endothelial Repair and Promote Neointima Formation in Mice

    PubMed Central

    Ulrich, Victoria; Konaniah, Eddy S.; Lee, Wan‐Ru; Khadka, Sadiksha; Shen, Yu‐Min; Herz, Joachim; Salmon, Jane E.; Hui, David Y.; Shaul, Philip W.; Mineo, Chieko

    2014-01-01

    Background Antiphospholipid syndrome patients have antiphospholipid antibodies (aPLs) that promote thrombosis, and they have increased cardiovascular disease risk. Although the basis for the thrombosis has been well delineated, it is not known why antiphospholipid syndrome patients also have an increased prevalence of nonthrombotic vascular occlusion. The aims of this work were to determine if aPLs directly promote medial hypertrophy or neointima formation in mice and to identify the underlying mechanisms. Methods and Results Medial hypertrophy and neointima formation invoked by carotid artery endothelial denudation were evaluated in mice administered normal human IgG or aPLs. While aPLs had no effect on medial hypertrophy, they caused exaggerated neointima development. This was related to an aPL‐induced impairment in reendothelialization post denudation, and scratch assays in cell culture revealed that there are direct effects of aPLs on endothelium that retard cell migration. Further experiments showed that aPL antagonism of endothelial migration and repair is mediated by antibody recognition of β2‐glycoprotein I, apolipoprotein E receptor 2, and a decline in bioavailable NO. Consistent with these mechanisms, the adverse impacts of aPLs on reendothelialization and neointima formation were fully prevented by the NO donor molsidomine. Conclusions APLs blunt endothelial repair, and there is related aPL‐induced exaggeration in neointima formation after endothelial injury in mice. The initiating process entails NO deficiency mediated by β2‐glycoprotein I recognition by aPLs and apolipoprotein E receptor 2. The modulation of endothelial apolipoprotein E receptor 2 function or NO bioavailability may represent new interventions to prevent the nonthrombotic vascular occlusion and resulting cardiovascular disorders that afflict antiphospholipid syndrome patients. PMID:25315347

  10. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury

    SciTech Connect

    Jung, Michaela; Sola, Anna

    2009-01-15

    The mitochondria are a critical target for cisplatin-associated nephrotoxicity. Though nitric oxide formation has been implicated in the toxicity of cisplatin, this formation has not so far been related to a possible activation of mitochondrial nitric oxide synthase (mNOS). We show here that the upregulation of oxide mNOS and peroxynitrite formation in cisplatin treatment are key events that influence the development of the harmful parameters described in cisplatin-associated kidney failure. We confirm this by isolating the mitochondrial fraction of the kidney and across different access routes such as the use of a specific inhibitor of neuronal NOS, L-NPA, a peroxynitrite scavenger, FeTMPyP, and a peroxynitrite donor, SIN-1. The in vitro studies corroborated the information obtained in the in vivo experiments. The administration of cisplatin reveals a clear upregulation in the transcription of neuronal NOS and an increase in the levels of nitrites in the mitochondrial fractions of the kidneys. The upregulated transcription directly affects the cytoskeleton structure and the apoptosis. The inhibition of neuronal NOS reduces the levels of nitrites, cell death, and cytoskeleton derangement. Peroxynitrite is involved in the mechanism promoting the NOS transcription. In addition, in controls SIN-1 imitates the effects of cisplatin. In summary, we demonstrate that upregulation of mNOS in cisplatin treatment is a key component in both the initiation and the spread of cisplatin-associated damage in the kidney. Furthermore, peroxynitrite formation is directly involved in this process.

  11. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    PubMed Central

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  12. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies.

    PubMed

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  13. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    NASA Astrophysics Data System (ADS)

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-02-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter.

  14. Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis.

    PubMed

    Wang, Zhe; Xiong, Shanshan; Mao, Yubin; Chen, Mimi; Ma, Xiaohong; Zhou, Xueliang; Ma, Zhenling; Liu, Fan; Huang, Zhengjie; Luo, Qi; Ouyang, Gaoliang

    2016-08-01

    Periostin (POSTN) is a limiting factor in the metastatic colonization of disseminated tumour cells. However, the role of POSTN in regulating the immunosuppressive function of immature myeloid cells in tumour metastasis has not been documented. Here, we demonstrate that POSTN promotes the pulmonary accumulation of myeloid-derived suppressor cells (MDSCs) during the early stage of breast tumour metastasis. Postn deletion decreases neutrophil and monocytic cell populations in the bone marrow of mice and suppresses the accumulation of MDSCs to premetastatic sites. We also found that POSTN-deficient MDSCs display reduced activation of ERK, AKT and STAT3 and that POSTN deficiency decreases the immunosuppressive functions of MDSCs during tumour progression. Moreover, the pro-metastatic role of POSTN is largely limited to ER-negative breast cancer patients. Lysyl oxidase contributes to POSTN-promoted premetastatic niche formation and tumour metastasis. Our findings indicate that POSTN is essential for immunosuppressive premetastatic niche formation in the lungs during breast tumour metastasis and is a potential target for the prevention and treatment of breast tumour metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27193093

  15. Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp.

    PubMed

    Yin, Dongmei; Chen, Sumei; Chen, Fadi; Jiang, Jiafu

    2013-07-01

    The role of ethylene in induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema zawadskii and D. nankingense, two species that differ with respect to waterlogging tolerance, was examined. In the more tolerant D. zawadskii, but not in D. nankingense, ethylene accelerated programmed cell death and promoted formation of lysigenous aerenchyma, both of which were inhibited by treatment with the ethylene inhibitor 1-methylcyclopropene. Waterlogged D. zawadskii roots generated a higher quantity of endogenous ethylene than did those of D. nankingense. In waterlogged D. zawadskii roots, transcription of the genes encoding alcohol dehydrogenase (EC 1.1.1.1) and pyruvate decarboxylase (EC 4.1.1.1) increased rapidly but transiently, whereas expression of these genes in D. nankingense increased gradually and over a longer period. In D. nankingense, waterlogging elevated both alcohol dehydrogenase and pyruvate decarboxylase activity, and the production of ethanol and acetaldehyde was increased in the presence of exogenous ethylene and inhibited by 1-methylcyclopropene. In D. zawadskii, in contrast, after a prolonged episode of waterlogging stress, exogenous supply of ethylene suppressed the production of ethanol and acetaldehyde, whereas exogenous 1-methylcyclopropene enhanced their production. In the more tolerant Dendranthema species, ethylene appeared to signal an acceleration of both waterlogging-induced programmed cell death and aerenchyma formation and to alleviate ethanolic fermentation, whereas in the more sensitive species ethylene activated fermentation and increased the release of ethanol and acetaldehyde, which are by-products probably responsible for the collapse of the waterlogging-damaged root. PMID:23645034

  16. Gait, cost and time implications for changing from PTB to ICEX sockets.

    PubMed

    Datta, D; Harris, I; Heller, B; Howitt, J; Martin, R

    2004-08-01

    The ICEX system (Ossur, Iceland), allows a socket to be manufactured directly onto the stump and is thought to provide improved comfort due to better pressure distribution whilst being easier to fit and manufacture. The aims of this project were to a) compare gait performance by measuring several gait characteristics, b) compare production and fitting times, c) investigate financial implications and d) attempt to gauge the amputees' subjective opinions of socket comfort. A randomised, controlled trial was conducted on 27 trans-tibial amputees with an existing patellar tendon bearing (PTB) socket on the Endolite system (Chas A. Blatchford, UK). Twenty one (21) subjects completed the study. Of these, 10 in the control group received new PTB sockets while 11 in the experimental group received ICEX. Gait analysis wearing existing sockets was performed and kinetic data obtained from a force plate. This was repeated with the new sockets after a 6 week period of adjustment. Mann-Whitney tests were used in statistical evaluations with a significance level of 5%. Subjects were asked to score their prosthesis for comfort using the Socket Comfort Score (Hanspal et al., 2003) and the frequency of visits for socket adjustments over a three-month period post-delivery of the sockets was recorded. This study demonstrates no significant difference in any of the gait parameters measured. Though the time required to manufacture a PTB prosthesis was found to be considerably longer than the ICEX, the overall cost for producing the ICEX was significantly greater. Subjects showed only minor comfort preference for the ICEX design and there was no significant difference in the mean number of visits for socket adjustments. In view of the considerable additional cost of providing ICEX and the lack of evidence of improvement in any parameter tested, the routine provision of ICEX prostheses to unselected trans-tibial amputees cannot be recommended. PMID:15382805

  17. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution. PMID:16984186

  18. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas

    PubMed Central

    Palla, Adelaida R.; Piazzolla, Daniela; Alcazar, Noelia; Cañamero, Marta; Graña, Osvaldo; Gómez-López, Gonzalo; Dominguez, Orlando; Dueñas, Marta; Paramio, Jesús M.; Serrano, Manuel

    2015-01-01

    NANOG is a key pluripotency factor in embryonic stem cells that is frequently expressed in squamous cell carcinomas (SCCs). However, a direct link between NANOG and SCCs remains to be established. Here, we show that inducible overexpression of NANOG in mouse skin epithelia favours the malignant conversion of skin papillomas induced by chemical carcinogenesis, leading to increased SCC formation. Gene expression analyses in pre-malignant skin indicate that NANOG induces genes associated to epithelial-mesenchymal transition (EMT). Some of these genes are directly activated by NANOG, including EMT-associated genes Zeb1, Zeb2, Twist1, Prrx1 and miR-21. Finally, endogenous NANOG binds to the promoters of theses genes in human SCC cells and, moreover, NANOG induces EMT features in primary keratinocytes. These results provide in vivo evidence for the oncogenic role of NANOG in squamous cell carcinomas. PMID:25988972

  19. Nitrogen-promoted formation of graphite-like aggregations in SiC during neutron irradiation

    SciTech Connect

    Wang, P. F.; Ruan, Y. F.; Huang, L.; Zhu, W.

    2012-03-15

    The undoped and nitrogen-doped SiC bulk crystals irradiated with two neutron fluences were investigated by using confocal micro-Raman spectroscopy to analyze the effect of nitrogen impurity on irradiation damage. We found that the nitrogen impurity can promote the segregation of carbon atoms into graphite during heavy neutron irradiation, demonstrated by the presence of typical D and G graphite bands. Further experimental analysis indicated that the graphite-like aggregations uniformly distribute in SiC and possess much inferior thermal stability to crystalline graphite. The nucleation, namely generation of stable sp{sup 2} C=C configuration induced by nitrogen atoms, and growth during neutron irradiation can account for the formation of graphite-like aggregations.

  20. Monoallelic Loss of the Imprinted Gene Grb10 Promotes Tumor Formation in Irradiated Nf1+/- Mice

    PubMed Central

    Mroue, Rana; Huang, Brian; Braunstein, Steve; Firestone, Ari J.; Nakamura, Jean L.

    2015-01-01

    Imprinted genes are expressed from only one parental allele and heterozygous loss involving the expressed allele is sufficient to produce complete loss of protein expression. Genetic alterations are common in tumorigenesis but the role of imprinted genes in this process is not well understood. In earlier work we mutagenized mice heterozygous for the Neurofibromatosis I tumor suppressor gene (NF1) to model radiotherapy-associated second malignant neoplasms that arise in irradiated NF1 patients. Expression analysis of tumor cell lines established from our mouse models identified Grb10 expression as widely absent. Grb10 is an imprinted gene and polymorphism analysis of cell lines and primary tumors demonstrates that the expressed allele is commonly lost in diverse Nf1 mutant tumors arising in our mouse models. We performed functional studies to test whether Grb10 restoration or loss alter fundamental features of the tumor growth. Restoring Grb10 in Nf1 mutant tumors decreases proliferation, decreases soft agar colony formation and downregulates Ras signaling. Conversely, Grb10 silencing in untransformed mouse embryo fibroblasts significantly increased cell proliferation and increased Ras-GTP levels. Expression of a constitutively activated MEK rescued tumor cells from Grb10-mediated reduction in colony formation. These studies reveal that Grb10 loss can occur during in vivo tumorigenesis, with a functional consequence in untransformed primary cells. In tumors, Grb10 loss independently promotes Ras pathway hyperactivation, which promotes hyperproliferation, an early feature of tumor development. In the context of a robust Nf1 mutant mouse model of cancer this work identifies a novel role for an imprinted gene in tumorigenesis. PMID:26000738

  1. Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation.

    PubMed

    Jarjour, Andrew A; Durko, Margaret; Luk, Tamarah L; Marçal, Nathalie; Shekarabi, Masoud; Kennedy, Timothy E

    2011-01-01

    Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration. PMID

  2. Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo.

    PubMed

    Xu, Stacey X; Gilmore, Kevin J; Szabo, Peter A; Zeppa, Joseph J; Baroja, Miren L; Haeryfar, S M Mansour; McCormick, John K

    2014-09-01

    Staphylococcus aureus is a versatile bacterial pathogen that produces T cell-activating toxins known as superantigens (SAgs). Although excessive immune activation by SAgs can induce a dysregulated cytokine storm as a component of what is known as toxic shock syndrome (TSS), the contribution of SAgs to the staphylococcal infection process is not well defined. Here, we evaluated the role of the bacterial superantigen staphylococcal enterotoxin A (SEA) in a bacteremia model using humanized transgenic mice expressing SAg-responsive HLA-DR4 molecules. Infection with S. aureus Newman induced SEA-dependent Vβ skewing of T cells and enhanced bacterial survival in the liver compared with infection by sea knockout strain. SEA-induced gamma interferon, interleukin-12, and chemokine responses resulted in increased infiltration of CD11b(+) Ly6G(+) neutrophils into the liver, promoting the formation of abscesses that contained large numbers of viable staphylococci. Hepatic abscesses occurred significantly more frequently in S. aureus Newman-infected livers than in livers infected with the Newman sea knockout strain, promoting the survival of S. aureus in vivo. This represents a novel mechanism during infection whereby S. aureus utilizes SAgs to form a specialized niche and manipulate the immune system. PMID:24914221

  3. Superantigens Subvert the Neutrophil Response To Promote Abscess Formation and Enhance Staphylococcus aureus Survival In Vivo

    PubMed Central

    Xu, Stacey X.; Gilmore, Kevin J.; Szabo, Peter A.; Zeppa, Joseph J.; Baroja, Miren L.; Haeryfar, S. M. Mansour

    2014-01-01

    Staphylococcus aureus is a versatile bacterial pathogen that produces T cell-activating toxins known as superantigens (SAgs). Although excessive immune activation by SAgs can induce a dysregulated cytokine storm as a component of what is known as toxic shock syndrome (TSS), the contribution of SAgs to the staphylococcal infection process is not well defined. Here, we evaluated the role of the bacterial superantigen staphylococcal enterotoxin A (SEA) in a bacteremia model using humanized transgenic mice expressing SAg-responsive HLA-DR4 molecules. Infection with S. aureus Newman induced SEA-dependent Vβ skewing of T cells and enhanced bacterial survival in the liver compared with infection by sea knockout strain. SEA-induced gamma interferon, interleukin-12, and chemokine responses resulted in increased infiltration of CD11b+ Ly6G+ neutrophils into the liver, promoting the formation of abscesses that contained large numbers of viable staphylococci. Hepatic abscesses occurred significantly more frequently in S. aureus Newman-infected livers than in livers infected with the Newman sea knockout strain, promoting the survival of S. aureus in vivo. This represents a novel mechanism during infection whereby S. aureus utilizes SAgs to form a specialized niche and manipulate the immune system. PMID:24914221

  4. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation.

    PubMed

    Chen, Shilei; Du, Changhong; Shen, Mingqiang; Zhao, Gaomei; Xu, Yang; Yang, Ke; Wang, Xinmiao; Li, Fengju; Zeng, Dongfeng; Chen, Fang; Wang, Song; Chen, Mo; Wang, Cheng; He, Ting; Wang, Fengchao; Wang, Aiping; Cheng, Tianmin; Su, Yongping; Zhao, Jinghong; Wang, Junping

    2016-02-25

    The effect of sympathetic stimulation on thrombopoiesis is not well understood. Here, we demonstrate that both continual noise and exhaustive exercise elevate peripheral platelet levels in normal and splenectomized mice, but not in dopamine β-hydroxylase-deficient (Dbh(-/-)) mice that lack norepinephrine (NE) and epinephrine (EPI). Further investigation demonstrates that sympathetic stimulation via NE or EPI injection markedly promotes platelet recovery in mice with thrombocytopenia induced by 6.0 Gy of total-body irradiation and in mice that received bone marrow transplants after 10.0 Gy of lethal irradiation. Unfavorably, sympathetic stress-stimulated thrombopoiesis may also contribute to the pathogenesis of atherosclerosis by increasing both the amount and activity of platelets in apolipoprotein E-deficient (ApoE(-/-)) mice. In vitro studies reveal that both NE and EPI promote megakaryocyte adhesion, migration, and proplatelet formation (PPF) in addition to the expansion of CD34(+) cells, thereby facilitating platelet production. It is found that α2-adrenoceptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation is involved in NE- and EPI-induced megakaryocyte adhesion and migration, and PPF is regulated by ERK1/2 activation-mediated RhoA GTPase signaling. Our data deeply characterize the role of sympathetic stimulation in the regulation of thrombopoiesis and reevaluate its physiopathological implications. PMID:26644453

  5. Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins

    PubMed Central

    Koh, Sehwon; Kim, Namsoo; Yin, Henry H.; Harris, Ian R.; Dejneka, Nadine S.

    2015-01-01

    Cell therapy demonstrates great potential for the treatment of neurological disorders. Human umbilical tissue-derived cells (hUTCs) were previously shown to have protective and regenerative effects in animal models of stroke and retinal degeneration, but the underlying therapeutic mechanisms are unknown. Because synaptic dysfunction, synapse loss, degeneration of neuronal processes, and neuronal death are hallmarks of neurological diseases and retinal degenerations, we tested whether hUTCs contribute to tissue repair and regeneration by stimulating synapse formation, neurite outgrowth, and neuronal survival. To do so, we used a purified rat retinal ganglion cell culture system and found that hUTCs secrete factors that strongly promote excitatory synaptic connectivity and enhance neuronal survival. Additionally, we demonstrated that hUTCs support neurite outgrowth under normal culture conditions and in the presence of the growth-inhibitory proteins chondroitin sulfate proteoglycan, myelin basic protein, or Nogo-A (reticulon 4). Furthermore, through biochemical fractionation and pharmacology, we identified the major hUTC-secreted synaptogenic factors as the thrombospondin family proteins (TSPs), TSP1, TSP2, and TSP4. Silencing TSP expression in hUTCs, using small RNA interference, eliminated both the synaptogenic function of these cells and their ability to promote neurite outgrowth. However, the majority of the prosurvival functions of hUTC-conditioned media was spared after TSP knockdown, indicating that hUTCs secrete additional neurotrophic factors. Together, our findings demonstrate that hUTCs affect multiple aspects of neuronal health and connectivity through secreted factors, and each of these paracrine effects may individually contribute to the therapeutic function of these cells. SIGNIFICANCE STATEMENT Human umbilical tissue-derived cells (hUTC) are currently under clinical investigation for the treatment of geographic atrophy secondary to age-related macular

  6. BipA Is Associated with Preventing Autoagglutination and Promoting Biofilm Formation in Bordetella holmesii

    PubMed Central

    Hiramatsu, Yukihiro; Saito, Momoko; Otsuka, Nao; Suzuki, Eri; Watanabe, Mineo; Shibayama, Keigo; Kamachi, Kazunari

    2016-01-01

    Bordetella holmesii causes both invasive and respiratory diseases in humans. Although the number of cases of pertussis-like respiratory illnesses due to B. holmesii infection has increased in the last decade worldwide, little is known about the virulence factors of the organism. Here, we analyzed a B. holmesii isolate that forms large aggregates and precipitates in suspension, and subsequently demonstrated that the autoagglutinating isolate is deficient in Bordetella intermediate protein A (BipA) and that this deletion is caused by a frame-shift mutation in the bipA gene. A BipA-deficient mutant generated by homologous recombination also exhibited the autoagglutination phenotype. Moreover, the BipA mutant adhered poorly to an abiotic surface and failed to form biofilms, as did two other B. holmesii autoagglutinating strains, ATCC 51541 and ATCC 700053, which exhibit transcriptional down-regulation of bipA gene expression, indicating that autoagglutination indirectly inhibits biofilm formation. In a mouse intranasal infection model, the BipA mutant showed significantly lower levels of initial lung colonization than did the parental strain (P < 0.01), suggesting that BipA might be a critical virulence factor in B. holmesii respiratory infection. Together, our findings suggest that BipA production plays an essential role in preventing autoagglutination and indirectly promoting biofilm formation by B. holmesii. PMID:27448237

  7. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance.

    PubMed

    Timmusk, Salme; Kim, Seong-Bin; Nevo, Eviatar; Abd El Daim, Islam; Ek, Bo; Bergquist, Jonas; Behers, Lawrence

    2015-01-01

    Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-type 4'-phosphopantetheinyl transferase (Sfp-type PPTase). The inactivation of the gene resulted in loss of NRPs/PKs production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. A26Δsfp biofilm promotion is directly mediated by NRPs/PKs, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their Sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type. Challenges with P. polymyxa genetic manipulation are discussed. PMID:26052312

  8. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance

    PubMed Central

    Timmusk, Salme; Kim, Seong-Bin; Nevo, Eviatar; Abd El Daim, Islam; Ek, Bo; Bergquist, Jonas; Behers, Lawrence

    2015-01-01

    Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-type 4'-phosphopantetheinyl transferase (Sfp-type PPTase). The inactivation of the gene resulted in loss of NRPs/PKs production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. A26Δsfp biofilm promotion is directly mediated by NRPs/PKs, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their Sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type. Challenges with P. polymyxa genetic manipulation are discussed. PMID:26052312

  9. Positive feedback regulation between IL10 and EGFR promotes lung cancer formation

    PubMed Central

    Hsu, Tsung-I; Wang, Yi-Chang; Hung, Chia-Yang; Yu, Chun-Hui; Su, Wu-Chou; Chang, Wen-Chang; Hung, Jan-Jong

    2016-01-01

    The role of IL10 in the tumorigenesis of various cancer types is still controversial. Here, we found that increased IL10 levels are correlated with a poor prognosis in lung cancer patients. Moreover, IL10 levels were significantly increased in the lungs and serum of EGFRL858R- and Kras4bG12D-induced lung cancer mice, indicating that IL10 might facilitate lung cancer tumorigenesis. IL10 knockout in EGFRL858R and Kras4bG12D mice inhibited the development of lung tumors and decreased the levels of infiltrating M2 macrophages and tumor-promoting Treg lymphocytes. We also showed that EGF increases IL10 expression by enhancing IL10 mRNA stability, and IL10 subsequently activates JAK1/STAT3, Src, PI3K/Akt, and Erk signaling pathways. Interestingly, the IL10-induced recruitment of phosphorylated Src was critical for inducing EGFR through the activation of the JAK1/STAT3 pathway, suggesting that Src and JAK1 positively regulate each other to enhance STAT3 activity. Doxycycline-induced EGFRL858R mice treated with gefitinib and anti-IL10 antibodies exhibited poor tumor formation. In conclusion, IL10 and EGFR regulate each other through positive feedback, which leads to lung cancer formation. PMID:26956044

  10. Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells

    PubMed Central

    Keller, Debora; Orpinell, Meritxell; Olivier, Nicolas; Wachsmuth, Malte; Mahen, Robert; Wyss, Romain; Hachet, Virginie; Ellenberg, Jan; Manley, Suliana; Gönczy, Pierre

    2014-01-01

    SAS-6 proteins are thought to impart the ninefold symmetry of centrioles, but the mechanisms by which their assembly occurs within cells remain elusive. In this paper, we provide evidence that the N-terminal, coiled-coil, and C-terminal domains of HsSAS-6 are each required for procentriole formation in human cells. Moreover, the coiled coil is necessary and sufficient to mediate HsSAS-6 centrosomal targeting. High-resolution imaging reveals that GFP-tagged HsSAS-6 variants localize in a torus around the base of the parental centriole before S phase, perhaps indicative of an initial loading platform. Moreover, fluorescence recovery after photobleaching analysis demonstrates that HsSAS-6 is immobilized progressively at centrosomes during cell cycle progression. Using fluorescence correlation spectroscopy and three-dimensional stochastic optical reconstruction microscopy, we uncover that HsSAS-6 is present in the cytoplasm primarily as a homodimer and that its oligomerization into a ninefold symmetrical ring occurs at centrioles. Together, our findings lead us to propose a mechanism whereby HsSAS-6 homodimers are targeted to centrosomes where the local environment and high concentration of HsSAS-6 promote oligomerization, thus initiating procentriole formation. PMID:24590172

  11. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers.

    PubMed

    Potthoff, Matthew J; Wu, Hai; Arnold, Michael A; Shelton, John M; Backs, Johannes; McAnally, John; Richardson, James A; Bassel-Duby, Rhonda; Olson, Eric N

    2007-09-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  12. Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers

    PubMed Central

    Potthoff, Matthew J.; Wu, Hai; Arnold, Michael A.; Shelton, John M.; Backs, Johannes; McAnally, John; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2007-01-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  13. Akt3 Deficiency in Macrophages Promotes Foam Cell Formation and Atherosclerosis in Mice

    PubMed Central

    Ding, Liang; Biswas, Sudipta; Morton, Richard E.; Smith, Jonathan D.; Hay, Nissim; Byzova, Tatiana; Febbraio, Maria; Podrez, Eugene

    2012-01-01

    Summary Akt, a serine-threonine protein kinase, exists as three isoforms. The Akt signaling pathway controls multiple cellular functions in the cardiovascular system, and the atheroprotective endothelial cell dependent role of Akt1 has been recently demonstrated. The role of Akt3 isoform in cardiovascular pathophysiology is not known. We explored the role of Akt3 in atherosclerosis using mice with a genetic ablation of the Akt3 gene. Using hyperlipidemic ApoE−/− mice, we demonstrated a macrophage dependent, atheroprotective role for Akt3. In vitro experiments demonstrated differential subcellular localization of Akt1 and Akt3 in macrophages, and showed that Akt3 specifically inhibits macrophage cholesteryl ester accumulation and foam cell formation, a critical early event in atherogenesis. Mechanistically, Akt3 suppresses foam cell formation by reducing lipoprotein uptake and promoting ACAT-1 degradation via the ubiquitin-proteasome pathway. These studies demonstrate the non-redundant atheroprotective role for Akt3 exerted via the previously unknown link between the Akt signaling pathway and cholesterol metabolism. PMID:22632897

  14. PROSTAGLANDIN E2 MODIFIES SMAD2 AND PROMOTES SMAD2-SMAD4 COMPLEX FORMATION

    PubMed Central

    Yang, Chen; Chen, Chen; Sorokin, Andrey

    2014-01-01

    We report that PGE2 promotes Smad2-Smad4 complex formation and this phenomenon could be blocked by DIDS, an anion transporter inhibitor. Our data suggest that PGE2 had no effects on Smad2 phosphorylation, suggesting that PGE2-mediated Smad2-Smad4 complex formation is independent of TGF-β signaling and that PGE2 induced Smad2 modification which is different from TGF-β-mediated phosphorylation. We demonstrate that in primary human glomerular mesangial cells PGE2 caused modification of Smad2 as detected by Smad2N antibody, raised against a peptide near the N-terminus of Smad2. We hypothesize that Smad2 protein is post-translationaly modified by PGE2. Direct evidence of Smad2 modification by PGE2 was achieved by avidin pulldown assay which showed that endogenous Smad2 and recombinant Smad2 protein were attached by biotin-labeled PGE2. Taken together, our results provided evidence that post-translational modification of Smad2 could be a mechanism for the action of PGE2 in the pathogenesis of human pathologies. PMID:24613014

  15. Myeloid STAT3 promotes formation of colitis-associated colorectal cancer in mice

    PubMed Central

    Pathria, Paulina; Gotthardt, Dagmar; Prchal-Murphy, Michaela; Putz, Eva-Maria; Holcmann, Martin; Schlederer, Michaela; Grabner, Beatrice; Crncec, Ilija; Svinka, Jasmin; Musteanu, Monica; Hoffmann, Thomas; Filipits, Martin; Berger, Walter; Poli, Valeria; Kenner, Lukas; Bilban, Martin; Casanova, Emilio; Müller, Mathias; Strobl, Birgit; Bayer, Editha; Mohr, Thomas; Sexl, Veronika; Eferl, Robert

    2015-01-01

    Myeloid cells lacking STAT3 promote antitumor responses of NK and T cells but it is unknown if this crosstalk affects development of autochthonous tumors. We deleted STAT3 in murine myeloid cells (STAT3Δm) and examined the effect on the development of autochthonous colorectal cancers (CRCs). Formation of Azoxymethane/Dextransulfate (AOM/DSS)-induced CRCs was strongly suppressed in STAT3Δm mice. Gene expression profiling showed strong activation of T cells in the stroma of STAT3Δm CRCs. Moreover, STAT3Δm host mice were better able to control the growth of transplanted MC38 colorectal tumor cells which are known to be killed in a T cell-dependent manner. These data suggest that myeloid cells lacking STAT3 control formation of CRCs mainly via cross activation of T cells. Interestingly, the few CRCs that formed in STAT3Δm mice displayed enhanced stromalization but appeared normal in size indicating that they have acquired ways to escape enhanced tumor surveillance. We found that CRCs in STAT3Δm mice consistently activate STAT3 signaling which is implicated in immune evasion and might be a target to prevent tumor relapse. PMID:26137415

  16. Positive feedback regulation between IL10 and EGFR promotes lung cancer formation.

    PubMed

    Hsu, Tsung-I; Wang, Yi-Chang; Hung, Chia-Yang; Yu, Chun-Hui; Su, Wu-Chou; Chang, Wen-Chang; Hung, Jan-Jong

    2016-04-12

    The role of IL10 in the tumorigenesis of various cancer types is still controversial. Here, we found that increased IL10 levels are correlated with a poor prognosis in lung cancer patients. Moreover, IL10 levels were significantly increased in the lungs and serum of EGFRL858R- and Kras4bG12D-induced lung cancer mice, indicating that IL10 might facilitate lung cancer tumorigenesis. IL10 knockout in EGFRL858R and Kras4bG12D mice inhibited the development of lung tumors and decreased the levels of infiltrating M2 macrophages and tumor-promoting Treg lymphocytes. We also showed that EGF increases IL10 expression by enhancing IL10 mRNA stability, and IL10 subsequently activates JAK1/STAT3, Src, PI3K/Akt, and Erk signaling pathways. Interestingly, the IL10-induced recruitment of phosphorylated Src was critical for inducing EGFR through the activation of the JAK1/STAT3 pathway, suggesting that Src and JAK1 positively regulate each other to enhance STAT3 activity. Doxycycline-induced EGFRL858R mice treated with gefitinib and anti-IL10 antibodies exhibited poor tumor formation. In conclusion, IL10 and EGFR regulate each other through positive feedback, which leads to lung cancer formation. PMID:26956044

  17. Detergent-Mediated Formation of β-Hematin: Heme Crystallization Promoted by Detergents Implicates Nanostructure Formation for Use as a Biological Mimic

    PubMed Central

    2016-01-01

    Hemozoin is a unique biomineral that results from the sequestration of toxic free heme liberated as a consequence of hemoglobin degradation in the malaria parasite. Synthetic neutral lipid droplets (SNLDs) and phospholipids were previously shown to support the rapid formation of β-hematin, abiological hemozoin, under physiologically relevant pH and temperature, though the mechanism by which heme crystallization occurs remains unclear. Detergents are particularly interesting as a template because they are amphiphilic molecules that spontaneously organize into nanostructures and have been previously shown to mediate β-hematin formation. Here, 11 detergents were investigated to elucidate the physicochemical properties that best recapitulate crystal formation in the parasite. A strong correlation between the detergent’s molecular structure and the corresponding kinetics of β-hematin formation was observed, where higher molecular weight polar chains promoted faster reactions. The larger hydrophilic chains correlated to the detergent’s ability to rapidly sequester heme into the lipophilic core, allowing for crystal nucleation to occur. The data presented here suggest that detergent nanostructures promote β-hematin formation in a similar manner to SNLDs and phospholipids. Through understanding mediator properties that promote optimal crystal formation, we are able to establish an in vitro assay to probe this drug target pathway. PMID:27175104

  18. Vascular wall hypoxia promotes arterial thrombus formation via augmentation of vascular thrombogenicity.

    PubMed

    Matsuura, Yunosuke; Yamashita, Atsushi; Iwakiri, Takashi; Sugita, Chihiro; Okuyama, Nozomi; Kitamura, Kazuo; Asada, Yujiro

    2015-07-01

    Atherosclerotic lesions represent a hypoxic milieu. However, the significance of this milieu in atherothrombosis has not been established. We aimed to assess the hypothesis that vascular wall hypoxia promotes arterial thrombus formation. We examined the relation between vascular wall hypoxia and arterial thrombus formation using a rabbit model in which arterial thrombosis was induced by 0.5 %-cholesterol diet and repeated balloon injury of femoral arteries. Vascular wall hypoxia was immunohistochemically detected by pimonidazole hydrochloride, a hypoxia marker. Rabbit neointima and THP-1 macrophages were cultured to analyse prothrombotic factor expression under hypoxic conditions (1 % O2). Prothrombotic factor expression and nuclear localisation of hypoxia-inducible factor (HIF)-1α and nuclear factor-kappa B (NF-κB) p65 were immunohistochemically assessed using human coronary atherectomy plaques. Hypoxic areas were localised in the macrophage-rich deep portion of rabbit neointima and positively correlated with the number of nuclei immunopositive for HIF-1α and NF-κB p65, and tissue factor (TF) expression. Immunopositive areas for glycoprotein IIb/IIIa and fibrin in thrombi were significantly correlated with hypoxic areas in arteries. TF and plasminogen activator inhibitor-1 (PAI-1) expression was increased in neointimal tissues and/or macrophages cultured under hypoxia, and both were suppressed by inhibitors of either HIF-1 or NF-κB. In human coronary plaques, the number of HIF-1α-immunopositive nuclei was positively correlated with that of NF-κB-immunopositive nuclei and TF-immunopositive and PAI-1-immunopositive area, and it was significantly higher in thrombotic plaques. Vascular wall hypoxia augments the thrombogenic potential of atherosclerotic plaque and thrombus formation on plaques via prothrombotic factor upregulation. PMID:25833755

  19. Degradation mechanism of a low band gap polymer PTB7 by oxidation

    NASA Astrophysics Data System (ADS)

    Park, Soohyung; Jeong, Junkyeong; Lee, Hyunbok; Yi, Yeonjin

    Recently, the PCE of OPVs is at the 10% mark by using donor materials having a low band gap, such as poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) (PTB7) and its analogues. In spite of the significant PCE improvement, the lifetime issue still remains open problem. To solve these technical limitations fundamentally, the degradation mechanism should be understood. It can be revealed by investigating the electronic structures of polymers with controlled exposure of oxygen, moisture and light. In this study, ultraviolet, X-ray and inverse photoelectron spectroscopy measurements were performed with step-by-step exposure of controlled oxygen, moisture and light to investigate the degradation mechanism of each polymer film. Theoretical calculations using density functional theory (DFT) were also performed to understand detailed degradation process. From the experimental results, we demonstrate that push-pull polymers are more sensitive to environmental conditions, compared with non-push-pull (conventional) polymers such as poly (3-hexylthiophene-2,5-diyl) (P3HT). In addition, we show high photo-oxidation of PTB7 is originated from the structural reason.

  20. Ezrin/Radixin/Moesin Proteins and Flotillins Cooperate to Promote Uropod Formation in T Cells

    PubMed Central

    Martinelli, Sibylla; Chen, Emily J. H.; Clarke, Fiona; Lyck, Ruth; Affentranger, Sarah; Burkhardt, Janis K.; Niggli, Verena

    2013-01-01

    T cell uropods are enriched in specific proteins including adhesion receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), lipid raft-associated proteins such as flotillins and ezrin/radixin/moesin (ERM) proteins which associate with cholesterol-rich raft domains and anchor adhesion receptors to the actin cytoskeleton. Using dominant mutants and siRNA technology we have tested the interactions among these proteins and their role in shaping the T cell uropod. Expression of wild type (WT) ezrin-EGFP failed to affect the morphology of human T cells or chemokine-induced uropod recruitment of PSGL-1 and flotillin-1 and -2. In contrast, expression of constitutively active T567D ezrin-EGFP induced a motile, polarized phenotype in some of the transfected T cells, even in the absence of chemokine. These cells featured F-actin-rich ruffles in the front and uropod enrichment of PSGL-1 and flotillins. T567D ezrin-EGFP was itself strongly enriched in the rear of the polarized T cells. Uropod formation induced by T567D ezrin-EGFP was actin-dependent as it was attenuated by inhibition of Rho-kinase or myosin II, and abolished by disruption of actin filaments. While expression of constitutively active ezrin enhanced cell polarity, expression of a dominant-negative deletion mutant of ezrin, 1–310 ezrin-EGFP, markedly reduced uropod formation induced by the chemokine SDF-1, T cell front-tail polarity, and capping of PSGL-1 and flotillins. Transfection of T cells with WT or T567D ezrin did not affect chemokine-mediated chemotaxis whereas 1–310 ezrin significantly impaired spontaneous 2D migration and chemotaxis. siRNA-mediated downregulation of flotillins in murine T cells attenuated moesin capping and uropod formation, indicating that ERM proteins and flotillins cooperate in uropod formation. In summary, our results indicate that activated ERM proteins function together with flotillins to promote efficient chemotaxis of T cells by structuring the uropod of migrating T

  1. Using formative research to develop CHANGE!: a curriculum-based physical activity promoting intervention

    PubMed Central

    2011-01-01

    Background Low childhood physical activity levels are currently one of the most pressing public health concerns. Numerous school-based physical activity interventions have been conducted with varied success. Identifying effective child-based physical activity interventions are warranted. The purpose of this formative study was to elicit subjective views of children, their parents, and teachers about physical activity to inform the design of the CHANGE! (Children's Health, Activity, and Nutrition: Get Educated!) intervention programme. Methods Semi-structured mixed-gender interviews (group and individual) were conducted in 11 primary schools, stratified by socioeconomic status, with 60 children aged 9-10 years (24 boys, 36 girls), 33 parents (4 male, 29 female) and 10 teachers (4 male, 6 female). Questions for interviews were structured around the PRECEDE stage of the PRECEDE-PROCEDE model and addressed knowledge, attitudes and beliefs towards physical activity, as well as views on barriers to participation. All data were transcribed verbatim. Pen profiles were constructed from the transcripts in a deductive manner using the Youth Physical Activity Promotion Model framework. The profiles represented analysis outcomes via a diagram of key emergent themes. Results Analyses revealed an understanding of the relationship between physical activity and health, although some children had limited understanding of what constitutes physical activity. Views elicited by children and parents were generally consistent. Fun, enjoyment and social support were important predictors of physical activity participation, though several barriers such as lack of parental support were identified across all group interviews. The perception of family invested time was positively linked to physical activity engagement. Conclusions Families have a powerful and important role in promoting health-enhancing behaviours. Involvement of parents and the whole family is a strategy that could be

  2. NMR Characterization of the Near Native and Unfolded States of the PTB Domain of Dok1: Alternate Conformations and Residual Clusters

    PubMed Central

    Gupta, Sebanti; Bhattacharjya, Surajit

    2014-01-01

    Background Phosphotyrosine binding (PTB) domains are critically involved in cellular signaling and diseases. PTB domains are categorized into three distinct structural classes namely IRS-like, Shc-like and Dab-like. All PTB domains consist of a core pleckstrin homology (PH) domain with additional structural elements in Shc and Dab groups. The core PH fold of the PTB domain contains a seven stranded β-sheet and a long C-terminal helix. Principal Findings In this work, the PTB domain of Dok1 protein has been characterized, by use of NMR spectroscopy, in solutions containing sub-denaturing and denaturing concentrations of urea. We find that the Dok1 PTB domain displays, at sub-denaturing concentrations of urea, alternate conformational states for residues located in the C-terminal helix and in the β5 strand of the β-sheet region. The β5 strand of PTB domain has been found to be experiencing significant chemical shift perturbations in the presence of urea. Notably, many of these residues in the helix and in the β5 strand are also involved in ligand binding. Structural and dynamical analyses at 7 M urea showed that the PTB domain is unfolded with islands of motionally restricted regions in the polypeptide chain. Further, the C-terminal helix appears to be persisted in the unfolded state of the PTB domain. By contrast, residues encompassing β-sheets, loops, and the short N-terminal helix lack any preferred secondary structures. Moreover, these residues demonstrated an intimate contact with the denaturant. Significance This study implicates existence of alternate conformational states around the ligand binding pocket of the PTB domain either in the native or in the near native conditions. Further, the current study demonstrates that the C-terminal helical region of PTB domain may be considered as a potential site for the initiation of folding. PMID:24587391

  3. The effect of spin coating parameters on the performance of PTB7/PC71BM polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jie; Li, Shu-guang; Zheng, Yi-fan; Yu, Jun-Sheng

    2014-09-01

    We fabricated the inverted polymer solar cells (PSCs) with a structure of ITO/ZnO/PTB7:PC71BM/MoO3/Ag, and investigate the influence of spin coating on the device performance in this article. Through modifying the spin coating parameters, the high PSC performance could be obtained with VOC=0.769 (V), JSC=11.6 (mA/cm2), FF=58.8 % and PCE=5.26 %, respectively. The improvement of device performance was attributed to the enhanced absorption of active layer in the wavelength from 550 nm to 700 nm and the increased phase separation of PTB7:PC71BM.

  4. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Berny-Lang, M. A.; Aslan, J. E.; Tormoen, G. W.; Patel, I. A.; Bock, P. E.; Gruber, A.; McCarty, O. J. T.

    2011-02-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer, and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.

  5. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.

    PubMed

    Lozada, Adrian F; Wang, Xulong; Gounko, Natalia V; Massey, Kerri A; Duan, Jingjing; Liu, Zhaoping; Berg, Darwin K

    2012-05-30

    Glutamate is the primary excitatory transmitter in adult brain, acting through synapses on dendritic spines and shafts. Early in development, however, when glutamatergic synapses are only beginning to form, nicotinic cholinergic excitation is already widespread; it is mediated by acetylcholine activating nicotinic acetylcholine receptors (nAChRs) that generate waves of activity across brain regions. A major class of nAChRs contributing at this time is a species containing α7 subunits (α7-nAChRs). These receptors are highly permeable to calcium, influence a variety of calcium-dependent events, and are diversely distributed throughout the developing CNS. Here we show that α7-nAChRs unexpectedly promote formation of glutamatergic synapses during development. The dependence on α7-nAChRs becomes clear when comparing wild-type (WT) mice with mice constitutively lacking the α7-nAChR gene. Ultrastructural analysis, immunostaining, and patch-clamp recording all reveal synaptic deficits when α7-nAChR input is absent. Similarly, nicotinic activation of α7-nAChRs in WT organotypic culture, as well as cell culture, increases the number of glutamatergic synapses. RNA interference demonstrates that the α7-nAChRs must be expressed in the neuron being innervated for normal innervation to occur. Moreover, the deficits persist throughout the developmental period of major de novo synapse formation and are still fully apparent in the adult. GABAergic synapses, in contrast, are undiminished in number under such conditions. As a result, mice lacking α7-nAChRs have an altered balance in the excitatory/inhibitory input they receive. This ratio represents a fundamental feature of neural networks and shows for the first time that endogenous nicotinic cholinergic signaling plays a key role in network construction. PMID:22649244

  6. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    PubMed Central

    Berny-Lang, MA; Aslan, JE; Tormoen, GW; Patel, IA; Bock, PE; Gruber, A

    2011-01-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently-labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions. PMID:21301066

  7. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  8. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation

    PubMed Central

    Xu, Fengwen; Mei, Shan; Le Duff, Yann; Yin, Lijuan; Pang, Xiaojing; Cen, Shan; Jin, Qi; Liang, Chen; Guo, Fei

    2015-01-01

    The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway. PMID:26134849

  9. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds.

    PubMed

    Grochmal, Anna; Prout, Luba; Makin-Taylor, Robert; Prohens, Rafel; Tomas, Salvador

    2015-09-30

    In living cells, reactions take place in membrane-bound compartments, often in response to changes in the environment. Learning how the reactions are influenced by this compartmentalization will help us gain an optimal understanding of living organisms at the molecular level and, at the same time, will offer vital clues on the behavior of simple compartmentalized systems, such as prebiotic precursors of cells and cell-inspired artificial systems. In this work we show that a reactive building block (an activated amino acid derivative) trapped in the cavity of a liposome is protected against hydrolysis and reacts nearly quantitatively with another building block, which is membrane-permeable and free in solution, to form the dipeptide. By contrast, when the activated amino acid is found outside the liposome, hydrolysis is the prevalent reaction, showing that the cavity of the liposomes promotes the formation of peptide bonds. We attribute this result to the large lipid concentration in small compartments from the point of view of a membrane-impermeable molecule. Based on this result, we show how the outcome of the reaction can be predicted as a function of the size of the compartment. The implications of these results on the behavior of biomolecules in cell compartments, abiogenesis, and the design of artificial cell-inspired systems are considered. PMID:26356087

  10. Cathodes enhance Corynebacterium glutamicum growth with nitrate and promote acetate and formate production.

    PubMed

    Xafenias, Nikolaos; Kmezik, Cathleen; Mapelli, Valeria

    2016-09-01

    The industrially important Corynebacterium glutamicum can only incompletely reduce nitrate into nitrite which then accumulates and inhibits growth. Herein we report that cathodes can resolve this problem and enhance glucose fermentation and growth by promoting nitrite reduction. Cell growth was inhibited at relatively high potentials but was significant when potentials were more reductive (-1.20V with anthraquinone-2-sulfonate as redox mediator or -1.25V vs. Ag/AgCl). Under these conditions, glucose was consumed up to 6 times faster and acetate was produced at up to 11 times higher yields (up to 1.1mol/mol-glucose). Acetate concentrations are the highest reported so far for C. glutamicum under anaerobic conditions, reaching values up to 5.3±0.3g/L. Herein we also demonstrate for the first time formate production (up to 3.4±0.3g/L) by C. glutamicum under strongly reducing conditions, and we attribute this to a possible mechanism of CO2 bioreduction that was electrochemically triggered. PMID:27235972

  11. A Salmonella Toxin Promotes Persister Formation through Acetylation of tRNA.

    PubMed

    Cheverton, Angela M; Gollan, Bridget; Przydacz, Michal; Wong, Chi T; Mylona, Anastasia; Hare, Stephen A; Helaine, Sophie

    2016-07-01

    The recalcitrance of many bacterial infections to antibiotic treatment is thought to be due to the presence of persisters that are non-growing, antibiotic-insensitive cells. Eventually, persisters resume growth, accounting for relapses of infection. Salmonella is an important pathogen that causes disease through its ability to survive inside macrophages. After macrophage phagocytosis, a significant proportion of the Salmonella population forms non-growing persisters through the action of toxin-antitoxin modules. Here we reveal that one such toxin, TacT, is an acetyltransferase that blocks the primary amine group of amino acids on charged tRNA molecules, thereby inhibiting translation and promoting persister formation. Furthermore, we report the crystal structure of TacT and note unique structural features, including two positively charged surface patches that are essential for toxicity. Finally, we identify a detoxifying mechanism in Salmonella wherein peptidyl-tRNA hydrolase counteracts TacT-dependent growth arrest, explaining how bacterial persisters can resume growth. PMID:27264868

  12. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2003-01-01

    The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only ≈15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces. PMID:14665692

  13. WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis.

    PubMed

    Lie, Catharine; Kelsom, Corey; Wu, Xuelin

    2012-11-01

    One of the key events in dicot plant embryogenesis is the emergence of the two cotyledon primordia, which marks the transition from radial symmetry to bilateral symmetry. In Arabidopsis thaliana, the three CUP-SHAPED COTYLEDON (CUC) genes are responsible for determining the boundary region between the cotyledons. However, the mechanisms controlling their transcription activation are not well understood. Previous studies found that several WOX family homeobox transcription factors are involved in embryo apical patterning and cotyledon development. Here we show that WOX2 and STIMPY-LIKE (STPL/WOX8) act redundantly to differentially regulate the expression of the CUC genes in promoting the establishment of the cotyledon boundary, without affecting the primary shoot meristem. Loss of both WOX2 and STPL results in reduced CUC2 and CUC3 expression in one side of the embryo, but an expansion of the CUC1 domain. Furthermore, we found that STPL is expressed in the embryo proper, and its activation is enhanced by the removal of WOX2, providing an explanation for the functional redundancy between WOX2 and STPL. Additional evidence also showed that WOX2 and STPL function independently in regulating different aspects of local auxin gradient formation during early embryogenesis. PMID:22827849

  14. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity

    PubMed Central

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-01-01

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin’s effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity. PMID:27110777

  15. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.

    PubMed

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-01-01

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity. PMID:27110777

  16. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation

    PubMed Central

    Li, Shuang; Ma, Guoqiang; Wang, Bing; Jiang, Jin

    2015-01-01

    Hedgehog (Hh) is a secreted glycoprotein that binds its receptor Patched to activate the G protein-coupled receptor-like protein Smoothened (Smo). In Drosophila, protein kinase A (PKA) phosphorylates and activates Smo in cells stimulated with Hh. In unstimulated cells, PKA phosphorylates and inhibits the transcription factor Cubitus interruptus (Ci). Here, we found that in cells exposed to Hh, the catalytic subunit of PKA (PKAc) bound to the juxtamembrane region of the C terminus of Smo. PKA-mediated phosphorylation of Smo further enhanced its association with PKAc to form stable kinase-substrate complexes that promoted the PKA-mediated trans-phosphorylation of Smo dimers. We identified multiple basic residues in the C-terminus of Smo that were required for interaction with PKAc, Smo phosphorylation, and Hh pathway activation. Hh induced a switch from the association of PKAc with a cytosolic complex of Ci and the kinesin-like protein Costal2 (Cos2) to a membrane-bound Smo-Cos2 complex. Thus, our study uncovers a previously uncharacterized mechanism for regulation of PKA activity and demonstrates that the signal-regulated formation of kinase-substrate complexes plays a central role in Hh signal transduction. PMID:24985345

  17. A Formative Experiment to Promote Disciplinary Literacy in Middle-School and Pre-Service Teacher Education through Blogging

    ERIC Educational Resources Information Center

    Colwell, Jamie R.

    2012-01-01

    This dissertation describes a formative experiment that investigated how strategy instruction paired with collaborative blogging could promote disciplinary literacy among eighth-grade students in a social studies classroom and among pre-service teachers in a social studies methods course. Qualitative methods were utilized to collect and analyze…

  18. Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended -10 sequences.

    PubMed Central

    Burns, H D; Belyaeva, T A; Busby, S J; Minchin, S D

    1996-01-01

    We have studied the formation of open complexes between purified RNA polymerase from Escherichia coli and DNA fragments carrying the galP1 promoter, a promoter with an extended -10 region. Unusually, these complexes are formed readily at low temperatures. This low-temperature opening is unaffected by deletions of either upstream or downstream promoter sequences. We conclude that low-temperature open-complex formation is due to specific base sequences in and just upstream of the extended -10 region. In contrast, open complexes are not formed at low temperatures with DNA fragments carrying the E. coli cysG promoter, which also has an extended -10 region. This demonstrates that an extended -10 sequence alone is not sufficient for low-temperature opening. Additionally, we report the temperature dependence of a hybrid galP1-cysG promoter, the related galP2 and galP3 promoters and a derivative of galP1 with an improved -10 hexamer sequence. PMID:8694780

  19. Final results of bilateral comparison between NIST and PTB for flows of high pressure natural gas

    NASA Astrophysics Data System (ADS)

    Mickan, B.; Toebben, H.; Johnson, A.; Kegel, T.

    2013-01-01

    In 2009 NIST developed a US national flow standard to provide traceability for flow meters used for custody transfer of pipeline quality natural gas. NIST disseminates the SI unit of flow by calibrating a customer flow meter against a parallel array of turbine meter working standards, which in turn are traceable to a pressure-volume-temperature-time (PVTt) primary standard. The calibration flow range extends from 0.125 actual m3/s to 9 actual m3/s with an expanded uncertainty as low as 0.22% at high flows, and increasing to almost 0.40% at the lowest flows. Details regarding the traceability chain and uncertainty analysis are documented in prior publications. The current manuscript verifies NIST's calibration uncertainty via a bilateral comparison with the German National Metrology Institute PTB. The results of the bilateral are linked to the 2006 key comparison results between three EURAMET national metrology institutes (i.e., PTB, VSL and LNE). Linkage is accomplished in spite of using a different transfer standard in the bilateral versus the key comparison. A mathematical proof is included that demonstrates that the relative difference between a laboratory's measured flow and the key comparison reference value is independent of the transfer package for most flow measurement applications. The bilateral results demonstrate that NIST's natural gas flow measurements are within their specified uncertainties and are equivalent to those of the EURAMET National Metrology Institutes. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Precise time and frequency intercomparison between NPL, India and PTB, Federal Republic of Germany via satellite symphonie-1

    NASA Technical Reports Server (NTRS)

    Mathur, B. S.; Banerjee, P.; Sood, P. C.; Saxena, M.; Kumar, N.; Suri, A. K.

    1981-01-01

    A time and frequency intercomparison experiment conducted using Earth stations in New Delhi, India and Raisting, FRG is described. The NPL clock was placed at New Delhi Earth Station and the Raisting Clock was calibrated with PTB/Primary standard via LORAN-C and travelling clocks. The random uncertainity of time comparisons, represented by two sample Allan Variance sigma (30 seconds), was less than 10 nanoseconds. The relative frequency difference between the NPL and Raisting Clocks, SNPL, RAIS, as measured over the 44 days period was found to be -15.7 x 10 to the -13th power. The relative frequency difference between PTB Primary Standard and Raisting Clock, SPTB, RAIS, during this period, was measured to be -22.8 x 10 to the -13th power. The relative frequency difference between NPL clock and PTB Primary Standard, SNPL, PTB, thus, is +7.1 x 10 to the -13th power. The clock rate (UTC, India) of +7.1 + or - 0.5 x 10 to the -13th power, agrees well with that obtained via VLF phase measurements over one year period and with USNO travelling clock time comparisons made in September, 1980.

  1. Overexpression of AtPTPA in Arabidopsis increases protein phosphatase 2A activity by promoting holoenzyme formation and ABA negatively affects holoenzyme formation

    PubMed Central

    Chen, Jian; Zhu, Xunlu; Shen, Guoxin; Zhang, Hong

    2015-01-01

    AtPTPA is a critical regulator for the holoenzyme assembling of protein phosphatase 2A (PP2A) in Arabidopsis. Characterization of AtPTPA improves our understanding of the function and regulation of PP2A in eukaryotes. Further analysis of AtPTPA-overexpressing plants indicates that AtPTPA increases PP2A activity by promoting PP2A's AC dimer formation, thereby holoenzyme assembling. Plant hormone abscisic acid (ABA) reduces PP2A enzyme activity by negatively affects PP2A's AC dimer formation. Therefore, AtPTPA is a positive factor that promotes PP2A holoenzyme assembly, and ABA is a negative factor that prevents PP2A holoenzyme assembly. PMID:26633567

  2. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    PubMed Central

    2010-01-01

    Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the human fetal ovary, the

  3. Heat and Radiofrequency Plasma Glow Discharge Pretreatment of a Titanium Alloy Promote Bone Formation and Osseointegration

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Vyas, Parth; Lane, Joseph M.; Meyers, Kathleen; Wright, Timothy

    2013-01-01

    Orthopedic and dental implants manifest increased failure rates when inserted into low density bone. We determined whether chemical pretreatments of a titanium alloy implant material stimulated new bone formation to increase osseointegration in vivo in trabecular bone using a rat model. Titanium alloy rods were untreated or pretreated with heat (600°C) or radiofrequency plasma glow discharge (RFGD). The rods were then coated with the extracellular matrix protein fibronectin (1 nM) or left uncoated and surgically implanted into the rat femoral medullary cavity. Animals were euthanized 3 or 6 weeks later, and femurs were removed for analysis. The number of trabeculae in contact with the implant surface, surface contact between trabeculae and the implant, and the length and area of bone attached to the implant were measured by histomorphometry. Implant shear strength was measured by a pull-out test. Both pretreatments and fibronectin enhanced the number of trabeculae bonding with the implant and trabeculae-to-implant surface contact, with greater effects of fibronectin observed with pretreated compared to untreated implants. RFGD pretreatment modestly increased implant shear strength, which was highly correlated (r2 = 0.87 – 0.99) with measures of trabecular bonding for untreated and RFGD-pretreated implants. In contrast, heat pretreatment increased shear strength 3 to 5-fold for both uncoated and fibronectin-coated implants at 3 and 6 weeks, suggesting a more rapid increase in implant-femur bonding compared to the other groups. In summary, our findings suggest that the heat and RFGD pretreatments can promote the osseointegration of a titanium alloy implant material. PMID:23649564

  4. Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients.

    PubMed

    Untersmayr, Eva; Bakos, Noémi; Schöll, Isabella; Kundi, Michael; Roth-Walter, Franziska; Szalai, Krisztina; Riemer, Angelika B; Ankersmit, Hendrik J; Scheiner, Otto; Boltz-Nitulescu, George; Jensen-Jarolim, Erika

    2005-04-01

    Recently, we have demonstrated that anti-ulcer drugs, such as H2-receptor blockers and proton pump inhibitors, promote the development of immediate type food allergy toward digestion-labile proteins in mice. The aim of this study was to examine the allergological relevance of these findings in humans. In an observational cohort study, we screened 152 adult patients from a gastroenterological outpatient clinic with negative case histories for atopy or allergy, who were medicated with H2-receptor blockers or proton pump inhibitors for 3 months. IgE reactivities to food allergens before and after 3 months of anti-acid treatment were compared serologically. Ten percent of the patients showed a boost of preexisting IgE antibodies and 15% de novo IgE formation toward numerous digestion-labile dietary compounds, like milk, potato, celery, carrots, apple, orange, wheat, and rye flour. Thus, the relative risk to develop food-specific IgE after anti-acid therapy was 10.5 (95% confidence interval: 1.44-76.48). The long-term effect was evaluated 5 months after therapy. Food-specific IgE could still be measured in 6% of the patients, as well as significantly elevated serum concentrations of ST2, a Th2-specific marker. An unspecific boost during the pollen season could be excluded, as 50 untreated control patients revealed no changes in their IgE pattern. In line with our previous animal experiments, our data strongly suggest that anti-ulcer treatment primes the development of IgE toward dietary compounds in long-term acid-suppressed patients. PMID:15671152

  5. Study on the Promotion of Bacterial Biofilm Formation by a Salmonella Conjugative Plasmid and the Underlying Mechanism

    PubMed Central

    Liao, Li; Zhou, Min; You, Lixiang; Zhao, Qing; Li, Yuanyuan; Niu, Hua; Wu, Shuyan; Huang, Rui

    2014-01-01

    To investigate the effect of the pRST98 plasmid, originally isolated from Salmonella enterica serovar Typhi (S. Typhi), on biofilm (BF) formation, we carried out in vitro experiments using S. Typhi, Salmonella enterica serovar Typhimurium (S. Typhimurium) and Escherichia coli (E. coli). We further explored the effects of pRST98 in vivo by establishing two animal models, a tumor-bearing mouse model and a mouse urethral catheter model. Moreover, we examined the relationship between the quorum-sensing (QS) system and pRST98-mediated BF formation. These studies showed that pRST98 enhanced BF formation in different bacteria in vitro. In both animal models, pRST98 promoted BF formation and caused more severe pathological changes. It was previously reported that Salmonella senses exogenous N-acylhomoserine lactones (AHLs) through the regulatory protein SdiA and regulates the expression of genes including the virulence gene rck, which is located on the virulence plasmid of some serotypes of Salmonella. In this study, we confirmed the locus of the rck gene on pRST98 and found that AHLs increased rck expression in pRST98-carrying strains, thereby enhancing bacterial adherence, serum resistance and bacterial BF formation. In conclusion, the Salmonella conjugative plasmid pRST98 promotes bacterial BF formation both in vitro and in vivo, and the mechanism may relate to the AHL-SdiA-Rck signaling pathway. PMID:25299072

  6. Visible-light-promoted iminyl radical formation from vinyl azides: synthesis of 6-(fluoro)alkylated phenanthridines.

    PubMed

    Sun, Xiaoyang; Yu, Shouyun

    2016-09-18

    An efficient strategy assisted by visible-light-promoted iminyl radical formation has been developed for the synthesis of 6-(fluoro)alkylated phenanthridine derivatives. In the reactions, addition of alkyl and trifluoromethyl radicals onto vinyl azides gives iminyl radicals, which then undergo intramolecular homolytic aromatic substitution leading to phenanthridines. These reactions can be carried out under mild conditions with high chemical yields and broad substrate scope. PMID:27530901

  7. Requirement of kinesin-mediated membrane transport of WAVE2 along microtubules for lamellipodia formation promoted by hepatocyte growth factor.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2008-07-01

    Lamellipodia formation necessary for epithelial cell migration and invasion is accomplished by rearrangement of the actin cytoskeleton at the leading edge through membrane transport of WAVE2. However, how WAVE2 is transported to the cell periphery where lamellipodia are formed remains to be established. We report here that hepatocyte growth factor (HGF) promoted lamellipodia formation and intracellular transport of WAVE2 to the cell periphery, depending on Rac1 activity, in MDA-MB-231 human breast cancer cells. Immunoblot analyses indicating the coimmunoprecipitation of WAVE2 with kinesin heavy chain KIF5B, one of the motor proteins, and IQGAP1 suggest that KIF5B and IQGAP1 formed a complex with WAVE2 in serum-starved cells and increased in their amount after HGF stimulation. Both downregulation of KIF5B by the small interfering RNA and depolymerization of microtubules with nocodazole abrogated the HGF-induced lamellipodia formation and WAVE2 transport. Therefore, we propose here that the promotion of lamellipodia formation by HGF in MDA-MB-231 cells is Rac1-dependent and requires KIF5B-mediated transport of WAVE2 and IQGAP1 to the cell periphery along microtubules. PMID:18514191

  8. Acute tissue injury activates satellite cells and promotes sarcoma formation via the HGF/c-MET signaling pathway

    PubMed Central

    Van Mater, David; Añó, Leonor; Blum, Jordan M.; Webster, Micah T.; Huang, WeiQiao; Williams, Nerissa; Ma, Yan; Cardona, Diana M.; Fan, Chen-Min; Kirsch, David G.

    2015-01-01

    Some patients with soft tissue sarcoma (STS) report a history of injury at the site of their tumor. While this phenomenon is widely reported, there are relatively few experimental systems that have directly assessed the role of injury in sarcoma formation. We recently described a mouse model of STS whereby p53 is deleted and oncogenic Kras is activated in muscle satellite cells via a Pax7CreER driver following intraperitoneal injection with tamoxifen. Here, we report that after systemic injection of tamoxifen, the vast majority of Pax7-expressing cells remain quiescent despite mutation of p53 and Kras. The fate of these muscle progenitors is dramatically altered by tissue injury, which leads to faster kinetics of sarcoma formation. In adult muscle, quiescent satellite cells will transition into an active state in response to hepatocyte growth factor (HGF). We show that modulating satellite cell quiescence via intramuscular (IM) injection of HGF increases the penetrance of sarcoma formation at the site of injection, which is dependent on its cognate receptor c-MET. Unexpectedly, the tumor promoting effect of tissue injury also requires c-Met. These results reveal a mechanism by which HGF/c-MET signaling promotes tumor formation after tissue injury in a mouse model of primary STS, and they may explain why some patients develop a STS at the site of injury. PMID:25503558

  9. Response Gene to Complement 32 Promotes Vascular Lesion Formation through Stimulation of Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Wang, Jia-Ning; Shi, Ning; Xie, Wei-bing; Guo, Xia; Chen, Shi-You

    2011-01-01

    Objective The objectives of this study are to determine the role of response gene to complement 32 (RGC-32) in vascular lesion formation after experimental angioplasty and to explore the underlying mechanisms. Methods and Results Using a rat carotid artery balloon-injury model, we documented for the first time that neointima formation was closely associated with a significantly increased expression of RGC-32 protein. shRNA Knockdown of RGC-32 via adenovirus (Ad)-mediated gene delivery dramatically inhibited the lesion formation by 62% as compared to control groups 14 days after injury. Conversely, RGC-32 overexpression significantly promoted the neointima formation by 33%. Gain and loss of function studies in primary culture of rat aortic smooth muscle cells (RASMCs) indicated that RGC-32 is essential for both the proliferation and migration of RASMCs. RGC-32 induced RASMC proliferation by enhancing p34CDC2 activity. RGC-32 stimulated the migration of RASMC via inducing focal adhesion contact and stress fiber formation. These effects were caused by the enhanced ROKα activity due to RGC-32-induced downregulation of Rad GTPase. Conclusions RGC-32 plays an important role in vascular lesion formation following vascular injury. Increased RGC-32 expression in vascular injury appears to be a novel mechanism underlying the migration and proliferation of vascular SMCs. Therefore, targeting RGC-32 is a potential therapeutic strategy for the prevention of vascular remodeling in proliferative vascular diseases. PMID:21636805

  10. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    PubMed Central

    Roehling, John D.; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J.; Moulé, Adam J.

    2016-01-01

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all. PMID:27498880

  11. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    NASA Astrophysics Data System (ADS)

    Roehling, John D.; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J.; Moulé, Adam J.

    2016-08-01

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.

  12. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size.

    PubMed

    Roehling, John D; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J; Moulé, Adam J

    2016-01-01

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all. PMID:27498880

  13. Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode

    NASA Astrophysics Data System (ADS)

    Shin, Dongguen; Lee, Jeihyun; Park, Soohyung; Jeong, Junkyeong; Seo, Ki-Won; Kim, Hyo-Joong; Kim, Han-Ki; Choi, Min-Jun; Chung, Kwun-Bum; Yi, Yeonjin

    2015-09-01

    The interfacial energy level alignments between poly(thieno[3,4-b]-thiophene)-co-benzodithiophene (PTB7) and indium zinc oxide (IZO) were investigated. In situ ultraviolet photoemission spectroscopy measurements were conducted with the step-by-step deposition of PTB7 on IZO substrate. All spectral changes were analyzed between each deposition step, and interfacial energy level alignments were estimated. The hole barrier of standard ultraviolet-ozone treated IZO is 0.58 eV, which is lower than the value of 1.09 eV obtained for bare IZO. The effect of barrier reduction on the hole transport was also confirmed with electrical measurements of hole-dominated devices.

  14. Initiation and promotion in cancer formation: the importance of studies on intercellular communication.

    PubMed

    Potter, V R

    1980-01-01

    Three major theories of cancer--somatic mutation, virus causation, and faulty differentiation--are proposed to involve alterations in DNA structure. Each results finally in terms of failures in the normal intercellular communication that involves feedback between differentiated cells acting on less differentiated cells still capable of proliferation. The historical background of the latter idea is traced to Osgood, Weiss and Kavanau, and to Iversen. The historical background of concepts of initiation and promotion are traced to Berenblum and Mottram and the Boutwell concept of promotion as gene activation is cited. It is proposed that gene activation by promoters is a valid concept and that it results from the blocking of the normal intercellular communication postulated by Osgood and others. The problem of explaining the low probability of cancer following initiators or promoters acting alone is cited as a problem in basic science. A hypothesis to solve the problem is proposed: Cancer results from two of more relevant mutations: promoters enhance proliferation of cells with one relevant mutation, thereby increasing the probability of obtaining a cell with two relevant mutations. A new scheme of five stages of hepatocarcinogenesis is proposed in terms of the hypothesis and available data. PMID:7013284

  15. Synthetic studies toward halichlorine: complex azaspirocycle formation with use of an NBS-promoted semipinacol reaction.

    PubMed

    Hurley, Paul B; Dake, Gregory R

    2008-06-01

    The investigations of a synthetic route incorporating a NBS-promoted semipinacol rearrangement to the 6-azaspiro[4.5]decane fragment within halichlorine ( 1) are presented. A convergent approach was pursued, utilizing two chiral, enantiomerically enriched building blocks, 2-trimethylstannyl piperidene 10 and substituted cyclobutanone 19. Noteworthy synthetic operations in this study include the following: (a) a highly diastereoselective NBS-promoted semipinacol reaction that established four stereogenic centers in ketone 25 and (b) the use of a N- p-toluenesulfonyl-2-iodo-2-piperidene as a precursor to a basic organometallic reagent, which was critical to the success of the coupling of fragments 10 and 19. PMID:18444680

  16. Alpha-Glucosidase Promotes Hemozoin Formation in a Blood-Sucking Bug: An Evolutionary History

    PubMed Central

    Mury, Flávia Borges; da Silva, José Roberto; Ferreira, Ligia Souza; dos Santos Ferreira, Beatriz; de Souza-Filho, Gonçalo Apolinário; de Souza-Neto, Jayme Augusto; Ribolla, Paulo Eduardo Martins; Silva, Carlos Peres; do Nascimento, Viviane Veiga; Machado, Olga Lima Tavares; Berbert-Molina, Marília Amorim; Dansa-Petretski, Marilvia

    2009-01-01

    Background Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R. prolixus perimicrovillar membranes in Hz formation was demonstrated. Methodology/Principal Findings Hz formation activity of an α-glucosidase was investigated. Hz formation was inhibited by specific α-glucosidase inhibitors. Moreover, Hz formation was sensitive to inhibition by Diethypyrocarbonate, suggesting a critical role of histidine residues in enzyme activity. Additionally, a polyclonal antibody raised against a phytophagous insect α-glucosidase was able to inhibit Hz formation. The α-glucosidase inhibitors have had no effects when used 10 h after the start of reaction, suggesting that α-glucosidase should act in the nucleation step of Hz formation. Hz formation was seen to be dependent on the substrate-binding site of enzyme, in a way that maltose, an enzyme substrate, blocks such activity. dsRNA, constructed using the sequence of α-glucosidase gene, was injected into R. prolixus females' hemocoel. Gene silencing was accomplished by reduction of both α-glucosidase and Hz formation activities. Insects were fed on plasma or hemin-enriched plasma and gene expression and activity of α-glucosidase were higher in the plasma plus hemin-fed insects. The deduced amino acid sequence of α-glucosidase shows a high similarity to the insect α-glucosidases, with critical histidine and aspartic residues conserved among the enzymes. Conclusions/Significance Herein the Hz formation is shown to be associated to an α-glucosidase, the biochemical marker from Hemipteran perimicrovillar membranes. Usually, these enzymes catalyze the hydrolysis of glycosidic bond. The results strongly suggest that α-glucosidase is responsible for Hz nucleation in the R. prolixus midgut, indicating that the plasticity of this enzyme may play

  17. Comparison of the NIST and PTB Air-Kerma Standards for Low-Energy X-Rays

    PubMed Central

    O’Brien, Michelle; Bueermann, Ludwig

    2009-01-01

    A comparison has been made of the air-kerma standards for low-energy x rays at the National Institute of Standards and Technology (NIST) and the Physikalisch-Technische Bundesanstalt (PTB). The comparison involved a series of measurements at the PTB and the NIST using the air-kerma standards and two NIST reference-class transfer ionization chamber standards. Results are presented for the reference radiation beam qualities in the range from 25 kV to 50 kV for low energy x rays, including the techniques used for mammography dose traceability. The tungsten generated reference radiation qualities, between 25 kV and 50 kV used for this comparison, are new to NIST; therefore this comparison will serve as the preliminary comparison for NIST and a verification of the primary standard correction factors. The mammography comparison will repeat two previously unpublished comparisons between PTB and NIST. The results show the standards to be in reasonable agreement within the standard uncertainty of the comparison of about 0.4 %.

  18. Glycosaminoglycans promote fibril formation by amyloidogenic immunoglobulin light chains through a transient interaction

    PubMed Central

    Martin, Douglas J.; Ramirez-Alvarado, Marina

    2011-01-01

    Amyloid formation occurs when a precursor protein misfolds and aggregates, forming a fibril nucleus that serves as a template for fibril growth. Glycosaminoglycans are highly charged polymers known to associate with tissue amyloid deposits that have been shown to accelerate amyloidogenesis in vitro. We studied two immunoglobulin light chain variable domains from light chain amyloidosis patients with 90% sequence identity, analyzing their fibril formation kinetics and binding properties with different glycosaminoglycan molecules. We find that the less amyloidogenic of the proteins shows a weak dependence on glycosaminoglycan size and charge, while the more amyloidogenic protein responds only minimally to changes in the glycosaminoglycan. These glycosaminoglycan effects on fibril formation do not depend on a stable interaction between the two species but still show characteristic traits of an interaction-dependent mechanism. We propose that transient, predominantly electrostatic interactions between glycosaminoglycans and the precursor proteins mediate the acceleration of fibril formation in vitro. PMID:21640469

  19. A Vygotskian Approach to Promote and Formatively Assess Academic Concept Learning

    ERIC Educational Resources Information Center

    Edens, Kellah; Shields, Carol

    2015-01-01

    Promoting students' conceptual understanding and academic language development is a primary goal of instructors in all subject areas. These goals, however, are sometimes hindered by the way students' learning is assessed. In many college-level courses, knowledge-level tests that assess concrete thinking associated with superficial approaches to…

  20. The "Balance Intervention" for Promoting Caloric Compensatory Behaviours in Response to Overeating: A Formative Evaluation

    ERIC Educational Resources Information Center

    Wammes, Birgitte; Breedveld, Boudewijn; Kremers, Stef; Brug, Johannes

    2006-01-01

    To help people prevent weight gain, the Netherlands Nutrition Centre initiated the "balance intervention", which promotes moderation of food intake and/or increased physical activity in response to occasions of overeating. The aim of this study was to determine whether intervention materials were appreciated, encouraged information seeking and…

  1. Surfactant process for promoting gas hydrate formation and application of the same

    DOEpatents

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  2. Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression.

    PubMed

    Huang, Yanqing; Jin, Chengliu; Hamana, Tomoaki; Liu, Junchen; Wang, Cong; An, Lei; McKeehan, Wallace L; Wang, Fen

    2015-01-01

    Bone metastasis is the major cause of morbidity and mortality of prostate cancer (PCa). Fibroblast growth factor 9 (FGF9) has been reported to promote PCa bone metastasis. However, the mechanism by which overexpression of FGF9 promotes PCa progression and metastasis is still unknown. Herein, we report that transgenic mice forced to express FGF9 in prostate epithelial cells (F9TG) developed high grade prostatic intraepithelial neoplasia (PIN) in an expression level- and time-dependent manner. Moreover, FGF9/TRAMP bigenic mice (F9TRAMP) grew advanced PCa earlier and had higher frequencies of metastasis than TRAMP littermates. We observed tumor microenvironmental changes including hypercellularity and hyperproliferation in the stromal compartment of F9TG and F9TRAMP mice. Expression of TGFβ1, a key signaling molecule overexpressed in reactive stroma, was increased in F9TG and F9TRAMP prostates. Both in vivo and in vitro data indicated that FGF9 promoted TGFβ1 expression via increasing cJun-mediated signaling. Moreover, in silico analyses showed that the expression level of FGF9 was positively associated with expression of TGFβ1 and its downstream signaling molecules in human prostate cancers. Collectively, our data demonstrated that overexpressing FGF9 in PCa cells augmented the formation of reactive stroma and promoted PCa initiation and progression. PMID:26157349

  3. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis

    PubMed Central

    Abraham, Sabu; Scarcia, Margherita; Bagshaw, Richard D.; McMahon, Kathryn; Grant, Gary; Harvey, Tracey; Yeo, Maggie; Esteves, Filomena O.G.; Thygesen, Helene H.; Jones, Pamela F.; Speirs, Valerie; Hanby, Andrew M.; Selby, Peter J.; Lorger, Mihaela; Dear, T. Neil; Pawson, Tony; Marshall, Christopher J.; Mavria, Georgia

    2015-01-01

    During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis. PMID:26129894

  4. Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis

    PubMed Central

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Becker, Thomas

    2015-01-01

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM–SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. PMID:26416958

  5. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity.

    PubMed

    González, Verónica; Hurley, Laurence H

    2010-11-16

    Nucleolin, the most abundant nucleolar phosphoprotein of eukaryotic cells, is known primarily for its role in ribosome biogenesis and cell proliferation. It is, however, a multifunctional protein that, depending on the cellular context, can drive either cell proliferation or apoptosis. Our laboratory recently demonstrated that nucleolin can function as a repressor of c-MYC transcription by binding to and stabilizing the formation of a G-quadruplex structure in a region of the c-MYC promoter responsible for controlling 85-90% of c-MYC's transcriptional activity. In this study, we investigate the structural elements of nucleolin that are required for c-MYC repression. The effect of nucleolin deletion mutants on the formation and stability of the c-MYC G-quadruplex, as well as c-MYC transcriptional activity, was assessed by circular dichroism spectropolarimetry, thermal stability, and in vitro transcription. Here we report that nucleolin's RNA binding domains 3 and 4, as well as the arginine-glycine-glycine (RGG) domain, are required to repress c-MYC transcription. PMID:20932061

  6. Layered double hydroxide formation in Bayer liquor and its promotional effect on oxalate precipitation

    SciTech Connect

    Perrotta, A.J.; Williams, F.

    1996-10-01

    Enhancing the precipitation of sodium oxalate from Bayer process liquor to improve the quality of alumina product remains an important objective for Bayer refining. The formation of layered double hydroxides by the reaction of alkaline earth oxides, such as lime and magnesia, with Bayer liquor gives a crystal structure which is capable of intercalating anions, both inorganic and organic, within its structure. Both lime and magnesia, with long contact times in Bayer liquor, show layered double hydroxide formation. This layered double hydroxide formation is accompanied with a decrease in the sodium oxalate content in the liquor from about 3 g/L to below 1 g/L. Short contact times lead to a destabilization of the liquor which facilitates sodium oxalate precipitation. Additional work on magnesium hydroxide shows, in comparison to lime and magnesia, much less layered double hydroxide formation with equivalent residence time in the liquor. Destabilization of the liquor also occurs, giving enhanced oxalate precipitation with less alumina being consumed in agreement with lower layered double hydroxide formation. Thermal regeneration of these structures, followed by in-situ recrystallization in Bayer liquor, also gives enhanced oxalate precipitation, suggesting that there is an opportunity for a regenerable oxalate reduction system. The implementation of these experiments and other related technology into the plant has resulted in the Purox Process for enhancing the precipitation of sodium oxalate from Bayer liquor.

  7. Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin

    PubMed Central

    Wu, Chao; Cheng, Yuan-Yuan; Yin, Hao; Song, Xiang-Ning; Li, Wen-Wei; Zhou, Xian-Xuan; Zhao, Li-Ping; Tian, Li-Jiao; Han, Jun-Cheng; Yu, Han-Qing

    2013-01-01

    Although oxygen has been reported to regulate biofilm formation by several Shewanella species, the exact regulatory mechanism mostly remains unclear. Here, we identify a direct oxygen-sensing diguanylate cyclase (DosD) and reveal its regulatory role in biofilm formation by Shewanella putrefaciens CN32 under aerobic conditions. In vitro and in vivo analyses revealed that the activity of DosD culminates to synthesis of cyclic diguanylate (c-di-GMP) in the presence of oxygen. DosD regulates the transcription of bpfA operon which encodes seven proteins including a large repetitive adhesin BpfA and its cognate type I secretion system (TISS). Regulation of DosD in aerobic biofilms is heavily dependent on an adhesin BpfA and the TISS. This study offers an insight into the molecular mechanism of oxygen-stimulated biofilm formation by S. putrefaciens CN32. PMID:23736081

  8. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules

    PubMed Central

    Brunello, Cecilia A.; Yan, Xu; Huttunen, Henri J.

    2016-01-01

    Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer’s disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology. PMID:27460788

  9. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  10. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    SciTech Connect

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng; Sun, Baochang; Shao, Lei

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  11. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.

    PubMed

    Leute, J; Huntemann, N; Lipphardt, B; Tamm, Christian; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E

    2016-07-01

    We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. PMID:26863657

  12. Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils.

    PubMed

    Liu, Yanfang; Gu, Yan; Han, Yanmei; Zhang, Qian; Jiang, Zhengping; Zhang, Xiang; Huang, Bo; Xu, Xiaoqing; Zheng, Jianming; Cao, Xuetao

    2016-08-01

    The pre-metastatic niche educated by primary tumor-derived elements contributes to cancer metastasis. However, the role of host stromal cells in metastatic niche formation and organ-specific metastatic tropism is not clearly defined. Here, we demonstrate that lung epithelial cells are critical for initiating neutrophil recruitment and lung metastatic niche formation by sensing tumor exosomal RNAs via Toll-like receptor 3 (TLR3). TLR3-deficient mice show reduced lung metastasis in the spontaneous metastatic models. Mechanistically, primary tumor-derived exosomal RNAs, which are enriched in small nuclear RNAs, activate TLR3 in lung epithelial cells, consequently inducing chemokine secretion in the lung and promoting neutrophil recruitment. Identification of metastatic axis of tumor exosomal RNAs and host lung epithelial cell TLR3 activation provides potential targets to control cancer metastasis to the lung. PMID:27505671

  13. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation

    SciTech Connect

    Yuan Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A.

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. {beta}-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced {beta}-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/{beta}-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/{beta}-catenin complex formation and restoring E-cadherin membrane localization.

  14. Using Common Formative Assessments to Promote Student Achievement: A Case Study of Practice, Leadership, and Culture

    ERIC Educational Resources Information Center

    Wall, Patricia T. C.

    2012-01-01

    It is the moral responsibility of educators to work diligently to provide every student with rich, challenging coursework in efforts to prepare them for post high school careers and education. The use of common formative assessments provides teachers with the valuable, timely information they need to make instructional decisions that will better…

  15. Identification of Genes That Promote or Inhibit Olfactory Memory Formation in Drosophila

    PubMed Central

    Walkinshaw, Erica; Gai, Yunchao; Farkas, Caitlin; Richter, Daniel; Nicholas, Eric; Keleman, Krystyna; Davis, Ronald L.

    2015-01-01

    Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources. PMID:25644700

  16. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development

    PubMed Central

    Kamiuchi, Yuri; Yamamoto, Kayo; Furutani, Masahiko; Tasaka, Masao; Aida, Mitsuhiro

    2014-01-01

    Carpel margin meristems (CMMs), a pair of meristematic tissues present along the margins of two fused carpel primordia of Arabidopsis thaliana, are essential for the formation of ovules and the septum, two major internal structures of the gynoecium. Although a number of regulatory factors involved in shoot meristem activity are known to be required for the formation of these gynoecial structures, their direct roles in CMM development have yet to be addressed. Here we show that the CUP-SHAPED COTYLEDON genes CUC1 and CUC2, which are essential for shoot meristem initiation, are also required for formation and stable positioning of the CMMs. Early in CMM formation, CUC1 and CUC2 are also required for expression of the SHOOT MERISTEMLESS gene, a central regulator for stem cell maintenance in the shoot meristem. Moreover, plants carrying miR164-resistant forms of CUC1 and CUC2 resulted in extra CMM activity with altered positioning. Our results thus demonstrate that the two regulatory proteins controlling shoot meristem activity also play critical roles in elaboration of the female reproductive organ through the control of meristematic activity. PMID:24817871

  17. An Undergraduate Study of Two Transcription Factors that Promote Lateral Root Formation

    ERIC Educational Resources Information Center

    Bargmann, Bastiaan O. R.; Birnbaum, Kenneth D.; Brenner, Eric D.

    2014-01-01

    We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant "Arabidopsis thaliana." Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known…

  18. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    NASA Astrophysics Data System (ADS)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  19. Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation

    PubMed Central

    Zhao, Xin; Liu, Huan-Qiu; Li, Ji; Liu, Xiao-Liang

    2016-01-01

    Tumor growth and progression require new blood vessel formation to deliver nutrients and oxygen for further cell proliferation and to create a neovascular network exit for tumor cell metastasis. Endothelial progenitor cells (EPCs) are a bone marrow (BM)-derived stem cell population that circulates in the peripheral circulation and homes to the tumor bed to participate in new blood vessel formation. In addition to structural support to nascent vessels, these cells can also regulate the angiogenic process by paracrine secretion of a number of proangiogenic growth factors and cytokines, thus playing a crucial role in tumor neovascularization and development. Inhibition of EPC-mediated new vessel formation may be a promising therapeutic strategy in tumor treatment. EPC-mediated neovascularization is a complex process that includes multiple steps and requires a series of cytokines and modulators, thus understanding the underlying mechanisms may provide anti-neovasculogenesis targets that may be blocked for the prevention of tumor development. The present review stresses the process and contribution of EPCs to the formation of new blood vessels in solid tumors, in an attempt to gain an improved understanding of the underlying cellular and molecular mechanisms involved, and to provide a potential effective therapeutic target for cancer treatment. PMID:27446353

  20. Embedded Formative Assessment and Classroom Process Quality: How Do They Interact in Promoting Science Understanding?

    ERIC Educational Resources Information Center

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, A. Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment--a well-known teaching practice--and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of…

  1. A Needs Assessment, Development, and Formative Evaluation of a Health Promotion Smartphone Application for College Students

    ERIC Educational Resources Information Center

    Miller, Tiffany; Chandler, Laura; Mouttapa, Michele

    2015-01-01

    Background: Approximately half of college students who completed the National College Health Assessment 2013 indicated a greater need for health-related information. University-based smartphone applications may help students better access this information. Purpose: This study describes the needs assessment, development, and formative evaluation of…

  2. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection.

    PubMed

    Khan, Tahsin N; Mooster, Jana L; Kilgore, Augustus M; Osborn, Jossef F; Nolz, Jeffrey C

    2016-05-30

    Tissue-resident memory (Trm) CD8(+) T cells are functionally distinct from their circulating counterparts and are potent mediators of host protection against reinfection. Whether local recognition of antigen in nonlymphoid tissues during infection can impact the formation of Trm populations remains unresolved. Using skin infections with vaccinia virus (VacV)-expressing model antigens, we found that local antigen recognition had a profound impact on Trm formation. Activated CD8(+) T cells trafficked to VacV-infected skin in an inflammation-dependent, but antigen-independent, manner. However, after viral clearance, there was a subsequent ∼50-fold increase in Trm formation when antigen was present in the tissue microenvironment. Secondary antigen stimulation in nonlymphoid tissue caused CD8(+) T cells to rapidly express CD69 and be retained at the site of infection. Finally, Trm CD8(+) T cells that formed during VacV infection in an antigen-dependent manner became potent stimulators of localized antigen-specific inflammatory responses in the skin. Thus, our studies indicate that the presence of antigen in the nonlymphoid tissue microenvironment plays a critical role in the formation of functional Trm CD8(+) T cell populations, a finding with relevance for both vaccine design and prevention of inflammatory disorders. PMID:27217536

  3. The Guanine Nucleotide Exchange Factor (GEF) Asef2 Promotes Dendritic Spine Formation via Rac Activation and Spinophilin-dependent Targeting*

    PubMed Central

    Evans, J. Corey; Robinson, Cristina M.; Shi, Mingjian; Webb, Donna J.

    2015-01-01

    Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses. PMID:25750125

  4. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation.

    PubMed

    Oh, Myung-Jin; Zhang, Chongxu; LeMaster, Elizabeth; Adamos, Crystal; Berdyshev, Evgeny; Bogachkov, Yedida; Kohler, Erin E; Baruah, Jugajyoti; Fang, Yun; Schraufnagel, Dean E; Wary, Kishore K; Levitan, Irena

    2016-05-01

    Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity. PMID:26989083

  5. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    SciTech Connect

    Kouza, Maksim Kolinski, Andrzej; Co, Nguyen Truong; Nguyen, Phuong H.; Li, Mai Suan

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  6. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    NASA Astrophysics Data System (ADS)

    Kouza, Maksim; Co, Nguyen Truong; Nguyen, Phuong H.; Kolinski, Andrzej; Li, Mai Suan

    2015-04-01

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  7. Preformed template fluctuations promote fibril formation: insights from lattice and all-atom models.

    PubMed

    Kouza, Maksim; Co, Nguyen Truong; Nguyen, Phuong H; Kolinski, Andrzej; Li, Mai Suan

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  8. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    PubMed

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-01

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels. PMID:26176879

  9. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    SciTech Connect

    Jiang Fangxu . E-mail: jiang@wehi.edu.au; Harrison, Leonard C.

    2005-08-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its {alpha}{sub 6} integrin and {alpha}-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells.

  10. Adhesion- and Degranulation-Promoting Adapter Protein Promotes CD8 T Cell Differentiation and Resident Memory Formation and Function during an Acute Infection.

    PubMed

    Fiege, Jessica K; Beura, Lalit K; Burbach, Brandon J; Shimizu, Yoji

    2016-09-15

    During acute infections, naive Ag-specific CD8 T cells are activated and differentiate into effector T cells, most of which undergo contraction after pathogen clearance. A small population of CD8 T cells persists as memory to protect against future infections. We investigated the role of adhesion- and degranulation-promoting adapter protein (ADAP) in promoting CD8 T cell responses to a systemic infection. Naive Ag-specific CD8 T cells lacking ADAP exhibited a modest expansion defect early after Listeria monocytogenes or vesicular stomatitis virus infection but comparable cytolytic function at the peak of response. However, reduced numbers of ADAP-deficient CD8 T cells were present in the spleen after the peak of the response. ADAP deficiency resulted in a greater frequency of CD127(+) CD8 memory precursors in secondary lymphoid organs during the contraction phase. Reduced numbers of ADAP-deficient killer cell lectin-like receptor G1(-) CD8 resident memory T (TRM) cell precursors were present in a variety of nonlymphoid tissues at the peak of the immune response, and consequently the total numbers of ADAP-deficient TRM cells were reduced at memory time points. TRM cells that did form in the absence of ADAP were defective in effector molecule expression. ADAP-deficient TRM cells exhibited impaired effector function after Ag rechallenge, correlating with defects in their ability to form T cell-APC conjugates. However, ADAP-deficient TRM cells responded to TGF-β signals and recruited circulating memory CD8 T cells. Thus, ADAP regulates CD8 T cell differentiation events following acute pathogen challenge that are critical for the formation and selected functions of TRM cells in nonlymphoid tissues. PMID:27521337

  11. Phosphodiesterase inhibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice.

    PubMed

    Kinoshita, T; Kobayashi, S; Ebara, S; Yoshimura, Y; Horiuchi, H; Tsutsumimoto, T; Wakabayashi, S; Takaoka, K

    2000-12-01

    The administration of either Pentoxifylline (PTX), a methylxanthine derivative and an inhibitor of cyclic AMP (c-AMP) phosphodiesterases (PDEs), or Rolipram, an inhibitor specific to type-4 PDE (PDE4) in normal mice, significantly increased both cortical and cancellous bone mass. Vertebrae and tibiae from mice treated with PTX or Rolipram were analyzed by means of bone densitometry and histomorphometry. The results revealed that both PTX and Rolipram increased bone mass in normal mice mainly through the acceleration of bone formation. These findings suggest that both PTX and Rolipram can enhance physiological bone formation and thereby increase bone mass in normal mice. The possibility that these agents may be of value for the treatment of osteoporosis is discussed. PMID:11113392

  12. Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation

    PubMed Central

    Phadnis, Naina; Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Cipakova, Ingrid; Anrather, Dorothea; Karvaiova, Lucia; Mechtler, Karl

    2015-01-01

    Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here. PMID:25993311

  13. Institute of social justice and medicine: developing a think tank to promote policy formation.

    PubMed

    Boozary, Andrew; Dugani, Sagar B

    2011-01-01

    The World Health Organization (WHO) defines health as a "resource for everyday living, not the objective of living"; however, worldwide, there remains an unmistakable inequity in level of health and access to healthcare. The WHO has published documents on financing health systems towards universal health coverage [1], promoting healthy life [2], improving performance of health systems [3], and enriching humanity [4], highlighting our shared responsibility towards improving both national and global health and access to healthcare. These documents also recognize that, despite our local and regional priorities, there is a global desire to develop international strategies to improve healthcare. [1] WHO Report. Health systems financing and the path to universal coverage. 2010. http://www.who.int/bulletin/health_financing/en/index.html [2] WHO Report. Reducing risks, promoting healthy life. 2002. http://www.who.int/whr/2002/en/index.html [3] WHO Bulletin. Health systems: improving performance. 2000. http://www.who.int/whr/2000/en/index.html [4] WHO Bulletin. Conquering suffering, enriching humanity 1997. http://www.who.int/whr/1997/en/index.html. PMID:21968266

  14. rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures.

    PubMed

    Domingues, Marco M; Bianconi, M Lucia; Barbosa, Leandro R S; Santiago, Patrícia S; Tabak, Marcel; Castanho, Miguel A R B; Itri, Rosangela; Santos, Nuno C

    2013-11-01

    rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death. PMID:23792068

  15. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  16. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.

    2015-07-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  17. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    SciTech Connect

    Lafleur, Michel; Courtemanche, Lesley; Karlsson, Goeran; Edwards, Katarina; Schwartz, Jean-Louis; Manjunath, Puttaswamy

    2010-08-27

    Research highlights: {yields} Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. {yields} In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. {yields} The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.

  18. Calcium Promotes the Formation of Syntaxin 1 Mesoscale Domains through Phosphatidylinositol 4,5-Bisphosphate*

    PubMed Central

    Platen, Mitja; Junius, Meike; Diederichsen, Ulf; Schaap, Iwan A. T.; Honigmann, Alf; Jahn, Reinhard; van den Bogaart, Geert

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2 and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca2+ acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2 complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca2+ concentrations is likely to be important for Ca2+-regulated secretion. PMID:26884341

  19. Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes

    PubMed Central

    Bauer, Christopher R.; Hartl, Tom A.; Bosco, Giovanni

    2012-01-01

    The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase. PMID:22956908

  20. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation.

    PubMed

    An, Jing; Yang, Hao; Zhang, Qian; Liu, Cuicui; Zhao, Jingjing; Zhang, Lingling; Chen, Bo

    2016-02-15

    Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis. PMID:26796578

  1. Dithiothreitol causes HIV-1 integrase dimer dissociation while agents interacting with the integrase dimer interface promote dimer formation.

    PubMed

    Tsiang, Manuel; Jones, Gregg S; Hung, Magdeleine; Samuel, Dharmaraj; Novikov, Nikolai; Mukund, Susmith; Brendza, Katherine M; Niedziela-Majka, Anita; Jin, Debi; Liu, Xiaohong; Mitchell, Michael; Sakowicz, Roman; Geleziunas, Romas

    2011-03-15

    We have developed a homogeneous time-resolved fluorescence resonance energy transfer (FRET)-based assay that detects the formation of HIV-1 integrase (IN) dimers. The assay utilizes IN monomers that express two different epitope tags that are recognized by their respective antibodies, coupled to distinct fluorophores. Surprisingly, we found that dithiothreitol (DTT), a reducing agent essential for in vitro enzymatic activity of IN, weakened the interaction between IN monomers. This effect of DTT on IN is dependent on its thiol groups, since the related chemical threitol, which contains hydroxyls in place of thiols, had no effect on IN dimer formation. By studying mutants of IN, we determined that cysteines in IN appear to be dispensable for the dimer dissociation effect of DTT. Peptides derived from the IN binding domain (IBD) of lens epithelium derived growth factor/transcriptional coactivator p75 (LEDGF), a cellular cofactor that interacts with the IN dimer interface, were tested in this IN dimerization assay. These peptides, which compete with LEDGF for binding to IN, displayed an intriguing equilibrium binding dose-response curve characterized by a plateau rising to a peak, then descending to a second plateau. Mathematical modeling of this binding system revealed that these LEDGF-derived peptides promote IN dimerization and block subunit exchange between IN dimers. This dose-response behavior was also observed with a small molecule that interacts with the IN dimer interface and inhibits LEDGF binding to IN. In conclusion, this novel IN dimerization assay revealed that peptide and small molecule inhibitors of the IN-LEDGF interaction also stabilize IN dimers and promote their formation. PMID:21222490

  2. An Exploration of Teachers' Narratives: What Are the Facilitators and Constraints Which Promote or Inhibit "Good" Formative Assessment Practices in Schools?

    ERIC Educational Resources Information Center

    Sach, Elizabeth

    2015-01-01

    This paper set out to explore teachers' narratives in order to understand some of the facilitators and constraints which promote or inhibit good formative assessment practices in schools. A "responsive interview" approach was used to probe a small sample of lower and middle school teachers' perceptions of formative assessment.…

  3. GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation.

    PubMed

    Singh, Akannsha; Zapata, Mariana C; Choi, Yong Sung; Yoon, Sun-Ok

    2014-01-01

    Gamma secretase inhibitors (GSI), cell-permeable small-molecule inhibitors of gamma secretase activity, had been originally developed for the treatment of Alzheimer disease. In recent years, it has been exploited in cancer research to inhibit Notch signaling that is aberrantly activated in various cancers. We previously found that GSI could synergize with anti-microtubule agent, vincristine (VCR) in a Notch-independent manner. Here, we delineate the underlying cell cycle-related mechanism using HeLa cells, which have strong mitotic checkpoints. GSI enhanced VCR-induced cell death, although GSI alone did not affect cell viability at all. GSI augmented VCR-induced mitotic arrest in a dose-dependent manner, which was preceded by apoptotic cell death, as shown by an increase in Annexin V-positive and caspase-positive cell population. Furthermore, GSI amplified multi-polar spindle formation triggered by VCR. Altogether, we show the evidence that GSI enhances VCR-induced apoptosis in HeLa cells via multi-polar mitotic spindle formation, independent of Notch signaling. These data suggest that one or more GS substrates, yet to be identified, in a post-GS processed form, may play a role in maintaining functional centrosomes/mitotic spindles. More significantly, the synergistic effect of GSI in combination with VCR could be exploited in clinical setting to improve the efficacy of VCR. PMID:24200971

  4. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation.

    PubMed

    Mbalaviele, Gabriel; Sheikh, Sharmin; Stains, Joseph P; Salazar, Valerie S; Cheng, Su-Li; Chen, Di; Civitelli, Roberto

    2005-02-01

    Mutations of critical components of the Wnt pathway profoundly affect skeletal development and maintenance, probably via modulation of beta-catenin signaling. We tested the hypothesis that beta-catenin is involved in mesenchymal lineage allocation to osteogenic cells using a beta-catenin mutant with constitutive transcriptional activity (DeltaN151). Although this stable beta-catenin had no effects by itself on osteogenic differentiation of multipotent embryonic cell lines, it synergized with bone morphogenetic protein-2 (BMP-2) resulting in dramatic stimulation of alkaline phosphatase activity, osteocalcin gene expression, and matrix mineralization. Likewise, DeltaN151 and BMP-2 synergistically stimulated new bone formation after subperiosteal injection in mouse calvaria in vivo. Conversely, DeltaN151 prevented adipogenic differentiation from pre-adipocytic or uncommitted mesenchymal cells in vitro. Intriguingly, the synergism with BMP-2 on gene transcription occurred without altering expression of Cbfa1/Runx2, suggesting actions independent or downstream of this osteoblast-specific transcription factor. Thus, beta-catenin directs osteogenic lineage allocation by enhancing mesenchymal cell responsiveness to osteogenic factors, such as BMP-2, in part via Tcf/Lef dependent mechanisms. In vivo, this synergism leads to increased new bone formation. PMID:15526274

  5. Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation

    PubMed Central

    Molica, Filippo; Burger, Fabienne; Thomas, Aurélien; Staub, Christian; Tailleux, Anne; Staels, Bart; Pelli, Graziano; Zimmer, Andreas; Cravatt, Benjamin; Matter, Christian M.; Pacher, Pal; Steffens, Sabine

    2013-01-01

    Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE−/−) and apoE−/−FAAH−/− mice. Anandamide levels were systemically elevated in apoE−/− mice after balloon injury. ApoE−/−FAAH−/− mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE−/− controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE−/− mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1−/− SMCs or when treating apoE−/− or apoE−/−FAAH−/− SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury. PMID:23479425

  6. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo

    PubMed Central

    Sherlekar, Aparna; Rikhy, Richa

    2016-01-01

    Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division. PMID:27146115

  7. ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function

    PubMed Central

    Schneider, Katharina; Seemann, Eric; Liebmann, Lutz; Ahuja, Rashmi; Koch, Dennis; Westermann, Martin; Hübner, Christian A.

    2014-01-01

    Insights into mechanisms coordinating membrane remodeling, local actin nucleation, and postsynaptic scaffolding during postsynapse formation are important for understanding vertebrate brain function. Gene knockout and RNAi in individual neurons reveal that the F-BAR protein syndapin I is a crucial postsynaptic coordinator in formation of excitatory synapses. Syndapin I deficiency caused significant reductions of synapse and dendritic spine densities. These syndapin I functions reflected direct, SH3 domain–mediated associations and functional interactions with ProSAP1/Shank2. They furthermore required F-BAR domain-mediated membrane binding. Ultra-high-resolution imaging of specifically membrane-associated, endogenous syndapin I at membranes of freeze-fractured neurons revealed that membrane-bound syndapin I preferentially occurred in spines and formed clusters at distinct postsynaptic membrane subareas. Postsynaptic syndapin I deficiency led to reduced frequencies of miniature excitatory postsynaptic currents, i.e., to defects in synaptic transmission phenocopying ProSAP1/Shank2 knockout, and impairments in proper synaptic ProSAP1/Shank2 distribution. Syndapin I–enriched membrane nanodomains thus seem to be important spatial cues and organizing platforms, shaping dendritic membrane areas into synaptic compartments. PMID:24751538

  8. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo.

    PubMed

    Sherlekar, Aparna; Rikhy, Richa

    2016-07-01

    Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division. PMID:27146115

  9. microRNAs That Promote or Inhibit Memory Formation in Drosophila melanogaster

    PubMed Central

    Busto, Germain U.; Guven-Ozkan, Tugba; Fulga, Tudor A.; Van Vactor, David; Davis, Ronald L.

    2015-01-01

    microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Prior studies have shown that they regulate numerous physiological processes critical for normal development, cellular growth control, and organismal behavior. Here, we systematically surveyed 134 different miRNAs for roles in olfactory learning and memory formation using “sponge” technology to titrate their activity broadly in the Drosophila melanogaster central nervous system. We identified at least five different miRNAs involved in memory formation or retention from this large screen, including miR-9c, miR-31a, miR-305, miR-974, and miR-980. Surprisingly, the titration of some miRNAs increased memory, while the titration of others decreased memory. We performed more detailed experiments on two miRNAs, miR-974 and miR-31a, by mapping their roles to subpopulations of brain neurons and testing the functional involvement in memory of potential mRNA targets through bioinformatics and a RNA interference knockdown approach. This screen offers an important first step toward the comprehensive identification of all miRNAs and their potential targets that serve in gene regulatory networks important for normal learning and memory. PMID:26088433

  10. Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation

    PubMed Central

    Fennell, Alex; Fernández-Álvarez, Alfonso; Tomita, Kazunori

    2015-01-01

    Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks. PMID:25688135

  11. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    PubMed

    Carrolo, Margarida; Frias, Maria João; Pinto, Francisco Rodrigues; Melo-Cristino, José; Ramirez, Mário

    2010-01-01

    Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population. PMID:21187931

  12. The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells

    SciTech Connect

    Yu Yang; Gao Yu; Wang, Hong; Huang Lan Qin Jun; Guo Ruiwei; Song Mingbao; Yu Shiyong; Chen Jianfei; Cui Bin; Gao Pan

    2008-10-15

    Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted the proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.

  13. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases.

    PubMed

    Tan, Jeanne M M; Wong, Esther S P; Kirkpatrick, Donald S; Pletnikova, Olga; Ko, Han Seok; Tay, Shiam-Peng; Ho, Michelle W L; Troncoso, Juan; Gygi, Steven P; Lee, Michael K; Dawson, Valina L; Dawson, Ted M; Lim, Kah-Leong

    2008-02-01

    Although ubiquitin-enriched protein inclusions represent an almost invariant feature of neurodegenerative diseases, the mechanism underlying their biogenesis remains unclear. In particular, whether the topology of ubiquitin linkages influences the dynamics of inclusions is not well explored. Here, we report that lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitination, as well as monoubiquitin modification contribute to the biogenesis of inclusions. K63-linked polyubiquitin is the most consistent enhancer of inclusions formation. Under basal conditions, ectopic expression of K63 mutant ubiquitin in cultured cells promotes the accumulation of proteins and the formation of intracellular inclusions in the apparent absence of proteasome impairment. When co-expressed with disease-associated tau and SOD1 mutants, K63 ubiquitin mutant facilitates the formation of tau- and SOD-1-positive inclusions. Moreover, K63-linked ubiquitination was found to selectively facilitate the clearance of inclusions via autophagy. These data indicate that K63-linked ubiquitin chains may represent a common denominator underlying inclusions biogenesis, as well as a general cellular strategy for defining cargo destined for the autophagic system. Collectively, our results provide a novel mechanistic route that underlies the life cycle of an inclusion body. Harnessing this pathway may offer innovative approaches in the treatment of neurodegenerative disorders. PMID:17981811

  14. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances. PMID:27362920

  15. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking.

    PubMed

    Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; Del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia

    2016-01-01

    The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer's disease. PMID:27501441

  16. Silk matrices promote formation of insulin-secreting islet-like clusters.

    PubMed

    Shalaly, Nancy Dekki; Ria, Massimiliano; Johansson, Ulrika; Åvall, Karin; Berggren, Per-Olof; Hedhammar, My

    2016-06-01

    Ex vivo expansion of endocrine cells constitutes an interesting alternative to be able to match the unmet need of transplantable pancreatic islets. However, endocrine cells become fragile once removed from their extracellular matrix (ECM) and typically become senescent and loose insulin expression during conventional 2D culture. Herein we develop a protocol where 3D silk matrices functionalized with ECM-derived motifs are used for generation of insulin-secreting islet-like clusters from mouse and human primary cells. The obtained clusters were shown to attain an islet-like spheroid shape and to maintain functional insulin release upon glucose stimulation in vitro. Furthermore, in vivo imaging of transplanted murine clusters showed engraftment with increasing vessel formation during time. There was no sign of cell death and the clusters maintained or increased in size throughout the period, thus suggesting a suitable cluster size for transplantation. PMID:26986856

  17. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    PubMed

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-01-01

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants. PMID:26927080

  18. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    SciTech Connect

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-Kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

  19. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    PubMed Central

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-01-01

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism. PMID:22922757

  20. NR4A1 promotes PDGF-BB-induced cell colony formation in soft agar.

    PubMed

    Eger, Glenda; Papadopoulos, Natalia; Lennartsson, Johan; Heldin, Carl-Henrik

    2014-01-01

    The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-κB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth. PMID:25269081

  1. NR4A1 Promotes PDGF-BB-Induced Cell Colony Formation in Soft Agar

    PubMed Central

    Eger, Glenda; Papadopoulos, Natalia; Lennartsson, Johan; Heldin, Carl-Henrik

    2014-01-01

    The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-κB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth. PMID:25269081

  2. Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors.

    PubMed

    Haeger, S M; Thompson, J J; Kalra, S; Cleaver, T G; Merrick, D; Wang, X-J; Malkoski, S P

    2016-02-01

    Non-small-cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor-suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer; however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC data sets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms, including mutation, homozygous deletion and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4(-/-) mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage, whereas Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4-deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double-strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4-deficient tumors can be exploited by specific therapeutic strategies. PMID:25893305

  3. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C. M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-05-01

    CaCO3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO3 continuous films on Langmuir-Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca2+, exposed to CO2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γs) were accessed. The presence of HAp increased the wettability and γs of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  4. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation

    PubMed Central

    Ramiscal, Roybel R; Parish, Ian A; Lee-Young, Robert S; Babon, Jeffrey J; Blagih, Julianna; Pratama, Alvin; Martin, Jaime; Hawley, Naomi; Cappello, Jean Y; Nieto, Pablo F; Ellyard, Julia I; Kershaw, Nadia J; Sweet, Rebecca A; Goodnow, Christopher C; Jones, Russell G; Febbraio, Mark A; Vinuesa, Carola G; Athanasopoulos, Vicki

    2015-01-01

    T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN–AMPK metabolic signaling nexus essential for selectively promoting Tfh responses. DOI: http://dx.doi.org/10.7554/eLife.08698.001 PMID:26496200

  5. The 'balance intervention' for promoting caloric compensatory behaviours in response to overeating: a formative evaluation.

    PubMed

    Wammes, Birgitte; Breedveld, Boudewijn; Kremers, Stef; Brug, Johannes

    2006-08-01

    To help people prevent weight gain, the Netherlands Nutrition Centre initiated the 'balance intervention', which promotes moderation of food intake and/or increased physical activity in response to occasions of overeating. The aim of this study was to determine whether intervention materials were appreciated, encouraged information seeking and increased motivation and caloric compensatory behaviours. A three-group randomized trial with pre-intervention measures (n = 963, response 86%) and post-intervention measures (n = 857) using electronic questionnaires was conducted among participants aged 25-40 years, recruited from an Internet research panel. The first group received a printed brochure and electronic newsletters (print group), the second group was exposed to radio advertisements (radio group) and the third group was the control group. Multiple regression analyses were used to investigate the impact of the materials on self-reported prevalence of overeating, attitudes, perceived behavioural control, intentions and compensatory behaviours. At follow-up, we found significantly more positive attitudes, intentions and dietary action in the print and radio groups. However, participants who received the radio advertisement had a significantly lower perceived behavioural control. No effects were found on the prevalence of overeating. The results indicate that the intervention materials have potential for increasing people's attitudes, motivation and self-reported behaviour actions, with a possible negative side-effect on perceived behavioural control. PMID:16606638

  6. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants

    PubMed Central

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-01-01

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO2) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO2 nanotubes and Ti alone, Si-doped TiO2 nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO2 nanotubes improved implant fixation strength by 18% and 54% compared to TiO2-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO2 nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants. PMID:26927080

  7. TPPP/p25 promotes tubulin assemblies and blocks mitotic spindle formation

    PubMed Central

    Tirián, L.; Hlavanda, E.; Oláh, J.; Horváth, I.; Orosz, F.; Szabó, B.; Kovács, J.; Szabad, J.; Ovádi, J.

    2003-01-01

    Recently, we isolated from bovine brain a protein, TPPP/p25 and identified as p25, a brain-specific protein that induced aberrant tubulin assemblies. The primary sequence of this protein differs from that of other proteins identified so far; however, it shows high homology with p25-like hypothetical proteins sought via blast. Here, we characterized the binding of TPPP/p25 to tubulin by means of surface plasmon resonance; the kinetic parameters are as follows: kon, 2.4 × 104 M–1·s–1; koff, 5.4 × 10–3 s–1; and Kd, 2.3 × 10–7 M. This protein at substoichometric concentration promotes the polymerization of tubulin into double-walled tubules and polymorphic aggregates or bundles paclitaxel-stabilized microtubules as judged by quantitative data of electron and atomic force microscopies. Injection of bovine TPPP/p25 into cleavage Drosophila embryos expressing tubulin–GFP fusion protein reveals that TPPP/p25 inhibits mitotic spindle assembly and nuclear envelope breakdown without affecting other cellular events like centrosome replication and separation, microtubule nucleation by the centrosomes, and nuclear growth. GTP counteracts TPPP/p25 both in vitro and in vivo. PMID:14623963

  8. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer

    PubMed Central

    Mense, Martin; Vergani, Paola; White, Dennis M; Altberg, Gal; Nairn, Angus C; Gadsby, David C

    2006-01-01

    The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH2-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH2-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1–NBD2 association to channel opening. PMID:17036051

  9. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation.

    PubMed

    Yassin, Mohammed A; Leknes, Knut N; Sun, Yang; Lie, Stein A; Finne-Wistrand, Anna; Mustafa, Kamal

    2016-08-01

    Poly(l-lactide-co-ɛ-caprolactone) (poly(LLA-co-CL)) has been blended with Tween 80 to tune the material properties and optimize cell-material interactions. Accordingly, the aims of this study were fourfold: to evaluate the effect of low concentrations of Tween 80 on the surface microstructure of 3D poly(LLA-co-CL) porous scaffolds: to determine the effect of different concentrations of Tween 80 on proliferation of bone marrow stromal cells (BMSCs) in vitro under dynamic cell culture at 7 and 21 days; to assess the influence of Tween 80 on the degradation rate of poly(LLA-co-CL) at 7 and 21 days; and in a subcutaneous rat model, to evaluate the effect on bone formation of porous scaffolds modified with 3% Tween 80 at 2 and 8 weeks. Blending 3% (w/w) Tween 80 with poly(LLA-co-CL) improves the surface wettability (p < 0.001). Poly(LLA-co-CL)/3% Tween 80 shows significantly increased cellular proliferation at days 7 and 21 (p < 0.001). Moreover, the presence of Tween 80 facilitates the degradation of poly(LLA-co-CL). Two weeks post-implantation, the poly(LLA-co-CL)/3% Tween 80 scaffolds exhibit significant mRNA expression of Runx2 (p = 0.004). After 8 weeks, poly(LLA-co-CL)/3% Tween 80 scaffolds show significantly increased de novo bone formation, demonstrated by μ-CT (p = 0.0133) and confirmed histologically. It can be concluded that blending 3% (w/w) Tween 80 with poly (LLA-co-CL) improves the hydrophilicity and osteogenic potential of the scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2049-2059, 2016. PMID:27086867

  10. Cleavage of Human Transferrin by Porphyromonas gingivalis Gingipains Promotes Growth and Formation of Hydroxyl Radicals

    PubMed Central

    Goulet, Véronique; Britigan, Bradley; Nakayama, Koji; Grenier, Daniel

    2004-01-01

    Porphyromonas gingivalis, a gram-negative anaerobic bacterium associated with active lesions of chronic periodontitis, produces several proteinases which are presumably involved in host colonization, perturbation of the immune system, and tissue destruction. The aims of this study were to investigate the degradation of human transferrin by gingipain cysteine proteinases of P. gingivalis and to demonstrate the production of toxic hydroxyl radicals (HO·) catalyzed by the iron-containing transferrin fragments generated or by release of iron itself. Analysis by polyacrylamide gel electrophoresis and Western immunoblotting showed that preparations of Arg- and Lys-gingipains of P. gingivalis cleave transferrin (iron-free and iron-saturated forms) into fragments of various sizes. Interestingly, gingival crevicular fluid samples from diseased periodontal sites but not samples from healthy periodontal sites contained fragments of transferrin. By using 55Fe-transferrin, it was found that degradation by P. gingivalis gingipains resulted in the production of free iron, as well as iron bound to lower-molecular-mass fragments. Subsequent to the degradation of transferrin, bacterial cells assimilated intracellularly the radiolabeled iron. Growth of P. gingivalis ATCC 33277, but not growth of an Arg-gingipain- and Lys-gingipain-deficient mutant, was possible in a chemically defined medium containing 30% iron-saturated transferrin as the only source of iron and peptides, suggesting that gingipains play a critical role in the acquisition of essential growth nutrients. Finally, the transferrin degradation products generated by Arg-gingipains A and B were capable of catalyzing the formation of HO·, as determined by a hypoxanthine/xanthine oxidase system and spin trapping-electron paramagnetic resonance spectrometry. Our study indicates that P. gingivalis gingipains degrade human transferrin, providing sources of iron and peptides. The iron-containing transferrin fragments or the

  11. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation

    PubMed Central

    Bae, Kyung-Mi; Dai, Yao; Vieweg, Johannes; Siemann, Dietmar W

    2016-01-01

    SOX2 is an embryonic stem cell marker that in prostate cancer has been associated not only with tumorigenesis but also metastasis. Furthermore hypoxia in primary tumors has been linked to poor prognosis and outcomes in this disease. The goal of the present study was to investigate the impact of hypoxia on SOX2 expression and metastasis-associated functions in prostate cancer cells. A tissue microarray of 80 samples from prostate cancer patients or healthy controls was employed to examine the expression of HIF-1α and its correlation with SOX2. The role of SOX2 and HIF-1/2α in the regulation of cell invasion and sphere formation capacity under hypoxic conditions was investigated in vitro using short hairpin RNA (shRNA)-mediated knockdown in three human prostate cancer cell lines. HIF-1α expression was significantly elevated in malignant prostate tissue compared to benign or normal tissue, and in tumor samples its expression was highly correlated with SOX2. In prostate cancer cells, acute and chronic exposures to hypoxia that resulted in elevated expression levels of HIF-1α and HIF-2α, respectively, also induced SOX2. Genetic depletion of SOX2 attenuated hypoxia-induced cell functions. Knockdown of HIF-1α, but not HIF-2α, decreased acute hypoxia-mediated cell invasion and SOX2 up-regulation, whereas only HIF-2α gene silencing reduced sphere formation capacity and chronic hypoxia-mediated SOX2 up-regulation. Enhanced SOX2 expression and HIF-1α or HIF-2α associated phenotypes are dependent on the time duration of exposure to hypoxia. The present results indicate that SOX2 may be a key mediator of hypoxia-induced metastasis-associated functions and hence may serve as a potential target for therapeutic interventions for metastatic prostate cancer. PMID:27294000

  12. Complementary expression of optomotor-blind and the Iroquois complex promotes fold formation to separate wing notum and hinge territories.

    PubMed

    Wang, Dan; Li, Lingyun; Lu, Juan; Liu, Suning; Shen, Jie

    2016-08-01

    Animal morphogenesis requires folds or clefts to separate populations of cells which are often associated with different cell affinities. In the Drosophila wing imaginal disc, the regional expression of the Iroquois complex (Iro-C) in the notum leads to the formation of the hinge/notum (H/N) fold that separates the wing hinge and notum territories. Although Decapentaplegic (Dpp) signaling has been revealed as essential for the hinge/notum subdivision through the restriction of Iro-C toward the notum region, the mechanism by which the H/N border develops into a fold is unknown. Here, we report that a Dpp target gene, optomotor-blind (omb), mediates the role of Dpp signaling in Iro-C inhibition. omb is complementarily expressed on the dorsal hinge side, abutting the Iro-C domain along the H/N border. Ectopic omb expression inhibits Iro-C in the notum territory, independent of known Iro-C regulators Msh and Stat92E. Uniform manipulation of either omb or Iro-C genes spanning the presumptive H/N border significantly suppresses H/N fold formation via inhibition of the apical microtubule enrichment. Ectopically sharp border or discontinuity in level of Iro-C or Omb is enough to generate ectopic fold formation. These results reveal that omb and Iro-C not only are complementarily expressed but also cooperate to promote H/N fold formation. Our data help to understand how Dpp signaling is interpreted region-specifically during tissue subdivision. PMID:27212024

  13. Urocortin 2 But Not Urocortin 3 Promotes the Synaptic Formation in Hipppocampal Neurons via Induction of NGF Production by Astrocytes.

    PubMed

    Zheng, You; Zhang, Yan-Min; Ni, Xin

    2016-03-01

    CRH family peptides play differential role during various physiological and pathophysiological responses, such as stress. Urocortins (UCNs) have been implicated to play complementary or contrasting actions for the effects of CRH during stress. It has been shown that activation of CRH receptor type 1 (CRHR1) results in decreased synapse formation in hippocampus. We therefore explored the effect of UCN2 and UCN3, the exclusive CRHR2 agonists, on synaptic formation in hippocampus. In hippocampal slices cultures, UCN2 but not UCN3 treatment increased the levels of presynaptic protein synapsinI and postsynaptic protein postsynaptic density 95 (PSD95), which was reversed by CRHR2 antagonist astressin 2B. In isolated hippocampal neurons, however, UCN2 decreased the numbers of synapsinI- and PSD95-labeled terminals/clusters via CRHR2. Treatment of hippocampal neurons with the media of UCN2-treated astrocytes led to an increase in synapsinI- and PSD95-labeled terminals. In neuron-astrocyte cocultures, UCN2 also enhanced the numbers and level of synapsinI- and PSD95-labeled terminals. These effects did not occur if glial cells were transfected with CRHR2 small interfering RNA. UCN2 but not UCN3 treatment induced nerve growth factor (NGF) production in astrocytes via CRHR2. The effects of the media of UCN2-treated glial cells on synapse formation in hippocampal neurons were prevented by administration of NGF receptor antagonists. Our data indicate that UCN2 promotes synapse formation in hippocampus via induction of NGF secretion from astrocytes. CRHR2 in glial cells mediates the stimulatory effects of CRH. Glia-neuron communication is critical for neuronal circuits remodeling and synaptic plasticity in response to neurohormones or neuromodulators. PMID:26713785

  14. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    PubMed Central

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  15. SOXC Transcription Factors Induce Cartilage Growth Plate Formation in Mouse Embryos by Promoting Noncanonical WNT Signaling.

    PubMed

    Kato, Kenji; Bhattaram, Pallavi; Penzo-Méndez, Alfredo; Gadi, Abhilash; Lefebvre, Véronique

    2015-09-01

    Growth plates are specialized cartilage structures that ensure the elongation of most skeletal primordia during vertebrate development. They are made by chondrocytes that proliferate in longitudinal columns and then progress in a staggered manner towards prehypertrophic, hypertrophic and terminal maturation. Complex molecular networks control the formation and activity of growth plates, but remain incompletely understood. We investigated here the importance of the SoxC genes, which encode the SOX4, SOX11 and SOX12 transcription factors, in growth plates. We show that the three genes are expressed robustly in perichondrocytes and weakly in growth plate chondrocytes. SoxC(Prx1Cre) mice, which deleted SoxC genes in limb bud skeletogenic mesenchyme, were born with tiny appendicular cartilage primordia because of failure to form growth plates. In contrast, SoxC(Col2Cre) and SoxC(ATC) mice, which deleted SoxC genes primarily in chondrocytes, were born with mild dwarfism and fair growth plates. Chondrocytes in the latter mutants matured normally, but formed irregular columns, proliferated slowly and died ectopically. Asymmetric distribution of VANGL2 was defective in both SoxC(Prx1Cre) and SoxC(ATC) chondrocytes, indicating impairment of planar cell polarity, a noncanonical WNT signaling pathway that controls growth plate chondrocyte alignment, proliferation and survival. Accordingly, SoxC genes were necessary in perichondrocytes for expression of Wnt5a, which encodes a noncanonical WNT ligand required for growth plate formation, and in chondrocytes and perichondrocytes for expression of Fzd3 and Csnk1e, which encode a WNT receptor and casein kinase-1 subunit mediating planar cell polarity, respectively. Reflecting the differential strengths of the SOXC protein transactivation domains, SOX11 was more powerful than SOX4, and SOX12 interfered with the activity of SOX4 and SOX11. Altogether, these findings provide novel insights into the molecular regulation of skeletal

  16. Mesenchymal Wnt Signaling Promotes Formation of Sternum and Thoracic Body Wall

    PubMed Central

    Snowball, John; Ambalavanan, Manoj; Cornett, Bridget; Lang, Richard; Whitsett, Jeff; Sinner, Debora

    2015-01-01

    Midline defects account for approximately 5% of congenital abnormalities observed at birth. However, the molecular mechanisms underlying the formation of the ventral body wall are not well understood. Recent studies linked mutations in Porcupine—an O-acetyl transferase mediating Wnt ligand acylation—with defects in the thoracic body wall. We hypothesized that anomalous Wnt signaling is involved in the pathogenesis of defective closure of the thoracic body wall. We generated a mouse model wherein Wntless (Wls), which encodes a cargo receptor mediating secretion of Wnt ligands, was conditionally deleted from the developing mesenchyme using Dermo1Cre mice. Wlsf/f;Dermo1Cre/+ embryos died during mid-gestation. At E13.5, skeletal defects were observed in the forelimbs, jaw, and rib cage. At E14.5, midline defects in the thoracic body wall began to emerge: the sternum failed to fuse and the heart protruded through the body wall at the midline (ectopia cordis). To determine the molecular mechanism underlying the phenotype observed in Wlsf/f;Dermo1Cre/+ embryos, we tested whether Wnt/β-catenin signaling was operative in developing the embryonic ventral body wall using Axin2LacZ and BatGal reporter mice. While Wnt/β-catenin signaling activity was observed at the midline of the ventral body wall before sternal fusion, this pattern of activity was altered and scattered throughout the body wall after mesenchymal deletion of Wls. Mesenchymal cell migration was disrupted in Wlsf/f;Dermo1Cre/+ thoracic body wall partially due to anomalous non-canonical Wnt signaling as determined by in vitro assays. Deletion of Lrp5 and Lrp6 receptors, which mediate Wnt/β-catenin signaling in the mesenchyme, partially recapitulated the phenotype observed in the chest midline of Wlsf/f;Dermo1Cre/+ embryos supporting a role for Wnt/β-catenin signaling activity in the normal formation of the ventral body wall mesenchyme. We conclude that Wls-mediated secretion of Wnt ligands from the

  17. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells.

    PubMed

    Hong, Jong Kyu; Bang, Ju Yup; Xu, Guan; Lee, Jun-Hee; Kim, Yeon-Ju; Lee, Ho-Jun; Kim, Han Seong; Kwon, Sang-Mo

    2015-01-01

    Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D) scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 μm) while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 μm in 4 hours of cell culture) of individual endothelial progenitor cells (EPCs) and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly porous 3D scaffold with tunable thickness has implications for the regeneration of vascularized thick tissues and cardiac patch development. PMID:25709441

  18. Thromboxane A2 exacerbates acute lung injury via promoting edema formation.

    PubMed

    Kobayashi, Koji; Horikami, Daiki; Omori, Keisuke; Nakamura, Tatsuro; Yamazaki, Arisa; Maeda, Shingo; Murata, Takahisa

    2016-01-01

    Thromboxane A2 (TXA2) is produced in the lungs of patients suffering from acute lung injury (ALI). We assessed its contribution in disease progression using three different ALI mouse models. The administration of hydrochloric acid (HCl) or oleic acid (OA)+ lipopolysaccharide (LPS) caused tissue edema and neutrophil infiltration with TXA2 production in the lungs of the experimental mice. The administration of LPS induced only neutrophil accumulation without TXA2 production. Pretreatment with T prostanoid receptor (TP) antagonist attenuated the tissue edema but not neutrophil infiltration in these models. Intravital imaging and immunostaining demonstrated that administration of TP agonist caused vascular hyper-permeability by disrupting the endothelial barrier formation in the mouse ear. In vitro experiments showed that TP-stimulation disrupted the endothelial adherens junction, and it was inhibited by Ca(2+) channel blockade or Rho kinase inhibition. Thus endogenous TXA2 exacerbates ALI, and its blockade attenuates it by modulating the extent of lung edema. This can be explained by the endothelial hyper-permeability caused by the activation of TXA2-TP axis, via Ca(2+)- and Rho kinase-dependent signaling. PMID:27562142

  19. Thromboxane A2 exacerbates acute lung injury via promoting edema formation

    PubMed Central

    Kobayashi, Koji; Horikami, Daiki; Omori, Keisuke; Nakamura, Tatsuro; Yamazaki, Arisa; Maeda, Shingo; Murata, Takahisa

    2016-01-01

    Thromboxane A2 (TXA2) is produced in the lungs of patients suffering from acute lung injury (ALI). We assessed its contribution in disease progression using three different ALI mouse models. The administration of hydrochloric acid (HCl) or oleic acid (OA)+ lipopolysaccharide (LPS) caused tissue edema and neutrophil infiltration with TXA2 production in the lungs of the experimental mice. The administration of LPS induced only neutrophil accumulation without TXA2 production. Pretreatment with T prostanoid receptor (TP) antagonist attenuated the tissue edema but not neutrophil infiltration in these models. Intravital imaging and immunostaining demonstrated that administration of TP agonist caused vascular hyper-permeability by disrupting the endothelial barrier formation in the mouse ear. In vitro experiments showed that TP-stimulation disrupted the endothelial adherens junction, and it was inhibited by Ca2+ channel blockade or Rho kinase inhibition. Thus endogenous TXA2 exacerbates ALI, and its blockade attenuates it by modulating the extent of lung edema. This can be explained by the endothelial hyper-permeability caused by the activation of TXA2-TP axis, via Ca2+- and Rho kinase-dependent signaling. PMID:27562142

  20. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    PubMed Central

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Inestrosa, Nibaldo C.

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation. PMID:26881110

  1. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα(o) signaling, increasing the intracellular Ca(2+) concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα(o) subunit signaling in the regulation of synapse formation. PMID:26881110

  2. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells

    PubMed Central

    Hong, Jong Kyu; Bang, Ju Yup; Xu, Guan; Lee, Jun-Hee; Kim, Yeon-Ju; Lee, Ho-Jun; Kim, Han Seong; Kwon, Sang-Mo

    2015-01-01

    Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D) scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 μm) while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 μm in 4 hours of cell culture) of individual endothelial progenitor cells (EPCs) and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly porous 3D scaffold with tunable thickness has implications for the regeneration of vascularized thick tissues and cardiac patch development. PMID:25709441

  3. TSC1 Promotes B Cell Maturation but Is Dispensable for Germinal Center Formation

    PubMed Central

    Wang, Hongxia; Carico, Zachary; Hopper, Kristen; Shin, Jinwook; Deng, Xuming; Qiu, Yirong; Unniraman, Shyam; Kelsoe, Garnett; Zhong, Xiao-Ping

    2015-01-01

    Accumulating evidence indicates that the tuberous sclerosis complex 1 (TSC1), a tumor suppressor that acts by inhibiting mTOR signaling, plays an important role in the immune system. We report here that TSC1 differentially regulates mTOR complex 1 (mTORC1) and mTORC2/Akt signaling in B cells. TSC1 deficiency results in the accumulation of transitional-1 (T1) B cells and progressive losses of B cells as they mature beyond the T1 stage. Moreover, TSC1KO mice exhibit a mild defect in the serum antibody responses or rate of Ig class-switch recombination after immunization with a T-cell-dependent antigen. In contrast to a previous report, we demonstrate that both constitutive Peyer’s patch germinal centers (GCs) and immunization-induced splenic GCs are unimpaired in TSC1-deficient (TSC1KO) mice and that the ratio of GC B cells to total B cells is comparable in WT and TSC1KO mice. Together, our data demonstrate that TSC1 plays important roles for B cell development, but it is dispensable for GC formation and serum antibody responses. PMID:26000908

  4. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking

    PubMed Central

    Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia

    2016-01-01

    The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441

  5. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation.

    PubMed

    Hégarat, Nadia; Novopashina, Darya; Fokina, Alesya A; Boutorine, Alexandre S; Venyaminova, Alya G; Praseuth, Danièle; François, Jean-Christophe

    2014-03-01

    Inhibition of insulin-like growth factor I (IGF-I) signaling is a promising antitumor strategy and nucleic acid-based approaches have been investigated to target genes in the pathway. Here, we sought to modulate IGF-I transcriptional activity using triple helix formation. The IGF-I P1 promoter contains a purine/pyrimidine (R/Y) sequence that is pivotal for transcription as determined by deletion analysis and can be targeted with a triplex-forming oligonucleotide (TFO). We designed modified purine- and pyrimidine-rich TFOs to bind to the R/Y sequence. To monitor TFO binding, we developed a fluorescence-based gel-retardation assay that allowed independent detection of each strand in three-stranded complexes using end-labeling with Alexa 488, cyanine (Cy)3 and Cy5 fluorochromes. We characterized TFOs for their ability to inhibit restriction enzyme activity, compete with DNA-binding proteins and inhibit IGF-I transcription in reporter assays. TFOs containing modified nucleobases, 5-methyl-2'-deoxycytidine and 5-propynyl-2'-deoxyuridine, specifically inhibited restriction enzyme cleavage and formed triplexes on the P1 promoter fragment. In cells, deletion of the R/Y-rich sequence led to 48% transcriptional inhibition of a reporter gene. Transfection with TFOs inhibited reporter gene activity to a similar extent, whereas transcription from a mutant construct with an interrupted R/Y region was unaffected, strongly suggesting the involvement of triplex formation in the inhibitory mechanisms. Our results indicate that nuclease-resistant TFOs will likely inhibit endogenous IGF-I gene function in cells. PMID:24423253

  6. Prenatal secondhand cigarette smoke promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation.

    PubMed

    Singh, Shashi P; Gundavarapu, Sravanthi; Peña-Philippides, Juan C; Rir-Sima-ah, Jules; Mishra, Neerad C; Wilder, Julie A; Langley, Raymond J; Smith, Kevin R; Sopori, Mohan L

    2011-11-01

    Parental, particularly maternal, smoking increases the risk for childhood allergic asthma and infection. Similarly, in a murine allergic asthma model, prenatal plus early postnatal exposure to secondhand cigarette smoke (SS) exacerbates airways hyperreactivity and Th2 responses in the lung. However, the mechanism and contribution of prenatal versus early postnatal SS exposure on allergic asthma remain unresolved. To identify the effects of prenatal and/or early postnatal SS on allergic asthma, BALB/c dams and their offspring were exposed gestationally and/or 8-10 wk postbirth to filtered air or SS. Prenatal, but not postnatal, SS strongly increased methacholine and allergen (Aspergillus)-induced airway resistance, Th2 cytokine levels, and atopy and activated the Th2-polarizing pathway GATA3/Lck/ERK1/2/STAT6. Either prenatal and/or early postnatal SS downregulated the Th1-specific transcription factor T-bet and, surprisingly, despite high levels of IL-4/IL-13, dramatically blocked the allergen-induced mucous cell metaplasia, airway mucus formation, and the expression of mucus-related genes/proteins: Muc5ac, γ-aminobutyric acid A receptors, and SAM pointed domain-containing Ets-like factor. Given that SS/nicotine exposure of normal adult mice promotes mucus formation, the results suggested that fetal and neonatal lung are highly sensitive to cigarette smoke. Thus, although the gestational SS promotes Th2 polarization/allergic asthma, it may also impair and/or delay the development of fetal and neonatal lung, affecting mucociliary clearance and Th1 responses. Together, this may explain the increased susceptibility of children from smoking parents to allergic asthma and childhood respiratory infections. PMID:21930963

  7. Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model

    PubMed Central

    Liang, Yulong; Gao, Hong; Lin, Shiaw-Yih; Goss, John A.; Du, Chunying; Li, Kaiyi

    2014-01-01

    MCPH1, also known as BRIT1, has recently been identified as a novel key regulatory gene of the DNA damage response pathway. MCPH1 is located on human chromosome 8p23.1, where human cancers frequently show loss of heterozygosity. As such, MCPH1 is aberrantly expressed in many malignancies, including breast and ovarian cancers, and the function of MCPH1 has been implicated in tumor suppression. However, it remains poorly understood whether MCPH1 deficiency leads to tumorigenesis. Here, we generated and studied both Mcph1−/− and Mcph1−/−p53−/− mice; we showed that Mcph1−/− mice developed tumors with long latency, and that primary lymphoma developed significantly earlier in Mcph1−/−p53−/− mice than in Mcph11+/+p53−/− and Mcph1+/−p53−/− mice. The Mcph1−/−p53−/− lymphomas and derived murine embryonic fibroblasts (MEFs) were both more sensitive to irradiation. Mcph1 deficiency resulted in remarkably increased chromosome and chromatid breaks in Mcph1−/− p53−/− lymphomas and MEFs, as determined by metaphase spread assay and spectral karyotyping analysis. Additionally, Mcph1 deficiency significantly enhanced aneuploidy as well as abnormal centrosome multiplication in Mcph1−/−p53−/− cells. Meanwhile, Mcph1 deficiency impaired double strand break (DSB) repair in Mcph1−/−p53−/− MEFs as demonstrated by neutral Comet assay. Compared with Mcph1+/+p53−/− MEFs, homologous recombination and non-homologous end joining activities were significantly decreased in Mcph1−/−p53−/− MEFs. Notably, reconstituted MCPH1 rescued the defects of DSB repair and alleviated chromosomal aberrations in Mcph1−/−p53−/− MEFs. Taken together, our data demonstrate MCPH1 deficiency promotes genomic instability and increases cancer susceptibility. Our study using knockout mouse models provides convincing genetic evidence that MCPH1 is a bona fide tumor suppressor gene. Its deficiency leading to defective DNA repair in tumors

  8. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway

    PubMed Central

    Du, Li; Nong, Meng-Ni; Zhao, Jin-Min; Peng, Xiao-Ming; Zong, Shao-Hui; Zeng, Gao-Feng

    2016-01-01

    Bone homeostasis is maintained by a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Our previous studies showed the plant-derived natural polysaccharide (Polygonatum sibiricum polysaccharide or PSP) had significant anti-ovariectomy (OVX)-induced osteoporosis effects in vivo, but the mechanisms of PSP’s anti-osteoporosis effect remains unclear. In this study, we assessed PSP’s effect on the generation of osteoblast and osteoclast in vitro. This study showed that PSP promoted the osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) without affecting BMPs signaling pathway. This effect was due to the increased nuclear accumulation of β-catenin, resulting in a higher expression of osteoblast-related genes. Furthermore, the study showed PSP could inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and exert prophylatic protection against LPS-induced osteolysis in vivo. This effect was also related to the increased nuclear accumulation of β-catenin, resulting in the decreased expression of osteoclast-related genes. In conclusion, our results showed that PSP effectively promoted the osteogenic differentiation of mouse BMSCs and suppressed osteoclastogenesis; therefore, it could be used to treat osteoporosis. PMID:27554324

  9. Pyrrolidine and Piperidine Formation Via Copper(II) Carboxylate Promoted Intramolecular Carboamination of Unactivated Olefins: Diastereoselectivity and Mechanism

    PubMed Central

    Sherman, Eric S.; Fuller, Peter H.; Kasi, Dhanalakshmi; Chemler, Sherry R.

    2008-01-01

    An expanded substrate scope and in depth analysis of the reaction mechanism of the copper(II) carboxylate promoted intramolecular carboamination of unactivated alkenes is described. This method provides access to N-functionalized pyrrolidines and piperidines. Both aromatic and aliphatic γ- and δ-alkenyl N-arylsulfonamides undergo the oxidative cyclization reaction efficiently. N-Benzoyl-2-allylaniline also underwent the oxidative cyclization. The terminal olefin substrates examined were more reactive than those with internal olefins, and the latter terminated in elimination rather than carbon-carbon bond formation. The efficiency of the reaction was enhanced by the use of more organic soluble copper(II) carboxylate salts, copper(II) neodecanoate in particular. The reaction times were reduced by the use of microwave heating. High levels of diastereoselectivity were observed in the synthesis of 2,5-disubstituted pyrrolidines, wherein the cis substitution pattern predominates. The mechanism of the reaction is discussed in the context of the observed reactivity and in comparison to analogous reactions promoted by other reagents and conditions. Our evidence supports a mechanism wherein the N-C bond is formed via intramolecular syn aminocupration and the C-C bond is formed via intramolecular addition of a primary carbon radical to an aromatic ring. PMID:17428100

  10. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes

    PubMed Central

    Hinrichs, Martin; Specht, André; Waßmann, Friedrich; Schreiber, Lukas; Schenk, Manfred K.

    2015-01-01

    We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols. PMID:26383862

  11. Gastric LTi cells promote lymphoid follicle formation but are limited by IRAK-M and do not alter microbial growth.

    PubMed

    Shiu, J; Piazuelo, M B; Ding, H; Czinn, S J; Drakes, M L; Banerjee, A; Basappa, N; Kobayashi, K S; Fricke, W F; Blanchard, T G

    2015-09-01

    Lymphoid tissue inducer (LTi) cells are activated by accessory cell IL-23, and promote lymphoid tissue genesis and antibacterial peptide production by the mucosal epithelium. We investigated the role of LTi cells in the gastric mucosa in the context of microbial infection. Mice deficient in IRAK-M, a negative regulator of TLR signaling, were investigated for increased LTi cell activity, and antibody mediated LTi cell depletion was used to analyze LTi cell dependent antimicrobial activity. H. pylori infected IRAK-M deficient mice developed increased gastric IL-17 and lymphoid follicles compared to wild type mice. LTi cells were present in naive and infected mice, with increased numbers in IRAK-M deficient mice by two weeks. Helicobacter and Candida infection of LTi cell depleted rag1(-/-) mice demonstrated LTi-dependent increases in calprotectin but not RegIII proteins. However, pathogen and commensal microbiota populations remained unchanged in the presence or absence of LTi cell function. These data demonstrate LTi cells are present in the stomach and promote lymphoid follicle formation in response to infection, but are limited by IRAK-M expression. Additionally, LTi cell mediated antimicrobial peptide production at the gastric epithelium is less efficacious at protecting against microbial pathogens than has been reported for other tissues. PMID:25603827

  12. ADAMTSL-6 Is a Novel Extracellular Matrix Protein That Binds to Fibrillin-1 and Promotes Fibrillin-1 Fibril Formation*

    PubMed Central

    Tsutsui, Ko; Manabe, Ri-ichiroh; Yamada, Tomiko; Nakano, Itsuko; Oguri, Yasuko; Keene, Douglas R.; Sengle, Gerhard; Sakai, Lynn Y.; Sekiguchi, Kiyotoshi

    2010-01-01

    ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6α and -6β, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6α, in contrast to -6β, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6β binds to the N-terminal half of fibrillin-1 with a dissociation constant of ∼80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly. PMID:19940141

  13. Urinary bladder matrix promotes site appropriate tissue formation following right ventricle outflow tract repair

    PubMed Central

    Remlinger, Nathaniel T; Gilbert, Thomas W; Yoshida, Masahiro; Guest, Brogan N; Hashizume, Ryotaro; Weaver, Michelle L; Wagner, William R; Brown, Bryan N; Tobita, Kimimasa; Wearden, Peter D

    2013-01-01

    The current prevalence and severity of heart defects requiring functional replacement of cardiac tissue pose a serious clinical challenge. Biologic scaffolds are an attractive tissue engineering approach to cardiac repair because they avoid sensitization associated with homograft materials and theoretically possess the potential for growth in similar patterns as surrounding native tissue. Both urinary bladder matrix (UBM) and cardiac ECM (C-ECM) have been previously investigated as scaffolds for cardiac repair with modest success, but have not been compared directly. In other tissue locations, bone marrow derived cells have been shown to play a role in the remodeling process, but this has not been investigated for UBM in the cardiac location, and has never been studied for C-ECM. The objectives of the present study were to compare the effectiveness of an organ-specific C-ECM patch with a commonly used ECM scaffold for myocardial tissue repair of the right ventricle outflow tract (RVOT), and to examine the role of bone marrow derived cells in the remodeling response. A chimeric rat model in which all bone marrow cells express green fluorescent protein (GFP) was generated and used to show the ability of ECM scaffolds derived from the heart and bladder to support cardiac function and cellular growth in the RVOT. The results from this study suggest that urinary bladder matrix may provide a more appropriate substrate for myocardial repair than cardiac derived matrices, as shown by differences in the remodeling responses following implantation, as well as the presence of site appropriate cells and the formation of immature, myocardial tissue. PMID:23974174

  14. Notch3 Activation Promotes Invasive Glioma Formation in a Tissue Site-Specific Manner

    PubMed Central

    Pierfelice, Tarran J.; Schreck, Karisa C.; Dang, Louis; Asnaghi, Laura; Gaiano, Nicholas; Eberhart, Charles G.

    2010-01-01

    While Notch signaling has been widely implicated in neoplastic growth, direct evidence for in vivo initiation of neoplasia by the pathway in murine models has been limited to tumors of lymphoid, breast, and choroid plexus cells. To examine tumorigenic potential in the eye and brain, we injected retroviruses encoding activated forms of Notch1, Notch2, or Notch3 into embryonic mice. Interestingly, the majority of animals infected with active Notch3 developed proliferative lesions comprised of pigmented ocular choroid cells, retinal and optic nerve glia, and lens epithelium. Notch3-induced lesions in the choroid, retina, and optic nerve were capable of invading adjacent tissues, suggesting that they were malignant tumors. While Notch3 activation induced choroidal tumors in up to 67% of eyes, Notch1 or Notch2 activation never resulted in such tumors. Active forms of Notch1 and Notch2 did generate a few small proliferative glial nodules in the retina and optic nerve, while Notch3 was ten-fold more efficient at generating growths, many of which were large invasive gliomas. Expression of active Notch1/Notch3 chimeric receptors implicated the RAM (RBPjk-association molecule) and transactivation domains (TAD) of Notch3 in generating choroidal and glial tumors, respectively. In contrast to our findings in the optic nerve and retina, introduction of active Notch receptors, including Notch3, into the brain never caused glial tumors. Our results highlight the differential ability of Notch receptor paralogs to initiate malignant tumor formation, and suggest that glial precursors of the optic nerve, but not the brain, are susceptible to transformation by Notch3. PMID:21245095

  15. ZDHHC17 promotes axon outgrowth by regulating TrkA-tubulin complex formation.

    PubMed

    Shi, Wei; Wang, Fen; Gao, Ming; Yang, Yang; Du, Zhaoxia; Wang, Chen; Yao, Yao; He, Kun; Chen, Xueran; Hao, Aijun

    2015-09-01

    Correct axonal growth during nervous system development is critical for synaptic transduction and nervous system function. Proper axon outgrowth relies on a suitable growing environment and the expression of a series of endogenous neuronal factors. However, the mechanisms of these neuronal proteins involved in neuronal development remain unknown. ZDHHC17 is a member of the DHHC (Asp-His-His-Cys)-containing family, a family of highly homologous proteins. Here, we show that loss of function of ZDHHC17 in zebrafish leads to motor dysfunction in 3-day post-fertilization (dpf) larvae. We performed immunolabeling analysis to reveal that mobility dysfunction was due to a significant defect in the axonal outgrowth of spinal motor neurons (SMNs) without affecting neuron generation. In addition, we found a similar phenotype in zdhhc17 siRNA-treated neural stem cells (NSCs) and PC12 cells. Inhibition of zdhhc17 limited neurite outgrowth and branching in both NSCs and PC12. Furthermore, we discovered that the level of phosphorylation of extracellular-regulated kinase (ERK) 1/2, a major downstream effector of tyrosine kinase (TrkA), was largely upregulated in ZDHHC17 overexpressing PC12 cells by a mechanism independent on its palmitoyltransferase (PAT) activity. Specifically, ZDHHC17 is necessary for proper TrkA-tubulin module formation in PC12 cells. These results strongly indicate that ZDHHC17 is essential for correct axon outgrowth in vivo and in vitro. Our findings identify ZDHHC17 as an important upstream factor of ERK1/2 to regulate the interaction between TrkA and tubulin during neuronal development. PMID:26232532

  16. Flexible PTB7:PC71BM bulk heterojunction solar cells with a LiF buffer layer

    NASA Astrophysics Data System (ADS)

    Yanagidate, Tatsuki; Fujii, Shunjiro; Ohzeki, Masaya; Yanagi, Yuichiro; Arai, Yuki; Okukawa, Takanori; Yoshida, Akira; Kataura, Hiromichi; Nishioka, Yasushiro

    2014-02-01

    Bulk heterojunction solar cells were fabricated using poly[4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) after a layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a flexible indium tin oxide (ITO)-coated polyethylene terephthalate substrate. The fabricated structures were Al/LiF/PTB7:PC71BM/PEDOT:PSS/ITO with or without a lithium fluoride (LiF) buffer layer, and the effect of the LiF buffer layer on the performance of the solar cells was investigated. The LiF layer significantly increased the open-circuit voltages and fill factors of the solar cells, presumably because of the work function shift of the aluminum cathode. As a result, the conversion efficiency increased from 2.31 to 4.02% owing to the presence of the LiF layer. From the results of a stability test, it was concluded that the inserted LiF layer acted as a shielding and scavenging protector, which prevented the intrusion of some chemical species into the active layer, thereby improving the lifetime of the unpakcaged devices.

  17. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

    PubMed

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Li, Feijiang; Xu, Qiaoling; Xie, Kangning; Tang, Chi; Liu, Juan; Guo, Wei; Wu, Xiaoming; Jiang, Maogang; Luo, Erping

    2014-10-01

    A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb-unloaded (HU) rats. Thirty young mature (3-month-old), male Sprague-Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2-hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro-computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three-point bending test showed that PEMF mitigated HU-induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N-terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C-terminal crosslinked telopeptides of type I collagen (CTX-I) and tartrate-resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real-time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β-catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse-induced osteopenia were further confirmed in 8-month-old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse-induced bone loss by promoting skeletal anabolic activities

  18. Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2.

    PubMed

    Tamura, Shogo; Suzuki-Inoue, Katsue; Tsukiji, Nagaharu; Shirai, Toshiaki; Sasaki, Tomoyuki; Osada, Makoto; Satoh, Kaneo; Ozaki, Yukio

    2016-03-31

    Megakaryopoiesis is the hierarchical differentiation of hematopoietic stem cells into megakaryocytes. Differentiating megakaryocytes undergo maturation characterized by endomitosis and produce numerous platelets through proplatelet formation. C-type lectin-like receptor 2 (CLEC-2) is a podoplanin (PDPN) receptor mainly expressed on platelets and megakaryocytes. Deletion of platelet/megakaryocyte CLEC-2 causes thrombocytopenia in mice; however, its contribution to megakaryopoiesis remains unknown. Here, we show that megakaryopoiesis is promoted through the CLEC-2/PDPN interaction in the vicinity of arterioles in the bone marrow (BM). We have also identified PDPN-expressing BM arteriolar stromal cells, tentatively termed as BM fibroblastic reticular cell (FRC)-like cells. Platelet/megakaryocyte-specific CLEC-2 conditional knockout (cKO) mice showed a decrease in the number of immature megakaryocytes. CLEC-2 wild-type megakaryocyte expansion was augmented in vitro by the addition of recombinant PDPN, but not cKO megakaryocytes. Moreover, megakaryocyte colonies were colocalized with periarteriolar BM FRC-like cells in the BM. Coculture of megakaryocytes with BM FRC-like cells augmented megakaryocyte expansion, which was dependent upon the CLEC-2/PDPN interaction. Furthermore, we found that the CLEC-2/PDPN interaction induces BM FRC-like cells to secrete chemokine (C-C motif) ligand 5 (CCL5) to facilitate proplatelet formation. These observations indicate that a reciprocal interaction between CLEC-2 on megakaryocytes and PDPN on BM FRC-like cells contributes to the periarteriolar megakaryopoietic microenvironment in mouse BM. PMID:26796360

  19. Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation.

    PubMed

    Laco, Filip; Grant, M Helen; Black, Richard A

    2013-06-01

    Collagen and fibronectin matrices are known to stimulate migration of microvascular endothelial cells and the process of tubulogenesis, but the physical, chemical, and topographical cues for directed vessel formation have yet to be determined. In this study, growth, migration, elongation, and tube formation of human lymphatic microvascular endothelial cells (LECs) were investigated on electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(L-lactic-co-D-lactic acid) (PLDL) nanofiber-coated substrates, and correlated with fiber density and diameter. Directed migration of LECs was observed in the presence of aligned nanofibers, whereas random fiber alignment slowed down migration and growth of LECs. Cell guidance was significantly enhanced in the presence of more hydrophobic PLDL polymer nanofibers compared to PLGA (10:90). Subsequent experiments with tube-forming assays reveal the ability of resorbable hydrophobic nanofibers >300 nm in diameter to promote cell guidance in collagen gels without direct cell-fiber contact, in contrast to the previously reported contact-guidance phenomena. Our results show that endothelial cell guidance is possible within nanofiber/collagen-gel constructs that mimic the native extracellular matrix in terms of size and orientation of fibrillar components. PMID:23197422

  20. Deactivation of steam-reforming model catalysts by coke formation. II. Promotion with potassium and effect of water

    SciTech Connect

    Demicheli, M.C.; Duprez, D.; Barbier, J. ); Ferretti, O.A.; Ponzi, E.N. )

    1994-02-01

    The influence of potassium on the hydrogenolysis of cyclopentane and on the simultaneous carbon formation over a series of alumina-supported Ni catalysts was studied. With increasing potassium loadings at temperatures where either a deactivating two-dimensional carbon or a filamentary carbon was formed, the catalytic activity passed through a maximum and then decreased. With relatively high K-doses there was less coking in the presence of steam; the growth of filamentary carbon was then largely reduced. Characterization of the coked catalysts by temperature-programmed oxidation and SEM disclosed quite different roles of alkali: at lower contents, associated with alumina, potassium facilitates the formation of filamentary carbon and minimizes the generation of coke precursors, whereas at higher contents it acts as a poison for both hydrogenolysis and coking reactions. In all cases, the alkali promoted the catalytic oxidation of the carbon deposits. Because of its localization, the alkali could also modify the nickel-carbon interface in carbon filaments. 32 refs., 12 figs., 5 tabs.

  1. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation

    PubMed Central

    Wang, Xin; Preston, James F.; Romeo, Tony

    2004-01-01

    Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched β-1,6-N-acetyl-d-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-β-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria. PMID:15090514

  2. Hexa (ethylene glycol) derivative of benzothiazole aniline promotes dendritic spine formation through the RasGRF1-Ras dependent pathway.

    PubMed

    Lee, Nathanael J; Song, Jung Min; Cho, Hyun-Ji; Sung, You Me; Lee, Taehee; Chung, Andrew; Hong, Sung-Ha; Cifelli, Jessica L; Rubinshtein, Mark; Habib, Lila K; Capule, Christina C; Turner, R Scott; Pak, Daniel T S; Yang, Jerry; Hoe, Hyang-Sook

    2016-02-01

    Our recent study demonstrated that an amyloid-β binding molecule, BTA-EG4, increases dendritic spine number via Ras-mediated signaling. To potentially optimize the potency of the BTA compounds, we synthesized and evaluated an amyloid-β binding analog of BTA-EG4 with increased solubility in aqueous solution, BTA-EG6. We initially examined the effects of BTA-EG6 on dendritic spine formation and found that BTA-EG6-treated primary hippocampal neurons had significantly increased dendritic spine number compared to control treatment. In addition, BTA-EG6 significantly increased the surface level of AMPA receptors. Upon investigation into the molecular mechanism by which BTA-EG6 promotes dendritic spine formation, we found that BTA-EG6 may exert its effects on spinogenesis via RasGRF1-ERK signaling, with potential involvement of other spinogenesis-related proteins such as Cdc42 and CDK5. Taken together, our data suggest that BTA-EG6 boosts spine and synapse number, which may have a beneficial effect of enhancing neuronal and synaptic function in the normal healthy brain. PMID:26675527

  3. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the PTB and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Selbach, H. J.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate (RAKR) for 192Ir high dose rate (HDR) brachytherapy sources of the Physikalisch-Technische Bundesanstalt (PTB), Germany, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the PTB in September 2011. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the PTB and the BIPM standards for reference air kerma rate, is 1.0003 with a combined standard uncertainty of 0.0099. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Narrow-band UVB radiation promotes dendrite formation by activating Rac1 in B16 melanoma cells.

    PubMed

    Wang, Wu-Qing; Wu, Jin-Feng; Xiao, Xiao-Qing; Xiao, Qin; Wang, Jing; Zuo, Fu-Guo

    2013-09-01

    Melanocytes are found scattered throughout the basal layer of the epidermis. Following hormone or ultraviolet (UV) light stimulation, the melanin pigments contained in melanocytes are transferred through the dendrites to the surrounding keratinocytes to protect against UV light damage or carcinogenesis. This has been considered as a morphological indicator of melanocytes and melanoma cells. Small GTPases of the Rho family have been implicated in the regulation of actin reorganization underlying dendrite formation in melanocytes and melanoma cells. It has been proven that ultraviolet light plays a pivotal role in melanocyte dendrite formation; however, the molecular mechanism underlying this process has not been fully elucidated. The effect of small GTPases, such as Rac1 and RhoA, on the morphology of B16 melanoma cells treated with narrow-band UVB radiation was investigated. The morphological changes were observed under a phase contrast microscope and the F-actin microfilament of the cytoskeleton was observed under a laser scanning confocal microscope. The pull-down assay was performed to detect the activity of the small GTPases Rac1 and RhoA. The morphological changes were evident, with globular cell bodies and increased numbers of tree branch-like dendrites. The cytoskeletal F-actin appeared disassembled following narrow-band UVB irradiation of B16 melanoma cells. Treatment of B16 melanoma cells with narrow-band UVB radiation resulted in the activation of Rac1 in a time-dependent manner. In conclusion, the present study may provide a novel method through which narrow-band UVB radiation may be used to promote dendrite formation by activating the Rac1 signaling pathway, resulting in F-actin rearrangement in B16 melanoma cells. PMID:24649261

  5. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.

    PubMed

    Kline, Benjamin C; McKay, Susannah L; Tang, William W; Portnoy, Daniel A

    2015-02-01

    During exposure to certain stresses, bacteria dimerize pairs of 70S ribosomes into translationally silent 100S particles in a process called ribosome hibernation. Although the biological roles of ribosome hibernation are not completely understood, this process appears to represent a conserved and adaptive response that contributes to optimal survival during stress and post-exponential-phase growth. Hibernating ribosomes are formed by the activity of one or more highly conserved proteins; gammaproteobacteria produce two relevant proteins, ribosome modulation factor (RMF) and hibernation promoting factor (HPF), while most Gram-positive bacteria produce a single, longer HPF protein. Here, we report the formation of 100S ribosomes by an HPF homolog in Listeria monocytogenes. L. monocytogenes 100S ribosomes were observed by sucrose density gradient centrifugation of bacterial extracts during mid-logarithmic phase, peaked at the transition to stationary phase, and persisted at lower levels during post-exponential-phase growth. 100S ribosomes were undetectable in bacteria carrying an hpf::Himar1 transposon insertion, indicating that HPF is required for ribosome hibernation in L. monocytogenes. Additionally, epitope-tagged HPF cosedimented with 100S ribosomes, supporting its previously described direct role in 100S formation. We examined hpf mRNA by quantitative PCR (qPCR) and identified several conditions that upregulated its expression, including carbon starvation, heat shock, and exposure to high concentrations of salt or ethanol. Survival of HPF-deficient bacteria was impaired under certain conditions both in vitro and during animal infection, providing evidence for the biological relevance of 100S ribosome formation. PMID:25422304

  6. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    SciTech Connect

    Wang, Lijun

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  7. High Fat Diet Enhances β-Site Cleavage of Amyloid Precursor Protein (APP) via Promoting β-Site APP Cleaving Enzyme 1/Adaptor Protein 2/Clathrin Complex Formation.

    PubMed

    Maesako, Masato; Uemura, Maiko; Tashiro, Yoshitaka; Sasaki, Kazuki; Watanabe, Kiwamu; Noda, Yasuha; Ueda, Karin; Asada-Utsugi, Megumi; Kubota, Masakazu; Okawa, Katsuya; Ihara, Masafumi; Shimohama, Shun; Uemura, Kengo; Kinoshita, Ayae

    2015-01-01

    Obesity and type 2 diabetes are risk factors of Alzheimer's disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by β-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP β (sAPPβ). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPPβ. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of β-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage. PMID:26414661

  8. Cdc42 Interacting Protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp

    PubMed Central

    Pichot, Christina S.; Arvanitis, Constadina; Hartig, Sean M.; Jensen, Samuel A.; Bechill, John; Marzouk, Saad; Yu, Jindan; Frost, Jeffrey A.; Corey, Seth J.

    2010-01-01

    In the earliest stages of metastasis, breast cancer cells must reorganize the cytoskeleton to affect cell shape change and promote cell invasion and motility. These events require the cytoskeletal regulators Cdc42 and Rho, their effectors, such as N-WASp/WAVE, and direct inducers of actin polymerization such as Arp2/3. Little consideration has been given to molecules that shape the cell membrane. The F-BAR proteins CIP4, TOCA-1, and FBP17 generate membrane curvature and act as scaffolding proteins for activated Cdc42 and N-WASp. We found that expression of CIP4, but not TOCA-1 or FBP17, was increased in invasive breast cancer cell lines in comparison to weakly or non-invasive breast cancer cell lines. Endogenous CIP4 localized to the leading edge of migrating cells and to invadopodia in cells invading gelatin. Because CIP4 serves as a scaffolding protein for Cdc42, Src, and N-WASp, we tested whether loss of CIP4 could result in decreased N-WASp function. Interaction between CIP4 and N-WASp was EGF-responsive, and CIP4 silencing by siRNA caused decreased tyrosine phosphorylation of N-WASp at a Src-dependent activation site (Y256). CIP4 silencing also impaired the migration and invasion of MDA-MB-231 cells and was associated with decreased formation of invadopodia and gelatin degradation. This study presents a new role for CIP4 in the promotion of migration and invasion of MDA-MB-231 breast cancer cells and establishes the contribution of F-BAR proteins to cancer cell motility and invasion. PMID:20940394

  9. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo.

    PubMed

    Montoya, Gonzalo; Arenas, Jesús; Romo, Enrique; Zeichner-David, Margarita; Alvarez, Marco; Narayanan, A Sampath; Velázquez, Ulises; Mercado, Gabriela; Arzate, Higinio

    2014-12-01

    Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration. PMID:25263524

  10. The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP)

    PubMed Central

    Wong, Alexander R. C.; Raymond, Benoit; Collins, James W.; Crepin, Valerie F.; Frankel, Gad

    2016-01-01

    Summary Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are diarrheagenic pathogens that colonize the gut mucosa via attaching-and-effacing lesion formation. EPEC and EHEC utilize a type III secretion system (T3SS) to translocate effector proteins that subvert host cell signalling to sustain colonization and multiplication. EspH, a T3SS effector that modulates actin dynamics, was implicated in the elongation of the EHEC actin pedestals. In this study we found that EspH is necessary for both efficient pedestal formation and pedestal elongation during EPEC infection. We report that EspH induces actin polymerization at the bacterial attachment sites independently of the Tir tyrosine residues Y474 and Y454, which are implicated in binding Nck and IRSp53/ITRKS respectively. Moreover, EspH promotes recruitment of neural Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex to the bacterial attachment site, in a mechanism involving the C-terminus of Tir and the WH1 domain of N-WASP. Dominant negative of WASP-interacting protein (WIP), which binds the N-WASP WH1 domain, diminished EspH-mediated actin polymerization. This study implicates WIP in EPEC-mediated actin polymerization and pedestal elongation and represents the first instance whereby N-WASP is efficiently recruited to the EPEC attachment sites independently of the Tir:Nck and Tir:IRTKS/IRSp53 pathways. Our study reveals the intricacies of Tir and EspH-mediated actin signalling pathways that comprise of distinct, convergent and synergistic signalling cascades. PMID:22372637

  11. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    PubMed

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. PMID:26133232

  12. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation.

    PubMed

    Oliveira, J M; Kotobuki, N; Tadokoro, M; Hirose, M; Mano, J F; Reis, R L; Ohgushi, H

    2010-05-01

    Recently, our group has proposed a combinatorial strategy in tissue engineering principles employing carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles (CMCht/PAMAM) towards the intracellular release and regimented supply of dexamethasone (Dex) aimed at controlling stem cell osteogenic differentiation in the absence of typical osteogenic inducers, in vivo. In this work, we have investigated if the Dex-loaded CMCht/PAMAM dendrimer nanoparticles could play a crucial role in the regulation of osteogenesis, in vivo. Macroporous hydroxyapatite (HA) scaffolds were seeded with rat bone marrow stromal cells (RBMSCs), whose cells were expanded in MEM medium supplemented with 0.01 mg ml(-1) Dex-loaded CMCht/PAMAM dendrimer nanoparticles and implanted subcutaneously on the back of rats for 2 and 4 weeks. HA porous ceramics without RBMSCs and RBMSCs/HA scaffold constructs seeded with cells expanded in the presence and absence of 10(-8) M Dex were used as controls. The effect of initial cell number seeded in the HA scaffolds on the bone-forming ability of the constructs was also investigated. Qualitative and quantitative new bone formation was evaluated in a non-destructive manner using micro-computed tomography analyses of the explants. Haematoxylin and Eosin stained implant sections were also used for the histomorphometrical analysis. Toluidine blue staining was carried out to investigate the synthesis of proteoglycan extracellular matrix. In addition, alkaline phosphatase and osteocalcin levels in the explants were also quantified, since these markers denote osteogenic differentiation. At 4 weeks post-implantation results have shown that the novel Dex-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles may be beneficial as an intracellular nanocarrier, supplying Dex in a regimented manner and promoting superior ectopic de novo bone formation. PMID:20152952

  13. Activity standardization of 131I at CENTIS-DMR and PTB within the scope of a bilateral comparison.

    PubMed

    Oropesa Verdecia, P; Kossert, K

    2009-06-01

    The activity of an (131)I solution was measured at the Cuban Institute, CENTIS-DMR, as well as at the German National Metrology Institute, PTB, within the scope of a bilateral comparison. In particular, the comparison is aimed at an investigation of the measurement capabilities of CENTIS-DMR which provides activity standards in Cuba and organizes national comparisons, placing a particular emphasis on radionuclides for nuclear medicine, such as (131)I. Both institutes applied liquid scintillation counting techniques with efficiency tracing as well as secondary standardization procedures by means of calibrated ionization chambers and gamma-ray spectrometers. The results were checked for consistency and a good agreement was found. Moreover, a virtual link of the Cuban result to the International Reference System (SIR) at the Bureau International des Poids et Mesures (BIPM) is discussed. PMID:19230688

  14. Reduction of the uncertainty of the PTB vacuum pressure scale by a new large area non-rotating piston gauge

    NASA Astrophysics Data System (ADS)

    Bock, Th; Ahrendt, H.; Jousten, K.

    2009-10-01

    This paper describes the metrological characterization of a new large area piston gauge (FRS5, Furness Rosenberg Standard) installed at the vacuum metrology laboratory of the Physikalisch-Technische Bundesanstalt (PTB). The operational procedure and the uncertainty budget for pressures between 30 Pa and 11 kPa are given. Comparisons between the FRS5 and a mercury manometer, a rotary piston gauge and a force-balanced piston gauge are described. We show that the reproducibility of the calibration values of capacitance diaphragm gauges is enhanced by a factor of 6 compared with a static expansion primary standard (SE2). Improvements of the SE2 performance by reducing the number of expansions and smaller uncertainties of expansion ratios are discussed.

  15. G4-DNA Formation in the HRAS Promoter and Rational Design of Decoy Oligonucleotides for Cancer Therapy

    PubMed Central

    Membrino, Alexandro; Cogoi, Susanna; Pedersen, Erik B.; Xodo, Luigi E.

    2011-01-01

    HRAS is a proto-oncogene involved in the tumorigenesis of urinary bladder cancer. In the HRAS promoter we identified two G-rich elements, hras-1 and hras-2, that fold, respectively, into an antiparallel and a parallel quadruplex (qhras-1, qhras-2). When we introduced in sequence hras-1 or hras-2 two point mutations that block quadruplex formation, transcription increased 5-fold, but when we stabilized the G-quadruplexes by guanidinium phthalocyanines, transcription decreased to 20% of control. By ChIP we found that sequence hras-1 is bound only by MAZ, while hras-2 is bound by MAZ and Sp1: two transcription factors recognizing guanine boxes. We also discovered by EMSA that recombinant MAZ-GST binds to both HRAS quadruplexes, while Sp1-GST only binds to qhras-1. The over-expression of MAZ and Sp1 synergistically activates HRAS transcription, while silencing each gene by RNAi results in a strong down-regulation of transcription. All these data indicate that the HRAS G-quadruplexes behave as transcription repressors. Finally, we designed decoy oligonucleotides mimicking the HRAS quadruplexes, bearing (R)-1-O-[4-(1-Pyrenylethynyl) phenylmethyl] glycerol and LNA modifications to increase their stability and nuclease resistance (G4-decoys). The G4-decoys repressed HRAS transcription and caused a strong antiproliferative effect, mediated by apoptosis, in T24 bladder cancer cells where HRAS is mutated. PMID:21931711

  16. Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus.

    PubMed

    Pu, Liu; Jingfan, Fang; Kai, Chen; Chao-an, Long; Yunjiang, Cheng

    2014-06-01

    The yeast Kloeckera apiculata strain 34-9 is an antagonist with biological control activity against postharvest diseases of citrus fruit. In a previous study it was demonstrated that K. apiculata produced the aromatic alcohol phenylethanol. In the present study, we found that K. apiculata was able to form biofilm on citrus fruit and embed in an extracellular matrix, which created a mechanical barrier interposed between the wound surface and pathogen. As a quorum-sensing molecule, phenylethanol can promote the formation of filaments by K. apiculata in potato dextrose agar medium, whereas on the citrus fruit, the antagonist remains as yeast after being treated with the same concentration of phenylethanol. It only induced K. apiculata to adhere and form biofilm. Following genome-wide computational and experimental identification of the possible genes associated with K. apiculata adhesion, we identified nine genes possibly involved in triggering yeast adhesion. Six of these genes were significantly induced after phenylethanol stress treatment. This study provides a new model system of the biology of the antagonist-pathogen interactions that occur in the antagonistic yeast K. apiculata for the control of blue mold on citrus caused by Penicillium italicum. PMID:24479773

  17. Top3β is an RNA topoisomerase that works with Fragile X syndrome protein to promote synapse formation

    PubMed Central

    Xu, Dongyi; Shen, Weiping; Guo, Rong; Xue, Yutong; Peng, Wei; Sima, Jian; Yang, Jay; Sharov, Alexei; Srikantan, Subramanya; Yang, Jiandong; Fox, David; Qian, Yong; Martindale, Jennifer L.; Piao, Yulan; Machamer, James; Joshi, Samit R.; Mohanty, Subhasis; Shaw, Albert C.; Lloyd, Thomas E.; Brown, Grant W.; Ko, Minoru S.H.; Gorospe, Myriam; Zou, Sige; Wang, Weidong

    2013-01-01

    Topoisomerases are crucial to solve DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein deficient in Fragile X syndrome and known to regulate translation of mRNAs important for neuronal function and autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated FMRP mutation, suggesting that Top3β may contribute to pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions related to schizophrenia and autism. Expression of one such gene, ptk2/FAK, is reduced in neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as observed in FMRP mutant animals. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote expression of mRNAs critical for neurodevelopment and mental health. PMID:23912945

  18. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation

    PubMed Central

    Roy, Nilotpal; Malik, Shivani; Villanueva, Karina E.; Urano, Atsushi; Lu, Xinyuan; Von Figura, Guido; Seeley, E. Scott; Dawson, David W.; Collisson, Eric A.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Pancreatic acinar cells are reprogrammed to a “ductal-like” state during PanIN-PDA formation. Here, we demonstrate a parallel mechanism operative in mature duct cells during which functional cells undergo “ductal retrogression” to form IPMN-PDA. We further identify critical antagonistic roles for Brahma-related gene 1 (Brg1), a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells, Brg1 inhibits the dedifferentiation that precedes neoplastic transformation, thus attenuating tumor initiation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. We further show that JQ1, a drug that is currently being tested in clinical trials for hematological malignancies, impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. In summary, our study demonstrates the context-dependent roles of Brg1 and points to potential therapeutic treatment options based on epigenetic regulation in PDA. PMID:25792600

  19. Elastin-Derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization.

    PubMed

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D; Meisinger, Trevor M; Casale, George P; Baxter, B Timothy

    2016-06-01

    Abdominal aortic aneurysm is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix degradation. Damage to elastin in the extracellular matrix results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Proinflammatory M1 macrophages initially are recruited to sites of injury, but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. Abdominal aortic aneurysm tissue reveals a high M1/M2 ratio in which proinflammatory cells and their associated markers dominate. In the current study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57BL/6 mice, Ab-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and proinflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2-polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a proinflammatory environment in aortic tissue by inducing M1 polarization, and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  20. Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation

    SciTech Connect

    Du, W.; Su, D.; Wang, Q.; Frenkel, A.I.; Teng, X.

    2011-01-11

    Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt{sub 95}Bi{sub 5}, Pt{sub 83}Bi{sub 17}, and Pt{sub 76}Bi{sub 24} nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt{sub 95}Bi{sub 5} appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application.

  1. Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation

    SciTech Connect

    X Teng; W Du; D Su; Q Wang; A Frenkel

    2011-12-31

    Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt{sub 95}Bi{sub 5}, Pt{sub 83}Bi{sub 17}, and Pt{sub 76}Bi{sub 24} nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt{sub 95}Bi{sub 5} appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application.

  2. BRCA2 and RAD51 promote double-strand break formation and cell death in response to gemcitabine.

    PubMed

    Jones, Rebecca M; Kotsantis, Panagiotis; Stewart, Grant S; Groth, Petra; Petermann, Eva

    2014-10-01

    Replication inhibitors cause replication fork stalling and double-strand breaks (DSB) that result from processing of stalled forks. During recovery from replication blocks, the homologous recombination (HR) factor RAD51 mediates fork restart and DSB repair. HR defects therefore sensitize cells to replication inhibitors, with clear implications for cancer therapy. Gemcitabine is a potent replication inhibitor used to treat cancers with mutations in HR genes such as BRCA2. Here, we investigate why, paradoxically, mutations in HR genes protect cells from killing by gemcitabine. Using DNA replication and DNA damage assays in mammalian cells, we show that even short gemcitabine treatments cause persistent replication inhibition. BRCA2 and RAD51 are recruited to chromatin early after removal of the drug, actively inhibit replication fork progression, and promote the formation of MUS81- and XPF-dependent DSBs that remain unrepaired. Our data suggest that HR intermediates formed at gemcitabine-stalled forks are converted into DSBs and thus contribute to gemcitabine-induced cell death, which could have implications for the treatment response of HR-deficient tumors. PMID:25053826

  3. An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis.

    PubMed

    Sassi, Massimiliano; Ali, Olivier; Boudon, Frédéric; Cloarec, Gladys; Abad, Ursula; Cellier, Coralie; Chen, Xu; Gilles, Benjamin; Milani, Pascale; Friml, Jiří; Vernoux, Teva; Godin, Christophe; Hamant, Olivier; Traas, Jan

    2014-10-01

    To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner. PMID:25264254

  4. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    SciTech Connect

    Radzimanowski, Jens; Beyreuther, Konrad; Sinning, Irmgard; Wild, Klemens

    2008-05-01

    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  5. A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection

    PubMed Central

    Chen, Jinquan; Ren, Ruxia; Tan, Suiyi; Zhang, Wanyue; Zhang, Xuanxuan; Yu, Fei; Xun, Tianrong; Jiang, Shibo; Liu, Shuwen; Li, Lin

    2015-01-01

    Background Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP) fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils. Methodology and Principal Findings Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2), can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT) and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM), in the presence or absence of EP2. Circular dichroism (CD) spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells. Conclusions and Significance Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection. PMID:26656730

  6. Formation of secretory vesicles in permeabilized cells: a salt extract from yeast membranes promotes budding of nascent secretory vesicles from the trans-Golgi network of endocrine cells.

    PubMed Central

    Ling, W L; Shields, D

    1996-01-01

    The mechanism of secretory-vesicle formation from the trans-Golgi network (TGN) of endocrine cells is poorly understood. To identify cytosolic activities that facilitate the formation and fission of nascent secretory vesicles, we treated permeabilized pituitary GH3 cells with high salt to remove endogenous budding factors. Using this cell preparation, secretory-vesicle budding from the TGN required addition of exogenous cytosol and energy. Mammalian cytosols (GH3 cells and bovine brain) promoted post-TGN vesicle formation. Most significantly, a salt extract of membranes from the yeast Saccharomyces cerevisiae, a cell lacking a regulated secretory pathway, stimulated secretory vesicle budding in the absence of mammalian cytosolic factors. These results demonstrate that the factors which promote secretory-vesicle release from the TGN are conserved between yeast and mammalian cells. PMID:8615761

  7. A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice

    PubMed Central

    2013-01-01

    Introduction This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. Methods PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. Results We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. Conclusions We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair. PMID:23290259

  8. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway

    PubMed Central

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-01-01

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury. PMID:27456198

  9. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective

    NASA Astrophysics Data System (ADS)

    Isozaki, Yukio

    2009-11-01

    changes have appeared twice in the second half of the Permian in a global extent. It is emphasized here that everything geologically unusual started in the Late Guadalupian; i.e., (1) the first mass extinction, (2) onset of the superanoxia, (3) sea-level drop down to the Phanerozoic minimum, (4) onset of volatile fluctuation in carbon isotope ratio, 5) 87Sr/ 86Sr ratio of the Paleozoic minimum, (6) extensive felsic alkaline volcanism, and (7) Illawarra Reversal. The felsic alkaline volcanism and the concurrent formation of several large igneous provinces (LIPs) in the eastern Pangea suggest that the Permian biosphere was involved in severe volcanic hazards twice at the G-LB and the P-TB. This episodic magmatism was likely related to the activity of a mantle superplume that initially rifted Pangea. The supercontinent-dividing superplume branched into several secondary plumes in the mantle transition zone (410-660 km deep) beneath Pangea. These secondary plumes induced the decompressional melting of mantle peridotite and pre-existing Pangean crust to form several LIPs that likely caused a "plume winter" with global cooling by dust/aerosol screens in the stratosphere, gas poisoning, acid rain damage to surface vegetation etc. After the main eruption of plume-derived flood basalt, global warming (plume summer) took over cooling, delayed the recovery of biodiversity, and intensified the ocean stratification. It was repeated twice at the G-LB and P-TB. A unique geomagnetic episode called the Illawarra Reversal around the Wordian-Capitanian boundary (ca. 265 Ma) recorded the appearance of a large instability in the geomagnetic dipole in the Earth's outer core. This rapid change was triggered likely by the episodic fall-down of a cold megalith (subducted oceanic slabs) from the upper mantle to the D″ layer above the 2900 km-deep core-mantle boundary, in tight association with the launching of a mantle superplume. The initial changes in the surface environment in the Capitanian

  10. Substoichiometric Levels of Cu2+ Ions Accelerate the Kinetics of Fiber Formation and Promote Cell Toxicity of Amyloid-β from Alzheimer Disease*

    PubMed Central

    Sarell, Claire J.; Wilkinson, Shane R.; Viles, John H.

    2010-01-01

    A role for Cu2+ ions in Alzheimer disease is often disputed, as it is believed that Cu2+ ions only promote nontoxic amorphous aggregates of amyloid-β (Aβ). In contrast with currently held opinion, we show that the presence of substoichiometric levels of Cu2+ ions in fact doubles the rate of production of amyloid fibers, accelerating both the nucleation and elongation of fiber formation. We suggest that binding of Cu2+ ions at a physiological pH causes Aβ to approach its isoelectric point, thus inducing self-association and fiber formation. We further show that Cu2+ ions bound to Aβ are consistently more toxic to neuronal cells than Aβ in the absence of Cu2+ ions, whereas Cu2+ ions in the absence of Aβ are not cytotoxic. The degree of Cu-Aβ cytotoxicity correlates with the levels of Cu2+ ions that accelerate fiber formation. We note the effect appears to be specific for Cu2+ ions as Zn2+ ions inhibit the formation of fibers. An active role for Cu2+ ions in accelerating fiber formation and promoting cell death suggests impaired copper homeostasis may be a risk factor in Alzheimer disease. PMID:20974842

  11. Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton-Transfer Mechanism on the Surface of Water.

    PubMed

    Li, Lei; Kumar, Manoj; Zhu, Chongqin; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-02-17

    In the atmosphere, a well-known and conventional pathway toward the formation of ammonium sulfate is through the neutralization of sulfuric acid with ammonia (NH3) in water droplets. Here, we present direct ab initio molecular dynamics simulation evidence of the formation of ammonium bisulfate (NH4HSO4) from the hydrated NH3 and SO3 molecules in a water trimer as well as on the surface of a water droplet. This reaction suggests a new mechanism for the formation of ammonium sulfate in the atmosphere, especially when the concentration of NH3 is high (e.g., ∼10 μg m(-3)) in the air. Contrary to the water monomer and dimer, the water trimer enables near-barrierless proton transfer via the formation of a unique loop structure around the reaction center. The formation of the loop structure promotes the splitting of a water molecule in the proton-transfer center, resulting in the generation a NH4(+)/HSO4(-) ion pair. The loop-structure promoted proton-transfer mechanism is expected to be ubiquitous on the surface of cloud droplets with adsorbed NH3 and SO3 molecules and, thus, may play an important role in the nucleation of aerosol particles (e.g., fine particles PM2.5) in water droplets. PMID:26811124

  12. Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH3, N2O and NO during swine manure composting.

    PubMed

    Fukumoto, Yasuyuki; Suzuki, Kazuyoshi; Kuroda, Kazutaka; Waki, Miyoko; Yasuda, Tomoko

    2011-01-01

    To reduce nitrogenous emissions from composting, two different countermeasures were applied simultaneously in swine manure composting. One was forming struvite by adding Mg and P at the start of composting, and the other was to promote nitratation (nitrite being oxidized nitrate) by adding nitrite-oxidizing bacteria after the thermophilic phase of composting. In the laboratory- and mid-scale composting experiments, 25-43% of NH3, 52-80% of N2O and 96-99% of NO emissions were reduced. From the nitrogen balance, it was revealed that the struvite formation reduced not only NH3, but also other nitrogenous emissions except N2O. The amount of total nitrogen losses was reduced by 60% by the two combined countermeasures, against 51% by the struvite formation alone. However, the nitratation promotion dissolved struvite crystals due to the pH decline, diminishing the effect of struvite as a slow-release fertilizer. PMID:20952186

  13. Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation.

    PubMed

    Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu

    2016-01-01

    We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1-10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633-0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926-0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation. PMID:27586851

  14. Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation

    PubMed Central

    Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu

    2016-01-01

    We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1–10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633–0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926–0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation. PMID:27586851

  15. Beef meat and blood sausage promote the formation of azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colons.

    PubMed

    Pierre, Fabrice; Freeman, Amanda; Taché, Sylviane; Van der Meer, Roelof; Corpet, Denis E

    2004-10-01

    Red meat intake is associated with colon cancer risk. Puzzlingly, meat does not promote carcinogenesis in rat studies. However, we demonstrated previously that dietary heme promotes aberrant crypt foci (ACF) formation in rats given a low-calcium diet. Here, we tested the hypothesis that heme-rich meats promote colon carcinogenesis in rats treated with azoxymethane and fed low-calcium diets (0.8 g/kg). Three meat-based diets were formulated to contain varying concentrations of heme by the addition of raw chicken (low heme), beef (medium heme), or black pudding (blood sausage; high heme). The no-heme control diet was supplemented with ferric citrate and the heme control diet with hemoglobin to match iron and heme concentrations in the beef diet, respectively. After 100 d, colons were scored for ACF and mucin-depleted foci (MDF). Fecal water was assayed for lipoperoxides and cytotoxicity. Only diets with heme promoted the formation of MDF, but all meat diets promoted ACF formation. The number of MDF/colon was 0.55 +/- 0.68 in controls, but 1.2 +/- 0.6 (P = 0.13), 1.9 +/- 1.4 (P < 0.01), and 3.0 +/- 1.2 (P < 0.001) in chicken-, beef-, and black pudding-fed rats. MDF promotion by the high-heme black pudding diet was greater than that by the medium-heme beef diet. The number of ACF/colon was 72 +/- 16 in controls, but 91 +/- 18, 100 +/- 13, and 103 +/- 14 in chicken-, beef-, and black pudding-fed rats (all P < 0.001). ACF and MDF did not differ between rats fed the beef diet and those fed the heme control diet. MDF promotion was correlated with high fecal water lipoperoxides and cytotoxicity (r = 0.65, P < 0.01). This is the first study to show the promotion of experimental carcinogenesis by dietary meat and the association with heme intake. PMID:15465771

  16. 3-Methylcholanthrene elicits DNA adduct formation in the CYP1A1 promoter region and attenuates reporter gene expression in rat H4IIE cells

    SciTech Connect

    Moorthy, Bhagavatula . E-mail: bmoorthy@bcm.tmc.edu; Muthiah, Kathirvel; Fazili, Inayat S.; Kondraganti, Sudha R.; Wang Lihua; Couroucli, Xanthi I.; Jiang Weiwu

    2007-03-23

    Cytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 {mu}g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 {sup o}C for 2 h, giving rise to 9 adducts, as determined by {sup 32}P-postlabeling. Eighty percent of adducts was located in the promoter region. Transient transfection of the adducted plasmids into rat hepatoma (H4IIE) cells for 16 h, followed by MC (1 {mu}M) treatment for 24 h inhibited reporter (luciferase) gene expression by 75%, compared to unadducted controls. Our results suggest that CYP1A2 plays a key role in sequence-specific MC-DNA adduct formation in the CYP1A1 promoter region, leading to attenuation of CYP1A1 gene expression.

  17. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model.

    PubMed

    Führmann, T; Tam, R Y; Ballarin, B; Coles, B; Elliott Donaghue, I; van der Kooy, D; Nagy, A; Tator, C H; Morshead, C M; Shoichet, M S

    2016-03-01

    Transplantation of pluripotent stem cells and their differentiated progeny has the potential to preserve or regenerate functional pathways and improve function after central nervous system injury. However, their utility has been hampered by poor survival and the potential to form tumors. Peptide-modified biomaterials influence cell adhesion, survival and differentiation in vitro, but their effectiveness in vivo remains uncertain. We synthesized a peptide-modified, minimally invasive, injectable hydrogel comprised of hyaluronan and methylcellulose to enhance the survival and differentiation of human induced pluripotent stem cell-derived oligodendrocyte progenitor cells. Cells were transplanted subacutely after a moderate clip compression rat spinal cord injury. The hydrogel, modified with the RGD peptide and platelet-derived growth factor (PDGF-A), promoted early survival and integration of grafted cells. However, prolific teratoma formation was evident when cells were transplanted in media at longer survival times, indicating that either this cell line or the way in which it was cultured is unsuitable for human use. Interestingly, teratoma formation was attenuated when cells were transplanted in the hydrogel, where most cells differentiated to a glial phenotype. Thus, this hydrogel promoted cell survival and integration, and attenuated teratoma formation by promoting cell differentiation. PMID:26773663

  18. Epitope-tagged yeast strains reveal promoter driven changes to 3'-end formation and convergent antisense-transcription from common 3' UTRs.

    PubMed

    Swaminathan, Angavai; Beilharz, Traude H

    2016-01-01

    Epitope-tagging by homologous recombination is ubiquitously used to study gene expression, protein localization and function in yeast. This is generally thought to insulate the regulation of gene expression to that mediated by the promoter and coding regions because native 3' UTR are replaced. Here we show that the 3' UTRs, CYC1 and ADH1, contain cryptic promoters that generate abundant convergent antisense-transcription in Saccharomyces cerevisiae. Moreover we show that aberrant, truncating 3' -end formation is often associated with regulated transcription in TAP-tagged strains. Importantly, the steady-state level of both 3' -truncated and antisense transcription products is locus dependent. Using TAP and GFP-tagged strains we show that the transcriptional state of the gene-of-interest induces changes to 3' -end formation by alternative polyadenylation and antisense transcription from a universal 3' UTR. This means that these 3' UTRs contains plastic features that can be molded to reflect the regulatory architecture of the locus rather than bringing their own regulatory paradigm to the gene-fusions as would be expected. Our work holds a cautionary note for studies utilizing tagged strains for quantitative biology, but also provides a new model for the study of promoter driven rewiring of 3' -end formation and regulatory non-coding transcription. PMID:26481348

  19. Voltage-dependent photocurrent transients of PTB7:PC70BM solar cells: Experiment and numerical simulation

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Lakhwani, Girish; Greenham, Neil C.; McNeill, Christopher R.

    2013-07-01

    Transient photocurrent measurements on efficient polymer/fullerene solar cells based on a blend of the donor polymer PTB7 with the fullerene acceptor PC70BM are reported. In particular, we examine the light intensity dependence and voltage dependence of the turn-on and turn-off photocurrent dynamics of devices in response to a 200 μs square light pulse. At short circuit, subtle changes in the turn-on and turn-off dynamics are observed consistent with charge-density-dependent transport phenomena. As the working voltage is moved from short circuit to open circuit, we observe the appearance of an initial transient photocurrent peak a few microseconds after turn-on before the device settles to steady state. Furthermore, we observe only a weak dependence of the charge extraction dynamics on the working voltage, with the amount of charge extracted monotonically decreasing as the working voltage is moved from short circuit to open circuit. This collection of features is interpreted with the aid of numerical simulations in terms of charge trapping, with increased trap-assisted recombination closer to open circuit. The operation of devices fabricated with and without the solvent additive di-iodooctane is also compared. Charge trapping features are reduced for optimized devices fabricated with the solvent additive compared to devices fabricated without. The use of the solvent additive di-iodooctane in this system is therefore important in minimizing trap-assisted recombination.

  20. Irradiation-induced degradation of PTB7 investigated by valence band and S 2p photoelectron spectroscopy.

    PubMed

    Darlatt, Erik; Muhsin, Burhan; Roesch, Roland; Lupulescu, Cosmin; Roth, Friedrich; Kolbe, Michael; Gottwald, Alexander; Hoppe, Harald; Richter, Mathias

    2016-08-12

    Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth's surface, no degradation effects are observed. PMID:27363480

  1. Irradiation-induced degradation of PTB7 investigated by valence band and S 2p photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Darlatt, Erik; Muhsin, Burhan; Roesch, Roland; Lupulescu, Cosmin; Roth, Friedrich; Kolbe, Michael; Gottwald, Alexander; Hoppe, Harald; Richter, Mathias

    2016-08-01

    Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth’s surface, no degradation effects are observed.

  2. Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures.

    PubMed

    Das, Sanjib; Keum, Jong K; Browning, James F; Gu, Gong; Yang, Bin; Dyck, Ondrej; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; Rondinone, Adam J; Joshi, Pooran C; Geohegan, David B; Duscher, Gerd; Xiao, Kai

    2015-10-14

    Advances in material design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) compared to their "conventional" counterparts, in addition to the well-known better ambient stability. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with a well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using various characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the diffusion of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The diffusion occurs when residual solvent molecules in the spun-cast film act as a plasticizer. Addition of DIO to the casting solution results in more PC71BM diffusion and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering. PMID:26220775

  3. Design and realization of the high-precision weighing systems as the gravimetric references in PTB's national water flow standard

    NASA Astrophysics Data System (ADS)

    Engel, Rainer; Beyer, Karlheinz; Baade, Hans-Joachim

    2012-07-01

    PTB's ‘Hydrodynamic Test Field’, which represents a high-accuracy water flow calibration facility, serves as the national primary standard for liquid flow measurands. As the core reference device of this flow facility, a gravimetric standard has been incorporated, which comprises three special-design weighing systems: 300 kg, 3 tons and 30 tons. These gravimetric references were realized as a combination of a strain-gauge-based and an electromagnetic-force-compensation load-cell-based balance, each. Special emphasis had to be placed upon the dynamics design of the whole weighing system, due to the high measurement resolution and the dynamic behavior of the weighing systems, which are dynamically affected by mechanical vibrations caused by environmental impacts, flow machinery operation, flow noise in the pipework and induced wave motions in the weigh tanks. Taking into account all the above boundary conditions, the design work for the gravimetric reference resulted in a concrete foundation ‘rock’ of some 300 tons that rests on a number of vibration isolators. In addition to these passively operating vibration isolators, the vibration damping effect is enhanced by applying an electronic level regulation device.

  4. Selecting a Variable for Predicting the Diagnosis of PTB Patients From Comparison of Chest X-ray Images

    NASA Astrophysics Data System (ADS)

    Mohd. Rijal, Omar; Mohd. Noor, Norliza; Teng, Shee Lee

    A statistical method of comparing two digital chest radiographs for Pulmonary Tuberculosis (PTB) patients has been proposed. After applying appropriate image registration procedures, a selected subset of each image is converted to an image histogram (or box plot). Comparing two chest X-ray images is equivalent to the direct comparison of the two corresponding histograms. From each histogram, eleven percentiles (of image intensity) are calculated. The number of percentiles that shift to the left (NLSP) when second image is compared to the first has been shown to be an indicator of patients` progress. In this study, the values of NLSP is to be compared with the actual diagnosis (Y) of several medical practitioners. A logistic regression model is used to study the relationship between NLSP and Y. This study showed that NLSP may be used as an alternative or second opinion for Y. The proposed regression model also show that important explanatory variables such as outcomes of sputum test (Z) and degree of image registration (W) may be omitted when estimating Y-values.

  5. Effect of different solvents on the performance of ternary polymer solar cells based on PTB7 : PC71BM : F8BT

    NASA Astrophysics Data System (ADS)

    Shang, Minxia; Yu, Xinge; Ye, Xu; Wang, Hanyu; Zhang, Lei; Jiang, Quan; Lin, Hui

    2015-07-01

    The effect of different solvents on the active layer morphologies and PTB7 : PC71BM : F8BT ternary polymer solar cells (PSCs) performance were systemically investigated by applying various solvents, including chlorobenzene (CB), 1, 4-dichlorobenze (DCB), p-xylene (XY), and mixtures of chlorobenzene and 1, 8-diiodooctane (DIO). The optimized photovoltaic performance increased 5% compared with the reference binary PTB7 : PC71BM (1 : 1.5) PSCs. The performance improvement was mainly attributed to the improved quality of donor-acceptor interfaces cast from a proper solvent, as well as the fuller coverage of the solar radiation spectrum provided by the blend film. By analyzing the variation of PSCs performance and the morphology of active layers, we found that the proper solvent and the additive were playing an important role on better charge transfer efficiency and more balanced charge separation.

  6. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.

    PubMed

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Cheng, Yu-Shan; Chen, Show-An

    2013-09-14

    Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th. PMID:23939927

  7. Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting Rad51 focus formation and suppressing the toxic effect of nonhomologous end joining.

    PubMed

    Kobayashi, S; Kasaishi, Y; Nakada, S; Takagi, T; Era, S; Motegi, A; Chiu, R K; Takeda, S; Hirota, K

    2015-08-13

    The E2 ubiquitin conjugating enzyme Ubc13 and the E3 ubiquitin ligases Rad18 and Rnf8 promote homologous recombination (HR)-mediated double-strand break (DSB) repair by enhancing polymerization of the Rad51 recombinase at γ-ray-induced DSB sites. To analyze functional interactions between the three enzymes, we created RAD18(-/-), RNF8(-/-), RAD18(-/-)/RNF8(-/-) and UBC13(-/-)clones in chicken DT40 cells. To assess the capability of HR, we measured the cellular sensitivity to camptothecin (topoisomerase I poison) and olaparib (poly(ADP ribose)polymerase inhibitor) because these chemotherapeutic agents induce DSBs during DNA replication, which are repaired exclusively by HR. RAD18(-/-), RNF8(-/-) and RAD18(-/-)/RNF8(-/-) clones showed very similar levels of hypersensitivity, indicating that Rad18 and Rnf8 operate in the same pathway in the promotion of HR. Although these three mutants show less prominent defects in the formation of Rad51 foci than UBC13(-/-)cells, they are more sensitive to camptothecin and olaparib than UBC13(-/-)cells. Thus, Rad18 and Rnf8 promote HR-dependent repair in a manner distinct from Ubc13. Remarkably, deletion of Ku70, a protein essential for nonhomologous end joining (NHEJ) significantly restored tolerance of RAD18(-/-) and RNF8(-/-) cells to camptothecin and olaparib without affecting Rad51 focus formation. Thus, in cellular tolerance to the chemotherapeutic agents, the two enzymes collaboratively promote DSB repair by HR by suppressing the toxic effect of NHEJ on HR rather than enhancing Rad51 focus formation. In contrast, following exposure to γ-rays, RAD18(-/-), RNF8(-/-), RAD18(-/-)/RNF8(-/-) and UBC13(-/-)cells showed close correlation between cellular survival and Rad51 focus formation at DSB sites. In summary, the current study reveals that Rad18 and Rnf8 facilitate HR by two distinct mechanisms: suppression of the toxic effect of NHEJ on HR during DNA replication and the promotion of Rad51 focus formation at radiotherapy

  8. Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration.

    PubMed

    Kai, FuiBoon; Fawcett, James P; Duncan, Roy

    2015-05-10

    Synaptopodin-2 (Synpo2), an actin-binding protein and invasive cancer biomarker, induces formation of complex stress fiber networks in the cell body and promotes PC3 prostate cancer cell migration in response to serum stimulation. The role of these actin networks in enhanced cancer cell migration is unknown. Using time-course analysis and live cell imaging of mock- and Synpo2-transduced PC3 cells, we now show that Synpo2 induces assembly of actin fibers near the cell periphery and Arp2/3-dependent lamellipodia formation. Lamellipodia formed in a non-directional manner or repeatedly changed direction, explaining the enhanced chemokinetic activity of PC3 cells in response to serum stimulation. Myosin contraction promotes retrograde flow of the Synpo2-associated actin filaments at the leading edge and their merger with actin networks in the cell body. Enhanced PC3 cell migration correlates with Synpo2-induced formation of lamellipodia and immature focal adhesions (FAs), but is not dependent on myosin contraction or FA maturation. The previously reported correlation between Synpo2-induced stress fiber assembly and enhanced PC3 cell migration therefore reflects the role of Synpo2 as a newly identified regulator of actin bundle formation and nascent FA assembly near the leading cell edge. PMID:25883213

  9. Engineered ubiquitin ligase PTB-U-box targets insulin/insulin-like growth factor receptor for degradation and coordinately inhibits cancer malignancy

    PubMed Central

    Zhong, Daixing; Zhang, Jing; Yao, Libo; Li, Xia

    2014-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R) is a promising target for cancer therapy with antibodies and small molecule tyrosine kinase inhibitors (TKIs) which have been actively tested clinically. Evidences have demonstrated that insulin receptor (IR), which is implicated in tumorigenesis, conveys resistance to IGF-1R targeted therapy. This provided the compelling rationale for co-targeting IGF-1R and IR. Herein we have developed an approach to simultaneously down-regulate IGF-1R and IR in protein levels. By generating and screening several engineered ubiquitin ligases, we have identified that, PTB-U-box, which is composed of an IGF-1R/IR-binding domain and a functional E3 ubiquitin ligase domain, binds activated IGF-1R/IR and targets their ubiquitination and degradation. When ectopically expressed in HepG2 and HeLa cells, PTB-U-box inhibits cell proliferation and invasion, increases chemo-sensitivity, as well as interrupts glucose metabolism. Finally, intratumoral injection of adenovirus carrying PTB-U-box dramatically retards the growth of HepG2 xenograft. Therefore, well-designed engineered ubiquitin ligase represents an effective therapeutic strategy for the treatment of the cancers with co-expressed IGF-1R/IR. PMID:24970814

  10. Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae)

    PubMed Central

    Novak, Stacey D.; Whitehouse, Grace A.

    2013-01-01

    Auxin flows in a polar manner to target tissues and exert its morphogenic effect. Preventing auxin movement, with polar auxin transport (PAT) inhibitors, or increasing auxin levels in tissues through exogenous application can provide a means for assessing the importance of appropriate tissue distribution and concentration of this hormone during development. The formulation of culture media for micropropagation has been the primary focus of most orchid tissue culture research, a goal that unveils seedling hormone responses at a single point in development. This study was unique because it evaluated the auxin response of orchids during three stages of seedling development. Seedlings were grown on standard culture media for 10, 35 and 85 days. Each group was sub-cultured onto auxin- and/or PAT inhibitor-containing media for an additional 10, 30 and 60 days, respectively. Data were collected on first leaf initiation, trichome formation and the appearance of propagative structures. In the 20-day seedlings, auxins and PAT inhibitors promoted precocious formation and random placement of protocorm hairs rather than in tufts, as seen in older, control seedlings. The 65-day seedlings formed protocorm-like bodies, rhizome-like growths from the stem, and fleshy leaves with trichomes. Seedlings cultured for 145 days developed microshoots or callus growth in the axils of older leaves and exhibited necrosis of original seedling roots and leaves. In general, exogenously applied auxin promoted the reversion of differentiated Spathoglottis plicata seedling tissue to a morphology that had propagative properties. Additionally, auxins commonly induced hair formation, which suggests that protocorm hairs may be root hair-like in nature. This work characterized three auxin growth responses in S. plicata seedlings that have not been reported in orchids: (i) the inhibition of first leaf initiation and abnormal first leaf morphology; (ii) the promotion of trichome formation; and (iii) the

  11. TolC Promotes ExPEC Biofilm Formation and Curli Production in Response to Medium Osmolarity

    PubMed Central

    Hou, Bo; Meng, Xian-Rong; Zhang, Li-Yuan; Tan, Chen; Jin, Hui; Zhou, Rui; Gao, Jian-Feng; Wu, Bin; Li, Zi-Li; Chen, Huan-Chun; Bi, Ding-Ren; Li, Shao-Wen

    2014-01-01

    While a high osmolarity medium activates Cpx signaling and causes CpxR to repress csgD expression, and efflux protein TolC protein plays an important role in biofilm formation in Escherichia coli, whether TolC also responds to an osmolarity change to regulate biofilm formation in extraintestinal pathogenic E. coli (ExPEC) remains unknown. In this study, we constructed ΔtolC mutant and complement ExPEC strains to investigate the role of TolC in the retention of biofilm formation and curli production capability under different osmotic conditions. The ΔtolC mutant showed significantly decreased biofilm formation and lost the ability to produce curli fimbriae compared to its parent ExPEC strain PPECC42 when cultured in M9 medium or 1/2 M9 medium of increased osmolarity with NaCl or sucrose at 28°C. However, biofilm formation and curli production levels were restored to wild-type levels in the ΔtolC mutant in 1/2 M9 medium. We propose for the first time that TolC protein is able to form biofilm even under high osmotic stress. Our findings reveal an interplay between the role of TolC in ExPEC biofilm formation and the osmolarity of the surrounding environment, thus providing guidance for the development of a treatment for ExPEC biofilm formation. PMID:25243151

  12. Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures

    NASA Astrophysics Data System (ADS)

    Das, Sanjib; Keum, Jong K.; Browning, James F.; Gu, Gong; Yang, Bin; Dyck, Ondrej; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N.; Hong, Kunlun; Rondinone, Adam J.; Joshi, Pooran C.; Geohegan, David B.; Duscher, Gerd; Xiao, Kai

    2015-09-01

    Advances in material design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) compared to their ``conventional'' counterparts, in addition to the well-known better ambient stability. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with a well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using various characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the diffusion of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The diffusion occurs when residual solvent molecules in the spun-cast film act as a plasticizer. Addition of DIO to the casting solution results in more PC71BM diffusion and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.Advances in material design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) compared to their ``conventional'' counterparts, in addition to the well-known better ambient stability. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with a well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active

  13. COLONY FORMATION ENHANCEMENT OF RAT TRACHEAL AND NASAL EPITHELIAL CELLS BY POLYACETATE, INDOLE ALKALOID, AND PHORBOL ESTER TUMOR PROMOTERS

    EPA Science Inventory

    The phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA), teleocidin, and two polyacetate tumor promoters (aplysiatoxin and debromoaplysiatoxin) have been tested for their effect on colony forming efficiency (CFE) of rat tracheal and nasal turbinate epithelial cells. In rat t...

  14. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice

    PubMed Central

    Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.

    2010-01-01

    Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625

  15. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells with Nanoscale Structures

    DOE PAGESBeta

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; et al

    2015-01-01

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. Wemore » have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less

  16. Promotion of peripheral nerve regeneration and prevention of neuroma formation by PRGD/PDLLA/β-TCP conduit: report of two cases

    PubMed Central

    Yin, Yixia; Li, Binbin; Yan, Qiongjiao; Dai, Honglian; Wang, Xinyu; Huang, Jifeng; Li, Shipu

    2015-01-01

    In the field of nerve repair, one major challenge is the formation of neuroma. However, reports on both the promotion of nerve regeneration and prevention of traumatic neuroma in the clinical settings are rare in the field of nerve repair. One of the reasons could be the insufficiency in the follow-up system. We have conducted 33 cases of nerve repair using PRGD/PDLLA/β-TCP conduit without any sign of adverse reaction, especially no neuroma formation. Among them, we have selected two cases as representatives to report in this article. The first case was a patient with an upper limb nerve wound was bridged by PRGD/PDLLA/β-TCP conduit and a plate fixation was given. After nearly 3-years’ follow-up, the examination results demonstrated that nerve regeneration effect was very good. When the reoperation was performed to remove the steel plate we observed a uniform structure of the regenerated nerve without the formation of neuroma, and to our delight, the implanted conduit was completely degraded 23 months after the implantation. The second case had an obsolete nerve injury with neuroma formation. After removal of the neuroma, the nerve was bridged by PRGD/PDLLA/β-TCP conduit. Follow-up examinations showed that the structure and functional recovery were improved gradually in the 10-month follow-up; no end-enlargement and any other abnormal reaction associated with the characteristic of neuroma were found. Based on our 33-case studies, we have concluded that PRGD/PDLLA/β-TCP nerve conduit could both promote nerve regeneration and prevent neuroma formation; therefore, it is a good alternative for peripheral nerve repair. PMID:26816636

  17. Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1).

    PubMed

    Cho, Wonkyoung; Kang, Jihee Lee; Park, Young Mi

    2015-01-01

    Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH), which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR), semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1) and liver X receptor (LXR)-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO) staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL) and with or without CRH (10 nM) in the presence of apolipoprotein A1 (apoA1) revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY)-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473) induced by interaction between CRH and CRH receptor 1(CRHR1). We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis. PMID:26110874

  18. The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation.

    PubMed

    Schulte, Tim; Mikaelsson, Cecilia; Beaussart, Audrey; Kikhney, Alexey; Deshmukh, Maya; Wolniak, Sebastian; Pathak, Anuj; Ebel, Christine; Löfling, Jonas; Fogolari, Federico; Henriques-Normark, Birgitta; Dufrêne, Yves F; Svergun, Dmitri; Nygren, Per-Åke; Achour, Adnane

    2016-01-01

    The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187-385). Here, we show that BR187-385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187-378 or the longer BR120-378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187-385 homo-dimers via an intermolecular β-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120-166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation. PMID:27582320

  19. Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation.

    PubMed

    Kim, Hyun-Ju; Kang, Woo Youl; Seong, Sook Jin; Kim, Shin-Yoon; Lim, Mi-Sun; Yoon, Young-Ran

    2016-09-01

    Follistatin-like 1 (FSTL1) functions as a pivotal modulator of inflammation and is implicated in many inflammatory diseases such as rheumatoid arthritis. Here, we report that FSTL1 is strongly upregulated and secreted during osteoclast differentiation of bone marrow-derived macrophages (BMMs) and that FSTL1 positively regulates osteoclast formation induced by RANKL and M-CSF. The overexpression of FSTL1 or treatment with recombinant FSTL1 (rFSTL1) in BMMs enhances the formation of multinuclear osteoclasts and the induction of c-Fos and NFATc1, transcription factors important for osteoclastogenesis. Conversely, knockdown of FSTL1 using a small hairpin RNA suppresses osteoclast formation and the expression of these transcription factors. While FSTL1 does not affect RANKL-stimulated activation of p38 MAPK, phosphorylation of IκBα, JNK, and ERK were increased by overexpression or addition of rFSTL1. Furthermore, rFSTL1 increased RANKL-induced NF-κB transcriptional activity in a dose-dependent manner. In addition to its role in osteoclastogenesis, FSTL1 promotes proliferation of osteoclast precursors by increasing M-CSF-induced ERK activation, which in turn leads to accelerated osteoclast formation. Together, our findings demonstrate that FSTL1 is a secreted osteoclastogenic factor that plays a critical role in osteoclast formation via the NF-κB and MAPKs signaling pathways. PMID:27234130

  20. The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation

    PubMed Central

    Schulte, Tim; Mikaelsson, Cecilia; Beaussart, Audrey; Kikhney, Alexey; Deshmukh, Maya; Wolniak, Sebastian; Pathak, Anuj; Ebel, Christine; Löfling, Jonas; Fogolari, Federico; Henriques-Normark, Birgitta; Dufrêne, Yves F.; Svergun, Dmitri; Nygren, Per-Åke; Achour, Adnane

    2016-01-01

    The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187–385). Here, we show that BR187–385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187–378 or the longer BR120–378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187–385 homo-dimers via an intermolecular β-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120–166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation. PMID:27582320

  1. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs. PMID:25353185

  2. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina

    PubMed Central

    2015-01-01

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon–carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon–carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon–carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  3. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina.

    PubMed

    Comas-Vives, Aleix; Valla, Maxence; Copéret, Christophe; Sautet, Philippe

    2015-09-23

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon-carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon-carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon-carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  4. In Vitro Oxidation of Collagen Promotes the Formation of Advanced Oxidation Protein Products and the Activation of Human Neutrophils.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; de Campos, Luízi Prestes; Sangoi, Manuela Borges; Fernandes, Natieli Flores; Gomes, Patrícia; Moretto, Maria Beatriz; Barbisan, Fernanda; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-04-01

    The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions. Here, we investigated collagen as a potential source for AOPP formation and determined the effects of hypochlorous acid (HOCl)-treated collagen (collagen-AOPPs) on human neutrophil activity. We also assessed whether alpha-tocopherol could counteract these effects. Exposure to HOCl increased the levels of collagen-AOPPs. Collagen-AOPPs also stimulated the production of AOPPs, nitric oxide (NO), superoxide radicals (O2 (-)), and HOCl by neutrophils. Collagen-AOPPs induced apoptosis and decreased the number of viable cells. Alpha-tocopherol prevented the formation of collagen-AOPPs, strongly inhibited the collagen-AOPP-induced production of O2 (-) and HOCl, and increased the viability of neutrophils. Our results suggest that collagen is an important protein that interacts with HOCl to form AOPPs, and consequently, collagen-AOPP formation is related to human neutrophil activation and cell death. PMID:26920846

  5. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    PubMed

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  6. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    PubMed Central

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  7. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  8. Oncoprotein E7 from Beta Human Papillomavirus 38 Induces Formation of an Inhibitory Complex for a Subset of p53-Regulated Promoters

    PubMed Central

    Saidj, Djamel; Cros, Marie-Pierre; Hernandez-Vargas, Hector; Guarino, Francesca; Sylla, Bakary S.; Tommasino, Massimo

    2013-01-01

    Our previous studies on cutaneous beta human papillomavirus 38 (HPV38) E6 and E7 oncoproteins highlighted a novel activity of IκB kinase beta (IKKβ) in the nucleus of human keratinocytes, where it phosphorylates and stabilizes ΔNp73α, an antagonist of p53/p73 functions. Here, we further characterize the role of the IKKβ nuclear form. We show that IKKβ nuclear translocation and ΔNp73α accumulation are mediated mainly by HPV38 E7 oncoprotein. Chromatin immunoprecipitation (ChIP)/Re-ChIP experiments showed that ΔNp73α and IKKβ are part, together with two epigenetic enzymes DNA methyltransferase 1 (DNMT1) and the enhancer of zeste homolog 2 (EZH2), of a transcriptional regulatory complex that inhibits the expression of some p53-regulated genes, such as PIG3. Recruitment to the PIG3 promoter of EZH2 and DNMT1 resulted in trimethylation of histone 3 on lysine 27 and in DNA methylation, respectively, both events associated with gene expression silencing. Decreases in the intracellular levels of HPV38 E7 or ΔNp73α strongly affected the recruitment of the inhibitory transcriptional complex to the PIG3 promoter, with consequent restoration of p53-regulated gene expression. Finally, the ΔNp73α/IKKβ/DNMT1/EZH2 complex appears to bind a subset of p53-regulated promoters. In fact, the complex is efficiently recruited to several promoters of genes encoding proteins involved in DNA repair and apoptosis, whereas it does not influence the expression of the prosurvival factor Survivin. In summary, our data show that HPV38 via E7 protein promotes the formation of a multiprotein complex that negatively regulates the expression of several p53-regulated genes. PMID:24006445

  9. A Formative Evaluation of Customized Pamphlets to Promote Physical Activity and Symptom Self-Management in Women with Multiple Sclerosis

    ERIC Educational Resources Information Center

    Plow, Matthew; Bethoux, Francois; Mai, Kimloan; Marcus, Bess

    2014-01-01

    Inactivity is a prevalent problem in the population affected with multiple sclerosis (MS). Thus, there is a need to develop and test physical activity (PA) interventions that can be widely disseminated. We conducted a formative evaluation as part of a randomized controlled trial of a pamphlet-based PA intervention among 30 women with MS. Pamphlets…

  10. Formative evaluation for promoting adoption of the DGA, 2005 among African American parents and children in the Lower Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formative research was conducted to increase adherence to the healthful food and physical activity patterns set forth in the Dietary Guidelines for Americans, 2005 (DGA, 2005) and thereby reduce weight gain and risk factors for obesity-related chronic diseases in African American parents and their c...

  11. Formative Evaluation of MyFit: A Curriculum to Promote Self-Regulation of Physical Activity among Middle School Students

    ERIC Educational Resources Information Center

    Grim, Melissa; Petosa, Rick; Hortz, Brian; Hunt, Laura

    2013-01-01

    Background: Previous interventions to increase physical activity among middle school students have not produced long-term results. Often, students lack the self-regulation skills needed to support long-term adherence to physical activity. Purpose: The purpose of this study was to conduct a formative evaluation of a self-regulation based physical…

  12. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. PMID:25042347

  13. Exploring the Role of Assessment Tasks to Promote Formative Assessment in Key Stage 3 Geography: Evidence from Twelve Teachers

    ERIC Educational Resources Information Center

    Tiknaz, Yonca; Sutton, Alan

    2006-01-01

    The article focuses on the planning and implementation of interim assessment tasks in Key Stage 3 Geography. This research identifies three key dimensions which impact on the planning of assessment in the medium and long term. These are: teachers' emerging conceptualization of "formative assessment"; the statutory requirements for assessing…

  14. Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2O2 -Treated MC3T3-E1 Cells and Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Fu, Chao; Xu, Dong; Wang, Chang-Yuan; Jin, Yue; Liu, Qi; Meng, Qiang; Liu, Ke-Xin; Sun, Hui-Jun; Liu, Mo-Zhen

    2015-09-01

    Alpha-lipoic acid (ALA), a naturally occurring compound and dietary supplement, has been established as a potent antioxidant that is a strong scavenger of free radicals. Recently, accumulating evidences has indicated the relationship between oxidative stress and osteoporosis (OP). Some studies have investigated the possible beneficial effects of ALA on OP both in vivo and in vitro; however, the precise mechanism(s) underlying the bone-protective action of ALA remains unclear. Considering this, we focused on the anti-oxidative capacity of ALA to exert bone-protective effects in vitro and in vivo. In the present study, the effects of ALA on osteoblastic formation in H(2)O(2) -treated MC3T3-E1 pre-osteoblasts and ovariectomy (OVX)-induced bone loss in rats were investigated. The results showed that ALA promoted osteoblast differentiation, mineralization and maturation and inhibited osteoblast apoptosis, thus increasing the OPG/receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) ratio and leading to enhanced bone formation in vitro and inhibited bone loss in vivo. Further study revealed that ALA exerted its bone-protective effects by inhibiting reactive oxygen species (ROS) generation by down-regulating Nox4 gene expression and protein synthesis and attenuating the transcriptional activation of NF-κB. In addition, ALA might exert its bone-protective effects by activating the Wnt/Lrp5/β-catenin signaling pathway. Taken together, the present study indicated that ALA promoted osteoblastic formation in H(2)O(2) -treated MC3T3-E1 cells and prevented OVX-induced bone loss in rats by regulating Nox4/ROS/NF-κB and Wnt/Lrp5/β-catenin signaling pathways, which provided possible mechanisms of bone-protective effects in regulating osteoblastic formation and preventing bone loss. Taken together, the results suggest that ALA may be a candidate for clinical OP treatment. PMID:25655087

  15. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes*

    PubMed Central

    Mizuguchi, Chiharu; Ogata, Fuka; Mikawa, Shiho; Tsuji, Kohei; Baba, Teruhiko; Shigenaga, Akira; Shimanouchi, Toshinori; Okuhira, Keiichiro; Otaka, Akira; Saito, Hiroyuki

    2015-01-01

    The N-terminal amino acid 1–83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1–83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8–33 and 8–33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1–83 fragment and 8–33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1–83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation. PMID:26175149

  16. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.

    PubMed

    Torigoe, Hidetaka; Nakagawa, Osamu; Imanishi, Takeshi; Obika, Satoshi; Sasaki, Kiyomi

    2012-04-01

    Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in wide variety of potential applications, such as artificial regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis in vivo. Stabilization of pyrimidine motif triplex at physiological pH is, therefore, crucial for improving its potential in various triplex-formation-based strategies in vivo. To this end, we investigated the effect of 3'-amino-2'-O,4'-C-methylene bridged nucleic acid modification of triplex-forming oligonucleotide (TFO), in which 2'-O and 4'-C of the sugar moiety were bridged with the methylene chain and 3'-O was replaced by 3'-NH, on pyrimidine motif triplex formation at physiological pH. The modification not only significantly increased the thermal stability of the triplex but also increased the binding constant of triplex formation about 15-fold. The increased magnitude of the binding constant was not significantly changed when the number and position of the modification in TFO changed. The consideration of the observed thermodynamic parameters suggested that the increased rigidity of the modified TFO in the free state resulting from the bridging of different positions of the sugar moiety with an alkyl chain and the increased hydration of the modified TFO in the free state caused by the introduction of polar nitrogen atoms may significantly increase the binding constant at physiological pH. The study on the TFO viability in human serum showed that the modification significantly increased the resistance of TFO against nuclease degradation. This study presents an effective approach for designing novel chemically modified TFOs with higher binding affinity of triplex formation at physiological pH and higher nuclease resistance under physiological condition, which may eventually lead to progress in various triplex-formation-based strategies in vivo. PMID:22245184

  17. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes.

    PubMed

    Mizuguchi, Chiharu; Ogata, Fuka; Mikawa, Shiho; Tsuji, Kohei; Baba, Teruhiko; Shigenaga, Akira; Shimanouchi, Toshinori; Okuhira, Keiichiro; Otaka, Akira; Saito, Hiroyuki

    2015-08-21

    The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation. PMID:26175149

  18. Effect of carbodiimide-derivatized hyaluronic acid gelatin on preventing postsurgical intra-abdominal adhesion formation and promoting healing in a rat model.

    PubMed

    Yuan, Fang; Lin, Long-Xiang; Zhang, Hui-Hui; Huang, Dan; Sun, Yu-Long

    2016-05-01

    Adhesions often occur after abdominal surgery. It could cause chronic pelvic pain, intestinal obstruction, and infertility. A hydrogel biomaterial, carbodiimide-derivatized hyaluronic acid gelatin (cd-HA gelatin), has been successfully used to reduce adhesion formation after flexor tendon grafting. This study investigated the efficacy of cd-HA gelatin in preventing postsurgical peritoneal adhesions in a rat model. The surgical traumas were created on the underlying muscle of the abdominal wall and the serosal layer of the cecum. The wounds were covered with or without cd-HA gelatin. Animals were euthanized at day 14 after surgery. Adhesion formation was assessed with adhesion degree and adhesion breaking strength. The healing of abdominal wall was evaluated with biomechanical testing and histological analysis. The adhesions occurred in all rats (n = 12) without cd-HA gelatin treatment. The application of cd-HA gelatin significantly reduced the adhesion rate from 100% to 58%. The decrease of adhesion breaking strength also manifested that cd-HA gelatin could reduce postsurgical intra-abdominal adhesion formation. Moreover, it was found that cd-HA gelatin was a safe material and could promote tissue healing. The cd-HA gelatin hydrogel could reduce the formation of intra-abdominal adhesions without adversely effects on wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1175-1181, 2016. PMID:26749008

  19. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    PubMed Central

    LING, GENG-QIANG; LIU, YI-JING; KE, YI-QUAN; CHEN, LEI; JIANG, XIAO-DAN; JIANG, CHUAN-LU; YE, WEI

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SLCs. The expression of cancer SLC markers CD133 and nestin was detected using immunocytochemistry in order to identify U87 SLCs. In addition, the differentiation of these SLCs was observed through detecting the expression of glial fibrillary acidic protein (GFAP), β-tubulin III and galactosylceramidase (Galc) using immunofluorescent staining. The results showed that the expression levels of GFAP, β-tubulin III and Galc were upregulated following treatment with ATRA in a dose-dependent manner. Furthermore, ATRA significantly reduced the proliferation, invasiveness, tube formation and vascular endothelial growth factor (VEGF) secretion of U87 SLCs. In conclusion, the VM formation ability of SLCs was found to be negatively correlated with differentiation. These results therefore suggested that ATRA may serve as a promising novel agent for the treatment of GBM due to its role in reducing VM formation. PMID:25760394

  20. Feasibility of Using a Bone-Targeted, Macromolecular Delivery System Coupled with Prostaglandin E1 to Promote Bone Formation in Aged, Estrogen-Deficient Rats

    PubMed Central

    Miller, S. C.; Pan, H.; Wang, D.; Bowman, B. M.; Kopečková, P.; Kopeček, J.

    2009-01-01

    Purpose Macromolecular delivery systems have therapeutic uses because of their ability to deliver and release drugs to specific tissues. The uptake and localization of HPMA copolymers using Asp8 as the bone-targeting moiety was determined in aged, ovariectomized (ovx) rats. PGE1 was attached via a cathepsin K-sensitive linkage to HPMA copolymer–Asp8 conjugate and was tested to determine if it could promote bone formation. Materials and Methods The uptake of FITC-labeled HPMA copolymer–Asp8 conjugate (P-Asp8-FITC) on bone surfaces was compared with the mineralization marker, tetracycline. Then a targeted PGE1-HPMA copolymer conjugate (P-Asp8-FITC-PGE1) was given as a single injection and its effects on bone formation were measured 4 weeks later. Results P-Asp8-FITC preferentially deposited on resorption surfaces, unlike tetracycline. A single injection of P-Asp8-FITC-PGE1 resulted in greater indices of bone formation in aged, ovx rats. Conclusions HPMA copolymers can be targeted to bone surfaces using Asp8, with preferential uptake on resorption surfaces. Additionally, PGE1 attached to the Asp8-targeted HPMA copolymers and given by a single injection resulted in greater bone formation measured 4 weeks later. This initial in vivo study suggests that macromolecular delivery systems targeted to bone may offer some therapeutic opportunities and advantages for the treatment of skeletal diseases. PMID:18758923

  1. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription

    PubMed Central

    Cogoi, Susanna; Xodo, Luigi E.

    2006-01-01

    In human and mouse, the promoter of the KRAS gene contains a nuclease hypersensitive polypurine–polypyrimidine element (NHPPE) that is essential for transcription. An interesting feature of the polypurine G-rich strand of NHPPE is its ability to assume an unusual DNA structure that, according to circular dichroism (CD) and DMS footprinting experiments, is attributed to an intramolecular parallel G-quadruplex, consisting of three G-tetrads and three loops. The human and mouse KRAS NHPPE G-rich strands display melting temperature of 64 and 73°C, respectively, as well as a K+-dependent capacity to arrest DNA polymerase. Photocleavage and CD experiments showed that the cationic porphyrin TMPyP4 stacks to the external G-tetrads of the KRAS quadruplexes, increasing the Tm by ∼20°C. These findings raise the intriguing question that the G-quadruplex formed within the NHPPE of KRAS may be involved in the regulation of transcription. Indeed, transfection experiments showed that the activity of the mouse KRAS promoter is reduced to 20% of control, in the presence of the quadruplex-stabilizing TMPyP4. In addition, we found that G-rich oligonucleotides mimicking the KRAS quadruplex, but not the corresponding 4-base mutant sequences or oligonucleotides forming quadruplexes with different structures, competed with the NHPPE duplex for binding to nuclear proteins. When vector pKRS-413, containing CAT driven by the mouse KRAS promoter, and KRAS quadruplex oligonucleotides were co-transfected in 293 cells, the expression of CAT was found to be downregulated to 40% of the control. On the basis of these data, we propose that the NHPPE of KRAS exists in equilibrium between a double-stranded form favouring transcription and a folded quadruplex form, which instead inhibits transcription. Such a mechanism, which is probably adopted by other growth-related genes, provides useful hints for the rational design of anticancer drugs against the KRAS oncogene. PMID:16687659

  2. Formation and dissolution of twin ZnO nanostructures promoted by water and control over their emitting properties.

    PubMed

    Distaso, Monica; Mačković, Mirza; Spiecker, Erdmann; Peukert, Wolfgang

    2014-06-23

    By using ZnO as a model system, the formation of twinned nanostructures has been investigated under microwave irradiation, exploiting experimental conditions ranging from purely solvothermal when N,N-dimethylformamide was used, to purely hydrothermal when water was the solvent. A progressive increase in size, elongation and roughness of the surface was observed with increasing water content in the solvent mixture. Particular attention was paid to the reactivity of the ZnO surfaces towards dissolution. Our results show that the formation of twinned nanorods is a dynamic process and that the coupling interphase itself is highly reactive. Consequently, the twinned rods undergo a number of complex dissolution processes that are responsible for the appearance of a wide distribution of defects either on the surface or inside the structure. Poly(N-vinyl pyrrolidone) influences the photoluminescent properties of the as-synthesised materials and allows control of the ratio of the intensity of the UV and visible emission. PMID:24828278

  3. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    PubMed

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment. PMID:27606324

  4. A ribozyme selected from variants of U6 snRNA promotes 2',5'-branch formation.

    PubMed Central

    Tuschl, T; Sharp, P A; Bartel, D P

    2001-01-01

    In vitro selection was used to sample SnRNA-related sequences for ribozyme activities, and several 2',5'-branch-forming ribozymes were isolated. One such ribozyme is highly dependent upon an 11-nt motif that contains a conserved U6 snRNA sequence (ACAGAGA-box) known to be important for pre-mRNA splicing. The ribozyme reaction is similar to the first step of splicing in that an internal 2'-hydroxyl of an unpaired adenosine attacks at the 5'-phosphate of a guanosine. It differs in that the leaving group is diphosphate rather than a 5' exon. The finding that lariat formation can be accomplished by a small RNA with sequences related to U6 snRNA indicates that the RNA available in the spliceosome may be involved in RNA-catalyzed branch formation. PMID:11214178

  5. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos

    PubMed Central

    2013-01-01

    Background A recessive mutation “c” in the Mexican axolotl, Ambystoma mexicanum, results in the failure of normal heart development. In homozygous recessive embryos, the hearts do not have organized myofibrils and fail to beat. In our previous studies, we identified a noncoding Myofibril-Inducing RNA (MIR) from axolotls which promotes myofibril formation and rescues heart development. Results We randomly cloned RNAs from fetal human heart. RNA from clone #291 promoted myofibril formation and induced heart development of mutant axolotls in organ culture. This RNA induced expression of cardiac markers in mutant hearts: tropomyosin, troponin and α-syntrophin. This cloned RNA matches in partial sequence alignment to human microRNA-499a and b, although it differs in length. We have concluded that this cloned RNA is unique in its length, but is still related to the microRNA-499 family. We have named this unique RNA, microRNA-499c. Thus, we will refer to this RNA derived from clone #291 as microRNA-499c throughout the rest of the paper. Conclusions This new form, microRNA-499c, plays an important role in cardiac development. PMID:23522091

  6. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis.

    PubMed

    Cai, Xiao-Teng; Xu, Ping; Wang, Yao; Xiang, Cheng-Bin

    2015-12-01

    Root architecture is crucial for plants to absorb water and nutrients. We previously reported edt1 (edt1D) mutant with altered root architecture that contributes significantly to drought resistance. However, the underlying molecular mechanisms are not well understood. Here we report one of the mechanisms underlying EDT1/HDG11-conferred altered root architecture. Root transcriptome comparison between the wild type and edt1D revealed that the upregulated genes involved in jasmonate biosynthesis and signaling pathway were enriched in edt1D root, which were confirmed by quantitative RT-PCR. Further analysis showed that EDT1/HDG11, as a transcription factor, bound directly to the HD binding sites in the promoters of AOS, AOC3, OPR3, and OPCL1, which encode four key enzymes in JA biosynthesis. We found that the jasmonic acid level was significantly elevated in edt1D root compared with that in the wild type subsequently. In addition, more auxin accumulation was observed in the lateral root primordium of edt1D compared with that of wild type. Genetic analysis of edt1D opcl1 double mutant also showed that HDG11 was partially dependent on JA in regulating LR formation. Taken together, overexpression of EDT1/HDG11 increases JA level in the root of edt1D by directly upregulating the expressions of several genes encoding JA biosynthesis enzymes to activate auxin signaling and promote lateral root formation. PMID:25752924

  7. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  8. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    PubMed Central

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  9. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly

    PubMed Central

    Skau, Colleen T.; Plotnikov, Sergey V.; Doyle, Andrew D.; Waterman, Clare M.

    2015-01-01

    Actin filaments and integrin-based focal adhesions (FAs) form integrated systems that mediate dynamic cell interactions with their environment or other cells during migration, the immune response, and tissue morphogenesis. How adhesion-associated actin structures obtain their functional specificity is unclear. Here we show that the formin-family actin nucleator, inverted formin 2 (INF2), localizes specifically to FAs and dorsal stress fibers (SFs) in fibroblasts. High-resolution fluorescence microscopy and manipulation of INF2 levels in cells indicate that INF2 plays a critical role at the SF–FA junction by promoting actin polymerization via free barbed end generation and centripetal elongation of an FA-associated actin bundle to form dorsal SF. INF2 assembles into FAs during maturation rather than during their initial generation, and once there, acts to promote rapid FA elongation and maturation into tensin-containing fibrillar FAs in the cell center. We show that INF2 is required for fibroblasts to organize fibronectin into matrix fibers and ultimately 3D matrices. Collectively our results indicate an important role for the formin INF2 in specifying the function of fibrillar FAs through its ability to generate dorsal SFs. Thus, dorsal SFs and fibrillar FAs form a specific class of integrated adhesion-associated actin structure in fibroblasts that mediates generation and remodeling of ECM. PMID:25918420

  10. New Organocatalyst Scaffolds with High Activity in Promoting Hydrazone and Oxime Formation at Neutral pH

    PubMed Central

    2015-01-01

    The discovery of two new classes of catalysts for hydrazone and oxime formation in water at neutral pH, namely 2-aminophenols and 2-(aminomethyl)benzimidazoles, is reported. Kinetics studies in aqueous solutions at pH 7.4 revealed rate enhancements up to 7-fold greater than with classic aniline catalysis. 2-(Aminomethyl)benzimidazoles were found to be effective catalysts with otherwise challenging aryl ketone substrates. PMID:25545888

  11. Bispalladacycle-catalyzed Brønsted acid/base-promoted asymmetric tandem azlactone formation-Michael addition.

    PubMed

    Weber, Manuel; Jautze, Sascha; Frey, Wolfgang; Peters, René

    2010-09-01

    Cooperative activation by a soft bimetallic catalyst, a hard Brønsted acid, and a hard Brønsted base has allowed the formation of highly enantioenriched, diastereomerically pure masked alpha-amino acids with adjacent quaternary and tertiary stereocenters in a single reaction starting from racemic N-benzoylated amino acids. The products can, for example, be used to prepare bicyclic dipeptides. PMID:20715774

  12. Lipid Peroxides Promote Large Rafts: Effects of Excitation of Probes in Fluorescence Microscopy and Electrochemical Reactions during Vesicle Formation

    PubMed Central

    Ayuyan, Artem G.; Cohen, Fredric S.

    2006-01-01

    Raft formation and enlargement was investigated in liposomes and supported bilayers prepared from sphingomyelin (SM), cholesterol, and unsaturated phospholipids; NBD-DPPE and rhodamine-(DOPE) were employed as fluorescent probes. Rafts were created by lowering temperature. Maintaining 20 mol % SM, fluorescence microscopy showed that, in the absence of photooxidation, large rafts did not form in giant unilamellar vesicles (GUVs) containing 20 or more mol % cholesterol. But if photooxidation was allowed to proceed, large rafts were readily observed. In population, cuvette experiments, small rafts formed without photooxidation at high cholesterol concentrations. Thus, photooxidation was the cause of raft enlargement during microscopy experiments. Because photooxidation results in peroxidation at lipid double bonds, photosensitization experiments were performed to explicitly produce peroxides of SM and an unsaturated phospholipid. GUVs of high cholesterol content containing the breakdown products of SM-peroxide, but not phospholipid-peroxide, resulted in large rafts after lowering temperature. In addition, GUV production by electroswelling can result in peroxides that cause large raft formation. The use of titanium electrodes eliminates this problem. In conclusion, lipid peroxides and their breakdown products are the cause of large raft formation in GUVs containing biological levels of cholesterol. It is critical that experiments investigating rafts in bilayer membranes avoid the production of peroxides. PMID:16815906

  13. Monosodium Urate in the Presence of RANKL Promotes Osteoclast Formation through Activation of c-Jun N-Terminal Kinase

    PubMed Central

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study was to clarify the role of monosodium urate (MSU) crystals in receptor activator of nuclear factor kB ligand- (RANKL-) RANK-induced osteoclast formation. RAW 264.7 murine macrophage cells were incubated with MSU crystals or RANKL and differentiated into osteoclast-like cells as confirmed by staining for tartrate-resistant acid phosphatase (TRAP) and actin ring, pit formation assay, and TRAP activity assay. MSU crystals in the presence of RANKL augmented osteoclast differentiation, with enhanced mRNA expression of NFATc1, cathepsin K, carbonic anhydrase II, and matrix metalloproteinase-9 (MMP-9), in comparison to RAW 264.7 macrophages incubated in the presence of RANKL alone. Treatment with both MSU crystals and RANKL induced osteoclast differentiation by activating downstream molecules in the RANKL-RANK pathway including tumor necrosis factor receptor-associated factor 6 (TRAF-6), JNK, c-Jun, and NFATc1. IL-1b produced in response to treatment with both MSU and RANKL is involved in osteoclast differentiation in part through the induction of TRAF-6 downstream of the IL-1b pathway. This study revealed that MSU crystals contribute to enhanced osteoclast formation through activation of RANKL-mediated pathways and recruitment of IL-1b. These findings suggest that MSU crystals might be a pathologic causative agent of bone destruction in gout. PMID:26347587

  14. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis.

    PubMed

    Yamaguchi, Nobutoshi; Jeong, Cheol Woong; Nole-Wilson, Staci; Krizek, Beth A; Wagner, Doris

    2016-01-01

    Proper timing of the onset to flower formation is critical for reproductive success. Monocarpic plants like Arabidopsis (Arabidopsis thaliana) switch from production of branches in the axils of leaves to that of flowers once in their lifecycle, during the meristem identity transition. The plant-specific transcription factor LEAFY (LFY) is necessary and sufficient for this transition. Previously, we reported that the plant hormone auxin induces LFY expression through AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP). It is not known whether MP is solely responsible for auxin-directed transcriptional activation of LFY. Here, we show that two transcription factors belonging to the AINTEGUMENTA-LIKE/PLETHORA family, AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3), act in parallel with MP to upregulate LFY in response to auxin. ant ail6 mutants display a delay in the meristem identity transition and in LFY induction. ANT and AIL6/PLT3 are expressed prior to LFY and bind to the LFY promoter to control LFY mRNA accumulation. Genetic and promoter/reporter studies suggest that ANT/AIL6 act in parallel with MP to promote LFY induction in response to auxin sensing. Our study highlights the importance of two separate auxin-controlled pathways in the meristem identity transition. PMID:26537561

  15. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis1[OPEN

    PubMed Central

    Yamaguchi, Nobutoshi; Nole-Wilson, Staci; Wagner, Doris

    2016-01-01

    Proper timing of the onset to flower formation is critical for reproductive success. Monocarpic plants like Arabidopsis (Arabidopsis thaliana) switch from production of branches in the axils of leaves to that of flowers once in their lifecycle, during the meristem identity transition. The plant-specific transcription factor LEAFY (LFY) is necessary and sufficient for this transition. Previously, we reported that the plant hormone auxin induces LFY expression through AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP). It is not known whether MP is solely responsible for auxin-directed transcriptional activation of LFY. Here, we show that two transcription factors belonging to the AINTEGUMENTA-LIKE/PLETHORA family, AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3), act in parallel with MP to upregulate LFY in response to auxin. ant ail6 mutants display a delay in the meristem identity transition and in LFY induction. ANT and AIL6/PLT3 are expressed prior to LFY and bind to the LFY promoter to control LFY mRNA accumulation. Genetic and promoter/reporter studies suggest that ANT/AIL6 act in parallel with MP to promote LFY induction in response to auxin sensing. Our study highlights the importance of two separate auxin-controlled pathways in the meristem identity transition. PMID:26537561

  16. A novel activity of HMG domains: promotion of the triple-stranded complex formation between DNA containing (GGA/TCC)11 and d(GGA)11 oligonucleotides.

    PubMed Central

    Suda, T; Mishima, Y; Takayanagi, K; Asakura, H; Odani, S; Kominami, R

    1996-01-01

    The high mobility group protein (HMG)-box is a DNA-binding domain found in many proteins that bind preferentially to DNA of irregular structures in a sequence-independent manner and can bend the DNA. We show here that GST-fusion proteins of HMG domains from HMG1 and HMG2 promote a triple-stranded complex formation between DNA containing the (GGA/TCC)11 repeat and oligonucleotides of d(GGA)11 probably due to G:G base pairing. The activity is to reduce association time and requirements of Mg2+ and oligonucleotide concentrations. The HMG box of SRY, the protein determining male-sex differentiation, also has the activity, suggesting that it is not restricted to the HMG-box domains derived from HMG1/2 but is common to those from other members of the HMG-box family of proteins. Interestingly, the box-AB and box-B of HMG1 bend DNA containing the repeat, but SRY fails to bend in a circularization assay. The difference suggests that the two activities of association-promotion and DNA bending are distinct. These results suggest that the HMG-box domain has a novel activity of promoting the association between GGA repeats which might be involved in higher-order architecture of chromatin. PMID:8972860

  17. Precise Formation of a Hollow Carbon Nitride Structure with a Janus Surface To Promote Water Splitting by Photoredox Catalysis.

    PubMed

    Zheng, Dandan; Cao, Xu-Ning; Wang, Xinchen

    2016-09-12

    The precise modification of redox species on the inner and outer surfaces of hollow nanostructures is relevant in catalysis, surface science, and nanotechnology, but has proven difficult to achieve. Herein, we develop a facile approach to specifically fabricate Pt and Co3 O4 nanoparticles (NPs) onto the interior and exterior surface of hollow carbon nitride spheres (HCNS), respectively, to promote the surface redox functions of the polymer semiconductors. The photocatalytic water splitting activities of HCNS with spatially separated oxidation and reduction centers at their nanodomains were enhanced. The origin of the enhanced activity was attributed to the spatially separated reactive sites for the evolution of H2 and O2 and also to the unidirectional migration of the electron and hole on the Janus surfaces, thereby preventing the unwanted reverse reaction of water splitting and decreasing charge recombination. PMID:27533739

  18. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation.

    PubMed

    Yang, Yunfan; Liu, Min; Li, Dengwen; Ran, Jie; Gao, Jinmin; Suo, Shaojun; Sun, Shao-Cong; Zhou, Jun

    2014-02-11

    Oriented cell division is critical for cell fate specification, tissue organization, and tissue homeostasis, and relies on proper orientation of the mitotic spindle. The molecular mechanisms underlying the regulation of spindle orientation remain largely unknown. Herein, we identify a critical role for cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, in the control of spindle orientation. CYLD is highly expressed in mitosis and promotes spindle orientation by stabilizing astral microtubules and deubiquitinating the cortical polarity protein dishevelled. The deubiquitination of dishevelled enhances its interaction with nuclear mitotic apparatus, stimulating the cortical localization of nuclear mitotic apparatus and the dynein/dynactin motor complex, a requirement for generating pulling forces on astral microtubules. These findings uncover CYLD as an important player in the orientation of the mitotic spindle and cell division and have important implications in health and disease. PMID:24469800

  19. Loss of nuclear receptor RXRα in epidermal keratinocytes promotes the formation of Cdk4-activated invasive melanomas.

    PubMed

    Hyter, Stephen; Bajaj, Gaurav; Liang, Xiaobo; Barbacid, Mariano; Ganguli-Indra, Gitali; Indra, Arup Kumar

    2010-10-01

    Keratinocytes contribute to melanocyte transformation by affecting their microenvironment, in part through the secretion of paracrine factors. Here we report a loss of expression of nuclear receptor RXRα in epidermal keratinocytes during human melanoma progression. In the absence of keratinocytic RXRα, in combination with mutant Cdk4, cutaneous melanoma was generated that metastasized to lymph nodes in a bigenic mouse model. Expression of several keratinocyte-derived mitogenic growth factors (Et-1, Hgf, Scf, α-MSH and Fgf 2 ) was elevated in skin of bigenic mice, whereas Fas, E-cadherin and Pten, implicated in apoptosis, cellular invasion and melanomagenesis, respectively, were downregulated within the microdissected melanocytic tumors. We demonstrated that RXRα is recruited on the proximal promoter of both Et-1 and Hgf, possibly directly regulating their transcription in keratinocytes. These studies demonstrate the contribution of keratinocytic paracrine signaling during the cellular transformation and malignant conversion of melanocytes. PMID:20629968

  20. FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation.

    PubMed

    Liu, Xinyu; Jing, Xiaoqian; Cheng, Xi; Ma, Ding; Jin, Zhijian; Yang, Weiping; Qiu, Weihua

    2016-05-01

    The biological role of fibroblast growth factor receptor 3 (FGFR3) in tumor angiogenesis of hepatocellular carcinoma (HCC) has not been discussed before. Our previous work had indicated FGFR3 was overexpressed in HCC, and silencing FGFR3 in Hu7 cells could regulate tumorigenesis via down-regulating the phosphorylation level of key members of classic signaling pathways including ERK and AKT. In the present work, we explored the role of FGFR3 in angiogenesis-dependent metastasis by using SMMC-7721 and QGY-7703 stable cell lines. Our results indicated FGFR3 could regulate in vitro cell migration ability and in vivo lung metastasis ability of HCC, which was in accordance with increased angiogenesis ability in vitro and in vivo. Using the supernatant from SMMC-7721/FGFR3 cells, we conducted a human angiogenesis protein microarray including 43 angiogenesis factors and found that FGFR3 modulated angiogenesis and metastasis of HCC mainly by promoting the protein level of monocyte chemotactic protein 1 (MCP-1). Silencing FGFR3 by short hairpin RNA (shRNA) could reduce MCP-1 level in lysates and supernatant of QGY-7703 cells and SMMC-7721 cells. Silencing MCP-1 in QGY-7703 or SMMC-7721 cells could induce similar phenotypes compared with silencing FGFR3. Our results suggested FGFR3 promoted metastasis potential of HCC, at least partially if not all, via facilitating MCP-1-mediated angiogenesis, in addition to previously found cell growth and metastasis. MCP-1, a key medium between HCC cells and HUVECs, might be a novel anti-vascular target in HCC. PMID:27044356

  1. Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    PubMed Central

    Oztug Durer, Zeynep A.; Cohlberg, Jeffrey A.; Dinh, Phong; Padua, Shelby; Ehrenclou, Krista; Downes, Sean; Tan, James K.; Nakano, Yoko; Bowman, Christopher J.; Hoskins, Jessica L.; Kwon, Chuhee; Mason, Andrew Z.; Rodriguez, Jorge A.; Doucette, Peter A.; Shaw, Bryan F.; Valentine, Joan Selverstone

    2009-01-01

    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1. PMID:19325915

  2. The F-BAR Cdc15 promotes contractile ring formation through the direct recruitment of the formin Cdc12

    PubMed Central

    Willet, Alaina H.; McDonald, Nathan A.; Bohnert, K. Adam; Baird, Michelle A.; Allen, John R.; Davidson, Michael W.

    2015-01-01

    In Schizosaccharomyces pombe, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). Nucleation of F-actin for the CR requires a single formin, Cdc12, that localizes to the cell middle at mitotic onset. Although genetic requirements for formin Cdc12 recruitment have been determined, the molecular mechanisms dictating its targeting to the medial cortex during cytokinesis are unknown. In this paper, we define a short motif within the N terminus of Cdc12 that binds directly to the F-BAR domain of the scaffolding protein Cdc15. Mutations preventing the Cdc12–Cdc15 interaction resulted in reduced Cdc12, F-actin, and actin-binding proteins at the CR, which in turn led to a delay in CR formation and sensitivity to other perturbations of CR assembly. We conclude that Cdc15 contributes to CR formation and cytokinesis via formin Cdc12 recruitment, defining a novel cytokinetic function for an F-BAR domain. PMID:25688133

  3. KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK.

    PubMed

    Goertzen, Cameron G; Dragan, Magdalena; Turley, Eva; Babwah, Andy V; Bhattacharya, Moshmi

    2016-03-01

    Kisspeptins (KPs), peptide products of the KISS1 gene are endogenous ligands for the kisspeptin receptor (KISS1R), a G protein-coupled receptor. In numerous cancers, KISS1R signaling plays anti-metastatic roles. However, we have previously shown that in breast cancer cells lacking the estrogen receptor (ERα), kisspeptin-10 stimulates cell migration and invasion by cross-talking with the epidermal growth factor receptor (EGFR), via a β-arrestin-2-dependent mechanism. To further define the mechanisms by which KISS1R stimulates invasion, we determined the effect of down-regulating KISS1R expression in triple negative breast cancer cells. We found that depletion of KISS1R reduced their mesenchymal phenotype and invasiveness. We show for the first time that KISS1R signaling induces invadopodia formation and activation of key invadopodia proteins, cortactin, cofilin and membrane type I matrix metalloproteases (MT1-MMP). Moreover, KISS1R stimulated invadopodia formation occurs via a new pathway involving a β-arrestin2 and ERK1/2-dependent mechanism, independent of Src. Taken together, our findings suggest that targeting the KISS1R signaling axis might be a promising strategy to inhibit invasiveness and metastasis. PMID:26721186

  4. TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation

    PubMed Central

    Hofmann, Nicole A.; Barth, Sonja; Waldeck-Weiermair, Markus; Klec, Christiane; Strunk, Dirk; Malli, Roland; Graier, Wolfgang F.

    2014-01-01

    ABSTRACT Anandamide (N-arachidonyl ethanolamide, AEA) is an endogenous cannabinoid that is involved in various pathological conditions, including cardiovascular diseases and tumor-angiogenesis. Herein, we tested the involvement of classical cannabinoid receptors (CBRs) and the Ca2+-channel transient receptor potential vanilloid 1 (TRPV1) on cellular AEA uptake and its effect on endothelial cell proliferation and network-formation. Uptake of the fluorescence-labeled anandamide (SKM4-45-1) was monitored in human endothelial colony-forming cells (ECFCs) and a human endothelial-vein cell line (EA.hy926). Involvement of the receptors during AEA translocation was determined by selective pharmacological inhibition (AM251, SR144528, CID16020046, SB366791) and molecular interference by TRPV1-selective siRNA-mediated knock-down and TRPV1 overexpression. We show that exclusively TRPV1 contributes essentially to AEA transport into endothelial cells in a Ca2+-independent manner. This TRPV1 function is a prerequisite for AEA-induced endothelial cell proliferation and network-formation. Our findings point to a so far unknown moonlighting function of TRPV1 as Ca2+-independent contributor/regulator of AEA uptake. We propose TRPV1 as representing a promising target for development of pharmacological therapies against AEA-triggered endothelial cell functions, including their stimulatory effect on tumor-angiogenesis. PMID:25395667

  5. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury.

    PubMed

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2014-05-15

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role. PMID:24719460

  6. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis.

    PubMed

    Barth, Cristiane R; Funchal, Giselle A; Luft, Carolina; de Oliveira, Jarbas R; Porto, Bárbara N; Donadio, Márcio V F

    2016-04-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular proteins, such as neutrophil elastase (NE). NETs are released in the extracellular space in response to different stimuli. Carrageenan is a sulfated polysaccharide extracted from Chondrus crispus, a marine algae, used for decades in research for its potential to induce inflammation in different animal models. In this study, we show for the first time that carrageenan injection can induce NET release in a mouse model of acute peritonitis. Carrageenan induced NET release by viable neutrophils with NE and myeloperoxidase (MPO) expressed on DNA fibers. Furthermore, although this polysaccharide was able to stimulate reactive oxygen species (ROS) generation by peritoneal neutrophils, NADPH oxidase derived ROS were dispensable for NET formation by carrageenan. In conclusion, our results show that carrageenan-induced inflammation in the peritoneum of mice can induce NET formation in an ROS-independent manner. These results may add important information to the field of inflammation and potentially lead to novel anti-inflammatory agents targeting the production of NETs. PMID:26786873

  7. B CELLS PROMOTE HEPATIC INFLAMMATION, BILIARY CYST FORMATION, AND SALIVARY GLAND INFLAMMATION IN THE NOD.C3C4 MODEL OF AUTOIMMUNE CHOLANGITIS

    PubMed Central

    Moritoki, Yuki; Tsuda, Masanobu; Tsuneyama, Koichi; Zhang, Weici; Yoshida, Katsunori; Lian, Zhe-Xiong; Yang, Guo-Xiang; Ridgway, William M.; Wicker, Linda S.; Ansari, Aftab A.; Gershwin, M. Eric

    2011-01-01

    There are now several murine models of autoimmune cholangitis that have features both similar and distinct from human PBC. One such model, the NOD.c3c4 mouse, manifests portal cell infiltrates, anti-mitochondrial antibodies but also biliary cysts. The biliary cysts are not a component of PBC and not found in the other murine models. To address the immunopathology in these mice, we generated genetically B cell deficient Igμ−/− NOD.c3c4 mice and compared the immunopathology of these animals to control B cell sufficient NOD.c3c4 mice. B cell deficient mice demonstrated decreased number of non-B cells in the liver accompanied by reduced numbers of activated natural killer cells. The degree of granuloma formation and bile duct damage were comparable to NOD.c3c4 mice. In contrast, liver inflammation, biliary cyst formation and salivary gland inflammation was significantly attenuated in these B cell deficient mice. In conclusion, B cells play a critical role in promoting liver inflammation and also contribute to cyst formation as well as salivary gland pathology in autoimmune NOD.c3c4 mice, illustrating a critical role of B cells in modulating specific organ pathology and, in particular, in exacerbating both the biliary disease and the sialadenitis. PMID:21349500

  8. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body

    PubMed Central

    Terzo, Esteban A.; Lyons, Shawn M.; Poulton, John S.; Temple, Brenda R. S.; Marzluff, William F.; Duronio, Robert J.

    2015-01-01

    Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis. PMID:25694448

  9. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active site formation and catalytic specificity

    PubMed Central

    Itoh, Yuzuru; Bröcker, Markus J.; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2015-01-01

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins, and is synthesized on its specific tRNA (tRNASec). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNASec, formed by seryl-tRNA synthetase, to Sec-tRNASec. SelA, a member of the fold-type-I pyridoxal 5′-phosphate (PLP)-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500 kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNASec revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNASec. The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer-pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions, and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of “depentamerized” SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site, and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I PLP-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  10. SerpinB2 (PAI-2) Modulates Proteostasis via Binding Misfolded Proteins and Promotion of Cytoprotective Inclusion Formation

    PubMed Central

    Farrawell, Natalie; Shearer, Robert F.; Constantinescu, Patrick; Hatters, Danny M.; Schroder, Wayne A.; Suhrbier, Andreas; Wilson, Mark R.; Saunders, Darren N.; Ranson, Marie

    2015-01-01

    SerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS). In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs) with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry). Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS. PMID:26083412

  11. Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows.

    PubMed

    Sebek, Pavel; Altman, Jan; Platek, Michal; Cizek, Lukas

    2013-01-01

    Trees with hollows are key features sustaining biodiversity in wooded landscapes. They host rich assemblages of often highly specialised organisms. Hollow trees, however, have become rare and localised in Europe. Many of the associated biota is thus declining or endangered. The challenge of its conservation, therefore, is to safeguard the presence of hollow trees in sufficient numbers. Populations of numerous species associated with tree hollows and dead wood are often found in habitats that were formed by formerly common traditional silvicultural practices such as coppicing, pollarding or pasture. Although it has been occasionally mentioned that such practices increase the formation of hollows and the availability of often sun-exposed dead wood, their effect has never been quantified. Our study examined the hollow incidence in pollard and non-pollard (unmanaged) willows and the effect of pollarding on incremental growth rate by tree ring analysis. The probability of hollow occurrence was substantially higher in pollard than in non-pollard trees. Young pollards, especially, form hollows much more often than non-pollards; for instance, in trees of 50 cm DBH, the probability of hollow ocurrence was ∼0.75 in pollards, but only ∼0.3 in non-pollards. No difference in growth rate was found. Pollarding thus leads to the rapid formation of tree hollows, a habitat usually associated with old trees. It is therefore potentially a very important tool in the restoration of saproxylic habitats and conservation of hollow-dependent fauna. If applied along e.g. roads and watercourses, pollarding could also be used to increase landscape connectivity for saproxylic organisms. In reserves where pollarding was formerly practiced, its restoration would be necessary to prevent loss of saproxylic biodiversity. Our results point to the importance of active management measures for maintaining availability, and spatial and temporal continuity of deadwood microhabitats. PMID:23544142

  12. Comparison of air kerma measurements between the PTB and the IAEA for x-radiation qualities used in general diagnostic radiology and mammography

    NASA Astrophysics Data System (ADS)

    Csete, István; Büermann, Ludwig; Gomola, Igor; Girzikowsky, Reinhard

    2013-01-01

    A comparison of the air kerma standards for x-radiation qualities used in general diagnostic radiology and mammography, identified as EURAMET.RI(I)-S10 (EURAMET project #1221), was performed between the PTB and the IAEA. Two spherical and two parallel-plate reference-class ionization chambers of the IAEA and 12 beam qualities standardized in the IEC standard 61267:2005 plus 7 additional standard beam qualities established at both laboratories were selected for the comparison. The calibration coefficients were determined for the transfer chambers at the PTB in September 2012 and before and after this at the IAEA Dosimetry Laboratory. The results show the calibration coefficients of both laboratories to be in good agreement within the standard uncertainty of the comparison of about 0.47%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Performance improvement of flexible bulk heterojunction solar cells using PTB7:PC71BM by optimizing spin coating and drying processes

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masaya; Fujii, Shunjiro; Arai, Yuki; Yanagidate, Tatsuki; Yanagi, Yuichiro; Okukawa, Takanori; Yoshida, Akira; Kataura, Hiromichi; Nishioka, Yasushiro

    2014-02-01

    Bulk-heterojunction solar cells were fabricated using a dichlorobenzene solution of poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) on a flexible indium-tin-oxide-coated polyethylene terephthalate substrate. It was found that the performance of the solar cells could be markedly improved by minimizing the spin coating time of a blend of PTB7 and PC71BM to 10 s and maximizing the successive drying and solidification time up to 30 min in a confined Petri dish. As a result, a short-circuit current density of 14.5 mA/cm2, an open-circuit voltage of 0.62 V, and a power conversion efficiency of 3.67% were obtained. These improvements are attributed to the growth of favorable nanostructures during the slow drying process that increased the photocarrier collection efficiency while simultaneously increasing the performance fluctuations of each device.

  14. Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the PTB, Germany and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Kapsch, R.-P.; Krauss, A.

    2016-01-01

    An indirect comparison has been made of the standards for absorbed dose to water in 60Co radiation of the Physikalisch-Technische Bundesanstalt, (PTB), Germany and of the Bureau International des Poids et Mesures (BIPM). The measurements at the BIPM were carried out in October 2015. The comparison result, based on the calibration coefficients for two transfer standards and evaluated as a ratio of the PTB and the BIPM standards for absorbed dose to water, is 0.9977 with a combined standard uncertainty of 3.8 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Overexpression of H1 Calponin in Osteoblast Lineage Cells Leads to a Decrease in Bone Mass by Disrupting Osteoblast Function and Promoting Osteoclast Formation

    PubMed Central

    Su, Nan; Chen, Maomao; Chen, Siyu; Li, Can; Xie, Yangli; Zhu, Ying; Zhang, Yaozong; Zhao, Ling; He, Qifen; Du, Xiaolan; Chen, Di; Chen, Lin

    2013-01-01

    H1 calponin (CNN1) is known as a smooth muscle-specific, actin-binding protein which regulates smooth muscle contractive activity. Although previous studies have shown that CNN1 has effect on bone, the mechanism is not well defined. To investigate the role of CNN1 in maintaining bone homeostasis, we generated transgenic mice overexpressing Cnn1 under the control of the osteoblast-specific 3.6-kb Col1a1 promoter. Col1a1-Cnn1 transgenic mice showed delayed bone formation at embryonic stage and decreased bone mass at adult stage. Morphology analyses showed reduced trabecular number, thickness and defects in bone formation. The proliferation and migration of osteoblasts were decreased in Col1a1-Cnn1 mice due to alterations in cytoskeleton. The early osteoblast differentiation of Col1a1-Cnn1 mice was increased, but the late stage differentiation and mineralization of osteoblasts derived from Col1a1-Cnn1 mice were significantly decreased. In addition to impaired bone formation, the decreased bone mass was also associated with enhanced osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) staining revealed increased osteoclast numbers in tibias of 2-month-old Col1a1-Cnn1 mice, and increased numbers of osteoclasts co-cultured with Col1a1-Cnn1 osteoblasts. The ratio of RANKL to OPG was significantly increased in Col1a1-Cnn1 osteoblasts. These findings reveal a novel function of CNN1 in maintaining bone homeostasis by coupling bone formation to bone resorption. PMID:23044709

  16. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Li, Jinhua; Benzerara, Karim; Sougrati, Moulay Tahar; Ona-Nguema, Georges; Bernard, Sylvain; Jumas, Jean-Claude; Guyot, François

    2014-08-01

    Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4 months vs. 2 days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase

  17. Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic Aβ Oligomers in Cells.

    PubMed

    Decock, Marie; Stanga, Serena; Octave, Jean-Noël; Dewachter, Ilse; Smith, Steven O; Constantinescu, Stefan N; Kienlen-Campard, Pascal

    2016-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive cognitive decline leading to dementia. The amyloid precursor protein (APP) is a ubiquitous type I transmembrane (TM) protein sequentially processed to generate the β-amyloid peptide (Aβ), the major constituent of senile plaques that are typical AD lesions. There is a growing body of evidence that soluble Aβ oligomers correlate with clinical symptoms associated with the disease. The Aβ sequence begins in the extracellular juxtamembrane region of APP and includes roughly half of the TM domain. This region contains GXXXG and GXXXA motifs, which are critical for both TM protein interactions and fibrillogenic properties of peptides derived from TM α-helices. Glycine-to-leucine mutations of these motifs were previously shown to affect APP processing and Aβ production in cells. However, the detailed contribution of these motifs to APP dimerization, their relation to processing, and the conformational changes they can induce within Aβ species remains undefined. Here, we describe highly resistant Aβ42 oligomers that are produced in cellular membrane compartments. They are formed in cells by processing of the APP amyloidogenic C-terminal fragment (C99), or by direct expression of a peptide corresponding to Aβ42, but not to Aβ40. By a point-mutation approach, we demonstrate that glycine-to-leucine mutations in the G(29)XXXG(33) and G(38)XXXA(42) motifs dramatically affect the Aβ oligomerization process. G33 and G38 in these motifs are specifically involved in Aβ oligomerization; the G33L mutation strongly promotes oligomerization, while G38L blocks it with a dominant effect on G33 residue modification. Finally, we report that the secreted Aβ42 oligomers display pathological properties consistent with their suggested role in AD, but do not induce toxicity in survival assays with neuronal cells. Exposure of neurons to these Aβ42 oligomers dramatically affects

  18. Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic Aβ Oligomers in Cells

    PubMed Central

    Decock, Marie; Stanga, Serena; Octave, Jean-Noël; Dewachter, Ilse; Smith, Steven O.; Constantinescu, Stefan N.; Kienlen-Campard, Pascal

    2016-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder characterized by progressive cognitive decline leading to dementia. The amyloid precursor protein (APP) is a ubiquitous type I transmembrane (TM) protein sequentially processed to generate the β-amyloid peptide (Aβ), the major constituent of senile plaques that are typical AD lesions. There is a growing body of evidence that soluble Aβ oligomers correlate with clinical symptoms associated with the disease. The Aβ sequence begins in the extracellular juxtamembrane region of APP and includes roughly half of the TM domain. This region contains GXXXG and GXXXA motifs, which are critical for both TM protein interactions and fibrillogenic properties of peptides derived from TM α-helices. Glycine-to-leucine mutations of these motifs were previously shown to affect APP processing and Aβ production in cells. However, the detailed contribution of these motifs to APP dimerization, their relation to processing, and the conformational changes they can induce within Aβ species remains undefined. Here, we describe highly resistant Aβ42 oligomers that are produced in cellular membrane compartments. They are formed in cells by processing of the APP amyloidogenic C-terminal fragment (C99), or by direct expression of a peptide corresponding to Aβ42, but not to Aβ40. By a point-mutation approach, we demonstrate that glycine-to-leucine mutations in the G29XXXG33 and G38XXXA42 motifs dramatically affect the Aβ oligomerization process. G33 and G38 in these motifs are specifically involved in Aβ oligomerization; the G33L mutation strongly promotes oligomerization, while G38L blocks it with a dominant effect on G33 residue modification. Finally, we report that the secreted Aβ42 oligomers display pathological properties consistent with their suggested role in AD, but do not induce toxicity in survival assays with neuronal cells. Exposure of neurons to these Aβ42 oligomers dramatically affects neuronal

  19. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices

    PubMed Central

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2013-01-01

    In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° < 0). This reduced entropic cost is attributed to a cation-facilitated preordering of the two single-stranded species, which lowers the association free-energy barrier and in turn accelerates the rate of duplex formation. PMID:23931323

  20. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  1. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGESBeta

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques; Zhu, Xuewei

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  2. A formative evaluation of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis.

    PubMed

    Plow, Matthew; Bethoux, Francois; Mai, Kimloan; Marcus, Bess

    2014-10-01

    Inactivity is a prevalent problem in the population affected with multiple sclerosis (MS). Thus, there is a need to develop and test physical activity (PA) interventions that can be widely disseminated. We conducted a formative evaluation as part of a randomized controlled trial of a pamphlet-based PA intervention among 30 women with MS. Pamphlets were customized to sub-sets of participants who shared similar symptoms and barriers to PA. Mixed methods were used to examine the intervention's influence on self-efficacy, social support, processes of change and stages of change placement, as well as explore participants' perceived barriers, motivators and strategies for engaging in a PA program. Results indicated that the intervention group significantly improved stages of change placement (F = 16.64, P < 0.01) and social support (F = 4.08, P = 0.05) in comparison to the control group. Fatigue, pain and lack of time were the commonly cited barriers to engage in the PA program; whereas the pamphlets, phone calls and action planning were cited as motivators. Participants used fatigue management strategies, enlisted social support and modified their environment to routinely engage in the PA program. Strategies were identified to improve the PA intervention in future research. PMID:24989822

  3. Fluxes of Water through Aquaporin 9 Weaken Membrane-Cytoskeleton Anchorage and Promote Formation of Membrane Protrusions

    PubMed Central

    Karlsson, Thommie; Bolshakova, Anastasia; Magalhães, Marco A. O.; Loitto, Vesa M.; Magnusson, Karl-Eric

    2013-01-01

    All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs) has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i) AQP9 induced and accumulated in filopodia, (ii) AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii) minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells. PMID:23573219

  4. Small GTPases promote actin coat formation on microsporidian pathogens traversing the apical membrane of Caenorhabditis elegans intestinal cells.

    PubMed

    Szumowski, Suzannah C; Estes, Kathleen A; Popovich, John J; Botts, Michael R; Sek, Grace; Troemel, Emily R

    2016-01-01

    Many intracellular pathogens co-opt actin in host cells, but little is known about these interactions in vivo. We study the in vivo trafficking and exit of the microsporidian Nematocida parisii, which is an intracellular pathogen that infects intestinal cells of the nematode Caenorhabditis elegans. We recently demonstrated that N. parisii uses directional exocytosis to escape out of intestinal cells into the intestinal tract. Here, we show that an intestinal-specific isoform of C. elegans actin called ACT-5 forms coats around membrane compartments that contain single exocytosing spores, and that these coats appear to form after fusion with the apical membrane. We performed a genetic screen for host factors required for actin coat formation and identified small GTPases important for this process. Through analysis of animals defective in these factors, we found that actin coats are not required for pathogen exit although they may boost exocytic output. Later during infection, we find that ACT-5 also forms coats around membrane-bound vesicles that contain multiple spores. These vesicles are likely formed by clathrin-dependent compensatory endocytosis to retrieve membrane material that has been trafficked to the apical membrane as part of the exocytosis process. These findings provide insight into microsporidia interaction with host cells, and provide novel in vivo examples of the manner in which intracellular pathogens co-opt host actin during their life cycle. PMID:26147591

  5. Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica

    PubMed Central

    Cruz, Olga Hernández de la; Marchat, Laurence A.; Guillén, Nancy; Weber, Christian; Rosas, Itzel López; Díaz-Chávez, José; Herrera, Luis; Rojo-Domínguez, Arturo; Orozco, Esther; López-Camarillo, César

    2016-01-01

    Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica. PMID:26792358

  6. A formative evaluation of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis

    PubMed Central

    Plow, Matthew; Bethoux, Francois; Mai, Kimloan; Marcus, Bess

    2014-01-01

    Inactivity is a prevalent problem in the population affected with multiple sclerosis (MS). Thus, there is a need to develop and test physical activity (PA) interventions that can be widely disseminated. We conducted a formative evaluation as part of a randomized controlled trial of a pamphlet-based PA intervention among 30 women with MS. Pamphlets were customized to sub-sets of participants who shared similar symptoms and barriers to PA. Mixed methods were used to examine the intervention’s influence on self-efficacy, social support, processes of change and stages of change placement, as well as explore participants’ perceived barriers, motivators and strategies for engaging in a PA program. Results indicated that the intervention group significantly improved stages of change placement (F = 16.64, P < 0.01) and social support (F = 4.08, P = 0.05) in comparison to the control group. Fatigue, pain and lack of time were the commonly cited barriers to engage in the PA program; whereas the pamphlets, phone calls and action planning were cited as motivators. Participants used fatigue management strategies, enlisted social support and modified their environment to routinely engage in the PA program. Strategies were identified to improve the PA intervention in future research. PMID:24989822

  7. Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica.

    PubMed

    Hernández de la Cruz, Olga; Marchat, Laurence A; Guillén, Nancy; Weber, Christian; López Rosas, Itzel; Díaz-Chávez, José; Herrera, Luis; Rojo-Domínguez, Arturo; Orozco, Esther; López-Camarillo, César

    2016-01-01

    Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica. PMID:26792358

  8. APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis

    PubMed Central

    Kim, Young Doo; Kim, Hyunjoo; Jeon, Young-Jun; Lim, Bitna; Cho, Dong-Hyung; Heo, Won Do; Yang, Doo-Hyun; Kim, Chan-Young; Yang, Han-Kwang; Yang, Jin Kuk; Jung, Yong-Keun

    2016-01-01

    Despite the fact that the epidermal growth factor (EGF) family member ERBB3 (HER3) is deregulated in many cancers, the list of ERBB3-interacting partners remains limited. Here, we report that the Apaf-1-interacting protein (APIP) stimulates heregulin-β1 (HRG-β1)/ERBB3-driven cell proliferation and tumorigenesis. APIP levels are frequently increased in human gastric cancers and gastric cancer-derived cells. Cell proliferation and tumor formation are repressed by APIP downregulation and stimulated by its overexpression. APIP's role in the ERBB3 pathway is not associated with its functions within the methionine salvage pathway. In response to HRG-β1, APIP binds to the ERBB3 receptor, leading to an enhanced binding of ERBB3 and ERBB2 that results in sustained activations of ERK1/2 and AKT protein kinases. Furthermore, HRG-β1/ERBB3-dependent signaling is gained in APIP transgenic mouse embryonic fibroblasts (MEFs), but not lost in Apip−/− MEFs. Our findings offer compelling evidence that APIP plays an essential role in ERBB3 signaling as a positive regulator for tumorigenesis, warranting future development of therapeutic strategies for ERBB3-driven gastric cancer. PMID:26942872

  9. Catalytic C-N, C-O, and C-S Bond Formation Promoted by Organoactinide Complexes

    NASA Astrophysics Data System (ADS)

    Eisen, Moris S.

    Throughout this last decade, we have witnessed impressively how the chemistry of electrophilic d0/fn actinides has been prospering either in their new synthetic approaches reaching very interesting compounds or in their use in stoichiometric and catalytic reactions leading to high levels of complexity. The unique rich and complex features of organoactinides prompted the development of this field toward catalysis in demanding chemical transformations. In this review, we present a brief and selective survey of the recent developments in homogenous catalysis of organoactinide complexes, especially toward the formation of new C-N, C-O, and C-S bonds. We start by presenting the synthesis and characterization of the corresponding organoactinide complexes, followed by the homogeneous catalytic chemical transformations that include the hydroamination of terminal alkynes, the polymerization of ɛ-caprolactone and L-lactide, the reduction of azides and hydrazines by high-valent organouranium complexes, the hydrothiolation of terminal alkynes, and the catalytic Tishchenko reaction. For each reaction, the scope and the thermodynamic, kinetic, and mechanistic aspects are presented.

  10. The Diaphanous-Related Formins Promote Protrusion Formation and Cell-to-Cell Spread of Listeria monocytogenes

    PubMed Central

    Fattouh, Ramzi; Kwon, Hyunwoo; Czuczman, Mark A.; Copeland, John W.; Pelletier, Laurence; Quinlan, Margot E.; Muise, Aleixo M.; Higgins, Darren E.; Brumell, John H.

    2015-01-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes–infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1–3 (mDia1–3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase–formin network that is critically involved in the cell-to-cell spread of L. monocytogenes. PMID:25281757

  11. The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes.

    PubMed

    Fattouh, Ramzi; Kwon, Hyunwoo; Czuczman, Mark A; Copeland, John W; Pelletier, Laurence; Quinlan, Margot E; Muise, Aleixo M; Higgins, Darren E; Brumell, John H

    2015-04-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes-infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1-3 (mDia1-3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase-formin network that is critically involved in the cell-to-cell spread of L. monocytogenes. PMID:25281757

  12. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter.

    PubMed

    Visser, Mijke; Kayser, Manfred; Palstra, Robert-Jan

    2012-03-01

    Pigmentation of skin, eye, and hair reflects some of the most evident common phenotypes in humans. Several candidate genes for human pigmentation are identified. The SNP rs12913832 has strong statistical association with human pigmentation. It is located within an intron of the nonpigment gene HERC2, 21 kb upstream of the pigment gene OCA2, and the region surrounding rs12913832 is highly conserved among animal species. However, the exact functional role of HERC2 rs12913832 in human pigmentation is unknown. Here we demonstrate that the HERC2 rs12913832 region functions as an enhancer regulating OCA2 transcription. In darkly pigmented human melanocytes carrying the rs12913832 T-allele, we detected binding of the transcription factors HLTF, LEF1, and MITF to the HERC2 rs12913832 enhancer, and a long-range chromatin loop between this enhancer and the OCA2 promoter that leads to elevated OCA2 expression. In contrast, in lightly pigmented melanocytes carrying the rs12913832 C-allele, chromatin-loop formation, transcription factor recruitment, and OCA2 expression are all reduced. Hence, we demonstrate that allelic variation of a common noncoding SNP located in a distal regulatory element not only disrupts the regulatory potential of this element but also affects its interaction with the relevant promoter. We provide the key mechanistic insight that allele-dependent differences in chromatin-loop formation (i.e., structural differences in the folding of gene loci) result in differences in allelic gene expression that affects common phenotypic traits. This concept is highly relevant for future studies aiming to unveil the functional basis of genetically determined phenotypes, including diseases. PMID:22234890

  13. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    PubMed

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p <0.05) higher number of CFUs on agar plates after 8 d, approximately 14-fold higher than that on control plates without rRpf. 16S rRNA gene sequences revealed that all the colonies on plates were mainly related to Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98-99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample. PMID:25843055

  14. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    PubMed Central

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  15. Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in Arabidopsis[C][W

    PubMed Central

    Zhang, Xing; Zhu, Ziqiang; An, Fengying; Hao, Dongdong; Li, Pengpeng; Song, Jinghui; Yi, Chengqi; Guo, Hongwei

    2014-01-01

    The apical hook is an essential structure that enables epigeal plants to protrude through the soil. Arabidopsis thaliana HOOKLESS1 (HLS1) is reported to be a key regulator of hook development and a direct target gene of the ethylene (ET)-activated transcription factors ETHYLENE INSENSITIVE3 (EIN3) and its close homolog EIN3-Like1. Previous research has shown that the phytohormones jasmonate (JA) and ET antagonistically regulate apical hook development, although the underlying molecular mechanism is largely unknown. Here, we report that JA represses hook formation by reducing HLS1 expression. Our results further reveal that the JA-activated transcription factor MYC2 represses EIN3 function to reduce HLS1 expression through at least the following two layers of regulation: (1) MYC2 binds to the promoter of an F-box gene, EIN3 BINDING F-BOX PROTEIN1, to induce its expression and thus promote EIN3 degradation; and (2) MYC2 physically interacts with EIN3 and inhibits its DNA binding activity. Collectively, our findings shed light on the molecular mechanism underlying the antagonism between JA and ET during apical hook development and provide insight into the coaction of multiple phytohormones in the regulation of plant growth and development. PMID:24668749

  16. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  17. PDGF activation in PGDS-positive arachnoid cells induces meningioma formation in mice promoting tumor progression in combination with Nf2 and Cdkn2ab loss.

    PubMed

    Peyre, Matthieu; Salaud, Céline; Clermont-Taranchon, Estelle; Niwa-Kawakita, Michiko; Goutagny, Stephane; Mawrin, Christian; Giovannini, Marco; Kalamarides, Michel

    2015-10-20

    The role of PDGF-B and its receptor in meningeal tumorigenesis is not clear. We investigated the role of PDGF-B in mouse meningioma development by generating autocrine stimulation of the arachnoid through the platelet-derived growth factor receptor (PDGFR) using the RCAStv-a system. To specifically target arachnoid cells, the cells of origin of meningioma, we generated the PGDStv-a mouse (Prostaglandin D synthase). Forced expression of PDGF-B in arachnoid cells in vivo induced the formation of Grade I meningiomas in 27% of mice by 8 months of age. In vitro, PDGF-B overexpression in PGDS-positive arachnoid cells lead to increased proliferation.We found a correlation of PDGFR-B expression and NF2 inactivation in a cohort of human meningiomas, and we showed that, in mice, Nf2 loss and PDGF over-expression in arachnoid cells induced meningioma malignant transformation, with 40% of Grade II meningiomas. In these mice, additional loss of Cdkn2ab resulted in a higher incidence of malignant meningiomas with 60% of Grade II and 30% of Grade III meningiomas. These data suggest that chronic autocrine PDGF signaling can promote proliferation of arachnoid cells and is potentially sufficient to induce meningiomagenesis. Loss of Nf2 and Cdkn2ab have synergistic effects with PDGF-B overexpression promoting meningioma malignant transformation. PMID:26418719

  18. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  19. Dok-7 promotes slow muscle integrity as well as neuromuscular junction formation in a zebrafish model of congenital myasthenic syndromes.

    PubMed

    Müller, Juliane S; Jepson, Catherine D; Laval, Steven H; Bushby, Kate; Straub, Volker; Lochmüller, Hanns

    2010-05-01

    The small signalling adaptor protein Dok-7 has recently been reported as an essential protein of the neuromuscular junction (NMJ). Mutations resulting in partial loss of Dok-7 activity cause a distinct limb-girdle subtype of the inherited NMJ disorder congenital myasthenic syndromes (CMSs), whereas complete loss of Dok-7 results in a lethal phenotype in both mice and humans. Here we describe the zebrafish orthologue of Dok-7 and study its in vivo function. Dok-7 deficiency leads to motility defects in zebrafish embryos and larvae. The relative importance of Dok-7 at different stages of NMJ development varies; it is crucial for the earliest step, the formation of acetylcholine receptor (AChR) clusters in the middle of the muscle fibre prior to motor neuron contact. At later stages, presence of Dok-7 is not absolutely essential, as focal and non-focal synapses do form when Dok-7 expression is downregulated. These contacts however are smaller than in the wild-type zebrafish, reminiscent of the neuromuscular endplate pathology seen in patients with DOK7 mutations. Intriguingly, we also observed changes in slow muscle fibre arrangement; previously, Dok-7 has not been linked to functions other than postsynaptic AChR clustering. Our results suggest an additional role of Dok-7 in muscle. This role seems to be independent of the muscle-specific tyrosine kinase MuSK, the known binding partner of Dok-7 at the NMJ. Our findings in the zebrafish model contribute to a better understanding of the signalling pathways at the NMJ and the pathomechanisms of DOK7 CMSs. PMID:20147321

  20. The Familial British Dementia Mutation Promotes Formation of Neurotoxic Cystine Cross-linked Amyloid Bri (ABri) Oligomers*

    PubMed Central

    Cantlon, Adam; Frigerio, Carlo Sala; Freir, Darragh B.; Boland, Barry; Jin, Ming; Walsh, Dominic M.

    2015-01-01

    Familial British dementia (FBD) is an inherited neurodegenerative disease believed to result from a mutation in the BRI2 gene. Post-translational processing of wild type BRI2 and FBD-BRI2 result in the production of a 23-residue long Bri peptide and a 34-amino acid long ABri peptide, respectively, and ABri is found deposited in the brains of individuals with FBD. Similarities in the neuropathology and clinical presentation shared by FBD and Alzheimer disease (AD) have led some to suggest that ABri and the AD-associated amyloid β-protein (Aβ) are molecular equivalents that trigger analogous pathogenic cascades. But the sequences and innate properties of ABri and Aβ are quite different, notably ABri contains two cysteine residues that can form disulfide bonds. Thus we sought to determine whether ABri was neurotoxic and if this activity was regulated by oxidation and/or aggregation. Crucially, the type of oxidative cross-linking dramatically influenced both ABri aggregation and toxicity. Cyclization of Bri and ABri resulted in production of biologically inert monomers that showed no propensity to assemble, whereas reduced ABri and reduced Bri aggregated forming thioflavin T-positive amyloid fibrils that lacked significant toxic activity. ABri was more prone to form inter-molecular disulfide bonds than Bri and the formation of covalently stabilized ABri oligomers was associated with toxicity. These results suggest that extension of the C-terminal of Bri causes a shift in the type of disulfide bonds formed and that structures built from covalently cross-linked oligomers can interact with neurons and compromise their function and viability. PMID:25957407

  1. Inducible STAT3 NH2 Terminal Mono-ubiquitination Promotes BRD4 Complex Formation to Regulate Apoptosis

    PubMed Central

    Ray, Sutapa; Zhao, Yingxin; Jamaluddin, Mohammad; Edeh, Chukwudi B.; Lee, Chang; Brasier, Allan R.

    2014-01-01

    Signal Transducers and Activator of Transcription-3 (STAT3) are latent transcription factors that are regulated by post-translational modifications (PTMs) in response to cellular activation by the IL-6 superfamily of cytokines to regulate cell cycle progression and/or apoptosis. Here we observe that STAT3 is inducibly mono-ubiquitinated and investigate its consequences. Using domain mapping and highly specific selected reaction monitoring- mass spectrometric assays, we identify lysine (K) 97 in its NH2-terminal domain as the major mono-ubiquitin conjugation site. We constructed a mono-ubiquitinated mimic consisting of a deubiquitinase-resistant monomeric ubiquitin fused to the NH2 terminus of STAT3 (ubiquitinated-STAT3 FP). In complex assays of ectopically expressed ubi-STAT3-FP, we observed enhanced complex formation with bromodomain -containing protein 4 (BRD4), a component of the activated positive transcriptional elongation factor (P-TEFb) complex. Chromatin immunoprecipitation experiments in STAT3+/− and STAT3−/− MEFs showed BRD4 recruitment to STAT3-dependent suppressor of cytokine signaling-3 gene (SOCS3). The effect of a selective small molecule inhibitor of BRD4, JQ1, to inhibit SOCS3 expression demonstrated the functional role of BRD4 for STAT3-dependent transcription. Additionally, ectopic ubiquitinated-STAT3 FP expression upregulated BCL2, BCL2L1, APEX1, SOD2, CCND1 and MYC expression indicating the role of ubiquitinated STAT3 in anti-apoptosis and cellular proliferation. Finally we observed that ubiquitinated-STAT3 FP suppressed TNFα-induced apoptotic cell death, indicating the functional importance of mono-ubiquitinated STAT3 in antiapoptotic gene expression. We conclude that STAT3 mono-ubiquitination is a key trigger in BRD4-dependent antiapoptotic and pro-proliferative gene expression programs. Thus, inhibiting the STAT3 mono-ubiquitination - BRD4 pathway may be a novel therapeutic target for the treatment of STAT3-dependent proliferative

  2. Inducible STAT3 NH2 terminal mono-ubiquitination promotes BRD4 complex formation to regulate apoptosis.

    PubMed

    Ray, Sutapa; Zhao, Yingxin; Jamaluddin, Mohammad; Edeh, Chukwudi B; Lee, Chang; Brasier, Allan R

    2014-07-01

    Signal Transducers and Activator of Transcription-3 (STAT3) are latent transcription factors that are regulated by post-translational modifications (PTMs) in response to cellular activation by the IL-6 superfamily of cytokines to regulate cell cycle progression and/or apoptosis. Here we observe that STAT3 is inducibly mono-ubiquitinated and investigate its consequences. Using domain mapping and highly specific selected reaction monitoring-mass spectrometric assays, we identify lysine (K) 97 in its NH2-terminal domain as the major mono-ubiquitin conjugation site. We constructed a mono-ubiquitinated mimic consisting of a deubiquitinase-resistant monomeric ubiquitin fused to the NH2 terminus of STAT3 (ubiquitinated-STAT3 FP). In complex assays of ectopically expressed ubi-STAT3-FP, we observed enhanced complex formation with bromodomain-containing protein 4 (BRD4), a component of the activated positive transcriptional elongation factor (P-TEFb) complex. Chromatin immunoprecipitation experiments in STAT3(+/-) and STAT3(-/-) MEFs showed BRD4 recruitment to STAT3-dependent suppressor of cytokine signaling-3 gene (SOCS3). The effect of a selective small molecule inhibitor of BRD4, JQ1, to inhibit SOCS3 expression demonstrated the functional role of BRD4 for STAT3-dependent transcription. Additionally, ectopic ubiquitinated-STAT3 FP expression upregulated BCL2, BCL2L1, APEX1, SOD2, CCND1 and MYC expression indicating the role of ubiquitinated STAT3 in anti-apoptosis and cellular proliferation. Finally we observed that ubiquitinated-STAT3 FP suppressed TNFα-induced apoptotic cell death, indicating the functional importance of mono-ubiquitinated STAT3 in antiapoptotic gene expression. We conclude that STAT3 mono-ubiquitination is a key trigger in BRD4-dependent antiapoptotic and pro-proliferative gene expression programs. Thus, inhibiting the STAT3 mono-ubiquitination-BRD4 pathway may be a novel therapeutic target for the treatment of STAT3-dependent proliferative diseases

  3. [Overexpression of miR-125b promotes apoptosis of macrophages].

    PubMed

    Yu, Guangyuan; Zhan, Xue; Zhang, Zhenzhen; Li, Yasha

    2016-07-01

    Objective To investigate the expressions of miR-125b and target gene Raf1 proto-oncogene serine/threonine protein kinase (RAF1) in peripheral blood mononuclear cells (PBMCs) of pediatric patients with pulmonary tuberculosis (PTB), and observe the regulation of miR-125b on macrophage apoptosis and activity. Methods PBMCs of patients with PTB and healthy children were collected and separated. Real-time fluorescence quantitative PCR was used to detect mRNA expression level of miR-125b and RAF1, and Western blotting was used to detect the protein level of RAF1. THP-1 macrophages were transfected into miR-125b mimic, negative control mimic (NC-mimic), miR-125b inhibitor and negative control inhibitor (NC-inhibitor), which were cultured for 48 hours. Western blotting was performed to observe the expression of RAF1 in THP-1 macrophages, annexin V-FITC/PI double staining combined with flow cytometry was used to test cell apoptosis, and CCK-8 assay was used to detect cell proliferation. Results The expression of miR-125b in PBMCs in pediatric patients with PTB was downregulated, and mRNA and protein levels of RAF1 were upregulated. When miR-125b was over-expressed in THP-1 macrophages, the expression of RAF1 was reduced to promote the apoptosis of macrophages and decrease cell activity; when the expression of miR-125b was inhibited in THP-1 macrophages, the expression of RAF1 was elevatedand the apoptosis of macrophages was inhibited, the cell activity was promoted. Conclusion In PBMCs of children with PTB, miR-125b level is low. Upregulation of miR-125b in THP-1 macrophages, the apoptosis of THP-1 macrophages is promoted and cell activity is inhibited. PMID:27363278

  4. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes.

    PubMed

    Kadam, Ulhas S; Schulz, Burkhard; Irudayaraj, Joseph

    2014-05-01

    Alternative splicing (AS) increases the size of the transcriptome and proteome to enhance the physiological capacity of cells. We demonstrate surface enhanced Raman spectroscopy (SERS) in combination with a DNA hybridization analytical platform to identify and quantify AS genes in plants. AS in AtDCL2 and AtPTB2 were investigated using non-fluorescent Raman probes using a 'sandwich assay'. Utilizing Raman probes conjugated to gold nanoparticles we demonstrate the recognition of RNA sequences specific to AtDCL2 and AtPTB2 splice junction variants with detection sensitivity of up to 0.1 fM. PMID:24631541

  5. The Transcriptional Modulator Interferon-Related Developmental Regulator 1 in Osteoblasts Suppresses Bone Formation and Promotes Bone Resorption.

    PubMed

    Iezaki, Takashi; Onishi, Yuki; Ozaki, Kakeru; Fukasawa, Kazuya; Takahata, Yoshifumi; Nakamura, Yukari; Fujikawa, Koichi; Takarada, Takeshi; Yoneda, Yukio; Yamashita, Yui; Shioi, Go; Hinoi, Eiichi

    2016-03-01

    Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Although interferon-related developmental regulator 1 (Ifrd1) has been identified as a transcriptional coactivator/repressor in various cells, little attention has been paid to its role in osteoblastogenesis and bone homeostasis thus far. Here, we show that Ifrd1 is a critical mediator of both the cell-autonomous regulation of osteoblastogenesis and osteoblast-dependent regulation of osteoclastogenesis. Osteoblast-specific deletion of murine Ifrd1 increased bone formation and decreased bone resorption, causing high bone mass. Ifrd1 deficiency enhanced osteoblast differentiation and maturation along with increased expression of Runx2 and osterix (Osx). Mechanistically, Ifrd1 deficiency increased the acetylation status of p65, a component of NF-κB, at residues K122 and K123 via the attenuation of the interaction between p65 and histone deacetylase (HDAC). This led to the nuclear export of p65 and a decrease in NF-κB-dependent Smad7 expression and the subsequent enhancement of Smad1/Smad5/Smad8-dependent transcription. Moreover, a high bone mass phenotype in the osteoblast-specific deletion of Ifrd1 was markedly rescued by the introduction of one Osx-floxed allele but not of Runx2-floxed allele. Coculture experiments revealed that Ifrd1-deficient osteoblasts have a higher osteoprotegerin (OPG) expression and a lower ability to support osteoclastogenesis. Ifrd1 deficiency attenuated the interaction between β-catenin and HDAC, subsequently increasing the acetylation of β-catenin at K49, leading to its nuclear accumulation and the activation of the β-catenin-dependent transcription of OPG. Collectively, the expression of Ifrd1 in osteoblasts repressed osteoblastogenesis and activated osteoclastogenesis through modulating the NF-κB/Smad/Osx and β-catenin/OPG pathways, respectively. These findings suggest that Ifrd1 has a pivotal role in bone

  6. Transglutaminase 2 Promotes PDGF-Mediated Activation of PDGFR/Akt1 and β-catenin Signaling in Vascular Smooth Muscle Cells and Supports Neointima Formation

    PubMed Central

    Nurminskaya, Maria; Beazley, Kelly E.; Smith, Elizabeth P.; Belkin, Alexey M.

    2015-01-01

    Background Phenotypic switch of vascular smooth muscle cells (VSMCs) accompanies neointima formation and associates with vascular diseases. Platelet derived growth factor (PDGF)-induced activation of PDGFR/Akt1 and β-catenin signaling pathways in VSMCs has been implicated in vessel occlusion. Transglutaminase 2 (TG2) regulates these pathways and its levels are increased in the neointima. Objective To evaluate the role of TG2 in PDGF/β-catenin signaling cross-talk and assess its contribution to neointima. Methods Aortic VSMCs from wild-type and TG2 knockout mice were tested in vitro for levels of VSMC markers, proliferation, migration, and PDGF-induced activation of PDGFR/Akt1 and β-catenin pathways. Neointima in these mice was studied ex vivo in coronary vessels using heart slice model and in vivo using carotid artery ligation (CAL) model. Results Genetic deletion of TG2 attenuated the PDGF-induced phenotypic switch of aortic VSMCs, reduced their proliferation and migration rates, and inhibited PDGF-induced activation of PDGFR/Akt1 and β-catenin pathways in both ex vivo and in vivo neointima models. Importantly, genetic deletion of TG2 also markedly attenuated vessel occlusion. Conclusions TG2 promotes neointima formation by mediating the PDGF-induced activation of the PDGFR/Akt1 and β-catenin pathways in VSMCs. This study identifies TG2 as a potential therapeutic target for blocking neointima in blood vessels. PMID:25612735

  7. ROLE OF AMPK THOUGHOUT MEIOTIC MATURATION IN THE MOUSE OOCYTE: EVIDENCE FOR PROMOTION OF POLAR BODY FORMATION AND SUPPRESSION OF PREMATURE ACTIVATION

    PubMed Central

    Downs, Stephen M.; Ya, Ru; Davis, Christopher

    2014-01-01

    This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK-activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK-activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C-induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles and midbody during maturation. Immunolocalization of the α1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle, but not in the spindle poles or midbody; α2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation. PMID:20830737

  8. Absence of Elovl6 attenuates steatohepatitis but promotes gallstone formation in a lithogenic diet-fed Ldlr−/− mouse model

    PubMed Central

    Kuba, Motoko; Matsuzaka, Takashi; Matsumori, Rie; Saito, Ryo; Kaga, Naoko; Taka, Hikari; Ikehata, Kei; Okada, Naduki; Kikuchi, Takuya; Ohno, Hiroshi; Han, Song-iee; Takeuchi, Yoshinori; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Sone, Hirohito; Yahagi, Naoya; Arakawa, Yoji; Fujimura, Tsutomu; Nakagawa, Yoshimi; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-01-01

    Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that can develop into liver cirrhosis and cancer. Elongation of very long chain fatty acids (ELOVL) family member 6 (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids (FAs). We have previously shown that Elovl6 plays an important role in the development of hepatic insulin resistance and NASH by modifying FA composition. Recent studies have linked altered hepatic cholesterol homeostasis and cholesterol accumulation to the pathogenesis of NASH. In the present study, we further investigated the role of Elovl6 in the progression of lithogenic diet (LD)-induced steatohepatitis. We showed that the absence of Elovl6 suppresses hepatic lipid accumulation, plasma total cholesterol and total bile acid (BA) levels in LDL receptor-deficient (Ldlr−/−) mice challenged with a LD. The absence of Elovl6 also decreases hepatic inflammation, oxidative stress and liver injury, but increases the formation of cholesterol crystals in the less dilated gallbladder. These findings suggest that Elovl6-mediated changes in hepatic FA composition, especially oleic acid (C18:1n-9), control handling of hepatic cholesterol and BA, which protects against hepatotoxicity and steatohepatitis, but promotes gallstone formation in LD-fed Ldlr−/− mice. PMID:26619823

  9. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination.

    PubMed

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C

    2014-12-16

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  10. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    PubMed Central

    Cheng, Yuanyuan; Xia, Zhengyuan; Han, Yifan; Rong, Jianhui

    2016-01-01

    The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation. PMID:27034732

  11. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation.

    PubMed

    Cheng, Yuanyuan; Xia, Zhengyuan; Han, Yifan; Rong, Jianhui

    2016-01-01

    The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation. PMID:27034732

  12. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo.

    PubMed

    Yang, Hong; Guan, Liuyuan; Li, Shun; Jiang, Ying; Xiong, Niya; Li, Li; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-03-29

    Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activation-induced PI3K/Akt/mTOR signaling promotes motility, invadopodia formation and metastasis of breast carcinoma MDA-MB-231 cells. Application of LSS (1.8 and 4.0 dynes/cm2) to MDA-MB-231 cells significantly increased the cell motility, invadopodia formation, MT1-MMP expression, ECM degradation, and also induced a sustained activation of Cav-1 and PI3K/Akt/mTOR signaling cascades. Methyl-β-cyclodextrin-caused caveolae destruction markedly decreased LSS-induced activation of both Cav-1 and PI3K/Akt/mTOR, leading to suppress MT1-MMP expression, inhibit invadopodia formation and ECM degradation, suggesting that caveolae integrity also involved in metastasis. Immunocytochemical assay showed that LSS induces the Cav-1 clustering in lipid rafts and co-localization of Cav-1 and MT1-MMP on invadopodia. Immunofluorescence confocal analysis demonstrated that Cav-1 activation were required for the acquisition of a polarized phenotype in MDA-MB-231 cells. Finally, Cav-1 knockdown significantly suppressed tumor colonization in the lungs and distant metastases in animal models. Our findings highlight the importance of Cav-1 in hematogenous metastasis, and provide new insights into the underlying mechanisms of mechanotransduction induced by LSS. PMID:26919102

  13. Soft agar colony formation of bladder cells during carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine and application to detection of bladder cancer promoters.

    PubMed

    Hashimura, T; Kanamaru, H; Yoshida, O

    1987-05-01

    N-Butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to male Fischer 344 rats at a dose of 0.05% in drinking water for 2, 4, 6 and 12 weeks, and double soft agar colony formation of the uroepithelial cells was determined periodically, during and after this administration. In the group administered BBN for 2 weeks, no significant colony growth was observed until week 8. In the group given BBN for 4 weeks, colony growth was observed at week 4 and the numbers of colonies remained constant until week 8. In the group given BBN for 6 weeks, significant colony growth was observed at weeks 6 and 8. In the group on BBN for 12 weeks, colonies grew from week 4 and significant numbers of colonies were observed from week 6, increasing up to week 10. Colony formation preceded papilloma development in the rat bladder, and was dependent on the duration of BBN administration. The effect of amino acids and sodium saccharin on colony formation was also evaluated. The rats were given 0.05% BBN for 3 weeks, followed immediately by the administration for 9 weeks of 2% L-tryptophan, 1% D-tryptophan, 2% L-leucine, 2% D-leucine, 2% DL-leucine, 2% L-isoleucine, 2% DL-isoleucine or 5% sodium saccharin in the diet. At week 12, the numbers of colonies were significantly higher in the groups given sodium saccharin, L-leucine, DL-leucine, L-isoleucine, DL-isoleucine and D-tryptophan. This method provides a potentially useful approach toward analyzing the early events in bladder carcinogenesis and may be applicable to detect new bladder carcinogens and promoters. PMID:3112059

  14. Polysaccharides and Proteins Added to Flowing Drinking Water at Microgram-per-Liter Levels Promote the Formation of Biofilms Predominated by Bacteroidetes and Proteobacteria

    PubMed Central

    Sack, Eveline L. W.; van der Kooij, Dick

    2014-01-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might

  15. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo

    PubMed Central

    Jiang, Ying; Xiong, Niya; Li, Li; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-01-01

    Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activation-induced PI3K/Akt/mTOR signaling promotes motility, invadopodia formation and metastasis of breast carcinoma MDA-MB-231 cells. Application of LSS (1.8 and 4.0 dynes/cm2) to MDA-MB-231 cells significantly increased the cell motility, invadopodia formation, MT1-MMP expression, ECM degradation, and also induced a sustained activation of Cav-1 and PI3K/Akt/mTOR signaling cascades. Methyl-β-cyclodextrin-caused caveolae destruction markedly decreased LSS-induced activation of both Cav-1 and PI3K/Akt/mTOR, leading to suppress MT1-MMP expression, inhibit invadopodia formation and ECM degradation, suggesting that caveolae integrity also involved in metastasis. Immunocytochemical assay showed that LSS induces the Cav-1 clustering in lipid rafts and co-localization of Cav-1 and MT1-MMP on invadopodia. Immunofluorescence confocal analysis demonstrated that Cav-1 activation were required for the acquisition of a polarized phenotype in MDA-MB-231 cells. Finally, Cav-1 knockdown significantly suppressed tumor colonization in the lungs and distant metastases in animal models. Our findings highlight the importance of Cav-1 in hematogenous metastasis, and provide new insights into the underlying mechanisms of mechanotransduction induced by LSS. PMID:26919102

  16. The use of antibodies to the polypyrimidine tract binding protein (PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points.

    PubMed Central

    Grossman, J S; Meyer, M I; Wang, Y C; Mulligan, G J; Kobayashi, R; Helfman, D M

    1998-01-01

    We are using the rat beta-tropomyosin (beta-TM) gene as a model system to study the mechanism of alternative splicing. Previous studies demonstrated that the use of the muscle-specific exon is associated with the use of distant branch points located 147-153 nt upstream of the 3' splice site. In addition, at least one protein, the polypyrimidine tract binding protein (PTB), specifically interacts with critical cis-acting sequences upstream of exon 7 that are involved in blocking the use of this alternative exon in nonmuscle cells. In order to further study the role of PTB, monoclonal antibodies to PTB were prepared. Anti-PTB antibodies did not inhibit the binding of PTB to RNA because they were able to supershift RNA-PTB complexes. To determine if additional proteins interact with sequences within the pre-mRNA, 35S-met-labeled nuclear extracts from HeLa cells were mixed with RNAs and the RNA-protein complexes were recovered by immunoprecipitation using antibodies to PTB. When RNAs containing intron 6 were added to an 35S-met-labeled nuclear extract, precipitation with PTB antibodies showed a novel set of proteins. By contrast, addition of RNAs containing introns 5 or 7 gave the same results as no RNA, indicating that these RNAs are unable to form stable complexes with PTB. These results are in agreement with our previous studies demonstrating that PTB interacts with sequences within intron 6, but not with sequences within introns 5 and 7. When 35S-met-labeled HeLa nuclear extracts were mixed with biotinylated RNA containing intron 6 and the RNA-protein complexes were recovered using streptavidin-agarose beads, an identical pattern of proteins was observed when compared with the immunoprecipitation assay. Analysis of the proteins that assembled on introns 5, 6, or 7 using biotinylated RNA revealed a unique set of proteins that interact with each of these sequences. The composition of proteins interacting with sequences associated with the use of the 3' splice site of

  17. Influence of Blend Ratio and Processing Additive on Free Carrier Yield and Mobility in PTB7:PC71BM Photovoltaic Solar Cells

    PubMed Central

    2016-01-01

    Charge separation and extraction dynamics were investigated in high-performance bulk heterojunction solar cells made from the polymer PTB7 and the soluble fullerene PC71BM on a broad time scale from subpicosecond to microseconds using ultrafast optical probing of carrier drift and the integral-mode photocurrent measurements. We show that the short circuit current is determined by the separation of charge pairs into free carriers, which is strongly influenced by blend composition. This separation is found to be efficient in fullerene-rich blends where a high electron mobility of >0.1 cm2 V–1 s–1 is observed in the first 10 ps after excitation. Morphology optimization using the solvent additive 1,8-diiodooctane (DIO) doubles the charge pair separation efficiency and the short-circuit current. Carrier extraction at low internal electric field is slightly faster from the cells prepared with DIO, which can reduce recombination losses and enhance a fill factor. PMID:27293495

  18. Phosphorylation by SR kinases regulates the binding of PTB-associated splicing factor (PSF) to the pre-mRNA polypyrimidine tract

    PubMed Central

    Huang, Ching-Jung; Tang, Zhaohua; Lin, Ren-Jang; Tucker, Philip W.

    2007-01-01

    PSF (PTB-associated splicing factor) is a multi-functional protein that participates in transcription and RNA processing. While phosphorylation of PSF has been shown to be important for some functions, the sites and the kinases involved are not well understood. Although PSF does not contain a typical RS domain, we report here that PSF is phosphorylated in vivo to generate an epitope(s) that can be recognized by a monoclonal antibody specific for phosphorylated RS motifs within SR proteins. PSF can be phosphorylated by human and yeast SR kinases in vivo and in vitro at two isolated RS motifs within its N terminus. A functional consequence of SR phosphorylation of PSF is to inhibit its binding to the 3’ polypyrimidine tract of pre-mRNA. These results indicate that PSF is a substrate of SR kinases whose phosphorylation regulates its RNA binding capacity and ultimate biological function. PMID:17188683

  19. Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Promotes Seeding-Capable Oligomer Formation and Cell-to-Cell Transfer of α-Synuclein

    PubMed Central

    Bae, Eun-Jin; Ho, Dong-Hwan; Park, Eunbi; Jung, Jin Woo; Cho, Kyungcho; Hong, Ji Hye; Lee, He-Jin; Kim, Kwang Pyo

    2013-01-01

    Abstract Aims: Abnormal accumulation of α-synuclein aggregates is one of the key pathological features of many neurodegenerative movement disorders and dementias. These pathological aggregates propagate into larger brain regions as the disease progresses, with the associated clinical symptoms becoming increasingly severe and complex. However, the factors that induce α-synuclein aggregation and spreading of the aggregates remain elusive. Herein, we have evaluated the effects of the major lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) on α-synuclein oligomerization and cell-to-cell transmission of this protein. Results: Incubation with HNE promoted the oligomerization of recombinant human α-synuclein via adduct formation at the lysine and histidine residues. HNE-induced α-synuclein oligomers evidence a little β-sheet structure and are distinct from amyloid fibrils at both conformation and ultrastructure levels. Nevertheless, the HNE-induced oligomers are capable of seeding the amyloidogenesis of monomeric α-synuclein under in vitro conditions. When neuronal cells were treated with HNE, both the translocation of α-synuclein into vesicles and the release of this protein from cells were increased. Neuronal cells can internalize HNE-modified α-synuclein oligomers, and HNE treatment increased the cell-to-cell transfer of α-synuclein proteins. Innovation and Conclusion: These results indicate that HNE induces the oligomerization of α-synuclein through covalent modification and promotes the cell-to-cell transfer of seeding-capable oligomers, thereby contributing to both the initiation and spread of α-synuclein aggregates. Antioxid. Redox Signal. 18, 770–783. PMID:22867050

  20. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development1[OPEN

    PubMed Central

    Li, Xinxin; Zhao, Jing; Tan, Zhiyuan; Liao, Hong

    2015-01-01

    Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean. PMID:26432877

  1. CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages.

    PubMed

    De, Ishani; Steffen, Megan D; Clark, Paul A; Patros, Clayton J; Sokn, Emily; Bishop, Stephanie M; Litscher, Suzanne; Maklakova, Vilena I; Kuo, John S; Rodriguez, Fausto J; Collier, Lara S

    2016-05-01

    Current therapies for high-grade gliomas extend survival only modestly. The glioma microenvironment, including glioma-associated microglia/macrophages (GAM), is a potential therapeutic target. The microglia/macrophage cytokine CSF1 and its receptor CSF1R are overexpressed in human high-grade gliomas. To determine whether the other known CSF1R ligand IL34 is expressed in gliomas, we examined expression array data of human high-grade gliomas and performed RT-PCR on glioblastoma sphere-forming cell lines (GSC). Expression microarray analyses indicated that CSF1, but not IL34, is frequently overexpressed in human tumors. We found that while GSCs did express CSF1, most GSC lines did not express detectable levels of IL34 mRNA. We therefore studied the impact of modulating CSF1 levels on gliomagenesis in the context of the GFAP-V12Ha-ras-IRESLacZ (Ras*) model. Csf1 deficiency deterred glioma formation in the Ras* model, whereas CSF1 transgenic overexpression decreased the survival of Ras* mice and promoted the formation of high-grade gliomas. Conversely, CSF1 overexpression increased GAM density, but did not impact GAM polarization state. Regardless of CSF1 expression status, most GAMs were negative for the M2 polarization markers ARG1 and CD206; when present, ARG1(+) and CD206(+) cells were found in regions of peripheral immune cell invasion. Therefore, our findings indicate that CSF1 signaling is oncogenic during gliomagenesis through a mechanism distinct from modulating GAM polarization status. Cancer Res; 76(9); 2552-60. ©2016 AACR. PMID:27013192

  2. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels.

    PubMed

    Sheng, Lifu; Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2015-01-28

    Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders. PMID:25632147

  3. Novel effect of paeonol on the formation of foam cells: promotion of LXRα-ABCA1-dependent cholesterol efflux in macrophages.

    PubMed

    Zhao, Jin-Feng; Jim Leu, Shr-Jeng; Shyue, Song-Kun; Su, Kuo-Hui; Wei, Jeng; Lee, Tzong-Shyuan

    2013-01-01

    Paeonol, a phenolic component purified from Paeonia suffruticosa (Cortex Moutan), is used in traditional Chinese medicine to treat inflammatory diseases. However, little is known about the effect of paeonol on cholesterol metabolism. We investigated the efficacy of paeonol on cholesterol metabolism and the underlying mechanism in macrophages and apolipoprotein E deficient (apoE(-/-)) mice. Treatment with paeonol markedly attenuated cholesterol accumulation induced by oxidized LDL in macrophages, which was due to increased cholesterol efflux. Additionally, paeonol enhanced the mRNA and protein expression of ATP-binding membrane cassette transport protein A1 (ABCA1) but did not alter the protein level of ABCG1 or other scavenger receptors. Inhibition of ABCA1 activity with a pharmacological inhibitor, neutralizing antibody or small interfering RNA (siRNA), negated the effects of paeonol on cholesterol efflux and cholesterol accumulation. Furthermore, paeonol induced the nuclear translocation of liver X receptor α (LXRα) by increasing its activity. siRNA knockdown of LXRα abolished the paeonol-induced upregulation of ABCA1, promotion of cholesterol efflux and suppression of cholesterol accumulation. Moreover, atherosclerotic lesions, hyperlipidemia and systemic inflammation were reduced and the protein expression of ABCA1 was increased in aortas of paeonol-treated apoE(-/-) mice. Paeonol may alleviate the formation of foam cells by enhancing LXRα-ABCA1-dependent cholesterol efflux. PMID:24117070

  4. VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression.

    PubMed

    Liu, Zhen; Kobayashi, Kazuki; van Dinther, Maarten; van Heiningen, Sandra H; Valdimarsdottir, Gudrun; van Laar, Theo; Scharpfenecker, Marion; Löwik, Clemens W G M; Goumans, Marie-José; Ten Dijke, Peter; Pardali, Evangelia

    2009-09-15

    Vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGFbeta) are potent regulators of angiogenesis. How VEGF and TGFbeta signaling pathways crosstalk is not well understood. Therefore, we analyzed the effects of the TGFbeta type-I-receptor inhibitors (SB-431542 and LY-2157299) and VEGF on endothelial cell (EC) function and angiogenesis. We show that SB-431542 dramatically enhances VEGF-induced formation of EC sheets from fetal mouse metatarsals. Sub-optimal doses of VEGF and SB-431542 synergistically induced EC migration and sprouting of EC spheroids, whereas overexpression of a constitutively active form of TGFbeta type-I receptor had opposite effects. Using quantitative PCR, we demonstrated that VEGF and SB-431542 synergistically upregulated the mRNA expression of genes involved in angiogenesis, including the integrins alpha5 and beta3. Specific downregulation of alpha5-integrin expression or functional blocking of alpha5 integrin with a specific neutralizing antibody inhibited the cooperative effect of VEGF and SB-431542 on EC sprouting. In vivo, LY-2157299 induced angiogenesis and enhanced VEGF- and basic-fibroblast-growth-factor-induced angiogenesis in a Matrigel-plug assay, whereas adding an alpha5-integrin-neutralizing antibody to the Matrigel selectively inhibited this enhanced response. Thus, induction of alpha5-integrin expression is a key determinant by which inhibitors of TGFbeta type-I receptor kinase and VEGF synergistically promote angiogenesis. PMID:19706683

  5. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor.

    PubMed

    Marchesin, Valentina; Montagnac, Guillaume; Chavrier, Philippe

    2015-01-01

    Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration. PMID:25799492

  6. A Heterodimeric Cytokine, Consisting of IL-17A and IL-17F, Promotes Migration and Capillary-Like Tube Formation of Human Vascular Endothelial Cells.

    PubMed

    Numasaki, Muneo; Tsukamoto, Hiroki; Tomioka, Yoshihisa; Nishioka, Yasuhiko; Ohrui, Takashi

    2016-01-01

    The interleukin (IL)-17 family, consisting of six homodimeric cytokines IL-17A, IL-17B, IL-17C, IL-17D, IL-17E/IL-25, and IL-17F, mediates a variety of biological activities including regulation of chemokine secretion and angiogenesis. Among the IL-17 family members, IL-17A and IL-17E/IL-25 are angiogenesis stimulators, while IL-17B and IL-17F are angiogenesis inhibitors. Recently, IL-17A/F heterodimer, comprised of the IL-17A and IL-17F subunits, was found as another member of the IL-17 cytokine family. However, to date, it has been unknown whether IL-17A/F has biological actions to affect the angiogenesis-related vascular endothelial functions. Therefore, in this study, we investigated the biological effects of IL-17A/F on the growth, migration and capillary-like tube formation of vascular endothelial cells. Recombinant IL-17A/F protein had no direct effects on the growth of human dermal microvascular endothelial cells (HMVECs), whereas, after 4-hour incubation in a modified Boyden Chemotaxicell chamber, IL-17A/F significantly induced migration of HMVECs over a wide range of doses via the phosphatidylinositol-3 kinase (PI3K) signaling pathway. We further investigated the biological effect of IL-17A/F on capillary-like tube formation using a co-culture system of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs), which mimicked the in vivo microenvironment. In this co-culture system, IL-17A/F significantly promoted capillary-like endothelial tube formation in a dose-dependent fashion via the PI3K and extracellular signal-regulated kinase (ERK) signaling pathways. Additionally, IL-17A/F up-regulated secretion of angiogenic growth factors such as IL-8 and growth-related oncogene (GRO)-α by HDFs. These findings identify a novel biological function for IL-17A/F as an indirect angiogenic agent. PMID:27594509

  7. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.

    PubMed

    Yan, Haoran; Liu, Xia; Zhu, Minghua; Luo, Guilin; Sun, Tao; Peng, Qiang; Zeng, Yi; Chen, Taijun; Wang, Yingying; Liu, Keliang; Feng, Bo; Weng, Jie; Wang, Jianxin

    2016-01-01

    In this study, a multilayer coating technology would be adopted to prepare a porous composite scaffold and the growth factor release and ultrasound techniques were introduced into bone tissue engineering to finally solve the problems of vascularization and bone formation in the scaffold whilst the designed multilayer composite with gradient degradation characteristics in the space was used to match the new bone growth process better. The results of animal experiments showed that the use of low intensity pulsed ultrasound (LIPUS) combined with growth factors demonstrated excellent capabilities and advantages in both vascularization and new bone formation in bone tissue engineering. The degradation of the used scaffold materials could match new bone formation very well. The results also showed that only RGD-promoted cell adhesion was insufficient to satisfy the needs of new bone formation while growth factors and LIPUS stimulation were the key factors in new bone formation. PMID:26282063

  8. Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions.

    PubMed

    Grainger, D J; Mosedale, D E; Metcalfe, J C; Böttinger, E P

    2000-07-01

    Transforming growth factor-(beta) (TGF(beta)) has a wide range of activities on vascular cells and inflammatory cells, suggesting it may have different functions during various stages of atherogenesis. We report that mice heterozygous for the deletion of the tgfb1 gene (tgfb1(+/-) mice) have reduced levels of TGF(beta)1 in the artery wall until at least 8 weeks of age. On a normal mouse chow diet, the vascular endothelium of tgfb1(+/-) mice is indistinguishable from wild-type littermates, assessed by morphology and intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression. In contrast, levels of the smooth muscle isoforms of actin and myosin in medial smooth muscle cells of tgfb1(+/-) mice are significantly reduced. Following feeding a cholesterol-enriched diet for 12 weeks, high levels of ICAM-1 and VCAM-1 were detected in the vascular endothelial cells of tgfb1(+/-) mice, but not wild-type mice. Furthermore, marked deposition of lipid into the artery wall was only observed in the tgfb1(+/-) mice on the cholesterol-enriched diet. These vascular lipid lesions were accompanied by local invasion of macrophages. We conclude that deletion of a single allele of the tgfb1 gene results in a reduced level of TGFbeta1 antigen in the aorta together with reduced smooth muscle cell differentiation, whereas the addition of a high fat dietary challenge is required to activate the vascular endothelium and to promote the formation of fatty streaks resembling early atherosclerosis in humans. PMID:10852815

  9. The formation and characteristics of the i-motif structure within the promoter of the c-myb proto-oncogene.

    PubMed

    Li, Huihui; Hai, Jinhui; Zhou, Jiang; Yuan, Gu

    2016-09-01

    C-myb proto-oncogene is a potential therapeutic target for some human solid tumors and leukemias. A long cytosine-rich sequence, which locates the downstream of the transcription initiation site, is demonstrated to fold into an intramolecular i-motif DNA using electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. Effects of factors, including the pH value, the number of C:C(+) dimers, the concentration of buffer, the molecular crowding condition, and the coexistence of the complementary DNA, on the formation and the structural stability of the i-motif DNA are systematically studied. We have demonstrated that the i-motif folding in the c-myb promoter could be accelerated upon synergistic physiological stimuli including intracellular molecular crowding and low pH values, as well as the large number of the i-motif C:C(+) dimers. Meanwhile, various inputs, such as acids/bases and metal ions, have exhibited their abilities in controlling the conformational switch of the c-myb GC-rich DNA. Acidic pH values and the presence of K(+) ions can induce the dissociation of the double helix. Our present strategy can greatly extend the potential usages of i-motif DNA molecules with specific sequences as conformational switch-controlled devices. Moreover, this work demonstrates the superiority of CD spectroscopy associated with ESI-MS as a rapid, more cost-effective and sensitive structural change responsive method in the research of DNA conformational switching. PMID:27487467

  10. Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules.

    PubMed

    Kato, Kohtaro; Morita, Ikuo

    2011-08-01

    Acidosis promoted tartaric acid-resistant acid phosphatase-positive multinuclear cell (TRAP+MNC) or osteoclast formation. Large osteoclast or TRAP+LMNC formation was observed far more in an acidosis environment than in a physiologically neutral environment. One of the major action points of acidosis was determined to be located in the last phase of preosteoclast differentiation using a co-culture system and a soluble RANKL-dependent bone marrow cell culture system. On-going osteoclast formation in an acidosis environment markedly deteriorated when the medium was replaced with physiologically neutral medium within the first 6h; however, bone marrow cells previously stimulated in an acidosis environment for 9h differentiated into TRAP+LMNC in pH 7.4 medium. Messenger RNA (mRNA) expression levels of DC-STAMP, a key molecule in cell fusion, and NFATc1 did not increase in the acidosis environment compared with those under physiologically neutral conditions. Ruthenium red, a general TRP antagonist, deteriorated acidosis-promoted TRAP+LMNC formation. 4-Alpha-PDD, a TRPV4-specific agonist, added in the last 21 h of preosteoclast differentiation, potentiated TRAP+LMNC formation in a mild acidosis environment, showing synergism between TRPV4 activation and acidosis. RN1734, a TRPV4-specific antagonist, partly inhibited acidosis-promoted TRAP+LMNC formation. We thus narrowed down the major action points of acidosis in osteoclast formation and elucidated the characteristics of this system in detail. Our results show that acidosis effectively uses TRPV4 to drive large-scale cell fusion and also utilizes systems independently of TRPV4. PMID:21575626

  11. Promotion of the halide effect in the formation of shaped metal nanocrystals via a hybrid cationic, polymeric stabilizer: Octahedra, cubes, and anisotropic growth

    NASA Astrophysics Data System (ADS)

    Sneed, Brian T.; Golden, Matthew C.; Liu, Yejing; Lee, Hiang K.; Andoni, Ilektra; Young, Allison P.; McMahon, Greg; Erdman, Natasha; Shibata, Masateru; Ling, Xing Yi; Tsung, Chia-Kuang

    2016-06-01

    To promote the effect of halide ions (Cl-, Br-, and I-) in facet-selective growth of {111} and {100} of shaped metal nanocrystals, we utilize PDADMAC, a hybrid cationic, polymeric stabilizer. SERS and synthesis experiments provide evidence supporting that the higher amount of PDADMA+ at surfaces promotes the local adsorption of halides, allowing the creation of Pd cubes, octahedra, and cuboctopods.

  12. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    SciTech Connect

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the FAK-ERK1

  13. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells with Nanoscale Structures

    SciTech Connect

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; Rondinone, Adam J.; Joshi, Pooran C.; Geohegan, David B.; Xiao, Kai

    2015-01-01

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.

  14. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  15. Formation of pseudotachylitic breccias in the central uplifts of very large impact structures: Scaling the melt formation

    NASA Astrophysics Data System (ADS)

    Mohr-Westheide, Tanja; Reimold, Wolf Uwe

    2011-04-01

    The processes leading to formation of sometimes massive occurrences of pseudotachylitic breccia (PTB) in impact structures have been strongly debated for decades. Variably an origin of these pseudotachylite (friction melt)-like breccias by (1) shearing (friction melting); (2) so-called shock compression melting (with or without a shear component) immediately after shock propagation through the target; (3) decompression melting related to rapid uplift of crustal material due to central uplift formation; (4) combinations of these processes; or (5) intrusion of allochthonous impact melt from a coherent melt body has been advocated. Our investigations of these enigmatic breccias involve detailed multidisciplinary analysis of millimeter- to meter-sized occurrences from the type location, the Vredefort Dome. This complex Archean to early Proterozoic terrane constitutes the central uplift of the originally >250 km diameter Vredefort impact structure in South Africa. Previously, results of microstructural and microchemical investigations have indicated that formation of very small veinlets involved local melting, likely during the early shock compression phase. However, for larger veins and networks it was so far not possible to isolate a specific melt-forming mechanism. Macroscopic to microscopic evidence for friction melting is very limited, and so far chemical results have not directly supported PTB generation by intrusion of impact melt. On the other hand, evidence for filling of dilational sites with melt is abundant. Herein, we present a new approach to the mysterium of PTB formation based on volumetric melt breccia calculations. The foundation for this is the detailed analysis of a 1.5 × 3 × 0.04 m polished granite slab from a dimension-stone quarry in the core of the Vredefort Dome. This slab contains a 37.5 dm3 breccia zone. The pure melt volume in 0.1 m3 PTB-bearing granitic target rock outside of the several-decimeter-wide breccia zone in the granite slab was

  16. Health promotion in Brazil.

    PubMed

    Buss, Paulo Marchiori; de Carvalho, Antonio Ivo

    2007-01-01

    The evolution of health promotion within the Brazilian health system is examined, including an assessment of the intersectoral and development policies that have influenced the process. Particular attention is paid to the legal characteristics of the Unified Health System. Human resources formation and research initiatives in health promotion are outlined, with a summary of the obstacles that need to be overcome in order to ensure the effective implementation of health promotion in the future. Up to the end of the 20th Century health promotion was not used as a term in the Brazilian public heath context. Health promoting activities were concentrated in the area of health education, although targeting the social determinants of health and the principle of intersectoral action were part of the rhetoric. The situation has changed during the last decade, with the publication of a national policy of health promotion, issued by the Ministry of Health and jointly implemented with the States and Municipals Health Secretaries. More recently there has been a re-emergence of the discourse on the social determinants of health and the formation of intersectoral public policies as the basis of a comprehensive health promotion. Health promotion infrastructure, particularly around human resources and financing, requires strengthening in order to ensure capacity and sustainability in health promotion practice. PMID:18372870

  17. Identification of the principal promoter sequence of the c-H-ras transforming oncogene: deletion analysis of the 5'-flanking region by focus formation assay.

    PubMed Central

    Honkawa, H; Masahashi, W; Hashimoto, S; Hashimoto-Gotoh, T

    1987-01-01

    A number of deletion mutants were isolated, including 5', 3', and internal deletions in the 5'-flanking region of the human cellular oncogene related to the Harvey sarcoma virus (c-H-ras), and their transforming activities were examined in NIH 3T3 cells. DNA sequences which could not be detected without losing transforming activity were localized to a relatively short stretch upstream of the region which showed homology to the 5'-flanking region of v-H-ras oncogene. S1 nuclease analysis indicated that there were two clusters of mRNA start sites at positions that were about 1,371 and 1,298 base pairs upstream of the first coding ATG. The minimum region required for promoter function was estimated to be a 51-base-pair-long (or less) DNA segment. The promoter was GC rich (78%) and did not contain the consensus sequences that are usually observed in PolII-directed promoters but contained a GC box within which one of the mRNA start sites was included. In addition, two sets of positive and negative elements seemed to be located between the promoter and the protein-coding region, which appeared to influence positively and negatively, respectively, the efficiency of transformation with the c-H-ras oncogene. Images PMID:3670300

  18. Visible-Light-Promoted Dual C-C Bond Formations of Alkynoates via a Domino Radical Addition/Cyclization Reaction: A Synthesis of Coumarins.

    PubMed

    Feng, Shangbiao; Xie, Xingang; Zhang, Weiwei; Liu, Lin; Zhong, Zhuliang; Xu, Dengyu; She, Xuegong

    2016-08-01

    A visible-light-promoted, mild, and direct difunctionalization of alkynoates has been accomplished. This procedure provides a new strategy toward synthesis of the coumarin core structure by photoredox-mediated oxidation to generate the α-oxo radical, which supervenes a domino radical addition/cyclization reaction in moderate to good yields with high regioselectivity at ambient temperature. PMID:27443889

  19. Interleukin-1 Receptor-associated Kinase-4 (IRAK4) Promotes Inflammatory Osteolysis by Activating Osteoclasts and Inhibiting Formation of Foreign Body Giant Cells*

    PubMed Central

    Katsuyama, Eri; Miyamoto, Hiroya; Kobayashi, Tami; Sato, Yuiko; Hao, Wu; Kanagawa, Hiroya; Fujie, Atsuhiro; Tando, Toshimi; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Niki, Yasuo; Morioka, Hideo; Matsumoto, Morio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Formation of foreign body giant cells (FBGCs) occurs following implantation of medical devices such as artificial joints and is implicated in implant failure associated with inflammation or microbial infection. Two major macrophage subpopulations, M1 and M2, play different roles in inflammation and wound healing, respectively. Therefore, M1/M2 polarization is crucial for the development of various inflammation-related diseases. Here, we show that FBGCs do not resorb bone but rather express M2 macrophage-like wound healing and inflammation-terminating molecules in vitro. We also found that FBGC formation was significantly inhibited by inflammatory cytokines or infection mimetics in vitro. Interleukin-1 receptor-associated kinase-4 (IRAK4) deficiency did not alter osteoclast formation in vitro, and IRAK4-deficient mice showed normal bone mineral density in vivo. However, IRAK4-deficient mice were protected from excessive osteoclastogenesis induced by IL-1β in vitro or by LPS, an infection mimetic of Gram-negative bacteria, in vivo. Furthermore, IRAK4 deficiency restored FBGC formation and expression of M2 macrophage markers inhibited by inflammatory cytokines in vitro or by LPS in vivo. Our results demonstrate that osteoclasts and FBGCs are reciprocally regulated and identify IRAK4 as a potential therapeutic target to inhibit stimulated osteoclastogenesis and rescue inhibited FBGC formation under inflammatory and infectious conditions without altering physiological bone resorption. PMID:25404736

  20. The salmochelin receptor IroN itself, but not salmochelin-mediated iron uptake promotes biofilm formation in extraintestinal pathogenic Escherichia coli (ExPEC).

    PubMed

    Magistro, Giuseppe; Hoffmann, Christiane; Schubert, Sören

    2015-01-01

    The key to success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize niches outside the intestinal tract and to establish infection is the coordinated action of numerous virulence and fitness factors. Intense research revealed not only an arsenal of unique virulence determinants with specific action, but also the multi-functionality of single elements. Especially iron uptake systems of ExPEC proved to be of prime importance. Apart from iron acquisition they optimize certain virulence properties. Here we analyzed the contribution of the salmochelin siderophore system to the ability of ExPEC to form biofilms. In the same iron limited environment, ExPEC displayed a distinct transcriptional profile of siderophore systems. During biofilm formation the iroN gene coding for the specific receptors of the siderophore salmochelin was highly upregulated. Almost no induction was observed during planctonic growth. Disruption of iroN resulted in a reduction of almost 50% in biofilm production. Efficient biofilm formation was not affected in a salmochelin synthesis mutant. Thus, the contribution of IroN is independent from the ability to produce salmochelin. Enhanced expression of IroN did not increase significantly the capacity to form biofilms in ExPEC. Interestingly, the additional expression of IroN or even the acquisition of the entire salmochelin system was not able to improve biofilm formation in a poor biofilm producer like a laboratory E. coli K12 strain. However, complementation with only IroN in an ExPEC iroA deletion mutant was able to restore biofilm formation. The contribution of IroN to biofilm formation appears to require a certain background found in ExPEC, but not in E. coli K12. This study identified the contribution of IroN to biofilm formation and highlights the multi-functional role of iron uptake systems in ExPEC. PMID:25921426

  1. Recent developments in alkene hydro-functionalisation promoted by homogeneous catalysts based on earth abundant elements: formation of C-N, C-O and C-P bond.

    PubMed

    Rodriguez-Ruiz, Violeta; Carlino, Romain; Bezzenine-Lafollée, Sophie; Gil, Richard; Prim, Damien; Schulz, Emmanuelle; Hannedouche, Jérôme

    2015-07-21

    This Perspective article provides an overview of the recent advancements in the field of intra- and inter-molecular C-N, C-O and C-P bond formation by hydroamination, hydroalkoxylation, hydrophosphination, hydrophosphonylation or hydrophosphinylation of unactivated alkenes, including allenes, 1,3-dienes and strained alkenes, promoted by (chiral) homogeneous catalysts based on earth abundant elements of the s and p blocks, the first row transition metals and the rare-earth metals. The relevant literature from 2009 until late 2014 has been covered. PMID:25803322

  2. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis

    PubMed Central

    Qiao, Chunyan; Zhang, Kai; Sun, Bin; Liu, Jinzhong; Song, Jiyu; Hu, Yue; Yang, Shihui; Sun, Hongchen; Yang, Bai

    2015-01-01

    Bone regeneration often requires continuous stimulation to promote local bone formation. In the present study, calcium phosphate (CaPi) was used to promote transfection of human bone morphogenetic protein 2 (BMP-2) cDNA plasmid, and poly (lactic-co-glycolic acid) (PLGA) was used to prepare microspheres of pBMP-2/CaPi (i.e., PLGA@pBMP-2/CaPi) using W/O/W double emulsion solvent evaporation method. We showed that PLGA@pBMP-2/CaPi microspheres were spherical with smooth surface, and the particle size ranged from 0.5 to 35 μm. Encapsulation efficiency was up to 30~50%. The release of BMP-2 cDNA from microspheres continued more than 30 days and constituted, less than 7.5% of total plasmid amount within the first 24 h. Real-time PCR results showed that co-culturing of PLGA@pBMP-2/CaPi with bone marrow-derived mesenchymal stem cells (BMSCs) increased calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7, and collagen type I (COLL I) in a time-dependent manner. Finally, X-ray analysis demonstrated that in vivo delivery of PLGA@pBMP-2/CaPi microspheres into the tibialis anterior muscles of rats promoted the generation of osteoblasts, bone tissue, and bone structure. The findings suggested that PLGA@pBMP-2/CaPi microspheres can promote ectopic osteogenesis in non-bone tissues, with strong prospects in promoting bone regeneration. PMID:26885257

  3. Using Formal Embedded Formative Assessments Aligned with a Short-Term Learning Progression to Promote Conceptual Change and Achievement in Science

    ERIC Educational Resources Information Center

    Yin, Yue; Tomita, Miki K.; Shavelson, Richard J.

    2014-01-01

    This study examined the effect of learning progression-aligned formal embedded formative assessment on conceptual change and achievement in middle-school science. Fifty-two sixth graders were randomly assigned to either an experimental group or a control group. Both groups were taught about sinking and floating by the same teacher with identical…

  4. Formation of Land Use Order in Hamamatsu City under the Original Criteria of the Farm Land Exclusion from the Agricultural Promotion Area

    NASA Astrophysics Data System (ADS)

    Arita, Hiroyuki; Miyazawa, Shingo

    While zoning has been practiced to prevent sprawling development and to preserve collective farmland under the Agriculture Promotion Act, The Agricultural Promotion Area (APA) has been reduced in area by the action of the Farm Land Exclusion from the APA (EAPA) aiming at urban-uses. Since the EAPA has a great impact on the regional land use, appropriate criteria application techniques ought to be formulated at the transaction level. However, most local governments seem to have no strategic measure so far. Hamamatsu city, meanwhile, has introduced a unique standard upon which approval of the EAPA aptitude is based in 2003. Since the number of EAPA registration was relatively large in Hamamatsu city owing to the zone bordering on the line of land which a building has erected the officials' willingness to establish an objective standard was high. In this research, we verified the effect of the criteria application over the land use ordering, and made proposals for improvement of the present state through the examination of the EAPA criterion application of Hamamatsu city.

  5. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    PubMed

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. PMID:27220848

  6. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex

    PubMed Central

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response. PMID:26683461

  7. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress.

    PubMed

    Zerrouk, Izzeddine Zakarya; Benchabane, Messaoud; Khelifi, Lakhdar; Yokawa, Ken; Ludwig-Müller, Jutta; Baluska, Frantisek

    2016-02-01

    The aim of this study was to evaluate the effectiveness of Pseudomonas fluorescens 002 (P.f.002.), isolated from the rhizosphere of date palms from the Ghardaia region in the Algerian Sahara, to promote root growth of two varieties of maize under conditions of salt and aluminum stress. Primary roots of 5-day-old seedlings were inoculated with P.f.002., and seedlings were then grown under both control and stressed conditions. Primary, lateral, and seminal root lengths and numbers, as well as root dry mass, were evaluated. P.f.002 increased all parameters measured under both salt and aluminum stress. Hence, the use of P.f.002 may represent an important biotechnological approach to decrease the impact of salinity and acidity in crops. PMID:26759938

  8. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA

    PubMed Central

    Cho, Sung Ki; Sharma, Pooja; Butler, Nathaniel M.; Kang, Il-Ho; Shah, Shweta; Rao, A. Gururaj; Hannapel, David J.

    2015-01-01

    Polypyrimidine tract-binding (PTB) proteins are a family of RNA-binding proteins that function in a wide range of RNA metabolic processes by binding to motifs rich in uracils and cytosines. A PTB protein of pumpkin was identified as the core protein of an RNA–protein complex that trafficks RNA. The biological function of the PTB–RNA complex, however, has not been demonstrated. In potato, six PTB proteins have been identified, and two, designated StPTB1 and StPTB6, are similar to the phloem-mobile pumpkin type. RNA binding assays confirmed the interaction of StPTB1 and StPTB6 with discrete pyrimidine-rich sequences of the 3′-untranslated regions of the phloem-mobile mRNA, StBEL5. The promoter of StPTB1 was active in companion cells of phloem in both stem and petioles. Expression of both types was evident in phloem cells of roots and in stolons during tuber formation. RNA accumulation of both PTB proteins was induced by short days in leaves in correlation with enhanced accumulation of StBEL5 RNA. StPTB suppression lines exhibited reduced tuber yields and decreased StBEL5 RNA accumulation, whereas StPTB overexpression lines displayed an increase in tuber production correlated with the enhanced production in stolons of steady-state levels of StBEL5 transcripts and RNA of key tuber identity genes. In StPTB overexpression lines, both the stability and long-distance transport of StBEL5 transcripts were enhanced, whereas in suppression lines stability and transport decreased. Using a transgenic approach, it is shown that the StPTB family of RNA-binding proteins regulate specific stages of development through an interaction with phloem-mobile transcripts of StBEL5. PMID:26283046

  9. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation

    PubMed Central

    Hamilton, Andrew; Basic, Vladimir; Andersson, Sandra; Abrink, Magnus; Ringvall, Maria

    2015-01-01

    The serglycin proteoglycan is mainly expressed by hematopoietic cells where the major function is to retain the content of storage granules and vesicles. In recent years, expression of serglycin has also been found in different forms of human malignancies and a high serglycin expression level has been correlated with a more migratory and invasive phenotype in the case of breast cancer and nasopharyngeal carcinoma. Serglycin has also been implicated in the development of the tumor vasculature in multiple myeloma and hepatocellular carcinoma where reduced expression of serglycin was correlated with a less extensive vasculature. To further investigate the contribution of serglycin to tumor development, we have used the immunocompetent RIP1-Tag2 mouse model of spontaneous insulinoma formation crossed into serglycin deficient mice. For the first time we show that serglycin-deficiency affects orthotopic primary tumor growth and tumor vascular functionality of late stage carcinomas. RIP1-Tag2 mice that lack serglycin develop larger tumors with a higher proliferative activity but unaltered apoptosis compared to normal RIP1-Tag2 mice. The absence of serglycin also enhances the tumor vessel functionality, which is better perfused than in tumors from serglycin wild type mice. The presence of the pro-angiogenic modulators vascular endothelial growth factor and hepatocyte growth factor were decreased in the serglycin deficient mice which suggests a less pro-angiogenic environment in the tumors of these animals. Taken together, we conclude that serglycin affects multiple aspects of spontaneous tumor formation, which strengthens the theory that serglycin acts as an important mediator in the formation and progression of tumors. PMID:25978773

  10. The Class II Phosphatidylinositol 3-Phosphate Kinase PIK3C2A Promotes Shigella flexneri Dissemination through Formation of Vacuole-Like Protrusions

    PubMed Central

    Dragoi, Ana-Maria

    2015-01-01

    Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in primary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocytogenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS). We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent production of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine kinase signaling in protrusions. PMID:25667265

  11. Comparison of air kerma-length product measurements between the PTB and the IAEA for x-radiation qualities used in computed tomography (EURAMET.RI(I)-S12, EURAMET project #1327)

    NASA Astrophysics Data System (ADS)

    Csete, István; Büermann, Ludwig; Alikhani, Babak; Gomola, Igor

    2015-01-01

    A comparison of air kerma-length product determinations for standard radiation qualities defined for use in computed tomography was performed between the PTB and the IAEA as EURAMET project #1327, registered in the KCDB as the EURAMET.RI(I)-S12 comparison. A pencil type reference-class ionization chamber of the IAEA and the three RQT beam qualities established according to the IEC standard 61627:2005 were selected for the comparison. The calibration coefficients for the transfer chamber in terms of Gycm/C at the PTB and the IAEA using the partial irradiation method recommended in the IAEA TRS 457 were determined. The results show the calibration coefficients of both laboratories were in a very good agreement of about 0.2 % well within the estimated relative standard uncertainty of the comparison of about 0.8 %. Residual correction due to the additional aperture required for partial irradiation of pencil chambers and feasibility of the full irradiation method were also studied. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Phosphorylation of Simian Virus 40 T Antigen on Thr 124 Selectively Promotes Double-Hexamer Formation on Subfragments of the Viral Core Origin

    PubMed Central

    Barbaro, Brett A.; Sreekumar, K. R.; Winters, Danielle R.; Prack, Andrea E.; Bullock, Peter A.

    2000-01-01

    Cell cycle-dependent phosphorylation of simian virus 40 (SV40) large tumor antigen (T-ag) on threonine 124 is essential for the initiation of viral DNA replication. A T-ag molecule containing a Thr→Ala substitution at this position (T124A) was previously shown to bind to the SV40 core origin but to be defective in DNA unwinding and initiation of DNA replication. However, exactly what step in the initiation process is defective as a result of the T124A mutation has not been established. Therefore, to better understand the control of SV40 replication, we have reinvestigated the assembly of T124A molecules on the SV40 origin. Herein it is demonstrated that hexamer formation is unaffected by the phosphorylation state of Thr 124. In contrast, T124A molecules are defective in double-hexamer assembly on subfragments of the core origin containing single assembly units. We also report that T124A molecules are inhibitors of T-ag double hexamer formation. These and related studies indicate that phosphorylation of T-ag on Thr 124 is a necessary step for completing the assembly of functional double hexamers on the SV40 origin. The implications of these studies for the cell cycle control of SV40 DNA replication are discussed. PMID:10954562

  13. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    PubMed Central

    Yoshida, Ayumi; Shimizu, Akio; Asano, Hirotsugu; Kadonosono, Tetsuya; Kondoh, Shinae Kizaka; Geretti, Elena; Mammoto, Akiko; Klagsbrun, Michael; Seo, Misuzu Kurokawa

    2015-01-01

    ABSTRACT Neuropilin-1 (NRP1) has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein. PMID:26209534

  14. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated γH2AX Formation.

    PubMed

    Ramachandran, Shaliny; Haddad, Dania; Li, Conglei; Le, Michael X; Ling, Alexanda K; So, Clare C; Nepal, Rajeev M; Gommerman, Jennifer L; Yu, Kefei; Ketela, Troy; Moffat, Jason; Martin, Alberto

    2016-05-17

    Class switch recombination (CSR) requires activation-induced deaminase (AID) to instigate double-stranded DNA breaks at the immunoglobulin locus. DNA breaks activate the DNA damage response (DDR) by inducing phosphorylation of histone H2AX followed by non-homologous end joining (NHEJ) repair. We carried out a genome-wide screen to identify CSR factors. We found that Usp22, Eny2, and Atxn7, members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitination module, are required for deubiquitination of H2BK120ub following DNA damage, are critical for CSR, and function downstream of AID. The SAGA deubiquitinase activity was required for optimal irradiation-induced γH2AX formation, and failure to remove H2BK120ub inhibits ATM- and DNAPK-induced γH2AX formation. Consistent with this effect, these proteins were found to function upstream of various double-stranded DNA repair pathways. This report demonstrates that deubiquitination of histone H2B impacts the early stages of the DDR and is required for the DNA repair phase of CSR. PMID:27160905

  15. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  16. Lcl of Legionella pneumophila Is an Immunogenic GAG Binding Adhesin That Promotes Interactions with Lung Epithelial Cells and Plays a Crucial Role in Biofilm Formation

    PubMed Central

    Duncan, Carla; Prashar, Akriti; So, Jannice; Tang, Patrick; Low, Donald E.; Terebiznik, Mauricio; Guyard, Cyril

    2011-01-01

    Legionellosis is mostly caused by Legionella pneumophila and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In vitro and in vivo, interactions of L. pneumophila with lung epithelial cells are mediated by the sulfated glycosaminoglycans (GAGs) of the host extracellular matrix. In this study, we have identified several Legionella heparin binding proteins. We have shown that one of these proteins, designated Lcl, is a polymorphic adhesin of L. pneumophila that is produced during legionellosis. Homologues of Lcl are ubiquitous in L. pneumophila serogroups but are undetected in other Legionella species. Recombinant Lcl binds to GAGs, and a Δlpg2644 mutant demonstrated reduced binding to GAGs and human lung epithelial cells. Importantly, we showed that the Δlpg2644 strain is dramatically impaired in biofilm formation. These data delineate the role of Lcl in the GAG binding properties of L. pneumophila and provide molecular evidence regarding its role in L. pneumophila adherence and biofilm formation. PMID:21422183

  17. Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation.

    PubMed

    Duncan, Carla; Prashar, Akriti; So, Jannice; Tang, Patrick; Low, Donald E; Terebiznik, Mauricio; Guyard, Cyril

    2011-06-01

    Legionellosis is mostly caused by Legionella pneumophila and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In vitro and in vivo, interactions of L. pneumophila with lung epithelial cells are mediated by the sulfated glycosaminoglycans (GAGs) of the host extracellular matrix. In this study, we have identified several Legionella heparin binding proteins. We have shown that one of these proteins, designated Lcl, is a polymorphic adhesin of L. pneumophila that is produced during legionellosis. Homologues of Lcl are ubiquitous in L. pneumophila serogroups but are undetected in other Legionella species. Recombinant Lcl binds to GAGs, and a Δlpg2644 mutant demonstrated reduced binding to GAGs and human lung epithelial cells. Importantly, we showed that the Δlpg2644 strain is dramatically impaired in biofilm formation. These data delineate the role of Lcl in the GAG binding properties of L. pneumophila and provide molecular evidence regarding its role in L. pneumophila adherence and biofilm formation. PMID:21422183

  18. Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains.

    PubMed

    Kim, Wooki; Barhoumi, Rola; McMurray, David N; Chapkin, Robert S

    2014-01-28

    We have demonstrated previously that n-3 PUFA endogenously produced by fat-1 transgenic mice regulate CD4+ T-cell function by affecting the formation of lipid rafts, liquid-ordered mesodomains in the plasma membrane. In the present study, we tested the effects of dietary sources of n-3 PUFA, i.e. fish oil (FO) or purified DHA, when compared with an n-6 PUFA-enriched maize oil control diet in DO11.10 T-cell receptor transgenic mice. Dietary n-3 PUFA were enriched in CD4+ T-cells, resulting in the increase of the n-3:n-6 ratio. Following antigen-specific CD4+ T-cell activation by B-lymphoma cells pulsed with the ovalbumin 323-339 peptide, the formation of liquid-ordered mesodomains at the immunological synapse relative to the whole CD4+ T-cell, as assessed by Laurdan labelling, was increased (P< 0·05) in the FO-fed group. The FO diet also suppressed (P< 0·05) the co-localisation of PKCθ with ganglioside GM1 (monosialotetrahexosylganglioside), a marker for lipid rafts, which is consistent with previous observations. In contrast, the DHA diet down-regulated (P< 0·05) PKCθ signalling by moderately affecting the membrane liquid order at the immunological synapse, suggesting the potential contribution of the other major n-3 PUFA components of FO, including EPA. PMID:23962659

  19. The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116.

    PubMed

    Abassi, Haila; Ayed-Boussema, Imen; Shirley, Sarah; Abid, Salwa; Bacha, Hassen; Micheau, Olivier

    2016-07-01

    Zearalenone (ZEN) and Aflatoxin B1 (AFB1) are fungal secondary metabolites produced by Fusarium and Aspergillus genera, respectively. These mycotoxins are found world-wide as corn and wheat contaminants. AFB1 is probably the most toxic and carcinogenic mycotoxin. It has been demonstrated to be mutagenic, genotoxic, and hepatocarcinogenic. ZEN is a non-steroidal estrogenic mycotoxin that displays hepatotoxicity, immunotoxicity and genotoxicity. Its mutagenic and carcinogenic properties have so far remained controversial and questionable. Using the colon carcinoma cell line HCT116, we will show here that ZEN, at low concentrations, enhances cell proliferation, increases colony formation and fastens cell migration after wound healing. The highest effect of ZEN was observed at a concentration 10 times lower as compared to AFB1. Our findings suggest thus that this mycotoxin exhibits carcinogenesis-like properties in HCT116 cells. PMID:27084041

  20. Arabidopsis PIAL1 and 2 Promote SUMO Chain Formation as E4-Type SUMO Ligases and Are Involved in Stress Responses and Sulfur Metabolism[C][W][OPEN

    PubMed Central

    Tomanov, Konstantin; Zeschmann, Anja; Hermkes, Rebecca; Eifler, Karolin; Ziba, Ionida; Grieco, Michele; Novatchkova, Maria; Hofmann, Kay; Hesse, Holger; Bachmair, Andreas

    2014-01-01

    The Arabidopsis thaliana genes PROTEIN INHIBITOR OF ACTIVATED STAT LIKE1 (PIAL1) and PIAL2 encode proteins with SP-RING domains, which occur in many ligases of the small ubiquitin-related modifier (SUMO) conjugation pathway. We show that PIAL1 and PIAL2 function as SUMO ligases capable of SUMO chain formation and require the SUMO-modified SUMO-conjugating enzyme SCE1 for optimal activity. Mutant analysis indicates a role for PIAL1 and 2 in salt stress and osmotic stress responses, whereas under standard conditions, the mutants show close to normal growth. Mutations in PIAL1 and 2 also lead to altered sulfur metabolism. We propose that, together with SUMO chain binding ubiquitin ligases, these enzymes establish a pathway for proteolytic removal of sumoylation substrates. PMID:25415977

  1. In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex.

    PubMed

    Ibrahim, Bashar

    2015-11-01

    In response to the activation of the mitotic spindle assembly checkpoint (SAC), distinct inhibitory pathways control the activity of the anaphase-promoting complex (APC/C). It remains unclear whether the different regulatory mechanisms function in separate pathways or as part of an integrated signalling system. Here, five variant models of APC/C regulation were constructed and analysed. The simulations showed that all variant models were able to reproduce the wild type behaviour of the APC. However, only one model, which included both the mitotic checkpoint complex (MCC) as well as BubR1 as direct inhibitors of the APC/C, was able to reproduce both wild and mutant type behaviour of APC/C regulation. Interestingly, in this model, the MCC as well as the BubR1 binding rate to the APC/C was comparable to the known Cdc20-Mad2 binding rate and could not be made higher. Mad2 active transport towards the spindle mid-zone accelerated the inhibition speed of the APC/C but not its concentration level. The presented study highlights the principle that a systems biology approach is critical for the SAC mechanism and could also be used for predicting hypotheses to design future experiments. The presented work has successfully distinguished between five potent inhibitors of the APC/C using a systems biology approach. Here, the favoured model contains both BubR1 and MCC as direct inhibitors of the APC/C. PMID:26256776

  2. A model for triple helix formation on human telomerase reverse transcriptase (hTERT) promoter and stabilization by specific interactions with the water soluble perylene derivative, DAPER.

    PubMed

    Rossetti, Luigi; D'Isa, Giuliana; Mauriello, Clementina; Varra, Michela; De Santis, Pasquale; Mayol, Luciano; Savino, Maria

    2007-08-01

    The promoter of human telomerase reverse transcriptase (hTERT) gene, in the region from -1000 to +1, contains two homopurine-homopyrimidine sequences (-835/-814 and -108/-90), that can be considered as potential targets to triple helix forming oligonucleotides (TFOs) for applying antigene strategy. We have chosen the sequence (-108/-90) on the basis of its unfavorable chromatin organization, evaluated by theoretical nucleosome positioning and nuclease hypersensitive sites mapping. On this sequence, anti-parallel triplex with satisfactory thermodynamic stability is formed by two TFOs, having different lengths. Triplex stability is significantly increased by specific interactions with the perylene derivative N,N'-bis[3,3'-(dimethylamino) propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER). Since DAPER is a symmetric molecule, the induced Circular Dichroism (CD) spectra in the range 400-600 nm allows us to obtain information on drug binding to triplex and duplex DNA. The drug-induced ellipticity is significantly higher in the case of triplex with respect to duplex and, surprisingly, it increases at decreasing of DNA. A model is proposed where self-stacked DAPER binds to triplex or to duplex narrow grooves. PMID:17560709

  3. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

    PubMed

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2014-04-17

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNA(Sec)). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNA(Sec), formed by seryl-tRNA synthetase, to Sec-tRNA(Sec). SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNA(Sec) revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNA(Sec). The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  4. Smooth Muscle Cell Foam Cell Formation, Apolipoproteins, and ABCA1 in Intracranial Aneurysms: Implications for Lipid Accumulation as a Promoter of Aneurysm Wall Rupture.

    PubMed

    Ollikainen, Eliisa; Tulamo, Riikka; Lehti, Satu; Lee-Rueckert, Miriam; Hernesniemi, Juha; Niemelä, Mika; Ylä-Herttuala, Seppo; Kovanen, Petri T; Frösen, Juhana

    2016-07-01

    Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries is adenosine triphosphate-binding cassette A1 (ABCA1)-mediated lipid efflux from foam cells to apolipoprotein A-I (apoA-I). We investigated the association of wall degeneration, inflammation, and lipid-related parameters in tissue samples of 16 unruptured and 20 ruptured sIAs using histology and immunohistochemistry. Intracellular lipid accumulation was associated with wall remodeling (p = 0.005) and rupture (p = 0.020). Foam cell formation was observed in smooth muscle cells, in addition to CD68- and CD163-positive macrophages. Macrophage infiltration correlated with intracellular lipid accumulation and apolipoproteins, including apoA-I. ApoA-I correlated with markers of lipid accumulation and wall degeneration (p = 0.01). ApoA-I-positive staining colocalized with ABCA1-positive cells particularly in sIAs with high number of smooth muscle cells (p = 0.003); absence of such colocalization was associated with wall degeneration (p = 0.017). Known clinical risk factors for sIA rupture correlated inversely with apoA-I. We conclude that lipid accumulation associates with sIA wall degeneration and risk of rupture, possibly via formation of foam cells and subsequent loss of mural cells. Reduced removal of lipids from the sIA wall via ABCA1-apoA-I pathway may contribute to this process. PMID:27283327

  5. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.

    PubMed

    Wang, Li-Shan; Lee, Fan; Lim, Jaehong; Du, Chan; Wan, Andrew C A; Lee, Su Seong; Kurisawa, Motoichi

    2014-06-01

    In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid-tyramine (HA-Tyr) during the HRP-mediated crosslinking reaction. Preliminary studies demonstrated that two phenol moieties per molecule resulted in a consistently high degree of conjugation into the HA-Tyr hydrogel network, unlike the one modified with one phenol moiety per molecule. Therefore, an Arg-Gly-Asp (RGD) peptide bearing two phenol moieties (phenol2-poly(ethylene glycol)-RGD) was designed for conjugation to endow the HA-Tyr hydrogel with adhesion signals and enhance its bioactivities. Human umbilical vein endothelial cells (HUVECs) cultured on or within the RGD-modified hydrogels showed significantly different adhesion behavior, from non-adherence on the HA-Tyr hydrogel to strong adhesion on hydrogels modified with phenol2-poly(ethylene glycol)-RGD. This altered cell adhesion behavior led to improved cell proliferation, migration and formation of capillary-like network in the hydrogel in vitro. More importantly, when HUVECs and human fibroblasts (HFF1) were encapsulated together in the RGD-modified HA-Tyr hydrogel, functional vasculature was observed inside the cell-laden gel after 2weeks in the subcutaneous tissue. Taken together, the in situ conjugation of phenol2-poly(ethylene glycol)-RGD into HA-Tyr hydrogel system, coupled with the ease of incorporating cells, offers a simple and effective means to introduce biological signals for preparation of multi-functional injectable hydrogels for tissue engineering

  6. The DEAH-box Helicase Dhr1 Dissociates U3 from the Pre-rRNA to Promote Formation of the Central Pseudoknot

    PubMed Central

    Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M.; Tollervey, David; Correll, Carl C.; Johnson, Arlen W.

    2015-01-01

    In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins. PMID:25710520

  7. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot.

    PubMed

    Sardana, Richa; Liu, Xin; Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M; Tollervey, David; Correll, Carl C; Johnson, Arlen W

    2015-02-01

    In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pr