Science.gov

Sample records for pulsar magnetic alignment

  1. Slowly rotating pulsars and magnetic field decay

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    1997-02-01

    Two dozen long period pulsars are separated from the swarm of ordinary pulsars by an obvious gap in the P versus Sd diagram (where Sd=log˙(P)+21.0), with a plausible upper boundary for ordinary pulsars. Possible pulsar evolutionary tracks are discussed to explain the diagram in terms of previously suggested scenarios of magnetic field decay. The (P-Sd) diagram is difficult to understand if there is no magnetic field decay during the active life of pulsars. However, if the magnetic fields of neutron stars decay exponentially, almost all slowly rotating pulsars must have been injected with a very long initial spin period of about 2 seconds, which seems impossible. Based on qualitative analyses, it is concluded that magnetic fields of neutron stars decay as a power-law, with a time scale related to the initial field strengths. The plausible boundary and the gap are suggested to naturally divide pulsars with distinct magnetic "genes", ie. pulsars which were born from strongly magnetized progenitors -- such as Bp stars, and pulsars born from normal massive stars. The possibility remains open that a fraction of slowly rotating pulsars were injected with long initial spin periods, while others would have a classical pulsar evolution history. It is suggested that PSR B1849+00 was born in the supernova remnant Kes-79 with an initial period of about 2 seconds.

  2. Electromagnetic torques, precession and evolution of magnetic inclination of pulsars

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2015-07-01

    We present analytic calculations of the electromagnetic torques acting on a magnetic neutron star rotating in vacuum, including near-zone torques associated with the inertia of dipole and quadrupole magnetic fields. We incorporate these torques into the rotational dynamics of a rigid-body neutron star, and show that the effects of the inertial torque can be understood as a modification of the moment of inertia tensor of the star. We apply our rotational dynamics equation to the Crab pulsar, including intrinsic distortions of the star and various electromagnetic torques, to investigate the possibility that the counter-alignment of the magnetic inclination angle, as suggested by recent observations, could be explained by pulsar precession. We find that if the effective principal axis of the pulsar is nearly aligned with either the magnetic dipole axis or the rotation axis, then precession may account for the observed counter-alignment over decade time-scales. Over the spindown time-scale of the pulsar, the magnetic inclination angle always decreases.

  3. Magnetospheric Geometry in Pulsar B1929+10 from Radio/X-ray Phase Alignment

    NASA Astrophysics Data System (ADS)

    Somer, A. L.; Backer, D. C.; Halpern, J. P.; Wang, F. Y.-H.

    1998-05-01

    We have conducted a study of two rotation-powered pulsars that emit at both radio and x-ray wavelengths, PSR B0531+21 and PSR B1929+10. Using absolute phase information, we have phase-aligned x-ray and radio profiles from these pulsars. Observations were done using the Green Bank 140ft telescope, and ASCA. The 0531+21 x-ray profile is sharp and lines up well with the radio profile confirming that the x-ray emission from this pulsar is magnetospheric in origin. The 1929+10 profile is approximately sinusoidal (Wang & Halpern, ApJ 4 82, L159) with the peak of the emission arriving 67+/- 23 degrees after the maximum in the radio emission. The controversy to which the PSR B1929+10 result adds fuel, is whether this ``inter"-pulsar, is an ``aligned" or ``orthogonal" rotator - describing the alignment of the magnetic axis to the rotation axis. Do the two peaks in the radio profile (the pulse and interpulse) come from a double crossing of a thin hollow cone nearly aligned with rotation axis (as in Lyne & Manchester, 1988, MNRAS, 234, 477; Phillips, 1990, ApJL, 361, L57; Blaskiewicz et al, 1991, ApJ 370, 643), or alternatively (as in Rankin and Rathnasree, 1998 preprint) do they come from from opposite poles of an ``orthogonal" rotator where the spin axis is perpendicular to the magnetic axis? The radio to x-ray alignment we find favors the former explanation: if the x-ray hot spot is the result of return currents to the surface from the outward current that generates radio emission, then in the ``double-crossing" model, the hot spot phase is expected to lie between the main pulse and interpulse as observed.

  4. Three-dimensional analytical description of magnetized winds from oblique pulsars

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Philippov, Alexander; Spitkovsky, Anatoly

    2016-04-01

    Rotating neutron stars, or pulsars and magnetars, are plausibly the source of power behind many astrophysical systems, such as gamma-ray bursts, supernovae, pulsar wind nebulae, and supernova remnants. In the past several years, three-dimensional (3D) numerical simulations made it possible to compute pulsar spin-down luminosity from first principles and revealed that oblique pulsar winds are more powerful than aligned ones. However, what causes this enhanced power output of oblique pulsars is not understood. In this work, using time-dependent 3D magnetohydrodynamic and force-free simulations, we show that, contrary to the standard paradigm, the open magnetic flux, which carries the energy away from the pulsar, is laterally non-uniform. We argue that this non-uniformity is the primary reason for the increased luminosity of oblique pulsars. To demonstrate this, we construct simple analytic descriptions of aligned and orthogonal pulsar winds and combine them to obtain an accurate 3D description of the pulsar wind for any obliquity. Our approach describes both the warped magnetospheric current sheet and the smooth variation of pulsar wind properties outside of it. We find that the jump in magnetic field components across the current sheet decreases with increasing obliquity, which could be a mechanism that reduces dissipation in near-orthogonal pulsars. Our analytical description of the pulsar wind can be used for constructing models of pulsar gamma-ray emission, pulsar wind nebulae, neutron star powered ultra-luminous X-ray sources, and magnetar-powered core-collapse gamma-ray bursts and supernovae.

  5. Spin and Alignment Evolution of the Double Pulsar

    NASA Astrophysics Data System (ADS)

    Arons, J.; Spitkovsky, A.

    The spin of the short period pulsar in PSR J07370 A B evolves in isolation under the influence of its own electromagnetic torques Not so PSR J07370B The wind from A buffets and confines the slowly rotating neutron star s magnetosphere resulting in a spindown torque which at the current epoch depends on the rotational energy loss of pulsar A M Lyutikov 2004 MNRAS 353 1095 J Arons it et al 2005 in Binary Radio Pulsars F Rasio and I Stairs eds San Francisco ASP 95 There is also a torque which acts to align the angular momentum of B with the orbital angular momentum of the binary I describe the evolutionary history of the spins including the early history of B when B s own EM torques exceeded the external torque and also discuss the constraints put on the interaction physics by eclipse models which require B s angular momentum to be strongly tipped with respect to the orbital angular momentum M Lyutikov and C Thompson 2005 ApJ 634 1223 We also discuss the small effect the interaction of A s wind with B has on the orbital evolution of the binary

  6. On magnetic pair production above fast pulsar polar caps

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Magnetic pair production is one of high-energy electromagnetic conversion processes important to the development of pair-photon cascades in pulsars. On the basis of current polar cap models, the properties of magnetic pair production in fast pulsars are discussed. Suppose there is a roughly dipole magnetic field at the stellar surface, the author estimate the effects on non-zero curvature of magnetic field lines upon curvature radiation from primary particles and pair production rate near the surface of pulsars.

  7. Magnetized stimulated scattering in pulsar winds

    NASA Technical Reports Server (NTRS)

    Sincell, Mark W.; Krolik, Julian H.

    1992-01-01

    The effects of stimulated scattering on a collimated high brightness temperature beam of photons traversing a relativistically streaming magnetized plasma are studied. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and the Lorentz factor gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency, the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam.

  8. ON PLASMA ROTATION AND DRIFTING SUBPULSES IN PULSARS: USING ALIGNED PULSAR B0826-34 AS A VOLTMETER

    SciTech Connect

    Van Leeuwen, J.; Timokhin, A. N. E-mail: andrey.timokhin@nasa.gov

    2012-06-20

    We derive the exact drift velocity of plasma in the pulsar polar cap, in contrast to the order-of-magnitude expressions presented by Ruderman and Sutherland and generally used throughout the literature. We emphasize that the drift velocity depends not on the absolute value, as is generally used, but on the variation of the accelerating potential across the polar cap. If we assume that drifting subpulses in pulsars are indeed due to this plasma drift, several observed subpulse-drift phenomena that are incompatible with the Ruderman and Sutherland family of models can now be explained: we show that variations of drift rate, outright drift reversals, and the connection between drift rates and mode changes have natural explanations within the frame of the 'standard' pulsar model, when derived exactly. We apply this model for drifting subpulses to the case of PSR B0826-34, an aligned pulsar with two separate subpulse-drift regions emitted at two different colatitudes. Careful measurement of the changing and reversing drift rate in each band independently sets limits on the variation of the accelerating potential drop. The derived variation is small, {approx}10{sup -3} times the vacuum potential drop voltage. We discuss the implications of this result for pulsar modeling.

  9. ARECIBO MULTI-FREQUENCY TIME-ALIGNED PULSAR AVERAGE-PROFILE AND POLARIZATION DATABASE

    SciTech Connect

    Hankins, Timothy H.; Rankin, Joanna M. E-mail: Joanna.Rankin@uvm.edu

    2010-01-15

    We present Arecibo time-aligned, total intensity profiles for 46 pulsars over an unusually wide range of radio frequencies and multi-frequency, polarization-angle density diagrams, and/or polarization profiles for 57 pulsars at some or all of the frequencies 50, 111/130, 430, and 1400 MHz. The frequency-dependent dispersion delay has been removed in order to align the profiles for study of their spectral evolution, and wherever possible the profiles of each pulsar are displayed on the same longitude scale. Most of the pulsars within Arecibo's declination range that are sufficiently bright for such spectral or single pulse analysis are included in this survey. The calibrated single pulse sequences and average profiles are available by web download for further study.

  10. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  11. Pulsed γ-ray properties of Crab pulsar in a retarded dipole with a current-induced magnetic field

    NASA Astrophysics Data System (ADS)

    Chang, Shan; Zhang, Li; Li, Xiang

    2015-12-01

    Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.

  12. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  13. Revised Pulsar Spindown

    SciTech Connect

    Contopoulos, Ioannis; Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2005-12-14

    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-{dot P} diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n {approx} 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.

  14. Pulsar rotation and dispersion measures and the galactic magnetic field.

    NASA Technical Reports Server (NTRS)

    Manchester, R. N.

    1972-01-01

    Use of observations of pulsar polarization and pulse time of arrival at frequencies between 250 and 500 MHz to determine rotation and dispersion measures for 19 and 21 pulsars, respectively. These measurements have been used to calculate mean line-of-sight components of the magnetic field in the path to the pulsars. These and other observations show that there is probably no contribution to the observed rotation measure from the pulsar itself. Low-latitude, low-dispersion pulsars are observed to have strong field components, and a strong dependence of rotation-measure sign on galactic longitude has been found. The observations are consistent with a relatively uniform field of about 3.5 microgauss directed toward about l = 90 deg in the local region, but appear to be inconsistent with the helical model for the local field.

  15. Magnetic pair creation transparency in gamma-ray pulsars

    SciTech Connect

    Story, Sarah A.; Baring, Matthew G. E-mail: baring@rice.edu

    2014-07-20

    Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the

  16. Magnetic Pair Creation Transparency in Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.; Baring, Matthew G.

    2014-07-01

    Magnetic pair creation, γ → e + e -, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the putative detection

  17. Evolution of the magnetic field structure of the Crab pulsar.

    PubMed

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field. PMID:24179221

  18. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  19. The pulsar magnetic field oscillation model and the verification method

    NASA Astrophysics Data System (ADS)

    Liang, Z. X.; Liang, Y.

    The characteristics of pulsar have been most commonly explained using lighthouse model However our research has demonstrated that the characteristics of pulsar can be better described using a magnetic oscillating model hereafter MO model built by analogising the reversing phenomenon of the solar magnetic field to pulsar Although the mechanism why the magnetic field can oscillate has not been known yet no observed oppositions to it MO model have been found either After comparing with the lighthouse model the MO model has the following advantages 1 The prediction of the MO model differs significantly from the prediction of the lighthouse model The MO model predicts that the geodetic precession of the spin axis in binary pulsar system may result in some slight changes of the amplitude and shape of profile but it is impossible that they disappear from our line of sight The observed results of PSR B1913 16 PSR J0737-3039 and other binary pulsar system have shown obviously such tendency 2 The lighthouse model can be ruled out by the result from calculating the micropulse of PSR B1133 16 The wheel-axis structure of the image of Crab Nebula taken by Chandra X-ray Observatory correlates precisely with the prediction of the MO model 3 The MO model is more appropriate to explain the polarization characteristics glitch the interpulse and the generation rate of the pulsar than the lighthouse model The MO model also gives satisfactory results to explain the other characteristics eg the spin-down the pulse nulling the beat and pulse

  20. Reliability of magnetic inclination angle determinations for pulsars

    NASA Technical Reports Server (NTRS)

    Miller, M. C.; Hamilton, Russell J.

    1993-01-01

    We compare the recent estimates of the inclination angle alpha between the rotation and magnetic axes of 56 pulsars made by both Lyne and Manchester (1988) and Rankin (1990). Their results agree reasonably well when alpha is less than about 40 deg; however, there is no correlation between the two estimates of alpha if either estimate exceeds 40 deg. The correlation is better for pulsars with beams having more complicated core structure. Nevertheless, the differences between the two sets of estimates are large enough that use of these estimates to investigate pulsar physics is questionable. We discuss the method for determining alpha based on the Radhakrishnan and Cooke (1969) single-vector model, emphasizing its sensitivity to measurement errors. This method complements the approaches of Rankin and Lyne and Manchester and is preferable when accurate polarization data are available.

  1. Microstructure-determined pulsar dispersion measures and the problem of profile alignment

    SciTech Connect

    Hankins, T.H.; Izvekova, V.A.; Malofeev, V.M.; Shitov, I.P.; Rankin, J.M. National Radio Astronomy Observatory, Socorro AN SSSR, Fizicheskii Institut, Moscow Vermont, University, Burlington )

    1991-05-01

    Time-aligned profile measurements for two pulsars, combining data from the Arecibo, Puerto Rico, and Pushchino, USSR, observatories over a seven-octave frequency interval between 25 and 5000 MHZ are analyzed along with several new microstructure dispersion values. DMA(A) values of 2.9701 + or {minus} 0.0003, and 4.8470 + or {minus} 0.0003 pc/cu cm for PSR 0950+08 and 1113 + 16, respectively are obtained, with small departures from alignment that appear traceable to changes in a profile shape with frequency. These subtle changes in the profile form are noticeable only by virtue of the high time resolution and broad frequency coverage. It is noted that small low-frequency delays result when the sets of profiles are aligned optimally according to the best available microstructure dispersion values. 19 refs.

  2. Magnetic alignment and patterning of cellulose fibers

    NASA Astrophysics Data System (ADS)

    Kimura, Fumiko; Kimura, Tsunehisa

    2008-04-01

    The alignment and patterning of cellulose fibers under magnetic fields are reported. Static and rotating magnetic fields were used to align cellulose fibers with sizes ranging from millimeter to nanometer sizes. Cellulose fibers of the millimeter order, which were prepared for papermaking, and much smaller fibers with micrometer to nanometer sizes prepared by the acid hydrolysis of larger ones underwent magnetic alignment. Under a rotating field, a uniaxial alignment of fibers was achieved. The alignment was successfully fixed by the photopolymerization of a UV-curable resin precursor used as matrix. A monodomain chiral nematic film was prepared from an aqueous suspension of nanofibers. Using a field modulator inserted in a homogeneous magnetic field, simultaneous alignment and patterning were achieved.

  3. Magnetic alignment of grains. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    This paper reviews mechanisms that have been proposed to account for alignment of dust grains in diffuse clouds and in dense clouds. The mechanisms that have proved inadequate are considered, including alignment by nonmagnetic and magnetic processes. The results thus far favor the Davis-Greenstein mechanism, in which paramagnetic relaxation of spinning grains removes components of rotation perpendicular to the magnetic field. Polarization measurements showing the alignment of grains in cool dense clouds are discussed.

  4. Pulsars

    NASA Astrophysics Data System (ADS)

    Stappers, Benjamin W.

    2012-04-01

    Pulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency. By probing these and slightly longer time-scales we find that pulsars exhibit ``glitches'', which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars-the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system. Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars

  5. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  6. Comparing supernova remnants around strongly magnetized and canonical pulsars

    NASA Astrophysics Data System (ADS)

    Martin, J.; Rea, N.; Torres, D. F.; Papitto, A.

    2014-11-01

    The origin of the strong magnetic fields measured in magnetars is one of the main uncertainties in the neutron star field. On the other hand, the recent discovery of a large number of such strongly magnetized neutron stars is calling for more investigation on their formation. The first proposed model for the formation of such strong magnetic fields in magnetars was through alpha-dynamo effects on the rapidly rotating core of a massive star. Other scenarios involve highly magnetic massive progenitors that conserve their strong magnetic moment into the core after the explosion, or a common envelope phase of a massive binary system. In this work, we do a complete re-analysis of the archival X-ray emission of the supernova remnants (SNRs) surrounding magnetars, and compare our results with all other bright X-ray emitting SNRs, which are associated with compact central objects (which are proposed to have magnetar-like B-fields buried in the crust by strong accretion soon after their formation), high-B pulsars and normal pulsars. We find that emission lines in SNRs hosting highly magnetic neutron stars do not differ significantly in elements or ionization state from those observed in other SNRs, neither averaging on the whole remnants, nor studying different parts of their total spatial extent. Furthermore, we find no significant evidence that the total X-ray luminosities of SNRs hosting magnetars, are on average larger than that of typical young X-ray SNRs. Although biased by a small number of objects, we found that for a similar age, there is the same percentage of magnetars showing a detectable SNR than for the normal pulsar population.

  7. Are pulsars born with a hidden magnetic field?

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Pons, José A.; Font, José A.

    2016-03-01

    The observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10-3-10-2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.

  8. Magnetic alignment of the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Coleman, J.W.; Irby, J.H.; Olmstead, M.M.; Torti, R.P.

    1985-06-01

    Techniques developed for the alignment of high-energy accelerators have been applied to the alignment of the Tara tandem mirror magnetic confinement device. Tools used were: a transit/laser surveyor's system for establishing an invariant reference; optical scattering from ferromagnetic crystallites for establishing magnetic centers in the quadrupole anchor/transition modules; an electron-optical circle-generating wand for alignment of the solenoidal plug and central cell modules; and four differently configured electron emissive probes, including a 40-beam flux mapping e gun, for testing the alignment of the coils under vacuum. Procedures are outlined, and results are given which show that the magnetic axes of the individual coils in the Tara set have been made colinear with each other and with the reference to within +- 1.0 mm over the length of the machine between the anchor midplanes.

  9. On the decay of the magnetic fields of single radio pulsars

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipankar; Wijers, Ralph A. M. J.; Hartman, Jan W.; Verbunt, Frank

    1992-01-01

    We investigate the statistical evidence for the decay of the magnetic field of single radio pulsars. We perform population syntheses for different assumed values for the time scale of field decay using a Monte Carlo method. We allow for the selection effects in pulsar surveys and compare the synthesized populations with the observed pulsars. We take account of the finite scale height of the distribution in the Galaxy of free electrons, which determine the dispersion measure and hence the apparent distance of radio pulsars. Our simulations give much better agreement with the observations if the time scale for the field decay is assumed to be longer than the typical active life time of a radio pulsar. This indicates that no significant field decay occurs in single radio pulsars.

  10. MODELING PHASE-ALIGNED GAMMA-RAY AND RADIO MILLISECOND PULSAR LIGHT CURVES

    SciTech Connect

    Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J0034-0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of 'altitude-limited' outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario ('low-altitude slot gap' (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere

  11. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    NASA Technical Reports Server (NTRS)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  12. Aligned two-phase magnets: Permanent magnetism of the future?

    NASA Astrophysics Data System (ADS)

    Skomski, R.

    1994-11-01

    Micromagnetic calculations are used to investigate coercivity and energy products of magnets consisting of an aligned hard-magnetic skeleton phase and a soft-magnetic phase with high saturation magnetization. Compared to the present-day theoretical limit of 516 kJ/cu m for single-phase Nd2Fe14B, the energy product in suitable nanostructured Sm2Fe17N3/Fe65Co35 composites is predicted to be as high as 1090 kJ/cu m. The influence of the skeleton's texture and shape is discussed, and aligned nanocrystalline two-phase magnets are compared with remanence-enhanced isotropic magnets. In particular, it is shown how the nucleation-based analytical approach breaks down in the isotropic limit. Finally, we outline conceivable processing methods and discuss potential applications of 'megajoule' magnets.

  13. Aligning Paramecium caudatum with static magnetic fields.

    PubMed

    Guevorkian, Karine; Valles, James M

    2006-04-15

    As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms. PMID:16461406

  14. Resonant Compton Scattering in Highly-Magnetized Pulsars

    NASA Astrophysics Data System (ADS)

    Wadiasingh, Zorawar

    Soft gamma repeaters and anomalous X-ray pulsars are subset of slow-rotating neutron stars, known as magnetars, that have extremely high inferred surface magnetic fields, of the order 100-1000 TeraGauss. Hard, non-thermal and pulsed persistent X-ray emission extending between 10 keV and 230 keV has been seen in a number of magnetars by RXTE, INTEGRAL, and Suzaku. In this thesis, the author considers inner magnetospheric models of such persistent hard X-ray emission where resonant Compton upscattering of soft thermal photons is anticipated to be the most efficient radiative process. This high efficiency is due to the relative proximity of the surface thermal photons, and also because the scattering becomes resonant at the cyclotron frequency. At the cyclotron resonance, the effective cross section exceeds the classical Thomson one by over two orders of magnitude, thereby enhancing the efficiency of continuum production and cooling of relativistic electrons. In this thesis, a new Sokolov and Ternov formulation of the QED Compton scattering cross section for strong magnetic fields is employed in electron cooling and emission spectra calculations. This formalism is formally correct for treating spin-dependent effects and decay rates that are important at the cyclotron resonance. The author presents electron cooling rates at arbitrary interaction points in a magnetosphere using the QED cross sections. The QED effects reduce the rates below high-field extrapolations of older magnetic Thomson results. The author also computes angle-dependent upscattering model spectra, formed using collisional integrals, for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. It is found that electrons with energies less than

  15. Correlation between the Gamma-Ray Luminosity and the Light Cylinder Magnetic Field Strength of Fermi-LAT Pulsars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Yi, Shuxu; Hou, Xian; Li, Jian

    2015-08-01

    We analyze statistically the differences between gamma-ray loud and quiet samples of the radio pulsars that have been searched with the Fermi satellite. Among many pulsar parameters considered in this paper, our Kolmogorov-Smirnov test shows that the distributions of magnetic field strength at the light cylinder of the two samples are the most inconsistent, but that of radio spectral index are the least discrepant. Significant correlations are found between the gamma-ray luminosity and magnetic field strength at the light cylinder of Fermi-LAT pulsars in the Second Fermi Large Area Telescope Catalog of Gamma-ray pulsars, for normal pulsars and millisecond pulsars respectively. Using the above correlations, we give a list of gamma-ray pulsar candidates with their predicted gamma-ray energy flux.

  16. ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE

    SciTech Connect

    Takamoto, Makoto; Inoue, Tsuyoshi; Inutsuka, Shu-ichiro E-mail: inouety@phys.aoyama.ac.jp

    2012-08-10

    In this paper, we report on turbulent acceleration of the dissipation of the magnetic field in the post-shock region of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two-dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of the magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of the magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {sigma}-problem in the Crab pulsar wind nebulae.

  17. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  18. Inkjet printing of magnetic materials with aligned anisotropy

    NASA Astrophysics Data System (ADS)

    Song, Han; Spencer, Jeremy; Jander, Albrecht; Nielsen, Jeffrey; Stasiak, James; Kasperchik, Vladek; Dhagat, Pallavi

    2014-05-01

    3-D printing processes, which use drop-on-demand inkjet printheads, have great potential in designing and prototyping magnetic materials. Unlike conventional deposition and lithography, magnetic particles in the printing ink can be aligned by an external magnetic field to achieve both high permeability and low hysteresis losses, enabling prototyping and development of novel magnetic composite materials and components, e.g., for inductor and antennae applications. In this work, we report an inkjet printing technique with magnetic alignment capability. Magnetic films with and without particle alignment are printed, and their magnetic properties are compared. In the alignment-induced hard axis direction, an increase in high frequency permeability and a decrease in hysteresis losses are observed. Our results suggest that unique magnetic structures with arbitrary controllable anisotropy, not feasible otherwise, may be fabricated via inkjet printing.

  19. Chandra Phase-Resolved Spectroscopy of the High-Magnetic-Field Pulsar B1509-58

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Ng, Chi-Yung

    2016-04-01

    We report on timing and spectral analysis of the young, high-magnetic-field pulsar B1509-58 using Chandra continuous-clocking mode observation. The on-pulsed X-ray spectrum can be described by a power law with a photon index of 1.16(2), which is flatter than those determined with RXTE/PCA and NuSTAR. This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra, we clearly identified off-pulsed X-ray emission from the pulsar. The spectrum is best fitted by a power law plus blackbody model. The latter component has a temperature of ~0.14 keV, which is similar to those of other young and high-magnetic-field pulsars, and lies between those of magnetars and typical rotational-powered pulsars. For the non-thermal emission of PSR B1509-58, we found that the power law component of the off-pulsed emission is significantly steeper than that of the on-pulsed one. We further divided the data into 24 phase bins and found that the photon index varies between 1.0 and 2.0 and anti-correlating with the flux. A similar correlation was also found in the Crab Pulsar, and this requires further theoretical interpretations. This work is supported by a GRF grant of Hong Kong Government under 17300215.

  20. Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence.

    PubMed

    Matthaeus, W H; Pouquet, A; Mininni, P D; Dmitruk, P; Breech, B

    2008-02-29

    We show that local directional alignment of the velocity and magnetic field fluctuations occurs rapidly in magnetohydrodynamics for a variety of parameters and is seen both in direct numerical simulations and in solar wind data. The phenomenon is due to an alignment between magnetic field and gradients of either pressure or kinetic energy, and is similar to alignment of velocity and vorticity in Navier-Stokes turbulence. This rapid and robust relaxation process leads to a local weakening of nonlinear terms. PMID:18352632

  1. Testing black hole superradiance with pulsar companions

    NASA Astrophysics Data System (ADS)

    Rosa, João G.

    2015-10-01

    We show that the magnetic dipole and gravitational radiation emitted by a pulsar can undergo superradiant scattering off a spinning black hole companion. We find that the relative amount of superradiant modes in the radiation depends on the pulsar's angular position relative to the black hole's equatorial plane. In particular, when the pulsar and black hole spins are aligned, superradiant modes are dominant at large angles, leading to an amplification of the pulsar's luminosity, whereas for small angles the radiation is dominantly composed of non-superradiant modes and the signal is attenuated. This results in a characteristic orbital modulation of the pulsar's luminosity, up to the percent level within our approximations, which may potentially yield a signature of superradiant scattering in astrophysical black holes and hence an important test of general relativity.

  2. Magnetic alignment of plant cell microfibrils and their anisotropic elasticity

    NASA Astrophysics Data System (ADS)

    Fujimura, Yuu; Sakaida, Hidetaka; Iino, Masaaki

    2010-06-01

    The magnetic alignment of microfibrils on a single regenerated plant cell surface subjected to magnetic fields and its anisotropic cell surface area expansivity modulus (area modulus) were studied. The magnetic alignment around the equator of the cell (the polar axis parallel to the magnetic field) was confirmed by a 2-dim Fourier analysis of images from a scanning electron microscope, and these were expressed by a theoretical magnetic order parameter for anisotropic relative magnetic permeability of 3×10-27, while the microfibrils near the pole did not show any such magnetic alignment. The magnetic field anisotropically stiffened the cell surface. The stiffness around the equator was greater than that around the pole. The magnetic field dependences of the area modulus agreed with the mechanical model.

  3. Mathematical modeling of the nonlinear electrodynamics effect of signal delay in the magnetic field of pulsars

    NASA Astrophysics Data System (ADS)

    Gapochka, M. G.; Denisov, M. M.; Denisova, I. P.; Kalenova, N. V.; Korolev, A. F.

    2015-11-01

    The paper is devoted to mathematical modeling of the nonlinear vacuum electrodynamics effect: the action of the strong magnetic field of a pulsar on the propagation of electromagnetic waves. It is shown that, due to the birefringence of the vacuum, for one normal wave, it takes more time to travel from a pulsar to a detector installed on astrophysical satellites than for the other normal wave. The delay of the pulse carried by the second normal wave relative to pulse carried by the first normal wave from the common point of origin to the satellite is calculated.

  4. Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    NASA Technical Reports Server (NTRS)

    Livingstone, Margaret A.; Gavriil, Fotis P.; Kaspi, Victoria M.

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  5. PULSAR BINARY BIRTHRATES WITH SPIN-OPENING ANGLE CORRELATIONS

    SciTech Connect

    O'Shaughnessy, Richard; Kim, Chunglee E-mail: ckim@astro.lu.s

    2010-05-20

    One ingredient in an empirical birthrate estimate for pulsar binaries is the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. The current estimates for pulsar binary birthrates are based on an average value of beaming fractions for only two pulsars, i.e., PSRs B1913+16 and B1534+12. In this paper, we revisit the observed pulsar binaries to examine the sensitivity of birthrate predictions to different assumptions regarding opening angle and alignment. Based on empirical estimates for the relative likelihood of different beam half-opening angles and misalignment angles between the pulsar rotation and magnetic axes, we calculate an effective beaming correction factor, f{sub b,eff}, whose reciprocal is equivalent to the average fraction of all randomly selected pulsars that point toward us. For those pulsars without any direct beam geometry constraints, we find that f{sub b,eff} is likely to be smaller than 6, a canonically adopted value when calculating birthrates of Galactic pulsar binaries. We calculate f{sub b,eff} for PSRs J0737-3039A and J1141-6545, applying the currently available constraints for their beam geometry. As in previous estimates of the posterior probability density function P(R) for pulsar binary birthrates R, PSRs J0737-3039A and J1141-6545 still significantly contribute to, if not dominate, the Galactic birthrate of tight pulsar-neutron star (NS) and pulsar-white dwarf (WD) binaries, respectively. Our median posterior present-day birthrate predictions for tight PSR-NS binaries, wide PSR-NS binaries, and tight PSR-WD binaries given a preferred pulsar population model and beaming geometry are 89 Myr{sup -1}, 0.5 Myr{sup -1}, and 34 Myr{sup -1}, respectively. For long-lived PSR-NS binaries, these estimates include a weak (x1.6) correction for slowly decaying star formation in the galactic disk. For pulsars

  6. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  7. Magnetic alignment study of rare-earth-containing liquid crystals.

    PubMed

    Galyametdinov, Yury G; Haase, Wolfgang; Goderis, Bart; Moors, Dries; Driesen, Kris; Van Deun, Rik; Binnemans, Koen

    2007-12-20

    The liquid-crystalline rare-earth complexes of the type [Ln(LH)3(DOS)3]-where Ln is Tb, Dy, Ho, Er, Tm, or Yb; LH is the Schiff base N-octadecyl-4-tetradecyloxysalicylaldimine; and DOS is dodecylsulfate-exhibit a smectic A phase. Because of the presence of rare-earth ions with a large magnetic anisotropy, the smectic A phase of these liquid crystals can be easier aligned in an external magnetic field than smectic A phases of conventional liquid crystals. The magnetic anisotropy of the [Ln(LH)3(DOS)3] complexes was determined by measurement of the temperature-dependence of the magnetic susceptibility using a Faraday balance. The highest value for the magnetic anisotropy was found for the dysprosium(III) complex. The magnetic alignment of these liquid crystals was studied by time-resolved synchrotron small-angle X-ray scattering experiments. Depending on the sign of the magnetic anisotropy, the director of the liquid-crystalline molecules was aligned parallel or perpendicular to the magnetic field lines. A positive value of the magnetic anisotropy (and parallel alignment) was found for the thulium(III) and the ytterbium(III) complexes, whereas a negative value of the magnetic anisotropy (and perpendicular alignment) was observed for the terbium(III) and dysprosium(III) complexes. PMID:18044875

  8. Alignment of the magnet and a positioning method

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Il

    2015-10-01

    The 100-MeV proton linac and magnets for the KOMAC (Korea Multi-purpose Accelerator Complex) were installed in the tunnel and the beamlines. The fiducialization process was accomplished with the measurement of mechanical shape and the transfer of the coordinates to the fiducial points that are used in two laser-trackers based alignments. The reference points called the alignment network were set up on the wall inside tunnel. The linac and the beam transport magnets were aligned based on the survey results of the alignment networks. In this paper, the alignment procedure and the alignment results are presented, and an algorithm that was developed to manipulate the adjusters of the magnetsis introduced.

  9. New Pulsar Theory

    NASA Astrophysics Data System (ADS)

    Kebede, Legesse

    2015-08-01

    Standard pulsar theory is based on fields that are conserved from progenitor stars. This has limited the scope of pulsar astronomy to a kind of study very much confined to a limited type of pulsars, so called field pulsars. The large majority of pulsars are technically eliminated from statistical studies because they are either too massive, or are of very high magnetic field with no mechanism yet known which forces them to decay to very low frequency rotators in a matter of a few thousands of years. This is one distinct property of these highly magnetized pulsars. The current presentation focuses on a new source for the generation of pulsar fields namely spinning separated surface charges and it shows that pulsar fields are strictly mass dependent. Massive neutron stars are strongly magnetized ( ≥ 1018 G) and less massive ones are weakly magnetized (1011 - 1013 G). This work therefore dismisses the current belief that there have to be two classes of pulsars (field pulsars and anomalous pulsars). It leads to a decay law that provides results that are consistent with observations from these two so called distinct classes of pulsars. This work also suggests that pulsar fields should be infinitely multi-polar which helps to successfully addresses the longtime issues of pulse shape and promises that the current problem of pulsar radiation could be solvable..

  10. Going to Extremes: Pulsar Gives Insight on Ultra Dense Matter and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    2004-12-01

    A long look at a young pulsar with NASA's Chandra X-ray Observatory revealed unexpectedly rapid cooling, which suggests that it contains much denser matter than previously expected. The pulsar's cool temperature and the vast magnetic web of high-energy particles that surrounds it have implications for the theory of nuclear matter and the origin of magnetic fields in cosmic objects. Animation: Layers of Chandra's 3-Color Image Animation: Layers of Chandra's 3-Color Image An international team of scientists used the Chandra data to measure the temperature of the pulsar at the center of 3C58, the remains of a star observed to explode in the year 1181. Chandra's image of 3C58 also shows spectacular jets, rings and magnetized loops of high-energy particles generated by the pulsar. "We now have strong evidence that, in slightly more than 800 years, the surface of the 3C58 pulsar has cooled to a temperature of slightly less than a million degrees Celsius," said Patrick Slane of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author on a paper describing these results in the November 20, 2004 issue of The Astrophysical Journal. "A million degrees may sound pretty hot, but for a young neutron star that's like the frozen tundra in Green Bay, Wisconsin." Optical & Chandra X-ray Composite of 3C58 Optical & Chandra X-ray Composite of 3C58 Pulsars are formed when the central core of a massive star collapses to create a dense object about 15 miles across that is composed almost entirely of neutrons. Collisions between neutrons and other subatomic particles in the interior of the star produce neutrinos that carry away energy as they escape from the star. This cooling process depends critically on the density and type of particles in the interior, so measurements of the surface temperature of pulsars provide a way to probe extreme conditions where densities are so high that our current understanding of how particles interact with one another is limited

  11. The evolution of the magnetic inclination angle as an explanation of the long term red timing-noise of pulsars

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Zhang, Shuang-Nan

    2015-12-01

    We study the possibility that the long term red timing-noise in pulsars originates from the evolution of the magnetic inclination angle χ. The braking torque under consideration is a combination of the dipole radiation and the current loss. We find that the evolution of χ can give rise to extra cubic and fourth-order polynomial terms in the timing residuals. These two terms are determined by the efficiency of the dipole radiation, the relative electric-current density in the pulsar tube and χ. The following observation facts can be explained with this model: (a) young pulsars have positive ddot{ν }; (b) old pulsars can have both positive and negative ddot{ν }; (c) the absolute values of ddot{ν } are proportional to -dot{ν }; (d) the absolute values of the braking indices are proportional to the characteristic ages of pulsars. If the evolution of χ is purely due to rotation kinematics, then it cannot explain the pulsars with braking index less than 3, and thus the intrinsic change of the magnetic field is needed in this case. Comparing the model with observations, we conclude that the drift direction of χ might oscillate many times during the lifetime of a pulsar. The evolution of χ is not sufficient to explain the rotation behaviour of the Crab pulsar, because the observed χ and dot{χ } are inconsistent with the values indicated from the timing residuals using this model.

  12. Thermal characterization of magnetically aligned carbonyl iron/agar composites.

    PubMed

    Diaz-Bleis, D; Vales-Pinzón, C; Freile-Pelegrín, Y; Alvarado-Gil, J J

    2014-01-01

    Composites of magnetic particles into polymeric matrices have received increasing research interest due to their capacity to respond to external magnetic or electromagnetic fields. In this study, agar from Gelidium robustum has been chosen as natural biocompatible polymer to build the matrix of the magnetic carbonyl iron particles (CIP) for their uses in biomedical fields. Heat transfer behavior of the CIP-agar composites containing different concentrations (5, 10, 15, 20, 25 and 30% w/w) of magnetically aligned and non-aligned CIP in the agar matrix was studied using photothermal radiometry (PTR) in the back-propagation emission configuration. The morphology of the CIP-agar composites with aligned and non-aligned CIP under magnetic field was also evaluated by scanning electron microscopy (SEM). The results revealed a dominant effect of CIP concentration over the alignment patterns induced by the magnetic field, which agrees with the behavior of the thermal diffusivity and thermal conductivity. Agar served as a perfect matrix to be used with CIP, and CIP-agar composites magnetically aligned at 20% CIP concentration can be considered as promising 'smart' material for hyperthermia treatments in the biomedical field. PMID:24274482

  13. Synthesis and orientation of barium hexaferrite ceramics by magnetic alignment

    NASA Astrophysics Data System (ADS)

    Autissier, Denis

    1990-01-01

    Particles of Ba 2Mn xZn 2- xFe 12O 22 with planar structure were prepared by chemical precipitation. They were processed by sleep casting in presence of a magnetic field. The degree of alignment was improved by a special sintering treatment. By this procedure an alignment as high as 99.9% is obtained.

  14. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    SciTech Connect

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  15. On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations

    NASA Astrophysics Data System (ADS)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R.

    2015-01-01

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ⊙, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  16. Magnetic Fractionation and Alignment of Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Yodh, A. G.; Kikkawa, J. M.

    2004-03-01

    We study mechanisms of single wall carbon nanotube (SWNT) alignment in a magnetic field. Through magnetic fractionation, we create SWNT suspensions with varying quantities of magnetic catalyst particles. The degree of tube alignment in magnetic fields up to 9 Tesla is quantified using polarized optical absorbance anisotropy. Continuous measurements of the nematic order parameter of these suspensions in variable magnetic fields provides a way to identify the origin of magnetic torques giving rise to nanotube alignment. Initial data suggests a transition from catalyst-driven to nanotube-anisotropy driven orientation as the catalyst fraction is reduced. We relate these results to observations of nanotube aggregation. This work has been supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  17. Isolated pulsar spin evolution on the diagram

    NASA Astrophysics Data System (ADS)

    Ridley, J. P.; Lorimer, D. R.

    2010-05-01

    We look at two contrasting spin-down models for isolated radio pulsars and, accounting for selection effects, synthesize observable populations. While our goal is to reproduce all of the observable characteristics, in this paper we pay particular attention to the form of the spin period versus period derivative () diagram and its dependence on various pulsar properties. We analyse the initial spin period, the braking index, the magnetic field, various beaming models as well as the pulsar's luminosity. In addition to considering the standard magnetic dipole model for pulsar spin-down, we also consider the recent hybrid model proposed by Contopoulos and Spitkovsky. The magnetic dipole model, however, does a better job of reproducing the observed pulsar population. We conclude that random alignment angles and period-dependent luminosity distributions are essential to reproduce the observed diagram. We also consider the time decay of alignment angles and attempt to reconcile various models currently being studied. We conclude that in order to account for recent evidence for the alignment found by Weltevrede and Johnston, the braking torque on a neutron star should not depend strongly on the inclination. Our simulation code is publicly available and includes a web-based interface to examine the results and make predictions for yields of current and future surveys.

  18. Ground state alignment as a tracer of interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Yan, H.

    2012-12-01

    We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

  19. TOWARD A REALISTIC PULSAR MAGNETOSPHERE

    SciTech Connect

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice

    2012-04-10

    We present the magnetic and electric field structures and the currents and charge densities of pulsar magnetospheres that do not obey the ideal condition, E {center_dot} B = 0. Since the acceleration of particles and the production of radiation require the presence of an electric field component parallel to the magnetic field, E{sub ||}, the structure of non-ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-ideal pulsar magnetospheres is important because their comparison (including models for the production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support non-zero values for E{sub ||} and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) force-free electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that this is at most 20%-40% (depending on the non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = {rho}c and discuss their possible implication on the determination of the 'on/off' states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E{sub ||} locally produce oscillations, potentially observable in the data.

  20. Towards a Realistic Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice; Contopoulos, Ioannis

    2012-01-01

    We present the magnetic and electric field structures as well as the currents ami charge densities of pulsar magnetospberes which do not obey the ideal condition, E(raised dot) B = O. Since the acceleration of particles and the production of radiation requires the presence of an electric field component parallel to the magnetic field, E(sub ll) the structure of non-Ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-Ideal pulsar maglletospheres is important because their comparison (including models for t he production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support nonzero values for E(sub ll) and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) Force-Free Electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that tltis is at most 20-40% (depending on t he non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = pc and discuss their possible implicatioll on the determination of the "on/ off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E(sub ll) locally produce oscillations, potentially observable in the data.

  1. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    SciTech Connect

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  2. The Electric Fields of Radio Pulsars with Asymmetric Nondipolar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kantor, E. M.; Tsygan, A. I.

    2003-07-01

    The effect of the curvature of open magnetic field lines on the generation of electric fields in radio pulsars is considered in the framework of a Goldreich-Julian model, for both a regime with a free outflow of electrons from the neutron-star surface and the case of a small thermoemission current. An expression for the electron thermoemission current in a strong magnetic field is derived. The electric field associated with the curvature of the magnetic flux tubes is comparable to the field generated by the relativistic dragging of the inertial frames.

  3. Magnetic fields generated by r-modes in accreting millisecond pulsars

    SciTech Connect

    Cuofano, Carmine; Drago, Alessandro

    2010-10-15

    In rotating neutron stars the existence of the Coriolis force allows the presence of the so-called Rossby oscillations (r-modes) which are known to be unstable to emission of gravitational waves. Here, for the first time, we introduce the magnetic damping rate in the evolution equations of r-modes. We show that r-modes can generate very strong toroidal fields in the core of accreting millisecond pulsars by inducing differential rotation. We shortly discuss the instabilities of the generated magnetic field and its long time-scale evolution in order to clarify how the generated magnetic field can stabilize the star.

  4. CCO Pulsars as Anti-Magnetars: Evidence of Neutron Stars Weakly Magnetized at Birth

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.

    2008-02-01

    Our new study of the two central compact object pulsars, PSR J1210-5226 (P = 424 ms) and PSR J1852+0040 (P = 105 ms), leads us to conclude that a weak natal magnetic field shaped their unique observational properties. In the dipole spin-down formalism, the 2-sigma upper limits on their period derivatives, <2×10-16 for both pulsars, implies surface magnetic field strengths of Bs<3×1011 G and spin periods at birth equal to their present periods to three significant digits. Their X-ray luminosities exceed their respective spin-down luminosities, implying that their thermal spectra are derived from residual cooling and perhaps partly from accretion of supernova debris. For sufficiently weak magnetic fields an accretion disk can penetrate the light cylinder and interact with the magnetosphere while resulting torques on the neutron star remain within the observed limits. We propose the following as the origin of radio-quiet CCOs: the magnetic field, derived from a turbulent dynamo, is weaker if the NS is formed spinning slowly, which enables it to accrete SN debris. Accretion excludes neutron stars born with both Bs<1011 G and P>0.1 s from radio pulsar surveys, where such weak fields are not encountered except among very old (>40 Myr) or recycled pulsars. We predict that these birth properties are common, and may be attributes of the youngest detected neutron star, the CCO in Cassiopeia A, as well as an undetected infant neutron star in the SN 1987A remnant. In view of the far-infrared light echo discovered around Cas A and attributed to an SGR-like outburst, it is especially important to determine via timing whether Cas A hosts a magnetar or not. If not a magnetar, the Cas A NS may instead have undergone a one-time phase transition (corequake) that powered the light echo.

  5. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk–magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  6. Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.; Weltevrde, P.; Abdo, A. A.; Craig, H. A.; Kramer, M.; Lyne, A. G.

    2011-01-01

    We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  7. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  8. Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds

    NASA Astrophysics Data System (ADS)

    Mochol, Iwona; Pétri, Jérôme

    2015-04-01

    The population of gamma-ray pulsars, including Crab observed in the TeV range, and Vela detected above 50 GeV, challenges existing models of pulsed high-energy emission. Such models should be universally applicable, yet they should account for spectral differences among the pulsars. We show that the gamma-ray emission of Crab and Vela can be explained by synchrotron radiation from the current sheet of a striped wind, expanding with a modest Lorentz factor Γ ≲ 100 in the Crab case, and Γ ≲ 50 in the Vela case. In the Crab spectrum, a new synchrotron self-Compton component is expected to be detected by the upcoming experiment CTA. We suggest that the gamma-ray spectrum directly probes the physics of relativistic magnetic reconnection in the striped wind. In the most energetic pulsars, like Crab, with dot{E}_{38}^{3/2}/P_{-2}≳ 0.002 (where dot{E} is the spin-down power, P is the pulsar period, and X = Xi × 10i in CGS units), reconnection proceeds in the radiative cooling regime and results in a soft power-law distribution of cooling particles; in less powerful pulsars, like Vela, particle energization is limited by the current sheet size, and a hard particle spectrum reflects the acceleration mechanism. A strict lower limit on the number density of radiating particles corresponds to emission close to the light cylinder, and, in units of the GJ density, it is ≳ 0.5 in the Crab wind, and κ ≳ 0.05 in the Vela wind.

  9. Remanent magnetism of sediment governs magnetofossil alignment

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    Most bacteria navigate by reacting to different chemical signals in their surroundings, but some bacteria have another navigational tool in their arsenal—the Earth's magnetic field. Nestled inside these magnetotactic bacteria (MTB) are organelles called magnetosomes, filled with tiny magnetic crystals and arranged in chains, which form nano-sized compass needles. When MTB die and degrade, these tiny crystals can remain in sediment and eventually become magnetic fossils called magnetofossils.

  10. The unusual glitch recoveries of the high-magnetic-field pulsar J1119-6127

    NASA Astrophysics Data System (ADS)

    Antonopoulou, D.; Weltevrede, P.; Espinoza, C. M.; Watts, A. L.; Johnston, S.; Shannon, R. M.; Kerr, M.

    2015-03-01

    Providing a link between magnetars and radio pulsars, high-magnetic-field neutron stars are ideal targets to investigate how bursting/magnetospheric activity and braking torque variations are connected to rotational glitches. The last spin-up glitch of the highly magnetized pulsar J1119-6127 back in 2007 was the first glitch in a rotationally powered radio pulsar to be accompanied by radiative changes. Moreover, it was followed by an uncommon glitch relaxation that resulted in a smaller spin-down rate relative to the prediction of the pre-glitch timing model. Here, we present four years of new radio timing observations and analyse the total of 16 years of timing data for this source. The new data uncover an ongoing evolution of the spin-down rate, thereby allowing us to exclude permanent changes in the external or internal torque as a standalone cause of the peculiar features of the glitch recovery. Furthermore, no additional variations of the radio pulse profile are detected, strengthening the association of the previously observed transient emission features with the glitching activity. A self-consistent measurement of the braking index yields a value n ≃ 2.7, indicating a trajectory in the P-dot{P} plane inclined towards the magnetars. Such a potential evolutionary link might be strengthened by a, possibly permanent, reduction of ˜15 per cent in n at the epoch of the 2007 glitch.

  11. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  12. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    PubMed

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr. PMID:10615029

  13. Magnetic Alignment of Magnetically Biaxial Diamagnetic Rods under Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tsukui, Shu; Kimura, Tsunehisa

    2012-05-01

    The alignment behavior of magnetically biaxial diamagnetic rods under rotating magnetic fields is studied to elucidate the effects of particle shape and rotation speed on alignment manner. Three types of rod (ca. 1.1 mmφ × 3 mm) are prepared: (i) rod axes parallel to χ1, (ii) parallel to χ2, and (iii) parallel to χ3, where χs are the principal axes of the diamagnetic susceptibility tensor and χ1 > χ2 > χ3. The motion of the rod is recorded on video and the angles required for the comparison with simulation are measured. Simulation is performed by numerically solving a torque equation including magnetic and hydrodynamic torques. The experimental results show a good agreement with simulation results. It is shown that the χ3-axis of rod sample (ii) does not align parallel to the axis of the rotating magnetic field under most experimental conditions; this is in marked contrast to the case with magnetically uniaxial particles (χ1 = χ2 > χ3), for which the χ3-axis aligns irrespective of particle shape and/or rotation speed. This observation is interpreted in terms of magnetic energy and orientation kinetics.

  14. An Investigation of Luminous X-Ray Pulsars: Exploring Accretion Onto the Magnetized Neutron Star LMC X-4

    NASA Astrophysics Data System (ADS)

    Brumback, McKinley

    2016-04-01

    X-ray pulsars are neutron stars in which magnetic forces dominate accretion within the magnetosphere. These systems offer unique laboratories to study magnetic accretion and the behavior of matter under extreme densities, magnetic fields, and gravitational forces. Using joint observations with NuSTAR and XMM-Newton, we observe the complete precession of the warped accretion disk around the X-ray pulsar LMC X-4, and measure the relative phase between the pulsar beam and the softer X-ray photons reprocessed by the disk. This allows us to perform tomography to explore the inner magnetized accretion flow. Additionally, we investigate the unusual flaring events observed from LMC X-4 during October and November of 2015.

  15. The effects of magnetic field, age and intrinsic luminosity on Crab-like pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Torres, D. F.; Martín, J.; de Oña Wilhelmi, E.; Cillis, Analia

    2013-12-01

    We investigate the time-dependent behaviour of Crab-like pulsar wind nebulae (PWNe) generating a set of models using four different initial spin-down luminosities (L0 = {1, 0.1, 0.01, 0.001} × L0,Crab), eight values of magnetic fraction (η = 0.001, 0.01, 0.03, 0.1, 0.5, 0.9, 0.99 and 0.999, i.e. from fully particle dominated to fully magnetically dominated nebulae) and three distinctive ages: 940, 3000 and 9000 years. We find that the self-synchrotron Compton (SSC) contribution is irrelevant for LSD = 0.1, 1 and 10 per cent of the Crab power, disregarding the age and the magnetic fraction. SSC only becomes relevant for highly energetic (˜70 per cent of the Crab), particle dominated nebulae at low ages (of less than a few kyr), located in a far-infrared (FIR) background with relatively low energy density. Since no pulsar other than Crab is known to have these features, these results clarify why the Crab nebula, and only it, is SSC dominated. No young PWN would be detectable at TeV energies if the pulsar's spin-down power is 0.1 per cent Crab or lower. For 1 per cent of the Crab spin-down, only particle-dominated nebulae can be detected by HESS-like telescopes when young enough (with details depending on the precise injection and environmental parameters). Above 10 per cent of the Crab's power, all PWNe are detectable by HESS-like telescopes if they are particle dominated, no matter the age. The impact of the magnetic fraction on the final spectral energy distribution is varied and important, generating order of magnitude variations in the luminosity output for systems that are otherwise the same (equal P, dot{P}, injection and environment).

  16. Magnetic alignment of nickel-coated carbon fibers

    SciTech Connect

    Hao, Chuncheng; State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049 ; Li, Xiaojiao; Wang, Guizhen

    2011-11-15

    Graphical abstract: Carbon nanofibers were subjected to a two-step pretreatment, sensitization and activation. Carbon nanofibers were encapsulated by a uniform layer of nickel nanoparticles. The prepared composites are ferromagnetic and with a small value of coercivity. Upon such functionalization, the carbon nanofibers can be aligned in a relatively small external magnetic field. Highlights: {center_dot} A simple microwave-assisted procedure for the magnetic composite. {center_dot} Dense layer of nickel on pretreated carbon nanofibers. {center_dot} Ferromagnetic properties and low coercivity. {center_dot} A long-chain aligned structure under magnetic field. -- Abstract: Magnetic composites of nickel-coated carbon nanofibers have been successfully fabricated by employing a simple microwave-assisted procedure. The scanning electron microscopy images show that a complete and uniform nickel coating with mean size of 25 nm could be deposited on carbon fibers. Magnetization curves demonstrate that the prepared composites are ferromagnetic and that the coercivity is 96 Oe. The magnetic carbon nanofibers can be aligned as a long-chain structure in an external magnetic field.

  17. Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Gotthelf, E. V.; Halpern, J. P.

    2001-07-01

    orthogonal-mode polarized components. We review effects that may enhance the probability of alignment between the spin axis and space velocity of a pulsar, and speculate that short-period, slowly moving pulsars are just the ones best-suited to producing synchrotron nebulae with such aligned structures. Previous interpretations of the compact Vela nebula as a bow-shock in a very weakly magnetized wind suffered from data of inadequate spatial resolution and less plausible physical assumptions.

  18. A new standard pulsar magnetosphere

    SciTech Connect

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-20

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  19. A New Standard Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  20. Studies of Interstellar and Circumstellar Magnetic Field with Aligned Atoms

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yan, H.

    2004-12-01

    Population of levels of the hyperfine and fine split ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a new tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We provide calculations for several atoms and ions that can be used to study magnetic fields in interplanetary medium, interstellar medius, circumstellar regions and quasars.

  1. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGESBeta

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  2. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  3. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  4. Beam based alignment of C-shaped quadrupole magnets

    SciTech Connect

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 {micro}m.

  5. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  6. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  7. Constraining compactness and magnetic field geometry of X-ray pulsars using pulse profile statistics

    SciTech Connect

    Annala, Marja; Poutanen, Juri

    2010-07-15

    We use the statistics of 131 X-ray pulsar light curves in order to constrain the neutron star compactness and the inclination of the magnetic dipole. The X-ray pulse profiles are classified according to the number of pulses seen during one period, dividing them into two classes, single- and double-peaked. The relative fraction of pulsars in these classes is compared with the probabilities predicted by a theoretical model for different types of pencil-beam patterns. Our results show that a statistic of pulse profiles does not constrain compactness of the neutron stars. In contrast to the previous claim, the data do not require the magnetic inclination to be confined in a narrow interval but instead the magnetic dipole can have arbitrary inclinations to the rotational axis. The observed fractions of different types of light curves can be explained by taking into account the X-ray detector sensitivity (i.e. detection threshold for weak pulses), which decreases the fraction of the observed double-peaked light curves.

  8. Understanding the residual patterns of timing solutions of radio pulsars with a model of magnetic field oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Xu-Dong; Zhang, Shuang-Nan; Yi, Shu-Xu; Xie, Yi; Fu, Jian-Ning

    2016-06-01

    We explain some phenomena existing generally in the timing residuals: amplitude and sign of the second derivative of a pulsar's spin-frequency (ddot{ν }), some sophisticated residual patterns, which also change with the time span of data segments. The sample is taken from Hobbs et al., in which the pulsar's spin-frequency and its first derivative have been subtracted from the timing solution fitting. We first classify the timing residual patterns into different types based on the sign of ddot{ν }. Then we use the magnetic field oscillation model developed in our group to fit successfully the different kinds of timing residuals with the Markov Chain Monte Carlo method. Finally, we simulate the spin evolution over 20 years for a pulsar with typical parameters and analyse the data with the conventional timing solution fitting. By choosing different segments of the simulated data, we find that most of the observed residual patterns can be reproduced successfully. This is the first time that the observed residual patterns are fitted by a model and reproduced by simulations with very few parameters. From the distribution of the different residual patterns in the P-dot{P} diagram, we argue that (1) a single magnetic field oscillation mode exists commonly in all pulsars throughout their lifetimes; (2) there may be a transition period over the lifetimes of pulsars, in which multiple magnetic field oscillation modes exist.

  9. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  10. Magnetic alignment in grazing and resting cattle and deer

    PubMed Central

    Begall, Sabine; Červený, Jaroslav; Neef, Julia; Vojtěch, Oldřich; Burda, Hynek

    2008-01-01

    We demonstrate by means of simple, noninvasive methods (analysis of satellite images, field observations, and measuring “deer beds” in snow) that domestic cattle (n = 8,510 in 308 pastures) across the globe, and grazing and resting red and roe deer (n = 2,974 at 241 localities), align their body axes in roughly a north–south direction. Direct observations of roe deer revealed that animals orient their heads northward when grazing or resting. Amazingly, this ubiquitous phenomenon does not seem to have been noticed by herdsmen, ranchers, or hunters. Because wind and light conditions could be excluded as a common denominator determining the body axis orientation, magnetic alignment is the most parsimonious explanation. To test the hypothesis that cattle orient their body axes along the field lines of the Earth's magnetic field, we analyzed the body orientation of cattle from localities with high magnetic declination. Here, magnetic north was a better predictor than geographic north. This study reveals the magnetic alignment in large mammals based on statistically sufficient sample sizes. Our findings open horizons for the study of magnetoreception in general and are of potential significance for applied ethology (husbandry, animal welfare). They challenge neuroscientists and biophysics to explain the proximate mechanisms. PMID:18725629

  11. Highly efficient magnetic separation using five-aligned superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Fujishiro, Hiroyuki; Miura, Takashi; Naito, Tomoyuki; Hayashi, Hidemi

    2010-06-01

    We have constructed the highly efficient magnetic separation system using five-aligned superconducting bulk magnets, which has ten usable magnetic poles on both sides in open space. We applied the bulk magnet system to the magnetic separation of ferromagnetic particles (magnetite; Fe3O4) and paramagnetic ones (α-hematite Fe2O3) dispersed in water for various average particle diameters d, flow speeds VF and initial concentrations C0 of the particles. The multi-bulk magnet system has been confirmed to be effective for the magnetic separation and the efficiency of the magnetic separation per one magnetic pole has been estimated using the theoretical relation.

  12. Quantum theory of spin alignment in a circular magnetic nanotube

    NASA Astrophysics Data System (ADS)

    Bergmann, Gerd; Thompson, Richard S.; Lu, Jia G.

    2015-12-01

    When electron spin and momentum couple in a solid, one generally obtains intriguing and unexpected phenomena. Metallic ferromagnetic nanotubes of cobalt with circular magnetization, which have been prepared by us and others, are a particularly interesting system. Here the spins of the conduction electrons are frustrated. They would like to align parallel to the magnetic field of the magnetization, but as the electrons move quickly around the tube the spins cannot follow the magnetization direction. In a previous short theoretical paper we solved the spin dynamics using a classical model. Here we generalize our work to a quantum mechanical model. The surprising result is that the spin of most conduction electrons is not parallel or anti-parallel to the circumferential magnetization but mostly parallel or anti-parallel to the axis of the nanotube. This result means that such a cobalt nanotube is a different ferromagnet from a cobalt film or bulk cobalt.

  13. Structural magnetic loss of vertical aligned carbon fibres

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Xiao, Peng; Luo, Heng

    2013-06-01

    The electromagnetic spectroscopy of vertical aligned carbon fibres (VACF) reinforced epoxy resin has been performed in the frequency range from 8.2 to 12.4 GHz. The composite was prepared by conventional epoxy polymerization. The results indicate VACF could possess magnetic loss and the structural magnetic properties could be tailored by adjusting the forest structure. The corresponding mechanism of the structural magnetic properties is proposed by the Faradays' law of induction. The structural magnetism is further confirmed by measuring VACF reinforced Al2O3 composites in 1073 K environment. The measurement agrees well with the trend predicted by the parallel fibres model. These results represent a crucial step towards high temperature microwave absorber design and open a new avenue for realizing magnetic losses in the dielectric material.

  14. Tridimensional Burning Structures Associated with Anisotropic Thermal Conductivities in Magnetically Confined and Pulsar Plasmas

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.; Sonnino, G.

    2015-11-01

    A surprising result of the most recent theory of the thermonuclear instability, which can take place in D-T plasmas close to ignition, is that it can develop with tridimensional structures emerging from an axisymmetric toroidal confinement configurations. These structures are helical filaments (``snakes'') that are localized radially around a given rational magnetic surface. Until now well known analyses of fusion burning processes in magnetically confined plasmas, that include the thermonuclear instability, have been carried out by 1+1/2 D transport codes and, consequently, the onset of tri-dimensional structures has not been investigated. The importance of the electron thermal conductivities anisotropy is pointed out also for the inhomogeneous thermonuclear burning of plasmas on the surface of pulsars and for the formation of the observed bright spots on some of them. Sponsored in part by the U.S. DoE.

  15. Theoretical study of alignment dynamics of magnetic oblate spheroids in rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Tan, Mingyang; Song, Han; Dhagat, Pallavi; Jander, Albrecht; Walker, Travis W.

    2016-06-01

    Magnetic composites containing anisotropic magnetic particles can achieve properties not possible in corresponding bulk or thin films of the magnetic material. In this work, we discuss how planar magnetic anisotropy may be achieved in a composite by aligning disk-shaped particles in an in-plane rotating magnetic field. Previous efforts have reported a simple model of aligning particles in a high-frequency rotating magnetic field. However, no complete analytic solution was proposed. Here, we provide a full analytic solution that describes the alignment dynamics of microdisks in a rotating field that covers the entire frequency range. We also provide simplified solutions at both high-frequency and low-frequency limits through asymptotic expansions for easy implementation into industrial settings. The analytic solution is confirmed by numerical simulation and shows agreement with experiments.

  16. Influence of small-scale magnetic field on the reverse positron current in the inner gaps of radio pulsars

    NASA Astrophysics Data System (ADS)

    Barsukov, D. P.; Goglichidze, O. A.; Tsygan, A. I.

    2016-06-01

    The reverse positron current flowing through the inner gap of an old radio pulsar in the presence of a small-scale magnetic field is found. Computations for the case of both strong and weak screening of the longitudinal electric field by the electron-positron plasma are presented.

  17. A new model for the X-ray continuum of the magnetized accreting pulsars

    NASA Astrophysics Data System (ADS)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  18. Evidence of Fast Magnetic Field Evolution in an Accreting Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Patruno, A.

    2012-07-01

    The large majority of neutron stars (NSs) in low-mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the spin frequency of most accreting NSs. The accreting millisecond X-ray pulsar (AMXP) HETE J1900.1-2455 is an intermittent pulsar that exhibited pulsations at about 377 Hz for the first two months and then turned into a nonpulsating source. Understanding why this happened might help us to understand why most LMXBs do not pulsate. We present a seven-year coherent timing analysis of data taken with the Rossi X-ray Timing Explorer. We discover new sporadic pulsations that are detected on a baseline of about 2.5 years. We find that the pulse phases anti-correlate with the X-ray flux as previously discovered in other AMXPs. We place stringent upper limits of 0.05% rms on the pulsed fraction when pulsations are not detected and identify an enigmatic pulse phase drift of ~180° in coincidence with the first disappearance of pulsations. Thanks to the new pulsations we measure a long term spin frequency derivative whose strength decays exponentially with time. We interpret this phenomenon as evidence of magnetic field burial.

  19. Shifted magnetic alignment in vertebrates: Evidence for neural lateralization?

    PubMed

    Malkemper, E Pascal; Painter, Michael S; Landler, Lukas

    2016-06-21

    A wealth of evidence provides support for magnetic alignment (MA) behavior in a variety of disparate species within the animal kingdom, in which an animal, or a group of animals, show a tendency to align the body axis in a consistent orientation relative to the geomagnetic field lines. Interestingly, among vertebrates, MA typically coincides with the north-south magnetic axis, however, the mean directional preferences of an individual or group of organisms is often rotated clockwise from the north-south axis. We hypothesize that this shift is not a coincidence, and future studies of this subtle, yet consistent phenomenon may help to reveal some properties of the underlying sensory or processing mechanisms, that, to date, are not well understood. Furthermore, characterizing the fine structure exhibited in MA behaviors may provide key insights to the biophysical substrates mediating magnetoreception in vertebrates. Therefore, in order to determine if a consistent shift is exhibited in taxonomically diverse vertebrates, we performed a meta-analysis on published MA datasets from 23 vertebrate species that exhibited an axial north-south preference. This analysis revealed a significant clockwise shift from the north-south magnetic axis. We summarize and discuss possible competing hypotheses regarding the proximate mechanisms underlying the clockwise shifted MA and conclude that the most likely cause of such a shift would be a lateralization in central processing of magnetic information. PMID:27059891

  20. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  1. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    DOE PAGESBeta

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  2. Magnetically aligned H I fibers and the rolling hough transform

    SciTech Connect

    Clark, S. E.; Putman, M. E.; Peek, J. E. G.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub 'fibers' that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (N{sub H} {sub I}≃5×10{sup 18} cm{sup –2}) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  3. Magnetically Aligned H I Fibers and the Rolling Hough Transform

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Peek, J. E. G.; Putman, M. E.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub "fibers" that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (NH \\scriptsize{I} ≃ 5 × 1018 cm-2) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  4. Alignment of the magnetic circuit of the BIPM watt balance

    NASA Astrophysics Data System (ADS)

    Bielsa, F.; Lu, Y. F.; Lavergne, T.; Kiss, A.; Fang, H.; Stock, M.

    2015-12-01

    The International Bureau of Weights and Measures (BIPM) is developing a watt balance for the forthcoming redefinition of the kilogram. An improved version of the apparatus, based on a new closed magnetic circuit is now being assembled. The new apparatus will significantly reduce the type B uncertainty due to misalignment of the magnetic circuit as this work demonstrates. We present two techniques recently developed to accurately align the magnetic field of the circuit perpendicular to the direction defined by the local acceleration of gravity. Uncertainty below 30 μrad was achieved for both techniques which fulfils the requirements for the BIPM watt balance to enable a Planck constant determination at the 1  ×  10-8 level.

  5. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    SciTech Connect

    Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E.

    2000-07-31

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an {approx}1 {mu}m film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film ({approx}7 {mu}m) measured by x-ray diffraction is slightly broader, 35{+-}3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics.

  6. SIGNS OF MAGNETIC ACCRETION IN THE X-RAY PULSAR BINARY GX 301-2

    SciTech Connect

    Ikhsanov, Nazar R.; Finger, Mark H.

    2012-07-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B{sub CRSF} {approx} 4 Multiplication-Sign 10{sup 12} G. The same value has been derived in modeling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 B{sub CRSF} or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar can be explained in terms of the magnetically controlled accretion flow scenario provided the surface field of the neutron star is {approx}B{sub CRSF}.

  7. Magnetic field-aligned electric potentials in nonideal plasma flows

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Hesse, M.; Birn, J.

    1991-01-01

    The electric field component parallel to the magnetic field arising from plasma flows which violate the frozen-in field condition of ideal magnetohydrodynamics is discussed. The quantity of interest is the potential U = integral E parallel ds where the integral is extended along field lines. It is shown that U can be directly related to magnetic field properties, expressed by Euler potentials, even when time-dependence is included. These results are applicable to earth's magnetosphere, to solar flares, to aligned-rotator models of compact objects, and to galactic rotation. On the basis of order-of-magnitude estimates, these results support the view that parallel electric fields associated with nonideal plasma flows might play an important role in cosmic particle acceleration.

  8. MAGNETARS VERSUS HIGH MAGNETIC FIELD PULSARS: A THEORETICAL INTERPRETATION OF THE APPARENT DICHOTOMY

    SciTech Connect

    Pons, Jose A.; Perna, Rosalba

    2011-11-10

    Highly magnetized neutron stars (NSs) are characterized by a bewildering range of astrophysical manifestations. Here, building on our simulations of the evolution of magnetic stresses in the NS crust and its ensuing fractures, we explore in detail, for the middle-aged and old NSs, the dependence of starquake frequency and energetics on the relative strength of the poloidal (B{sub p}) and toroidal (B{sub tor}) components. We find that, for B{sub p} {approx}> 10{sup 14} G, since a strong crustal toroidal field B{sub tor} {approx} B{sub p} is quickly formed on a Hall timescale, the initial toroidal field needs to be B{sub tor} >> B{sub p} to have a clear influence on the outbursting behavior. For initial fields B{sub p} {approx}< 10{sup 14} G, it is very unlikely that a middle-aged (t {approx} 10{sup 5} years) NS shows any bursting activity. This study allows us to solve the apparent puzzle of how NSs with similar dipolar magnetic fields can behave in a remarkably different way: an outbursting 'magnetar' with a high X-ray luminosity, or a quiet, low-luminosity, 'high-B' radio pulsar. As an example, we consider the specific cases of the magnetar 1E 2259+586 and the radio pulsar PSR J1814-1744, which at present have a similar dipolar field {approx}6 Multiplication-Sign 10{sup 13} G. We determine for each object an initial magnetic field configuration that reproduces the observed timing parameters at their current age. The same two configurations also account for the differences in quiescent X-ray luminosity and for the 'magnetar/outbursting' behavior of 1E 2259+586 but not of PSR J1814-1744. We further use the theoretically predicted surface temperature distribution to compute the light curve for these objects. In the case of 1E 2259+586, for which data are available, our predicted temperature distribution gives rise to a pulse profile whose double-peaked nature and modulation level are consistent with the observations.

  9. ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS

    SciTech Connect

    Chapman, Nicholas L.; Matthews, Tristan G.; Novak, Giles; Davidson, Jacqueline A.; Goldsmith, Paul F.; Houde, Martin; Kwon, Woojin; Looney, Leslie W.; Li Zhiyun; Matthews, Brenda; Peng Ruisheng; Vaillancourt, John E.; Volgenau, Nikolaus H.

    2013-06-20

    We present 350 {mu}m polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 {mu}m polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15 Degree-Sign ). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.

  10. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  11. Pair production and annihilation in strong magnetic fields. [of neutron stars and pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon which dominates the two-photon annihilation for B (10 to 13th power Gauss) The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  12. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  13. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  14. Chandra Detection of the High Magnetic Field Radio Pulsar J1119-6127in the Supernova Remnant G292.2-0.5

    NASA Astrophysics Data System (ADS)

    Gonzalez, Marjorie; Safi-Harb, Samar

    2003-07-01

    We report the Chandra Advanced CCD Imaging Spectrometer detection of the X-ray counterpart of the high magnetic field, ~1600 yr old, 407 ms radio pulsar J1119-6127 associated with the supernova remnant G292.2-0.5. The powerful imaging capability of Chandra also unveiled, for the first time, a faint 3''×6'' pulsar wind nebula (PWN) at energies above ~1.2 keV. The X-ray emission from the pulsar and its associated nebula is well described by an absorbed power law model with a photon index Γ=2.2+0.6-0.3. The corresponding 0.5-10 keV unabsorbed X-ray luminosity is (5.5+10-3.3)×1032 ergs s-1 (at 6 kpc). When compared to two other pulsars with similar spin and magnetic properties, J1119-6127 stands out as being the least efficient at turning rotational kinetic energy into X-ray emission. This study shows that high magnetic field radio pulsars can be significant X-ray emitters, and Chandra is needed to study the emission properties of the pulsars and associated faint PWNs.

  15. THE LIGHT CURVE AND INTERNAL MAGNETIC FIELD OF THE MODE-SWITCHING PULSAR PSR B0943+10

    SciTech Connect

    Storch, Natalia I.; Lai, Dong; Ho, Wynn C. G.; Bogdanov, Slavko; Heinke, Craig O.

    2014-07-10

    A number of radio pulsars exhibit intriguing mode-switching behavior. Recent observations of PSR B0943+10 revealed correlated radio and X-ray mode switches, providing a new avenue for understanding this class of objects. The large X-ray pulse fraction observed during the radio-quiet phase (Q-mode) was previously interpreted as a result of changing obscuration of X-rays by dense magnetosphere plasma. We show that the large X-ray pulse fraction can be explained by including the beaming effect of a magnetic atmosphere, while remaining consistent with the dipole field geometry constrained by radio observations. We also explore a more extreme magnetic field configuration, where a magnetic dipole displaced from the center of the star produces two magnetic polar caps of different sizes and magnetic field strengths. These models are currently consistent with data in radio and X-rays and can be tested or constrained by future X-ray observations.

  16. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  17. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    SciTech Connect

    Petrova, S. A.

    2013-02-20

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  18. Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119--6127

    SciTech Connect

    Gonzalez, M E; Kaspi, V M; Camilo, F; Gaensler, B M; Pivovaroff, M J

    2005-08-05

    We present XMM-Newton observations of the radio pulsar PSR J1119-6127, which has an inferred age of 1,700 yr and surface dipole magnetic field strength of 4.1 x 10{sup 13} G. We report the first detection of pulsed X-ray emission from PSR J1119-6127. In the 0.5-2.0 keV range, the pulse profile shows a narrow peak with a very high pulsed fraction of (74 {+-} 14)%. In the 2.0-10.0 keV range, the upper limit for the pulsed fraction is 28% (99% confidence). The pulsed emission is well described by a thermal blackbody model with a temperature of T{infinity} = 2.4{sub -0.2}{sup +0.3} x 10{sup 6} K and emitting radius of 3.4{sub -0.3}{sup +1.8} km (at a distance of 8.4 kpc). Atmospheric models result in problematic estimates for the distance/emitting area. PSR J1119-6127 is now the radio pulsar with smallest characteristic age from which thermal X-ray emission has been detected. The combined temporal and spectral characteristics of this emission are unlike those of other radio pulsars detected at X-ray energies and challenge current models of thermal emission from neutron stars.

  19. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn; Klus, Helen; Coe, Malcolm; Andersson, Nils

    2015-08-01

    We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.

  20. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; Murakami, T.

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  1. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  2. Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field.

    PubMed

    De France, Kevin J; Yager, Kevin G; Hoare, Todd; Cranston, Emily D

    2016-08-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials that form chiral nematic liquid crystals above a critical concentration (C*) and additionally orient within electromagnetic fields. The control over CNC alignment is significant for materials processing and end use; to date, magnetic alignment has been demonstrated using only strong fields over extended or arbitrary time scales. This work investigates the effects of comparatively weak magnetic fields (0-1.2 T) and CNC concentration (1.65-8.25 wt %) on the kinetics and degree of CNC ordering using small-angle X-ray scattering. Interparticle spacing, correlation length, and orientation order parameters (η and S) increased with time and field strength following a sigmoidal profile. In a 1.2 T magnetic field for CNC suspensions above C*, partial alignment occurred in under 2 min followed by slower cooperative ordering to achieve nearly perfect alignment in under 200 min (S = -0.499 where S = -0.5 indicates perfect antialignment). At 0.56 T, nearly perfect alignment was also achieved, yet the ordering was 36% slower. Outside of a magnetic field, the order parameter plateaued at 52% alignment (S = -0.26) after 5 h, showcasing the drastic effects of relatively weak magnetic fields on CNC alignment. For suspensions below C*, no magnetic alignment was detected. PMID:27407001

  3. Stellar evolution and pulsars.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.

    1972-01-01

    It has been found that pulsars are rotating magnetic neutron stars, which are created during catastrophic collapses of old stars whose nuclear fuel has long since been used up. The maximum size of pulsars, based on the fastest rotation period of 33 msec, cannot exceed 100 km. The densest star the theory predicts is the neutron star. Its diameter is only 10 km. The processes producing radiation from pulsars are discussed, giving attention to a process similar to that by which a klystron operates and to a process based on a maser mechanism.

  4. Magnetars and white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  5. Leveraging intrinsic chain anisotropy to align coil-coil block copolymers with magnetic fields

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Gopinadhan, Manesh; Larson, Steve; Majewski, Pawel; Yager, Kevin; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    Magnetic field alignment of block copolymers (BCPs) has typically relied on the presence of liquid crystalline or crystalline assemblies to provide sufficient magnetic anisotropy to drive alignment. Recent experiments however show that alignment is also possible in simple coil-coil BCPs. In particular, alignment of lamellae was observed in poly(styrene-b-4-vinylpyridine) (PS-P4VP) on cooling across the order-disorder transition at field strengths as low as 1 T, with alignment improving markedly with increasing field strength and decreasing cooling rate. Here we discuss the intrinsic chain anisotropy which drives the observed alignment, and its display as a net microdomain anisotropy due to chain tethering at the block interface. We use in-situ X-ray scattering to study the phase behavior and temperature-, time-, and field- dependent dynamics of magnetic alignment in coil-coil BCPs, highlighting the important roles of chain anisotropy and grain size in alignment. For the right combination of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly in other coil-coil systems, including cylinder-forming poly(styrene-b-dimethylsiloxane). Field alignment of PS-P4VP with PEO and other blends provides a route to form functional materials such as nanoporous films and ion conducting polymers.

  6. Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.

    2004-01-01

    We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r

  7. Alignment of iron nanoparticles in a magnetic field due to shape anisotropy

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, B.; Nicholson, D. M.; Eisenbach, M.; Parish, C.; Ludtka, G. M.; Rios, O.

    2015-11-01

    During high magnetic field solidification processing there is evidence for the alignment of nanoscale metallic particles with elongated morphologies that nucleate from a liquid metal. Such alignment occurs well above the Curie temperature of the particle where the magneto-crystalline anisotropy energy and exchange energy contributions are negligible. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with a scaling law for the dipole-dipole interaction energy as a function of the particle size to identify the conditions under which such alignment is possible.

  8. Pulsar Animation

    NASA Video Gallery

    Pulsars are thought to emit relatively narrow radio beams, shown as green in this animation. If these beams don't sweep toward Earth, astronomers cannot detect the radio signals. Pulsar gamma-ray e...

  9. Preliminary studies on a magneto-optical procedure for aligning RHIC magnets

    SciTech Connect

    Goldman, M.A.; Sikora, R.E.; Shea, T.J.

    1993-06-01

    Colloid dispersions of magnetite were used at SLAC and KEK to locate multipole magnet centers. We study the possible adaption of this method, to align RHIC magnets. A procedure for locating magnetic centers with respect to external fiducial markers, using electronic coordinate determination and digital TV image processing is described.

  10. Pulsar braking: magnetodipole vs. wind

    NASA Astrophysics Data System (ADS)

    Tong, Hao

    2016-01-01

    Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More pulsars have braking indices measured. The period derivative of intermittent pulsars and magnetars can vary by a factor of several. However, during pulsar studies, the magnetic dipole braking in vacuum is still often assumed. It is shown that the fundamental assumption of magnetic dipole braking (vacuum condition) does not exist and it is not consistent with the observations. The physical torque must consider the presence of the pulsar magnetosphere. Among various efforts, the wind braking model can explain many observations of pulsars and magnetars in a unified way. It is also consistent with the up-to-date observations. It is time for a paradigm shift in pulsar studies: from magnetic dipole braking to wind braking. As one alternative to the magnetospheric model, the fallback disk model is also discussed.

  11. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    SciTech Connect

    Ng, C.-Y.; Kaspi, V. M.; Ho, W. C. G.; Weltevrede, P.; Bogdanov, S.; Shannon, R.; Gonzalez, M. E.

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  12. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  13. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants

    PubMed Central

    Burda, Hynek; Begall, Sabine; Červený, Jaroslav; Neef, Julia; Němec, Pavel

    2009-01-01

    Resting and grazing cattle and deer tend to align their body axes in the geomagnetic North-South direction. The mechanism(s) that underlie this behavior remain unknown. Here, we show that extremely low-frequency magnetic fields (ELFMFs) generated by high-voltage power lines disrupt alignment of the bodies of these animals with the geomagnetic field. Body orientation of cattle and roe deer was random on pastures under or near power lines. Moreover, cattle exposed to various magnetic fields directly beneath or in the vicinity of power lines trending in various magnetic directions exhibited distinct patterns of alignment. The disturbing effect of the ELFMFs on body alignment diminished with the distance from conductors. These findings constitute evidence for magnetic sensation in large mammals as well as evidence of an overt behavioral reaction to weak ELFMFs in vertebrates. The demonstrated reaction to weak ELFMFs implies effects at the cellular and molecular levels. PMID:19299504

  14. Pulsed taut-wire measurement of the magnetic alignment of the ITS induction cells

    SciTech Connect

    Melton, J.G.; Burns, M.J.; Honaberger, D.J.

    1993-06-01

    The mechanical and magnetic alignment of the first eight induction-cell, solenoid magnets of the Integrated Test Stand (ITS) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility were measured by observing the deflection of a fine, taut wire carrying a pulsed current. To achieve the required alignment (less than 0.25 mm offset and less than 5 mrad tilt), the magnet design uses quadrufilar windings and iron field-smoothing rings. After detailed measurements of each solenoid magnet, the cells are assembled and then mechanically aligned using a laser and an alignment target moved along the cell centerline. After the cells are in final position, the pulsed wire method is used to verify the magnetic alignment. The measurements show an average offset of the magnetic axes from the mechanical axis of 0. 15 mm, with a maximum offset of 0.3 mm. The average tilt of the magnetic axis was 0.7 mrad with a maximum tilt of 1.4 mrad. Tilts are corrected to less than 0.3 mrad, using dipole trim magnets assembled into each cell. Correction is limited noise.

  15. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  16. Distance Indicators of Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-01-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars including 24 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η = Lγ/Ė) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find the strong correlation of η - ζ3 a generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation of η - BLC the magnetic field at the light cylinder radius is also found. These correlations would be the distance indicators in gamma-ray pulsars to evaluate distances for gamma-selected pulsars. Distances of 25 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. Physical origin of the correlations may be also interesting for pulsar studies.

  17. PREDICTING RANGES FOR PULSARS' BRAKING INDICES

    SciTech Connect

    Magalhaes, Nadja S.; Miranda, Thaysa A.; Frajuca, Carlos

    2012-08-10

    The theoretical determination of braking indices of pulsars is still an open problem. In this paper we report results of a study concerning such determination based on a modification of the canonical model, which admits that pulsars are rotating magnetic dipoles, and on data from the seven pulsars with known braking indices. In order to test the modified model, we predict ranges for the braking indices of other pulsars.

  18. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.; Klus, H.; Coe, M. J.; Andersson, Nils

    2014-02-01

    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P ≳ 100 s) pulsars must possess either extremely weak (B < 1010 G) or extremely strong (B > 1014 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggest their magnetic field penetrates into the superconducting core of the neutron star.

  19. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    's clearly fading as it ages, it is still more than holding its own with the younger generations." It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar. The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so-called "pulsar death line," where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe. "We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co-author Oleg Kargaltsev of the University of Florida. "To understand the properties of 'dying pulsars,' it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission." The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought. "Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us

  20. On the alignment of plasma anisotropies and the magnetic field direction in the solar wind

    NASA Technical Reports Server (NTRS)

    Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Ness, N. F.

    1977-01-01

    One year's Imp 6 solar wind plasma and magnetic field data are examined to determine whether anisotropies in particle velocity distributions are aligned with the measured interplanetary magnetic field vector. Alignment of components in the analysis plane was generally found to be excellent whenever plasma parameter magnitudes were larger than determination uncertainties, although some spread exists (typical rms approximately equal to 10 deg). By assuming cylindrical symmetry about the simultaneously measured magnetic field vector during the 1-year interval under study, three-dimensional values of selected solar wind plasma thermal parameters were constructed from the two-dimensional plasma measurements, and the statistical properties of their distributions have been tabulated.

  1. Optical Polarization From Aligned Atoms As A Diagnostic Of Interstellar And Circumstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lazarian, A.

    2005-12-01

    Population among sublevels of the ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a perspective tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We discuss the process of alignment that can be used to study magnetic fields in interplanetary medium, interstellar medium, circumstellar regions and quasars. To exemplify what atomic alignment can provide to the observers we consider synthetic data obtained with MHD simulations of comet wake.

  2. Modeling of Gamma-ray Pulsar Light Curves Using the Force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Spitkovsky, Anatoly

    2010-06-01

    Gamma-ray emission from pulsars has long been modeled using a vacuum dipole field. This approximation ignores changes in the field structure caused by the magnetospheric plasma and strong plasma currents. We present the first results of gamma-ray pulsar light-curve modeling using the more realistic field taken from three-dimensional force-free (FF) magnetospheric simulations. Having the geometry of the field, we apply several prescriptions for the location of the emission zone, comparing the light curves to observations. We find that when the emission region is chosen according to the conventional slot-gap (or two-pole caustic) prescription, the model fails to produce double-peak pulse profiles, mainly because the size of the polar cap in the FF magnetosphere is larger than the vacuum field polar cap. This suppresses caustic formation in the inner magnetosphere. The conventional outer-gap model is capable of producing only one peak under general conditions because a large fraction of open field lines does not cross the null charge surface. We propose a novel "separatrix layer" model, where the high-energy emission originates from a thin layer on the open field lines just inside of the separatrix that bounds the open flux tube. The emission from this layer generates two strong caustics on the sky map due to the effect we term "Sky Map Stagnation" (SMS). It is related to the fact that the FF field asymptotically approaches the field of a rotating split monopole, and the photons emitted on such field lines in the outer magnetosphere arrive to the observer in phase. The double-peak light curve is a natural consequence of SMS. We show that most features of the currently available gamma-ray pulsar light curves can be reasonably well reproduced and explained with the separatrix layer model using the FF field. Association of the emission region with the current sheet will guide more detailed future studies of the magnetospheric acceleration physics.

  3. The enigma of the magnetic pulsar SXP1062: a new look with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia

    2012-10-01

    SXP 1062 is an exceptional case of a young neutron star with known age in a wind-fed HMXB. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. All current accretion scenarios encounter major difficulties explaining the spin-down rate of this accretion-powered pulsar. This study will allow us to construct a spin period-luminosity relation as a powerful tool for distinguishing between different accretion and evolution scenarios. The XMM-Newton observations of SXP 1062 will thus shed new light on the physics of accreting neutron stars.

  4. Liquid crystal surface alignments by using ion beam sputtered magnetic thin films

    SciTech Connect

    Wu, H.-Y.; Pan, R.-P.

    2007-08-13

    A method for liquid crystal surface alignment by using a one-step, ion beam bombardment of the glass substrates is demonstrated. Precoating by polyimide is not necessary. The authors show that the homeotropic alignment is achieved due to orientation of the diamagnetic nematogenic molecules by the magnetic field from the {gamma}-Fe{sub 2}O{sub 3} ferrimagnetic thin films created on the substrates by ion beam bombardment. The film exhibits a high Curie temperature well above 300 K and a compensation temperature which is the typical feature of ferrimagnetism. This is a simple, noncontact, and reliable alignment method for liquid crystal devices.

  5. Inertial spin alignment in a circular magnetic nanotube

    NASA Astrophysics Data System (ADS)

    Bergmann, Gerd; Thompson, Richard S.; Lu, Jia G.

    2015-09-01

    In cobalt nanotubes with a curling magnetization, the orbital motion of the conduction electrons interacts with their spin. As the spin goes around the nanotube it cannot follow the magnetization, since with the Fermi velocity it moves too fast. Instead, we predict that the spin precesses about an axis that is almost parallel to the axis of the nanotube and that rotates with the angular velocity of the electron. Therefore, the (absolute) value of the magnetic energy of the spin | μ ṡ B | is strongly reduced. The physics of the ferromagnet is considerably modified.

  6. ALIGNMENT OF THE SCALAR GRADIENT IN EVOLVING MAGNETIC FIELDS

    SciTech Connect

    Sur, Sharanya; Scannapieco, Evan; Pan, Liubin E-mail: evan.scannapieco@asu.edu

    2014-07-20

    We conduct simulations of turbulent mixing in the presence of a magnetic field, grown by the small-scale dynamo. We show that the scalar gradient field, ∇C, which must be large for diffusion to operate, is strongly biased perpendicular to the magnetic field, B. This is true both early on, when the magnetic field is negligible, and at late times, when the field is strong enough to back react on the flow. This occurs because ∇C increases within the plane of a compressive motion, but B increases perpendicular to it. At late times, the magnetic field resists compression, making it harder for scalar gradients to grow and likely slowing mixing.

  7. Draping of strongly flow-aligned interplanetary magnetic field about the magnetopause

    NASA Astrophysics Data System (ADS)

    Petrinec, S. M.

    2016-07-01

    Many dynamic processes of the magnetosphere are directly driven by the solar wind and the occurrence of magnetic merging at the magnetopause. The location of magnetopause magnetic merging, or reconnection, is now fairly well understood when the interplanetary magnetic field (IMF) contains large By and Bz components in relation to the Bx component (in Geocentric Solar Magnetospheric (GSM) coordinates). However, when the IMF contains a large X-component (i.e., is closely flow-aligned), it is not yet well understood how the shocked IMF drapes about the magnetopause, and how this affects the occurrence and location of magnetic merging. In this initial study, we examine from observations how a nearly flow-aligned IMF drapes about the magnetopause. The results of this study are expected to be useful for comparisons with both analytic and global numerical models of the magnetosheath magnetic field.

  8. Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods.

    PubMed

    Giskeødegård, Guro F; Bloemberg, Tom G; Postma, Geert; Sitter, Beathe; Tessem, May-Britt; Gribbestad, Ingrid S; Bathen, Tone F; Buydens, Lutgarde M C

    2010-12-17

    The peaks of magnetic resonance (MR) spectra can be shifted due to variations in physiological and experimental conditions, and correcting for misaligned peaks is an important part of data processing prior to multivariate analysis. In this paper, five warping algorithms (icoshift, COW, fastpa, VPdtw and PTW) are compared for their feasibility in aligning spectral peaks in three sets of high resolution magic angle spinning (HR-MAS) MR spectra with different degrees of misalignments, and their merits are discussed. In addition, extraction of information that might be present in the shifts is examined, both for simulated data and the real MR spectra. The generic evaluation methodology employs a number of frequently used quality criteria for evaluation of the alignments, together with PLS-DA to assess the influence of alignment on the classification outcome. Peak alignment greatly improved the internal similarity of the data sets. Especially icoshift and COW seem suitable for aligning HR-MAS MR spectra, possibly because they perform alignment segment-wise. The choice of reference spectrum can influence the alignment result, and it is advisable to test several references. Information from the peak shifts was extracted, and in one case cancer samples were successfully discriminated from normal tissue based on shift information only. Based on these findings, general recommendations for alignment of HR-MAS MRS data are presented. Where possible, observations are generalized to other data types (e.g. chromatographic data). PMID:21094376

  9. ON THE SPIN-DOWN AND MAGNETIC FIELD OF THE X-RAY PULSAR 1E 1207.4-5209

    SciTech Connect

    Halpern, J. P.; Gotthelf, E. V. E-mail: eric@astro.columbia.edu

    2011-06-01

    We analyze all of the archival X-ray timing data from the years 2000-2008 on the weakly magnetized central compact object (CCO) pulsar 1E 1207.4-5209 in an attempt to measure its dipole magnetic field strength via spin-down. because most of these observations were not planned for the purpose of phase-coherent timing, the resulting ephemeris is not unique, but is restricted to two comparably good timing solutions that correspond to B{sub s} = 9.9 x 10{sup 10} G or 2.4 x 10{sup 11} G, respectively, assuming dipole spin-down. One of these should be the correct value and the other one an alias. There are no spinning-up solutions. The smaller value of B{sub s} is close to the surface field of 8 x 10{sup 10} G that is measured independently from the unique absorption lines in the X-ray spectrum of 1E 1207.4-5209, assuming that the lowest-energy line at 0.7 keV is the electron-cyclotron fundamental. We suggest that 1E 1207.4-5209 has the strongest magnetic field among CCOs, which would account for the unique presence of its cyclotron absorption spectrum, while other CCOs likely have even weaker fields for which the cyclotron fundamental falls below the observable soft X-ray band.

  10. Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1–1.1 with a Highly Ordered Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Y. K.; Ng, C.-Y.; Bucciantini, N.; Slane, P. O.; Gaensler, B. M.; Temim, T.

    2016-04-01

    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the “Snail” PWN inside the supernova remnant G327.1‑1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50%–75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.

  11. Magnetic field-aligned coupling effects on ionospheric plasma structure

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Vickrey, J. F.

    1990-01-01

    This paper presents a mathematical description of the electrical coupling and dynamics of plasma structure in the E and F regions. The scale size dependence of the electric field coupling along the magnetic field is examined for a realistic background ionosphere and atmosphere. It is shown that, while normalized potentials map reciprocally between two altitudes, the potential disturbance caused by a fixed amplitude plasma density perturbation does not. The magnitude of electrostatic potential created by structured ionization is also shown to be strongly dependent on the altitude of the structure. The role of diffusion parallel to the magnetic field in the redistribution and decay of plasma structure is illustrated.

  12. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  13. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces. PMID:24569000

  14. Dynamics of Magnetic Field Alignment of Block Copolymers by In-Situ SAXS

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum; Gopinadhan, Manesh; Majewski, Pawel

    2013-03-01

    The use of external fields to direct block copolymer self-assembly is well documented. Magnetic fields offer particular promise due to their space-pervasive nature and the ability to produce arbitrary alignments over truly macroscopic length scales in appropriate systems. We present here the results of in-situ SAXS studies performed using a custom superconducting magnet integrated with lab-scale x-ray scattering instruments. We consider the case of side-chain liquid crystalline diblock copolymers ordering under high magnetic fields. Despite the coincidence of the block copolymer order-disorder transition (ODT) and the LC clearing temperature in these weakly segregated materials, there is no measurable effect of the field on the ODT of the system, up to 6 T. This is in line with estimates based simply on the magnitudes of the relevant energy scales - the free energy of field interaction and the enthalpy of the isotropic-LC transition. We show that the alignment of the system is critically limited by the viscosity of the mesophase such that alignment can only be advanced by residence in a small temperature window near the ODT. This residence produces a weakly aligned system which thereafter transitions to a strongly aligned state on cooling even in the absence of the field. This work was conducted with support from NSF under DMR-0847534

  15. Magnetic Alignment in Carps: Evidence from the Czech Christmas Fish Market

    PubMed Central

    Hart, Vlastimil; Kušta, Tomáš; Němec, Pavel; Bláhová, Veronika; Ježek, Miloš; Nováková, Petra; Begall, Sabine; Červený, Jaroslav; Hanzal, Vladimír; Malkemper, Erich Pascal; Štípek, Kamil; Vole, Christiane; Burda, Hynek

    2012-01-01

    While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential. PMID:23227241

  16. Alignments in quasar polarizations: Pseudoscalar-photon mixing in the presence of correlated magnetic fields

    SciTech Connect

    Agarwal, Nishant; Kamal, Archana; Jain, Pankaj

    2011-03-15

    We investigate the effects of pseudoscalar-photon mixing on electromagnetic radiation in the presence of correlated extragalactic magnetic fields. We model the Universe as a collection of magnetic domains and study the propagation of radiation through them. This leads to correlations between Stokes parameters over large scales and consistently explains the observed large-scale alignment of quasar polarizations at different redshifts within the framework of the big bang model.

  17. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    SciTech Connect

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment of small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.

  18. On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Poutanen, Juri

    2015-12-01

    We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can reach values of the order of 1040 erg s-1 for the magnetar-like magnetic field (B ≳ 1014 G) and long spin periods (P ≳ 1.5 s). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that L ≃ 1040 erg s-1 is a good estimate for the limiting accretion luminosity of an NS. Because this luminosity coincides with the cut-off observed in the high-mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultraluminous X-ray sources are accreting neutron stars in binary systems.

  19. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    SciTech Connect

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire; Langston, Glen

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  20. Pair-eigenstates and mutual alignment of coupled molecular rotors in a magnetic field.

    PubMed

    Sharma, Ketan; Friedrich, Bretislav

    2016-05-11

    We examine the rotational states of a pair of polar (2)Σ molecules subject to a uniform magnetic field. The electric dipole-dipole interaction between the molecules creates entangled pair-eigenstates of two types. In one type, the Zeeman interaction between the inherently paramagnetic molecules and the magnetic field destroys the entanglement of the pair-eigenstates, whereas in the other type it does not. The pair-eigenstates exhibit numerous intersections, which become avoided for pair-eigenstates comprised of individual states that meet the selection rules ΔJi = 0, ± 1, ΔNi = 2n (n = 0, ±1, ±2,…), and ΔMi = 0, ± 1 imposed by the electric dipole-dipole operator. Here Ji, Ni and Mi are the total, rotational and projection angular momentum quantum numbers of molecules i = 1, 2 in the absence of the electric dipole-dipole interaction. We evaluate the mutual alignment of the pair-eigenstates and find it to be independent of the magnetic field, except for states that undergo avoided crossings, in which case the alignment of the interacting states is interchanged at the magnetic field corresponding to the crossing point. We present an analytic model which provides ready estimates of the pairwise alignment cosine that characterises the mutual alignment of the pair of coupled rotors. PMID:27126576

  1. Fluctuating neutron star magnetosphere: braking indices of eight pulsars, frequency second derivatives of 222 pulsars and 15 magnetars

    NASA Astrophysics Data System (ADS)

    Ou, Z. W.; Tong, H.; Kou, F. F.; Ding, G. Q.

    2016-04-01

    Eight pulsars have low braking indices, which challenge the magnetic dipole braking of pulsars. 222 pulsars and 15 magnetars have abnormal distribution of frequency second derivatives, which also make contradiction with classical understanding. How neutron star magnetospheric activities affect these two phenomena are investigated by using the wind braking model of pulsars. It is based on the observational evidence that pulsar timing is correlated with emission and both aspects reflect the magnetospheric activities. Fluctuations are unavoidable for a physical neutron star magnetosphere. Young pulsars have meaningful braking indices, while old pulsars' and magnetars' fluctuation item dominates their frequency second derivatives. It can explain both the braking index and frequency second derivative of pulsars uniformly. The braking indices of eight pulsars are the combined effect of magnetic dipole radiation and particle wind. During the lifetime of a pulsar, its braking index will evolve from three to one. Pulsars with low braking index may put strong constraint on the particle acceleration process in the neutron star magnetosphere. The effect of pulsar death should be considered during the long term rotational evolution of pulsars. An equation like the Langevin equation for Brownian motion was derived for pulsar spin-down. The fluctuation in the neutron star magnetosphere can be either periodic or random, which result in anomalous frequency second derivative and they have similar results. The magnetospheric activities of magnetars are always stronger than those of normal pulsars.

  2. On the pulse-width statistics in radio pulsars - I. Importance of the interpulse emission

    NASA Astrophysics Data System (ADS)

    Maciesiak, Krzysztof; Gil, Janusz; Ribeiro, Valério A. R. M.

    2011-06-01

    We performed Monte Carlo simulations of different properties of pulsar radio emission, such as pulsar periods, pulse widths, inclination angles and rates of occurrence of interpulse (IP) emission. We used recently available large data sets of the pulsar periods P, the pulse profile widths W and the magnetic inclination angle α. We also compiled the largest ever data base of pulsars with IP, divided into the double pole (DP-IP) and the single pole (SP-IP) cases. We identified 31 (about 2 per cent) and 13 (about 1 per cent) of the former and the latter, respectively, in the population of 1520 normal pulsars. Their distribution on the ? diagram strongly suggests a secular alignment of the magnetic axis from the originally random orientation. We derived possible parent distribution functions of important pulsar parameters by means of the Kolmogorov-Smirnov significance test using the available data sets (P, W, α and IP), different models of pulsar radio beam ρ=ρ(P) as well as different trial distribution functions of pulsar period P and the inclination angles α. The best suited parent period distribution function is the lognormal distribution, although the gamma function distribution cannot be excluded. The strongest constraint on derived model distribution functions was the requirement that the numbers of IPs generated by means of Monte Carlo simulations (both DP-IP and SP-IP cases) were exactly (within 1σ errors) at the observed level of occurrences. We found that a suitable model distribution function for the inclination angle is the complicated trigonometric function which has two local maxima, one near 0° and the other near 90°. The former and the latter imply the right rates of IP, occurrence, single pole (almost aligned rotator) and double pole (almost orthogonal rotator), respectively. It is very unlikely that the pulsar beam deviates significantly from the circular cross-section. We found that the upper limit for the average beaming factor fb

  3. Spontaneous Magnetic Alignment by Yearling Snapping Turtles: Rapid Association of Radio Frequency Dependent Pattern of Magnetic Input with Novel Surroundings

    PubMed Central

    Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736

  4. Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films.

    PubMed

    Kartikowati, Christina W; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-02-01

    Aligning the magnetic orientation is one strategy to improve the magnetic performance of magnetic materials. In this study, well-dispersed single-domain core-shell α''-Fe16N2/Al2O3 nanoparticles (NPs) were aligned by vertically applying magnetic fields with various strengths to a Si wafer substrate followed by fixation with resin. X-ray diffraction indicated that the alignment of the easy c-axis of the α''-Fe16N2 crystal and the magnetic orientation of the NPs depended upon the applied magnetic field. Magnetic analysis demonstrated that increasing the magnetic field strength resulted in hysteresis loops approaching a rectangular form, implying a higher magnetic coercivity, remanence, and maximum energy product. The same tendency was also observed when a horizontal magnetic field was applied. The fixation of the easy c-axis alignment of each nanoparticle caused by Brownian rotation under the magnetic field, instead of Néel rotation, was the reason for the enhancement in the magnetic performance. These results on the alignment of the magnetic orientation of α''-Fe16N2 NPs suggest the practical application of high-performance permanent bulk magnets from well-dispersed single-domain α''-Fe16N2/Al2O3 NPs. PMID:26758175

  5. Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Kartikowati, Christina W.; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-01

    Aligning the magnetic orientation is one strategy to improve the magnetic performance of magnetic materials. In this study, well-dispersed single-domain core-shell α''-Fe16N2/Al2O3 nanoparticles (NPs) were aligned by vertically applying magnetic fields with various strengths to a Si wafer substrate followed by fixation with resin. X-ray diffraction indicated that the alignment of the easy c-axis of the α''-Fe16N2 crystal and the magnetic orientation of the NPs depended upon the applied magnetic field. Magnetic analysis demonstrated that increasing the magnetic field strength resulted in hysteresis loops approaching a rectangular form, implying a higher magnetic coercivity, remanence, and maximum energy product. The same tendency was also observed when a horizontal magnetic field was applied. The fixation of the easy c-axis alignment of each nanoparticle caused by Brownian rotation under the magnetic field, instead of Néel rotation, was the reason for the enhancement in the magnetic performance. These results on the alignment of the magnetic orientation of α''-Fe16N2 NPs suggest the practical application of high-performance permanent bulk magnets from well-dispersed single-domain α''-Fe16N2/Al2O3 NPs.

  6. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    's clearly fading as it ages, it is still more than holding its own with the younger generations." It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar. The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so-called "pulsar death line," where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe. "We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co-author Oleg Kargaltsev of the University of Florida. "To understand the properties of 'dying pulsars,' it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission." The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought. "Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us

  7. In-situ SAXS observation of magnetic field effects on block copolymer ordering and alignment

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum; Gopinadhan, Manesh; Majewksi, Pawel

    2012-02-01

    The use of external fields to direct block copolymer self-assembly is well documented. Magnetic fields offer particular promise due to their space-pervasive nature and the ability to produce arbitrary alignments over truly macroscopic length scales in appropriate systems. We present here the results of in-situ SAXS studies of side-chain liquid crystalline diblock copolymers ordering under high magnetic fields and ex-situ GISAXS data on thin films. Despite the coincidence of the block copolymer order-disorder transition (ODT) and the LC clearing temperature in these weakly segregated materials, there is no measurable effect of the field on the ODT of the system, up to 6 T. This is in line with rough estimates based simply on the magnitudes of the relevant energy scales - the free energy of field interaction and the enthalpy of the isotropic-LC transition. We show that the alignment of the system is critically limited by the viscosity of the mesophase such that alignment can only be advanced by residence in a small temperature window near TODT. This residence produces a weakly aligned system which thereafter transitions to a strongly aligned state on cooling even in the absence of the field.

  8. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    suggests that long-lived supernova fallback disks may actually be much rarer than thought, or they exist only in conditions that arent compatible with planet formation.So if thats the case, what about the planets found around PSR 1257+12? This pulsar may actually be somewhat unique, in that it was born with an unusually weak magnetic field. This birth defect might have allowed it to form a fallback disk and, subsequently, planets where the sample of energetic pulsars studied here could not.CitationM. Kerr et al.2015 ApJ 809 L11 doi:10.1088/2041-8205/809/1/L11

  9. Recycled pulsars

    NASA Astrophysics Data System (ADS)

    Jacoby, Bryan Anthony

    2005-11-01

    In a survey of ~4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay which has allowed the most precise measurement of the mass of a millisecond pulsar: m p = (1.438 +/- 0.024) [Special characters omitted.] . Our accurate parallax distance measurement, d p = ([Special characters omitted.] ) kpc, combined with the mass of the optically-detected companion, m c = (0.2038 +/- 0.022) [Special characters omitted.] , will provide an important calibration for white dwarf models relevant to other LMBP companions. We have detected optical counterparts for two intermediate mass binary pulsar (IMBP) systems; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age t = c P /2 P consistently overestimates the time since the end of mass accretion in these recycled systems. We have measured orbital decay in the double neutron star system PSR B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, m p = (1.3584 +/- 0.0097) [Special characters omitted.] , and companion, m c = (1.3544 +/- 0.0097) [Special characters omitted.] , as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as PSR B2127+11A and PSR B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62

  10. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  11. On the evolution of pulsars

    NASA Technical Reports Server (NTRS)

    Beskin, V. S.; Gurevich, A. V.; Istomin, Ya. N.

    1991-01-01

    Data from a previous investigation on the angle chi between the axis of rotation and the magnetic dipole axis, determined from polarization observations, provides a complete catalog which makes it possible to carry out a detailed comparison of the theoretical results of this present investigation with the observed distribution of radio pulsars over the angel chi. Before such a comparison is made, the main features of a theory for pulsar evolution is described.

  12. Magnetic field aligned assembly of nonmagnetic composite dumbbells in nanoparticle-based aqueous ferrofluid.

    PubMed

    Takahashi, Hayato; Nagao, Daisuke; Watanabe, Kanako; Ishii, Haruyuki; Konno, Mikio

    2015-05-26

    Monodisperse, nonmagnetic, asymmetrical composite dumbbells in a suspension of magnetic nanoparticles (ferrofluid) were aligned by application of an external magnetic field to the ferrofluid. The asymmetrical composite dumbbells were prepared by two-step soap-free emulsion polymerization consisting of the first polymerization to coat spherical silica cores with cross-linked poly(methyl methacrylate) (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) lobe from the core-shell particles. A chain structure of nonmagnetic dumbbells oriented to the applied magnetic field was observed at nanoparticle content of 2.0 vol % and field strengths higher than 1.0 mT. A similar chain structure of the dumbbells was observed under application of alternating electric field at strengths higher than 50 V/mm. Parallel and orthogonally combined applications of the electric and magnetic fields were also conducted to examine independence of the electric and magnetic applications as operational factors in the dumbbell assembling. Dumbbell chains stiffer than those in a single application of external field were formed in the parallel combined application of electric and magnetic fields. The orthogonal combination of the different applied fields could form a magnetically aligned chain structure of the nonmagnetic dumbbells oriented to the electric field. The present work experimentally indicated that the employment of inverse magnetorheological effect for nonmagnetic, anisotropic particles can be a useful method for the simultaneous controls over the orientation and the positon of anisotropic particles in their assembling. PMID:25927488

  13. High-energy emission of the first millisecond pulsar

    SciTech Connect

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S.; Philippopoulos, P.

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  14. High-energy Emission of the First Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S.; Philippopoulos, P.

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  15. X-ray study of aligned magnetic stripe domains in perpendicular multilayers

    SciTech Connect

    Hellwig, O.; Denbeaux, G.P.; Kortright, J.B.; Fullerton, Eric E.

    2003-03-03

    We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.

  16. Liquid Crystalline Block Copolymers with Brush Type Architecture: Toward Functional Membranes by Magnetic Field Alignment

    NASA Astrophysics Data System (ADS)

    Choo, Youngwoo; Gopinadhan, Manesh; Mahajan, Lalit; Kasi, Rajeswari; Osuji, Chinedum

    2015-03-01

    We introduce a novel liquid crystalline block copolymer with brush type architecture for membrane applications by magnetic field directed self-assembly. Ring-opening metathesis of n-alkyloxy cyanobiphenyl and polylactide (PLA) functionalized norbornene monomers provides efficient polymerization yielding low polydispersity block copolymers. The molecular weight of the PLA side chains, spacer length of the cyanobiphenyl mesogens are systematically varied to form well-ordered BCP morphologies at varying volume fractions. Interestingly, the system features morphology dependent anchoring condition where mesogens adopt planar anchoring on cylindrical interface while homeotropic anchoring was preferred on a planar block interface. The minority PLA domains from highly aligned materials can be readily degraded by hydrolysis to produce vertically aligned nanoporous polymer films which exhibit reversible thermal switching behavior. The polymers introduced here provide a versatile platform for scalable fabrication of aligned membranes and further functional materials based on such templates. This work was supported by NSF(CCMI-1246804).

  17. Magnetically Aligned Bicelles to Study the Orientation of Lipophilic Ligands in Membrane Bilayers

    PubMed Central

    Guo, Jianxin; Yang, De-Ping; Chari, Ravi; Tian, Xiaoyu; Pavlopoulos, Spiro; Lu, Dai; Makriyannis, Alexandros

    2013-01-01

    Magnetically aligned bicelles were used as a model membrane to study the orientation and dynamic properties of two cannabinoids (Δ8-THC and Me-Δ8-THC) using 31P- and 2H-NMR. The uniform alignment of the bicelles allowed us to obtain well resolved deuterium spectra from a solution NMR spectrometer. The preferred orientations of Δ8-THC and Me-Δ8-THC were calculated based on the measurements of individual quadrupolar splittings. Our results agree with previous experiments using multilamellar membranes as well as with molecular dynamics simulation data described here. In conjunction with our earlier report using small and fast tumbling bicelles, the present work of well aligned bicelles shows that bicelle preparations can provide either pseudo-isotropic or anisotropic NMR spectra to study the conformation, orientation and dynamic properties of ligands in membrane bilayers. Such data are of critical value for understanding the interactions of lipophilic drug molecules with membrane proteins. PMID:18834109

  18. A STRONGLY MAGNETIZED PULSAR WITHIN THE GRASP OF THE MILKY WAY'S SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Rea, N.; Torres, D. F.; Papitto, A.; Camero-Arranz, A.; Esposito, P.; Mereghetti, S.; Tiengo, A.; Pons, J. A.; Viganò, D.; Turolla, R.; Israel, G. L.; Stella, L.; Possenti, A.; Burgay, M.; Perna, R.; Ponti, G.; Baganoff, F. K.; Haggard, D.; Zane, S.; Minter, A.; and others

    2013-10-01

    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of Sgr A* are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4 ± 0.3 arcsec from Sgr A*, and refine the source spin period and its derivative (P = 3.7635537(2) s and P-dot = 6.61(4)×10{sup -12} s s{sup –1}), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm{sup –3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07-2 pc from Sgr A*. Simulations of its possible motion around Sgr A* show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.

  19. Solution Processing of Ordered Thin Film Nanowire Composites by Magnetic Field Alignment

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Pelligra, Candice; Huang, Su; Osuji, Chinedum

    2014-03-01

    Vertically aligned nanowire forests are a desirable geometry for many applications, including as electrodes, heterojunctions, and high surface energy interfaces. Most conventional aligned nanowire structures, however, are generated by methods that require (i) high temperatures, (ii) a specific substrate, or (iii) high cost lithographic techniques. We seek to utilize the magnetic alignment of cobalt-doped zinc oxide nanowires to enable the solution processing of thin films of aligned nanowires on a generalized substrate at a fraction of the cost of other methods. By functionalization of the nanowires with various surface modifications, they can be dispersed in several solvent systems and aligned by a 6 T field. Further, by including polymer in the wire solution, we can both control the areal density and also incorporate additional functionalities to the final composite device. As an example, the use of a conjugated polymer (such as poly(3-hexylthiophene-2,5-diyl) (P3HT)) allows for the final structures to act as inorganic-organic ordered heterojunction solar cells. While final device quality depends on the simultaneous optimization of several key processing parameters, the process does not rely on top-down fabrication or costly materials. Supported by ONR YIP Award N000141210657.

  20. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm‑2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  1. Magnetically aligned polymers and nanocomposites for energy harvesting and energy storage applications

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel; Gopinadhan, Manesh; Pelligra, Candice; Zhang, Shanju; Pfefferle, Lisa; Campos, Luis; Osuji, Chinedum

    2012-02-01

    The realization of anisotropic, nanostructured, functional materials by self-assembly is impaired by the persistence of structural defects which render the properties of the system isotropic on macroscopic length scales. We present three distinct systems including ZnO nanowire-semiconducting polymer composites, Li-ion conducting block copolymer membranes, and perylene-based block copolymers where self-assembly under a magnetic field yields alignment and global anisotropy of their physical properties. The resulting aligned nanostructured systems are attractive for ordered heterojunction photovoltaics, high performance solid polymer electrolyte membranes and electro-optical devices, respectively. Our results demonstrate that magnetic fields offer a viable route for directing the self-assembly of certain soft functional materials. The ready scalability of this approach makes it potentially important from a technological standpoint.

  2. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum

    2014-03-01

    Magnetic fields provide a facile approach to direct the self-assembly of magnetically anisotropic block copolymer nanostructures in a scalable manner. Here we combine such field-based processing with materials design to enable the fabrication of polymer films with highly aligned stimuli-responsive nanopores. Etch removal of a poly(D,L-lactide) (PLA) brush that is the minority component of a liquid crystalline block copolymer is used to produce nanopores of ~ 8 nm diameter. The pores can be reversibly closed and opened while retaining their alignment by appropriate heating and cooling. We present TEM and temperture resolved scattering data during pore closure and re-opening to explore the mechanism and kinetics of pore collapse. NSF DMR-0847534; DMR-1119826.

  3. The Radio Properties and Magnetic Field Configuration in the Crab-Like Pulsar Wind Nebula G54.1+0.3

    NASA Astrophysics Data System (ADS)

    Lang, Cornelia C.; Wang, Q. Daniel; Lu, Fangjun; Clubb, Kelsey I.

    2010-02-01

    We present a multifrequency radio investigation of the Crab-like pulsar wind nebula (PWN) G54.1+0.3 using the Very Large Array. The high resolution of the observations reveals that G54.1+0.3 has a complex radio structure which includes filamentary and loop-like structures that are magnetized, a diffuse extent similar to the associated diffuse X-ray emission. But the radio and X-ray structures in the central region differ strikingly, indicating that they trace very different forms of particle injection from the pulsar and/or particle acceleration in the nebula. No spectral index gradient is detected in the radio emission across the PWN, whereas the X-ray emission softens outward in the nebula. The extensive radio polarization allows us to image in detail the intrinsic magnetic field, which is well-ordered and reveals that a number of loop-like filaments are strongly magnetized. In addition, we determine that there are both radial and toroidal components to the magnetic field structure of the PWN. Strong mid-infrared (IR) emission detected in Spitzer Space Telescope data is closely correlated with the radio emission arising from the southern edge of G54.1+0.3. In particular, the distributions of radio and X-ray emission compared with the mid-IR emission suggest that the PWN may be interacting with this interstellar cloud. This may be the first PWN where we are directly detecting its interplay with an interstellar cloud that has survived the impact of the supernova explosion associated with the pulsar's progenitor.

  4. Scale-Dependent Alignment of Velocity and Magnetic Fluctuations in Anisotropic MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Ng, C.; Bhattacharjee, A.; Bigot, B.; Ponty, Y.

    2009-12-01

    The tendency of alignment between velocity and magnetic field fluctuations in MHD turbulence has been a subject of great interest theoretically [Grappin et al. 1983, Matthaeus et al. 1983, Pouquet et al. 1988] as well as observationally over many years. There has been recent theoretical interest in the effect of scale-dependent alignment of velocity and magnetic fluctuations in 3D anisotropic MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ ∝ λ1/4, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. In this paper, we demonstrate that the feature of scale-dependent alignment and the scaling of θ ∝ λ1/4 also occurs in 2D within a range of time interval and spatial scales, despite the fact that Boldyrev’s phenomenological theory appears to rely on physical mechanisms operative in fully 3D turbulence in the presence of a strong external field. High-resolution pseudo-spectral simulations and scaling analysis, based on pseudo-Alfven waves in 2D, will be presented. These findings suggests that the phenomenon of scale-dependent alignment may be a more universal feature of MHD turbulence than has been thought recently, independent of dimensionality, whether the turbulence is balanced or imbalanced. Implications for solar wind turbulence observations will be discussed. This work is supported by DOE and NASA.

  5. Influence of magnetic field alignment and defect concentration on nitrogen-vacancy polarization in diamond

    NASA Astrophysics Data System (ADS)

    Drake, M.; Scott, E.; Reimer, J. A.

    2016-01-01

    We present a quantitative, systematic study of the polarization of the Zeeman magnetic sublevels of the NV-defect in diamond as a function of magnetic field alignment relative to the NV-defect axis. The orientation dependence of NV-polarization in the lab frame is accounted for by a Wigner rotation of a constant defect frame polarization. We also find that the NV-defect level polarizations vary with the P1 defect concentration, and that the polarization of the m s = 0 state with optical pumping decreases from 46% to 36% in samples as P1 concentrations vary from 20 ppm to 100 ppm, respectively.

  6. Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales?

    PubMed

    Poltis, Robert; Stojkovic, Dejan

    2010-10-15

    The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations. PMID:21230960

  7. Pulsar Electrodynamics: a Time-dependent View

    SciTech Connect

    Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2006-04-10

    Pulsar spindown forms a reliable yet enigmatic prototype for the energy loss processes in many astrophysical objects including accretion disks and back holes. In this paper we review the physics of pulsar magnetospheres, concentrating on recent developments in force-free modeling of the magnetospheric structure. In particular, we discuss a new method for solving the equations of time-dependent force-free relativistic MHD in application to pulsars. This method allows to dynamically study the formation of the magnetosphere and its response to perturbations, opening a qualitatively new window on pulsar phenomena. Applications of the method to other magnetized rotators, such as magnetars and accretion disks, are also discussed.

  8. Pulsar searching and timing with the Parkes telescope

    NASA Astrophysics Data System (ADS)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates

  9. Out-of-Plane Alignment of Er(trensal) Easy Magnetization Axes Using Graphene.

    PubMed

    Dreiser, Jan; Pacchioni, Giulia E; Donati, Fabio; Gragnaniello, Luca; Cavallin, Alberto; Pedersen, Kasper S; Bendix, Jesper; Delley, Bernard; Pivetta, Marina; Rusponi, Stefano; Brune, Harald

    2016-02-23

    We have studied Er(trensal) single-ion magnets adsorbed on graphene/Ru(0001), on graphene/Ir(111), and on bare Ru(0001) by scanning tunneling microscopy and X-ray absorption spectroscopy. On graphene, the molecules self-assemble into dense and well-ordered islands with their magnetic easy axes perpendicular to the surface. In contrast, on bare Ru(0001), the molecules are disordered, exhibiting only weak directional preference of the easy magnetization axis. The perfect out-of-plane alignment of the easy axes on graphene results from the molecule-molecule interaction, which dominates over the weak adsorption on the graphene surface. Our results demonstrate that the net magnetic properties of a molecular submonolayer can be tuned using a graphene spacer layer, which is attractive for hybrid molecule-inorganic spintronic devices. PMID:26814851

  10. Radio polarimetry of Galactic Centre pulsars

    NASA Astrophysics Data System (ADS)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-07-01

    To study the strength and structure of the magnetic field in the Galactic Centre (GC), we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 and 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  11. Radio polarimetry of Galactic centre pulsars

    NASA Astrophysics Data System (ADS)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-04-01

    To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 - 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜ 12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳ 100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  12. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  13. Self-assembled coronene nanofibers: optical waveguide effect and magnetic alignment

    NASA Astrophysics Data System (ADS)

    Takazawa, Ken; Inoue, Jun-Ichi; Mitsuishi, Kazutaka

    2014-03-01

    To fabricate organic nanofibers that function as active optical waveguides with semiconductor properties, a facile procedure was developed to grow single crystalline nanofibers via π-π stacking of the polycyclic aromatic molecule, coronene, through solution evaporation on a substrate. The fabricated nanofibers with millimeter-scale lengths have well-defined shapes, smooth surfaces, and low-defect structures. The nanofibers are demonstrated to function as efficient active waveguides that propagate their fluorescence (FL) along the fiber axis over their entire length. We further demonstrate that the nanofibers can be highly aligned on the substrate when solution evaporation is conducted in a magnetic field of 12 T. The mechanism of the magnetic alignment can be elucidated by considering the anisotropy of the diamagnetic susceptibility of a single coronene molecule and the crystal structure of a nanofiber. Owing to the high degree of alignment, the nanofibers rarely cross each other, allowing for measurement of the waveguiding properties of single isolated nanofibers. The nanofibers propagate their FL of λ > 500 nm with a low propagation loss of 0-3 dB per 100 μm, indicating that the nanofibers function as sub-wavelength scale, low-loss waveguides. Thus, they are promising building blocks for miniaturized optoelectronic circuits.

  14. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    SciTech Connect

    Johnson, A.L.

    1988-06-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references.

  15. Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment

    SciTech Connect

    Idigoras, O. Suszka, A. K.; Berger, A.; Vavassori, P.; Obry, B.; Hillebrands, B.; Landeros, P.

    2014-02-28

    This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field angle dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.

  16. A Chandra Search for a Pulsar Wind Nebula around PSR B1055-52

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Spence, G.; Pavlov, G. G.

    2015-10-01

    The nearby, middle-aged PSR B1055-52 has many properties in common with the Geminga pulsar. Motivated by the Geminga's enigmatic and prominent pulsar wind nebula (PWN), we searched for extended emission around PSR B1055-52 with Chandra ACIS. For an energy range 0.3-1 keV, we found a 4σ flux enhancement in a 4\\buildrel{\\prime\\prime}\\over{.} 9-20\\prime\\prime annulus around the pulsar. There is a slight asymmetry in the emission close, 1\\buildrel{\\prime\\prime}\\over{.} 5-4\\prime\\prime , to the pulsar. The excess emission has a luminosity of about 1029 erg s-1 in an energy range 0.3-8 keV for a distance of 350 pc. Overall, the faint extended emission around \\text{PSR B1055-52} is consistent with a PWN of an aligned rotator moving away from us along the line of sight with supersonic velocity, but a contribution from a dust scattering halo cannot be excluded. Comparing the properties of other nearby, middle-aged pulsars, we suggest that the geometry—the orientations of rotation axis, magnetic field axis, and the sight-line—is the deciding factor for a pulsar to show a prominent PWN. We also report on an ≳ 30% flux decrease of PSR B1055-52 between the 2000 XMM-Newton and our 2012 Chandra observation. We tentatively attribute this flux decrease to a cross-calibration problem, but further investigations of the pulsar are required to exclude actual intrinsic flux changes.

  17. Six millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection of millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Espinoza, C. M.; Guillemot, L.; Çelik, Ö.; Weltevrede, P.; Stappers, B. W.; Smith, D. A.; Kerr, M.; Zavlin, V. E.; Cognard, I.; Eatough, R. P.; Freire, P. C. C.; Janssen, G. H.; Camilo, F.; Desvignes, G.; Hewitt, J. W.; Hou, X.; Johnston, S.; Keith, M.; Kramer, M.; Lyne, A.; Manchester, R. N.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Theureau, G.; Webb, N.

    2013-03-01

    We report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and J2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While PSR J2051-0827 is firmly detected, we can only give upper limits for the X-ray flux of PSR J1600-3053. There are no dedicated X-ray observations available for the other three objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs. This sample is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We show that MSPs with pulsed gamma-ray emission which is phase-aligned with the radio emission present the steepest radio spectra and the largest magnetic fields at the light cylinder among all MSPs. Also, we observe a trend towards very low, or undetectable, radio linear polarization levels. These properties could be attributed to caustic radio emission produced at a range of different altitudes in the magnetosphere. We note that most of these characteristics are also observed in the Crab pulsar, the only other radio pulsar known to exhibit phase-aligned radio and gamma-ray emission.

  18. Pulsars for the Beginner

    ERIC Educational Resources Information Center

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  19. Alignment of the high beta magnets in the RHIC interaction regions

    SciTech Connect

    Trbojevic, D.; Jain, A.; Tepikian, S.; Grandinetti, R.; Ganetis, G.; Wei, J.; Karl, F.

    1997-07-01

    The betatron functions inside the triplet quadrupoles in the Relativistic Heavy Ion Collider-RHIC are of the order of 1,500 m, necessitating additional attention in the alignment procedure. On each side of the interaction regions eight cryogenic elements (six quadrupoles and two horizontal bending dipoles) are placed inside large cryostats. The quadrupole magnetic centers are obtained by antenna measurements with an accuracy of {+-} 60 {micro}m. The signals from the antenna were cross calibrated with the colloidal cell measurements of the same magnet. The positions of the fiducials are related to the magnet centers during the antenna measurements. Elements are positioned warm inside the cryostats, with offsets to account for shrinkage during the cool down. The supports at the middle of the two central quadrupoles are fixed, while every other element slides longitudinally inside the cryostat during cool down or warm up.

  20. Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1999-06-01

    Photorefractive Bragg gratings are observed in low-molar-mass nematic liquid crystals doped with electron donor and acceptor molecules. This is accomplished by alignment of the nematic liquid crystals in a 0.3 T magnetic field, which produces thicker homeotropic aligned samples than traditional surfactant techniques. Grating fringe spacings as low as 3.7 {mu}m are achieved with 176-{mu}m-thick samples, producing grating {ital Q} values of 33. Up to this point, low molar mass nematic liquid crystals have exhibited photorefractive gratings with Q{le}1. Asymmetric two-beam coupling and photoconductivity experiments are performed to verify the photorefractive origin of the gratings. {copyright} {ital 1999 American Institute of Physics.}

  1. Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Liu, Mingquan; Xiang, Jun

    2011-02-01

    The nanocomposite SrFe(12)O(19)/Ni(0.5)Zn(0.5)Fe(2)O(4) ferrite aligned hollow microfibers with the hollow diameter to the fiber diameter estimated about 3/5 have been prepared by the gel precursor transformation process. The nanocomposite binary ferrites with different mass ratios are formed after the precursor calcined at 900°C for 2h, fabricating from SrFe(12)O(19) nanoparticles and Ni(0.5)Zn(0.5)Fe(2)O(4) nanoparticles with a uniform phase distribution. These nanocomposite ferrite microfibers show a combination of magnetic characteristics for the hard (SrFe(12)O(19)) and soft (Ni(0.5)Zn(0.5)Fe(2)O(4)) phase with an enhanced remanence owing to the exchange-coupling interactions. The aligned microfibers exhibit a shape anisotropy. PMID:21144534

  2. SAXS reveals the magnetic alignment pathway of the goethite columnar liquid crystal phase.

    PubMed

    Leferink op Reinink, Anke B G M; van den Pol, Esther; Vroege, Gert Jan; Petukhov, Andrei V

    2014-08-15

    The alignment of board-like colloidal goethite particles in the dense rectangular centred columnar liquid crystal phase in an external magnetic field is studied using small angle X-ray scattering (SAXS). Transient SAXS-patterns show broadening of the columnar reflections in specific directions. While the reflections along the field stay at a constant Q-value, the other reflections do not. These results imply a certain pathway of reorientation. It appears that alignment proceeds via collective rotation of domains inducing 'nanoshear' between the layers of particles, which slide over each other. The results support the recently suggested martensitic transition pathway for the simple and centred rectangular columnar phases, which were found to spontaneously transform into each other in another goethite system. The results also provide a fine example of how SAXS can be used to study reorientation behaviour of liquid crystals at the nanoscale. PMID:24910068

  3. Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations

    NASA Astrophysics Data System (ADS)

    Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang

    2016-04-01

    Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.

  4. Dynamics of the field-aligned current distribution during a magnetic storm: AMPERE

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Tepke, B. P.

    2015-12-01

    Field-aligned current density in the ionosphere can be used to identify the location and intensity of solar wind-magnetosphere-ionosphere coupling, and help identify the large-scale processes that contribute to this coupling. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) mission effectively provides high-resolution spatial and temporal measurements of the radial current during magnetic storms. These in situ measurements are complementary to magnetic remote sensing from the ground using magnetometer arrays. Here we examine two storms, on May 29, 2010 and August 5, 2011, using AMPERE and solar wind data. We identify the regions whose radial current density has the greatest correlation with solar wind coupling functions and individual magnetic and plasma variables. We develop a statistical model of the radial current density from the magnetospheric and solar wind data which is then used to represent regions of outflowing and inflowing current in the two hemispheres. While the model is limited in representing high spatial resolution, time series of regional and global field-aligned current are reproduced with relatively large correlation coefficients (0.70-0.90) in each event.

  5. The distance indicators in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    Distance measurements of gamma-ray pulsars are challenging questions in present pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 100 gamma-ray pulsars, including 34 new gamma-selected pulsars which nearly have no distance information. We study the relation between gamma-ray emission efficiency (η=L γ/Ė) and pulsar parameters, for young radio-selected gamma-ray pulsars with known distance information. We have introduced three generation order parameters to describe gamma-ray emission properties of pulsars, and find a strong correlation between η and ζ3, the generation order parameter which reflects γ-ray photon generations in pair cascade processes induced by magnetic field absorption in pulsar magnetosphere. A good correlation between η and B LC, the magnetic field at the light cylinder radius, is also found. These correlations can serve as distance indicators in gamma-ray pulsars, to evaluate distances for gamma-selected pulsars. Distances of 35 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. The physical origin of the correlations may be also interesting for pulsar studies.

  6. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators

    SciTech Connect

    Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2006-04-10

    Magnetospheres of many astrophysical objects can be accurately described by the low-inertia (or ''force-free'') limit of MHD. We present a new numerical method for solution of equations of force-free relativistic MHD based on the finite-difference time-domain (FDTD) approach with a prescription for handling spontaneous formation of current sheets. We use this method to study the time-dependent evolution of pulsar magnetospheres in both aligned and oblique magnetic geometries. For the aligned rotator we confirm the general properties of the time-independent solution of Contopoulos et al. (1999). For the oblique rotator we present the 3D structure of the magnetosphere and compute, for the first time, the spindown power of pulsars as a function of inclination of the magnetic axis. We find the pulsar spindown luminosity to be L {approx} ({mu}{sup 2}{Omega}{sub *}{sup 4}/c{sup 3})(1 + sin{sup 2}{alpha}) for a star with the dipole moment {mu}, rotation frequency {Omega}{sub *}, and magnetic inclination angle {alpha}. We also discuss the effects of current sheet resistivity and reconnection on the structure and evolution of the magnetosphere.

  7. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    NASA Astrophysics Data System (ADS)

    Kolinko, S. V.; Ponomarev, A. G.

    2016-04-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and "Russian quadruplet" with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  8. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    SciTech Connect

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  9. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    SciTech Connect

    Seletskiy, S. M.; Tupikov, V.

    2006-03-20

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad.

  10. Statistical studies of pulsar glitches

    NASA Astrophysics Data System (ADS)

    Lyne, A. G.; Shemar, S. L.; Smith, F. Graham

    2000-07-01

    Shemar & Lyne have previously presented observations and an analysis of 32 glitches and their subsequent relaxations observed in a total of 15 pulsars. These data are brought together in this paper with those published by other authors. We show quantitatively how glitch activity decreases linearly with decreasing rate of slow-down. As indicated previously from studies of the Vela pulsar, the analysis suggests that 1.7per cent of the moment of inertia of a typical neutron star is normally contained in pinned superfluid which releases its excess angular momentum at the time of a glitch. There is a broad range of glitch amplitude and there is a strong indication that pulsars with large magnetic fields suffer many small glitches while others show a smaller number of large glitches. Transient effects following glitches are very marked in young pulsars and decrease linearly with decreasing rate of slow-down, suggesting that the amount of loosely pinned superfluid decreases with age. We suggest that the low braking index of the Vela and Crab pulsars cannot be caused by a decreasing moment of inertia and should be attributed to step increases in the effective magnetic moment of the neutron star at the glitches.

  11. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    SciTech Connect

    Wang, Ren-Bo; Hirotani, Kouichi E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.

  12. AN EXTREME PULSAR TAIL PROTRUDING FROM THE FRYING PAN SUPERNOVA REMNANT

    SciTech Connect

    Ng, C.-Y.; Bouchard, A.; Bucciantini, N.; Gaensler, B. M.; Camilo, F.; Chatterjee, S.

    2012-02-10

    The Frying Pan (G315.9-0.0) is a radio supernova remnant with a peculiar linear feature (G315.78-0.23) extending 10' radially outward from the rim of the shell. We present radio imaging and polarization observations obtained from the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array, confirming G315.78-0.23 as a bow-shock pulsar wind nebula (PWN) powered by the young pulsar J1437-5959. This is one of the longest pulsar tails observed in radio and it has a physical extent over 20 pc. We found a bow-shock standoff distance of 0.002 pc, smallest among similar systems, suggesting a large pulsar velocity over 1000 km s{sup -1} and a high Mach number {approx}200. The magnetic field geometry inferred from radio polarimetry shows a good alignment with the tail orientation, which could be a result of high flow speed. There are also hints that the postshock wind has a low magnetization and is dominated by electrons and positrons in energy. This study shows that PWNe can offer a powerful probe of their local environment, particularly for the case of a bow shock where the parent supernova shell is also detected.

  13. On the relationship between morning sector irregular magnetic pulsations and field aligned currents

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Potemra, T. A.; Zanetti, L. J.; Arnoldy, R. L.; Mende, S. B.; Rosenberg, T. J.

    1984-01-01

    For three magnetically disturbed days in early 1980, data from south polar masses of the Magsat satellite are compared with data from search coil magnetometer, riometer, and photometer instrumentation at Siple, Antarctica. It is found that during each Magsat polar pass in the morning sector, the level of Pi 1 activity correlates well with the intensities of three-dimensional current systems. Fine structure is often observed in the field-aligned currents during periods of intense Pi activity. Among the Birkeland currents are 2-s to 10-s (16-80 km) structured perturbations; these are evident in the transverse components of the field and are thought to indicate filamentary currents. Pi 1 amplitudes are found to be considerably larger when region 2 Birkeland currents are overhead than when they are not. In one case, detailed features are identified in the high-resolution Magsat magnetic field data that may be current fluctuations related to asymmetric Pi 1.

  14. The role of magnetic-field-aligned electric fields in auroral acceleration

    SciTech Connect

    Block, L.P.; Faelthammar, C.G. )

    1990-05-01

    Electric field measurements on the Swedish satellite Viking have confirmed and extended earlier observations on S3-3 and provided further evidence of the role of dc electric fields in auroral acceleration processes. On auroral magnetic field lines the electric field is strongly fluctuating both transverse and parallel to the magnetic field. The significance of these fluctuations for the auroral acceleration process is discussed. A definition of dc electric fields is given in terms of their effects on charged particles. Fluctuations below several hertz are experienced as dc by typical auroral electrons if the acceleration length is a few thousand kilometers. For ions the same is true below about 0.1 Hz. The magnetic-field-aligned (as well as the transverse) component of the electric field fluctuations has a maximum below 1 Hz, in a frequency range that appears as dc to the electrons but not to the ions. This allows it to cause a selective acceleration, which may be important in explaining some of the observed characteristics of auroral particle distributions. The electric field observations on Viking support the conclusion that magnetic-field-aligned potential drops play an important role in auroral acceleration, in good agreement with particle observations boht on Viking and on the DE satellites. They also show that a large part, or even all, of the accelerating potential drop may be accounted for by numerous weak (about a volt) electric double layers, in agreement with earlier observations on the S3-3 satellite and with an early theoretical suggestion by L. Block.

  15. PICsar: Particle in cell pulsar magnetosphere simulator

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2016-07-01

    PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.

  16. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  17. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR. PMID:26720587

  18. Wideband Observations of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.

    2015-08-01

    Pulsars are exotic objects which have yielded a bounty of important astrophysical results. As rapidly rotating, highly magnetized neutron stars, pulsars' stable rotation and beamed radio emission enables their use as interstellar laboratory clocks. The extraordinary timing regularity of the millisecond pulsar (MSP) population permits some of the most precise measurements in astronomy. The discovery of MSPs raised the probability of directly detecting gravitational waves for the first time. Ongoing efforts by several pulsar timing array (PTA) collaborations compliment the ground- and space-based efforts of laser interferometers. One such PTA is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav has recently employed a new set of wideband instruments to increase the sensitivity of their PTA, and the future of pulsar astronomy is moving towards progressively larger bandwidths. In this dissertation, we address the benefits and issues from adopting the new instrumentation, particularly for the scientific motivations of NANOGrav. We first develop a measurement technique for simultaneously obtaining pulse times-of-arrival (TOAs) and dispersion measures (DMs) using 2D models of evolving Gaussian components. We then apply the methodology broadly to a variety of pulsars, including a bright, test MSP in a globular cluster, the Galactic Center magnetar, and the entire suite of 37 MSPs from the NANOGrav 9-year data set. For a subset of these MSPs, we make targeted observations at specific orbital phases aimed at improving the timing models and constraining the Shapiro delay. With a few exceptions, we find positive or consistent timing results from the implementation of our first generation wideband timing protocol. Some highlights include: improved measurement uncertainties, mitigation of chromatic ISM effects, a reduction in the number of timing parameters and TOAs, signs of chromatic DMs, and at least one new pulsar mass.

  19. Stability estimate for the aligned magnetic field in a periodic quantum waveguide from Dirichlet-to-Neumann map

    NASA Astrophysics Data System (ADS)

    Mejri, Youssef

    2016-06-01

    In this article, we study the boundary inverse problem of determining the aligned magnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindrical waveguide, by knowledge of the Dirichlet-to-Neumann map. We prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by means of the geometrical optics solutions of the magnetic Schrödinger equation.

  20. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Choi, Jae Ryung; Jung, Byung Mun; Choi, U. Hyeok; Lee, Sang-Kwan; Kim, Ki Hyeon; Lee, Sang-Bok

    2016-05-01

    A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe), compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ˜14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  1. Interplanetary GPS using pulsar signals

    NASA Astrophysics Data System (ADS)

    Becker, W.; Bernhardt, M. G.; Jessner, A.

    2015-11-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  2. A Search for Radio Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Sayer, Ronald Winston

    1996-01-01

    We have built a data acquisition backend for radio pulsar search observations carried out at the NRAO 140 -foot telescope in Green Bank, West Virginia. Our system sampled 512 spectral channels over 40 MHz every 256 mus, reduced samples to one-bit precision, and wrote the resulting data stream onto magnetic tape for later, off-line processing. We have completed three surveys with this backend. In the first survey, we searched most of the Northern Hemisphere for millisecond radio pulsars. Previous surveys directed towards most of the region covered had not been as sensitive to pulsars with millisecond periods. We obtained high quality data for 15,876 deg^2 of sky. Eight new pulsars were discovered and 76 previously known pulsars were detected. Two of the eight new pulsars (PSR J1022+1001 and PSR J1518+4904) are millisecond pulsars in binary systems. PSR J1518+4904 is a 41 ms radio pulsar in an eccentric (e = 0.25) 8.6 day orbit with another stellar object, probably another neutron star. It is only the fifth double neutron star system known. The system's relativistic advance of periastron has been measured to be ˙omega = 0.0112 +/- 0.0002 ^circ yr^{-1}, implying that the total mass of the pair of stars is 2.65 +/-0.07Modot. We have searched for radio pulsar companions to 40 nearby OB runaway stars. No pulsar companions to OB runaways were discovered. One previously unknown pulsar, PSR J2044+4614, was discovered while observing towards target O star BD+45,3260. However, follow-up timing observations reveal that the pulsar is not associated with the target O star. Assuming standard models for the pulsar beaming fraction and luminosity function, we conclude that most OB runaways do not have pulsar companions. We have completed a survey for pulsed radio signals towards 27 gamma-ray sources detected by the EGRET instrument of the Compton Gamma Ray Observatory. No new pulsars were discovered.

  3. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1990-01-01

    This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.

  4. An unexpected drop in the magnetic field of the X-ray pulsar V0332+53 after the bright outburst occurred in 2015

    NASA Astrophysics Data System (ADS)

    Cusumano, G.; La Parola, V.; D'Aì, A.; Segreto, A.; Tagliaferri, G.; Barthelmy, S. D.; Gehrels, N.

    2016-07-01

    How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of ˜1.7 × 1011 G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma on to the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore, the dissipation rate of the magnetic field could be much faster than previously estimated, unless the field is able to restore its original configuration on a time-scale comparable with the outbursts recurrence time.

  5. Magnetic Field Alignment of PS-P4VP: a Non-Liquid Crystalline Coil-Coil Block Copolymer

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Larson, Steven; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    2015-03-01

    Magnetic fields provide the ability to control alignment of self-assembled soft materials such as block copolymers. Most prior work in this area has relied on the presence of ordered assemblies of anisotropic liquid crystalline species to ensure sufficient magnetic anisotropy to drive alignment. Recent experiments with poly(styrene-b-4-vinylpyridine), a non-liquid crystalline BCP, however, show field-induced alignment of a lamellar microstructure during cooling across the order-disorder transition. Using in situ x-ray scattering, we examine the roles of field strength and cooling rate on the alignment response of this low MW coil-coil BCP. Alignment is first observed at field strengths as low as 1 Tesla and improves markedly with both increasing field strength and slower cooling. We present a geometric argument to illustrate the origin of a finite, non-trivial magnetic susceptibility anisotropy for highly stretched surface-tethered polymer chains and corroborate this using coarse-grained molecular dynamics simulations. We rationalize the magnetic field response of the system in terms of the mobility afforded by the absence of entanglements, the intrinsic anisotropy resulting from the stretched polymer chains and sterically constrained conjugated rings, and the large grain size in these low molecular weight materials.

  6. A CHANDRA X-RAY OBSERVATION OF THE BINARY MILLISECOND PULSAR PSR J1023+0038

    SciTech Connect

    Bogdanov, Slavko; Archibald, Anne M.; Kaspi, Victoria M.; Hessels, Jason W. T.; Lorimer, Duncan; McLaughlin, Maura A.; Ransom, Scott M.; Stairs, Ingrid H.

    2011-12-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5{sigma}) large-amplitude (factor of two to three) orbital variability over the five consecutive orbits covered by the observation, with a pronounced decline in the flux at all energies at superior conjunction. This can be naturally explained by a partial geometric occultation by the secondary star of an X-ray-emitting intrabinary shock, produced by the interaction of outflows from the two stars. The depth and duration of the eclipse imply that the intrabinary shock is localized near or at the surface of the companion star and close to the inner Lagrangian point. The energetics of the shock favor a magnetically dominated pulsar wind that is focused into the orbital plane, requiring close alignment of the pulsar spin and orbital angular momentum axes. The X-ray spectrum consists of a dominant non-thermal component and at least one thermal component, likely originating from the heated pulsar polar caps, although a portion of this emission may be from an optically thin 'corona'. We find no evidence for extended emission due to a pulsar wind nebula or bow shock down to a limiting luminosity of L{sub X} {approx}< 3.6 Multiplication-Sign 10{sup 29} erg s{sup -1} (0.3-8 keV), {approx}< 7 Multiplication-Sign 10{sup -6} of the pulsar spin-down luminosity, for a distance of 1.3 kpc and an assumed power-law spectrum with photon index {Gamma} = 1.5.

  7. Pulsar wind model for the spin-down behavior of intermittent pulsars

    SciTech Connect

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N.; Xu, R. X.

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  8. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system.

    PubMed

    Prosser, R S; Hwang, J S; Vold, R R

    1998-05-01

    A stable smectic phospholipid bilayer phase aligned with the director parallel to the magnetic field can be generated by the addition of certain trivalent paramagnetic lanthanide ions to a bicellar solution of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in water. Suitable lanthanide ions are those with positive anisotropy of their magnetic susceptibility, namely Eu3+, Er3+, Tm3+, and Yb3+. For samples doped with Tm3+, this phase extends over a wide range of Tm3+ concentrations (6-40 mM) and temperatures (35-90 degrees C) and appears to undergo a transition from a fluid nematic discotic to a fluid, but highly ordered, smectic phase at a temperature that depends on the thulium concentration. As a membrane mimetic, these new, positively ordered phospholipid phases have high potential for structural studies using a variety of techniques such as magnetic resonance (EMR and NMR), small-angle x-ray and neutron diffraction, as well as optical and infrared spectroscopy. PMID:9591667

  9. The LACARA Vacuum Laser Accelerator Experiment: Beam Positioning and Alignment in a Strong Magnetic Field

    SciTech Connect

    Shchelkunov, Sergey V.; Marshall, T. C.; Hirshfield, J. L.; Wang, Changbiao; LaPointe, M. A.

    2006-11-27

    LACARA (laser cyclotron auto-resonance accelerator) is a vacuum laser accelerator of electrons that is under construction at the Accelerator Test Facility (ATF), Brookhaven National Laboratory. It is expected that the experiment will be assembled by September 2006; this paper presents progress towards this goal. According to numerical studies, as an electron bunch moves along the LACARA solenoidal magnetic field ({approx}5.2 T, length {approx}1 m), it will be accelerated from 50 to {approx}75 MeV by interacting with a 0.8 TW Gaussian-mode circularly polarized optical pulse provided by the ATF CO2 10.6{mu}m laser system. The LACARA laser transport optics must handle 10 J and be capable of forming a Gaussian beam inside the solenoid with a 1.4 mm waist and a Rayleigh range of 60 cm. The electron optics must transport a bunch having input emittance of 0.015 mm-mrad and 100 {mu}m waist through the magnet. Precision alignment between the electron beam and the solenoid magnetic axis is required, and a method to achieve this is described in detail. Emittance- filtering may be necessary to yield an accelerated bunch having a narrow ({approx}1%) energy-spread.

  10. Comparison of Flux-Surface Aligned Curvilinear Coordinate Systems and Neoclassical Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2015-11-01

    Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.

  11. Real-time detection of airborne asbestos by light scattering from magnetically re-aligned fibers.

    PubMed

    Stopford, Christopher; Kaye, Paul H; Greenaway, Richard S; Hirst, Edwin; Ulanowski, Zbigniew; Stanley, Warren R

    2013-05-01

    Inadvertent inhalation of asbestos fibers and the subsequent development of incurable cancers is a leading cause of work-related deaths worldwide. Currently, there is no real-time in situ method for detecting airborne asbestos. We describe an optical method that seeks to address this deficiency. It is based on the use of laser light scattering patterns to determine the change in angular alignment of individual airborne fibers under the influence of an applied magnetic field. Detection sensitivity estimates are given for both crocidolite (blue) and chrysotile (white) asbestos. The method has been developed with the aim of providing a low-cost warning device to trades people and others at risk from inadvertent exposure to airborne asbestos. PMID:23669992

  12. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model

    NASA Astrophysics Data System (ADS)

    Takata, J.; Ng, C. W.; Cheng, K. S.

    2016-02-01

    We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation cascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin-down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observed >10 GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin-down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.

  13. Spectral simulations of an axisymmetric force-free pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhang, Li; Sun, Sineng

    2016-02-01

    A pseudo-spectral method with an absorbing outer boundary is used to solve a set of time-dependent force-free equations. In this method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergence-free state of the magnetic field is enforced analytically by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be reproduced well by our pseudo-spectral code. Further, the method is used to present a time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well and the spin-down luminosity obtained in the steady state is in good agreement with the value given by Spitkovsky.

  14. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    left after a massive star explodes as a supernova at the end of its life. The pulsars in Terzan 5 are the product of a complex history. The stars in the cluster formed about 10 billion years ago, the astronomers say. Some of the most massive stars in the cluster exploded and left the neutron stars as their remnants after only a few million years. Normally, these neutron stars would no longer be seen as swiftly-rotating pulsars: their spin would have slowed because of the "drag" of their intense magnetic fields until the "lighthouse" effect is no longer observable. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) However, the dense concentration of stars in the cluster gave new life to the pulsars. In the core of a globular cluster, as many as a million stars may be packed into a volume that would fit easily between the Sun and our nearest neighbor star. In such close quarters, stars can pass near enough to form new binary pairs, split apart such pairs, and binary systems even can trade partners, like an elaborate cosmic square dance. When a neutron star pairs up with a "normal" companion star, its strong gravitational pull can draw material off the companion onto the neutron star. This also transfers some of the companion's spin, or angular momentum, to the neutron star, thereby "recycling" the neutron star into a rapidly-rotating millisecond pulsar. In Terzan 5, all the pulsars discovered are rotating rapidly as a result of this process. Astronomers previously had discovered three pulsars in Terzan 5, some 28,000 light-years distant in the constellation Sagittarius, but suspected there were more. On July 17, 2004, Ransom and his colleagues used the GBT, and, in a 6-hour observation, found 14 new pulsars, the most ever found in a single observation. "This was possible because of the great sensitivity of the GBT and the new capabilities of our backend processor," said Ingrid Stairs, a professor at the

  15. Equatorial longitude and local time variations of topside magnetic field-aligned ion drifts at solar minimum

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Heelis, R. A.; Stoneback, R. A.

    2012-04-01

    In the topside ionosphere, the high mobility of the plasma along the magnetic field allows field-aligned ion drifts to occur readily as a result of field-aligned gravitational forces, collisional forces, or pressure gradients. Therefore, variations in the field-aligned ion drifts can be used to explore the influence of thermospheric, electrodynamic, and chemical processes on the ionosphere. Longitude and local time variations in the field-aligned ion drifts near the magnetic equator are presented using observations from the Coupled Ion Neutral Dynamics Investigation on board the Communications/Navigation Outage Forecast System satellite. These observations were obtained during the period of extremely low solar activity present in 2008 and 2009, allowing the seasonal, local time, and longitudinal variations to reveal the relative importance of the processes responsible for topside field-aligned plasma drifts during solar minimum. This investigation found that the low-altitude winds and tides, the net ionization or loss, and the meridional E×B drift were all influential in creating longitudinal and local time variations in the field-aligned drift, though the strength of the influence seen by each driver was found to vary with season, local time, and longitude.

  16. A Pulsar Eases Off the Brakes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In 2006, pulsar PSR 18460258 unexpectedly launched into a series of energetic X-ray outbursts. Now a study has determined that this event may have permanently changed the behavior of this pulsar, raising questions about our understanding of how pulsars evolve.Between CategoriesA pulsar a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation can be powered by one of three mechanisms:Rotation-powered pulsars transform rotational energy into radiation, gradually slowing down in a predictable way.Accretion-powered pulsars convert the gravitational energy of accreting matter into radiation.Magnetars are powered by the decay of their extremely strong magnetic fields.Astronomical classification often results in one pesky object that doesnt follow the rules. In this case, that object is PSR 18460258, a young pulsar categorized as rotation-powered. But in 2006, PSR 18460258 suddenly emitted a series of short, hard X-ray bursts and underwent a flux increase behavior that is usually only exhibited by magnetars. After this outburst, it returned to normal, rotation-powered-pulsar behavior.Since the discovery of this event, scientists have been attempting to learn more about this strange pulsar that seems to straddle the line between rotation-powered pulsars and magnetars.Unprecedented DropOne way to examine whats going on with PSR 18460258 is to evaluate whats known as its braking index, a measure of how quickly the pulsars rotation slows down. For a rotation-powered pulsar, the braking index should be roughly constant. The pulsar then slows down according to a fixed power law, where the slower it rotates, the slower it slows down.In a recent study, Robert Archibald (McGill University) and collaborators report on 7 years worth of timing observations of PSR 18460258 after its odd magnetar-like outburst. They then compare these observations to 6.5 years of data from before the outburst. The team finds that the braking index for this bizarre

  17. Galactic distribution of pulsars

    NASA Technical Reports Server (NTRS)

    Seiradakis, J. H.

    1977-01-01

    The density distributions of pulsars in luminosity, period, Z-distance, and galactocentric distance were derived, using a uniform sample of pulsars detected during a 408-MHz pulsar survey at Jodrell Bank. There are indications of a fine-scale structure in the spatial distributions and evidence that there is a general correlation with other galactic populations and the overall spiral structure. The electron layer in our galaxy is shown to be wider than the pulsar layer and uniform on a large scale. The number of pulsars in the galaxy has been estimated and used to derive the pulsar birthrate.

  18. Galactic distribution of pulsars

    NASA Technical Reports Server (NTRS)

    Seiradakis, J. H.

    1976-01-01

    The density distributions of pulsars in luminosity, period, Z-distance, and galactocentric distance were derived using a uniform sample of pulsars detected during a 408 MHz pulsar survey at Jodrell Bank. There are indications of a fine scale structure in the spatial distribution and evidence that there is a general correlation with other galactic populations and the overall spiral structure. The electron layer in the galaxy is shown to be wider than the pulsar layer and uniform on a large scale. The number of pulsars in the galaxy was estimated and used to derive the pulsar birthrate.

  19. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  20. Dust Particle Alignment in the Solar Magnetic Field: a Possible Cause of the Cometary Circular Polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Koenders, C.; Rosenbush, V.; Kiselev, N.; Ivanova, A.; Afanasiev, V.

    2015-12-01

    Circular polarization (CP) produced by scattering of sunlight on cometary dust has been observed in 11 comets, and showed the values from 0.01% to 0.8%. CP of both signs was observed, although negative (left-handed) CP dominates. Recent observations of several comets using SCORPIO-2 focal reducer at the 6-m BTA telescope of the Special Astrophysical Observatory (Russia) allowed producing maps of CP in the comet continuum filter at 684 nm and red wide-band filter. A gradual increase of the CP with the nucleocentric distance was usually observed. The most plausible reason why the light scattered by cometary dust becomes circularly polarized is alignment of the dust particles in the solar magnetic field. However, in-situ data for comet Halley, indicated that the solar magnetic field could not penetrate deep into the coma, limited by the diamagnetic cavity, and, thus, could not be responsible for the CP observed closer than ~4000 km from the nucleus. Advanced theoretical studies of interaction of the solar magnetic field with cometary ions led to reconsidering the diamagnetic cavity boundary - it is defined by the cometary ionopause, at which a balance is achieved between the magnetic pressure in the magnetic pile up region and the neutral friction force. The nucleocentric distance where this balance is achieved depends on the comet characteristics, increasing with the increase of the gas production rate, and local solar wind conditions, approximatively given by the comet location, specifically, its heliocentric distance. The size of diamagnetic cavity was calculated for the conditions of our CP observations. We found that it could be as small as dozens (comets 73P, 8P, 290P) or hundreds (comets Q4 NEAT, K1 PanSTARRS, Tago-Sato-Kosaka) kilometers. Thus, non-zero CP close to the nucleus can be easily explained by the interaction of the dust particles with the solar magnetic field. This mechanism also explains the observed increase in CP with the distance from the

  1. Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection

    SciTech Connect

    Ma, Z.W.; Lee, L.C.; Otto, A.

    1995-07-01

    The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.

  2. Magnetopause erosion during the 17 March 2015 magnetic storm: Combined field-aligned currents, auroral oval, and magnetopause observations

    NASA Astrophysics Data System (ADS)

    Le, G.; Lühr, H.; Anderson, B. J.; Strangeway, R. J.; Russell, C. T.; Singer, H.; Slavin, J. A.; Zhang, Y.; Huang, T.; Bromund, K.; Chi, P. J.; Lu, G.; Fischer, D.; Kepko, E. L.; Leinweber, H. K.; Magnes, W.; Nakamura, R.; Plaschke, F.; Park, J.; Rauberg, J.; Stolle, C.; Torbert, R. B.

    2016-03-01

    We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents. The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as ~60° magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.

  3. On the alignment of Classical T Tauri stars with the magnetic field in the Taurus-Auriga molecular cloud

    NASA Astrophysics Data System (ADS)

    Ménard, F.; Duchêne, G.

    2004-10-01

    In this paper we readdress the issue of the alignment of Classical T Tauri stars (CTTS) with the magnetic field in the Taurus-Auriga molecular cloud. Previous studies have claimed that the jet axis of active young stellar objects (YSO), projected in the plane of the sky, is aligned preferentially along the projected direction of the local magnetic field. We re-examine this issue in view of the numerous high angular resolution images of circumstellar disks and micro-jets now available. The images show that T Tauri stars as a group are oriented randomly with respect to the local magnetic field, contrary to previous claims. This indicates that the magnetic field may play a lesser role in the final stages of collapse of an individual prestellar core than previously envisioned. The current database also suggests that a subsample of CTTS with resolved disks but without observations of bright and extended outflows have a tendency to align perpendicularly to the magnetic field. We discuss the possibility that this may trace a less favorable topology, e.g., quadrupolar, for the magnetic field in the inner disk, resulting in a weaker collimated outflow.

  4. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  5. Aligned and exchange-coupled L1{sub 0} (Fe,Co)Pt-based magnetic films

    SciTech Connect

    Liu, Y.; George, T. A.; Skomski, R.; Sellmyer, D. J.

    2012-04-01

    Films of aligned L1{sub 0}-structure (Fe,Co)Pt with fcc Fe(Co,Pt) are synthesized by co-sputtering Fe, Co, and Pt on an (001) MgO substrate with in situ heating at 830 deg. C. The nanostructures and magnetic properties of the films are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID). The compositions of the samples (Fe,Co){sub x}Pt{sub 1-x} are designed to maintain an atomic Fe: Co ratio of 65: 35 while increasing the Fe,Co content in each successive sample. In samples with low Fe and Co concentration, the XRD patterns exhibit three strong peaks, namely L1{sub 0} (Fe,Co)Pt (001), L1{sub 0} (Fe,Co)Pt (002), and MgO (002). A fourth peak is observed in samples with high Fe and Co concentration and identified as fcc (002). The XRD patterns confirm the formation of L1{sub 0}-ordered (Fe,Co)Pt and its epitaxial growth on MgO. TEM shows that the (Fe,Co)Pt films form isolated magnetic grains of about 100 nm in diameter. Hysteresis-loop measurements show that the increase of the Fe,Co concentration from 57.3 to 68.3 at % enhances the saturation magnetization M{sub s} from 1245 emu/cm{sup 3} to 1416 emu/cm{sup 3}, and the coercivity decreases from 32 kOe to 8.9 kOe. The nominal maximum energy product per grain is 64 MGOe.

  6. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.

    PubMed

    Mikellides, Ioannis G; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators. PMID:23214706

  7. Strong ionospheric field-aligned currents for radial interplanetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Lühr, Hermann; Shue, Jih-Hong; Frey, Harald. U.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron J.

    2014-05-01

    The present work has investigated the configuration of field-aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high-resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF By and Bz are weakly positive and Bx keeps pointing to the Earth for almost 10 h. The geomagnetic indices Dst is about -40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10-20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m2, the plasma convection maintains two-cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low-level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region.

  8. Interplanetary magnetic field dependency of stable Sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Valladares, C. E.; Carlson, H. C., Jr.; Fukui, K.

    1994-01-01

    This is the first analysis, using a statistically significant data set, of the morphological dependence of the presence, orientation, and motion of stable sun-aligned polar cap arcs upon the vector interplanetary magnetic field (IMF). For the one winter season analyzed we had 1392 all-sky 630.0-nm images of 2-min resolution containing a total of 150 polar cap arcs, all with corresponding values of the IMF as measured by International Monitoring Platform (IMP) 8 or International Sun Earth Explorer (ISEE) 2. After demonstrating an unbiased data set with smooth normal distributions of events versus the dimensions of time, space, and IMF component, we examine IMF dependencies of the properties of the optical arcs. A well-defined dependence for B(sub z) is found for the presence/absence of stable Sun-aligned polar cap arcs. Consistent with previous statistical studies, the probability of observing polar cap aurora steadily increases for larger positive values of B(sub z), and linearly decreases when B(sub z) becomes more negative. The probability of observing Sun-aligned arcs within the polar cap is determined to vary sharply as a function of the arc location; arcs were observed 40% of the time on the dawnside and only 10% on the duskside. This implies an overall probability of at least 40% for the whole polar cap. 20% of the arcs were observed during 'southward IMF conditions,' but in fact under closer inspection were found to have been formed under northward IMF conditions; these 'residual' positive B(sub z) arcs ha d a delayed residence time in the polar cap of about what would be expected after a north to south transition of B(sub z). A firm dependence on B(sub y) is also found for both the orientation and the dawn-dusk direction of motion of the arcs. All the arcs are Sun-aligned to a first approximation, but present deviations from this orientation, depending primarily upon the location of the arc in corrected geomagnetic (CG) coordinates. The arcs populating the

  9. Particles generation and cooling of pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Kryvdyk, Volodymyr

    2016-07-01

    The generation of secondary particles (neutrinos, neutrons, electrons, protons, mesons) and gamma-ray photons because of nuclear interactions in magnetospheres of pulsars and magnetars are considered. By means of the nuclear interactions, the primarily accelerated electrons and protons in the pulsar magnetosphere will be generated secondary particles and photons, which will also generate particles and gamma-ray photons by cascading interactions. Namely from these particles and photons, which arise because of multiple interactions, and will consist of the pulsar magnetosphere. It is important that in pulsar magnetosphere will generate the powerful flux of neutral particles (neutrons) and a neutrino that do not interact with the magnetic field and are free to go out with her, bringing out energy and cooling magnetosphere. So, we obtain a powerful new channel cooling pulsar magnetosphere. This is a new result, which shows that cooling of pulsar and magnetars is not only a result of the processes generating neutrinos in the inner core, but also due to the generation of neutrino and neutrons in the pulsar magnetosphere and subsequently their exit in the interstellar environment.

  10. Rotational evolution of the Crab pulsar in the wind braking model

    NASA Astrophysics Data System (ADS)

    Kou, F. F.; Tong, H.

    2015-06-01

    The pulsar wind model is updated by considering the effect of particle density and pulsar death. It can describe both the short-term and long-term rotational evolution of pulsars consistently. It is applied to model the rotational evolution of the Crab pulsar. The pulsar is spun down by a combination of magnetic dipole radiation and particle wind. The parameters of the Crab pulsar, including magnetic field, inclination angle, and particle density are calculated. The primary particle density in acceleration region is about 103 times the Goldreich-Julian charge density. The lower braking index between glitches is due to a larger outflowing particle density. This may be glitch induced magnetospheric activities in normal pulsars. Evolution of braking index and the Crab pulsar in P-dot{P} diagram are calculated. The Crab pulsar will evolve from magnetic dipole radiation dominated case towards particle wind-dominated case. Considering the effect of pulsar `death', the Crab pulsar (and other normal pulsars) will not evolve to the cluster of magnetars but downwards to the death valley. Different acceleration models are also considered. Applications to other sources are also discussed, including pulsars with braking index measured, and the magnetar population.