Science.gov

Sample records for pulsars supernova remnants

  1. Pulsar Evolution within a Composite Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Kolb, Christopher; Blondin, John M.; Slane, Patrick O.; Temim, Tea

    2014-08-01

    Supernova remnants have been observed expanding into a non-uniform density ISM. Such expansion creates asymmetry within the remnant, and we attempt to understand how this asymmetric expansion propagates through a system containing an active pulsar wind nebula. We are particularly interested in applying computational methods to such systems in order to recreate and understand the dynamics driving the formation of observed SNRs and their PWNe. We present here a two-dimensional hydrodynamics simulation of a SNR expanding into a uniform density gradient. The remnant contains an active PWN with a translational velocity of approximately 300 km/s which is expanding into freely expanding, unshocked supernova ejecta. We consider, in particular, the reverse-shock interaction state in which the wind nebula is crushed by the asymmetric reverse shock, and investigate the morphology and mixing of thermal and relativistic gas in the context of observed systems including G327.1-1.1.

  2. Pulsar wind nebulae in supernova remnants. Spherically symmetric hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    van der Swaluw, E.; Achterberg, A.; Gallant, Y. A.; Tth, G.

    2001-12-01

    A spherically symmetric model is presented for the interaction of a pulsar wind with the associated supernova remnant. This results in a pulsar wind nebula whose evolution is coupled to the evolution of the surrounding supernova remnant. This evolution can be divided in three stages. The first stage is characterised by a supersonic expansion of the pulsar wind nebula into the freely expanding ejecta of the progenitor star. In the next stage the pulsar wind nebula is not steady; the pulsar wind nebula oscillates between contraction and expansion due to interaction with the reverse shock of the supernova remnant: reverberations which propagate forward and backward in the remnant. After the reverberations of the reverse shock have almost completely vanished and the supernova remnant has relaxed to a Sedov solution, the expansion of the pulsar wind nebula proceeds subsonically. In this paper we present results from hydrodynamical simulations of a pulsar wind nebula through all these stages in its evolution. The simulations were carried out with the Versatile Advection Code.

  3. Pulsar Activity and the Morphology of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V.; Srinivasan, G.

    1980-09-01

    We use the recently introduced concept of a "window" of magnetic field strengths in which pulsars can be active to explain the variation in morphology of supernova remnants. The striking difference between shell-type and filled-type remnants is attributed to differences in the magnetic field strengths of the neutron stars left by the respective supernovae. Field strengths of a value permitting pulsar activity result in particle production and Crab-like centrally concentrated remnants. Other field values lead to strong magnetic dipole radiation and consequent shell formation (e.g. Cas A). Several apparent inconsistencies concerning pulsar-supernova associations appear to find a logical explanation on the basis of this hypothesis.

  4. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The original proposal for this LTSA grant was for X-ray studies of pulsars, and especially pulsar wind nebulae and what they could tell us about pulsar properties, especially their space velocities. By any metric, this program has been very successful. No fewer than 14 papers on directly related topics (and several dozen more on related topics) have been published in refereed journals with the PI as lead or co-author, all observational results that have had significant impact on the field. These include the first X-ray detection of the "Duck" pulsar, a clear demonstration that estimated pulsar ages can be off by over an order of magnitude (via observations of the young supernova remnant G11.2-0.3) and the detection of the first pulsar wind nebula around a millisecond pulsar. These publications have also resulted in 4 press releases. Moreover, they also represent the thesis work of two PhD students at MIT (Froney Crawford and Mike Pivovaroff) and one postdoctoral fellow, Bryan Gaensler, now Assistant Professor at Harvard.

  5. Radio-Quiet Pulsars and Point Sources in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Helfand, David

    2002-04-01

    Since Baade and Zwicky made their prescient remark identifying the central blue star in the Crab Nebula as a neutron star, this pulsar's period has increased by 0.9 msec, turning 10^48 ergs of rotational kinetic energy into a relativistic wind that has been deposited in its surroundings. This makes the compact remnant of the supernova of 1054 AD highly conspicuous. It also makes this remnant highly anomalous. Nowhere else in the Galaxy does such a luminous young pulsar exists, despite the fact that at least half a dozen core-collapse supernovae have occurred since the Crab's birth. Indeed, the newly discovered central object in Cas A is four orders of magnitude less luminous in the X-ray band. While the Chandra and XMM-Newton Observatories are discovering an increasing number of Crab-like synchrotron nebulae (albeit, far less luminous than the prototype), they are also revealing X-ray point sources inside supernova remnants that lack detectable radio pulses and show no evidence of a relativistic outflow to power a surrounding nebula. I will provide an inventory of these objects, discuss whether or not truly radio-silent young neutron stars exist, and speculate on the emission mechanisms and power sources which make such objects shine. I will conclude with a commentary on the implications of this population for the distributions of pulsar birth parameters such as spin period, magnetic field strength, and space velocity, as well as offer a glimpse of what future observations might reveal about the demographics of core-collapse remnants.

  6. Future GLAST Observations of Supernova Remnants And Pulsar Wind Nebulae

    SciTech Connect

    Funk, S.; /KIPAC, Menlo Park

    2007-09-26

    Shell-type Supernova remnants (SNRs) have long been known to harbour a population of ultra-relativistic particles, accelerated in the Supernova shock wave by the mechanism of diffusive shock acceleration. Experimental evidence for the existence of electrons up to energies of 100 TeV was first provided by the detection of hard X-ray synchrotron emission as e.g. in the shell of the young SNR SN1006. Furthermore using theoretical arguments shell-type Supernova remnants have long been considered as the main accelerator of protons - Cosmic rays - in the Galaxy; definite proof of this process is however still missing. Pulsar Wind Nebulae (PWN) - diffuse structures surrounding young pulsars - are another class of objects known to be a site of particle acceleration in the Galaxy, again through the detection of hard synchrotron X-rays such as in the Crab Nebula. Gamma-rays above 100 MeV provide a direct access to acceleration processes. The GLAST Large Area telescope (LAT) will be operating in the energy range between 30 MeV and 300 GeV and will provide excellent sensitivity, angular and energy resolution in a previously rather poorly explored energy band. We will describe prospects for the investigation of these Galactic particle accelerators with GLAST.

  7. Comparing supernova remnants around strongly magnetized and canonical pulsars

    NASA Astrophysics Data System (ADS)

    Martin, J.; Rea, N.; Torres, D. F.; Papitto, A.

    2014-11-01

    The origin of the strong magnetic fields measured in magnetars is one of the main uncertainties in the neutron star field. On the other hand, the recent discovery of a large number of such strongly magnetized neutron stars is calling for more investigation on their formation. The first proposed model for the formation of such strong magnetic fields in magnetars was through alpha-dynamo effects on the rapidly rotating core of a massive star. Other scenarios involve highly magnetic massive progenitors that conserve their strong magnetic moment into the core after the explosion, or a common envelope phase of a massive binary system. In this work, we do a complete re-analysis of the archival X-ray emission of the supernova remnants (SNRs) surrounding magnetars, and compare our results with all other bright X-ray emitting SNRs, which are associated with compact central objects (which are proposed to have magnetar-like B-fields buried in the crust by strong accretion soon after their formation), high-B pulsars and normal pulsars. We find that emission lines in SNRs hosting highly magnetic neutron stars do not differ significantly in elements or ionization state from those observed in other SNRs, neither averaging on the whole remnants, nor studying different parts of their total spatial extent. Furthermore, we find no significant evidence that the total X-ray luminosities of SNRs hosting magnetars, are on average larger than that of typical young X-ray SNRs. Although biased by a small number of objects, we found that for a similar age, there is the same percentage of magnetars showing a detectable SNR than for the normal pulsar population.

  8. Supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chevalier, Roger A.; Seward, Frederick D.

    1988-01-01

    The basic features and astrophysics of supernovae of types Ia, Ib, and II and of SNRs are discussed, summarizing the results of recent ground-based and space observations obtained at different wavelengths. Typical data are presented in graphs and sample images, and consideration is given to their implications for shock heating by the initial explosion, radioactive energy input, circumstellar interaction, and pulsar energy input. SNRs described include Tycho's remnant, Kepler's remnant, the Cyg loop, Pup A, the Crab Nebula, the Vela and Crab pulsars, and 0540-69.3 in the LMC. The need for high-spatial-resolution IR and X-ray spectra of these objects is indicated.

  9. The Fast and the Furious: Energetic Phenomena in Isolated Neutron Stars, Pulsar Wind Nebulae and Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.

    2013-07-01

    Online Presentations of 'The Fast and the Furious: Energetic Phenomena in Isolated Neutron Stars, Pulsar Wind Nebulae and Supernova Remnants', a workshop organized by the XMM-Newton Science Operations Centre of the European Space Agency (ESA)

  10. The properties of the progenitor, neutron star, and pulsar wind in the supernova remnant Kes 75

    NASA Astrophysics Data System (ADS)

    Gelfand, J. D.; Slane, P. O.; Temim, T.

    2014-03-01

    By studying composite supernova remnants (SNRs), remnants which contain a pulsar wind nebula (PWN), it is possible to estimate physical properties of the progenitor explosion, central neutron star, and its pulsar wind that are difficult to measure directly. This is best done by fitting the dynamical and broadband spectral properties of a PWN with an evolutionary model for a PWN inside an SNR. We apply such a model to the composite SNR Kes 75, whose associated pulsar PSR J1846-0258 is thought to have an extremely strong surface magnetic field. If 3 M_? of mass was ejected in the supernova, our model suggests a normal or slightly subenergetic supernova in a low density environment. Additionally, for the measured pre-outburst braking index of p=2.65, our model prefers an age of { 430} years and an initial spin period P_0 0.2 s. Lastly, the magnetization of the pulsar wind and energy spectrum of particles injected at the termination shock are similar to those observed from other PWNe powered by less magnetized neutron stars. While further study is needed to verify these results, they are nominally inconsistent with strong neutron star magnetic fields resulting from very fast initial rotation.

  11. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Lemoine-Goumard, Marianne

    2015-08-01

    In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production. xml:lang="fr"

  12. Chandra Detection of a Pulsar Wind Nebula Associated With Supernova Remnant 3C 396

    NASA Technical Reports Server (NTRS)

    Olbert, C. M.; Keohane, J. W.; Arnaud, K. A.; Dyer, K. K.; Reynolds, S. P.; Safi-Harb, S.

    2003-01-01

    We present a 100 ks observation of the Galactic supernova remnant 3C396 (G39.2-0.3) with the Chandra X-Ray Observatory that we compare to a 20cm map of the remnant from the Very Large Array. In the Chandra images, a nonthermal nebula containing an embedded pointlike source is apparent near the center of the remnant which we interpret as a synchrotron pulsar wind nebula surrounding a yet undetected pulsar. From the 2-10 keV spectrum for the nebula (N(sub H) = 5.3 plus or minus 0.9 x 10(exp 22) per square centimeter, GAMMA =1.5 plus or minus 0.3) we derive an unabsorbed x-ray flux of S(sub z)=1.62 x 10(exp -12) erg per square centimeter per second, and from this we estimate the spin-down power of the neutron star to be E(sup dot) = 7.2 x 10(exp 36) ergs per second. The central nebula is morphologically complex, showing bent, extended structure. The radio and X-ray shells of the remnant correlate poorly on large scales, particularly on the eastern half of the remnant, which appears very faint in X-ray images. At both radio and X-ray wavelengths the western half of the remnant is substantially brighter than the east.

  13. Signatures of pulsars in the light curves of newly formed supernova remnants

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Phinney, E. S.; Olinto, A. V.

    2013-07-01

    We explore the effect of pulsars, in particular those born with millisecond periods, on their surrounding supernova ejectas. While they spin down, fast-spinning pulsars release their tremendous rotational energy in the form of a relativistic magnetized wind that can affect the dynamics and luminosity of the supernova. We estimate the thermal and non-thermal radiations expected from these specific objects, concentrating at times a few years after the onset of the explosion. We find that the bolometric light curves present a high luminosity plateau (that can reach 1043-1044 erg s-1) over a few years. An equally bright TeV gamma-ray emission, and a milder X-ray peak (of the order of 1040-1042 erg s-1) could also appear a few months to a few years after the explosion, as the pulsar wind nebula emerges, depending on the injection parameters. The observations of these signatures by following the emission of a large number of supernovae could have important implications for the understanding of core-collapse supernovae and reveal the nature of the remnant compact object.

  14. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    SciTech Connect

    Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.

    2014-09-10

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.

  15. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant Associations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    I am pleased to be able to report significant progress in my research relevant to my LTSA grant. This progress I believe is demonstrated by a long list of publications in 2002, as detailed below. I summarize the research results my collaborators and I obtained in 2002. First, my group announced the major discovery of soft-gamma-repeater-like X-ray bursts from the anomalous X-ray pulsars lE-1048.1$-$5937 and lE-2259+586, using the Rossi X-ray Timing Explorer. This result provides an elegant and long-sought-after confirmation that this class of objects and the soft gamma repeaters share a common nature, namely that they are magnetars. Magnetars are a novel manifestation of young neutron stars, quite different from conventional Crab-like radio pulsars. This discovery was made as part of our regular monitoring program, among the goals of which was to detect such outbursts.

  16. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Kndlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rain, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgr, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars. PMID:18927355

  17. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, Elliott D.; Bogaert, G.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.

    2009-05-15

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  18. AN EXTREME PULSAR TAIL PROTRUDING FROM THE FRYING PAN SUPERNOVA REMNANT

    SciTech Connect

    Ng, C.-Y.; Bouchard, A.; Bucciantini, N.; Gaensler, B. M.; Camilo, F.; Chatterjee, S.

    2012-02-10

    The Frying Pan (G315.9-0.0) is a radio supernova remnant with a peculiar linear feature (G315.78-0.23) extending 10' radially outward from the rim of the shell. We present radio imaging and polarization observations obtained from the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array, confirming G315.78-0.23 as a bow-shock pulsar wind nebula (PWN) powered by the young pulsar J1437-5959. This is one of the longest pulsar tails observed in radio and it has a physical extent over 20 pc. We found a bow-shock standoff distance of 0.002 pc, smallest among similar systems, suggesting a large pulsar velocity over 1000 km s{sup -1} and a high Mach number {approx}200. The magnetic field geometry inferred from radio polarimetry shows a good alignment with the tail orientation, which could be a result of high flow speed. There are also hints that the postshock wind has a low magnetization and is dominated by electrons and positrons in energy. This study shows that PWNe can offer a powerful probe of their local environment, particularly for the case of a bow shock where the parent supernova shell is also detected.

  19. Non-thermal emission in astrophysical environments: From pulsars to supernova remnants

    NASA Astrophysics Data System (ADS)

    Lomiashvili, David

    The study of electromagnetic radiation from distant astrophysical objects provides essential data in understanding physics of these sources. In particular, non-thermal radiation provides great insight into the properties of local environments, particle populations, and emission mechanisms, knowledge which otherwise would remain untapped. Throughout the projects conducted for this dissertation, we modeled certain aspects of observed non-thermal emission from three classes of sources: radio pulsars, pulsar wind nebulae, and supernova remnants. Orbital variation in the double pulsar system PSR J0737-3039A/B can be used to probe the details of the magnetospheric structure of pulsar B. Strongly magnetized wind from pulsar A distorts the magnetosphere of pulsar B in a way similar to the solar wind's distortion of the Earth's magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Dungey and Tsyganenko, we determine the precise location of the coherent radio emission generation region in pulsar B's magnetosphere. This analysis is complemented by modeling the observed evolution of the pulse profiles of B due to geodetic precession. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape centered on the polar magnetic field lines. The best fit angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. When considered together, not only do the results of the two models converge, they can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. We discuss the implications of these results for pulsar magnetospheric models and mechanisms of coherent radio emission generation. We also developed a spatially-resolved, analytic model for the high-energy non-thermal emission from pulsar wind nebulae (PWNe). Theoretically, synchrotron cooling should cause a gradual change in particle spectrum downstream. This effect is indeed observed in the X-ray spectra of The Crab Nebula , 3C 58, and G21.5.0.9. However, current theoretical models of PWNe that only account for the bulk motion in the pulsar outflow overestimate the steepening of the resulted emission spectrum. This implies that there is an additional mechanism of particle transport which would supply energetic particles to the outer layers of the PWN. Our model solves the lack of high-energy electrons in the outer regions of the nebula by taking the diffusion of particles into account. The resulting multi-wavelength spectra exhibits multiple breaks, which is in agreement with observations. Thin non-thermal X-ray filaments are often seen near shock fronts in young supernova remnants (SNRs), often spatially coincident with the high energy gamma-ray emission. The formation of such discrete features is likely influenced by the combined effects of radiative cooling, advection, and diffusion. Spatially-resolved spectral studies of the filaments may, therefore, provide significant insights into the relative importance of main physical processes involved in young SNRs. Using 1 Ms Chandra observation of Cassiopeia A, we perform advection-diffusion modeling of synchrotron emission of filaments to measure the magnetic field, shock obliquity, the diffusion strength and the plasma turbulence level.

  20. Multi-wavelength observations of pulsar wind nebulae and composite supernova remnants

    NASA Astrophysics Data System (ADS)

    Temim, Tea

    Multi-wavelength studies of pulsar wind nebulae (PWNe) and supernova remnants (SNRs) lead to a better understanding of their evolutionary development, the interaction of supernovae (SNe) and pulsar winds with their surroundings, and nucleosynthesis and production and processing of dust grains by SNe. PWNe and composite supernova remnants, in particular, are unique laboratories for the study of the energetic pulsar winds, particle injection processes, and the impact of PWNe on the evolving SNR. They provide information on SNR shock properties, densities and temperatures, and the chemical composition and the ionization state of the material ejected by SNe. SNRs also serve as laboratories for the study of dust production and processing in SNe. While X-ray observations yield important information about the SN progenitor, hot gas properties, SN explosion energy, and the surrounding interstellar medium (ISM), the IR can provide crucial information about the faint non-thermal emission, continuum emission from dust, and forbidden line emission from SN ejecta. Combining observations at a wide range of wavelengths provides a more complete picture of the SNR development and helps better constrain current models describing a SNR's evolution and its impact on the surrounding medium. This thesis focuses on a multi-wavelength study of PWNe in various stages of their evolution and investigates their interaction with the expanding SN ejecta and dust and the SNR reverse shock. The study of these interactions can provide important information on the SNR properties that may otherwise be unobservable. The work in this thesis has been carried out under the supervision of Patrick Slane at the Harvard-Smithsonian Center for Astrophysics, and Charles E. Woodward and Rebert D. Gehrz at the University of Minnesota. The first part of the thesis summarizes the evolution and observational properties of SNRs and PWNe, with a focus on the evolution of young PWNe that are sweeping up inner SN ejecta. Two cases studies of such systems are discussed; infrared observations of the Crab Nebula; and X-ray and IR observations of G54.1+0.3. The second part of the thesis concentrates on the late stages of PWN evolution in which the PWN interacts with the SNR reverse shock. The final case study describes the X-ray observations of G327.1-1.1, a composite SNR in a late stage of its evolution. The thesis concludes with a summary of the results and proposed future work.

  1. A DYNAMICAL MODEL FOR THE EVOLUTION OF A PULSAR WIND NEBULA INSIDE A NONRADIATIVE SUPERNOVA REMNANT

    SciTech Connect

    Gelfand, Joseph D.; Zhang Weiqun; Slane, Patrick O.

    2009-10-01

    A pulsar wind nebula (PWN) inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In this paper, we present a new semianalytic model for the evolution of such a PWN throughout its lifetime. This model couples the dynamical and radiative evolution of the PWNe, and predicts both the dynamical (e.g., radius and expansion velocity) and radiative (radio to TeV gamma-ray spectrum) properties of the PWN during this period. As a result, it is well suited for using the observed properties of a PWN to constrain the physical characteristics of the neutron star, pulsar wind, progenitor supernova, and surrounding environment. We also discuss the expected evolution for a particular set of these parameters, and show that it reproduces the large spectral break inferred from the radio and X-ray spectrum of many young PWNe, and the low break frequency, low radio luminosity, high TeV gamma-ray luminosity, and high magnetization observed for several older PWNe. The predicted spectrum of this PWN also contains spectral features which appear during different evolutionary phases detectable with new radio and gamma-ray observing facilities such as the Extended Very Large Array and the Fermi Gamma-ray Space Telescope. Finally, this model has implications for determining if PWNe can inject a sufficient number of energetic electrons and positrons into their surroundings to explain the recent measurements of the cosmic-ray positron fraction by PAMELA and the cosmic-ray lepton spectrum by ATIC and HESS.

  2. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  3. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258.

    PubMed

    Gaensler; Gotthelf; Vasisht

    1999-11-20

    We report on Very Large Array observations in the direction of the recently discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5&arcmin; shell of radio emission; the shell is linearly polarized with a nonthermal spectral index. We classify this source as a previously unidentified, young (<8000 yr) supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young ( less, similar10,000 yr) objects and that they are produced in at least 5% of core-collapse supernovae. PMID:10534456

  4. High resolution observations of Cassiopeia A at meter wavelengths. [pulsar source in supernova remnant

    NASA Technical Reports Server (NTRS)

    Hutton, L. K.; Clark, T. A.; Erickson, W. C.; Resch, G. M.; Vandenberg, N. R.; Knowles, S. H.; Youmans, A. B.

    1974-01-01

    Very long baseline interferometric (VLBI) observations of the supernova remnant Cassiopeia A, at 74 MHz with a 12,000-wavelength baseline and at 111 MHz with a 18,500-wavelength baseline, are reported. The fringe amplitudes are strongly varying on a time scale of about 15 to 30 minutes. The location of the extra source must lie outside the supernova remnant shell possibly associated with a concentration of emission north of the shell, or lying outside the gap in the northeastern side of the shell. The flux and spectral index deduced for the compact source depend on the assumed size, with a range of 100 Jy to 500 Jy at 74 MHz. If the source is associated with the supernova explosion, it must have been traveling at least 5000 km s/2.

  5. NuSTAR Observations of Supernova Remnants and Pulsar-Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen; Zoglauer, A.; Harrison, Fiona A.; Grefenstette, Brian; Madsen, Kristin; Nynka, Melania

    NuSTAR is the first astronomical X-ray observatory able to image hard X-rays up to 78 keV. For the NuSTAR team, I report early results on the two youngest Galactic shell supernova remnants, Cas A and G1.9+0.3, and on two pulsar-wind nebulae: the Crab Nebula and G21.5-0.9. For Cas A, we show the spatial distribution of synchrotron continuum, visible up to 30 keV, and of (44) Ti, detected in the 68 and 78 keV nuclear de-excitation lines of its daughter (44) Sc. G1.9+0.3 is dominated by synchrotron continuum; we show images and spectra above 10 keV. (44) Ti has not yet been detected; the current upper limits are still somewhat above the amount inferred from Chandra observations of the 4.1 keV (44) Sc electron-capture line. Both PWNe shrink with increasing photon energy, presumably due to synchrotron burnoff, at rates which can be explained by simple models of electron advection in the nebular outflows. The Crab Nebula shrinks at different rates in different directions, most rapidly to the NW. The rates in the other directions are consistent with predictions by Kennel & Coroniti (1984). We detect slight spectral steepening in both the nebular (unpulsed) and pulsed spectrum. The pulsed spectrum steepens by 0.1 - 0.3 in the power-law index Gamma (varying with pulse phase), with an average value of Delta Gamma 0.3. The unpulsed (nebular) spectrum also steepens, by about 0.25 above 9} keV. Prior observations showed a hint of this steepening. In G21.5-0.9, NuSTAR detects emission both from the bright PWN itself and from the shell above 10 keV, confirming that some shell emission is synchrotron. We find a small steepening in the spectrum, well described by a power-law steepening by about 0.2 above 9 keV. The PWN radius is observed to shrink as E(-0.21) . A simple advection model can reproduce both the integrated spectrum from radio to X-rays, which steepens by 0.9 at at sub-mm wavelengths, and this shrinkage rate, but requires either magnetic-field amplification or mass loading of the outflow, for instance by evaporation of thermal material.

  6. DISCOVERY OF THE ENERGETIC PULSAR J1747-2809 IN THE SUPERNOVA REMNANT G0.9+0.1

    SciTech Connect

    Camilo, F.; Ransom, S. M.; Gaensler, B. M.; Lorimer, D. R.

    2009-07-20

    The supernova remnant G0.9+0.1 has long been inferred to contain a central energetic pulsar. In observations with the NRAO Green Bank Telescope at 2 GHz, we have detected radio pulsations from PSR J1747-2809. The pulsar has a rotation period of 52 ms, and a spin-down luminosity of E-dot=4.3x10{sup 37} erg s{sup -1}, the second largest among known Galactic pulsars. With a dispersion measure of DM = 1133 pc cm{sup -3}, PSR J1747-2809 is distant, at {approx}13 kpc according to the NE2001 electron density model, although it could be located as close as the Galactic center. The pulse profile is greatly scatter-broadened at a frequency of 2 GHz, so that it is effectively undetectable at 1.4 GHz, and is very faint, with period-averaged flux density of 40 {mu}Jy at 2 GHz.

  7. A THOROUGH INVESTIGATION OF THE DISTANCE TO THE SUPERNOVA REMNANT CTB109 AND ITS PULSAR AXP J2301+5852

    SciTech Connect

    Kothes, R.; Foster, T. E-mail: fostert@brandonu.ca

    2012-02-10

    CTB109 is one of only three Galactic supernova remnants (SNRs) known to harbor an anomalous X-ray pulsar or magnetar. That makes this SNR an object of great importance and a prime target for high-energy astrophysics studies. Those studies rely heavily on the assumed distance to CTB109. There have been three major distance determinations over the last decade, all of which report completely different results. While chaotic distance determinations in the literature are not uncommon for SNRs as a class of object, the wild discrepancy in the distance to CTB109 makes it especially important to revisit and firmly resolve once and for all. In this Letter we bring to bear all available observational information and present a synthesis of evidence that consistently locates CTB109 within or close to the Perseus arm spiral shock, at a distance of 3.2 {+-} 0.2 kpc.

  8. Studies of Pulsar Wind Nebula in the Supernova Remnant IC443: Preliminary Observations from the Chandra Data

    NASA Astrophysics Data System (ADS)

    Ariyibi, E. A.

    2009-10-01

    Preliminary observations of the Chandra data were made in order to study the Pulsar Wind Nebula in the Supernova Remnant IC443. The Chandra X-ray observatory short observation on IC443 was centred on 13 chip ACIS. The CIAO analytical programme was used for the data analysis. The data were separated into point source, with an energy range of 2.1 to 10.0 keV, and diffuse source with energy less than 2.1 Kev. The resulting spectra were fitted to a power law. The observed density numbers and the normalised counts of both the point source and the diffuse source were used to describe the X-ray source. Afin d'étudier la "Pulsar wind Nebula" dans le reste de la Supernova IC 443, nous avons mené une exploitation préliminaire des observations provenant du satellite spatiale Chandra. L'observation brêve de IC 443, par Chandra fut centrée sur les composantes du spectromètre identifiées par la séquence 13. Le programme informatique CIAO fut utilisé pour l'analyse des données. Les données furent groupées en sources ponctuelles, chacune ayant des énergies allant de 2.1 a 10.0 kev ; et en sources diffuses chacune avec des énergies de moins de 2.1 kev. Les spectres obtenus furent interpolés à l'aide de fonction puissance. La densité de flux ainsi que le décompte des particules induites au détecteur par le rayonnement provenant des sources ponctuelles et diffuses furent utilisés pour décrire la source de rayon-X.

  9. Observation of Crab-Like Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    2001-01-01

    The purpose of this program was to observe the supernova remnants 3C58 and G21.5-0.9 and to search for pulsed emission. If a pulsar were to be found, the period derivative and inferred magnetic field would have extreme values if pulsar evolution had followed the standard model. If this is not the case, the standard model must be revised. We also sought to obtain very accurate measurement of the synchrotron emission spectrum of each remnant.

  10. Deep X-Ray Observations of the Young High-magnetic-field Radio Pulsar J1119-6127 and Supernova Remnant G292.2-0.5

    NASA Astrophysics Data System (ADS)

    Ng, C.-Y.; Kaspi, V. M.; Ho, W. C. G.; Weltevrede, P.; Bogdanov, S.; Shannon, R.; Gonzalez, M. E.

    2012-12-01

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 1013 G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  11. The interaction of the pulsar wind nebula of PSR B1951+32 with the supernova remnant CTB80 and the possibility of shock breakout

    NASA Astrophysics Data System (ADS)

    Clyne, G.; Golden, A.; Bourke, S.

    Recent high-resolution studies of PSR B1951+32 and CTB80 taken by MERLIN have revealed an interesting region to the southwest of the remnant. This ``hotspot'' is caused by the interaction between the pulsar PSR B1951+32 and its associated supernova remnant (SNR) CTB80 due to the fact that the pulsar has caught up with its expanding remnant, resulting in complex multi-wavelength emission. It is through this interaction that highly energetic particles are injected into the region causing the SNR emission and morphology to be rejuvenated. The area of the interaction has a bow shock like formation, but the MERLIN studies reveal this shock front to have a knotted structure. There are several questions which must be addressed. What are the dimensions of the shock structure within the `hotspot'? Is there substructure or are the shocks `continuous'? What does the geometry of the shocks in relation to the pulsar imply astrometrically? Does the shock region move in relation to the pulsar or is it a `standing' structure? What does the luminosity tell us about the pulsar's energy loss at this time, and consequently its likely rotational evolution? How do these results fit in with ongoing theoretical work in explaining the `rejuvenation' of SNR's by such a pulsar/PWN interaction? Has the shock broken out through the SNR and if so what is the nature of the medium into which the shock is propagating? Some of these questions will be answered by further detailed observations. The goal of this project is to create a computational model which can be used to explore the underlying physics which is in operation in this region of interaction. The model will be a fully three-dimensional relativistic magneto-hydrodynamic simulation which will incorporate synchrotron emission mechanisms. This will allow us to place the observational data into the context of the ongoing development of models explaining the interactions between pulsars and their local galactic environments.

  12. The Young Core-Collapse Supernova Remnant G11.2-0.3: An Asymmetric Circumstellar Medium and a Variable Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Moseby, A.; Reynolds, S. P.

    2014-01-01

    G11.2-0.3 is a young supernova remnant (SNR) that has been suggested to be associated with a historical supernova of 386 AD. In addition to a bright radio and X-ray shell, it contains a pulsar wind nebula (PWN) and a 65 ms pulsar. We present first results from new deep (about 400 ks in duration) Chandra observations from 2013 May and September. Ahead of the main shell, there are a number of outlying X-ray protrusions surrounded by bow shocks, presumably produced by dense ejecta knots. Pronounced spectral variations are seen in thermal X-ray spectra of the main shell, indicating the presence of shocks with a wide range in shock speeds and large spatial variations in intervening absorption. A band of soft X-ray emission is clearly seen at the remnant's center. We interpret this band as a result of the interaction of supernova ejecta with the strongly asymmetric wind produced by a red supergiant SN progenitor shortly before its explosion. We study interstellar absorption in the central region of the remnant, finding high absorption everywhere. This rules out the association of G11.2-0.3 with SN 386. The PWN is dominated by a bright "jet" whose spatial morphology is markedly different between our May and September observations.

  13. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hénault-Brunet, V.; Oskinova, L. M.; Guerrero, M. A.; Sun, W.; Chu, Y.-H.; Evans, C. J.; Gallagher, J. S., III; Gruendl, R. A.; Reyes-Iturbide, J.

    2012-02-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low-density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in Hα and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion that created this new X-ray pulsar, its kinematic age of (2-4) × 104 yr provides a constraint on the age of the pulsar.

  14. Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    NASA Technical Reports Server (NTRS)

    Livingstone, Margaret A.; Gavriil, Fotis P.; Kaspi, Victoria M.

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  15. The Supernova Remnant CTA 1

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1996-01-01

    The supernova remnants G327.1-1.1 and G327.4+0.4 (Kes 27) are located 1.5 deg apart in the constellation Norma. In 1980, Einstein IPC observations discovered that both were irregular filled-center X-ray sources with possible point sources superposed. This paper describes new ROSAT position sensitive proportional counter (PSPC) observations which both map the diffuse structure and clearly show several unresolved sources in each field. Both remnants have bright emitting regions inside the limb which might indicate the presence of high energy electrons accelerated by a pulsar. The interior region is more prominent in G327.1-1.1 than in Kes 27. The spectra are relatively strongly absorbed, as expected from distant remnants close to the galactic plane. Comparison of the X-ray and radio maps of each remnant allows us to attribute some emission to a shell and some to the interior. With this information, a blast-wave model is used to derive approximate ages and energy release. Indications are that the Kes 27 supernova deposited approximately 10(exp 51) ergs in the surrounding medium. The G327.1-1.1 event probably deposited a factor of 3-10 less.

  16. Discovery of Radio Pulsations from the X-ray Pulsar JO205+6449 in Supernova Remnant 3C58 with the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Stairs, I. H.; Lorimer, D. R.; Backer, D. C.; Ransom, S. M.; Klein, B.; Wielebinski, R.; Kramer, M.; McLaughlin, M. A.; Arzoumanian, Z.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the 100m Green Bank Telescope of 65 ms radio pulsations from the X-ray pulsar J0205+6449 at the center of supernova remnant 3C58, making this possibly the youngest radio pulsar known. From our observations at frequencies of 820 and 1375 MHz, the free electron column density to USSR J0205+6449 is found to be 140.7 +/- 0.3/cc pc. The barycentric pulsar period P and P(dot) determined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations. The averaged radio profile of USSR J0205+6449 consists of one sharp pulse of width = 3 ms = 0.05 P. The pulsar is an exceedingly weak radio source, with pulse-averaged flux density in the 1400 MHz band of approximately 45 micro-Jy and a spectral index of approximately -2.1. Its radio luminosity of approximately 0.5 may kpc(exp 2) at 1400 MHz is lower than that of approximately 99% of known pulsar and is the lowest among known young pulsars.

  17. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccol

    2015-07-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology: a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for a mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS), whichcan occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a ?17,000-year-old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsars motion. We also show that the RS/PWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to ?-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  18. Recent VERITAS results on galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    Pohl, Martin

    The VERITAS array of atmospheric Cherenkov telescope has observed TeV-band emission from a number of galactic supernova remnants, including both pulsar-wind nebula and shell-type remnants. We present an overview of recent results with emphasis on IC443, Cas A, and G106.3+2.7/Boomerang, and discuss them in the context of measurements at lower photon energy and theoretical expectations.

  19. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    SciTech Connect

    Ng, C.-Y.; Kaspi, V. M.; Ho, W. C. G.; Weltevrede, P.; Bogdanov, S.; Shannon, R.; Gonzalez, M. E.

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  20. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  1. What Shapes Supernova Remnants?

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.

    2014-01-01

    Evidence has mounted that Type Ia and core-collapse (CC) supernovae (SNe) can have substantial deviations from spherical symmetry; one such piece of evidence is the complex morphologies of supernova remnants (SNRs). However, the relative role of the explosion geometry and the environment in shaping SNRs remains an outstanding question. Recently, we have developed techniques to quantify the morphologies of SNRs, and we have applied these methods to the extensive X-ray and infrared archival images available of Milky Way and Magellanic Cloud SNRs. In this proceeding, we highlight some results from these studies, with particular emphasis on SNR asymmetries and whether they arise from ``nature'' or ``nurture''.

  2. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  3. The slow X-ray pulsar SXP 1062 and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Guerrero, M. A.; Hénault-Brunet, V.; Sun, W.; Chu, Y.-H.; Evans, C.; Gallagher, J. S.; Gruendl, R. A.; Reyes-Iturbide, J.

    2013-03-01

    SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.

  4. Spectral modeling of supernova remnants

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Eriksen, K. A.; Colgan, J.; Zhang, H. L.; Hughes, J. P.

    2014-03-01

    We report on recent efforts to generate high quality, self-consistent atomic physics models for L-shell ion stages for iron and the use of these data in collisional-radiative modeling of X-ray spectra of supernova remnants. As a specific example, we present comparisons between observed and theoretical X-ray spectra produced by Tycho's supernova remnant.

  5. A search for stellar remnants of supernovae

    NASA Technical Reports Server (NTRS)

    Fesen, R. A.; Kirshner, R. P.; Winkler, P. F., Jr.

    1979-01-01

    The slitless spectra of the stars in the central regions of six galactic supernova remnants Cas A, Kepler, Tycho, SN 1006, RCW 86, and the Cygnus Loop were obtained with the prime focus transmission gratings at the 4M telescopes on Kitt Peak and Cerro Tololo. It was found that no stellar remnant with an unusually blue or peculiar spectrum is present in any of the remnants down to the limit of m sub pg of 18.5. Except for the Cygnus Loop, the area searched in each remnant is large enough that objects with transverse velocities of 1000 km/s would be well within the field. The results are also compared with a computation of emission from gas near a neutron star and with the unpulsed emission from the Crab pulsar; in both cases upper limits were set which place constraints on a possible condensed stellar remnant.

  6. DISCOVERY OF A HIGHLY ENERGETIC PULSAR ASSOCIATED WITH IGR J14003-6326 IN THE YOUNG UNCATALOGED GALACTIC SUPERNOVA REMNANT G310.6-1.6

    SciTech Connect

    Renaud, M.; Marandon, V.; Terrier, R.; Mattana, F.; Lebrun, F.; Gotthelf, E. V.; Rodriguez, J.; Manchester, R. N.

    2010-06-10

    We report the discovery of 31.18 ms pulsations from the INTEGRAL source IGR J14003-6326 using the Rossi X-ray Timing Explorer (RXTE). This pulsar is most likely associated with the bright Chandra X-ray point source lying at the center of G310.6-1.6, a previously unrecognized Galactic composite supernova remnant (SNR) with a bright central non-thermal radio and X-ray nebula, taken to be the pulsar wind nebula (PWN). PSR J1400-6325 is amongst the most energetic rotation-powered pulsars in the Galaxy, with a spin-down luminosity of E-dot = 5.1x10{sup 37} erg s{sup -1}. In the rotating dipole model, the surface dipole magnetic field strength is B{sub s} = 1.1 x 10{sup 12} G and the characteristic age {tau}{sub c{identical_to}}P/2 P-dot = 12.7 kyr. The high spin-down power is consistent with the hard spectral indices of the pulsar and the nebula of 1.22 {+-} 0.15 and 1.83 {+-} 0.08, respectively, and a 2-10 keV flux ratio F {sub PWN}/F {sub PSR} {approx} 8. Follow-up Parkes observations resulted in the detection of radio emission at 10 and 20 cm from PSR J1400-6325 at a dispersion measure of {approx}560 cm{sup -3} pc, which implies a relatively large distance of 10 {+-} 3 kpc. However, the resulting location off the Galactic plane of {approx}280 pc would be much larger than the typical thickness of the molecular disk, and we argue that G310.6-1.6 lies at a distance of {approx}7 kpc. There is no gamma-ray counterpart to the nebula or pulsar in the Fermi data published so far. A multi-wavelength study of this new composite SNR, from radio to very high-energy gamma rays, suggests a young ({approx}<10{sup 3} yr) system formed by a sub-energetic ({approx}<10{sup 50} erg), low ejecta mass (M {sub ej} {approx} 3 M {sub sun}) supernova explosion that occurred in a low-density environment (n {sub 0{approx}} 0.01 cm{sup -3}).

  7. Supernova Remnants And GLAST

    SciTech Connect

    Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

    2011-11-29

    It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

  8. CHANDRA AND XMM-NEWTON STUDIES OF THE SUPERNOVA REMNANT G292.2-0.5 ASSOCIATED WITH THE PULSAR J1119-6127

    SciTech Connect

    Kumar, Harsha S.; Safi-Harb, Samar; Gonzalez, Marjorie E. E-mail: samar@physics.umanitoba.ca

    2012-08-01

    We present the first detailed imaging and spatially resolved spectroscopic study of the Galactic supernova remnant (SNR) G292.2-0.5, associated with the high-magnetic field radio pulsar (PSR) J1119-6127, using Chandra and XMM-Newton. The high-resolution X-ray images reveal a partially limb-brightened morphology in the west, with diffuse emission concentrated toward the interior of the remnant unlike the complete shell-like morphology observed at radio wavelengths. The spectra of most of the diffuse emission regions within the remnant are best described by a two-component thermal+non-thermal model. The thermal component is described by a plane-parallel, non-equilibrium ionization plasma model with a temperature kT ranging from 1.3{sup +0.3}{sub -0.2} keV in the western side of the remnant to 2.3{sup +2.9}{sub -0.5} keV in the east, a column density increasing from 1.0{sup +0.1}{sub -0.6} Multiplication-Sign 10{sup 22} cm{sup -2} in the west to 1.8{sup +0.2}{sub -0.4} Multiplication-Sign 10{sup 22} cm{sup -2} in the east, and a low ionization timescale ranging from (5.7{sup +0.8}{sub -0.7}) Multiplication-Sign 10{sup 9} cm{sup -3} s in the SNR interior to (3.6{sup +0.7}{sub -0.6}) Multiplication-Sign 10{sup 10} cm{sup -3} s in the western side-suggestive of expansion of a young remnant in a low-density medium. The spatial and spectral differences across the SNR are consistent with the presence of a dark cloud in the eastern part of the SNR, absorbing the soft X-ray emission, as also revealed by the optical image of that region. The spectra from some of the regions also show slightly enhanced metal abundances from Ne, Mg, and Si, hinting at the first evidence for ejecta heated by the reverse shock. Comparing our inferred metal abundances to core-collapse nucleosynthesis models yields, we estimate a high progenitor mass of {approx}30 M{sub Sun} suggesting a Type Ib/c supernova. We confirm the presence of non-thermal X-ray emission from regions close to the pulsar, with the emission characterized by a power-law model with a hard photon index similar to that seen in the compact pulsar wind nebula. We estimate an SNR age range between 4.2 kyr (free expansion phase) and 7.1 kyr (Sedov phase) at an assumed distance of 8.4 kpc, a factor of a few higher than the measured pulsar's age upper limit of 1.9 kyr.

  9. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  10. Chandra Associates Pulsar and Historic Supernova

    NASA Astrophysics Data System (ADS)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar in the same area of the sky. Past attempts to identify the pulsar with G11.2-0.3, and hence the ancient Chinese observations, have been controversial. The location of the pulsar at the center of the remnant provides new evidence that it is associated with the remnant. Since pulsars are known to move rapidly away from where they are formed, a pulsar near the center of the remnant implies the system must be very young, since not enough time has elapsed for the pulsar to travel far from its birthplace. "We believe that the pulsar and the supernova remnant G11.2-0.3 are both likely to be left over from the explosion seen by the Chinese observers over 1600 years ago," said Roberts. "While this is exciting by itself, it also raises new questions about what we know about pulsars especially during their infancies." These questions follow from a discrepancy that arose when the ASCA team applied the present spin rate to current models to determine the pulsar’s estimated lifetime and compare it to the age of G11.2-0.3. The result was an age of roughly 24,000 years - far predating the birth year of 386 AD. To explain this contradiction, the Chandra team argues that this pulsar may have had approximately the same spin rate today as it did at its birth, as had been suggested by the ASCA data. If this is true, then it could have important implications for the conventional wisdom regarding pulsars, which, may be born spinning more slowly than has been thought. "We now have strong evidence that the standard age estimate for this pulsar is probably wrong, and it is much younger than previously believed," said Kaspi. "This, in turn, suggests that other standard pulsar age estimates may be wrong as well, and this has important implications for the population as a whole." In addition to these results, the Chandra observations of G11.2-0.3 have, for the first time, revealed the bizarre appearance of the pulsar wind nebula (also known as "plerions") at the center of the supernova remnant. Its rough cigar-like shape is in contrast to the graceful arcs observed around the Crab and Vela pulsars. However, together with those pulsars, G11.2-0.3 demonstrates that such complicated structures are ubiquitous around young pulsars. This has left astronomers confounded. Chandra observed G11.2-0.3 with the Advanced CCD Imaging Spectrometer at two epochs: August 6, 2000, and October 15, 2000, for approximately 20,000 and 15,000 seconds respectively. The ACIS X-ray camera was developed for NASA by Pennsylvania State University and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. In addition to their appointments at McGill, Dr. Kaspi is also affiliated with the Massachusetts Institute of Technology and Dr. Roberts is a Quebec Merit Postdoctoral Fellow. Funding for this work was provided by NASA, NSF, and NSERC (Canada). During the AAS meeting, the scientists involved in this release can be reached at the AAS Press Room at the Town & Country Resort in San Diego, CA. The phone numbers for the Press Room are (619) 908-5057, (619) 908-5040, and (619) 908-5041 from January 8-11. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  11. X-Ray Observations of the Supernova Remnant CTB 87 (G74.9+1.2): An Evolved Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Matheson, H.; Safi-Harb, S.; Kothes, R.

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by ~100'' and located at the southeastern edge of the radio nebula. We detect a point sourcethe putative pulsarat the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for ~250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N H = 1.38 (1.21-1.57) 1022 cm-2 (90% confidence). The total X-ray luminosity of the source is ~1.6 1034 erg s-1 at an assumed distance of 6.1 kpc, with ~2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved (~5-28 kyr) PWN, with the extended radio emission likely a "relic" PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n_0 < 0.2 D^{-1/2}_{6.1} cm-3), likely caused by a stellar wind bubble blown by the progenitor star.

  12. X-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT CTB 87 (G74.9+1.2): AN EVOLVED PULSAR WIND NEBULA

    SciTech Connect

    Matheson, H.; Safi-Harb, S.; Kothes, R. E-mail: samar@physics.umanitoba.ca

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by {approx}100'' and located at the southeastern edge of the radio nebula. We detect a point source-the putative pulsar-at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for {approx}250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N{sub H} = 1.38 (1.21-1.57) Multiplication-Sign 10{sup 22} cm{sup -2} (90% confidence). The total X-ray luminosity of the source is {approx}1.6 Multiplication-Sign 10{sup 34} erg s{sup -1} at an assumed distance of 6.1 kpc, with {approx}2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved ({approx}5-28 kyr) PWN, with the extended radio emission likely a ''relic'' PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n{sub 0} < 0.2 D{sup -1/2}{sub 6.1} cm{sup -3}), likely caused by a stellar wind bubble blown by the progenitor star.

  13. Two Magnetar Candidates in HESS Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Gotthelf, E. V.

    2010-02-01

    We identify two candidate magnetars in archival X-ray observations of HESS-detected shell-type supernova remnants (SNRs). X-ray point sources in CTB 37B coincident with HESS J1713 - 381 and in G353.6 - 0.7 coincident with HESS J1731 - 347 both have anomalous X-ray pulsar (AXP) like spectra, much softer than those of ordinary, rotation-powered pulsars, and no optical/IR counterparts. The spectrum of CXOU J171405.7 - 381031 in CTB 37B has a hard excess above 6 keV, which may be similar to such components seen in some AXPs. A new Chandra observation of this object reveals a highly significant pulsed signal at P = 3.82 s with pulsed fraction fp = 0.31. Analysis of an XMM-Newton observation of the second candidate, XMMU J173203.3 - 344518 in G353.6 - 0.7, yields only marginal evidence for a 1 s period. If it is not a magnetar, then it could be a weakly magnetized central compact object. Considering that these HESS sources previously attributed to the SNR shells are possibly centrally peaked, we hypothesize that their pulsars may contribute to diffuse TeV emission. These identifications potentially double the number of magnetar/SNR associations in the Galaxy and can be used to investigate the energetics and asymmetries of the supernovae that give rise to magnetars.

  14. Neutrinos from Supernovas and Supernova Remnants

    SciTech Connect

    Costantini, M.L.; Vissani, F.

    2005-10-12

    Supernovae (SN) and supernova remnants (SNR) have key roles in galaxies, but their physical descriptions is still incomplete. Thus, it is of interest to study neutrino radiation to understand SN and SNR better. We will discuss: (1) The {approx}10 MeV thermal neutrinos that arise from core collapse SN, that were observed for SN1987A, and can be seen with several existing or planned experiments. (2) The 10-100 TeV neutrinos expected from galactic SNRs (in particular from RX J1713.7-3946) targets of future underwater neutrino telescopes.

  15. Observing Supernovae and Supernova Remnants with JWST

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Temim, Tea; Williams, Brian J.; Blair, William P.

    2015-01-01

    The James Webb Space Telescope (JWST) will enable near- and mid-infrared studies of supernovae (SN) and supernova remnants (SNR) in the Milky Way and galaxies throughout the local universe and to high redshift. JWST's instrumentation provides imaging, coronography, and spectroscopy (R<3000) over the wavelength range 1-29 microns. The unprecedented sensitivity and angular resolution will enable spectroscopic study of new and recent supernovae, including molecule and dust formation, in galaxies at least out to 30 Mpc, and imaging to much greater distances. The Target of Opportunity response time can be as short as 48 hours, enabling quick follow-up observations of important SN events. JWST will be ideal for the study of Galactic and Magellanic Clouds supernova remnants, particularly young remnants with hot dust. Its high angular resolution (0.07" at 2 microns, 0.7" at 20 microns) will allow direct comparison between the IR, optical, and X-ray morphologies, identifying sites of dust emission in both the ejecta and the shocked ISM unresolved by previous IR telescopes. There is a rich spectrum of atomic lines (H, He I, [Si I], [Fe II], [Ni I-III], [Co II-III], [S III-IV], [Ar II-III], [Ne II, III, V], [O IV]) and molecules (CO, SiO, H2) of importance for SN and SNR studies. JWST is a large aperture (6.5m), cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST observatory will be placed in an Earth-Sun L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations. The first call for proposals for JWST observations will be released in 2017.

  16. When will a pulsar in supernova 1987a be seen?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis; Kennel, C. F.; Fowler, William A.

    1987-01-01

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magellanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the 'missing' energy in the form of those gamma rays that escape from the remnant instead of powering it.

  17. When will a pulsar in supernova 1987a be seen?

    PubMed

    Michel, F C; Kennel, C F; Fowler, W A

    1987-11-13

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magelanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the "missing" energy in the form of those gamma rays that escape from the remnant instead of powering it. PMID:17829358

  18. Generating Pulsar Spin in Supernovae

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Mezzacappa, A.

    2006-12-01

    Using three-dimensional hydrodynamics simulations, we have identified a robust instability of the stalled accretion shock in core-collapse supernovae that is able to generate a strong rotational flow in the vicinity of the accreting proto-neutron star (PNS). Sufficient angular momentum is deposited on the PNS to generate a final neutron star spin period consistent with observations of radio pulsars, even beginning with spherically symmetric, non-rotating initial conditions. This provides a new mechanism for the generation of neutron star spin and weakens, if not breaks, the assumed correlation between the rotational periods of supernova progenitor cores and pulsar spin. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  19. The MOST supernova remnant catalogue (MSC)

    NASA Astrophysics Data System (ADS)

    Whiteoak, J. B. Z.; Green, A. J.

    1998-11-01

    The MOST Supernova Remnant Catalogue (MSC) is a catalogue of supernova remnants (SNRs) in the southern Galaxy within the area 245 deg <= l <= 355 deg , |b| < 1.5 deg. It was produced from observations made at 0.843 GHz with a resolution of 43" using the Molonglo Observatory Synthesis Telescope (MOST).

  20. Modelling of the radio emission from the Vela supernova remnant

    NASA Astrophysics Data System (ADS)

    Sushch, I.; Hnatyk, B.

    2014-01-01

    Supernova remnants (SNRs) are widely considered to be sites of Galactic cosmic ray (CR) acceleration. Vela is one of the Galactic composite SNRs closest to Earth accompanied by the Vela pulsar and its pulsar wind nebula (PWN) Vela X. The Vela SNR is one of the most studied remnants and it benefits from precise estimates of various physical parameters such as distance and age. Therefore, it is a perfect object for a detailed study of physical processes in SNRs. The Vela SNR expands into the highly inhomogeneous cloudy interstellar medium (ISM) and its dynamics are determined by the heating and evaporation of ISM clouds. It features an asymmetrical X-ray morphology, which is explained by the expansion into two media with different densities. This could occur if the progenitor of the Vela SNR exploded close to the edge of the stellar wind bubble of the nearby Wolf-Rayet star ?2 Velorum causing one part of the remnant to expand into the bubble. The interaction of the ejecta and the main shock of the remnant with ISM clouds causes formation of secondary shocks at which additional particle acceleration takes place. This may lead to the almost uniform distribution of relativistic particles inside the remnant. We calculate the synchrotron radio emission within the framework of the new hydrodynamical model that assumes the supernova explosion at the edge of the stellar wind bubble. The simulated radio emission agrees well with both the total radio flux from the remnant and the complicated radio morphology of the source.

  1. Cosmic Ray Acceleration in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blasi, P.

    2011-06-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  2. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  3. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  4. ANTIMATTER PRODUCTION IN SUPERNOVA REMNANTS

    SciTech Connect

    Kachelriess, M.; Ostapchenko, S.; Tomas, R.

    2011-06-01

    We calculate the energy spectra of cosmic rays (CRs) and their secondaries produced in a supernova remnant (SNR) taking into account the time dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusion coefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: the positron/electron ratio F{sub e}{sup +}/F{sub e}{sup +}{sub +e}{sup -} and the antiproton/proton ratio F{sub p-bar/}F{sub p-bar+p} are a few percent and few x 10{sup -5}, respectively. Moreover, the obtained positron/electron ratio decreases with energy, while the antiproton/proton ratio rises at most by a factor of two above 10 GeV.

  5. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.

    2014-08-20

    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  6. Cosmic rays and the Monogem supernova remnant

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    2004-10-01

    Recent findings indicate that the Monogem Ring and the associated pulsar PSR B0656 + 14 may be the `Single Source' responsible for the formation of the sharp knee in the cosmic ray energy spectrum at 3 PeV. The energy spectrum of cosmic rays expected for the Monogem Ring supernova remnant (SNR) from our SNR acceleration model [J. Phys. G: Nucl. Part. Phys. 27 (2001) 941] has been published by us elsewhere [J. Phys. G: Nucl. Part. Phys. 29 (2003) 709] . In this paper we go on to estimate the contribution of the pulsar B0656 + 14 to the cosmic rays in the PeV region. We conclude that although the pulsar can contribute to the formation of the knee, it cannot be the dominant source of it and an SNR is still needed. We also examine the possibility of the pulsar giving the peak of the extensive air shower (EAS) intensity observed from the region inside the Monogem Ring [ApJ Lett. 597 (2003) L129]. The estimates of the gamma-ray flux produced by cosmic ray particles from this pulsar indicate that it can be the source of the observed peak, if the particles were confined within the SNR during a considerable fraction of its total age. The flux of gamma quanta at PeV energies has a high sensitivity to the duration of the confinement. The estimates of this time and of the following diffusion of cosmic rays from the confinement volume turn out to be in remarkable agreement with the time needed for these cosmic rays to propagate to the solar system and to form the observed knee in the cosmic ray energy spectrum. Other possible mechanisms for the production of particles which could give rise to the observed narrow peak in the EAS intensity were also examined. Electrons scattered on the microwave background or on X-rays, emitted by SNR, cannot be responsible for the gamma-quanta in the peak. Neutrons produced in PP-collisions or released from the disintegration of accelerated nuclei seem to be also unable to create the peak since they cannot give the observed flux. If the experimental EAS results concerning a point-like source are confirmed, they can be important, since they will give evidence for the acceleration of protons or heavier nuclei by the pulsar; they will give evidence for the existence of a confinement mechanism in SNR; they will confirm that cosmic rays produced by the Monogem Ring SNR and associated pulsar B0656 + 14 were released recently giving rise to the formation of the sharp knee and the observed narrow peak in the EAS intensity; they will give strong support for the Monogem Ring SNR and the associated pulsar B0656 + 14 being identified as the Single Source proposed in our Single Source Model of the knee. examined mechanism are made.

  7. Observations of young core collapse supernova remnants

    NASA Astrophysics Data System (ADS)

    Tziamtzis, Anestis

    Studies of young remnants offer an opportunity to test theoretical models of stellar evolution, explosion models and nucleosynthesis, as well as our understanding of the compact objects in the centre of the exploded stars. The first part of the thesis involves observations of the Crab nebula. We have used photometric and spectroscopic observations to search for a faint halo around the visible nebula, that could carry the missing mass and kinetic energy of the nebula. No halo was found. In the photometric data due to psf contamination, and in the spectroscopic no fast velocity components were present. We have also used optical and IR photometry to check for variation in the emissivity and dynamic structure of the Crab pulsar wind nebula (PWN), to try to understand the nature of plerionic PWNe. There, we measured flux variations up to 20% in the IR and also shifting of the wisps with velocities up to 0.2c. We also showed that the nearby red knot moves in tandem with the Crab pulsar. The second part of the thesis, deals with photometric & spectroscopic observations of SN 1987A in the LMC. The aim of the project was to monitor the evolution of the outer rings (ORs) of SN 1987A. The fading of the ORs is consistent with recombination and cooling after the initial flash ionization by the supernova. From the spectroscopic data we measured the density and temperature in the ORs where we found temperatures of ~ 12,000 K for the [N II] gas, and ~ 25,000 K for the [O III]. Finally, from the [O II], and [S II] ratios we estimated electron densities of ~ 1,000 cm-3 and ~ 2,500 cm-3, respectively. From the evolution of Hα, we argue that the highest density in the ORs could be 5,000 cm-3.

  8. The MOST supernova remnant catalogue (MSC).

    NASA Astrophysics Data System (ADS)

    Whiteoak, J. B. Z.; Green, A. J.

    1996-08-01

    A catalogue of supernova remnants in the southern Galaxy within the area 245 <=l <=355deg , |b|<~ 1.5deg has been produced from observations made at 0.843 GHz with a resolution of 43" using the Molonglo Observatory Synthesis Telescope (MOST). The catalogue, presented here, provides greyscale images and contour maps of known and newly-discovered remnants. The increased resolution and sensitivity of these observations has resulted in better statistics for southern remnants.

  9. An IRAS survey of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Saken, Jon M.; Fesen, Robert A.; Shull, J. M.

    1992-01-01

    A new independent survey of the IR emission for 161 Galactic supernova remnants are presented on the basis of Skyflux image data from the Infrared Astronomical Satellite. A new Galactic rotation curve with current IAU constants, R0 = 8.5 kpc and V0 = 220 km/s, is used to derive new kinematic distances for 11 of the 44 positively or possibly identified remnants. Temperature-sensitive flux ratio images are employed to help identify and define remnant emission structures and fluxes, particularly in complex regions. Of the 161 remnants examined, clear IR emission from 35 was found, with nine additional possible detections. Almost all young remnants (Tycho, Kepler, Cas A, Crab) were found to have a significant 12- and 25-micron flux, while older remnants are brightest at 60 and 100 microns. Correlations with mass and temperature indicate that older remnants are both colder and more massive, as expected from decreasing velocity. No radius-luminosity correlation was seen.

  10. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for the movie

    For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays.

    Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images.

    To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and position with resp

  11. High-energy antiprotons from old supernova remnants.

    PubMed

    Blasi, Pasquale; Serpico, Pasquale D

    2009-08-21

    A recently proposed model explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the antiproton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (such as pulsars). We briefly discuss important implications for dark matter searches via antimatter. PMID:19792708

  12. Isothermal blast wave model of supernova remnants

    NASA Technical Reports Server (NTRS)

    Solinger, A.; Buff, J.; Rappaport, S.

    1975-01-01

    The validity of the 'adiabatic' assumption in supernova-remnant calculations is examined, and the alternative extreme of an isothermal blast wave is explored. It is concluded that, because of thermal conductivity, the large temperature gradients predicted by the adiabatic model probably are not maintained in nature. Self-similar solutions to the hydrodynamic equations for an isothermal blast wave have been found and studied. These solutions are then used to determine the relationship between X-ray observations and inferred parameters of supernova remnants. A comparison of the present results with those for the adiabatic model indicates differences which are less than present observational uncertainties. It is concluded that most parameters of supernova remnants inferred from X-ray measurements are relatively insensitive to the specifics of the blast-wave model.

  13. Evolution of multiple supernova remnants

    NASA Astrophysics Data System (ADS)

    Vasiliev, Evgenii O.; Nath, Biman B.; Shchekinov, Yuri

    2015-01-01

    Heating of the interstellar medium (ISM) by multiple supernova (SN) explosions is at the heart of producing galaxy-scale outflows in starburst galaxies. Standard models of outflows assume a high efficiency of SNe in heating the gas to X-ray emitting temperatures and filling the central region of starburst with hot gas, in order to launch vigorous outflows. We use hydrodynamical simulations to study the efficiency of multiple SNe in heating the ISM and filling the volume with gas of high temperatures. We argue that it is important for SN remnants to have a large filling factor and a large heating efficiency. For this, they have to be clustered in space and time, and keep exploding until the hot gas percolates through the whole region, in order to compensate for the radiative loss. In the case of a limited number of SNe, we find that although the filling factor can be large, the heating efficiency declines after reaching a large value. In the case of a continuous series of SNe, the hot gas (T ≥ 3 × 106 K) can percolate through the whole region after the total volume filling factor reaches a threshold of ˜0.3. The efficiency of heating the gas to X-ray temperatures can be ≥0.1 after this percolation epoch, which occurs after a period of ≈10 Myr for a typical starburst SN rate density of νSN ≈ 10-9 pc-3 yr-1 and gas density of n ≈ 10 cm-3 in starburst nuclei regions. This matches the recent observations of a time delay of similar order between the onset of star formation and galactic outflows. The efficiency to heat gas up to X-ray temperatures (≥106.5 K) roughly scales as ν _SN^{0.2} n^{-0.6}. For a typical SN rate density and gas density in starburst nuclei, the heating efficiency is ˜0.15, also consistent with previous interpretations from X-ray observations. We discuss the implications of our results with regard to observational diagnostics of ionic ratios and emission measures in starburst nuclei regions.

  14. X-ray imaging - Supernova remnants

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1981-01-01

    Consideration is given to imaging observations of supernova remnants (SNRs) obtained during the first year of the Einstein Observatory's operation. Inferences are drawn regarding models for stellar explosions, remnant evolution, neutron star formation and the interstellar medium. Because the X-ray emission traces the expanding shock boundary and dominates the radiative energy losses of an SNR over much of its lifetime, it can provide data on the possible collapsed remnants of the explosion, such as neutron stars and/or black holes. X-ray emission also allows a supernova shock to be used as a probe of interstellar medium structure. The imaging instrument aboard the Einstein satellite has been used to observe over 30 known Galactic remnants, and a similar number of objects in other galaxies, in the 0.15-4.5 keV band.

  15. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  16. Imagery and spectroscopy of supernova remnants and H-2 regions

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.

    1984-01-01

    Research activities relating to supernova remnants were summarized. The topics reviewed include: progenitor stars of supernova remnants, UV/optical/radio/X-ray imagery of selected regions in the Cygnus Loop, UV/optical spectroscopy of the Cygnus Loop spur, and extragalactic supernova remnant spectra.

  17. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  18. Autopsy of the Supernova Remnant Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Fesen, Robert A.

    2014-01-01

    Three-dimensional kinematic reconstructions of optically emitting ejecta in the young Galactic supernova remnant Cassiopeia A (Cas A) are discussed. The reconstructions encompass the remnant's faint outlying ejecta knots, including the exceptionally high-velocity NE and SW streams of debris often referred to as `jets'. The bulk of Cas A's ejecta are arranged in several circular rings with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). We suggest that similar large-scale ejecta rings may be a common phenomenon of young core-collapse remnants and may explain lumpy emission line profile substructure sometimes observed in spectra of extragalactic core-collapse supernovae years after explosion. A likely origin for these large ejecta rings is post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material to form bubble-like structures.

  19. X-ray Observations of Vela Supernova Remnant Ejecta Fragments

    NASA Astrophysics Data System (ADS)

    Gaetz, Terrance J.

    2012-05-01

    As one of the nearest SNRs, the Vela Supernova Remnant (SNR) subtends more than 8 degrees on the sky, making it ideal for spatially resolved spectral studies. Its environment is complex, and the remnant shows marked variations: the remnant is bright, soft, and sharply defined to the east and north, but much fainter and less well ordered in the west and south. Age estimates for the associated pulsar range from $\\sim11400$ years to as much as 18000 years, making the the SNR a moderately old remnant. The remnant shows curious protrusions beyond the projected rim (Aschenbach et al. 1995, Nature 373, 587). Many have subsequently been investigated in X-rays and in each case, enhanced abundances have been detected, confirming that these fragments include ejecta. Here, we present analyses of several ejecta fragments based on Suzaku and XMM-Newton X-ray observations. This work was supported by NASA grants NNX06AE40G, NNX07AF67G, NNX08AZ74G, and by NASA contract NAS8-03060.

  20. The Rediscovery of the Antlia Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Orchard, Alexander; Benjamin, Robert A.; Gostisha, Martin; Haffner, L. Matthew; Hill, Alex S.; Barger, Kathleen

    2015-01-01

    While undertaking a survey of velocity-resolved diffuse optical emission from the [S II] 6716 A line with the Wisconsin H-alpha Mapper, we have rediscovered the Antlia Supernova remnant, a 26 degree diameter remmant near the Gum Nebula that was originally detected in SHASSA (Southern H-alpha Sky Survey Atlas) by P. McCullough in 2002. The original discovery showed this remnant was associated with keV X-ray emission in the ROSAT All-Sky Survey, and argued that Antlia was potentially the closest remnant to the Sun. We will present an analysis of the H-alpha and [S II] lines in this direction: the ratio of these lines indicate the shell is consistent with being a supernova remnant and the velocities allow us to constrain its age. We discuss this remnant in the context of the evolution of the entire Gum Nebula region, noting that its proximity and age make it possible to search for geochemical evidence of this remnant on Earth. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881.

  1. Dynamics of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  2. Grain Destruction in Evolving Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Slavin, Jonathan David

    2014-06-01

    Supernova remnant (SNR) shocks are believed to be the primary regions of destruction for interstellar dust grains. This destruction occurs primarily because of the grain acceleration that occurs when the shock causes the gas and magnetic field to be compressed. Most calculations of grain destruction in shocks have used steady, plane parallel shocks, but in the interstellar medium most shocks result from SNRs and have significant time dependent and non-planar effects. We present new results for grain destruction that use numerical hydrodynamical calculations of supernova remnant evolution and include all important grain processes. We show that the lower density behind SNR shocks leads to substantially less grain destruction, alleviating the discrepancy between the grain destruction and creation timescales for silicate grains.

  3. Pulsar recoil by large-scale anisotropies in supernova explosions.

    PubMed

    Scheck, L; Plewa, T; Janka, H-Th; Kifonidis, K; Mller, E

    2004-01-01

    Assuming that the neutrino luminosity from the neutron star core is sufficiently high to drive supernova explosions by the neutrino-heating mechanism, we show that low-mode (l=1,2) convection can develop from random seed perturbations behind the shock. A slow onset of the explosion is crucial, requiring the core luminosity to vary slowly with time, in contrast to the burstlike exponential decay assumed in previous work. Gravitational and hydrodynamic forces by the globally asymmetric supernova ejecta were found to accelerate the remnant neutron star on a time scale of more than a second to velocities above 500 km s(-1), in agreement with observed pulsar proper motions. PMID:14753979

  4. SN 1054: A pulsar-powered supernova?

    NASA Astrophysics Data System (ADS)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  5. G65.2+5.7: A Thermal Composite Supernova Remnant with a Cool Shell

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    This paper presents archival ROSAT PSPC observations of the G65.2+5.7 supernova remnant (also known as G65.3+5.7). Little material obscures this remnant and so it was well observed, even at the softest end of ROSATs bandpass (approx. 0.11 to 0.28 keV). These soft X-ray images reveal the remnant s centrally-filled morphology which, in combination with existing radio frequency observations, places G65.2+5.7 in the thermal composite (mixed morphology) class of supernova remnants. Not only might G65.2+5.7 be the oldest known thermal composite supernova remnant, but owing to its optically revealed cool, dense shell, this remnant supports the proposal that thermal composite supernova remnants lack X-ray bright shells because they have evolved beyond the adiabatic phase. These observations also reveal a slightly extended point source centered on RA = l9(sup h) 36(sup m) 46(sup s). dec = 30 deg.40 min.07 sec.and extending 6.5 arc min in radius in the band 67 map. The source of this emission has yet to be discovered, as there is no known pulsar at this location.

  6. The Hubble Heritage Image of the Crab Nebula Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Blair, W. P.; English, J.; Bond, H. E.; Christian, C. A.; Frattare, L.; Hamilton, F.; Levay, Z.; Noll, K. S.

    2000-05-01

    The Hubble Heritage Project has the aim of providing the public with pictorially striking images of celestial objects obtained with NASA's Hubble Space Telescope. Here we present a 5-color Wide Field Planetary Camera 2 (WFPC2) image of the Crab Nebula, a ~950 year old supernova remnant located 6500 light-years distant in the constellation Taurus. The images were obtained in 1995 January and April, and the science investigation reporting results was published by Blair, W. P., et al. (1997, ApJS, 109, 473--480). Over 10 hours of exposure time through 5 separate optical continuum band and emission-line filters were used to study size scales and ionization structures of the filaments and newly synthesized dust within the expanding ejecta. The Heritage version of these data shows several important aspects of the Crab Nebula all in one spectacular image. The continuum image shows stars, including the enigmatic pulsar (the collapsed core of the original star) and the ghostly diffuse synchrotron nebula energized by the pulsar. The synchrotron nebula in turn heats and ionizes the surrounding clumpy filaments of gas and dust visible in the emission line images. These filaments are the supernova ejecta that were expelled during the explosion and are now expanding outward from the pulsar at high speed. The different colors in the picture show optical emission lines of hydrogen (orange), nitrogen (red), sulfur (pink) and oxygen (bluish-green). The subtle changes in color from one filament to the next arise because of varying temperatures and densities of the gas, and variable chemical abundances of the ``star stuff," or the doppler shifting of emission into or out of the various narrow filter bandpasses. Support for this work was provided by NASA through grant numbers GO-07632.01-96A and GO-5354.04-93A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  7. Vivid View of Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This composite image of the Tycho supernova remnant combines infrared and X-ray observations obtained with NASA's Spitzer and Chandra space observatories, respectively, and the Calar Alto observatory, Spain. It shows the scene more than four centuries after the brilliant star explosion witnessed by Tycho Brahe and other astronomers of that era.

    The explosion has left a blazing hot cloud of expanding debris (green and yellow). The location of the blast's outer shock wave can be seen as a blue sphere of ultra-energetic electrons. Newly synthesized dust in the ejected material and heated pre-existing dust from the area around the supernova radiate at infrared wavelengths of 24 microns (red). Foreground and background stars in the image are white.

  8. Radioactivity and electron acceleration in supernova remnants

    SciTech Connect

    Zirakashvili, V. N.; Aharonian, F. A.

    2011-10-15

    We argue that the decays of radioactive nuclei related to {sup 44}Ti and {sup 56}Ni ejected during supernova explosions can provide a vast pool of mildly relativistic positrons and electrons which are further accelerated to ultrarelativistic energies by reverse and forward shocks. This interesting link between two independent processes - the radioactivity and the particle acceleration - can be a clue for solution of the well known theoretical problem of electron injection in supernova remnants. In the case of the brightest radio source Cas A, we demonstrate that the radioactivity can supply adequate number of energetic electrons and positrons for interpretation of observational data provided that they are stochastically preaccelerated in the upstream regions of the forward and reverse shocks.

  9. Multi-Wavelength Observations of Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  10. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  11. HUT Observations of the VELA Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Blair, W. P.; Raymond, J. C.; Vancura, O.; Long, K. S.

    1996-05-01

    The Vela supernova remnant is one of the most nearby and least reddened galactic supernova remnants. As such, it is one of the best laboratories for studying interstellar blast waves and their interaction with the interstellar medium. We have used the Hopkins Ultraviolet Telescope (HUT) during the Astro-2 space shuttle mission in 1995 March to observe the 900 - 1850 Angstroms spectrum of several locations within the extended filamentary shell. Two positions, on the eastern limb of the remnant, correspond to one of the regions identified by Aschenbach et al. (1995, Nature, 373, 587) as a possible ``bullet'' of SN ejecta. Our spectra show this region to be simply a ``breakout'' in the SNR shell, consisting of normal abundance, recently-shocked interstellar gas. The observed positions, which have nearly identical UV spectra, have very different optical spectra, which we attribute to shock ``completeness'' differences between the two positions. A second pair of pointings in a region projected near the center of the remnant have been used to study the effects of resonance line scattering, which may affect many SNR observations done with (for instance) IUE over the years. This has been accomplished by observing a low surface brightness face-on shock and comparing against the spectrum of a nearby edge-on filament that arises from the same (or similar) section of the blast wave. Comparison against shock models allows us to quantify these resonant scattering effects. We find as a general result that this effect may have caused substantial and systematic underestimates of shock velocities as estimated from previous UV observations. Support for this work was provided by NASA contract NAS5-27000 to the Johns Hopkins University and NASA Grant NAG8-1074 to the Smithsonian Astrophysical Observatory.

  12. An optical and near infrared search for a pulsar in Supernova 1987A

    SciTech Connect

    Sasseen, T.P.

    1990-12-01

    We describe a search for an optical pulsar in the remnant of Supernova 1987A. We have performed over one hundred separate observations of the supernova, covering wavelengths from 3500 angstroms to 1.8 microns, with sensitivity to pulsations as faint as magnitude 22.7. As of September 26, 1990, we have not seen evidence for pulsations due to a pulsar in the supernova. We discuss the implications of this result on predictions of pulsar optical luminosity. We have constructed for the search two photodiode detectors and a data system. We describe their design, calibration and performance. These detectors have allowed us to increase our sensitivity as much as a factor of 5 over standard photomultiplier tubes, and extend this search to near infrared wavelengths. 59 refs., 10 figs., 1 tab.

  13. Chandra Observations of Supernova Remnants and Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2002-01-01

    We present a brief overview of Chandra observations of supernova remnants and neutron stars, with emphasis on neutron stars in supernova remnants. The Chandra images demonstrate the importance of angular resolution in separating the neutron star emission from the surrounding nebulosity.

  14. Tachyonic Cherenkov radiation from supernova remnants

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2015-12-01

    The subexponential decay observed in the ?-ray spectral maps of supernova remnants is explained in terms of tachyonic Cherenkov emission from a relativistic electron population. The tachyonic radiation densities of an electronic spinor current are derived, the total density as well as the transversal and longitudinal polarization components, taking account of electron recoil. Tachyonic flux quantization subject to dispersive and dissipative permeabilities is discussed, the matrix elements of the transversal and longitudinal Poynting vectors of the Maxwell-Proca field are obtained, Cherenkov emission angles and radiation conditions are derived. The spectral energy flux of an ultra-relativistic electron plasma is calculated, a tachyonic Cherenkov fit to the high-energy (1 GeV to 30 TeV) ?-ray spectrum of the Crab Nebula is performed, and estimates of the linear polarization degree are given. The spectral tail shows subexponential Weibull decay, which can be modeled with a frequency-dependent tachyon mass in the dispersion relations. Tachyonic flux densities interpolate between exponential and power-law spectral decay, which is further illustrated by Cherenkov fits to the ?-ray spectra of the supernova remnants IC 443 and W44. Subexponential spectral decay is manifested in double-logarithmic spectral maps as curved Weibull or straight power-law slope.

  15. Color Composite Image of the Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  16. Search for gamma ray lines from supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.

    1974-01-01

    A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.

  17. HESS upper limits for Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A. G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; Braun, I.; Brion, E.; Brucker, J.; Bhler, R.; Bulik, T.; Bsching, I.; Boutelier, T.; Carrigan, S.; Chadwick, P. M.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Cornils, R.; Costamante, L.; Dalton, M.; Degrange, B.; Dickinson, H. J.; Djannati-Ata, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Egberts, K.; Emmanoulopoulos, D.; Espigat, P.; Farnier, C.; Feinstein, F.; Fiasson, A.; Frster, A.; Fontaine, G.; Fling, M.; Gallant, Y. A.; Giebels, B.; Glicenstein, J. F.; Glck, B.; Goret, P.; Hadjichristidis, C.; Hauser, D.; Hauser, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jung, I.; Katarzy?ski, K.; Kendziorra, E.; Kerschhaggl, M.; Khlifi, B.; Keogh, D.; Komin, Nu.; Kosack, K.; Lamanna, G.; Latham, I. J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Martin, J. M.; Martineau-Huynh, O.; Marcowith, A.; Masterson, C.; Maurin, D.; McComb, T. J. L.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nolan, S. J.; Ohm, S.; Olive, J.-P.; de Oa Wilhelmi, E.; Orford, K. J.; Osborne, J. L.; Ostrowski, M.; Panter, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Phlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schck, F. M.; Schrder, R.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sol, H.; Spangler, D.; Stawarz, ?.; Steenkamp, R.; Stegmann, C.; Superina, G.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Vincent, P.; Vivier, M.; Vlk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.

    2008-09-01

    Aims: Observations of Kepler's supernova remnant (G4.5+6.8) with the HESS telescope array in 2004 and 2005 with a total live time of 13 h are presented. Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays. Results: No evidence for a very high energy (VHE: >100 GeV) gamma-ray signal from the direction of the remnant is found. An upper limit (99% confidence level) on the energy flux in the range 230 GeV{-}12.8 TeV of 8.6 10-13 erg cm-2 s-1 is obtained. Conclusions: In the context of an existing theoretical model for the remnant, the lack of a detectable gamma-ray flux implies a distance of at least 6.4 kpc. A corresponding upper limit for the density of the ambient matter of 0.7 cm-3 is derived. With this distance limit, and assuming a spectral index ? = 2, the total energy in accelerated protons is limited to Ep < 8.6 1049 erg. In the synchrotron/inverse Compton framework, extrapolating the power law measured by RXTE between 10 and 20 keV down in energy, the predicted gamma-ray flux from inverse Compton scattering is below the measured upper limit for magnetic field values greater than 52 ? G.

  18. Three Great Eyes on Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Composite

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Chandra X-Ray Data (blue) Chandra X-Ray Data (green)Hubble Telescope (visible-light)Spitzer Telescope (infrared)

    NASA's three Great Observatories -- the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory -- joined forces to probe the expanding remains of a supernova, called Kepler's supernova remnant, first seen 400 years ago by sky watchers, including astronomer Johannes Kepler.

    The combined image unveils a bubble-shaped shroud of gas and dust that is 14 light-years wide and is expanding at 4 million miles per hour (2,000 kilometers per second). Observations from each telescope highlight distinct features of the supernova remnant, a fast-moving shell of iron-rich material from the exploded star, surrounded by an expanding shock wave that is sweeping up interstellar gas and dust.

    Each color in this image represents a different region of the electromagnetic spectrum, from X-rays to infrared light. These diverse colors are shown in the panel of photographs below the composite image. The X-ray and infrared data cannot be seen with the human eye. By color-coding those data and combining them with Hubble's visible-light view, astronomers are presenting a more complete picture of the supernova remnant.

    Visible-light images from the Hubble telescope (colored yellow) reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The bright glowing knots are dense clumps from instabilities that form behind the shock wave. The Hubble data also show thin filaments of gas that look like rippled sheets seen edge-on. These filaments reveal where the shock wave is encountering lower-density, more uniform interstellar material.

    The Spitzer telescope shows microscopic dust particles (colored red) that have been heated by the supernova shock wave. The dust re-radiates the shock wave's energy as infrared light. The Spitzer data are brightest in the regions surrounding those seen in detail by the Hubble telescope.

    The Chandra X-ray data show regions of very hot gas, and extremely high-energy particles. The hottest gas (higher-energy X-rays, colored blue) is located primarily in the regions directly behind the shock front. These regions also show up in the Hubble observations, and also align with the faint rim of glowing material seen in the Spitzer data. The X-rays from the region on the lower left (colored blue) may be dominated by extremely high-energy electrons that were produced by the shock wave and are radiating at radio through X-ray wavelengths as they spiral in the intensified magnetic field behind the shock front. Cooler X-ray gas (lower-energy X-rays, colored green) resides in a thick interior shell and marks the location of heated material expelled from the exploded star.

    Kepler's supernova, the last such object seen to explode in our Milky Way galaxy, resides about 13,000 light-years away in the constellation Ophiuchus.

    The Chandra observations were taken in June 2000, the Hubble in August 2003; and the Spitzer in August 2004.

  19. Excess gamma rays from the Loop I supernova remnant

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    Evidence is presented for an excess of cosmic ray intensity within the Loop I supernova remnant based on an interpretation of the observed distribution of gamma-rays across the remnant and the column densities of the associated gas. A strong case can thus be made for the bulk of the cosmic radiation (E , 10 to the 11th power eV) being produced in the Galactic supernova remnants.

  20. Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Gossler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña na-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosi´ska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-11-01

    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering {F}-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10-25 on intrinsic strain, 2 × 10-7 on fiducial ellipticity, and 4 × 10-5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

  1. Supernova remnants with magnetars: Clues to magnetar formation

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    In this paper I discuss the lack of observational evidence that magnetars are formed as rapidly rotating neutron stars. Supernova remnants containing magnetars do not show the excess of kinetic energy expected for such a formation scenario, nor is there any evidence for a relic pulsar wind nebula. However, it could be that magnetars are formed with somewhat slower rotation periods, or that not all excess rotational energy was used to boost the explosion energy, for example as a result of gravitational radiation. Another observational tests for the rapid initial period hypothesis is to look for statistical evidence that about 1% of the observed supernovae have an additional 1040 1044 erg/s excess energy during the first year, caused by the spin down luminosity of a magnetar. An alternative scenario for the high magnetic fields of magnetars is the fossil field hypothesis, in which the magnetic field is inherited from the progenitor star. Direct observational tests for this hypothesis are harder to formulate, unless the neutron star formed in the SN1987A explosion emerges as a slowly rotating magnetar. Finally, I point out the possible connection between the jets in Cas A and its X-ray point source: the jets in Cas A may indicate that the explosion was accompanied by an X-ray flash, probably powered by a rapidly rotating compact object. However, the point source in Cas A does not seem to be a rapidly rotating neutron star. This suggests that Cas A contains a neutron star that has slowed down considerably in 330 yr, requiring a dipole magnetic field of B > 5 1013 G. The present day lack of evidence for a relic radio pulsar wind nebula may be used to infer an even higher magnetic field of 1015 G.

  2. A Newly Discovered Supernova Remnant and MSH 11-62 and 3C58

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    2000-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of X-rays observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Here we report on Advanced Spacecraft for Cosmology Astrophysics (ASCA) observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an X-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  3. A Study of Supernova Remnants with Center-Filled X-Ray Morphology

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    1997-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of x-rays observed with the ROSAT PSPC. Here we report on ASCA observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an x-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  4. An infrared survey of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    1989-01-01

    A survey of Galactic supernova remnants (SNRs) in the infrared has been completed. Flux densities or upper limits on the flux densities have been measured for 157 objects in each of the four broad bands surveyed by the Infrared Astronomical Satellite (IRAS). Nearly one-third of the known SNRs exhibit some evidence of infrared emission. Confusion with other Galactic sources is a serious problem. Contour maps and halftone images are presented for 51 SNRs which are probable infrared sources. Initial analysis indicates that both the infrared spectra or colors and the ratio of infrared to radio brightnesses can discriminate between the youngest SNRs and older SNRs. In general, however, SNRs cannot be distinguished from other Galactic sources solely on the basis of their infrared colors. No apparent relation is found between the infrared surface brightnesses and the diameters of SNRs.

  5. ASCA observations of the Large Magellanic Cloud supernova remnant sample: Typing supernovae from their remnants

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Hayashi, Ichizo; Helfand, David; Hwang, Una; Itoh, Masayuki; Kirshner, Robert; Koyama, Katsuji; Markert, Thomas; Tsunemi, Hiroshi; Woo, Jonathan

    1995-01-01

    We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K alpha emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based on these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.

  6. Cosmic ray acceleration in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2013-10-01

    We investigate the appearance of magnetic field amplification resulting from a cosmic ray escape current in the context of supernova remnant shock waves. The current is inversely proportional to the maximum energy of cosmic rays, and is a strong function of the shock velocity. Depending on the evolution of the shock wave, which is drastically different for different circumstellar environments, the maximum energy of cosmic rays as required to generate enough current to trigger the non-resonant hybrid instability that confines the cosmic rays follows a different evolution and reaches different values. We find that the best candidates to accelerate cosmic rays to few PeV energies are young remnants in a dense environment, such as a red supergiant wind, as may be applicable to Cassiopeia A. We also find that for a typical background magnetic field strength of 5 ?G the instability is quenched in about 1000 years, making SN1006 just at the border of candidates for cosmic ray acceleration to high energies.

  7. Synthetic Observation of Turbulent Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Shimoda, Jiro; Inoue, Tsuyoshi; Ohira, Yutaka; Yamazaki, Ryo

    It is known that observations of polarized radio synchrotron emissions from young supernova remnants show radially oriented distributions of magnetic field. By using synthetic polarization observations of the results of three-dimensional magnetohydrodynamics simulations, we find that the radially oriented distribution of magnetic field can be reproduced by turbulent dynamo mechanism induced by the Richtmyer-Meshkov instability. In the simulation, we consider propagation of a supernova blast wave shock in realistic inhomogeneous interstellar medium. Interaction between the density inhomogeneity and the shock wave induces the so-called Richtmyer-Meshkov instability that generates shear of radial-component velocity in the downstream of the blast wave. In such medium, magnetic field lines are stretched by the shear motion that leads to amplification of radial-component magnetic field. Thus, the downstream magnetic field is oriented parallel to the shock normal. We conclude that the observed polarized synchrotron emission is successfully explained by the dynamo effect induced by the Richtmyer-Meshkov instability.

  8. The evolution of supernova remnants in different galactic environments, and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.

    1980-01-01

    Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.

  9. Supernova remnants and the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2014-01-01

    Supernova remnants have long been considered to be the dominant sources of Galactic cosmic rays. For a long time the prime evidence consisted of radio synchrotron radiation from supernova remnants, indicating the presence of electrons with energies of several GeV. However, in order to explain the cosmic ray energy density and spectrum in the Galaxy supernova remnant should use 10% of the explosion energy to accelerate particles, and about 99% of the accelerated particles should be protons and other atomic nuclei. Over the last decade a lot of progress has been made in providing evidence that supernova remnant can accelerate protons to very high energies. The evidence consists of, among others, X-ray synchrotron radiation from narrow regions close to supernova remnant shock fronts, indicating the presence of 10-100 TeV electrons, and providing evidence for amplified magnetic fields, gamma-ray emission from both young and mature supernova remnants. The high magnetic fields indicate that the condition for accelerating protons to >1015 eV are there, whereas the gamma-ray emission from some mature remnants indicate that protons have been accelerated.

  10. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  11. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.; Kaastra, J. S.

    2013-10-01

    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially moved through a stellar wind bubble, but is currently evolving in the uniform interstellar medium with a relatively low density. We investigate this scenario by combining hydrodynamical simulations of the wind-loss phase and the SNR evolution with a coupled X-ray emission model, which includes non-equilibrium ionization. For the explosion models we use the well-known W7 deflagration model and the delayed detonation model that was previously shown to provide good fits to the X-ray emission of Tycho's SNR. Our simulations confirm that a uniform ambient density cannot simultaneously reproduce the dynamical and X-ray emission properties of Tycho. In contrast, models that considered that the remnant was evolving in a dense, but small, wind bubble reproduce reasonably well both the measured X-ray emission spectrum and the expansion parameter of Tycho's SNR. Finally, we discuss possible mass-loss scenarios in the context of single- and double-degenerate models which possibly could form such a small dense wind bubble.

  12. Locating the Periodic Transient GRO J1849-03; Gamma-Ray Luminous Supernovae Remnants

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; White, Nicholas (Technical Monitor)

    2000-01-01

    We obtained one 50 ks observation of the Monoceros supernova remnant under this proposal. This supernova remnant was selected because it overlaps the error box of a gamma-ray source. Much to our surprise, we discovered a hard x-ray point source instead of the diffuse hard x-ray emission we expected from the supernova remnant. A paper on the discovery of the hard x-ray source and on follow-up optical observations identifying a likely Bestar companion was published in the Astrophysical Journal. Subsequently, a reanalysis of the same data yielded the detection of pulsations from the x-ray source. These results were also published in the Astrophysical Journal. Subsequent x-ray observations, which we performed under later proposals, have shown that the x-ray pulsar has a characteristic spin-down age of less than 1400 years in a binary system. The system is likely the first discovered very young, highly-energetic, rotation-powered pulsar in a binary system and offers an exciting opportunity to study the infancy and early evolution of neutron-star binaries.

  13. Laser Experiments to Simulate Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    1999-11-01

    We have used the Nova laser, and plan to use the Omega laser, to perform experimental simulations of some very young supernova remnants, on space and time scales over which their structure can be approximated as planar. Our special focus has been the remnant forming from SN1987A, in which the stellar ejecta have begun a dramatic collision with a circumstellar ring. In the supernova, the blast wave launches ejecta outward from the star. In the experiments (R.P. Drake, et al., Ap. J. Lett. 500, L157 (1998).) an ablation-driven, strong shock launches ejecta outward from a layer of plastic into vacuum. In both cases: (a) the ejecta expand and cool to produce a low-pressure but high-Mach-number plasma flow; (b) the ejecta drive a strong forward shock into the nearby matter; (c) a reverse shock forms where these ejecta stagnate against the moving interface with this matter; (d) the interface between the ejecta and this matter is unstable to the Rayleigh Taylor (RT) instability. A careful theoretical analysis(D.D. Ryutov, et al., ApJ 518, 821 (1999).) has established that the experiment is a well-scaled hydrodynamic model of SN1987A. Using x-ray backlighting, we have measured the motion of the forward shock and of the stagnated ejecta(R.P. Drake, et al., Phys. Rev. Lett. 81, 2068 (1998). ) and also the growth of the RT instability. Simulations of the resulting turbulence with the laboratory code, CALE , and with the astrophysics code, VH-1, and related simulations of turbulence in SNRs with PROMETHEUS(J. Kane, et al., Ap. J. 511, 335 (1999).) will be discussed. These systems are examples of flow-driven hydrodynamics, which abounds in nature but has been studied little in the laboratory. 1.R.P. Drake, et al., Ap. J. Lett. 500, L157 (1998). 2. D.D. Ryutov, et al., ApJ 518, 821 (1999). 3. R.P. Drake, et al., Phys. Rev. Lett. 81, 2068 (1998). 4. J. Kane, et al., Ap. J. 511, 335 (1999).

  14. Neutral Hydrogen in the Direction of the VELA Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Dubner, G. M.; Green, A. J.; Goss, W. M.; Bock, D. C.-J.; Giacani, E.

    1998-08-01

    We have carried out a study of the distribution and kinematics of the neutral hydrogen in the direction of the Vela supernova remnant (SNR). A field of 6.8d x 5.4d centered at l = 264.1d, b = -1.6d was surveyed using the Parkes 64 m radio telescope (half-power beamwidth 14.7? at 21 cm). Nearly 2300 H i profiles were obtained with a grid spacing of 7.5?. The presence of a thin, almost circular H i shell, centered at v = 1.6 +/- 0.8 km s^-1, is revealed. This shell delineates the outer border of the X-ray emission as shown in the ROSAT observations of Aschenbach, Egger, & Trmper and wraps around the receding part of the remnant. In addition, two higher velocity features possibly associated with Vela are observed at about -30 and 30 km s^-1. These features are interpreted as gas accelerated by the expansion of the supernova shock. The low systemic velocity observed suggests a distance shorter than 500 pc for the Vela SNR. The H i shell is ~7 deg in diameter and expands at v ~ 30 km s^-1. By assuming a distance of 350 pc, we calculate for this shell a linear radius of 22 pc, a swept-up mass of ~1200-2300 M_?, and an atomic preshock density of ~1-2 cm^-3. The kinetic energy transferred by the supernova shock into the interstellar medium is ~(1-2) x 10^49 ergs, while the initial energy of the explosion is estimated to be ~(1-2.5) x 10^51 ergs. We present the distribution of the column density of the neutral material absorbing the X-radiation, an essential parameter in the analysis of X-ray data. A comparison between the H i and H? emission suggests that the H i shell contains embedded dust that might be responsible for increased optical absorption in this region. On the other hand, the brightest arc-shaped optical filaments associated with the western side of Vela show good correspondence with the H i features. From a comparison between the H i and Molonglo Observatory Synthesis Telescope 843 MHz radio continuum emission, we find that the outermost arched radio filaments correlate well with the main ridge of the H i shell. No strong inhomogeneities were found in the ambient H i medium in the direction of Vela X (the central nebula, powered by the pulsar PSR B0833-45).

  15. XMM-NEWTON OBSERVATIONS OF TWO CANDIDATE SUPERNOVA REMNANTS

    SciTech Connect

    Kargaltsev, O.; Schmitt, B. M.; Pavlov, G. G.; Misanovic, Z.

    2012-01-20

    Candidate supernova remnants (SNRs) G23.5+0.1 and G25.5+0.0 were observed by XMM-Newton in the course of a snapshot survey of plerionic and composite SNRs in the Galactic plane. In the field of G23.5+0.1, we detected an extended source, {approx}3' in diameter, which we tentatively interpret as a pulsar wind nebula (PWN) of the middle-aged radio pulsar B1830-08 (J1833-0827; P = 85.3 ms, {tau} = 147 kyr, E-dot = 5.8 Multiplication-Sign 10{sup 35} erg s{sup -1}, d = 5.7 kpc), with the PWN luminosity L{sub 0.2-10keV} Almost-Equal-To 5 Multiplication-Sign 10{sup 33} erg s{sup -1} Almost-Equal-To 8 Multiplication-Sign 10{sup -3} E-dot . The pulsar is not resolved in the EPIC images. Our analysis suggests an association between PSR B1830-08 and the surrounding diffuse radio emission. If the radio emission is due to the SNR, then the pulsar must be significantly younger than its characteristic age. Alternatively, the radio emission may come from a relic PWN. The field also contains SGR 1833-0832 and another middle-aged pulsar B1829-08 (J1832-0827; P = 647 ms, {tau} = 161 kyr, E-dot = 9.3 Multiplication-Sign 10{sup 33} erg s{sup -1}, d = 4.7 kpc), none of which are detected in our observation. In the field of G25.5+0.0, which contains the extended TeV source HESS J1837-069, we detected the recently discovered young high-energy pulsar J1838-0655 (P = 70.5 ms, {tau} = 23 kyr, E-dot = 5.5 Multiplication-Sign 10{sup 36} erg s{sup -1}) embedded in a PWN with extent of 1.'3. The unabsorbed pulsar + PWN luminosity is L{sub 2-11keV} Almost-Equal-To 2 Multiplication-Sign 10{sup 34} erg s{sup -1} Almost-Equal-To 4 Multiplication-Sign 10{sup -3} E-dot at an assumed distance of 7 kpc. We also detected another PWN candidate (AX J1837.3-0652) with an extent of 2' and unabsorbed luminosity L{sub 2-10keV} Almost-Equal-To 4 Multiplication-Sign 10{sup 33} erg s{sup -1} at d = 7 kpc. The third X-ray source, located within the extent of the HESS J1837-069, has a peculiar extended radio counterpart, possibly a radio galaxy with a double nucleus or a microquasar. We did not find any evidence of the SNR emission in the G25.5+0.0 field. We provide detailed multiwavelength analysis and identifications of other field sources and discuss robustness of the G25.5+0.0 and G23.5+0.1 classifications as SNRs.

  16. MODIFIED EQUIPARTITION CALCULATION FOR SUPERNOVA REMNANTS

    SciTech Connect

    Arbutina, B.; Urosevic, D.; Andjelic, M. M.; Pavlovic, M. Z.; Vukotic, B.

    2012-02-10

    Determination of the magnetic field strength in the interstellar medium is one of the more complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Besides the Zeeman effect and Faraday rotation, the equipartition or minimum-energy calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic field and cosmic-ray particles by using only the radio synchrotron emission. Despite its approximate character, it remains a useful tool, especially when there are no other data about the magnetic field in a source. In this paper, we give a modified calculation that we think is more appropriate for estimating magnetic field strengths and energetics in supernova remnants (SNRs). We present calculated estimates of the magnetic field strengths for all Galactic SNRs for which the necessary observational data are available. The Web application for calculation of the magnetic field strengths of SNRs is available at http://poincare.matf.bg.ac.rs/{approx}arbo/eqp/.

  17. Nonthermal Radiation from Supernova Remnant Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung

    2013-09-01

    Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the timedependent evolution of the self-amplified magnetic fields, Alfvnic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and γ-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

  18. Discovery of optical candidate supernova remnants in Sagittarius

    NASA Astrophysics Data System (ADS)

    Alikakos, J.; Boumis, P.; Christopoulou, P. E.; Goudis, C. D.

    2012-08-01

    During an [O III] survey of planetary nebulae, we identified a region in Sagittarius containing several candidate supernova remants (SNRs) and obtained deep optical narrow-band images and spectra to explore their nature. We obtained images of the area of interest by acquiring observations in the emission lines of Hα + [N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4° × 1.0°, where both filamentary and diffuse emission was discovered, suggesting that there is more than one SNR in the area. Deep long-slit spectra were also taken of eight different regions. Both the flux-calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting that they are related, while the infrared emission found in the area at 12 μm and 22 μm marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs implies that the shock velocities in the interstellar "clouds" are between 120 km s-1 and 200 km s-1, while its absence in the other candidate SNRs indicates that the shock velocities there are slower. For all candidate remnants, the [S II] λλ 6716/6731 ratio indicates that the electron densities are below 240 cm-3, while the Hα emission is measured to be between 0.6 and 41 × 10-17 erg s-1 cm-2 arcsec-2. The existence of eight pulsars within 1.5° of the center of the candidate SNRs also implies that there are many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.

  19. Electron acceleration by young supernova remnant blast waves

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.

    1992-01-01

    Some general considerations regarding relativistic particle acceleration by young supernova remnants are reviewed. Recent radio observations of supernova remnants apparently locate the bounding shock and exhibit large electron density gradients which verify the presence of strong particle scattering. The radio 'rim' in Tycho's remnant has been found to contain a predominantly radial magnetic field. This may be attributable to an instability of the shock surface and a progress report on an investigation of the stability of strong shocks in partially ionized media is presented.

  20. X-ray evidence for electron-ion equilibrium and ionization nonequilibrium in young supernova remnants

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Smith, B. W.

    1979-01-01

    The A-2 spectroscopy experiment on HEAO 1 detected X-ray emission up to 25 keV from the supernova remnants Cas A and Tycho. The spectra must include continuum components with effective temperature equivalent or 10 to the 8th power K which could arise from optically thin plasmas in the collisionless shock fronts. This is the first indication of electron-ion temperature equilibrium in the expanding shell of young remnants. Measurements of the equivalent widths of the K alpha and K beta iron line blends in Cas A, show that their ratio is not compatible with the measured X-ray temperature in the collisional ionization equilibrium model. The search for hard X-ray pulsars in both remnants was unsuccessful.

  1. RXTE Observation of the TYCHO Supernova Remnant

    NASA Astrophysics Data System (ADS)

    The, Lih-Sin

    1998-01-01

    SN1006 [4] and Cas A [1, 9] supernova remnants have been shown convincingly to have a hard X-ray power-law continuum. This continuum is thought to be the synchrotron radiation from accelerated electrons of approx. 100 TeV at the shock fronts. Our goal of AO2 RXTE observation is to detect the hard X-ray continuum and to determine the nature of the continuum from Tycho SNR. A detection of a power-law continuum from Tycho SNR can strongly argue for SNRs are the source of cosmic rays with the first order Fermi acceleration as the energizing process. We report the results of our AO2 RXTE 1 x 105 sec observation of Tycho SNR. We detect two components of the X-ray spectrum from Tycho SNR both at better than 3 omega confidence. The best two component models are: bremsstrahlung (kT=2.67 +/- 0.13 keV) + bremsstrahlung (kT=7.07 +/- 2.21/1.72 keV) or bremsstrahlung (kT=2.36 +/- 0.21/0.57 keV) + power-law (gamma=2.58 +/- 0.12/0.09 ). This result is an improvement compaxed with the previous most sensitive X-ray measurements by Ginga which shows Tycho's observed X-ray continuum requires a two-component model to yield acceptable fits with the hard component parameters being highly uncertain. Our RXTE measurements constrain all parameter within 3o, ranges. However, we cannot yet distinguish between thermal and nonthermal models for the hard component. In the followings, we describe what we accomplished in the period covered by the grant proposal.

  2. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  3. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  4. The radio remnant of Supernova 1987A at high frequencies and high resolution

    NASA Astrophysics Data System (ADS)

    Zanardo, G.; Staveley-Smith, L.; Ng, C.-Y.; Gaensler, B. M.; Potter, T. M.; Manchester, R. N.; Tzioumis, A. K.

    2014-01-01

    As the remnant of Supernova (SN) 1987A has been getting brighter over time, new observations at high frequencies have allowed imaging of the radio emission at unprecedented detail. We present a new radio image at 44 GHz of the supernova remnant (SNR), derived from observations performed with the Australia Telescope Compact Array (ATCA) in 2011. The diffraction-limited image has a resolution of 349225 mas, which is the highest achieved to date in high-dynamic range images of the SNR. We also present a new image at 18 GHz, also derived from ATCA observations performed in 2011, which is super-resolved to 0''.25. The new 44 and 18 GHz images yield the first high-resolution spectral index map of the remnant. The comparison of the 44 GHz image with contemporaneous X-ray and H? observations allows further investigations of the nature of the remnant asymmetry and sheds more light into the progenitor hypotheses and SN explosion. In light of simple free-free absorption models, we discuss the likelihood of detecting at 44 GHz the possible emission originating from a pulsar wind nebula (PWN) or a compact source in the centre of the remnant.

  5. A BROADBAND STUDY OF THE EMISSION FROM THE COMPOSITE SUPERNOVA REMNANT MSH 11-62

    SciTech Connect

    Slane, Patrick; Castro, Daniel; Foight, Dillon; and others

    2012-04-20

    MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH 11-62 using observations with the Chandra, XMM -Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify {gamma}-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the {gamma}-ray emission.

  6. A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62

    NASA Technical Reports Server (NTRS)

    Slane, Patrick; Hughes, John P.; Temim, Tea; Rousseau, Romain; Castro, Daniel; Foight, Dillon; Gaensler, B. M.; Funk, Stefan; Lemoine-Goumard, Marianne; Gelfand, Joseph D.; Moffett, David A.

    2012-01-01

    MSH 11-62 (G29U)-Q.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH ll-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.

  7. Possible optical counterparts to the X-ray point source in the supernova remnant CTB 80

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Schild, R. E.

    1985-01-01

    A three color CCD image of the central region of the supernova remnant CTB 80 is presented, along with astrometry and photometry of many stars in the field. The color image does not show evidence of heavy or variable dust absorption in the surrounding region. Using an Einstein High Resolution Imager position for the central X-ray point source, two possible optical counterparts have been identified at magnitudes V = 19.9 and V = 20.9. Comparison of the intrinsic colors and magnitudes of these candidates are made to the optical properties of Crab and Vela pulsars, and they are found to be viable candidates.

  8. Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2008-12-24

    An overview is given of multiwavelength observations of young supernova remnants, with a focus on the observational signatures of efficient cosmic ray acceleration. Some of the effects that may be attributed to efficient cosmic ray acceleration are the radial magnetic fields in young supernova remnants, magnetic field amplification as determined with X-ray imaging spectroscopy, evidence for large post-shock compression factors, and low plasma temperatures, as measured with high resolution optical/UV/X-ray spectroscopy. Special emphasis is given to spectroscopy of post-shock plasma's, which offers an opportunity to directly measure the post-shock temperature. In the presence of efficient cosmic ray acceleration the post-shock temperatures are expected to be lower than according to standard equations for a strong shock. For a number of supernova remnants this seems indeed to be the case.

  9. A HIRES analysis of the FIR emission of supernova remnants

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1994-01-01

    The high resolution (HiRes) algorithm has been used to analyze the far infrared emission of shocked gas and dust in supernova remnants. In the case of supernova remnant IC 443, we find a very good match between the resolved features in the deconvolved images and the emissions of shocked gas mapped in other wavelengths (lines of H2, CO, HCO+, and HI). Dust emission is also found to be surrounding hot bubbles of supernova remnants which are seen in soft X-ray maps. Optical spectroscopy on the emission of the shocked gas suggests a close correlation between the FIR color and local shock speed, which is a strong function of the ambient (preshock) gas density. These provide a potentially effective way to identify regions of strong shock interaction, and thus facilitate studies of kinematics and energetics in the interstellar medium.

  10. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    SciTech Connect

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R.; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 M{sub Sun }.

  11. Historical Supernova Explosions in Our Galaxy and Their Remnants

    NASA Astrophysics Data System (ADS)

    Green, David A.

    Supernova explosions mark the end points of stellar evolution, releasing large amounts of material and energy into the interstellar medium. In our Galaxy the expected rate of supernovae is about 1 in every 50 years or so, although it is only the relatively nearby ones that are expected to be visible optically, due to obscuration. Over the last two thousand years or so there are historical records of nine Galactic supernovae. The majority of these records are from East Asia (i.e. China, Japan and Korea), although the most recent historical supernovae have European records, and there are a variety of Arabic records also available for some events. Here I review these records of the historical supernovae, and the modern observations of the supernova remnants that they have produced.

  12. X-ray Observations of the Tycho Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hughes, John P.

    2006-06-01

    In this presentation I summarize some key new findings from recent Chandra and XMM-Newton data on the remnant of the supernova (SN) observed by Tycho Brahe in 1572, which is widely believed to have been of Type Ia origin. Studies of the Tycho supernova remnant (SNR) at the current epoch address aspects of SN Ia physics, the evolution of young SNRs, and cosmic ray acceleration at high Mach-number shocks.Research on the Tycho SNR at Rutgers has been supported by Chandra grants GO3-4066X and AR5-6010X.

  13. The supernova remnant 3C 397: distance and evolutionary state.

    NASA Astrophysics Data System (ADS)

    Leahy, Denis A.; Ranasinghe, Sujith

    2016-01-01

    3C 397 (G1.1-0.3) is a bright supernova remnant recently identified as a Type Ia. We use neutral hydrogen absorption to derive a new distance to 3C 397. The distance allows determination of shock radius and density of the X-ray emitting gas. The harder component X-rays come from the bulk of the gas with low density, and the softer component X-rays come from high density gas with very little volume. Generalized supernova remnant models are then applied to show that 3C 397 is considerably younger (age about 1500 years) than previously thought.

  14. Nonthermal X-ray Emission in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.; Reynolds, S. P.; Borkowski, K. J.; Petre, R.

    2000-12-01

    While synchrotron emission in supernova remnants has been observed and analyzed to great effect at radio wavelengths, there is a growing number of both galactic and extragalactic supernova remnants with nonthermal (non-plerionic) emission in the X-ray band. In the past the only tool available to describe X-ray synchrotron emission was the generic powerlaw model. Powerlaw models are inadequate for several reasons: simple comparison of radio and X-ray fluxes show that synchrotron must drop significantly below the radio-measured powerlaw somewhere before X-ray energies. Powerlaw models are also very poorly constrained. Coupled with a complex thermal model there is often no unique solution for the thermal-nonthermal separation. I will present synchrotron models, which use the radio spectral index and flux as inputs and include the full single-particle emissivity. Our models of synchrotron emission can account for the spectra of dominantly nonthermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models, which use the radio spectral index and flux as inputs, deliver a much better-constrained separation between the thermal and nonthermal components. These models make both spectral and spatial predictions, describing how the nonthermal emission varies across the remnant. We have demonstrated that the integrated spectrum of SN1006, a remnant dominated by nonthermal emission, is well described by synchrotron models. As an example of the use of thermal and nonthermal models I will present spatially resolved observations of this remnant, analyzed with versions of the synchrotron model designed to describe the remnant subregions. Armed with spatially resolved nonthermal models and new thermal models we now have the tools to separate thermal and nonthermal X-rays in supernova remnants. The ability to separate thermal and nonthermal emission is essential to understanding the thermal component, as well as having implications for nonthermal emission. This work is supported by the Graduate Student Researchers Program through NASA's GSFC.

  15. Energy of Tycho's Supernova Remnant is increasing with time

    PubMed Central

    Barenblatt, Grigory Isaakovich

    2008-01-01

    It is shown, using the Zeldovich integral relations, that the energy of Tycho's Supernova Remnant is strongly growing with time, approximately as t1/3. This growth can be attributed to the exothermic reactions going inside the remnant. The use of the assumption of the adiabaticity of the motion inside of the shock front, and no losses or gain of energy at the front, seems therefore unjustified. PMID:18202174

  16. HIGH-RESOLUTION X-RAY IMAGING OF SUPERNOVA REMNANT 1987A

    SciTech Connect

    Ng, C.-Y.; Gaensler, B. M.; Murray, S. S.; Slane, P. O.; Park, S.; Burrows, D. N.; Staveley-Smith, L.; Manchester, R. N.

    2009-11-20

    We report observations of the remnant of supernova 1987A with the High Resolution Camera (HRC) on board the Chandra X-ray Observatory. A direct image from the HRC resolves the annular structure of the X-ray remnant, confirming the morphology previously inferred by deconvolution of lower resolution data from the Advanced CCD Imaging Spectrometer. Detailed spatial modeling shows that a thin ring plus a thin shell gives statistically the best description of the overall remnant structure, and suggests an outer radius of 0.''96 +- 0.''05 +- 0.''03 for the X-ray-emitting region, with the two uncertainties corresponding to the statistical and systematic errors, respectively. This is very similar to the radius determined by a similar modeling technique for the radio shell at a comparable epoch, in contrast to previous claims that the remnant is 10%-15% smaller at X-rays than in the radio band. The HRC observations put a flux limit of 0.010 counts s{sup -1} (99% confidence level, 0.08-10 keV range) on any compact source at the remnant center. Assuming the same foreground neutral hydrogen column density as toward the remnant, this allows us to rule out an unobscured neutron star with surface temperature T {sup i}nfinity > 2.5 MK observed at infinity, a bright pulsar wind nebula or a magnetar.

  17. GSH 90-28-17: a possible old supernova remnant

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Zhu, M.

    2014-02-01

    GSH 90-28-17 is a high-latitude Galactic H I supershell, identified in the H I supershell catalogues with a velocity vlsr -17 km s-1. We used the new Galactic Arecibo L-band Feed Array (GALFA) H I survey data, which have much higher resolution and sensitivity than was previously available, to re-examine the properties of the supershell. We derived a new distance of 400 pc for GSH 90-28-17 and suggested that it is related to the Lac OB1 association. The radius of GSH 90-28-17 is 66.0 3.5 pc. The H I mass of the shell is (3.1 0.1) 104 M?. It has an age of 4.5 Myr and a total kinetic energy of (8.2 0.3) 1048 erg. We extracted radio continuum data for the GSH 90-28-17 region from the 408-MHz All-Sky Survey and Bonn 1420-MHz survey and filtered the diffuse background Galactic emission. A radio loop-like ridge is found to be associated with the H I shell at both frequencies and shows a non-thermal origin, with a temperature-temperature (TT)-plot index of ? = -1.35 0.69. In addition, the pulsar J2307+2225, with a similar distance, is found in the shell region. We conclude that GSH 90-28-17 is probably an old, type II supernova remnant in the solar neighbourhood.

  18. A Survey For Broadened CO Lines Toward Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles; Bieging, John H.; Rieke, George

    2016-01-01

    We performed molecular spectroscopy in 12CO J=2-1 with the Heinrich Hertz Submillimeter Telescope toward 50 Galactic supernova remnants as part of a systematic survey for broad molecular line regions indicative of interactions with molecular clouds. These observations revealed broad molecular lines toward nineteen remnants, including nine newly identified associations between molecular clouds and remnants. Morphology of the molecular emission suggests molecular shocks can arise at large separations from the remnants, consistent with a scenario where high-velocity ejecta from bipolar outflows or fast-moving knots shocks nearby molecular clouds. Also, broadened 12CO J=2-1 line emission should be detectable toward virtually all supernova remnant/molecular cloud interactions and, therefore, the total number of observed interactions is low. This result favors predictions that SN feedback plays little or no role in star formation over short timescales. In addition, we find no significant association between TeV gamma-ray sources and molecular cloud interactions, contrary to predictions that supernova remnant/molecular cloud interfaces are the primary venues for cosmic ray acceleration.

  19. Young supernova remnants and the knee in the cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Erlykin, A.; Wibig, T.; Wolfendale, A. W.

    2011-05-01

    It has recently been suggested that neutron stars inside the shells of young supernova remnants (SNR) are the sources of PeV cosmic rays and that the interaction of the particles with the radiation field in the SNR causes electron pair production, which has relevance to recent observations of "high" positron fluxes. Furthermore, the character of the interaction is such that the well-known knee in the cosmic ray energy spectrum can be explained. Our examination of the mechanism leads us to believe that the required parameters of SN and pulsars are so uncommon that the knee and positron fraction can only be explained if a single, local and recent SN - and associated pulsar - are concerned. In this case the mechanism can be valid.

  20. The Crab Nebula and related supernova remnants; Proceedings of the Workshop, George Mason University, Fairfax, VA, October 11, 12, 1984

    NASA Technical Reports Server (NTRS)

    Kafatos, M. C. (editor); Henry, R. B. C. (editor)

    1985-01-01

    Papers are presented on the Crab Nebula's composition, helium distribution, outer structure and jet, and evolution. Attention is given to line emission from supernova remnants and charge transfer reactions, a magnetohydrodynamic model of the Crab Nebula and its radiation, inferences made using data on the pulsed flux from the crab pulsar, a new interpretation of the crab pulsar X-ray interpulse radiation, and evolutionary models of the Crab Nebula's progenitor. Other topics include the evolution of the centimeter flux of 3C58 and the Crab Nebula, a search for a shock wave around the Crab Nebula, high resolution radio studies of the Crab Nebula, supernova shell structure, and the nature of the remnant 0540-693 and its implications for the study of crablike remnants. Papers are also presented on X-ray observations of: Crab-like remnants, the Crab Nebula, the Vela X region, W28, and 3C400.2. Other papers include the 50 millisecond pulsar in the Large Magellanic Cloud and the X-ray pulse emission mechanism, optical emission from the plerionic core of CTB 80, and one-arcminute resolution observations of W50.

  1. HIGH-ENERGY EMISSION FROM THE COMPOSITE SUPERNOVA REMNANT MSH 15-56

    SciTech Connect

    Temim, Tea; Slane, Patrick; Plucinsky, Paul P.; Castro, Daniel; Gelfand, Joseph; Dickel, John R.

    2013-05-01

    MSH 15-56 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium. Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the {gamma}-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.

  2. High-energy Emission from the Composite Supernova Remnant MSH 15-56

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Castro, Daniel; Plucinsky, Paul; Gelfand, Joseph; Dickel, John R.

    2013-01-01

    MSH 1556 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium.Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the gamma-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.

  3. Hot interstellar tunnels. 1: Simulation of interacting supernova remnants

    NASA Technical Reports Server (NTRS)

    Smith, B. W.

    1976-01-01

    The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.

  4. X-ray studies of supernova remnants: a different view of supernova explosions.

    PubMed

    Badenes, Carles

    2010-04-20

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  5. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  6. High Resolution Images of Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.; Reynolds, S. P.

    1999-05-01

    3C 396 provides a morphological middle ground between young remnants whose morphology is obviously shaped by density variations in the circumstellar material, such as 3C 397 and remnants expanding into a relatively empty or smoothly varying regions such as 3C 391 or SN 1006 AD. The small scale "arcs" superimposed upon nearly perfect spherical morphology of 3C 396 can be seen in new high resolution VLA images at 20 and 6 cm. We discuss polarization and its spatial distribution across the remnant. We will examine archival X-ray observations and address the correlations between radio and X-ray images in terms of the dynamical evolution of the remnant and its interaction with the circumstellar medium. We also discuss radio images of 3C 397 and SN 1006 AD in comparison with 3C 396. We will examine possible spectral index variations across the remnant. This research is supported by NASA grant NAG5-7153 and NGT5-65 through the Graduate Student Researchers Program.

  7. Properties of Optically Selected Supernova Remnant Candidates in M33

    NASA Astrophysics Data System (ADS)

    Lee, Jong Hwan; Lee, Myung Gyoon

    2014-10-01

    Narrowband images covering strong emission lines are efficient for surveying supernova remnants (SNRs) in nearby galaxies. Using the narrowband images provided by the Local Group Galaxy Survey, we searched for SNRs in M33. Culling the objects with enhanced [S II]/Hα and round morphology in the continuum-subtracted Hα and [S II] images, we produced a list of 199 sources. Among them, 79 are previously unknown. Their progenitor and morphology types were classified. A majority of the sample (170 objects) are likely remnants of core-collapse supernovae (SNe), and 29 are remnants of Type Ia SNe. The cumulative size distribution of these objects is found to be similar to that of the M31 remnants derived in a similar way. We obtain a power-law slope, α = 2.38 ± 0.05. Thus, a majority of the sources are considered to be in the Sedov-Taylor phase, consistent with previous findings. The histogram of the emission-line ratio ([S II]/Hα) of the remnants has two concentrations at [S II]/Hα ~ 0.55 and ~0.8, as in M31. Interestingly, L X (and L 20 cm) of the compact center-bright objects are correlated with their optical luminosity. The remnants with X-ray emission have brighter optical surface brightnesses and smaller diameters than those without X-ray emission.

  8. Properties of optically selected supernova remnant candidates in M33

    SciTech Connect

    Lee, Jong Hwan; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2014-10-01

    Narrowband images covering strong emission lines are efficient for surveying supernova remnants (SNRs) in nearby galaxies. Using the narrowband images provided by the Local Group Galaxy Survey, we searched for SNRs in M33. Culling the objects with enhanced [S II]/Hα and round morphology in the continuum-subtracted Hα and [S II] images, we produced a list of 199 sources. Among them, 79 are previously unknown. Their progenitor and morphology types were classified. A majority of the sample (170 objects) are likely remnants of core-collapse supernovae (SNe), and 29 are remnants of Type Ia SNe. The cumulative size distribution of these objects is found to be similar to that of the M31 remnants derived in a similar way. We obtain a power-law slope, α = 2.38 ± 0.05. Thus, a majority of the sources are considered to be in the Sedov-Taylor phase, consistent with previous findings. The histogram of the emission-line ratio ([S II]/Hα) of the remnants has two concentrations at [S II]/Hα ∼ 0.55 and ∼0.8, as in M31. Interestingly, L {sub X} (and L {sub 20cm}) of the compact center-bright objects are correlated with their optical luminosity. The remnants with X-ray emission have brighter optical surface brightnesses and smaller diameters than those without X-ray emission.

  9. Complex structure of the supernova remnant HB 3

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Venkatesan, D.; Long, K. S.; Naranan, S.

    1985-01-01

    HB 3 is an old, large (84 pc diameter) supernova remnant associated with the W3 H II region/molecular cloud complex. Observations of the imaging proportional counter (IPC) onboard the Einstein X-ray astronomy satellite have been reprocessed to yield a contour map of X-ray brightness and spectra of various regions of this remnant. The measured IPC flux is 2.4 x 10 to the -11th ergs per sq cm per s, giving a 0.2-4 keV luminosity of 1.6 x 10 to the 35th ergs/s for a column densityof 6 x 10 to the 21st per sq cm. The measured X-ray temperatures reveal a decrease from center to limb of the remnant of 1-0.3 keV. HB 3 is in the late adiabatic blast-wave phase of evolution, 30,000 to 50,000 yr old and with an initial blast energy of 3 x 10 to the 50th ergs. The X-ray map is compared with available radio and optical images. In X-rays, HB 3 has two components - a diffuse emission inside the 84 pc radio remnant and a ring of emission at the center of 30 pc in diameter. The diffuse emission is similar to that from other supernova remnants which are moderately obscured (column density, nH approximately 10 to the 22nd per sq cm). Three possibilities for the origin of the ring are explored: (1) a second supernova remnant, (2) a shocked shell in the interstellar medium surrounding HB 3, and (3) reverse-shock heated ejecta. There is no hot neutron star within the remnant.

  10. A Newly Recognized Very Young Supernova Remnant in M83

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Winkler, P. Frank; Long, Knox S.; Whitmore, Bradley C.; Kim, Hwihyun; Soria, Roberto; Kuntz, K. D.; Plucinsky, Paul P.; Dopita, Michael A.; Stockdale, Christopher

    2015-02-01

    As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and Gemini Multi-Object Spectrograph, we have discovered one object whose spectrum shows very broad lines at H?, [O I] ??6300, 6363, and [O III] ??4959, 5007, similar to those from other objects classified as "late time supernovae". Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope (HST) Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was missed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 M ?, and the presence of broad H? in the spectrum makes a type II supernova likely. The supernova must predate the 1983 Very Large Array radio detection of the object. We suggest examination of archival images of M83 to search for evidence of the supernova event that gave rise to this object, and thus provide a precise age. Based on observations made with NASA's Chandra X-Ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract # NAS83060, with data obtained through program GO1-12115.

  11. A Newly Recognized Very Young Supernova Remnant in M83

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Winkler, P. Frank; Long, Knox S.; Whitmore, Bradley C.; Kim, Hwihyun; Soria, Roberto; Kuntz, K. D.; Plucinsky, Paul P.; Dopita, Michael A.; Stockdale, Christopher

    2015-01-01

    As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and GMOS, we have discovered one object whose spectrum shows very broad lines at Halpha, [O I] 6300, and [O III] 5007, similar to those from other objects classified as `late time supernovae.' Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was not observed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 M(sun), and the presence of broad Halpha in the spectrum makes a type II supernova likely. The supernova must predate the 1983 VLA radio detection of the object. We suggest examination of archival images of M83 to search for evidence of the supernova event that gave rise to this object, and thus provide a precise time since the explosion.We acknowledge STScI grants under the umbrella program ID GO-12513 to Johns Hopkins University, STScI, and Middlebury College. PFW acknowledges additional support from the National Science Foundation through grant AST-0908566.

  12. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  13. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  14. A 3D numerical model for Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Toledo-Roy, J. C.; Esquivel, A.; Velzquez, P. F.; Reynoso, E. M.

    2014-07-01

    We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M? yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of 2.4 per cent yr-1 that is consistent with the observations.

  15. Featured Image: A Supernova Remnant in X-Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    This is a three-color X-ray image taken by Chandra of the supernova remnant RCW 103. This supernova remnant is an unusual system: its young, but unlike other remnants of its age, metal-rich ejecta hadnt previously been discovered in it. In this paper, Kari Frank (Pennsylvania State University) and collaborators analyze the three deepest Chandra observations of RCW 103 and find the first evidence for metal-rich ejecta emission scattered throughout the remnant. Their analyses also help to constrain the identity of the mysterious compact stellar object powering the remnant. In this image, red = 0.30.85 keV, green = 0.851.70 keV, and blue = 1.73.0 keV; click on the image for the full view. For more information and the original image, see the paper here:Kari A. Frank et al 2015 ApJ 810 113 doi:10.1088/0004-637X/810/2/113.

  16. Featured Image: A Supernova Remnant in X-Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    This is a three-color X-ray image taken by Chandra of the supernova remnant RCW 103. This supernova remnant is an unusual system: its young, but unlike other remnants of its age, metal-rich ejecta hadnt previously been discovered in it. In this paper, Kari Frank (Pennsylvania State University) and collaborators analyze the three deepest Chandra observations of RCW 103 and find the first evidence for metal-rich ejecta emission scattered throughout the remnant. Their analyses also help to constrain the identity of the mysterious compact stellar object powering the remnant. In this image, red = 0.30.85 keV, green = 0.851.70 keV, and blue = 1.73.0 keV; click on the image for the full view. For more information and the original image, see the paper here:Kari A. Frank et al 2015 ApJ 810 113 doi:10.1088/0004-637X/810/2/113.

  17. Limits on an optical pulsar in supernova 1987A

    SciTech Connect

    Pennypacker, C.R.; Morris, D.E.; Muller, R.A.; Perlmutter, S.; Kristian, J.A.; Middleditch, J.; Hamuy, M.A.; Kunkel, W.E.; Imamura, J.N.; Steiman-Cameron, T.Y.; Mount Wilson and Las Campanas Observatories, Pasadena, CA; Los Alamos National Laboratory, NM; Observatorio Interamericano de Cerro Tololo, La Serena; Oregon Univ., Eugene; NASA, Ames Research Center, Moffett Field, CA )

    1989-05-01

    Since March 1987 the optical flux from supernova 1987A for periodic pulsations has been sought. As of August 1988, after 38 separate observations, no pulsar has been detected. The typical upper limit placed on the pulsed fraction optical light from the supernova is 0.0002, for pulse frequencies in the range 0.03-5000 Hz. The best limit on the pulsed fraction of supernova light is 7 x 10 to the -6th, on January 22, 1988. On August 28, 1988 the faintest limit for the magnitude of the pulsar, dimmer than 20th mag is reached. These limits are based on Fourier transforms of up to 67 million points, covering a range of spindown rates. 25 refs.

  18. Infrared echoes near the supernova remnant Cassiopeia A.

    PubMed

    Krause, Oliver; Rieke, George H; Birkmann, Stephan M; Le Floc'h, Emeric; Gordon, Karl D; Egami, Eiichi; Bieging, John; Hughes, John P; Young, Erick T; Hinz, Joannah L; Quanz, Sascha P; Hines, Dean C

    2005-06-10

    Two images of Cassiopeia A obtained at 24 micrometers with the Spitzer Space Telescope over a 1-year time interval show moving structures outside the shell of the supernova remnant to a distance of more than 20 arc minutes. Individual features exhibit apparent motions of 10 to 20 arc seconds per year, independently confirmed by near-infrared observations. The observed tangential velocities are at roughly the speed of light. It is likely that the moving structures are infrared echoes, in which interstellar dust is heated by the explosion and by flares from the compact object near the center of the remnant. PMID:15947181

  19. Carbon Monoxide in the Cassiopeia a Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Rho, J.; Jarrett, T. H.; Reach, W. T.; Gomez, H.; Andersen, M.

    2009-03-01

    We report the likely detection of near-infrared 2.29 μm first overtone carbon monoxide (CO) emission from the young supernova (SN) remnant Cassiopeia A (Cas A). The continuum-subtracted CO filter map reveals CO knots within the ejecta-rich reverse shock. We compare the first overtone CO emission with that found in the well studied supernova SN 1987A and find ~30 times less CO in Cas A. The presence of CO suggests that molecule mixing is small in the SN ejecta and that astrochemical processes and molecule formation may continue at least ~300 yr after the initial explosion.

  20. Chandra and XMM Observations of the Composite Supernova Remnant G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Temim, Tea; Slane, Patrick; Gaensler, Bryan; Hughes, John; van der Swaluw, Eric

    We present Chandra and XMM imaging and spectroscopy of G327.1-1.1, a composite supernova remnant with a an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow ridge of emission extending from the PWN structure towards the northwest, possibly interpreted as a trail of emission left behind by the moving pulsar. X- ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the ridge that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a bow-shock like structure, from which a trail of x-ray emission extends in the southeast direction. The Chandra images also reveal a prong like structure that appears to originate from the vicinity of the compact source and extends into a large bubble, three arcminutes in diameter. The emission from the entire radio shell is detected in the XMM data and can be characterized by a thermal plasma model with a temperature of 0.3 keV. The peculiar morphology of G327.1-1.1 may be explained by the emission from a moving pulsar and a relic PWN that has been disrupted by the reverse shock. Support for this work is provided by NASA Grant GO6-7053X.

  1. FIRST VLBI DETECTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: EVIDENCE FOR SMALL-SCALE FEATURES

    SciTech Connect

    Ng, C.-Y.; Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Tingay, S.; Gaensler, B. M.; Phillips, C.; Tzioumis, A. K.

    2011-02-10

    We present a detailed analysis of the first very long baseline interferometry (VLBI) detection of the radio remnant of supernova 1987A. The VLBI data taken in 2007 and 2008 at 1.4 and 1.7 GHz, respectively, provide images sensitive to angular scales from 0.''1 to 0.''7, the highest resolution to date at radio frequencies. The results reveal two extended lobes with an overall morphology consistent with observations at lower resolutions. We find evidence of small-scale features in the radio shell, which possibly consist of compact clumps near the inner surface of the shell. These features have angular extent smaller than 0.''2 and contribute less than 13% of the total remnant flux density. No central source is detected in the VLBI images. We place a 3{sigma} flux density limit of 0.3 mJy on any pulsar or pulsar wind nebula at 1.7 GHz.

  2. Coronal interstellar gas and supernova remnants

    NASA Astrophysics Data System (ADS)

    McCray, R. A.

    The physical processes responsible for the emission of hot (T greater than 10 to the 6th K) coronal gas in the Galaxy and in and among other galaxies are discussed in an analytical review. Topics addressed include the atomic processes that determine the local state and spectral emissivity of the gas, stationary equilibrium states that result from steady sources of heating or ionization, changes in these states due to transient sources, and the role of electron thermal conduction at the interfaces between hot and cool gas. The implications of these mechanisms for the structure and evolution of expanding interstellar shells (bubbles and superbubbles) produced by supernovae and stellar winds are explored.

  3. Galactic Propagation of Cosmic Rays from Individual Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Nierstenhöfer, Nils; Graeser, Philipp; Schuppan, Florian; Tjus, Julia

    2015-08-01

    It is widely believed that supernova remnants are the best candidate sources for the observed cosmic ray flux up to the knee, i.e. up to ∼PeV energies. Indeed, the gamma-ray spectra of some supernova remnants can be well explained by assuming the decay of neutral pions which are created in hadronic interactions. Therefore, fitting the corresponding gamma spectra allows us to derive the spectra of cosmic rays at the source which are locally injected into our Galaxy. Using these spectra as a starting point, we propagate the cosmic rays through the Galaxy using the publicly available GALPROP code. Here, we will present first results on the contribution of those SNRs to the total cosmic ray flux and discuss implications.

  4. Energetic particles in supernova remnants: Results from VHE Observations

    NASA Astrophysics Data System (ADS)

    Slane, Patrick O.

    2016-01-01

    The rapidly-expanding ejecta in supernova remnants drive fast shocks in the surrounding medium. These shocks heat the ambient gas and create conditions suitable for the acceleration of charged particles to energies exceeding hundreds of TeV. These particles are believedto form the primary component of Galactic cosmic rays. The details of the acceleration process, including the need for amplified magnetic fields, the evidence for the presence of energetic hadrons, the process of particle escape, and the contributions from compressed and re-accelerated ambient cosmic rays are complex. Measurements across the electromagnetic spectrum are required to fully constrain the process, and observations of VHE gamma-rays from supernova remnants are particularly crucial. Here I will summarize current results from studies of particle acceleration in SNRs, with particular emphasis on the crucial constraints provided by the VHE observations.

  5. DENSE IRON EJECTA AND CORE-COLLAPSE SUPERNOVA EXPLOSION IN THE YOUNG SUPERNOVA REMNANT G11.2-0.3

    SciTech Connect

    Moon, Dae-Sik; Koo, Bon-Chul; Seok, Ji Yeon; Lee, Ho-Gyu; Matthews, Keith; Lee, Jae-Joon; Pyo, Tae-Soo; Hayashi, Masahiko

    2009-09-20

    We present the results of near-infrared spectroscopic observations of dense ({approx}>10{sup 3} cm{sup -3}) iron ejecta in the young core-collapse supernova remnant G11.2-0.3. Five ejecta knots projected to be close to its center show a large dispersion in their Doppler shifts: two knots in the east are blueshifted by more than 1000 km s{sup -1}, while three western knots have relatively small blueshifts of 20-60 km s{sup -1}. This velocity discrepancy may indicate that the western knots have been significantly decelerated or that there exists a systematic velocity difference among the knots. One ejecta filament in the northwestern boundary, on the other hand, is redshifted by {approx}>200 km s{sup -1}, while opposite filament in the southeastern boundary shows a negligible radial motion. Some of the knots and filaments have secondary velocity components, and one knot shows a bow shock-like feature in the velocity structure. The iron ejecta appear to be devoid of strong emission from other heavy elements, such as S, which may attest to the alpha-rich freezeout process in the explosive nucleosynthesis of the core-collapse supernova explosion close to its center. The prominent bipolar distribution of the Fe ejecta in the northwestern and southeastern direction, along with the elongation of the central pulsar wind nebula in the perpendicular direction, is consistent with the interpretation that the supernova exploded primarily along the northwestern and southeastern direction.

  6. FERMI LARGE AREA TELESCOPE DETECTION OF SUPERNOVA REMNANT RCW 86

    SciTech Connect

    Yuan, Qiang; Huang, Xiaoyuan; Liu, Siming; Zhang, Bing

    2014-04-20

    Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV γ-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ∼5.1σ. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, Γ ∼ 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy γ-rays. The very hard GeV γ-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the γ-rays. The γ-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347.

  7. Fermi Large Area Telescope Detection of Supernova Remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Yuan, Qiang; Huang, Xiaoyuan; Liu, Siming; Zhang, Bing

    2014-04-01

    Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV ?-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ~5.1?. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, ? ~ 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy ?-rays. The very hard GeV ?-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the ?-rays. The ?-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347.

  8. Chandra's View of Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This Chandra image reveals, in detail, the turbulent debris created by a supernova explosion that was observed by the Danish Astronomer Tycho Brahe in the year 1572. The colors show different x-ray energies, with red, green, and blue representing low, medium, and high energies, respectively. Most likely caused by the destruction of a white dwarf star, a shock wave produced by the expanding debris is outlined by the sharp blue circular arcs of 20 million degree Celsius gas seen on the outer rim. The stellar debris, visible only by x-ray, has a temperature of about 10 million degrees, and shows up as mottled yellow, green, and red fingers of gas.

  9. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact chemical composition of this nuclear- processed material, and thereby test theories of stellar evolution. The image shows a region of the remnant 50 light-years across. The supernova explosion should have been visible from Earth's southern hemisphere around 1,000 B.C., but there are no known historical records that chronicle what would have appeared as a 'new star' in the heavens. This 'true color' picture was made by superposing images taken on 9-10 August 1994 in three of the strongest optical emission lines: singly ionized sulfur (red), doubly ionized oxygen (green), and singly ionized oxygen (blue). Photo credit: Jon A. Morse (STScI) and NASA Investigating team: William P. Blair (PI; JHU), Michael A. Dopita (MSSSO), Robert P. Kirshner (Harvard), Knox S. Long (STScI), Jon A. Morse (STScI), John C. Raymond (SAO), Ralph S. Sutherland (UC-Boulder), and P. Frank Winkler (Middlebury). Image files in GIF and JPEG format may be accessed via anonymous ftp from oposite.stsci.edu in /pubinfo: GIF: /pubinfo/GIF/N132D.GIF JPEG: /pubinfo/JPEG/N132D.jpg The same images are available via World Wide Web from links in URL http://www.stsci.edu/public.html.

  10. The Kinematics of Kepler's Supernova Remnant as Revealed by Chandra

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2008-12-01

    I have determined the expansion of the supernova remnant of SN 1604 (Kepler's supernova) based on archival Chandra ACIS-S observations made in 2000 and 2006. The measurements were done in several distinct energy bands, and were made for the remnant as a whole, and for six individual sectors. The average expansion parameter indicates that the remnant expands on average as r propto t0.5, but there are significant differences in different parts of the remnant: the bright northwestern part expands as r propto t0.35, whereas the rest of the remnant's expansion shows an expansion r propto t0.6. The latter is consistent with an explosion in which the outer part of the ejecta has a negative power law slope for density (? propto v?n) of n = 7, or with an exponential density profile [? propto exp (? v/ve) ]. The expansion parameter in the southern region, in conjunction with the shock radius, indicates a rather low value (<5 1050 erg) for the explosion energy of SN 1604 for a distance of 4 kpc. A higher explosion energy is consistent with the results if the distance is larger. The filament in the eastern part of the remnant, which is dominated by X-ray synchrotron radiation, seems to mark a region with a fast shock speed r propto t0.7, corresponding to a shock velocity of v = 4200 km s?1, for a distance to SN 1604 of 4 kpc. This is consistent with the idea that X-ray synchrotron emission requires shock velocities in excess of ~2000 km s?1. The X-ray-based expansion measurements reported are consistent with results based on optical and radio measurements but disagree with previous X-ray measurements based on ROSAT and Einstein observations.

  11. DA 530: A Supernova Remnant in a Stellar Wind Bubble

    NASA Astrophysics Data System (ADS)

    Landecker, T. L.; Routledge, D.; Reynolds, S. P.; Smegal, R. J.; Borkowski, K. J.; Seward, F. D.

    1999-12-01

    The high-latitude supernova remnant (SNR) DA 530 (G93.3+6.9), apparently a typical shell remnant, has highly polarized radio continuum emission and a very uniform circumferential magnetic field. We present new radio continuum (408 and 1420 MHz) and H I line observations, made with the Dominion Radio Astrophysical Observatory Synthesis Telescope, and we have made the first detection of X-ray emission from the SNR, using the ROSAT Position-Sensitive Proportional Counter. The SNR lies within a shell of H I, possibly created by an earlier stellar wind, whose kinematic distance is nominally 2.5 kpc but whose actual distance may be larger. The X-ray emission is extremely faint. A Raymond-Smith ionization-equilibrium model fits the data and suggests a very low density, ~0.05 cm-3, consistent with the occurrence of the supernova in a stellar wind cavity, but this model yields an explosion energy 100 times lower than the accepted value. A nonequilibrium shock model, incorporating a range of ionization timescales, is able to give more realistic physical parameters for the supernova remnant. On the balance of the evidence, we place DA 530 at a distance of 3.5 kpc, the largest distance permitted by the H I observations, where it lies 420 pc above the Galactic plane. The explosion, probably a Type Ia supernova, in a low-density cavity has resulted in weak X-ray emission and slow evolution. The explosion energy was 3.9×1050 ergs and the age is ~5000 years. The remnant, having swept up 3.9 Msolar in an ambient density of ~0.01 cm-3, is only now in the adiabatic phase, and this explains the absence of detected optical emission. Despite the low ambient density the efficiency of generation of synchrotron radio emission is ~0.4%, higher than in some historical SNRs. The ratio of radio to X-ray flux is about 100 times that for the remnant of SN 1006, which has comparable radio continuum properties. The very uniform magnetic field is not explained. DA 530 joins a small group of remnants at high Galactic latitude with unusual features, perhaps resulting from low ambient densities. Inhomogeneous nonequilibrium ionization models may be required for the interpretation of the X-ray emission from many other older SNRs.

  12. Observation of Extended Very High Energy Emission from the Supernova Remnant IC 443 with VERITAS

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Butt, Y.; Byrum, K.; Cannon, A.; Celik, O.; Cesarini, A.; Chow, Y. C.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Daniel, M. K.; Dickherber, R.; Duke, C.; Dwarkadas, V. V.; Ergin, T.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Hays, E.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Theiling, M.; Toner, J. A.; Valcarcel, L.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.

    2009-06-01

    We present evidence that the very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hr during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (σ) before trials and 7.5σ after trials in a point-source search. The emission is centered at 6h16m51s + 22°30'11'' (J2000) ±0fdg03stat ± 0fdg08sys, with an intrinsic extension of 0fdg16 ± 0fdg03stat ± 0fdg04sys. The VHE spectrum is well fit by a power law (dN/dE = N 0 × (E/TeV)-Γ) with a photon index of 2.99 ± 0.38stat ± 0.3sys and an integral flux above 300 GeV of (4.63 ± 0.90stat ± 0.93sys) × 10-12 cm-2 s-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.

  13. A multi-wavelength look at the young plerionic supernova remnant 0540-69.3

    SciTech Connect

    Brantseg, T.; McEntaffer, R. L.; Grieves, N.; Bozzetto, L. M.; Filipovic, M.

    2014-01-01

    We present a study of the plerionic supernova remnant 0540-69.3 in the LMC in X-ray, radio, optical, and infrared. We find that the shell of 0540-69.3 is characterized in the X-ray by thermal nonequilibrium plasma with depleted Mg and Si abundances and a temperature of kT ∼ 0.7 keV. This thermal emission is superimposed with synchrotron emission in several regions. Based on X-ray spectra and on morphological considerations in all surveyed wavebands, we conclude that the shell is expanding into a clumpy and highly inhomogeneous medium. In one region of the shell we find an overabundance of Ne, suggesting the presence of ejecta near the edge of the remnant. We also see evidence for reheating of material via a reverse shock originating from the interaction of the supernova blast wave with a particularly dense cloud in the surrounding medium. Finally, we perform the first detailed study of the 'halo' region extending 1.2-2.2 pc from the central pulsar. We detect the presence of thermal and nonthermal spectral components but do not find evidence for mixing or ejecta. We conclude that the thermal component is not a counterpart to similar optical and infrared halos and that it is most likely due to the projection of shell material along the line of sight.

  14. A high sensitivity search for X-rays from supernova remnants in Aquila

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; Bleach, D. A.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1972-01-01

    A high sensitivity scan of the galactic plane was performed to search for 2-20 keV X-rays from supernova remnants. The spectra of five X-ray sources detected between 44 deg and 31 deg longitude, of which only two might be associated with suggested supernova remnants, are reported on. Upper limits are presented for the 19 possible supernova remnants scanned in this survey.

  15. Fermi-LAT observations of supernova remnants Kesteven 79

    SciTech Connect

    Auchettl, Katie; Slane, Patrick; Castro, Daniel

    2014-03-01

    In this paper, we report on the detection of γ-ray emission coincident with the Galactic supernova remnant (SNR) Kesteven 79 (Kes 79). We analyzed approximately 52 months of data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 79 is thought to be interacting with adjacent molecular clouds, based on the presence of strong {sup 12}CO J = 1 → 0 and HCO{sup +} J = 1 → 0 emission and the detection of 1720 MHz line emission toward the east of the remnant. Acceleration of cosmic rays is expected to occur at SNR shocks, and SNRs interacting with dense molecular clouds provide a good testing ground for detecting and analyzing the production of γ-rays from the decay of π{sup 0} into two γ-ray photons. This analysis investigates γ-ray emission coincident with Kes 79, which has a detection significance of ∼7σ. Additionally, we present an investigation of the spatial and spectral characteristics of Kes 79 using multiple archival XMM-Newton observations of this remnant. We determine the global X-ray properties of Kes 79 and estimate the ambient density across the remnant. We also performed a similar analysis for Galactic SNR Kesteven 78 (Kes 78), but due to large uncertainties in the γ-ray background model, no conclusion can be made about an excess of GeV γ-ray associated with the remnant.

  16. Observation of Nonthermal Emission from the Supernova Remnant IC443 with RXTE

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Keohane, J. W.; Reimer, O.

    2002-01-01

    In this paper we present analysis of X-ray spectra from the supernova remnant IC443 obtained using the PCA on RXTE. The spectra in the 3 - 20 keV band are well fit by a two-component model consisting of thermal and nonthermal components. We compare these results with recent results of other X-ray missions and discuss the need for a cut-off in the nonthermal spectrum. Recent Chandra and XMM-Newton observations suggest that much of the nonthermal emission from IC443 can be attributed to a pulsar wind nebula. We present the results of our search for periodic emission in the RXTE PCA data. We then discuss the origin o f the nonthermal component and its possible association with the unidentified EGRET source.

  17. Study of the extended radio emission of two supernova remnants and four planetary nebulae associated with MIPSGAL bubbles

    NASA Astrophysics Data System (ADS)

    Ingallinera, A.; Trigilio, C.; Umana, G.; Leto, P.; Agliozzo, C.; Buemi, C.

    2014-12-01

    We present radio observations, made using the Very Large Array and the Green Bank Telescope, of two supernova remnants and four planetary nebulae. These objects are part of a larger sample of radio sources, discussed in a previous paper, a counterpart of the MIPSGAL 24-?m compact bubbles. For the two supernova remnants, we have combined the interferometric observations with single-dish data to obtain both a high resolution and a good sensitivity to extended structures. We discuss in detail the entire combination procedure adopted and the reliability of the resulting maps. For one supernova remnant, we pose a more stringent upper limit for the flux density of its undetected pulsar, and we also show prominent spectral index spatial variations, probably resulting either from inhomogeneities in the magnetic field and in its ejecta or from an interaction between the supernova shock and molecular clouds. We eventually use the 5-GHz maps of the four planetary nebulae to estimate their distances and their ionized masses.

  18. Uncovering The Properties of Young Neutron Stars and Their Surrounding Supernova A Remnants

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    In the third year of this program, the following studies have been undertaken in support of this effort: G292.0+1.8: In our previous work on this SNR, we discovered a young neutron star and its associated pulsar wind nebula. Radio observations by Camilo et al. (2002) have identified a young 136 ms pulsar in the direction of G292.0+1.8. We have used Chandra HRC observations of the central source to identify X-ray pulsations at the same period, thus establishing the neutron star as the radio pulsar counterpart. We have also set limits on the cooling of this young neutron star based on the unpulsed component of the X-ray emission. We find that the limit falls slightly below standard cooling models in which the modified Urca process is responsible for the bulk of the interior neutrino emission. A paper summarizing these results is currently being circulated amongst co-authors for review prior to publication. 3c 58: Our Chandra observations of this Crab-like SNR revealed the presence of a young, rapidly rotating pulsar as well as a central compact nebula which we interpret as a toroidal structure associated with the pulsar wind termination shock. Our modeling of this structure has allowed us to establish a temperature upper limit for the neutron star which falls well below predictions from standard cooling models, and implies the presence of exotic particles (such as pion condensates) or other processes that increase the neutrino production rate in the interior. A paper summarizing this work has been published in the Astrophysical Journal (Slane, Helfand, & Murray 2002, ApJ, 571, L45), and the results were the subject of a NASA Space Science Update (4/10/2002) which led to extensive media coverage. Based upon our initial observations, we submitted a successful Chandra Large Project proposal for a 350 ks observation of this young neutron star and its wind nebula. Kes 79: Our Chandra observations of this SNR reveal a compact central source which appears to be the neutron star formed in the explosion that produced the remnant. There is no evidence for a surrounding pulsar wind nebula. The source properties are similar to the central source in Cas A even though the Kes 79 remnant is considerably older. The results have been published in the Astrophysical Journal (Seward, Slane, Smith, and Sun 2003, ApJ, 584,414). Chandra Survey for Compact Objects in Supernova Remnants: We have formed a collaboration to carry out an extensive search for young neutron stars in nearby supernova remnants. Using X-ray observations from an approved Chandra Large Project, as well as from additional approved XMM observations, we are investigating a volume-limited sample of SNRs for which there is currently no evidence of associated neutron stars. We have obtained extensive optical and 1R data to complement the project, and analysis of these data is currently underway.

  19. Molecular environment of the supernova remnant IC 443: Discovery of the molecular shells surrounding the remnant

    SciTech Connect

    Su, Yang; Fang, Min; Yang, Ji; Zhou, Ping; Chen, Yang

    2014-06-20

    We have carried out {sup 12}CO, {sup 13}CO, and C{sup 18}O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant's radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s{sup –1} to –2 km s{sup –1}, which is consistent with that of the –4 km s{sup –1} molecular clouds. We suggest that the half-ring structure of the CO emission at V {sub LSR} ∼ –4 km s{sup –1} is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.

  20. What We Can Learn From Supernova Remnant Size Distributions

    NASA Astrophysics Data System (ADS)

    Elwood, Benjamin; Murphy, Jeremiah; Diaz, Mariangelly

    2016-01-01

    Previous literature regarding size distributions of supernova remnants generally discuss a uniform distribution for the radius, occasionally considering a Gaussian alternative. We indeed show that these distributions are consistent with log-normal, which can be considered a natural consequence of the Central Limit Theorem and Sedov expansion. Modeling explosion energy, remnant age, and ambient density as independent, random distributions, we show, using simple Monte Carlo simulations, that the size distribution is indistinguishable from log-normal when the SNR sample size is of order three hundred. This implies that these SNR distributions provide only information on the mean and variance, yielding additional information only when the sample size grows large. We then proceed to Bayesian statistical inference to characterize the information provided by the size distributions. In particular, we use the mean and variance of sizes and explosion energies to subsequently estimate the mean and variance of the ambient medium surrounding SNR progenitors. This in turn allows us to characterize potential bias in studies involving samples of supernova remnants.

  1. X-Ray Measured Dynamics of Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Hughes, John; Hwang, Una; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr-1 (expansion index m = 0.33, where R = tm ) to 0.''40 yr-1 (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr-1 (m = 0.26) to 0.''40 yr-1 (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of [approx]0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr-1 and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of [less, similar]0.2 cm-3.

  2. Extremely fast acceleration of cosmic rays in a supernova remnant.

    PubMed

    Uchiyama, Yasunobu; Aharonian, Felix A; Tanaka, Takaaki; Takahashi, Tadayuki; Maeda, Yoshitomo

    2007-10-01

    Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of the SNR RX J1713.7-3946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RX J1713.7-3946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10(15) eV) and beyond in young supernova remnants. PMID:17914390

  3. Constraining the Progenitor Masses of Core Collapse Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Díaz Rodríguez, Mariangelly; Murphy, Jeremiah Wayne; Elwood, Benjamin; Williams, Benjamin F.; Rubin, David

    2016-01-01

    Understanding the progenitor mass distribution of supernova explosions is an important observational constraint of stellar evolution theory. Recently, a novel approach was proposed to significantly increase the number of progenitor masses: characterize the progenitor mass of supernova remnants (SNRs) by age-dating the local stellar population. Preliminary statistical analyses suggested that there is a lack of SNRs around the most massive of massive stars. This suggested that there is a maximum mass for core collapse supernova explosions, or there is a bias against finding SNRs associated with the most massive stars. We test for a bias by considering the distribution of SNRs sizes using a Monte Carlo simulation. We find that the distribution of remnants sizes is the same for low mass progenitors and high mass progenitors. This implies that there is no bias against finding SNRs around the most massive progenitors. Our next step is to apply Bayesian statistical inference and obtain the joint probability for all the parameters involved in the statistical distribution model: the minimum mass, maximum mass, and slope of the mass distribution.

  4. Supernova 1987A: a Template to Link Supernovae to Their Remnants

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F.

    2015-09-01

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2-1.4 1051 erg and the envelope mass in the range 15-17 M?. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index ? = -8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  5. The Properties of the Progenitor Supernova, Pulsar Wind, and Neutron Star inside PWN G54.1+0.3

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph D.; Slane, Patrick O.; Temim, Tea

    2015-07-01

    The evolution of a pulsar wind nebula (PWN) inside a supernova remnant (SNR) is sensitive to the properties of the central neutron star, pulsar wind, progenitor supernova, and interstellar medium. These properties are both difficult to measure directly and critical for understanding the formation of neutron stars and their interaction with the surrounding medium. In this paper, we determine these properties for PWN G54.1+0.3 by fitting its observed properties with a model for the dynamical and radiative evolution of a PWN inside an SNR. Our modeling suggests that the progenitor of G54.1+0.3 was an isolated 15-20 {M}? star which exploded inside a massive star cluster, creating a neutron star initially spinning with a period of {P}0 30-80 ms. We also find that ?99.9% of the pulsars rotational energy is injected into the PWN as relativistic electrons and positrons whose energy spectrum is well characterized by a broken power law. Finally, we propose future observations which can both test the validity of this model and better determine the properties of this sourcein particular, its distance and the initial spin period of the central pulsar.

  6. New Limits on Enhanced Turbulence at Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Spitler, L.; Spangler, S.

    2004-12-01

    Theories of cosmic ray acceleration by supernova remnants predict the existence of regions of intense magnetohydrodynamic turbulence upstream and downstream of the shock wave. Such regions are observed in the case of shock waves in the interplanetary medium, and the interplanetary turbulence possesses substantial density fluctuations. In the interplanetary medium, such turbulent regions produce enhanced radio propagation effects such as scintillations and angular broadening. In this paper, we report a search for enhanced angular broadening of the radio sources J0547+273 and J0128+631, observed through the supernova remnants S147 and G127.1+0.5, respectively. The observations were made with the Very Long Baseline Array of the National Radio Astronomy Observatory in the Fall of 2002. Observations were made at wavelengths of 6, 13, 18, and 21 cm. These multifrequency observations allow the scattered and intrinsic structures of these sources to be distinguished. For both sources, angular broadening attributable to interstellar turbulence was measured. The scattering sizes correspond to 1 GHz angular diameters (FWHM) of 8.9 milliarcseconds (mas) for J0128+631 and 6.4 mas for J0547+273, with uncertainties of about 1 mas for both sources. The expected ``incidental'' angular broadening due to the interstellar medium along these lines of sight was estimated from an updated version of the model of Lazio and Cordes (ApJ 479, 238, 1998). The incidental angular size estimates are 9.5 mas and 6.5-7.0 mas for J0128+631 and J0547+273, respectively. We therefore find no evidence for an enhancement of scattering, and thus intense turbulence, associated with either supernova remnant. Quantitative limits on the properties of waves and turbulence will be presented. This work was supported by grant ATM03-54782 from the Division of Atmospheric Sciences, National Science Foundation.

  7. Constraints on the distribution of supernova remnants with Galactocentric radius

    NASA Astrophysics Data System (ADS)

    Green, D. A.

    2015-12-01

    Supernova remnants (SNRs) in the Galaxy are an important source of energy injection into the interstellar medium, and also of cosmic rays. Currently there are 294 known SNRs in the Galaxy, and their distribution with Galactocentric radius is of interest for various studies. Here I discuss some of the statistics of Galactic SNRs, including the observational selection effects that apply, and difficulties in obtaining distances for individual remnants from the `?-D' relation. Comparison of the observed Galactic longitude distribution of a sample of bright Galactic SNRs - which are not strongly affected by selection effects - with those expected from models is used to constrain the Galactic distribution of SNRs. The best-fitting power-law/exponential model is more concentrated towards the Galactic Centre than the widely used distribution obtained by Case & Bhattacharya.

  8. Ultraviolet absorption lines associated with the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1976-01-01

    Two stars behind the Vela supernova remnant and two stars offset from the remnant have been observed with the UV spectrometer aboard the Copernicus satellite. Over 200 interstellar atomic and molecular absorption features between 1000 and 1400 A have been identified and measured for radial velocity and equivalent width. In many cases, additional information was obtained by studying the detailed shapes of the recorded profiles. Most of the stars show several absorption components, with clouds of the highest radial velocity appearing in the spectra of stars behind the remnant. For each component, column densities were derived using velocity dispersion parameters which yielded the most self-consistent results. Qualitatively, the gas toward the remnant exhibits a number of unusual properties, when compared with normal interstellar material. First, abnormally high radial velocities were evident. Second, the degree of ionization of some elements suggested the existence of ionizing processes significantly more potent than those found in general regions of space. Finally, an investigation of electron densities shows that much of the gas, especially that at high velocity, must exist in the form of relatively thin sheets or filaments. If cosmic abundances prevail, the column densities of high-velocity excited material suggest that H-alpha emission measures could be as large as 100 sq cm/cu pc.

  9. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki; ,

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  10. Reverse-Shock in Tychos Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Lu, F. J.; Ge, M. Y.; Zheng, S. J.; Zhang, S. N.; Long, X.; Aschenbach, B.

    2015-06-01

    Thermal X-ray emission from young supernova remnants (SNRs) is usually dominated by the emission lines of the supernova ejecta, which are widely believed to be crossed and thus heated by the inward-propagating reverse shock (RS). Previous works using X-ray imaging data have shown that the ejecta are heated by the RS by locating the peak emission region of the most recently ionized matter, which is found to be well separated toward the inside from the outermost boundary. Here we report the discovery of a systematic increase of the Sulfur (S) to Silicon (Si) K? line flux ratio with radius in Tychos SNR. This allows us, for the first time, to present continuous radial profiles of the ionization age and, furthermore, the elapsed ionization time since the onset of the ionization, which gives the history of the propagation of the ionization front into the SNR ejecta.

  11. Interaction of Supernova Remnants With the Ambient medium

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram V.

    2001-12-01

    We summarize various aspects of the interaction of supernova remnants (SNRs) with the ambient medium. We discuss the evolution of SNRs in environments sculpted by the progenitor star, and summarize the factors on which this evolution depends. As a specific example, we consider the evolution of the medium around a 35Msun star, and the interaction of the shock wave with this medium when the star explodes as a SN. We also discuss the interaction of Type Ia SNe with the ambient medium, especially the formation and growth of hydrodynamic instabilities.

  12. X-ray line emission from the Tycho supernova remnant

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Smith, B. W.; Charles, P. A.; Tuohy, I. R.

    1979-01-01

    The observation of the X-ray spectrum of the Tycho supernova remnant in the energy range 0.5 to 20 keV is discussed. Four significant line features in the spectrum: The K alpha lines of silicon, sulphur, and iron; and the L lines of iron are examined. Comparisons between the silicon and sulphur equivalent widths and K alpha iron line energies of Tycho and Cas A are discussed. Suggest that the X-ray emitting plasma in Tycho is further from collisional ionization equilibrium than that of Cas A.

  13. Spectral evolution of accelerated particles in supernova remnants

    NASA Astrophysics Data System (ADS)

    Jiang, Z. J.; Zhang, L.; Fang, J.

    2013-08-01

    The spectral evolution of accelerated particles in supernova remnants (SNRs) is studied within the frame of the age-limited acceleration model. Because of possible amplified magnetic field around the shock in SNRs, the Alfvnic effect on the particle distribution accelerated at shock will become important. Based on available evolution models of the amplified magnetic field, the source spectral slope (qtp(t)) in the test particle approximation of shock acceleration evolves with SNR's age and qtp ? 4.2-4.4 depending on assumed values of the maximum energy of the accelerated particles and types of SNRs.

  14. A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Supernova with Circumstellar Interaction

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Borkowski, K. J.; Badenes, C.; Hughes, J. P.; Hwang, U.; Laming, J. M.; Blondin, J. M.

    2006-12-01

    We present initial results of a 750 ks Chandra observation of the remnant of Kepler's supernova of AD 1604. We are able to separate shocked circumstellar medium, identified by O emission below 0.72 keV, and shocked ejecta, identified by Fe L and Si and S K alpha emission. The strength and prominence of iron emission, and the absence of O-rich ejecta, support the longstanding claim that Kepler resulted from a thermonuclear supernova, even though evidence for circumstellar interaction is also strong. We present images with arcsecond resolution demonstrating that the ejecta are stratified with Si and S extending beyond Fe L emission; we also find evidence for ionization of Fe decreasing inward, i.e., increasing with distance behind the reverse shock. This chemical stratification conflicts with the predictions of some Type Ia explosion models, such as sub-Chandrasekhar models or 3-D deflagrations with well-mixed ejecta. Hard continuum emission, almost certainly synchrotron, surrounds the remnant in thin filaments, as seen in other young remnants. Ejecta blobs reach to the outer blast wave in many locations. Fe K alpha emission can be seen in spectra in almost all parts of the remnant. We observe differences in Fe K alpha line centroids and profiles, due both to ionization effects and to Doppler shifts and broadening, and containing important clues to the dynamics of the remnant. We summarize the significant constraints placed on models of Type Ia supernovae, and on the progenitor of Kepler's supernova in particular, by these observations.

  15. A Detailed X-Ray Investigation of PSR J2021+4026 and the ?-Cygni Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Seo, K. A.; Lin, L. C. C.; Huang, R. H. H.; Hu, C. P.; Wu, J. H. K.; Trepl, L.; Takata, J.; Wang, Y.; Chou, Y.; Cheng, K. S.; Kong, A. K. H.

    2015-01-01

    We have investigated the field around the radio-quiet ?-ray pulsar, PSR J2021+4026, with a ~140 ks XMM-Newton observation and ~56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature, which suggests that the pulsation originated from a hot polar cap with T ~ 3 106 K on the surface of a rotating neutron star. On the other hand, the power-law (PL) component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of a bow-shock nebula that extends from the pulsar to the west by ~10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward, which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newton observation also enables a study of the central region and part of the southeastern region with superior photon statistics. The column absorption derived for the SNR is comparable to that for PSR J2021+4026, which supports their association. The remnant emission in both of the examined regions is in a non-equilibrium ionization state. Also, the elapsed time of both regions after shock-heating is apparently shorter than the Sedov age of G78.2+2.1. This might suggest that the reverse shock has reached the center not long ago. Apart from PSR J2021+4026 and G78.2+2.1, we have also serendipitously detected an X-ray flash-like event, XMM J202154.7+402855, from this XMM-Newton observation.

  16. Forward Shock Proper Motions of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Katsuda, S.; Tsunemi, H.; Uchida, H.; Kimura, M.

    2008-12-01

    The X-ray structure of Kepler's supernova remnant shows a rounded shape delineated by forward shocks. We measure proper motions of the forward shocks on overall rims of the remnant, by using archival Chandra data taken in two epochs with time difference of 6.09 yr. The proper motions of the forward shocks on the northern rim are measured to be 0.076'' (0.032'' 0.016'') to 0.11'' (0.014'' 0.016'') yr?1, while those on the rest of the rims are measured to be 0.15'' (0.017'' 0.016'') to 0.30'' (0.048'' 0.016'') yr?1 here the first-term errors are statistical uncertainties and the second-term errors are systematic uncertainties. Combining the best-estimated shock velocity of 1660 +/- 120 km s?1 measured for Balmer-dominated filaments in the northern and central portions of the remnant (Sankrit et al. 2005) with the proper motions derived for the forward shocks on the northern rim, we estimate a distance of 3.3+1.6?0.4 kpc to the remnant. We measure the expansion indices, m (defined as R propto tm), to be 0.47-0.82 for most of the rims. These values are consistent with those expected in Type Ia SN explosion models, in which the ejecta and the circumstellar medium have power-law density profiles whose indices are 5-7 and 0-2, respectively. In addition, we should note the slower expansion on the northern rim than that on the southern rim. This is likely caused by the inhomogeneous circumstellar medium; the density of the circumstellar medium is higher in the north than that in the south of the remnant. The newly estimated geometric center, around which we believe the explosion point exists, is located at ~5'' offset to the north of the radio center.

  17. Carbon Monoxide in the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Jarrett, T.; Reach, W.; Gomez, H.; Andersen, M.

    2009-01-01

    We report the near-infrared detection of first overtone Carbon Monoxide (CO) emission from the young supernova remnant Cassiopeia A. The presence of CO emission implies conditions are conducive to dust formation long after the typically quoted 200--800 days from the explosion event. The CO in Cas A formed in an earlier stage of SNe explosion and has cooled, is now visible in the infrared due to heating from the reverse shock. We present the first map of the CO distribution in the ejecta of a supernova remnant by subtracting the continuum emission from the CO filter map. We compare the first overtone CO emission with SN1987A and find 30 times less CO. The mass of CO in Cas A is at least 1E-6 Msun. Our CO detection suggests that molecule mixing is small in the SN ejecta and during the development of reverse shock. Detection of the CO overtone band in Cas A demonstrates that astrochemical processes and molecule formation continue more than 300 years after the initial explosion.

  18. Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brogan, C. L.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maino, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Pasian, F.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.; Rho, J.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, Sν ∝ ν-α, with the spectral index, α, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses.

  19. Charge transfer and X-ray emission from supernova remnants

    NASA Technical Reports Server (NTRS)

    Wise, Michael W.; Sarazin, Craig L.

    1989-01-01

    The X-ray line emission excited by charge transfer between neutral hydrogen and the hydrogenic or fully stripped ions of heavy elements has been computed for a grid of nonequilibrium ionization models for supernova remnants. The effects of charge transfer excitation on the X-ray spectra of supernova remnants are discussed. The charge transfer process depends very sensitively upon the abundance of neutral hydrogen behind the shock. Consequently, a careful treatment of the ionization of hydrogen was required. The model line fluxes are compared with those excited by conventional collisional processes involving electrons. Results are presented in the form of contour plots for both the flux excited by charge transfer and the ratio of the charge transfer flux to that associated solely with collisional processes involving electrons. Charge transfer never contributes more than 10 percent of the flux of the strongest electron collisionally excited lines, and its contribution is typically 0.001 to 10 to the -5th for a shock moving into a medium composed of neutral hydrogen.

  20. Nonlinear Shock Acceleration and Photon Emission in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Berezhko, Evgeny G.; Baring, Matthew G.

    2000-01-01

    We have extended a simple model of nonlinear diffusive shock acceleration (Berezhko & Ellison 1999: Ellison &, Berezhko 1999a) to include the injection and acceleration of electrons and the production of photons from bremsstrahlung, synchrotron, inverse Compton, and pion-decay processes. We argue that, the results of this model, which is simpler to use than more elaborate ones, offer a significant improvement, over test-particle, power-law spectra which are often used in astrophysical applications of diffusive shock acceleration. With an evolutionary supernova remnant (SNR) model to obtain shock parameters as functions of ambient interstellar medium parameters and time, we predict broad-band continuum photon emission from supernova remnants in general, and SN1006 in particular, showing that our results compare well with the more complete time-dependent and spherically symmetric nonlinear model of Berezhko, Ksenofontov, & Petukhov (1999a). We discuss the implications nonlinear shock acceleration has for X-ray line emission, and use our model to describe how ambient conditions determine the TeV/radio flux ratio, an important parameter for gamma-ray observations of radio SNRs.

  1. Model images of radio halos around supernova remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.

    1994-01-01

    I present model calculations of profiles and two-dimensional images of the radio synchrotron emission of young supernova remnants, concentrating on observable effects of relativistic eletrons diffusing upstream of the shock wave. If the preshock electron scattering mean free path is sufficiently long, observable synchrotron halos outside the bulk of the radio emission can potentially result; their absence can constrain the mean free path from above. If scattering is primarily due, as expected, to Alfven waves with amplitude detla(B), the halo is expected to extend a distance of order r(sub g)c(delta(B)/B)(exp 2)/v(sub s) beyond the shock, where r(sub g) is the gyroradius of the electrons emitting at the observed frequency, B is the upstream magnetic field strength, v(sub s) is the shock velocity, and the amplitude delta(B) refers to wave with wavelength comparable to r(sub g), of order 10(exp 13) cm for typical supernova-remnant parameters. However, the detailed geometry of the halo varies with the assumptions about particle acceleration in the shock wave. I present an atlas of model profiles and images as a function of preshock diffusion length, of aspect angle between the magnetic field and the line of sight, and of other relevant parameters.

  2. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara

    Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.

  3. Image of the Vela Supernova Remnant Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  4. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition

    SciTech Connect

    Blasi, Pasquale; Amato, Elena E-mail: amato@arcetri.astro.it

    2012-01-01

    In this paper we investigate the effect of stochasticity in the spatial and temporal distribution of supernova remnants on the spectrum and chemical composition of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. In particular, at high energies we assume that D(E)∝E{sup δ}, with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars, with and without accounting for the spiral structure of the Galaxy. We find that the stochastic fluctuations induced by the spatial and temporal distribution of supernovae, together with the effect of spallation of nuclei, lead to mild but sensible violations of the simple, leaky-box-inspired rule that the spectrum observed at Earth is N(E)∝E{sup −α} with α = γ+δ, where γ is the slope of the cosmic ray injection spectrum at the sources. Spallation of nuclei, even with the small rates appropriate for He, may account for small differences in spectral slopes between different nuclei, possibly providing an explanation for the recent CREAM observations. For δ = 1/3 we find that the slope of the proton and helium spectra are ∼ 2.67 and ∼ 2.6 respectively (with fluctuations depending on the realization of source distribution) at energies around ∼ 1 TeV (to be compared with the measured values of 2.66±0.02 and 2.58±0.02). For δ = 0.6 the hardening of the He spectra is not observed. The stochastic effects discussed above cannot be found in ordinary propagation calculations, such as GALPROP, where these effects and the point like nature of the sources are not taken into account. We also comment on the effect of time dependence of the escape of cosmic rays from supernova remnants, and of a possible clustering of the sources in superbubbles. In a second paper we will discuss the implications of these different scenarios for the anisotropy of cosmic rays.

  5. X-Ray Ejecta Kinematics of the Galactic Core-Collapse Supernova Remnant G292.0+1.8

    NASA Astrophysics Data System (ADS)

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-01

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 lsim vr lsim 1400 km s-1. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90'' (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 1051 erg, we estimate the total ejecta mass to be lsim8 M ?, and we propose an upper limit of lsim35 M ? on the progenitor's mass.

  6. X-RAY EJECTA KINEMATICS OF THE GALACTIC CORE-COLLAPSE SUPERNOVA REMNANT G292.0+1.8

    SciTech Connect

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-10

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ≲ v{sub r}  ≲ 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ∼90'' (corresponding to ∼3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ∼4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ≲8 M {sub ☉}, and we propose an upper limit of ≲35 M {sub ☉} on the progenitor's mass.

  7. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  8. The fate of supernova remnants near quiescent supermassive black holes

    NASA Astrophysics Data System (ADS)

    Rimoldi, A.; Rossi, E. M.; Piran, T.; Portegies Zwart, S.

    2015-03-01

    There is mounting observational evidence that most galactic nuclei host both supermassive black holes (SMBHs) and young populations of stars. With an abundance of massive stars, core-collapse supernovae are expected in SMBH spheres of influence. We develop a novel numerical method, based on the Kompaneets approximation, to trace supernova remnant (SNR) evolution in these hostile environments, where radial gas gradients and SMBH tides are present. We trace the adiabatic evolution of the SNR shock until 50 per cent of the remnant is either in the radiative phase or is slowed down below the SMBH Keplerian velocity and is sheared apart. In this way, we obtain shapes and lifetimes of SNRs as a function of the explosion distance from the SMBH, the gas density profile and the SMBH mass. As an application, we focus here exclusively on quiescent SMBHs, because their light may not hamper detections of SNRs and because we can take advantage of the unsurpassed detailed observations of our Galactic Centre. Assuming that properties such as gas and stellar content scale appropriately with the SMBH mass, we study SNR evolution around other quiescent SMBHs. We find that, for SMBH masses over 107 M?, tidal disruption of SNRs can occur at less than 104 yr, leading to a shortened X-ray emitting adiabatic phase, and to no radiative phase. On the other hand, only modest disruption is expected in our Galactic Centre for SNRs in their X-ray stage. This is in accordance with estimates of the lifetime of the Sgr A East SNR, which leads us to expect one supernova per 104 yr in the sphere of influence of Sgr A*.

  9. Dynamical Evolution of Supernova Remnants Breaking Through Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-04-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code tep{har83}. We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one-dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

  10. Supernovae. The bubble-like interior of the core-collapse supernova remnant Cassiopeia A.

    PubMed

    Milisavljevic, Dan; Fesen, Robert A

    2015-01-30

    The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of these catastrophic explosions remain uncertain, due partly to limited observational constraints on asymmetries deep inside the star. Here we present near-infrared observations of the young supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior unshocked ejecta. The remnant's interior has a bubble-like morphology that smoothly connects to and helps explain the multiringed structures seen in the remnant's bright reverse-shocked main shell of expanding debris. This internal structure may originate from turbulent mixing processes that encouraged outwardly expanding plumes of radioactive (56)Ni-rich ejecta. If this is true, substantial amounts of its decay product, (56)Fe, may still reside in these interior cavities. PMID:25635094

  11. The evolution of supernova remnants in different galactic environments and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Gull, T.; Bruhweiler, F.

    1980-01-01

    It is shown that only a small fraction of the many supernovae in the Galaxy produces observable supernova remnants; this fraction, which is found to depend weakly on the lower mass limit of the SN progenitors, and more strongly on the specific characteristics of the associated interstellar medium, decreases from about 15% near the galactic center to 10% at R(gal) of about 10 kpc and drops nearly to zero for R(gal) greater than 15 kpc. Whether an SNR is detectable is determined by the density of the ambient interstellar medium in which it is embedded; it is found that SNRs are detectable only above some critical density (about 0.1 per cu cm). The presence of large low-density superbubble cavities around stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs must have runaway stars as their progenitors.

  12. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    SciTech Connect

    Zanardo, Giovanna; Staveley-Smith, Lister; Indebetouw, Remy; Chevalier, Roger A.; Matsuura, Mikako; Barlow, Michael J.; Gaensler, Bryan M.; Fransson, Claes; Lundqvist, Peter; Manchester, Richard N.; Baes, Maarten; Kamenetzky, Julia R.; Laki?evi?, Maa; Marcaide, Jon M.; Meixner, Margaret; Ng, C.-Y.; Park, Sangwook; and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (? 3.2 mm to 450 ?m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ?}??{sup 0.73}) and the thermal component originating from dust grains at T ? 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields 0.4 ? ? ? 0.1 across the western regions, with ? ? 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  13. Spectral and Morphological Analysis of the Remnant of Supernova 1987A with ALMA and ATCA

    NASA Astrophysics Data System (ADS)

    Zanardo, Giovanna; Staveley-Smith, Lister; Indebetouw, Remy; Chevalier, Roger A.; Matsuura, Mikako; Gaensler, Bryan M.; Barlow, Michael J.; Fransson, Claes; Manchester, Richard N.; Baes, Maarten; Kamenetzky, Julia R.; Laki?evi?, Maa; Lundqvist, Peter; Marcaide, Jon M.; Mart-Vidal, Ivan; Meixner, Margaret; Ng, C.-Y.; Park, Sangwook; Sonneborn, George; Spyromilio, Jason; van Loon, Jacco Th.

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (? 3.2 mm to 450 ?m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S ?vprop?-0.73) and the thermal component originating from dust grains at T ~ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields -0.4 <~ ? <~ -0.1 across the western regions, with ? ~ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  14. A New X-Ray View of the Supernova Remnant G272.2-3.2 and Its Environment

    NASA Astrophysics Data System (ADS)

    McEntaffer, R. L.; Grieves, N.; DeRoo, C.; Brantseg, T.

    2013-09-01

    We present an analysis of Chandra X-Ray Observatory data detailing a Galactic supernova remnant, G272.2-3.2. A clear shell of emission is resolved as a series of filaments and knots around the entire rim of the remnant. Spectral analysis of these features show that they are consistent with shock heating of interstellar material in a clumpy medium. We contrast these X-ray images with 22 ?m Wide-field Infrared Survey Explorer (WISE) data to verify this interaction. Spatially separated from the shell we see a central diffuse region dominated by harder, hotter emission. Spatial spectroscopy shows a clear enhancement of metals consistent with a Type Ia explosion, namely S, Si, and Fe. We find no clear evidence for a compact object or pulsar wind nebula and argue for a Type Ia origin. Consideration of the ionization timescales suggest an age of 11,000 yr for G272.2-3.2.

  15. Nature Versus Nurture: Do Asymmetries in Supernova Remnant Ejecta Reflect the Explosion or the Environment of the Progenitor?

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.; Ramirez-Ruiz, E.

    2011-09-01

    Recent work has demonstrated that Type Ia supernova remnants (SNRs) have statistically more spherical and mirror-symmetric X-ray line and continuum emission than core-collapse (CC) SNRs. The ability to type SNRs based on thermal X-ray emission morphology alone could reflect either the distinct explosion mechanisms or the different circumstellar environments of Type Ia and CC SNRs. In this talk, we present new results exploring this "nature" versus "nurture" conundrum. To test if asymmetries arise from explosions, we examine whether pulsar kick velocities are correlated with ejecta (a)symmetries (as measured using Chandra, XMM-Newton, and ROSAT images). We also study Type Ia and CC SNRs in a variety of conditions to search for trends in (a)symmetries with environmental factors (e.g., star-formation activity). Collectively, this work provides new insights into the nature of SN explosions and the dynamical evolution of their remnants.

  16. A NEW X-RAY VIEW OF THE SUPERNOVA REMNANT G272.2-3.2 AND ITS ENVIRONMENT

    SciTech Connect

    McEntaffer, R. L.; Grieves, N.; DeRoo, C.; Brantseg, T.

    2013-09-10

    We present an analysis of Chandra X-Ray Observatory data detailing a Galactic supernova remnant, G272.2-3.2. A clear shell of emission is resolved as a series of filaments and knots around the entire rim of the remnant. Spectral analysis of these features show that they are consistent with shock heating of interstellar material in a clumpy medium. We contrast these X-ray images with 22 {mu}m Wide-field Infrared Survey Explorer (WISE) data to verify this interaction. Spatially separated from the shell we see a central diffuse region dominated by harder, hotter emission. Spatial spectroscopy shows a clear enhancement of metals consistent with a Type Ia explosion, namely S, Si, and Fe. We find no clear evidence for a compact object or pulsar wind nebula and argue for a Type Ia origin. Consideration of the ionization timescales suggest an age of 11,000 yr for G272.2-3.2.

  17. The Evolution of Relativistic Electron Populations in Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Anderson, Martha Carol

    1993-01-01

    Observational data regarding the acceleration of relativistic particles in shell-type supernova remnants (SNRs) is presented. As synchrotron spectral indices directly reflect the energy spectra of radiating particle populations, we have mapped the spatial distribution of spectral index in several shell SNRs. In particular, we address the question of whether bright, compact radio features in SNRs should be should be interpreted as sites of active particle acceleration, in analogy with studies of extragalactic radio jets. We concentrate primarily on the SNR Cassiopeia A and begin by constructing a dynamical picture describing the current evolutionary state of emission structures on both small and large spatial scales. To this end, the proper motions and brightness evolution of both the bulk radio ring and a sample of 304 compact radio features have been accurately determined from high-quality interferometric observations of the remnant at lambdalambda 6 and 20 cm, spanning a total time baseline of 12 years. We find that the expansion timescales derived for sets of compact features varies azimuthally and radially within the remnant and differs for subsets of knots segregated by brightness. These measurements suggest that, in Cas A, the deceleration of ejecta and radio emissivity are strongly coupled. This is in agreement with numerical models of supersonic gaseous projectiles which show that the deceleration of a clumpy ejectum is accompanied by the onset of dynamical instabilities which serve to amplify the local magnetic field, thereby enhancing synchrotron emissivity. We find that the spectral indices of compact radio features in Cas A are uncorrelated with any dynamically important quantities (e.g., knot brightness, rate of brightness change, degree of deceleration). Spectral index shows a significant correlation only with the knots' (projected) radial positions within the remnant. This suggests that these radio-bright features are not themselves accelerating the relativistic electrons which illuminate them. Comparisons with spectral variations found in Galactic remnants G39.2 -0.3, G41.1-0.3, Kepler's SNR and with other previously published remnant studies are made.

  18. Second Epoch Hubble Space Telescope Imaging of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.; Patnaude, Daniel; Raymond, John C.; Reynolds, Stephen P.; Williams, Brian J.

    2015-01-01

    We have obtained new HST/WFC3 images of Kepler's supernova remnant in H-alpha (F656N) and [N II] (F658N) emission line filters. The bright radiative shocks in dense clumps are detected in both filters, while non-radiative shocks are seen as faint filaments only in the H-alpha image. Most of these Balmer filaments lie around the periphery of the remnant where the blast wave encounters partially neutral interstellar gas. We compare the new images with HST/ACS images taken nearly 10 years previously, and find that these filaments tracing the forward shock have moved 0.6"-0.9" between the two epochs. Assuming a distance of 4 kpc to the remnant, these proper motions correspond to shock velocities of 1160-1740 km/s, which are consistent with the published values, 1550-2000 km/s (e.g. Blair et al. 1991, ApJ 366, 484). We also find a few Balmer filaments with highly non-radial proper motions. In one particularly interesting case in the projected interior of the remnant, SE of the center, the shock appears to have wrapped around a sharp density enhancement and moved about 0.3" in the period between the observations.The images allow us to study the evolution of the shock around an ejecta knot, which is punching through the remnant boundary in the northwest. The forward shock, visible as an arcuate Balmer filament, has moved about 1". At the trailing edges, the system of radiative knots formed by Rayleigh-Taylor instabilities have undergone significant changes - some knots have disappeared, new ones have appeared, and many have changed in brightness. Elsewhere in the remnant we find changes in the relative intensities of many small, bright knots over the 10 year baseline, indicating the short radiative lifetimes of these features.This work has been supported in part by grant HST-GO-12885 to the Universities Space Research Association.

  19. NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS

    SciTech Connect

    Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C.

    2012-11-10

    The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, {gamma}, and three distinct values are taken for the cavity ({gamma}{sub 1}), the shell ({gamma}{sub 2}), and the ISM ({gamma}{sub 3}) with the condition {gamma}{sub 2} < {gamma}{sub 1}, {gamma}{sub 3}. This low value of {gamma}{sub 2} accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the angle. As a result, our model shows that the supernova remnant returns to a stable evolution and the Vishniac instability does not lead to the fragmentation of the shock as predicted by the theory.

  20. The Compact Central Object in the RX J0852.0-4622 Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Pavlov, George G.; Sanwal, Divas; K?z?ltan, Blent; Garmire, Gordon P.

    2001-10-01

    The central region of the recently discovered supernova remnant (SNR) RX J0852.0-4622 was observed with the Advanced CCD Imaging Spectrometer detector aboard the Chandra X-Ray Observatory. We found only one relatively bright source, about 4' north of the SNR center, with a flux of ~210-12 ergs s-1 cm-2 in the 0.5-10 keV band. The position of this pointlike source, CXOU J085201.4-461753, rules out its association with the two bright stars in the field, HD 76060 and Wray 16-30. Observations of the field with the Cerro Tololo Inter-American Observatory 0.9 m telescope show a star (R~17, B~19) at about 2.4" from the nominal X-ray position. We consider association of this star with the X-ray source unlikely and estimate a limiting magnitude of the optical counterpart as B>=22.5 and R>=21.0. Based on the X-ray-to-optical flux ratio, we argue that the X-ray source is likely the compact remnant of the supernova explosion that created the RX J0852.0-4622 SNR. The observed X-ray spectrum of the source is softer than spectra of magnetospheric radiation of rotation-powered pulsars, but it is harder than spectra of cooling neutron stars emitting thermal radiation from the entire surface, similar to the central compact source of the Cas A SNR. We suggest that CXOU J085201.4-461753 belongs to the growing family of radio-quiet compact central sources, presumably neutron stars, recently discovered in a number of SNRs.

  1. Grain destruction in a supernova remnant shock wave

    SciTech Connect

    Raymond, John C.; Gaetz, Terrance J.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Sankrit, Ravi

    2013-12-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants (SNRs), gradually enriching the gas phase with refractory elements. We have measured emission in C IV λ1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 μm and the X-ray intensity profiles. Thus, these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the C IV intensity 10'' behind the shock is too high compared with the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction, and the dust properties over parsec scales in the pre-shock medium limit our ability to test dust destruction models in detail.

  2. Spitzer Space Telescope Spectroscopy of the Kepler Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Onaka, T.

    2004-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope was used for observations of the Kepler supernova remnant, with all four instrument modules targeted on the bright infrared knot located at 17h30m35.80s,-21d28m54.0s (J2000). The low spectral resolution modules data show a dust continuum spectrum consistent with dust grains heated by high-energy electrons, while the high resolution modules data show atomic emission line ratios consistent with excitation by a high velocity shock of greater than 100 kilometers per second and electron densities of approximately 1,000 per centimeter. The abundance ratios for the six detected elements show signs of heavy-element enhancement. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology. Support for this work was provided by NASA's Office of Space Science.

  3. High-Resolution Polarimetry of Supernova Remnant Kesteven 69

    NASA Astrophysics Data System (ADS)

    Wood, C. A.; Mufson, S. L.; Dickel, J. R.

    2008-06-01

    Reported here are high-resolution 6 cm measurements of the adolescent supernova remnant (SNR) Kesteven 69 made with the hybrid BnC configuration of the Very Large Array. Several three-field mosaics of the polarized and total intensity have been used to study this SNR. These investigations lead to a coherent picture of this region. The expanding shock defines an outer rim of high total intensity, suggesting the front is running into large dense clouds with random magnetic field directions. The SNR consists of predominantly of two types of regions, those with high total and relatively weak polarized emission and those with relatively weak total and strong polarized emission. This morphology can be generally explained by the number of clouds with organized magnetic field along the line of sight. Within this SNR there are regions where the field is varying from radial to tangential. As the SN shock encounters clouds, magnetic fields within clouds will strongly affect cloud dynamics.

  4. Type Ia supernova remnants: shaping by iron bullets

    NASA Astrophysics Data System (ADS)

    Tsebrenko, Danny; Soker, Noam

    2015-10-01

    Using 2D numerical hydrodynamical simulations of Type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g. SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed `ears', such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

  5. SN1987A: The Birth of a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    McCray, Richard

    2003-01-01

    This grant was intended to support the development of theoretical models needed to interpret and understand the observations by the Hubble Space Telescope and the Chandra X-ray telescope of the rapidly developing remnant of Supernova 1987A. In addition, we carried out a few investigations of related topics. The project was spectacularly successful. The models that we developed provide the definitive framework for predicting and interpreting this phenomenon. Following is a list of publications based on our work. Some of these papers include results of both theoretical modeling supported by this project and also analysis of data supported by the Space Telescope Science Institute and the Chandra X-ray Observatory. We first list papers published in refereed journals, then conference proceedings and book chapters, and also an educational web site.

  6. Grain Destruction in a Supernova Remnant Shock Wave

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  7. Phosphorus in the young supernova remnant Cassiopeia A.

    PubMed

    Koo, Bon-Chul; Lee, Yong-Hyun; Moon, Dae-Sik; Yoon, Sung-Chul; Raymond, John C

    2013-12-13

    Phosphorus ((31)P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here, we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ((56)Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion. PMID:24337291

  8. The Extraordinary Supernova Remnant in NGC 4449 Revisited

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; Blair, William P.; Fesen, Robert A.; Milisavljevic, Dan; Winkler, P. Frank

    2015-01-01

    NGC 4449, a Magellanic-type irregular galaxy at a distance of about 4 Mpc, contains the most luminous known supernova remnant (SNR) in both X-ray and optical bands. Its optical spectrum is characterized by broad lines from O, Ne, S, Ar, and Ca, and its size and expansion velocity (6000 km/s) suggest that the unobserved SN exploded about 65 years ago. The remnant¹s extraordinary brightness can be attributed to the interaction of supernova ejecta with unusually dense and extensive circumstellar material. We will present new Chandra imaging, together with UV/Optical spectra of the SNR from HST/STIS and the MMT. The X-ray luminosity of the SNR is less than when it was detected with Einstein in 1980, but the luminosity and X-ray spectral shape have remained relatively constant over the last 10 years. In the FUV, the HST spectra show for the first time broad line emission from C IV 1550 Å, as well as Si IV + O IV at 1400 Å and O III] at 1660 Å. The new NUV and optical spectra are fairly similar to earlier HST/FOS spectra and to ground-based spectra we have obtained over the last decade. Here we describe these new observations, and our attempts to understand the nature of the progenitor of the SNR.We acknowledge support for this effort from NASA through grant GO-12462 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc, under NASA contract NAS5-26555, and through Chandra Award Number GO9-0075, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory, under NASA contract NAS8-03060.

  9. Powerful Tools for Dissecting Supernova Remnants Observed with Chandra

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.; Ramirez-Ruiz, E.; Pooley, D.; Huppenkothen, D.

    2008-03-01

    We introduce powerful new methods to quantify X-ray morphology of supernova remnants observed with Chandra. We demonstrate application of three techniques -- a power-ratio method, two-point correlation, and wavelet-transform analysis -- to archival ACIS observations of twenty galactic SNRs of all types and a variety of ages to measure chemical segregation and mixing, distribution asymmetries, and local substructure. Detailed comparison between sources provides crucial insights regarding the nature of the explosion, the effects of heating and dense environments, and particle acceleration properties. For each remnant, we have created individual images of observed spectral features (emission lines, thermal and non-thermal emission). Using two-point correlation, we disentangle the thermal and non-thermal emitting regions, and we measure with great accuracy the sizes and locations of thermal and non-thermal clumps with wavelet-transform analysis. The non-thermal continuum is located predominantly around the rim of our sources, and it has great excess power at small scales compared to the thermal component. Application of our methods to radio data reveals how the size of non-thermal emitting regions changes as a function of photon energy, which provides crucial insight to understand the magnetic-field properties and particle acceleration mechanisms. We extract XMM-Newton spectra of the regions with and without line emission as identified by the wavelet-transform analysis. Detailed knowledge of the X-ray substructure enables much more precise ejecta mass estimates than any previous SNR studies, key to constraining the supernova explosion histories. Additionally, we map rigorously the temperature and ion intensity variation within each source. Using these methods, we distinguish whether asymmetric chemical distributions arise from inhomogeneous heating or from an anisotropic explosion. In brief, we present three mathematical techniques that are superbly suited for analysis of high-resolution X-ray images, and we show their use for probing many outstanding questions that are vital to advance SNR understanding.

  10. Oxygen emission in remnants of thermonuclear supernovae as a probe for their progenitor system

    NASA Astrophysics Data System (ADS)

    Kosenko, D.; Hillebrandt, W.; Kromer, M.; Blinnikov, S. I.; Pakmor, R.; Kaastra, J. S.

    2015-05-01

    Recent progress in numerical simulations of thermonuclear supernova explosions brings up a unique opportunity in studying the progenitors of Type Ia supernovae. Coupling state-of-the-art explosion models with detailed hydrodynamical simulations of the supernova remnant evolution and the most up-to-date atomic data for X-ray emission calculations makes it possible to create realistic synthetic X-ray spectra for the supernova remnant phase. Comparing such spectra with high-quality observations of supernova remnants could allow us to constrain the explosion mechanism and the progenitor of the supernova. The present study focuses in particular on the oxygen emission line properties in young supernova remnants, since different explosion scenarios predict a different amount and distribution of this element. Analysis of the soft X-ray spectra from supernova remnants in the Large Magellanic Cloud and confrontation with remnant models for different explosion scenarios suggest that SNR 0509-67.5 could originate from a delayed detonation explosion and SNR 0519-69.0 from an oxygen-rich merger.

  11. Improved optical spectrophotometry of supernova remnants in M33

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Kirshner, R. P.

    1985-01-01

    Optical spectra of SNRs in M33 have been used to investigate abundance gradients and SNR evolution in this galaxy. Abundances of O, N, and S are derived from the spectra using new shock models by Dopita et al. (1984). The results for N and S show abundance gradients similar to those in NGC 300 and the Galaxy. The O abundances may be affected by possible contamination from H II regions and low-velocity shocks. Electron densities derived from the forbidden S II 6717 A/6731 A line ratio are used with a pressure equilibrium argument to estimate the initial explosion energy for each SNR. Evolutionary models for the remnants are investigated, and the distribution of the number of remnants with diameter is found to be consistent with free expansion of the SNRs to diameters of about 26 pc. The results may also be consistent with Sedov evolution if the ranges of initial supernova energies and surrounding interstellar medium densities are large enough.

  12. IS THERE A HIDDEN HOLE IN TYPE Ia SUPERNOVA REMNANTS?

    SciTech Connect

    Garcia-Senz, D.; Badenes, C.; Serichol, N. E-mail: carles@astro.tau.ac.il

    2012-01-20

    In this paper, we report on the bulk features of the hole carved by the companion star in the material ejected during a Type Ia supernova (SN Ia) explosion. In particular we are interested in the long-term evolution of the hole as well as in its fingerprint in the geometry of the supernova remnant (SNR) after several centuries of evolution, which is a hot topic in current SN Ia studies. We use an axisymmetric smoothed particle hydrodynamics code to characterize the geometric properties of the SNR resulting from the interaction of this ejected material with the ambient medium. Our aim is to use SNR observations to constrain the single degenerate scenario for SN Ia progenitors. Our simulations show that the hole will remain open during centuries, although its partial or total closure at later times due to hydrodynamic instabilities is not excluded. Close to the edge of the hole, the Rayleigh-Taylor instability grows faster, leading to plumes that approach the edge of the forward shock. We also discuss other geometrical properties of the simulations, like the evolution of the contact discontinuity.

  13. Acceleration of cosmic rays in supernova-remnants

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.

  14. Search for surviving companions in type Ia supernova remnants

    SciTech Connect

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu E-mail: taam@asiaa.sinica.edu.tw

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  15. ROSAT HRI observations of Magellanic Cloud supernova remnants

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1994-01-01

    Analysis of deep ROSAT high resolution imager (HRI) observations of two oxygen-rich supernova remnants (SNR's) in the Magellanic Clouds is described. For N132D, I exploit the limited spectral information provided by the HRI to investigate arcsecond scale spectral variations. I find that there is a region of harder X-ray emission near the southern limb and regions of softer emission near the center and northwestern limb. The remnant is believed to be interacting with a molecular cloud and the harder emission to the south is explained as a result of increased absorption along the line-of-sight there. I argue that the softer emission comes from X-ray emitting material with an enhanced abundance of oxygen. For the second SNR, E0102.2 72.2, the spatial structure is investigated in detail using two-dimensional image fitting techniques. Evidence is found for a ring-like and a spherically symmetric shell-like component both of which were modeled as homogeneous regions. In addition, a significant fraction of the observed flux (approximately 11 percent) must come from a resolved clumped component. A comparison with optical and radio imagery is made to provide a physical basis for the components identified in the X-ray analysis. The mass of X-ray emitting gas in the remnant is estimated and a value of approximately 75 M(solar mass) was determined. The dominant uncertainty on this quantity is the extent of unresolved clumping in the X-ray gas. Such clumping would tend to reduce the mass estimate by f(exp 1/2), where f is the mean volume filling factor of the gas.

  16. PHYSICAL STRUCTURE AND NATURE OF SUPERNOVA REMNANTS IN M101

    SciTech Connect

    Franchetti, Nicholas A.; Gruendl, Robert A.; Chu, You-Hua; Dunne, Bryan C.; Pannuti, Thomas G.; Grimes, Caleb K.; Kuntz, Kip D.; Chen, C.-H. Rosie; Aldridge, Tabitha M. E-mail: gruendl@astro.illinois.edu E-mail: bdunne@astro.illinois.edu E-mail: ckgrim01@moreheadstate.edu E-mail: rchen@mpifr-bonn.mpg.de

    2012-04-15

    Supernova remnant (SNR) candidates in the giant spiral galaxy M101 have been previously identified from ground-based H{alpha} and [S II] images. We have used archival Hubble Space Telescope (HST) H{alpha} and broadband images as well as stellar photometry of 55 SNR candidates to examine their physical structure, interstellar environment, and underlying stellar population. We have also obtained high-dispersion echelle spectra to search for shocked high-velocity gas in 18 SNR candidates, and identified X-ray counterparts to SNR candidates using data from archival observations made by the Chandra X-Ray Observatory. Twenty-one of these 55 SNR candidates studied have X-ray counterparts, although one of them is a known ultraluminous X-ray source. The multi-wavelength information has been used to assess the nature of each SNR candidate. We find that within this limited sample, {approx}16% are likely remnants of Type Ia SNe and {approx}45% are remnants of core-collapse SNe. In addition, about {approx}36% are large candidates which we suggest are either superbubbles or OB/H II complexes. Existing radio observations are not sensitive enough to detect the non-thermal emission from these SNR candidates. Several radio sources are coincident with X-ray sources, but they are associated with either giant H II regions in M101 or background galaxies. The archival HST H{alpha} images do not cover the entire galaxy and thus prevents a complete study of M101. Furthermore, the lack of HST [S II] images precludes searches for small SNR candidates which could not be identified by ground-based observations. Such high-resolution images are needed in order to obtain a complete census of SNRs in M101 for a comprehensive investigation of the distribution, population, and rates of SNe in this galaxy.

  17. An origin for pulsar kicks in supernova hydrodynamics

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Hayes, John

    1996-04-01

    It is now believed that pulsars comprise the fastest population of stars in the galaxy. With inferred mean, root-mean-square, and maximum 3-D pulsar speeds of ~300-500 km/s, ~500 km/s, and ~2000 km/s, respectively, the question of the origin of such singular proper motions becomes acute. What mechanism can account for speeds that range from zero to twice the galactic escape velocity? We speculate that a major vector component of a neutron star's proper motion comes from the hydrodynamic recoil of the nascent neutron star during the supernova explosion in which it is born. Recently, theorists have shown that asymmetries and instabilities are a natural aspect of supernova dynamics. In this paper, we highlight two phenomena: 1) the ``Brownian-like'' stochastic motion of the core in response to the convective ``boiling'' of the mantle of the protoneutron star during the post-bounce, pre-explosion accretion phase, and 2) the asymmetrical bounce and explosion of an aspherically collapsing Chandrasekhar core. In principle, either phenomenon can leave the young neutron star with a speed of hundreds of kilometers per second. However, neither has yet been adequately simulated or explored. The two-dimensional radiation/hydrodynamic calculations we present here provide only crude estimates of the potential impulses due to mass motions and neutrino emissions. A comprehensive and credible investigation will require fully three-dimensional numerical simulations not yet possible. Nevertheless, we have in the asymmetric hydrodynamics of supernovae a natural means of imparting respectable kicks to neutron stars at birth, though speeds approaching 1000 km/s are still problematic.

  18. G29.7-0.3: another supernova remnant with an identity crisis

    NASA Astrophysics Data System (ADS)

    Becker, R. H.; Helfand, D. J.; Szymkowiak, A. E.

    1983-05-01

    New radio and X-ray observations of the galactic supernova remnant G29.7-0.3 show that it is composed of two spectrally distinct components: a steep-spectrum, incomplete shell 3 arcmin in extent enclosing a flat-spectrum, X-ray emitting region 30 arcsec across. Thus, G29.7-0.3 joins the ranks of supernova remnants which exhibit a combination of Crab-like and shell remnant attributes. The Crab-like core has the highest ratio of X-ray radio luminosity of all the Crab-like remnants observed to date, suggesting that it is an extremely young object.

  19. G29.7-0.3: another supernova remnant with an identity crisis

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Helfand, D. J.; Szymkowiak, A. E.

    1983-01-01

    New radio and X-ray observations of the galactic supernova remnant G29.7-0.3 show that it is composed of two spectrally distinct components: a steep-spectrum, incomplete shell 3 arcmin in extent enclosing a flat-spectrum, X-ray emitting region 30 arcsec across. Thus, G29.7-0.3 joins the ranks of supernova remnants which exhibit a combination of Crab-like and shell remnant attributes. The Crab-like core has the highest ratio of X-ray radio luminosity of all the Crab-like remnants observed to date, suggesting that it is an extremely young object.

  20. Gamma-rays from supernova remnants and the signatures of diffusive shock acceleration

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Grenier, Isabelle

    1997-01-01

    A nonlinear shock acceleration model which generates non-thermal proton distributions and includes a self-consistent determination of shock hydrodynamics, is considered. Gamma ray spectra are obtained for supernova remnants, allowing for the cessation of acceleration to high energies due to the finite ages and the sizes of the remnants. Gamma ray spectral cutoffs can be observed in the TeV range for reasonable remnant parameters and deviations from power law behavior are found at all energies from 1 MeV to cutoff. Correlated observations by the International Gamma Ray Astrophysics Laboratory, Whipple and other instruments may provide stringent constraints to understanding supernova remnants.

  1. Electron Injection in a Young Supernova & Evolution Towards a Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Ray, Alak; Chattopadhyay, Swapan; Chandra, Poonam

    2007-10-01

    The blast wave shock in SN 1993J has high sonic and Alfvenic Mach numbers-ideal for ion plasma instabilities which generate plasma waves that energize electrons upon interaction. Plasma in the shock-circumstellar interface is strongly magnetized, with the field energy density far exceeding that of the relativistic particles. This small ``equipartition'' for a young type IIb SN contrasts those of older Supernova remnants. Evolution of the radio spectrum of young supernovae can determine the change of the shock compression ratio as the SN ages and through comparison with models of particle acceleration coupled with hydrodynamics, can indicate the injection factor: the fraction of the total electrons that end up in the superthermal tail.

  2. SPIN TILTS IN THE DOUBLE PULSAR REVEAL SUPERNOVA SPIN ANGULAR-MOMENTUM PRODUCTION

    SciTech Connect

    Farr, Will M.; Kremer, Kyle; Kalogera, Vassiliki; Lyutikov, Maxim E-mail: kylekremer2012@u.northwestern.edu E-mail: lyutikov@purdue.edu

    2011-12-01

    The system PSR J0737-3039 is the only binary pulsar known to consist of two radio pulsars (PSR J0737-3039 A and PSR J0737-3039 B). This unique configuration allows measurements of spin orientation for both pulsars: pulsar A's spin is tilted from the orbital angular momentum by no more than 14 deg at 95% confidence; pulsar B's by 130 {+-} 1 deg at 99.7% confidence. This spin-spin misalignment requires that the origin of most of B's present-day spin is connected to the supernova that formed pulsar B. Under the simplified assumption of a single, instantaneous kick during the supernova, the spin could be thought of as originating from the off-center nature of the kick, causing pulsar B to tumble to its misaligned state. With this assumption, and using current constraints on the kick magnitude, we find that pulsar B's instantaneous kick must have been displaced from the center of mass of the exploding star by at least 1 km and probably 5-10 km. Regardless of the details of the kick mechanism and the process that produced pulsar B's current spin, the measured spin-spin misalignment in the double pulsar system provides an empirical, direct constraint on the angular momentum production in this supernova. This constraint can be used to guide core-collapse simulations and the quest for understanding the spins and kicks of compact objects.

  3. Fermi-LAT Observation of Supernova Remnant S147

    SciTech Connect

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J.; Ballet, J.; Hanabata, Y.; Lemoine-Goumard, M.; Takahashi, T.; /JAXA, Sagamihara

    2012-08-17

    We present an analysis of gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region around SNR S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) x 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 x 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with prominent H{alpha} filaments of S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. Reacceleration of pre-existing CRs and subsequent adiabatic compression in the filaments is sufficient to provide the required energy density of high-energy protons.

  4. DUST IN A TYPE Ia SUPERNOVA PROGENITOR: SPITZER SPECTROSCOPY OF KEPLER'S SUPERNOVA REMNANT

    SciTech Connect

    Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-08-10

    Characterization of the relatively poorly understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's supernova remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 {mu}m infrared (IR) spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 {mu}m, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the asymptotic giant branch stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength Infrared Spectrograph and Infrared Array Camera data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally heated dust emission from fast shocks (>1000 km s{sup -1}) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are {approx}80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km s{sup -1}) into moderate density material (n{sub 0} {approx} 50-250 cm{sup -3}) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  5. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  6. Fermi Proves Supernova Remnants Make Cosmic Rays - Duration: 3 minutes, 40 seconds.

    NASA Video Gallery

    The husks of exploded stars produce some of the fastest particles in the cosmos. New findings by NASA's Fermi show that two supernova remnants accelerate protons to near the speed of light. The pro...

  7. Studying Young and Old Supernova Remnants with the Upcoming ASTRO-H X-ray Mission

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar; Hughes, John P.; Long, Knox; Bamba, Aya; Aharonian, Felix; Foster, Adam; Funk, Stefan; Hiraga, Junko; Ishida, Manabu; Katsuda, Satoru; Koyama, Katsuji; Leutenegger, Maurice; Maeda, Yoshitomo; Matsumoto, Hironori; Mori, Koji; Nakajima, Hiroshi; Nakamori, Takashi; Nobukawa, Masayoshi; Ozaki, Masanobu; Petre, Robert; Sawada, Makoto; Tamagawa, Toru; Tamura, Keisuke; Tanaka, Takaaki; Tomida, Hiroshi; Tsunemi, Hiroshi; Uchida, Hiroyuki; Uno, Shin'ichiro; Uchiyama, Yasunobu; Yamaguchi, Hiroya; Yamauchi, Shigeo; ASTRO-H Science Working Group

    2015-01-01

    The upcoming X-ray mission ASTRO-H will open a new discovery window to the high-energy Universe thanks to the unprecedented high-resolution spectroscopy (~7eV) to be achieved with the Soft X-ray Spectrometer (SXS) combined with its broadband coverage (0.5-600 keV) with the Soft X-ray Imager (SXI), Hard X-ray Imager (HXI) and the Soft Gamma-ray Detector (SGD). Supernova remnants (SNRs) are a prime science focus for ASTRO-H, particularly with the SXS providing accurate plasma diagnostics of line-rich spectra expected from the youngest, ejecta-dominated, SNRs to the oldest SNRs impacted by their interaction with the Interstellar Medium (ISM). We here highlight the SNR science topics and program that the ASTRO-H team considers of highest priority and impact. For the younger SNRs, the primary science goals are (1) using abundance measurements to unveil SNR progenitors, (2) using spatial and velocity distribution of the ejecta to understand supernova explosion mechanisms, and (3) revealing the link between the thermal plasma state of SNRs and the efficiency of their particle acceleration. For the older SNRs where thermal emission is dominated or heavily impacted by the ISM, the primary goals are (1) constraining metal abundances and physical processes in the mature limb-brightened SNRs, and (2) understanding the puzzling nature of the `mixed-morphology' SNRs and the physics of recombining plasma. For the pulsar-powered nebulae, also known as Pulsar Wind Nebulae (PWNe) or plerions with many still lacking thermal X-ray emission from their supernova shells, ASTRO-H will shed light on their progenitors and environment. The hard X-ray coverage on board ASTRO-H will further allow a study of their broadband spectra (for the brightest objects), beyond NuSTAR's range, filling the gap between the soft X-ray regime (with current X-ray missions) and the gamma-ray regime (with Fermi in the GeV and H.E.S.S. in the TeV), allowing the search for spectral breaks in the hard X-ray band.

  8. Distribution of novae and supernova remnants in the Large Magellanic Cloud

    SciTech Connect

    Van den Bergh, S.

    1988-12-01

    Novae in the LMC appear to be distributred like an old disk population. The fact that no concentration of novae is seen within the Bar of the Large Cloud suggests that this feature is of relatively recent origin. Supernova remnants are seen to exhibit concentrations in the 30 Dor region, in the Bar of the Large Cloud, and in Constellation III. This distribution supports the idea that most of the supernova remnants in the LMC had young massive progenitors. 11 references.

  9. AKARI INFRARED OBSERVATIONS OF THE SUPERNOVA REMNANT G292.0+1.8: UNVEILING CIRCUMSTELLAR MEDIUM AND SUPERNOVA EJECTA

    SciTech Connect

    Lee, Ho-Gyu; Sakon, Itsuki; Onaka, Takashi; Koo, Bon-Chul; Moon, Dae-Sik; Jeong, Woong-Seob; Kaneda, Hidehiro; Nozawa, Takaya; Kozasa, Takashi E-mail: isakon@astron.s.u-tokyo.ac.j E-mail: koo@astrohi.snu.ac.k E-mail: jeongws@kasi.re.k E-mail: tnozawa@mail.sci.hokudai.ac.j

    2009-11-20

    We present the results of AKARI observations of the O-rich supernova remnant (SNR) G292.0+1.8 using six Infrared Camera (IRC) and four Far-Infrared Surveyor bands covering 2.7-26.5 mum and 50-180 mum, respectively. The AKARI images show two prominent structures; a bright equatorial ring (ER) structure along the east-west direction and an outer elliptical shell structure surrounding the remnant. The ER structure is clumpy and incomplete with its western end opened. The outer shell is almost complete and slightly squeezed along the north-south direction. The central position of the outer shell is approx1' northwest from the embedded pulsar and coincides with the center of the ER structure. In the northern and southwestern regions, there is also faint emission with a sharp boundary beyond the bright shell structure. The ER and the elliptical shell structures were partly visible in optical and/or X-rays, but they are much more clearly revealed in our AKARI images. There is no evident difference in infrared colors of the two prominent structures, which is consistent with the previous proposition that both structures are of circumstellar origin. However, we have detected faint infrared emission of a considerably high 15/24 mum ratio associated with the supernova (SN) ejecta in the southeastern and northwestern areas. Our IRC spectra show that the high ratio is at least partly due to the emission lines from Ne ions in the SN ejecta material. In addition, we detect a narrow, elongated feature outside the SNR shell. We derive the physical parameters of the infrared-emitting dust grains in the shocked circumstellar medium (CSM) and compare the result with model calculations of dust destruction by an SN shock. The AKARI results suggest that the progenitor was at the center of the infrared circumstellar shell in the red supergiant stage and that the observed asymmetry in the SN ejecta could be a result of either a dense CSM in the equatorial plane and/or an asymmetric explosion.

  10. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass is associated with the unidentified cold dust component. Its mass could be anywhere between 0.1 and 1 solar M, and is primarily limited by the mass of refractory elements in the ejecta. Given the large uncertainty in the dust mass, the question of whether supernovae can produce enough dust to account for ISM dust masses in the local and high-z universe remains largely unresolved.

  11. Supernova remnant evolution in uniform and non-uniform media

    NASA Astrophysics Data System (ADS)

    Ferreira, S. E. S.; de Jager, O. C.

    2008-01-01

    Aims:In this work numerical simulations showing the time evolution of supernova remnants (SNRs) in uniform and non-uniform interstellar medium (ISM) are presented. Methods: We use a hydrodynamic model including a kinematic calculation of the interstellar magnetic field. Important parameters influencing SNR evolution include the ejecta mass and energy of the remnant, as well as the ISM density and adiabatic index. Results: By varying these parameters we constructed an analytical expression giving the return time of the SNR reverse shock to the origin, in terms of these parameters. We also found that the reverse shock spends half of its time moving outward and the other half returning to the origin. Also computed is SNR evolution in non-uniform media where the blast wave moves from one medium into either a less or more dense medium. As the SNR moves into a medium of higher density a reflection wave is created at the interface between the two media which is driven back toward the center. This drives mass via a nonspherical flow away from the discontinuity. As this wave moves inward it also drags some of the ISM field lines (if the field is parallel with the interface) with it and heats the inside of the SNR resulting in larger temperatures in this region. When a SNR explodes in a medium with a high density and the blast wave propagates into a medium with a lower density, a cavity is being blown away changing the geometry of the high density region. Also, once the forward shock moves into the medium of less density a second reverse shock will start to evolve in this region.

  12. ALEXIS Observations of the Monogem Ring Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Plucinsky, Paul; West, Donald (Technical Monitor)

    2001-01-01

    The subject grant is for the analysis of ALEXIS observations of the Monogem Ring supernova remnant using the diffuse all-sky maps produced from the ALEXIS all-sky survey. The work is to produce ratio maps of the three energy bands provided by ALEXIS, analyze the ratio data to constrain the intervening neutral hydrogen column density and the temperature and elemental abundances of the X-ray emitting gas, compare the structure to that observed in the ROSAT maps, and incorporate the results into current supenova remnant evolution models. The work outlined above has been significantly delayed since the ALEXIS diffuse all-sky maps took longer to produce than anticipated. Unfortunately, the ALEXIS satellite suffered a failure of the Pegasus launch vehicle which left the satellite in a partially functioning condition. The attitude control system of the spacecraft was unable to operate as planned and this has greatly increased the complexity of the aspect solution. Our colleagues at Los Alamos have made progress in producing these maps and are nearing completion of the final maps. However, the quality of the data have been significantly compromised by the overall lower exposure due to the spacecraft problems and the higher background of the micro-channel plate detectors. We have compared the ALEXIS and ROSAT maps of this region of the sky and there is no obvious signal in the ALEXIS maps of the Monogem Ring. We are now exploring correlation techniques to determine if there is indeed a faint signal in the ALEXIS maps. Although, the project has been a disappointment so far, the data may still provide a valuable lower limit on the neutral hydrogen column density. This is a far cry from our original intentions, but would still be valuable science. Given the large delays in producing the ALEXIS sky maps, this work will continue past the end of the grant period.

  13. Supernova remnant W49B and its environment

    SciTech Connect

    Zhu, H.; Tian, W. W.; Zuo, P. E-mail: tww@bao.ac.cn

    2014-10-01

    We study gamma-ray supernova remnant (SNR) W49B and its environment using recent radio and infrared data. Spitzer Infrared Spectrograph low resolution data of W49B shows shocked excitation lines of H{sub 2} (0,0) S(0)-S(7) from the SNR-molecular cloud interaction. The H{sub 2} gas is composed of two components with temperatures of ∼260 K and ∼1060 K, respectively. Various spectral lines from atomic and ionic particles are detected toward W49B. We suggest that the ionic phase has an electron density of ∼500 cm{sup –3} and a temperature of ∼10{sup 4} K by the spectral line diagnoses. The mid- and far-infrared data from MSX, Spitzer, and Herschel reveal a 151 ± 20 K hot dust component with a mass of 7.5 ± 6.6 × 10{sup –4} M {sub ☉} and a 45 ± 4 K warm dust component with a mass of 6.4 ± 3.2 M {sub ☉}. The hot dust is likely from materials swept up by the shock of W49B. The warm dust may possibly originate from the evaporation of clouds interacting with W49B. We build the H I absorption spectra of W49B and four nearby H II regions (W49A, G42.90+0.58, G42.43-0.26, and G43.19-0.53) and study the relation between W49B and the surrounding molecular clouds by employing the 2.12 μm infrared and CO data. We therefore obtain a kinematic distance of ∼10 kpc for W49B and suggest that the remnant is likely associated with the CO cloud at about 40 km s{sup –1}.

  14. X-Ray Observations of the Supernova Remnant G21.5-0.9

    NASA Astrophysics Data System (ADS)

    Safi-Harb, S.; Harrus, I. M.; Petre, R.; Pavlov, G. G.; Koptsevich, A. B.; Sanwal, D.

    2001-11-01

    We present the analysis of archival X-ray observations of the supernova remnant (SNR) G21.5-0.9. Based on its morphology and spectral properties, G21.5-0.9 has been classified as a Crab-like SNR. For that reason, it was chosen as a Chandra calibration target. In their early analysis of part of these calibration data, Slane and coworkers discovered a low surface brightness, extended emission. They interpreted this component as the blast wave formed in the supernova explosion. XMM-Newton observations by Warwick and coworkers revealed the nonthermal nature of this emission, suggesting that it is instead an extension of the synchrotron nebula. In this paper, we revisit the Chandra analysis using new calibration data, improving the statistics by a factor of 2. We also include ROSAT and ASCA observations. Our analysis confirms the nonthermal nature of the extended emission. Advanced CCD Imaging Spectrometer images indicate that this component is not limb-brightened and that it shows knotty structures and a bright filament 2' north of the center. We find no evidence of line emission from any part of the remnant. We can reject a collisional equilibrium ionization thermal model at solar abundances and nonequilibrium ionization (NEI) models (such as a plane-parallel shock model with different ionization ages and constant temperature or an NEI model with a single ionization age and a constant temperature). The entire remnant is best fitted with a power-law model with a photon index steepening away from the center. The total unabsorbed flux FX(0.5-10 keV) is 1.110-10 ergs cm-2 s-1 with an 85% contribution from the 40" radius core. Timing analysis of the High-Resolution Camera data failed to detect any pulsations. We put a 16% upper limit on the pulsed fraction. We derive the physical parameters of the putative pulsar and compare them with those of other plerions (such as the Crab nebula and 3C 58).

  15. Multi-messenger Tests for Fast-spinning Newborn Pulsars Embedded in Stripped-envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Kashiyama, Kazumi; Murase, Kohta; Bartos, Imre; Kiuchi, Kenta; Margutti, Raffaella

    2016-02-01

    Fast-spinning strongly magnetized newborn neutron stars (NSs), including nascent magnetars, are popularly implemented as the engine of luminous stellar explosions. Here, we consider the scenario that they power various stripped-envelope (SE) supernovae (SNe), not only superluminous SNe Ic but also broad-line (BL) SNe Ibc and possibly some ordinary SNe Ibc. This scenario is also motivated by the hypothesis that Galactic magnetars largely originate from fast-spinning NSs as remnants of SE SNe. By consistently modeling the energy injection from magnetized wind and {}56{Ni} decay, we show that proto-NSs with ≳ 10 {ms} rotation and a poloidal magnetic field of {B}{{dip}}≳ 5× {10}14 {{G}} can be harbored in ordinary SNe Ibc. On the other hand, millisecond proto-NSs can solely power BL SNe Ibc if they are born with {B}{{dip}}≳ 5× {10}14 {{G}} and superluminous SNe Ic with {B}{{dip}}≳ {10}13 {{G}}. Then, we study how multi-messenger emission can be used to discriminate such pulsar-driven SN models from other competitive scenarios. First, high-energy X-ray and gamma-ray emission from embryonic pulsar wind nebulae can probe the underlying newborn pulsar. Follow-up observations of SE SNe using NuSTAR ∼ 50{--}100 {days} after the explosion are strongly encouraged for nearby objects. We also discuss possible effects of gravitational waves (GWs) on the spin-down of proto-NSs. If millisecond proto-NSs with {B}{{dip}}\\lt {{a}} {few}× {10}13 {{G}} emit GWs through, e.g., non-axisymmetric rotation deformed by the inner toroidal fields of {B}{{t}}≳ {10}16 {{G}}, the GW signal can be detectable from ordinary SNe Ibc in the Virgo cluster by Advanced LIGO, Advanced Virgo, and KAGRA.

  16. An Optical Survey of Supernova Remnants in M83

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Long, Knox S.

    2004-11-01

    Observations of the face-on spiral galaxy M83 (NGC 5236) performed at the Cerro Tololo Inter-American Observatory in Chile have yielded a catalog of optical supernova remnant (SNR) candidates. These observations were performed with the 4 m Blanco telescope and a prime focus CCD imaging system using narrowband interference filters centered on the light of [S II], Hα, [O III], and red and blue continuum bands. Based on strong relative [S II]:Hα emission, 71 emission nebulae have been identified as SNR candidates. Positions and Hα fluxes of the candidates are presented. Follow-up spectra of 25 of the SNR candidates, also performed at CTIO, have confirmed many of the SNR identifications, although the spectra of a few objects are discrepant, perhaps because of inaccurate aperture placement. In addition, the low mean excitation of M83 H II regions has allowed a separate search for young oxygen-dominated (core collapse) SNRs similar to Cas A in our Galaxy, using [O III]:Hα. This search found a number of the same objects as the [S II]:Hα search, indicating that many of these SNRs have shock velocities in excess of 100 km s-1. However, no bona fide young core-collapse SNRs were detected with this technique, with the possible exception of the independent recovery of SN 1957D, which had been seen previously. We have also attempted to identify optical counterparts for the six historical supernovae that have occurred in M83. Except for SN 1957D, none of the historical supernovae have been detected by this survey. We compare our SNR candidate list against the Chandra X-ray source list of Soria and Wu and identify 15 X-ray sources as likely SNRs, based on positional coincidence within 1". The sources identified have hardness ratios that are soft compared to the general X-ray source population in M83. Based on observations made with the Cerro Tololo Inter-American Observatory, La Serena, Chile.

  17. Radio and X-ray Observations of Five TeV Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Tian, W.; Leahy, D.

    2010-12-01

    We briefly summarize recent results of five TeV Supernova Remnants (SNRs) from radio and X-ray observations. We focus on re-measuring kinematic distances of 5 TeV SNRs, i.e. HESS J1731-347 (G353.6-0.7, 3.2 kpc), HESS J1834-087 (G23.3-0.3, W 41, 4.0 kpc), HESS J1833-105 (G21.5-0.9, 4.8 kpc), HESS J1846-029 (G29.7-0.3, Kes 75, 6.3 kpc), and TeV SNR G54.1+0.3 (6.5 kpc), and studying non-thermal X-ray emission from two old SNRs (G353.6-0.7 and W 41). These not only allow constraining the TeV SNRs basic physical properties, but also help reveal acceleration mechanisms of TeV ?-ray producing electrons which are either related with the SNRs or the pulsar wind nebulae.

  18. HST/ACS Narrowband Imaging of the Kepler Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Sankrit, Ravi; Blair, William P.; Frattare, Lisa M.; Rudnick, Lawrence; DeLaney, Tracey; Harrus, Ilana M.; Ennis, Jessica A.

    2007-01-01

    We present narrowband images of the Kepler supernova remnant obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The images, with an angular resolution of 0.05" reveal the structure of the emitting gas in unprecedented detail. Radiative and nonradiative shocks are found in close proximity, unresolvable in gromd-based spectra, indicating that the pre-shock medium is highly clumped. The ionization structure, traced by differences in the [0 111] to [N 11] flux ratio, varies on subarcsecond scales. The variation is due to 110th differences in shock velocity as well as gradients in the evolutionary stage of the shocks. A prollinent complex of knots protruding beyond the boundary of the rennallt in the northwest is found to consist of bright radiative knots, collected by arcuate nonradiative filaments. Based on the coincidence of the optical emission with a bright isolated knot of X-ray emission, we infer that this feature is due to a Rayleigh-Taylor finger that formed at the contact discontinuity and overtook the primary blast wave.

  19. Nonlinear particle acceleration at reverse shocks in supernova remnants

    NASA Astrophysics Data System (ADS)

    Ellison, D. C.; Decourchelle, A.; Ballet, J.

    2005-01-01

    Without amplification, magnetic fields in expanding ejecta of young supernova remnants (SNRs) will be orders of magnitude below those required to shock accelerate thermal electrons, or ions, to relativistic energies or to produce radio synchrotron emission at the reverse shock. The reported observations of such emission give support to the idea that diffusive shock acceleration (DSA) can amplify magnetic fields by large factors. Furthermore, the uncertain character of the amplification process leaves open the possibility that ejecta fields, while large enough to support radio emission and DSA, may be much lower than typical interstellar medium values. We show that DSA in such low reverse shock fields is extremely nonlinear and efficient in the production of cosmic-ray (CR) ions, although CRs greatly in excess of mc2 are not produced. These nonlinear effects, which occur at the forward shock as well, are manifested most importantly in shock compression ratios ? 4 and cause the interaction region between the forward and reverse shocks to become narrower, denser, and cooler than would be the case if efficient cosmic-ray production did not occur. The changes in the SNR structure and evolution should be clearly observable, if present, and they convey important information on the nature of DSA and magnetic field amplification with broad astrophysical implications.

  20. SLOW DIFFUSION OF COSMIC RAYS AROUND A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Takahara, Fumio

    2010-04-01

    We study the escape of cosmic-ray protons accelerated at a supernova remnant (SNR). We are interested in their propagation in the interstellar medium (ISM) after they leave the shock neighborhood where they are accelerated, but when they are still near the SNR with their energy density higher than that in the average ISM. Using Monte Carlo simulations, we found that the cosmic rays with energies of {approx}< TeV excite Alfven waves around the SNR on a scale of the SNR itself if the ISM is highly ionized. Thus, even if the cosmic rays can leave the shock, scattering by the waves prevents them from moving further away from the SNR. The cosmic rays form a slowly expanding cosmic-ray bubble, and they spend a long time around the SNR. This means that the cosmic rays cannot actually escape from the SNR until a fairly late stage of the SNR evolution. This is consistent with some results of Fermi and H.E.S.S. observations.

  1. Cosmic Ray Acceleration at Perpendicular Shocks in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Ferrand, Gilles; Danos, Rebecca J.; Shalchi, Andreas; Safi-Harb, Samar; Edmon, Paul; Mendygral, Peter

    2014-09-01

    Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coefficient, a key parameter that embodies the interactions of energetic charged particles with magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper, we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power law in momentum for low momenta (of index ?), but becomes independent of the particle momentum at high momenta (reaching a constant value ?? above some characteristic momentum p c). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that for a given index ? and injection level, the shock modifications are similar for different possible values of p c, whereas the particle spectra differ markedly. Of particular interest, low values of p c tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.

  2. WHAM Observations of High-latitude Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Orchard, Alexander; Haffner, L. Matthew; Benjamin, Robert A.; Gostisha, Martin

    2016-01-01

    The Wisconsin H-Alpha Mapper Sky Survey (WHAM-SS) traces numerous large-angle, diffuse regions containing filamentary and shell-like structures. The largest of these are complex supershells that harbor recent and on-going star formation, such as the Orion-Eridanus complex, the Gum Nebula, and the extended emission above and below the W3/W4/W5 star-forming regions in the Perseus Arm. Several large-diameter regions with simpler morphologies are also present, which we focus on here. While some of these structures are diffuse H II regions powered by nearby, isolated stars, others are clearly supernova remnants (SNRs) due to their association with X-ray or non-thermal radio emission. We highlight the structure, kinematics, and multi-wavelength properties of several SNRs using Hα maps from the WHAM-SS and data from on-going WHAM multi-wavelength surveys. WHAM research and operations are supported through NSF Award AST-1108911.

  3. The likely Fermi detection of the supernova remnant RCW 103

    SciTech Connect

    Xing, Yi; Wang, Zhongxiang; Zhang, Xiao; Chen, Yang

    2014-02-01

    We report on the results from our γ-ray analysis of the supernova remnant (SNR) RCW 103 region. The data were taken with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. An extended source is found at a position consistent with that of RCW 103 and its emission was only detected above 1 GeV (10σ significance), with a power-law spectrum with a photon index of 2.0 ± 0.1. We obtain its 1-300 GeV spectrum and the total flux gives a luminosity of 8.3 × 10{sup 33} erg s{sup –1} at a source distance of 3.3 kpc. Given the positional coincidence and property similarities of this source with other SNRs, we identify it as the likely Fermi γ-ray counterpart to RCW 103. Including radio measurements of RCW 103, the spectral energy distribution (SED) is modeled by considering emission mechanisms based on both hadronic and leptonic scenarios. We find that models in the two scenarios can reproduce the observed SED, while in the hadronic scenario the existence of SNR-molecular cloud interactions is suggested as a high density of the target protons is required.

  4. Cosmic ray acceleration at perpendicular shocks in supernova remnants

    SciTech Connect

    Ferrand, Gilles; Danos, Rebecca J.; Shalchi, Andreas; Safi-Harb, Samar; Edmon, Paul; Mendygral, Peter

    2014-09-10

    Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coefficient, a key parameter that embodies the interactions of energetic charged particles with magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper, we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power law in momentum for low momenta (of index α), but becomes independent of the particle momentum at high momenta (reaching a constant value κ{sub ∞} above some characteristic momentum p {sub c}). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that for a given index α and injection level, the shock modifications are similar for different possible values of p {sub c}, whereas the particle spectra differ markedly. Of particular interest, low values of p {sub c} tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.

  5. XMM-Newton observation of the Galactic supernova remnant W51C (G49.1-0.1)

    NASA Astrophysics Data System (ADS)

    Sasaki, Manami; Heinitz, Cornelia; Warth, Gabriele; Pühlhofer, Gerd

    2014-03-01

    Context. The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Aims: Diffuse X-ray emission from the interior of the SNR can reveal element abundances in the different emission regions and shed light on the type of supernova (SN) explosion and its progenitor. The hard X-ray emission helps to identify possible candidates for a pulsar formed in the SN explosion and for its pulsar wind nebula (PWN). Methods: We have analysed X-ray data obtained with XMM-Newton. Spectral analyses in selected regions were performed. Results: Ejecta emission in the bright western part of the SNR, located next to a complex of dense molecular gas, was confirmed. The Ne and Mg abundances suggest a massive progenitor with a mass of >20 M⊙. Two extended regions emitting hard X-rays were identified (corresponding to the known sources [KLS2002] HX3 west and CXO J192318.5+140305 discovered with ASCA and Chandra, respectively), each of which has an additional point source inside and shows a power-law spectrum with Γ ≈ 1.8. Based on their X-ray emission, both sources can be classified as PWN candidates. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  6. Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Yi, Insu; Hflich, Peter; Wang, Lifan

    2000-07-01

    We outline the possible physical processes, associated timescales, and energetics that could lead to the production of pulsars, jets, asymmetric supernovae, and weak ?-ray bursts in routine circumstances and to a 1016 G magnetar and perhaps stronger ?-ray burst in more extreme circumstances in the collapse of the bare core of a massive star. The production of a LeBlanc-Wilson MHD jet could provide an asymmetric supernova and result in a weak ?-ray burst when the jet accelerates down the stellar density gradient of a hydrogen-poor photosphere. The matter-dominated jet would be formed promptly but requires 5-10 s to reach the surface of the progenitor of a Type Ib/c supernova. During this time, the newly born neutron star could contract, spin up, and wind up field lines or turn on an ?-? dynamo. In addition, the light cylinder will contract from a radius large compared to the Alfvn radius to a size comparable to that of the neutron star. This will disrupt the structure of any organized dipole field and promote the generation of ultrarelativistic MHD waves (UMHDW) at high density and large-amplitude electromagnetic waves (LAEMW) at low density. The generation of these waves would be delayed by the cooling time of the neutron star ~=5-10 s, but the propagation time is short so the UMHDW could arrive at the surface at about the same time as the matter jet. In the density gradient of the star and the matter jet, the intense flux of UMHDW and LAEMW could drive shocks, generate pions by proton-proton collision, or create electron/positron pairs depending on the circumstances. The UMHDW and LAEMW could influence the dynamics of the explosion and might also tend to flow out the rotation axis to produce a collimated ?-ray burst.

  7. SUPERNOVA REMNANT KES 17: AN EFFICIENT COSMIC RAY ACCELERATOR INSIDE A MOLECULAR CLOUD

    SciTech Connect

    Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara E-mail: cara.rakowski@gmail.com

    2013-11-10

    The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.

  8. A DETAILED X-RAY INVESTIGATION OF PSR J2021+4026 AND THE γ-CYGNI SUPERNOVA REMNANT

    SciTech Connect

    Hui, C. Y.; Seo, K. A.; Lin, L. C. C.; Huang, R. H. H.; Wu, J. H. K.; Kong, A. K. H.; Hu, C. P.; Chou, Y.; Trepl, L.; Takata, J.; Wang, Y.; Cheng, K. S.

    2015-01-20

    We have investigated the field around the radio-quiet γ-ray pulsar, PSR J2021+4026, with a ∼140 ks XMM-Newton observation and ∼56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature, which suggests that the pulsation originated from a hot polar cap with T ∼ 3 × 10{sup 6} K on the surface of a rotating neutron star. On the other hand, the power-law (PL) component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of a bow-shock nebula that extends from the pulsar to the west by ∼10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward, which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newton observation also enables a study of the central region and part of the southeastern region with superior photon statistics. The column absorption derived for the SNR is comparable to that for PSR J2021+4026, which supports their association. The remnant emission in both of the examined regions is in a non-equilibrium ionization state. Also, the elapsed time of both regions after shock-heating is apparently shorter than the Sedov age of G78.2+2.1. This might suggest that the reverse shock has reached the center not long ago. Apart from PSR J2021+4026 and G78.2+2.1, we have also serendipitously detected an X-ray flash-like event, XMM J202154.7+402855, from this XMM-Newton observation.

  9. Toward an Empirical Theory of Pulsar Emission. XI. Understanding the Orientations of Pulsar Radiation and Supernova “Kicks”

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.

    2015-05-01

    Two entwined problems have remained unresolved since pulsars were discovered nearly 50 yr ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova “kicks” relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (“fiducial”) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is ∥ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both ∥ or ⊥ alignments. In this paper we analyze some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions (PMs). The “fiducial” polarization angle of the core emission, we then find, is usually oriented ⊥ to the PM direction on the sky. The primary core emission is polarized ⊥ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation. This shows that the PMs usually lie ∥ to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova “kicks” are responsible for pulsar PMs, they are mostly ∥ to the rotation axis; and, second, most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude “parent” core emission is polarized ⊥ to the emitting field, propagating as the extraordinary (X) mode.

  10. STAR FORMATION ASSOCIATED WITH THE SUPERNOVA REMNANT IC443

    SciTech Connect

    Xu Jinlong; Wang Junjie; Miller, Martin

    2011-02-01

    We have performed submillimeter and millimeter observations in CO lines toward supernova remnant (SNR) IC443. The CO molecular shell coincides well with the partial shell of the SNR detected in radio continuum observations. Broad emission lines and three 1720 MHz OH masers were detected in the CO molecular shell. The present observations have provided further evidence in support of the interaction between the SNR and the adjoining molecular clouds (MCs). The total mass of the MCs is 9.26 x 10{sup 3} M{sub sun}. The integrated CO line intensity ratio (R{sub I{sub CO(3-2)}/I{sub CO(2-1)}}) for the whole MC is between 0.79 and 3.40. The average value is 1.58, which is much higher than previous measurements of individual Galactic MCs. Higher line ratios imply that shocks have driven into the MCs. We conclude that high R{sub I{sub CO(3-2)}/I{sub CO(2-1)}} is identified as a good signature of the SNR-MC interacting system. Based on the IRAS Point Source Catalog and the Two Micron All Sky Survey near-infrared database, 12 protostellar object and 1666 young stellar object (YSO) candidates (including 154 classical T Tauri stars and 419 Herbig Ae/Be stars) are selected. In the interacting regions, the significant enhancement of the number of protostellar objects and YSOs indicates the presence of some recently formed stars. After comparing the characteristic timescales of star formation with the age of IC443, we conclude that the protostellar objects and YSO candidates are not triggered by IC443. For the age of the stellar winds shell, we have performed our calculation on the basis of a stellar wind shell expansion model. The results and analysis suggest that the formation of these stars may be triggered by the stellar winds of the IC443 progenitor.

  11. Interstellar and ejecta dust in the cas a supernova remnant

    SciTech Connect

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jeonghee; Hwang, Una

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  12. Escape of cosmic-ray electrons from supernova remnants

    NASA Astrophysics Data System (ADS)

    Ohira, Yutaka; Yamazaki, Ryo; Kawanaka, Norita; Ioka, Kunihito

    2012-11-01

    We investigate the escape of cosmic ray (CR) electrons from a supernova remnant (SNR) to interstellar space. We show that CR electrons escape in order, from high energies to low energies, like CR nuclei. However, the escape starts later than the beginning of the Sedov phase at an SNR age of 103 to 7 103 yr, and the maximum energy of runaway CR electrons is below the knee at about 0.3-50 TeV because, unlike CR nuclei, CR electrons lose their energy as a result of synchrotron radiation. The highest-energy CR electrons might have already been detected by the High Energy Stereoscopic System (HESS) and MAGIC as a cut-off in the CR electron spectrum, and it will be probed by the Alpha Magnetic Spectrometer (AMS-02), the Calorimeteric Electron Telescope (CALET), the Cherenkov Telescope Array (CTA) and the Large High Altitude Air Shower Observatory (LHAASO) experiments. We also calculate the spatial distribution of runaway CR electrons and their radiation spectra around SNRs. Contrary to common belief, maximum-energy photons of synchrotron radiation around 1 keV are emitted by runaway CR electrons, which have been caught up by the shock. Inverse Compton scattering by runaway CR electrons can dominate the gamma-ray emission from runaway CR nuclei via pion decay. Both are detectable by CTA and LHAASO and they can give clues to the origin of CRs and the amplification of magnetic fluctuations around the SNR. We also discuss middle-aged and/or old SNRs as unidentified very-high-energy gamma-ray sources.

  13. G11.2–0.3: The Young Remnant of a Stripped-envelope Supernova

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Roberts, Mallory S. E.

    2016-03-01

    We present results of a 400 ks Chandra observation of the young shell supernova remnant (SNR) G11.2‑0.3, containing a pulsar and pulsar-wind nebula (PWN). We measure a mean expansion rate for the shell since 2000 of 0.0277 ± 0.0018% yr‑1, implying an age between 1400 and 2400 yr, and making G11.2‑0.3 one of the youngest core-collapse SNRs in the Galaxy. However, we find very high absorption (AV ∼ 16m ± 2m), confirming near-IR determinations and ruling out a claimed association with the possible historical SN of 386 CE. The PWN shows strong jets and a faint torus within a larger, more diffuse region of radio emission and nonthermal X-rays. Central soft thermal X-ray emission is anticorrelated with the PWN; that, and more detailed morphological evidence, indicates that the reverse shock has already reheated all ejecta and compressed the PWN. The pulsar characteristic energy-loss timescale is well in excess of the remnant age, and we suggest that the bright jets have been produced since the recompression. The relatively pronounced shell and diffuse hard X-ray emission in the interior, enhanced at the inner edge of the shell, indicate that the immediate circumstellar medium into which G11.2‑0.3 is expanding was quite anisotropic. We propose a possible origin for G11.2‑0.3 in a stripped-envelope progenitor that had lost almost all its envelope mass, in an anisotropic wind or due to binary interaction, leaving a compact core whose fast winds swept previously lost mass into a dense irregular shell, and which exploded as a SN cIIb or Ibc.

  14. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  15. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field

    SciTech Connect

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2006-08-01

    The evidence for particle acceleration in supernova shells comes from electrons whose synchrotron emission is observed in radio and X-rays. Recent observations by the HESS instrument reveal that supernova remnants also emit TeV {gamma}-rays; long awaited experimental evidence that supernova remnants can accelerate cosmic rays up to the ''knee'' energies. Still, uncertainty exists whether these {gamma}-rays are produced by electrons via inverse Compton scattering or by protons via {pi}{sup 0}-decay. The multi-wavelength spectra of supernova remnants can be fitted with both mechanisms, although a preference is often given to {pi}{sup 0}-decay due to the spectral shape at very high energies. A recent study of the interstellar radiation field indicates that its energy density, especially in the inner Galaxy, is higher than previously thought. In this paper we evaluate the effect of the interstellar radiation field on the inverse Compton emission of electrons accelerated in a supernova remnant located at different distances from the Galactic Centre. We show that contribution of optical and infra-red photons to the inverse Compton emission may exceed the contribution of cosmic microwave background and in some cases broaden the resulted {gamma}-ray spectrum. Additionally, we show that if a supernova remnant is located close to the Galactic Centre its {gamma}-ray spectrum will exhibit a ''universal'' cutoff at very high energies due to the Klein-Nishina effect and not due to the cut-off of the electron spectrum. As an example, we apply our calculations to the supernova remnants RX J1713.7-3946 and G0.9+0.1 recently observed by HESS.

  16. ROSAT observations of the supernova remnant 3C 400.2

    NASA Technical Reports Server (NTRS)

    Saken, Jon M.; Long, K. S.; Blair, W. P.; Winkler, P. F.

    1995-01-01

    We have used the ROSAT point source proportional counter (PSPC) to examine the X-ray emission from 3C 400.2, a supernova remnant (SNR) which is a member of a class of remnants with limb-brightened radio and centrally condensed X-ray morphologies. The X-ray emission fills the radio shell and is characterized by an interior peak in the northwest region of the remnant. Otherwise, the surface brightness has a relatively smooth distribution. The X-ray peak is not correlated with any radio features or with the observed optical filaments. The PSPC X-ray spectrum is not well fitted by a power-law model but can be described in terms of thermal emission from a hot plasma with solar abundances. The only point source along the line of sight to the SNR is associated with a bright foreground F8 star. Thus the X-ray emission from 3C 400.2 is unlikely to be due to synchrotron radiation from an active pulsar. If the emission arises from a thermal plasma and the absorbing column along the line of sight to 3C 400.2 is 7.8 x 10(exp 21)sq cm, then the temperature of the plasma is 0.27 keV, and the 0.4-2.4 keV X-ray luminosity is 1.3 x 10(exp 36) ergs/s for an assumed distance of 6 kpc. An X-ray hardness ratio map shows a slight increase in the hardness of the emission in the regions of the remnant with a higher X-ray surface brightness. Assuming uniform absorption across the remnant, this increase implies the temperature is approximately 1.5 times greater in the high surface brightness regions of SNR. The relatively uniform spectrum and the anticorrelation between X-ray and radio features seems to rule out the possibility that 3C 400.2 is actually two overlapping or interacting SNRs. The morphology of 3C 400.2 can be explained in terms of a multiphase interstellar medium (ISM) in which the primary shock is expanding into an ISM studded with dense cloudlets, if the clouds are evaporated or disrupted on a timescale which is long compared to the age of the SNR. It may also be possible to explain the emission in terms of the interaction of the SNR with a massive wind-driven shell, although the existing models for the evolution of A SNR in this environment suggest that the H-alpha luminosity should be much larger than the X-ray luminosity, which is not observed. We cannot completely rule out the possibility that 3C 400.2's appearance as a centrally peaked X-ray SNR is the result of an interaction between the remnant and a cloud along the line of sight, although this seems unlikely.

  17. N157B: X-ray evidence for a Crab-like supernova remnant

    NASA Technical Reports Server (NTRS)

    Gotthelf, Eric V.; Wang, Q. Daniel

    1996-01-01

    The X-ray observation of the supernova remnant N 157B is described. The Rosat High Resolution Imager (HRI) X-ray emission from the remnant was decomposed into point-like sources. The spectra showed abundance-enhanced neon and magnesium lines, indicating that the remnant originated in a massive progenitor. The flat and featureless data from the Advanced Satellite for Cosmology and Astrophysics (ASCA) confirm the Crab-like nature of the remnant. By interpreting both the thermal spectral component and the shell as representing the remnant's outer shock, the age of the remnant was estimated to be 4 x 10(exp 3) yr and the energy release approximately 2 x 10(exp 50) erg.

  18. Transition to the radiative phase in supernova remnant evolution

    NASA Astrophysics Data System (ADS)

    Wright, Eric Boyd

    1999-11-01

    The evolution of a supernova remnant (SNR) through the transition from an adiabatic Sedov-Taylor blastwave to a radiative pressure-driven snowplow phase is studied through a series of one-, two- and three-dimensional hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations. This transition is marked by a catastrophic collapse of the postshock gas, forming a thin, dense shell behind the forward shock. Previous studies have shown that the thin, dense shell of gas present during this transition is susceptible to both radiative and dynamical instabilities. One-dimensional HD studies indicate the presence of a radial oscillation between the forward shock and the thin shell, due to the rapid cooling of the gas in the immediate postshock region. Two-dynamical HD simulations of this transition indicate the presence of violent dynamical instabilities that alter the initially spherical morphology of the blastwave, specifically, the Pressure-driven Thin Shell Overstability (PDTSO) and the Non-linear Thin Shell Instability (NTSI). Hydrodynamical simulations, by their very nature, ignore the effects of magnetic forces on moving fluids. In general, interstellar magnetic fields will be weak enough that their effects may be safely ignored. However, the transition to the radiative phase in SNR evolution is often triggered when the blastwave interacts with dense clouds of gas in the interstellar medium (ISM). The resulting compression of the gas during the transition also compresses the magnetic fields in the cloud, possibly enhancing the field sufficiently to play a role in the further evolution of the SNR. To better understand the role of the NTSI during the transition, and to study the effects of magnetic fields on the instability itself, we performed idealized two- and three-dimensional MHD simulations. The results of the two-dimensional simulations were found to depend strongly on the orientation of the ambient magnetic field when the postshock field is dynamically significant. To accurately model the evolution of the NTSI, only three-dimensional simulations will suffice. However, the three-dimensional simulations performed were unable to run long enough to detect characteristic exponential growth of the NTSI, but initial studies indicate the presence of the instability.

  19. High-Velocity H I Gas in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul

    1993-05-01

    Using the Hat Creek 85 foot telescope, we had carried out a survey of H I 21 cm emission lines toward all 103 known northern supernova remnants (SNRs) in order to find rapidly expanding SNR shells (Koo & Heiles 1991). We detected 15 SNRs that have associated high-velocity (HV) H I gas, most of which are quite likely the gas accelerated by the SN blast wave. Although the large beam-size (FWHM~ 30') of the 85 foot telescope prevented us to see the structure of the HV H I gas, the H I mass distribution in line-of-sight velocity suggested clumpy shell structures in several SNRs. In order to resolve the structure of the HV H I gas, we have been carrying out high-resolution H I 21 cm line observations using the Arecibo telescope and the VLA. We report preliminary results on two SNRs, CTB 80 and W51. In CTB 80, the VLA observations revealed fast moving H I clumps, which have a dense (n_H ~ 100 cm(-3) ) core surrounded by a relatively diffuse envelope. The clumps are small, 3 pc to 5 pc, and have velocities between +40 km s(-1) and +80 km s(-1) with respect to the systematic velocity of CTB 80. The clumps have relatively large momentum per unit volume, which implies that they have been swept-up at an early stage of the SNR evolution. By analyzing the Arecibo data, we found that the interstellar medium around CTB 80 is far from being uniform and homogeneous, which explains the peculiar morphology of CTB 80 in infrared and radio continuum. In W51, HV H I gas moving up to v_LSR>+150 km s(-1) has been detected. The H I distribution is elongated along the northwest-southeast direction, and the peak is very close to an X-ray bright region. We discuss the implications of our results in relation to the X-ray and the radio continuum morphology of W51. This work was supported in part by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1992.

  20. The laboratory simulation of unmagnetized supernova remnants Absence of a blast wave

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Pongratz, M. B.; Roussel-Dupre, R. A.; Tan, T.-H.

    1984-01-01

    Supernova remnants are experimentally simulated by irradiating spherical targets with eight-beam carbon dioxide laser in a chamber containing finite amounts of neutral gas, the gas being ionized by radiation from the hot target. The expansion velocities of the target plasmas are approximately the same as the expansion velocities of supernova ejecta and the experiment is successfully scaled to the case of a supernova remnant in an unmagnetized, low-density, interstellar medium. No sweep-up of the ambient plasma is detected, indicating that no hydrodynamic shock wave is formed to couple the target ejecta to the ambient gas. The experiment implies that if supernova ejecta couple to the interstellar medium, magnetic-field effects may be crucial to the physical description.

  1. Hidden supernova remnants in the Large Magellanic Cloud H II complex N44

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Low, Mordecai-Mark M.; Garcia-Segura, Gullermo; Wakker, Bart; Kennicutt, Robert C., Jr.

    1993-01-01

    We have obtained ROSAT PSPC observations of N44, one of the largest H II complexes in the Large Magellanic Cloud. The X-ray emission mostly fails within the ionized shell structures in N44. We find that one faint shell is a classical supernova remnant overlooked by previous surveys. If we model the two largest shells as pressure-driven superbubbles, the predicted X-ray luminosity falls far below the observed value. Instead, we show that off-center supernova remnants hitting superbubble shells can explain the excess X-ray emission.

  2. Surprisingly high-pressure shocks in the supernova remnant IC 443

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1991-01-01

    The intensities of several lines of molecular hydrogen have been measured from two regions of the supernova-remnant/molecular-cloud shock in IC 443. The lines measured have upper-state energies ranging from 7000 K to 23,000 K. Their relative intensities differ in the two regions, but are consistent with those predicted from the post-shock regions of simple jump-type shocks of different pressure. The pressures so derived are far higher than the pressure in the supernova remnant itself, and a possible reason for this discrepancy is discussed.

  3. A central compact object in the center of a new supernova remnant shell?

    NASA Astrophysics Data System (ADS)

    Klochkov, Dmitry

    2010-10-01

    We propose timing observations of the point-like central X-ray source discovered in the center of a newly identified supernova remnant shell HESS J1731-347 / G353.6-0.7. The source most likely belongs to a yet very small class of so-called Central Compact Objects (CCOs) - presumably young thermally emitting low-magnetized neutron stars born in supernova explosions which produced the remnants. Since only a handful of CCOs are currently known any addition to this class is highly valuable. With the proposed observation we like to search for expected but not yet identified pulsations of this putative neutron star.

  4. OBSERVATION OF SUPERNOVA REMNANT IC 443 WITH THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Bruel, P.

    2010-03-20

    We report observation of the supernova remnant (SNR) IC 443 (G189.1+3.0) with the Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) in the energy band between 200 MeV and 50 GeV. IC 443 is a shell-type SNR with mixed morphology located off the outer Galactic plane where high-energy emission has been detected in the X-ray, GeV and TeV gamma-ray bands. Past observations suggest IC 443 has been interacting with surrounding interstellar matter. Proximity between dense shocked molecular clouds and GeV-TeV gamma-ray emission regions detected by EGRET, MAGIC, and VERITAS suggests an interpretation that cosmic-ray (CR) particles are accelerated by the SNR. With the high gamma-ray statistics and broad energy coverage provided by the LAT, we accurately characterize the gamma-ray emission produced by the CRs accelerated at IC 443. The emission region is extended in the energy band with theta{sub 68} = 0.{sup 0}27 +- 0.{sup 0}01(stat) +- 0.{sup 0}03(sys) for an assumed two-dimensional Gaussian profile and overlaps almost completely with the extended source region of VERITAS. Its centroid is displaced significantly from the known pulsar wind nebula (PWN) which suggests the PWN is not the major contributor in the present energy band. The observed spectrum changes its power-law slope continuously and continues smoothly to the MAGIC and VERITAS data points. The combined gamma-ray spectrum (200 MeV

  5. Two X-ray supernova remnants - G296.1 - 0.7 and 1E 1149.4 - 6209

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Lamb, R. C.; Hartman, R. C.; Thompson, D. J.; Bignami, G. F.

    1981-01-01

    Using the imaging X-ray detectors on the Einstein Observatory, what appear to be two overlapping galactic supernova remnants are discovered, one of which is clearly identified with the previously cataloged radio remnant G296.1-0.7. The other feature has no radio or optical counterpart. It is a nearly complete ring with a diameter of 20-25 arcmin, designated 1E 1149.4-6209. Because of its morphology, because there is evidence for supernova events in the vicinity, and because there seems to be no plausible alternative, 1E 1149.4-6209 is classified as a supernova remnant. This remnant and others like it, which may be found first in X-rays rather than radio or optical waves, may have important implications regarding the evolution of supernova remnants and the rate of supernovae in our Galaxy.

  6. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  7. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-07-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of ~1900, and most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities gsim18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs; Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K? emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities >18,000 km s-1 were ejected by this SN. However, in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent three-dimensional delayed-detonation Type Ia models.

  8. SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert

    2013-07-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of {approx}1900, and most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities {approx}>18,000 km s{sup -1} have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs; Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K{alpha} emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including {sup 56}Ni) with velocities >18,000 km s{sup -1} were ejected by this SN. However, in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent three-dimensional delayed-detonation Type Ia models.

  9. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    SciTech Connect

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  10. A Study of Supernova Remnants with Center-Filled X-Ray Morphology

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    2001-01-01

    The proposed study entails use of archival data, primarily from past and active X-ray observatories, to study the properties of a class of supernova remnants (SNRs) which display a centrally-bright X-ray morphology. Several models which have been proposed to explain the morphology are being investigated for comparisons with measured characteristics of several remnants: nonthermal emission from a central synchrotron nebula; thermal emission enhanced by slow evaporation of cool clouds in the hot SNR interior; and relic thermal emission from the SNR interior after the remnant has entered the radiative phase of evolution, thus causing the shell emission to cease.

  11. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy

    SciTech Connect

    Blasi, Pasquale; Amato, Elena E-mail: amato@arcetri.astro.it

    2012-01-01

    In this paper we investigate the effects of stochasticity in the spatial and temporal distribution of supernova remnants on the anisotropy of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. The propagation and spallation of nuclei (with charge 1 ? Z ? 26) are taken into account. At high energies (E > 1 TeV) we assume that D(E)?(E/Z){sup ?}, with ? = 1/3 and ? = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars with and without accounting for the spiral structure of the Galaxy. Our calculations allow us to determine the contribution to anisotropy resulting from both the large scale distribution of SNRs in the Galaxy and the random distribution of the nearest remnants. The naive expectation that the anisotropy amplitude scales as ?{sub A}?D(E) is shown to be a wild oversimplification of reality which does not reflect in the predicted anisotropy for any realistic distribution of the sources. The fluctuations in the anisotropy pattern are dominated by nearby sources, so that predicting or explaining the observed anisotropy amplitude and phase becomes close to impossible. Nevertheless, the results of our calculations, when compared to the data, allow us to draw interesting conclusions in terms of the propagation scenario to be preferred both in terms of the energy dependence of the diffusion coefficient and of the size of the halo. We find that the very weak energy dependence of the anisotropy amplitude below 10{sup 5} GeV, as observed by numerous experiments, as well as the rise at higher energies, can best be explained if the diffusion coefficient is D(E)?E{sup 1/3}. Faster diffusion, for instance with ? = 0.6, leads in general to an exceedingly large anisotropy amplitude. The spiral structure introduces interesting trends in the energy dependence of the anisotropy pattern, which qualitatively reflect the trend seen in the data. The inhomogeneous spatial distribution of the sources in the Galactic disc induces a large scale anisotropy which is not sensitive to the stochastic nature of nearby SNRs: we find that this additional contribution to ?{sub A} becomes more important for large values of the size of the halo, H. The two terms are comparable in size for H ? 2 kpc which corresponds to the scale height of the gradient of the spatial distribution of SNRs in the Galaxy. The dependence on energy of ?{sub A}(E) is close to monotonic when the large-scale, regular term dominates, and does not seem to reflect the observed anisotropy amplitude. Both contributions to the total anisotropy are illustrated and discussed with the help of semi-analytical results.

  12. RADIO DETECTION OF A CANDIDATE NEUTRON STAR ASSOCIATED WITH GALACTIC CENTER SUPERNOVA REMNANT SAGITTARIUS A EAST

    SciTech Connect

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M. E-mail: morris@astro.ucla.edu

    2013-11-10

    We report the Very Large Array (VLA) detection of the radio counterpart of the X-ray object referred to as the 'Cannonball', which has been proposed to be the remnant neutron star resulting from the creation of the Galactic center supernova remnant, Sagittarius A East. The radio object was detected both in our new VLA image from observations in 2012 at 5.5 GHz and in archival VLA images from observations in 1987 at 4.75 GHz and in the period from 1990 to 2002 at 8.31 GHz. The radio morphology of this object is characterized as a compact, partially resolved point source located at the northern tip of a radio 'tongue' similar to the X-ray structure observed by Chandra. Behind the Cannonball, a radio counterpart to the X-ray plume is observed. This object consists of a broad radio plume with a size of 30''×15'', followed by a linear tail having a length of 30''. The compact head and broad plume sources appear to have relatively flat spectra (∝ν{sup α}) with mean values of α = –0.44 ± 0.08 and –0.10 ± 0.02, respectively, and the linear tail shows a steep spectrum with the mean value of –1.94 ± 0.05. The total radio luminosity integrated from these components is ∼8 × 10{sup 33} erg s{sup –1}, while the emission from the head and tongue amounts for only ∼1.5 × 10{sup 31} erg s{sup –1}. Based on the images obtained from the two epochs' observations at 5 GHz, we infer the proper motion of the object: μ{sub α} = 0.001 ± 0.003 arcsec yr{sup –1} and μ{sub δ} = 0.013 ± 0.003 arcsec yr{sup –1}. With an implied velocity of 500 km s{sup –1}, a plausible model can be constructed in which a runaway neutron star surrounded by a pulsar wind nebula was created in the event that produced Sgr A East. The inferred age of this object, assuming that its origin coincides with the center of Sgr A East, is approximately 9000 yr.

  13. High angular resolution study of the J1400-6325 pulsar wind nebula and its host remnant G310.6-1.6 with the ATCA

    NASA Astrophysics Data System (ADS)

    Kirichenko, Aida; Voronkov, Maxim; Shibanov, Yuri; Danilenko, Andrey; Zyuzin, Dima

    2014-10-01

    The very young (<10^3 years) Crab-like pulsar J1400-6325 was only recently discovered in the radio and X-rays. It powers a bright pulsar wind nebula (PWN) and it is associated with a previously unknown supernova remnant (SNR) G310.6-1.6. In X-rays, the remnant has a circular outer shell, while the PWN, like the Crab, contains a torus and a jet. Unlike other powerful Crab-like PWN/SNR systems, this remarkable object located at 7 kpc remains unresolved in the radio. We therefore propose an ATCA observation of this system to analyse the PWN fine structure and spectrum and compare them with the X-ray data. The requested ATCA observation would also allow to reveal the fundamental spectral break which is likely present in the PWN spectrum and typical of other PWNe with similar properties. This will contribute significantly to our understanding of the particle acceleration mechanisms working at various parts of such systems.

  14. Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    NASA Astrophysics Data System (ADS)

    Gabici, Stefano; Krause, Julian; Morlino, Giovanni; Nava, Lara

    2015-12-01

    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.

  15. VizieR Online Data Catalog: MOST supernova remnant catalogue (MSC) (Whiteoak+ 1996)

    NASA Astrophysics Data System (ADS)

    Whiteoak, J. B. Z.; Green, A. J.

    1999-02-01

    A catalogue of supernova remnants in the southern Galaxy within the area 245°<=l<=355°, |b|<~1.5° has been produced from observations made at 0.843GHz with a resolution of 43" using the Molonglo Observatory Synthesis Telescope (MOST). (2 data files).

  16. Fermi-LAT and WMAP observations of the supernova remnant Puppis A

    NASA Astrophysics Data System (ADS)

    Grondin, Marie-Hlne; Hewitt, John W.; Lemoine-Goumard, Marianne; Reposeur, Thierry; Reposeur

    2014-01-01

    The supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in ?-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The ?-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its ?-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and ?-ray domains are described in detail, as well as the possible origins of the high energy ?-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).

  17. DISCRIMINATING THE PROGENITOR TYPE OF SUPERNOVA REMNANTS WITH IRON K-SHELL EMISSION

    SciTech Connect

    Yamaguchi, Hiroya; Petre, Robert; Enoto, Teruaki; Badenes, Carles; Nakano, Toshio; Hiraga, Junko S.; Castro, Daniel; Hughes, John P.; Maeda, Yoshitomo; Nobukawa, Masayoshi; Uchida, Hiroyuki; Safi-Harb, Samar; Slane, Patrick O.; Smith, Randall K.

    2014-04-20

    Supernova remnants (SNRs) retain crucial information about both their parent explosion and circumstellar material left behind by their progenitor. However, the complexity of the interaction between supernova ejecta and ambient medium often blurs this information, and it is not uncommon for the basic progenitor type (Ia or core-collapse) of well-studied remnants to remain uncertain. Here we present a powerful new observational diagnostic to discriminate between progenitor types and constrain the ambient medium density of SNRs using solely Fe K-shell X-ray emission. We analyze all extant Suzaku observations of SNRs and detect Fe Kα emission from 23 young or middle-aged remnants, including five first detections (IC 443, G292.0+1.8, G337.2-0.7, N49, and N63A). The Fe Kα centroids clearly separate progenitor types, with the Fe-rich ejecta in Type Ia remnants being significantly less ionized than in core-collapse SNRs. Within each progenitor group, the Fe Kα luminosity and centroid are well correlated, with more luminous objects having more highly ionized Fe. Our results indicate that there is a strong connection between explosion type and ambient medium density, and suggest that Type Ia supernova progenitors do not substantially modify their surroundings at radii of up to several parsecs. We also detect a K-shell radiative recombination continuum of Fe in W49B and IC 443, implying a strong circumstellar interaction in the early evolutionary phases of these core-collapse remnants.

  18. 3D Simulations of the Emission from Young Supernova Remnants Including Efficient Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Ferrand, Gilles; Safi-Harb, Samar; Decourchelle, Anne

    2015-08-01

    Within our Galaxy, supernova remnants (SNRs) are believed to be the major sources of cosmic rays up to the “knee” (~1 PeV). The detection of non-thermal radiation from these objects, in X-rays over the past two decades, and finally in gamma-rays over the past decade, has proved the presence of energetic particles. However important questions remain regarding the share of the hadronic and leptonic components as well as the fraction of the supernova energy channelled into these components. We will show how such questions can be addressed by means of 3D numerical simulations of SNRs that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations of SNRs allows us to produce synthetic projected maps and spectra, that can be compared with observations (in X-rays for the thermal emission and multi-wavelength for the non-thermal emission). In particular, we will show how the presence of energetic protons can be inferred from the broadband emission of the remnant. We will contrast the properties of the remnants from the two different kinds of supernovae: thermonuclear supernovae (like Tycho) that usually occur in a mostly undisturbed medium, and core-collapse supernovae (like Cas A) that occur in a more complex medium bearing the imprint of the winds of the progenitor star.

  19. An XMM-Newton Search for Crab-like Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Slane, Patrick

    2005-01-01

    The primary goals of the study are to search for evidence of non-thermal emission that would suggest the presence of a pulsar in this compact SNR. We have performed the reduction of the EPIC data for this observation, cleaning the data to remove time intervals of enhanced particle background, and have created maps in several energy bands, and on a variety of smoothing scales. We find no evidence for emission from the SNR. Given the small angular size of the SNR, we conclude that rather than being a young remnant, it is actually fairly old, but distant. At its current stage of evolution, the remnant shell has apparently entered the radiative phase, wherein the shell temperature has cooled sufficiently to be either below X-ray-emitting temperatures or at temperatures easily absorbed the foreground interstellar material. We have thus concluded that this SNR is not a viable candidate for a young ejecta-rich or pulsar-driven SNR.

  20. Interpretation of the number versus diameter distribution for supernova remnants in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Helfand, D. J.; Kahn, S. M.

    1984-01-01

    An examination is conducted of the cumulative number versus diameter relation for an X-ray selected sample of supernova remnants in the Large Magellanic Cloud in an attempt to understand the evolutionary state of these objects. Previous studies have suggested that the observed linear N(D) relation requires the remnants in the cloud to be freely expanding. Detailed calculations have been carried out to determine the effect of a luminosity threshold on the observed distribution and it is shown that the observations can be fitted by remnants which are in the adiabatic or later stages of evolution. The implications of the results for the supernova creation rate in the LMC are discussed.

  1. Interactions Between CRs and MCs in the Vicinity of Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Hewitt, John W.

    2011-01-01

    Supernovae are incredibly energetic events which drive the dynamic state of the interstellar medium and accelerate cosmic rays up to energies of a few PeV. I present multi-wavelength observations constraining the shocks, chemistry, dust grain processing, and magnetic fields in a large sample of supernova remnants interacting with dense clouds. These are among the most luminous Galactic sources detected by the Fermi Gamma-Ray Space Telescope. Surprisingly, spectral breaks are seen between GeV and TeV energies. Radio spectral breaks have also been detected for a few remnants, providing clear evidence that supernovae are a significant source of hadronic cosmic rays in the Galaxy. Resolving the origin of these spectral breaks will allow the physics of cosmic ray acceleration and diffusion to be probed.

  2. Suzaku Results of SN 1006: Chemical Abundances of the ''youngest'' Galactic Type Ia Supernova Remnant

    SciTech Connect

    Koyama, Katsuji

    2008-05-21

    SN 1006 is one of the supernova remnants (SNR) recorded in the Japanese diary 'Meigetsuki'. From the historical records including Meigetsuki, we conclude that SN 1006 was the brightest type Ia supernova remnant. We report on the observations of SN 1006 with the X-ray Imaging Spectrometers (XIS) on board the 5-th Japanese X-ray satellite Suzaku. We found that the ionization age of SN 1006 is the youngest among any Galactic SNRs, hence is the best SNR to study early phase of type Ia. In the X-ray spectrum, we found the K-shell emission lines from heavy elements, in particular that from iron, for the first time. The X-ray emitting plasma is highly overabundant in heavy elements, hence are likely due to ejecta. The abundance pattern agrees well to the theoretical prediction of type Ia supernova.

  3. Connecting the high- and low-energy Universe: dust processing inside Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta; Dwek, Eli; Slavin, Jonathan

    2015-09-01

    The recent detection of large amounts of dust (> 10(7) M_⊙) at very high redshift (z > 6) raises a fundamental question about the origin of such dust. The main dust producers, i. e., the stars populating the Red Giant Branch and the Asymptotic Giant Branch (RGB and AGB stars) did not have time to evolve. From an evolutionary point of view, young supernovae (SNe) could represent a viable source of dust in high-redshift galaxies, however, a critical issue still needs to be addressed. While recent observations have demonstrated that supernovae are indeed efficient dust factories, at the same time SNe represent the major agent responsible for dust destruction. Supernova blast waves propagating into the interstellar medium destroy the dust residing there, while the fresh dust produced by the supernova itself is threatened by the reverse shock which propagates through the expanding ejecta towards the center of the remnant. We focus here on this second destruction mechanism, with the aim of quantifying the amount of dust able to survive the heavy processing by the reverse shock and to reach the interstellar medium. We present our results for the textbook supernova remnant Cassiopeia A (Cas A). Using recent X-ray and infrared observations, we have developed a model for the evolution of the remnant and the simultaneous processing of the dust by the reverse shock, and derived the expected amount of surviving dust. In addition, we will briefly illustrate the impact of the capabilities of the Athena mission on the variety of astrophysical problems involving the processing of dust particles in extreme environments characterized by the presence of shocked X-ray emitting gas. These range from individual supernova remnants, to starburst super winds up to AGN outflows and the hot intra-cluster medium. The study of dust processing by a shocked gas truly connects the high-energy Universe with the low-energy Universe, and Athena will play a major role in it.

  4. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant

    SciTech Connect

    Heinz, S.; Sell, P.; Fender, R. P.; Jonker, P. G.; Brandt, W. N.; Calvelo-Santos, D. E.; Tzioumis, A. K.; Nowak, M. A.; Schulz, N. S.; Wijnands, R.; Van der Klis, M.

    2013-12-20

    Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal supernova remnant of the accreting neutron star Circinus X-1, which places an upper limit of t < 4600 yr on its age, making it the youngest known X-ray binary and a unique tool to study accretion, neutron star evolution, and core-collapse supernovae. This discovery is based on a deep 2009 Chandra X-ray observation and new radio observations of Circinus X-1. Circinus X-1 produces type I X-ray bursts on the surface of the neutron star, indicating that the magnetic field of the neutron star is small. Thus, the young age implies either that neutron stars can be born with low magnetic fields or that they can rapidly become de-magnetized by accretion. Circinus X-1 is a microquasar, creating relativistic jets that were thought to power the arcminute-scale radio nebula surrounding the source. Instead, this nebula can now be attributed to non-thermal synchrotron emission from the forward shock of the supernova remnant. The young age is consistent with the observed rapid orbital evolution and the highly eccentric orbit of the system and offers the chance to test the physics of post-supernova orbital evolution in X-ray binaries in detail for the first time.

  5. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  6. Fast pulsars, strange stars

    SciTech Connect

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake.

  7. Two-temperature models of old supernova remnants with ion and electron thermal conduction

    NASA Technical Reports Server (NTRS)

    Cui, Wei; Cox, Donald P.

    1992-01-01

    To investigate the potential effects thermal conduction may have on the evolution of old supernova remnants, we present the results of 1D (spherically symmetric) numerical simulations of a remnant in a homogeneous interstellar medium for four different cases: (1) without thermal conduction; (2) with both electron and ion thermal conduction assuming equal temperatures; (3) with electron thermal conduction only, following electron and ion temperatures separately; and (4) with both electron and ion thermal conduction following separate temperatures. We followed the entire evolution until the completion of the remnant bubble collapse. Our most significant result is that in remnant evolution studies concerned principally with either the shell or bubble evolution at late times, reasonable results are obtained with single-temperature models. When the electron and ion temperatures are followed separately, however, ion thermal conduction cannot safely be ignored.

  8. The bubble-like interior of the core-collapse supernova remnant Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Fesen, Robert A.

    2015-01-01

    The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of these catastrophic explosions remain uncertain, due partly to limited observational constraints on asymmetries deep inside the star. Here we present near-infrared observations of the young supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior unshocked ejecta. The remnants interior has a bubble-like morphology that smoothly connects to and helps explain the multiringed structures seen in the remnant's bright reverse-shocked main shell of expanding debris. This internal structure may originate from turbulent mixing processes that encouraged outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.

  9. Chandra Observations and Models of the Mixed Morphology Supernova Remnant W44: Global Trends

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    We report on the Chandra observations of the archetypical mixed morphology (or thermal composite) supernova remnant, W44. As with other mixed morphology remnants, W44's projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. In addition, X-ray bright knots dot W44's image. The spectral analysis of the Chandra data show that the remnant s hot, bright projected center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. Neon is among the affected elements, suggesting that ejecta contributes to the abundance trends. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first potential X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44's X-ray bright center: 1.) entropy mixing due to bulk mixing or thermal conduction, 2.) evaporation of swept up clouds, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was tested against the Chandra spectrum for the remnant's projected center and found to be a good match. The evaporating clouds model was constrained by the finding that the ionization parameters of the bright knots are similar to those of the surrounding regions. While both the entropy mixed and the evaporating clouds models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnant's projected center. The preponderance of evidence (including that drawn from other studies) suggests that W44's remarkable morphology can be attributed to dust destruction and ejecta enrichment within an entropy mixed, adiabatic phase supernova remnant. The Chandra data prompts a new question - by what astrophysical mechanisms are the metals distributed so inhomogeneously in the supernova remnant.

  10. Limits on Planet Formation Around Young Pulsars and Implications for Supernova Fallback Disks

    NASA Astrophysics Data System (ADS)

    Kerr, M.; Johnston, S.; Hobbs, G.; Shannon, R. M.

    2015-08-01

    We have searched a sample of 151 young, energetic pulsars for periodic variation in pulse time-of-arrival arising from the influence of planetary companions. We are sensitive to objects with masses two orders of magnitude lower than those detectable with optical transit timing, but we find no compelling evidence for pulsar planets. For the older pulsars most likely to host planets, we can rule out Mercury analogs in one third of our sample and planets with masses >0.4 M? and periods {P}b\\lt 1 year in all but 5% of such systems. If pulsar planets form primarily from supernova fallback disks, these limits imply that such disks do not form, are confined to <0.1 AU radii, are disrupted, or form planets more slowly (>2 Myr) than their protoplanetary counterparts.

  11. Uncovering the Properties of Young Neutron Stars and their Surrounding Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slane, Patrick O.

    2004-01-01

    This five-year grant involves the study of young neutron stars, particularly those in supernova remnants.In the fourth year of this program, the following studies have been undertaken in support of this effort: 1.CTA 1: Following up on our ROSAT and ASCA studies of this SNR, we obtained observations with the XMM-Newton observatory to investigate the central compact source and surrounding nebula. 2. 3C 58: Based upon our earlier Chandra observations, we submitted a successful Chandra Large Project proposal for a 350 ks observation of this young neutron star and its wind nebula. 3. G347.3 - - 0.5: Our Chandra observations of portions of this SNR were aimed at studying the nonthermal X-ray emission from the remnant shell. 4. Chandra Survey for Compact Objects in Supernova Remnants: We have formed a collaboration to carry out an extensive search for young neutron stars in nearby supernova remnants. Using X-ray observations from an approved Chandra Large Project, as well as from additional approved XMM observations, we are investigating a volume-limited sample of SNRs for which there is currently no evidence of associated neutron stars.

  12. INVESTIGATION OF THE PROGENITORS OF THE TYPE Ia SUPERNOVAE ASSOCIATED WITH THE LMC SUPERNOVA REMNANTS 0505-67.9 AND 0509-68.7

    SciTech Connect

    Pagnotta, Ashley; Schaefer, Bradley E.

    2015-01-20

    Although Type Ia supernovae have been heavily scrutinized due to their use in making cosmological distance estimates, we are still unable to definitively identify the progenitors for the entire population. While answers have been presented for certain specific systems, a complete solution remains elusive. We present observations of two supernova remnants (SNRs) in the Large Magellanic Cloud, SNR 0505-67.9 and SNR 0509-68.7, for which we have identified the center of the remnant and the 99.73% containment central region in which any companion star left over after the supernova must be located. Both remnants have a number of potential ex-companion stars near their centers; all possible single and double degenerate progenitor models remain viable for these two supernovae. Future observations may be able to identify the true ex-companions for both remnants.

  13. Investigation of the Progenitors of the Type Ia Supernovae Associated with the LMC Supernova Remnants 0505-67.9 and 0509-68.7

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Schaefer, Bradley E.

    2015-01-01

    Although Type Ia supernovae have been heavily scrutinized due to their use in making cosmological distance estimates, we are still unable to definitively identify the progenitors for the entire population. While answers have been presented for certain specific systems, a complete solution remains elusive. We present observations of two supernova remnants (SNRs) in the Large Magellanic Cloud, SNR 0505-67.9 and SNR 0509-68.7, for which we have identified the center of the remnant and the 99.73% containment central region in which any companion star left over after the supernova must be located. Both remnants have a number of potential ex-companion stars near their centers; all possible single and double degenerate progenitor models remain viable for these two supernovae. Future observations may be able to identify the true ex-companions for both remnants.

  14. Swift/BAT Detection of Hard X-Rays from Tycho's Supernova Remnant: Evidence for Titanium-44

    NASA Astrophysics Data System (ADS)

    Troja, E.; Segreto, A.; La Parola, V.; Hartmann, D.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Cusumano, G.; Gehrels, N.

    2014-12-01

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  15. The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil

    1999-01-01

    We show that (1) the newly discovered supernova remnant (SNR) GROJ0852-4642/RXJ0852.0-4622 was created by a core-collapse supernova of a massive star and (2) the same supernova event that produced the Ti-44 detected by COMPTEL from this source is probably also responsible for a large fraction of the observed Al-26 emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type la supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15 solar mass. Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km/s, as derived naively from X-ray data, a much more energetic supernova is required to have occurred at approximately 250 pc away in a dense environment at the edge of the Gum Nebula. This progenitor has a preferred ejecta mass of less than or equal to 10(Solar Mass), and therefore it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of n(sub H) greater than or equal to 100 cu cm in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL Al-26 emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case in which both Ti-44 and Al-26 are detected from the same young SNR, and together they can be used to select preferred theoretical core-collapse supernova models.

  16. Utilizing Supernova Remnants as Probes of Explosion Mechanisms and Progenitor Systems

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan

    2015-08-01

    Theory and observation strongly favor the notion that asymmetric explosions drive core-collapse supernovae. Where and how this asymmetry is introduced is uncertain, in part because of limited constraints on the various processes that may be taking place deep inside massive stars. Observations of extragalactic supernovae have shed some light on the issue. However, distant supernovae, by nature, appear as unresolved point sources, which severely restricts our ability to extract key properties of the explosion dynamics via detailed knowledge of the three-dimensional kinematics of the expanding ejecta. Progress requires an alternative approach, and to this end there have been successful efforts towards understanding core-collapse supernova explosions through studies of their remnants in our own Milky Way galaxy. Such investigations provide information about the explosion-driven mixing of the progenitor star's chemically distinct layers, the star's mass loss history before explosion, and the fate of its remnant core - all at extremely fine scales. Particularly of note are observations of the young supernova remnant Cassiopeia A, which is the descendant of a massive star that was mostly stripped of its hydrogen envelope. Cassiopeia A's debris field has a bubble-like morphology that may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. Important aspects of these observations conflict with sophisticated explosion models and we presently do not have a good understanding of how the 56Ni was mixed. Considering Cassiopeia A's kinematic properties are not unique and likely reflect a common phenomenon of core-collapse supernovae, this conflict represents a big problem that cannot be ignored. Unraveling whether the mixing that we see originates from an asymmetric explosion mechanism or is more tightly associated with a turbulent interior structure will be a challenge, but there is hope.

  17. Modelling of the Galactic Distribution of Titanium-44 Emitting Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Dufour, Francois

    Following the lone detection of the Galactic supernova remnant Cas A by gamma-ray detectors aboard CGRO and hard X-ray detectors aboard INTEGRAL in the nuclear lines of the 44Ti decay chain, The et al, 2006, argued that these surveys should have detected several sources, given models for the yield of 44Ti and an estimate of the Galactic supernova rate. In this thesis, this result is revisited by exploring the effect of various newer yield models of Type II supernovae, which include yields that differ by approximately an order of magnitude. We also consider several estimates of the Galactic supernova rate, which also differ by an order of magnitude, and various models for the Galactic distribution of massive stars. We find that the lone detection of Cas A is in fact consistent with a large number of reasonable models. We find that in order to detect a significant number of previously unknown remnants in a survey for 44Ti and thus constrain supernova models, a sensitivity to fluxes of less than 1E-7 photon per square cm per second within an absolute Galactic latitude of less than 5 degrees is required.

  18. CANGAROO III Observations of the Supernova Remnant RX J0852.0-4622

    NASA Astrophysics Data System (ADS)

    Enomoto, R.; Watanabe, S.; Tanimori, T.; Asahara, A.; Bicknell, G. V.; Clay, R. W.; Edwards, P. G.; Gunji, S.; Hara, S.; Hattori, T.; Hayashi, S.; Higashi, Y.; Inoue, R.; Itoh, C.; Kabuki, S.; Kajino, F.; Katagiri, H.; Kawachi, A.; Kawasaki, S.; Kifune, T.; Kiuchi, R.; Konno, K.; Ksenofontov, L.; Kubo, H.; Kushida, J.; Matsubara, Y.; Mizukami, T.; Mizuniwa, R.; Mori, M.; Muraishi, H.; Naito, T.; Nakamori, T.; Nishida, D.; Nishijima, K.; Ohishi, M.; Sakamoto, Y.; Stamatescu, V.; Suzuki, S.; Suzuki, T.; Swaby, D. L.; Tanimura, H.; Thornton, G.; Tokanai, F.; Tsuchiya, K.; Yamada, Y.; Yamazaki, M.; Yanagita, S.; Yoshida, T.; Yoshikoshi, T.; Yuasa, M.; Yukawa, Y.

    2006-12-01

    Sub-TeV gamma-ray emission from the northwest rim of the supernova remnant RX J0852.0-4622 was detected with the CANGAROO II telescope and recently confirmed by the HESS group. In addition, the HESS data revealed a very wide (up to 2 in diameter), shell-like profile of the gamma-ray emission. We carried out CANGAROO III observations in 2005 January and February with three telescopes and show here the results of threefold coincidence data. We confirm the HESS results about the morphology and the energy spectrum and find that the energy spectrum in the NW rim is consistent with that of the whole remnant.

  19. X-ray spectrum of the supernova remnant W49B from Exosat

    SciTech Connect

    Smith, A.; Peacock, A.; Jones, L.R.; Pye, J.P.

    1985-09-01

    X-ray observations of the supernova remnant W49B made by the medium-energy detector and gas scintillation propotional counter experiments on board Exosat are presented. The detection of a very strong emission line feature at 6.7 keV indicates a thermal origin of the X-rays. Fitting the spectral data with an optically thin thermal plasma model indicates a temperature of 2 keV for the remnant. From a consideration of Exosat, Einstein, and radio data, it is suggested that the dominant observed X-ray emission comes from a reverse shock. 17 references.

  20. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    NASA Technical Reports Server (NTRS)

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  1. Pulsar spins from an instability in the accretion shock of supernovae

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Mezzacappa, Anthony

    2007-01-01

    Rotation-powered radio pulsars are born with inferred initial rotation periods of order 300ms (some as short as 20ms) in core-collapse supernovae. In the traditional picture, this fast rotation is the result of conservation of angular momentum during the collapse of a rotating stellar core. This leads to the inevitable conclusion that pulsar spin is directly correlated with the rotation of the progenitor star. So far, however, stellar theory has not been able to explain the distribution of pulsar spins, suggesting that the birth rotation is either too slow or too fast. Here we report a robust instability of the stalled accretion shock in core-collapse supernovae that is able to generate a strong rotational flow in the vicinity of the accreting proto-neutron star. Sufficient angular momentum is deposited on the proto-neutron star to generate a final spin period consistent with observations, even beginning with spherically symmetrical initial conditions. This provides a new mechanism for the generation of neutron star spin and weakens, if not breaks, the assumed correlation between the rotational periods of supernova progenitor cores and pulsar spin.

  2. XMM-Newton Observations of HESSJ1813-178 Reveal a Composite Supernova Remnant

    SciTech Connect

    Funk, S.; Hinton, J.A.; Moriguchi, Y.; Aharonian, F.A.; Fukui, Y.; Hofmann, W.; Horns, D.; Puehlhofer, G.; Reimer, O.; Rowell, G.; Terrier, R.; Vink, J.; Wagner, S.

    2006-11-27

    Aims--We present X-ray and {sup 12}CO(J=1-0) observations of the very-high-energy (VHE) {gamma}-ray source HESS J1813-178 with the aim of understanding the origin of the {gamma}-ray emission. Methods--High-angular resolution X-ray studies of the VHE {gamma}-ray emission region are performed using 18.6 ks of XMM-Newton data, taken on HESS J1813-178 in October 2005. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission object with greater precision than previous studies. NANTEN {sup 12}CO(J=1-0) data are used to search for correlations of the {gamma}-ray emission with molecular clouds which could act as target material for {gamma}-ray production in a hadronic scenario. Results--The NANTEN {sup 12}CO(J=1-0) observations show a giant molecular cloud of mass 2.5 x 10{sup 5} M{sub {circle_dot}} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the {gamma}-ray source and its surroundings. The X-ray data show a highly absorbed (n{sub H} {approx} 1 x 10{sup 23} cm{sup -2}) non-thermal X-ray emitting object coincident with the previously known ASCA source AXJ1813-178 showing a compact core and an extended tail towards the north-east, located in the center of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that this object is very likely to be a composite SNR. Nevertheless, we cannot distinguish between the scenarios in which the {gamma}-rays originate in the shell of the SNR and the one in which they originate in the central object. We discuss both scenarios in terms of a one-zone leptonic model and demonstrate, that in order to connect the core X-ray emission to the VHE {gamma}-ray emission electrons have to be accelerated to energies of at least 1 PeV. We conclude that if indeed the X-rays are connected to the VHE {gamma}-rays HESS J1813-178 has to be a Galactic Pevatron.

  3. Kinematics of supernova remnants in the Galaxy and LMC

    NASA Technical Reports Server (NTRS)

    Shull, P., Jr.

    1983-01-01

    The optical emission lines of six SNRs have been observed at very high angular and kinematic resolutions. Kinematic ion temperatures were derived, and evidence was found in shocked regions for Maxwellian microturbulence on scales approximately equal to or less than 0.01 pc, and for non-Maxwellian macroturbulence on scales greater than 0.1 pc. The widths of shocked regions in the Cygnus Loop and the existence of three types of spectral feature in the LMC remnants are discussed in terms of SNR evolution in cloudly interstellar media.

  4. Dynamo Effect of Small-scale Turbulent Magnetic Field Downstream of Supernova Remnant Shocks: Secular Evolution

    NASA Astrophysics Data System (ADS)

    Fraschetti, Federico

    2013-01-01

    Collisionless shocks of supernova remnant propagate in turbulent and inhomogeneous media undergoing rapid corrugation of their ideal initially planar surface. We derive analytically the vorticity generated downstream of two-dimensional rippled hydromagnetic perpendicular shocks; ideal MHD is used. The vortical fluid turbulence drives the exponential growth of the turbulent component of the downstream magnetic field; the effect of the current density of energetic particles accelerated at the shock is neglected. The time-evolution of the magnetic field and the saturation value are determined as a function of the physical parameters of the shock. The consequences on the strong magnetic energy inferred from observations of supernova remnant shocks and testable by the future X-ray observatories are discussed.

  5. Onion-shell model of cosmic ray acceleration in supernova remnants

    NASA Technical Reports Server (NTRS)

    Bogdan, T. J.; Volk, H. J.

    1983-01-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.

  6. Recombining plasma in the remnant of a core-collapsed supernova, Kes 17

    NASA Astrophysics Data System (ADS)

    Washino, Ryosaku; Uchida, Hiroyuki; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Kawabata Nobukawa, Kumiko; Koyama, Katsuji

    2015-10-01

    We report on Suzaku results concerning Kes 17, a Galactic mixed-morphology supernova remnant. The X-ray spectrum of the whole Kes 17 is well explained by a pure thermal plasma, in which we found Ly? of Al XIII and He? of Al XII, Ar XVII, and Ca XIX lines for the first time. The abundance pattern and the plasma mass suggest that Kes 17 is a remnant of a core-collapsed supernova of a 25-30 M? progenitor star. The X-ray spectrum of the north region is expressed by a recombining plasma. The origin would be due to the cooling of electrons by thermal conduction to molecular clouds located near the north region.

  7. X-RAY EMISSION FROM STRONGLY ASYMMETRIC CIRCUMSTELLAR MATERIAL IN THE REMNANT OF KEPLER'S SUPERNOVA

    SciTech Connect

    Burkey, Mary T.; Reynolds, Stephen P.; Borkowski, Kazimierz J.; Blondin, John M.

    2013-02-10

    Kepler's supernova remnant resulted from a thermonuclear explosion, but is interacting with circumstellar material (CSM) lost from the progenitor system. We describe a statistical technique for isolating X-ray emission due to CSM from that due to shocked ejecta. Shocked CSM coincides well in position with 24 {mu}m emission seen by Spitzer. We find most CSM to be distributed along the bright north rim, but substantial concentrations are also found projected against the center of the remnant, roughly along a diameter with position angle {approx}100 Degree-Sign . We interpret this as evidence for a disk distribution of CSM before the supernova, with the line of sight to the observer roughly in the disk plane. We present two-dimensional hydrodynamic simulations of this scenario in qualitative agreement with the observed CSM morphology. Our observations require Kepler to have originated in a close binary system with an asymptotic giant branch star companion.

  8. X-ray emission from the supernova remnant G287.8-0.5

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.; Swank, J. H.

    1976-01-01

    The GSFC Cosmic X-ray spectroscopy experiment on OSO-8 observed a weak galactic X-ray source near theta 2 at 288 deg, b2 at -1 deg. The spectrum for this source between 2-20 keV is well represented by a thermal spectrum of kT = 7.34(+3.6), sub -2.6 keV with an intense iron emission line centered at 6.5 + or - .2 keV. The error box of the Uhuru source 4U1043-59, the only known X-ray source in our field of view, contains the radio supernova remnant G287.8-0.5. The possible association of the X-ray source with this supernova remnant is discussed.

  9. CANGAROO-III Search for Gamma Rays from Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Enomoto, R.; Higashi, Y.; Yoshida, T.; Tanimori, T.; Bicknell, G. V.; Clay, R. W.; Edwards, P. G.; Gunji, S.; Hara, S.; Hara, T.; Hattori, T.; Hayashi, S.; Hirai, Y.; Inoue, K.; Kabuki, S.; Kajino, F.; Katagiri, H.; Kawachi, A.; Kifune, T.; Kiuchi, R.; Kubo, H.; Kushida, J.; Matsubara, Y.; Mizukami, T.; Mizumoto, Y.; Mizuniwa, R.; Mori, M.; Muraishi, H.; Muraki, Y.; Naito, T.; Nakamori, T.; Nakano, S.; Nishida, D.; Nishijima, K.; Ohishi, M.; Sakamoto, Y.; Seki, A.; Stamatescu, V.; Suzuki, T.; Swaby, D. L.; Thornton, G.; Tokanai, F.; Tsuchiya, K.; Watanabe, S.; Yamada, Y.; Yamazaki, E.; Yanagita, S.; Yoshikoshi, T.; Yukawa, Y.

    2008-08-01

    Kepler's supernova, discovered in 1604 October, produced a remnant that has been well studied observationally in the radio, infrared, optical, and X-ray bands, and theoretically. Some models have predicted a TeV gamma-ray flux that is detectable with current Imaging Cerenkov Atmospheric Telescopes. We report on observations carried out in 2005 April with the CANGAROO-III Telescope. No statistically significant excess was observed, and limitations on the allowed parameter range in the model are discussed.

  10. Multi-dimensional Simulations of the Expanding Supernova Remnant of SN 1987A

    NASA Astrophysics Data System (ADS)

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-01

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M ⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  11. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  12. In my Beginning is my End: Dust Destruction in the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Micelotta, E.; Dwek, E.

    It has been demonstrated by observations that young supernovae (SNe) are indeed able to efficiently synthesize dust. However, it is unclear how much of the freshly formed dust can reach the interstellar medium and contribute to the observed emission. At the same time, SNe represent the major agent responsible for dust destruction. Because SNe are possibly the only viable dust factory in the early Universe, it is extremely important to establish the fate of the newly formed dust. Our work explores the possibility that a significant fraction of any dust formed after the explosion is destroyed within the supernova remnant itself. In the Cassiopeia A supernova remnant, dust emission has been observed associated with optical knots containing recently formed material. The dust present in such clumps is threatened by the reverse shock traveling through the ejecta toward the center of the remnant. The shock is able to disrupt the clumps and will inject the dust grains into a hot gas, where they will be eroded and possibly destroyed by thermal and inertial sputtering. We present a model that describes the propagation of the reverse shock into the supernova cavity and evaluates the modifications in the grain size distribution due to the encounter with the reverse shock. This is the first step required to quantify the amount of dust ultimately able to survive. Our model accounts for the variation of the physical properties of both the shock and the ejecta across the remnant. In particular, this means taking explicitly into consideration, for the first time in this kind of studies, the effect of clumping of the ejecta.

  13. ROSAT/ASCA observations of the mixed-morphology supernova remnant W28

    NASA Technical Reports Server (NTRS)

    Rho, J.; Borkowski, K. J.

    2002-01-01

    We present three sets of ROSAT PSPC and four sets of ASCA observations of the supernova remnant (SNR) W28. The overall shape of x-ray emission in W28 is elliptical, dominated by a centrally-concentrated interior emission, sharply peaked at the center. There are also partial northeastern and southwestern shells, and both central and shell x-ray emission is highly patchy.

  14. MODIFIED EQUIPARTITION CALCULATION FOR SUPERNOVA REMNANTS. CASES α = 0.5 AND α = 1

    SciTech Connect

    Arbutina, B.; Urošević, D.; Vučetić, M. M.; Pavlović, M. Z.; Vukotić, B.

    2013-11-01

    The equipartition or minimum energy calculation is a well-known procedure for estimating the magnetic field strength and the total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. In one of our previous papers, we have offered a modified equipartition calculation for supernova remnants (SNRs) with spectral indices 0.5 < α < 1. Here we extend the analysis to SNRs with α = 0.5 and α = 1.

  15. Discriminating the Progenitor Type of Supernova Remnants with Iron K-Shell Emission

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Hiroya; Badenes, Carles; Petre, Robert; Nakano, Toshio; Castro, Daniel; Enoto, Teruaki; Hiraga, Junko S.; Hughes, John P.; Maeda, Yoshitomo; Nobukawa, Masayoshi

    2014-01-01

    Supernova remnants (SNRs) retain crucial information about both their parent explosion and circumstellar material left behind by their progenitor. However, the complexity of the interaction between supernova ejecta and ambient medium often blurs this information, and it is not uncommon for the basic progenitor type (Ia or core-collapse) of well-studied remnants to remain uncertain. Here we present a powerful new observational diagnostic to discriminate between progenitor types and constrain the ambient medium density of SNRs using solely Fe K-shell X-ray emission. We analyze all extant Suzaku observations of SNRs and detect Fe K-alpha emission from 23 young or middle-aged remnants, including five first detections (IC 443, G292.0+1.8, G337.2-0.7, N49, and N63A). The Fe K-alpha centroids clearly separate progenitor types, with the Fe-rich ejecta in Type Ia remnants being significantly less ionized than in core-collapse SNRs. Within each progenitor group, the Fe K-alpha luminosity and centroid are well correlated, with more luminous objects having more highly ionized Fe. Our results indicate that there is a strong connection between explosion type and ambient medium density, and suggest that Type Ia supernova progenitors do not substantially modify their surroundings at radii of up to several parsecs. We also detect a K-shell radiative recombination continuum of Fe in W49B and IC 443, implying a strong circumstellar interaction in the early evolutionary phases of these core-collapse remnants.

  16. The kinematics of the bi-lobal supernova remnant G 65.3+5.7. II..

    NASA Astrophysics Data System (ADS)

    Boumis, P.; Meaburn, J.; López, J. A.; Mavromatakis, F.; Redman, M. P.; Harman, D. J.; Goudis, C. D.

    2004-09-01

    Further deep, narrow-band images in the light of [O I] 6300Åii have been added to the previous mosaic of the faint galactic supernova remnant G 65.3+5.7. Additionally, long-slit spatially resolved [O I] 6300Åii line profiles have been obtained at sample positions using the Manchester Echelle Spectrometer at the San Pedro Martir observatory. The remnant is shown to be predominantly bi-lobal with an EW axis. However, a faint additional northern lobe has now been revealed. The splitting of the profiles along the slit lengths, when extrapolated to the centre of the remnant, although uncertain, suggests that the expansion velocity of this remnant is between 124 and 187 kms i.e. much lower than the 400 kms previously predicted for the forward shock velocity from the X-ray emission. An expansion proper motion measurement of 2.1 ± 0.4 arcsec in 48 years for the remnant's filamentary edge in the light of Hα + NII has also been made. This is combined with an expansion velocity of ≈155 kms, a distance of ≈800 pc is derived. Several possibilities are considered for the large difference in the expansion velocity measured here and the 400 kms shock velocity required to generate the X-ray emission. It is also suggested that the morphology of the remnant may be created by a tilt in the galactic magnetic field in this vicinity.

  17. Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Kroll, M.; Becker Tjus, J.; Eichmann, B.; Nierstenhöfer, N.

    2015-11-01

    It is generally believed that the cosmic ray spectrum below the knee is of Galactic origin, although the exact sources making up the entire cosmic ray energy budget are still unknown. Including effects of magnetic amplification, Supernova Remnants (SNR) could be capable of accelerating cosmic rays up to a few PeV and they represent the only source class with a sufficient non-thermal energy budget to explain the cosmic ray spectrum up to the knee. Now, gamma-ray measurements of SNRs for the first time allow to derive the cosmic ray spectrum at the source, giving us a first idea of the concrete, possible individual contributions to the total cosmic ray spectrum. In this contribution, we use these features as input parameters for propagating cosmic rays from its origin to Earth using GALPROP in order to investigate if these supernova remnants reproduce the cosmic ray spectrum and if supernova remnants in general can be responsible for the observed energy budget.

  18. Observations of supernova remnants in the Large Magellanic Cloud with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.; Long, K. S.

    1980-01-01

    Consideration is given to the Large Magellanic Cloud (LMC), noting that above 2 keV, the X-ray luminosity of the LMC is dominated by emission from 3-5 point sources similar to the bright sources near the center of our own Galaxy. The imaging proportional counter aboard the Einstein Observatory has been used to locate about 40 X-ray sources in the LMC. Supernova remnants observed in the LMC are presented, noting X-ray position, X-ray counting rate, and radio flux. For the six brightest sources, X-ray spectra have been analyzed to determine temperatures and intrinsic luminosity corrected for the interstellar absorption. These data are compared for parameters for the young galactic remnant of Tycho's supernova. Attention is given to the ratio of X-ray luminosity to radio luminosity, and the data are discussed within the framework of the standard blast-wave theory. The results of applying the model to recorded observations are numerically presented. In addition to providing a sample of objects for investigations of supernova remnants, the data are applicable to studies of galaxies of other morphological types and individual objects, such as N49.

  19. G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Reynolds, Mark T.; Loi, Syheh T.; Murphy, Tara; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Gehrels, Neil; Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan; Kuin, Paul; Moss, Vanessa; Reeves, Sarah; Robbins, William J.; Gaensler, B. M.; Reis, Rubens C.; Petre, Robert

    2013-01-01

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24µm, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  20. Overionization in supernova remnants: a deep look at the SNR IC 443

    NASA Astrophysics Data System (ADS)

    Troja, Eleonora

    2008-10-01

    IC 443 is a Galactic supernova remnant with a peculiar morphology: a center-filled thermal X-ray emission within a radio/optical shell. The presence of overionized plasma, addressed in previous works, would be a robust clue to the nature of the center-bright X-rays, which is not yet understood. Our studies show significant spectral variations across the remnant, which may lead to the fictitious detection of overionization. We propose a deep observation of the northeast region in order to obtain a high-quality dataset, and perform a spatially resolved spectroscopy of the brightest X-ray emission of IC 443. We aim to decisively address the issue of overionization, and to constrain the mechanisms of X-ray production from the center of this remnant.

  1. High resolution X-ray spectroscopy of supernova remnants with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Hughes, John

    The high spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) on the upcoming ASTRO-H mission will open a new window of discovery for the study of supernova remnants. In this presentation, I will offer some illustrative examples of the types of science that the ASTRO-H team hopes to pursue. In young, ejecta-dominated remnants, abundance measurements based on emission line diagnostics will allow for a closer link to the different types of supernova progenitor models. Line widths probe ion temperatures and turbulent gas velocities on small scales, while offsets in observed line centroids characterize the bulk expansion motion of a remnant. For older remnants, much of the line-rich thermal plasma arises from shocks in the ambient, interstellar material. SXS observations will address a number of existing concerns with the intepretation of low resolution CCD spectra, including for example the issue of low inferred abundances at the rims of the Cygnus Loop, Puppis A, and others; and the physical origin of recombination-dominated plasmas.

  2. Chandra and XMM-Newton Study of the Supernova Remnant Kes 73 Hosting the Magnetar 1E 1841-045

    NASA Astrophysics Data System (ADS)

    Kumar, Harsha S.; Safi-Harb, Samar; Slane, Patrick O.; Gotthelf, E. V.

    2014-01-01

    We present a Chandra and XMM-Newton study of the supernova remnant (SNR) Kes 73 hosting the anomalous X-ray pulsar 1E 1841-045. The Chandra image reveals clumpy structures across the remnant with enhanced emission along the western rim. The X-ray emission fills the radio shell and spatially correlates with the infrared image. The global X-ray spectrum is described by a two-component thermal model with a column density N H = 2.6^{+0.4}_{-0.3}\\times1022 cm-2 and a total luminosity of LX = 3.3^{+0.7}_{-0.5}\\times1037 erg s-1 (0.5-10 keV, at an assumed distance of 8.5 kpc). The soft component is characterized by a temperature kTs = 0.5^{+0.1}_{-0.2} keV, a high ionization timescale, and enhanced Si and S abundances, suggesting emission that is dominated by shocked ejecta. The hard component has a temperature kTh = 1.6^{+0.8}_{-0.7} keV, a relatively low ionization timescale, and mostly solar abundances suggesting emission that is dominated by interstellar/circumstellar shocked material. A spatially resolved spectroscopy study reveals no significant variations in the spectral properties. We infer an SNR age ranging between 750 yr and 2100 yr, an explosion energy of 3.0^{+2.8}_{-1.8}\\times1050 erg and a shock velocity of (1.2 0.3)103 km s-1 (under the Sedov phase assumption). We also discuss the possible scenario for Kes 73 expanding into the late red-supergiant wind phase of its massive progenitor. Comparing the inferred metal abundances to core-collapse nucleosynthesis model yields, we estimate a progenitor mass gsim20 M ?, adding a candidate to the growing list of highly magnetized neutron stars proposed to be associated with very massive progenitors.

  3. Unpulsed X-rays from pulsars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1981-01-01

    Preliminary results of several programs to detect thermal X-ray emission from isolated neutron stars are presented. Results of Einstein pulsar surveys indicate that either the majority of supernovas which leave remnants do not produce neutron stars, or the cooling calculations are in need of substantial revision. When appropriate relativistic thermodynamics and updated high energy nuclear physics are included, the new calculations predict significantly lower temperatures for standard neutron star equations of state. X-ray results give strong evidence that five of the seven historical remnants and a large majority of the other remnants of less than 1000 yr do not contain radio pulsars. A survey of known radio pulsars is also presented, which is designed to test the heating mechanisms required by various theories of pulsar emission and neutron star structure, and consists of a survey of all known pulsars within 300 pc.

  4. An atlas of supernova remnant candidates in Messier 31

    NASA Technical Reports Server (NTRS)

    Braun, R.; Walterbos, R. A. M.

    1993-01-01

    Narrow-band CCD imagery in H-alpha and forbidden SII of a large fraction of the spiral arms in the Northeast half of Messier 31 has been used to isolate a sample of 52 'forbidden-line' SNR candidates for which the integrated ratio forbidden SII:H-alpha is greater than 0.5. An atlas of images in these emission lines, red optical continuum, and 1465 MHz radio continuum is presented, together with the tabulated integral properties of these sources. Assessing the completeness of the sample yields a crude estimate of the massive supernova rate (due to stars more massive than 7 solar masses) of 1 in 80 yr. The range of measured luminosities in both H-alpha and radio continuum is fully consistent with those found for 'forbidden-line' SNR in Messier 33, the LMC, and the Galaxy. With the inclusion of our candidates the number of extragalactic SNRs (with well-known distances) now exceeds the number of known galactic SNRs.

  5. Failed supernovae explain the compact remnant mass function

    SciTech Connect

    Kochanek, C. S.

    2014-04-10

    One explanation for the absence of higher mass red supergiants (16.5 M {sub ☉} ≲ M ≲ 25 M {sub ☉}) as the progenitors of Type IIP supernovae (SNe) is that they die in failed SNe creating black holes. Simulations show that such failed SNe still eject their hydrogen envelopes in a weak transient, leaving a black hole with the mass of the star's helium core (5-8 M {sub ☉}). Here we show that this naturally explains the typical masses of observed black holes and the gap between neutron star and black hole masses without any fine-tuning of stellar mass loss, binary mass transfer, or the SN mechanism, beyond having it fail in a mass range where many progenitor models have density structures that make the explosions more likely to fail. There is no difficulty including this ∼20% population of failed SNe in any accounting of SN types over the progenitor mass function. And, other than patience, there is no observational barrier to either detecting these black hole formation events or limiting their rates to be well below this prediction.

  6. Failed Supernovae Explain the Compact Remnant Mass Function

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2014-04-01

    One explanation for the absence of higher mass red supergiants (16.5 M ? <~ M <~ 25 M ?) as the progenitors of Type IIP supernovae (SNe) is that they die in failed SNe creating black holes. Simulations show that such failed SNe still eject their hydrogen envelopes in a weak transient, leaving a black hole with the mass of the star's helium core (5-8 M ?). Here we show that this naturally explains the typical masses of observed black holes and the gap between neutron star and black hole masses without any fine-tuning of stellar mass loss, binary mass transfer, or the SN mechanism, beyond having it fail in a mass range where many progenitor models have density structures that make the explosions more likely to fail. There is no difficulty including this ~20% population of failed SNe in any accounting of SN types over the progenitor mass function. And, other than patience, there is no observational barrier to either detecting these black hole formation events or limiting their rates to be well below this prediction.

  7. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    SciTech Connect

    Di Stefano, R.; Kilic, Mukremin E-mail: kilic@ou.edu

    2012-11-01

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitor white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.

  8. HFPK 334: An unusual supernova remnant in the Small Magellanic Cloud

    SciTech Connect

    Crawford, E. J.; Filipović, M. D.; McEntaffer, R. L.; Brantseg, T.; Heitritter, K.; Roper, Q.; Haberl, F.; Urošević, D.

    2014-11-01

    We present new Australia Telescope Compact Array radio-continuum and XMM-Newton/Chandra X-ray Observatory observations of the unusual supernova remnant (SNR) HFPK 334 in the Small Magellanic Cloud (SMC). The remnant follows a shell-type morphology in the radio continuum and has a size of ∼20 pc at the SMC distance. The X-ray morphology is similar; however, we detect a prominent point source close to the center of the SNR exhibiting a spectrum with a best-fit power law with a photon index of Γ = 2.7 ± 0.5. This central point source is most likely a background object and cannot be directly associated with the remnant. The high temperature, nonequilibrium conditions in the diffuse region suggest that this gas has been recently shocked and points toward a younger SNR with an age of ≲ 1800 yr. With an average radio spectral index of α = –0.59 ± 0.09, we find that an equipartition magnetic field for the remnant is ∼90 μG, a value typical of younger SNRs in low-density environments. Also, we report the detection of scattered radio polarization across the remnant at 20 cm, with a peak fractional polarization level of 25% ± 5%.

  9. A 3D cell-centered Lagrangian scheme applied to the simulation of 3D non-stationary Rayleigh-Taylor Instability in supernova remnants

    NASA Astrophysics Data System (ADS)

    Georges, G.; Breil, J.; Ribeyre, X.; Le Bel, E.

    2015-12-01

    Several astronomical flows can be studied thanks to the gas dynamics equations under the Lagrangian formalism. Here we propose to study the plerion dynamic, i.e. supernova remnants blown-up by a central pulsar as well as the Rayleigh-Taylor Instability (RTI) development at the inner interface of this gas shell. The scheme used is a multi-dimensional second order cell-centered Lagrangian scheme. It satisfies the Geometric Conservation Law (GCL), a semi-discrete entropy inequality and it conserves globally the momentum and the total energy. The convergence of the scheme towards the analytical solution is tested for the plerion test case and in the case of an axi-symmetric perturbation. Finally, the scheme is used to study the perturbation growth on the shell inner face perturbed with spherical harmonics.

  10. Nonthermal X-rays and Gamma Rays from Supernova Remnants in Stellar-Wind Bubbles

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1997-12-01

    Electrons are expected to be accelerated in strong shock waves to energies limited by radiative losses, by the finite age of the shock, or by escape. Young supernova remnants can easily produce electron distributions that, while steepening from the slope at radio energies, still contain significant numbers of electrons at energies of 100 TeV or higher, where they produce synchrotron X-rays to 10 keV and above. In addition, these electrons can inverse-Compton scatter cosmic microwave background photons up to energies in excess of 100 GeV. For remnants of core-collapse supernovae expanding into stellar-wind bubbles, the upstream density is likely to drop as r(-2) while the upstream magnetic field is wrapped into a tight spiral, resulting in an almost perpendicular shock everywhere. Such shocks can be extremely effective in accelerating electrons to high energies. I describe spectra and images for spherical remnants, assuming the dynamics are given by the Sedov self-similar solution appropriate for an ambient r(-2) density profile (r_sh t(2/3) ). Both images and spectra differ significantly from those for remnants expanding into uniform magnetic fields, and should be distinguishable. Remnants expanding into spherical wind bubbles should show little azimuthal variation in synchrotron brightness for any viewing angle. Except at the highest photon energies, their brightness profiles peak somewhat inside the outermost edge of emission. X-ray halos caused by electrons diffusing ahead of the shock are generally narrow and faint. I shall describe inverse-Compton gamma-ray spectra produced by these electron distributions as well.

  11. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    SciTech Connect

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  12. Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Points, S. D.; Crawford, E. J.; Dickel, J.; Filipović, M. D.; Haberl, F.; Maggi, P.; Whelan, E. T.

    2016-02-01

    Aims: We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506-7025 and MCSNR J0527-7104 in the Large Magellanic Cloud. Methods: We used observational data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broad-band emission and used Spitzer and H i data to gain a picture of the environment into which the remnants are expanding. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their physical characteristics. Results: Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, which is consistent with reverse shock-heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, which is consistent with swept-up interstellar medium, was observed in MCSNR J0506-7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506-7025 to be ~16-28 kyr, with an initial explosion energy of (0.07-0.84) × 1051 erg. A soft shell was absent in MCSNR J0527-7104, with only ejecta emission visible in an extremely elongated morphology that extends beyond the optical shell. We suggest that the blast wave has broken out into a low density cavity, allowing the shock heated ejecta to escape. We find that the radio spectral index of MCSNR J0506-7025 is consistent with the standard -0.5 for supernova remnants. Radio polarisation at 6 cm indicates a higher degree of polarisation along the western front and at the eastern knot with a mean fractional polarisation across the remnant of P ≅ (20 ± 6)%. Conclusions: The detection of Fe-rich ejecta in the remnants suggests that both resulted from Type Ia explosions. The newly identified Fe-rich cores in MCSNR J0506-7025 and MCSNR J0527-7104 make them members of the expanding class of evolved Fe-rich remnants in the Magellanic Clouds. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  13. Fermi-Lat and WMAP Observations of the Puppis a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hewitt, John William; Grondin, M. H.; Lemoine-Goumard, M.; Reposeur, T.; Ballet, J.; Tanaka, T.

    2012-01-01

    We report the detection of GeV gamma-ray emission from the supernova remnant Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest supernova remnants yet detected at GeV energies, with a luminosity of only 2.7×10(exp 34) (D/2.2 kpc)(exp 2) erg s(exp -1) between 1 and 100 GeV. The gamma-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution, from radio to gamma-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of WMAP data to extend the radio spectrum up to 93 GHz. Both leptonic and hadronic dominated models can reproduce the nonthermal spectral energy distribution, requiring a total content of cosmic ray (CR) electrons and protons accelerated in Puppis A of at least WCR is approx. (1 - 5)×10 (exp 49) erg.

  14. An ASCA Study of the Composite Supernova Remnant G18.95-1.1

    NASA Technical Reports Server (NTRS)

    Harrus, Ilana

    2000-01-01

    This is the final report on the work done on Supernova Remnant (SNR) G18-95-1.1. The data were taken on April, 2. 1998 and delivered a couple of months later to the Principal Investigator (PI: Dr. Ilana Harrus). We received a CD-ROM containing the results of the standard processing pipeline and all the files needed for the analysis. We have analyzed the data and presented a poster on this object at the 194th American Astronomical Society Meeting in Chicago (June 1999). A copy of the poster is appended to this report. The poster presentation triggered several discussions and we are summarizing the analysis results and those discussions in a paper to be submitted soon to the Astrophysical Journal. We have appended the draft of the paper to this report. It must be noted that the paper is still in its early stages. In particular more work is needed in the physical implications of the results of the spectral analysis and in the comparison with theoretical models to understand the curious morphology of the remnant. The project should be completed within the next two months. Attachment: "ASCA study of the centrally-peaked thermal supernova remnant: G18.95-1.1".

  15. EVIDENCE FOR PARTICLE ACCELERATION TO THE KNEE OF THE COSMIC RAY SPECTRUM IN TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Eriksen, Kristoffer A.; Hughes, John P.; Badenes, Carles; Fesen, Robert; Ghavamian, Parviz; Moffett, David; Plucinksy, Paul P.; Slane, Patrick; Rakowski, Cara E.; Reynoso, Estela M.

    2011-02-20

    Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the 'knee' of the CR spectrum at 10{sup 15} eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since CR nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration significantly modifies the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal a previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10{sup 14}-10{sup 15} eV protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock amplification of magnetic fields produce structure on the scale of the gyroradius of the highest energy CRs present, but they do not predict the highly ordered pattern we observe. We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of DSA.

  16. THE CHANDRA ACIS SURVEY OF M33: X-RAY, OPTICAL, AND RADIO PROPERTIES OF THE SUPERNOVA REMNANTS

    SciTech Connect

    Long, Knox S.; Ghavamian, Parviz; Blair, William P.; Kuntz, Kip D.; Winkler, P. Frank; McNeil, Emily K.; Becker, Robert H.; Gaetz, Terrance J.; Kirshner, Robert P.; Plucinsky, Paul P.; Tuellmann, Ralph; Helfand, David J.; Saul, Destry; Hughes, John P.; Pannuti, Thomas G.; Williams, Benjamin E-mail: wpb@pha.jhu.edu

    2010-04-01

    M33 contains a large number of emission nebulae identified as supernova remnants (SNRs) based on the high [S II]:H{alpha} ratios characteristic of shocked gas. Using Chandra data from the ChASeM33 survey with a 0.35-2 keV sensitivity of {approx}2 x 10{sup 34} erg s{sup -1}, we have detected 82 of 137 SNR candidates, yielding confirmation of (or at least strongly support for) their SNR identifications. This provides the largest sample of remnants detected at optical and X-ray wavelengths in any galaxy, including the Milky Way. A spectral analysis of the seven X-ray brightest SNRs reveals that two, G98-31 and G98-35, have spectra that appear to indicate enrichment by ejecta from core-collapse supernova explosions. In general, the X-ray-detected SNRs have soft X-ray spectra compared to the vast majority of sources detected along the line of sight to M33. It is unlikely that there are any other undiscovered thermally dominated X-ray SNRs with luminosities in excess of {approx}4 x 10{sup 35} erg s{sup -1} in the portions of M33 covered by the ChASeM33 survey. We have used a combination of new and archival optical and radio observations to attempt to better understand why some objects are detected as X-ray sources and others are not. We have also developed a morphological classification scheme for the optically identified SNRs and discussed the efficacy of this scheme as a predictor of X-ray detectability. Finally, we have compared the SNRs found in M33 to those that have been observed in the Galaxy and the Magellanic Clouds. There are no close analogs of Cas A, Kepler's SNR, Tycho's SNR, or the Crab Nebula in the regions of M33 surveyed, but we have found an X-ray source with a power-law spectrum coincident with a small-diameter radio source that may be the first pulsar-wind nebula recognized in M33.

  17. The Chandra ACIS Survey of M33: X-ray, Optical, and Radio Properties of the Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; Blair, William P.; Winkler, P. Frank; Becker, Robert H.; Gaetz, Terrance J.; Ghavamian, Parviz; Helfand, David J.; Hughes, John P.; Kirshner, Robert P.; Kuntz, Kip D.; McNeil, Emily K.; Pannuti, Thomas G.; Plucinsky, Paul P.; Saul, Destry; Tllmann, Ralph; Williams, Benjamin

    2010-04-01

    M33 contains a large number of emission nebulae identified as supernova remnants (SNRs) based on the high [S II]:H? ratios characteristic of shocked gas. Using Chandra data from the ChASeM33 survey with a 0.35-2 keV sensitivity of ~2 1034 erg s-1, we have detected 82 of 137 SNR candidates, yielding confirmation of (or at least strongly support for) their SNR identifications. This provides the largest sample of remnants detected at optical and X-ray wavelengths in any galaxy, including the Milky Way. A spectral analysis of the seven X-ray brightest SNRs reveals that two, G98-31 and G98-35, have spectra that appear to indicate enrichment by ejecta from core-collapse supernova explosions. In general, the X-ray-detected SNRs have soft X-ray spectra compared to the vast majority of sources detected along the line of sight to M33. It is unlikely that there are any other undiscovered thermally dominated X-ray SNRs with luminosities in excess of ~4 1035 erg s-1 in the portions of M33 covered by the ChASeM33 survey. We have used a combination of new and archival optical and radio observations to attempt to better understand why some objects are detected as X-ray sources and others are not. We have also developed a morphological classification scheme for the optically identified SNRs and discussed the efficacy of this scheme as a predictor of X-ray detectability. Finally, we have compared the SNRs found in M33 to those that have been observed in the Galaxy and the Magellanic Clouds. There are no close analogs of Cas A, Kepler's SNR, Tycho's SNR, or the Crab Nebula in the regions of M33 surveyed, but we have found an X-ray source with a power-law spectrum coincident with a small-diameter radio source that may be the first pulsar-wind nebula recognized in M33.

  18. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  19. INFRARED AND X-RAY SPECTROSCOPY OF THE Kes 75 SUPERNOVA REMNANT SHELL: CHARACTERIZING THE DUST AND GAS PROPERTIES

    SciTech Connect

    Temim, Tea; Arendt, Richard G.; Slane, Patrick; Dwek, Eli

    2012-01-20

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of {approx}1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of {approx}140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 Multiplication-Sign 10{sup -2} M{sub Sun }, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  20. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2011-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approximately 1.5 keY, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approximately 140 K by a relatively dense, hot plasma that also gives rise to the hot X-my emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-my emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) x solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  1. Four new X-ray-selected supernova remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Haberl, F.; Kavanagh, P. J.; Points, S. D.; Dickel, J.; Bozzetto, L. M.; Sasaki, M.; Chu, Y.-H.; Gruendl, R. A.; Filipovi?, M. D.; Pietsch, W.

    2014-01-01

    Aims: We present a detailed multi-wavelength study of four new supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). The objects were identified as SNR candidates in X-ray observations performed during the survey of the LMC with XMM-Newton. Methods: Data obained with XMM-Newton are used to investigate the morphological and spectral features of the remnants in X-rays. We measure the plasma conditions, look for supernova (SN) ejecta emission, and constrain some of the SNR properties (e.g. age and ambient density). We supplement the X-ray data with optical, infrared, and radio-continuum archival observations, which allow us to understand the conditions resulting in the current appearance of the remnants. Based on the spatially-resolved star formation history (SFH) of the LMC together with the X-ray spectra, we attempt to type the supernovae that created the remnants. Results: We confirm all four objects as SNRs, to which we assign the names MCSNR J0508-6830, MCSNR J0511-6759, MCSNR J0514-6840, and MCSNR J0517-6759. In the first two remnants, an X-ray bright plasma is surrounded by very faint [S ii] emission. The emission from the central plasma is dominated by Fe L-shell lines, and the derived iron abundance is greatly in excess of solar. This establishes their type Ia (i.e. thermonuclear) SN origin. They appear to be more evolved versions of other Magellanic Cloud iron-rich SNRs which are centrally-peaked in X-rays. From the two other remnants (MCSNR J0514-6840 and MCSNR J0517-6759), we do not see ejecta emission. At all wavelengths at which they are detected, the local environment plays a key role in their observational appearance. We present evidence that MCSNR J0517-6759 is close to and interacting with a molecular cloud, suggesting a massive progenitor. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  2. Systematic search for molecular clouds near supernova remnants as sources of very-high-energy γ-ray emission

    NASA Astrophysics Data System (ADS)

    Häffner, Stephanie; Stegmann, Christian; Jung-Richardt, Ira

    2015-12-01

    Supernova remnants accelerate particles up to energies of at least 100 TeV as established by observations in very-high-energy γ-ray astronomy. Molecular clouds in their vicinity provide an increased amount of target material for proton-proton interaction and subsequent neutral pion decay into γ-rays of accelerated hadrons escaping the remnant. Therefore, these molecular clouds are potential γ-ray sources. The γ-ray emission from these clouds provides a unique environment to derive information on the propagation of very-high-energy particles through the interstellar medium as well as on the acceleration of hadrons in supernova remnants. Current Imaging Atmospheric Cherenkov Telescope systems are suitable to explore a large parameter space of the propagation properties depending on the age of the supernova remnant and the distance between the remnant and the nearby molecular cloud. In this paper we present our strategy and results of a systematic search for γ-ray emitting molecular clouds near supernova remnants which are potentially detectable with current experiments in the TeV energy range and explore the prospects of future experiments.

  3. The optical structure of the central core in the peculiar supernova remnant CTB 80

    NASA Technical Reports Server (NTRS)

    Fesen, R. A.; Gull, T. R.

    1985-01-01

    Deep and high resolution H-alpha + forbidden N II, O III, and red continuum interference-filter images of the bright central radio core of the supernova remnant CTB 80 are presented. These photographs reveal a surprisingly filamentary structure not visible from previous imaging and indicate considerable morphological differences between forbidden O III and H-alpha + forbidden N II emission regions. The H-alpha + forbidden N II filaments appear elongated in the E-W direction like that of the radio emission plateau surrounding the central core. The forbidden O III emission is much smaller in angular size but matches well the position, shape and size of the core's 6 cm radio emission. Also detected are the two possible optical counterparts reported by Blair and Schild (1984) to the remnants' X-ray point source and it is noted that both may have coincident H-alpha + forbidden N II emission.

  4. EXPANSION OF THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Carlton, Ashley K.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2011-08-10

    We present a measurement of the expansion and brightening of G1.9 + 0.3, the youngest Galactic supernova remnant (SNR), comparing Chandra X-ray images obtained in 2007 and 2009. A simple uniform-expansion model describes the data well, giving an expansion rate of 0.642% {+-} 0.049% yr{sup -1} and a flux increase of 1.7% {+-} 1.0% yr{sup -1}. Without deceleration, the remnant age would then be 156 {+-} 11 yr, consistent with earlier results. Since deceleration must have occurred, this age is an upper limit; we estimate an age of about 110 yr or an explosion date of about 1900. The flux increase is comparable to reported increases at radio wavelengths. G1.9+0.3 is the only Galactic SNR increasing in flux, with implications for the physics of electron acceleration in shock waves.

  5. Radio and X-ray maps of the supernova remnant W49B

    NASA Technical Reports Server (NTRS)

    Pye, J. P.; Thomas, N.; Becker, R. H.; Seward, F. D.

    1984-01-01

    New high resolution radio maps of the supernova remnant (SNR) W49B at 6 and 20 cm are presented, together with soft X-ray maps representing the first detection of the SNR in X-rays. The source is also detected in the medium energy X-ray band. The radio maps have a resolution of about 12 arcsec and show that the emission is distributed in an incomplete shell of radius about 100 arcsec, with intense ridges in the west and east. There is no indication of significant spectral variations between 6 and 20 cm and no significant polarization is detected. The X-ray map shows emission which is clearly extended and increases in intensity toward the center of the radio remnant, with no evidence for limb brightening. The X-ray surface brightness distribution falls to half peak value at about 75 arcsec radius. There is no evidence for a pointlike X-ray source.

  6. X-ray characteristics of the Lupus Loop and SN 1006 supernova remnants

    SciTech Connect

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest x-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 to 10 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  7. The interaction of the supernova remnant Kes 69 with a molecular cloud

    NASA Astrophysics Data System (ADS)

    Miceli, Marco

    2008-10-01

    We propose to perform a single observation (50 ks) of the mixed-morphology supernova remnant Kes 69. Recent millimeter-wavelength observations proved that Kes 69 is interacting with a molecular cloud and X-ray emitting knots have been observed in the interaction region with ROSAT. Clumps of SNR ejecta moving in a dense cloud are predicted to produce a non-thermal knotty emission characterized by strong lines. This effect has been observed only in IC 443 and with the ROSAT dara it is not possible to perform a spatially resolved spectral analysis on the knots in Kes 69. We aim at studying the physical conditions of the plasma in the interaction region. We will also study the inner part of the remnant to investigate the presence of ejecta, recently detected in other mixed-morphology SNRs.

  8. COSMIC-RAY ELECTRON EVOLUTION IN THE SUPERNOVA REMNANT RX J1713.7-3946

    SciTech Connect

    Finke, Justin D.; Dermer, Charles D.

    2012-05-20

    A simple formalism to describe nonthermal electron acceleration, evolution, and radiation in supernova remnants (SNRs) is presented. The electron continuity equation is analytically solved assuming that the nonthermal electron injection power is proportional to the rate at which the kinetic energy of matter is swept up in an adiabatically expanding SNR shell. We apply this model to Fermi and HESS data from the SNR RX J1713.7-3946 and find that a one-zone leptonic model with Compton-scattered cosmic microwave background and interstellar infrared photons has difficulty providing a good fit to its spectral energy distribution, provided the source is at a distance {approx}1 kpc from the Earth. However, the inclusion of multiple zones, as hinted at by recent Chandra observations, does provide a good fit, but requires a second zone of compact knots with magnetic fields B {approx} 16 {mu}G, comparable to shock-compressed fields found in the bulk of the remnant.

  9. Second Epoch Hubble Space Telescope Observations of Kepler's Supernova Remnant: The Proper Motions of Balmer Filaments

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Raymond, John C.; Blair, William P.; Long, Knox S.; Williams, Brian J.; Borkowski, Kazimierz J.; Patnaude, Daniel J.; Reynolds, Stephen P.

    2016-01-01

    We report on the proper motions of Balmer-dominated filaments in Keplers supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of {5.1}-0.7+0.8 kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km s-1 and is encountering material with densities of about 8 cm-3. We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations among these filaments trace the density distribution of the material, which may have a disk-like geometry. Based on observations made with the Hubble Space Telescope.

  10. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-11-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 +- 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is alpha = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  11. AN X-RAY INVESTIGATION OF THREE SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Klimek, Matthew D.; Points, S. D.; Smith, R. C.; Shelton, R. L.; Williams, R. E-mail: spoints@ctio.noao.ed E-mail: rls@physast.uga.ed

    2010-12-20

    We have investigated three supernova remnants (SNRs) in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample (see Section 4) and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing optical emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H{alpha} surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.

  12. A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Chimeno, J. M.; Mimica, P.; Aloy, M. A.; Iyudin, A.

    2015-12-01

    The observational signature of supernova remnants (SNRs) is very complex, in terms of both their geometrical shape and their spectral properties, dominated by non-thermal synchrotron and inverse-Compton scattering. We propose a post-processing method to analyse the broad-band emission of SNRs based on three-dimensional hydrodynamical simulations. From the hydrodynamical data, we estimate the distribution of non-thermal electrons accelerated at the shock wave and follow the subsequent evolution as they lose or gain energy by adiabatic expansion or compression and emit energy by radiation. As a first test case, we use a simulation of a bipolar supernova expanding into a cloudy medium. We find that our method qualitatively reproduces the main observational features of typical SNRs and produces fluxes that agree with observations to within a factor of a few allowing for further use in more extended sets of models.

  13. VLA Observations of J1228+441, a Luminous Supernova Remnant in NGC 4449

    NASA Astrophysics Data System (ADS)

    Lacey, Christina K.; Goss, W. M.; Mizouni, Leila K.

    2007-05-01

    The luminous, oxygen-rich supernova remnant J1228+441 is located in the irregular galaxy NGC 4449 and has been observed at radio wavelengths for 30 years. An analysis of recent Very Large Array (VLA) observations of NGC 4449, combined with VLA archive data and previously published VLA and Westerbork Synthesis Radio Telescope observations, yields light curves at 6 and 20 cm from 1972 to 2002. The light curves at all radio frequencies exhibit a marked decline in radio emission, confirming past findings. This paper presents and discusses the radio light curves and spectral index ? variations from 1972 to 2002, where S?~?-?, and compares J1228+441 with other radio supernovae. The spectral index of J1228+441 appears to have steepened in the last 5 years at higher frequencies, from ?=0.64+/-0.02 in 1996 to ?=1.01+/-0.02 in 2001-2002.

  14. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  15. Analysis of LAC Observations of Clusters of Galaxies and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J.

    1996-01-01

    The following publications are included and serve as the final report: The X-ray Spectrum of Abell 665; Clusters of Galaxies; Ginga Observation of an Oxygen-rich Supernova Remnant; Ginga Observations of the Coma Cluster and Studies of the Spatial Distribution of Iron; A Measurement of the Hubble Constant from the X-ray Properties and the Sunyaev-Zel'dovich Effect of Abell 2218; Non-polytropic Model for the Coma Cluster; and Abundance Gradients in Cooling Flow Clusters: Ginga LAC (Large Area Counter) and Einstein SSS (Solid State Spectrometer) Spectra of A496, A1795, A2142, and A2199.

  16. The Expansion Center and Dynamical Age of the Galactic Supernova Remnant Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Thorstensen, John R.; Fesen, Robert A.; van den Bergh, Sidney

    2001-07-01

    We present proper motions for 21 bright main shell and 17 faint, higher velocity, outer ejecta knots in the Cas A supernova remnant and use them to derive new estimates for the remnant's expansion center and age. Our study included 1951-1976 Palomar 5 m prime focus plates, 1988-1999 CCD images from the KPNO 4 m and MDM 2.4 m telescopes, and 1999 HST WFPC2 images. Measurable positions covered a 23 to 41 yr time span for most knots, with a few outer knots followed for almost 48 yr. We derive an expansion center of α(J2000)=23h23m27.77s+/-0.05s, δ(J2000)=58°48'49.4"+/-0.4" (ICRS), with little difference between centers derived using outer or main shell knots. This position is 3.0" due north of that estimated by van den Bergh & Kamper. It also lies 6.6"+/-1.5" almost due north (P.A.=354deg) of the remnant's recently detected central X-ray point source, implying a transverse velocity for the X-ray point source ~=330 km s-1 at a distance of 3.4 kpc. Using the knots which lie out ahead of the remnant's forward blast wave, we estimate a knot convergent date of A.D. 1671.3+/-0.9 assuming no deceleration. However, a deceleration of just ~1.6 km s-1 yr-1 over a 300 yr time span would produce an explosion date ~=A.D. 1680, consistent with the suspected sighting of the Cas A supernova by J. Flamsteed. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  17. High-velocity, high-excitation neutral carbon in a cloud in the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.; Wallerstein, George

    1995-01-01

    HD 72089 is situated behind the Vela supernova remnant, and the interstellar absorption lines in the spectrum of this star are remarkable for two reasons. First, there are six distinct velocity components that span the (heliocentric) velocity range -60 to +121 km/s in the lines of Na I and Ca II. Second, two of the components at high velocity, one at +85 km/s and another at +121.5 km/s, have densities that are large enough to produce observable lines from neutral carbon. The gas moving at +121.5 km/s has such a large pressure that the excited fine-structure levels of the ground electronic state of C I are collisionally populated nearly in proportion to their level degeneracies. This high-velocity gas exhibits unusually low column densities of Mg I and Na I, compared to that of C I. We propose that the +121.5 km/s component represents gas that has cooled and recombined in a zone that follows a shock driven into a cloud by the very recent passage of a supernova blast wave. A representative preshock density of n(sub H) approximately = 13/cc and velocity v(sub s) = 100 km/s is indicated by the strength of diffuse (O III) emission lines seen in directions very near HD 72089. The strong collisional population of excited C I and apparent absence of excited levels of O I give a most favorable fit to the conditions 1000 less than n(sub H) less than 2900/cc over a temperature range 300 less than T less than 1000 K. The fact that the compression is not substantially more than this indicates that the preshock gas may have had an embedded, transverse magnetic field with a strength B greater than or approximately = 1 micro-G. The large dynamical pressure of the supernova blast wave that would be needed to create the cloud shock that we describe implies that the energy of the supernova was 8 x 10(exp 51) ergs, if the Vela remnant is 500 pc away. We can bring this value much closer to typical supernova energies E less than or approximately = 10(exp 51) ergs if the distance to the remnant is revised downward by at least a factor of 2.

  18. IRAS 15099-5856: REMARKABLE MID-INFRARED SOURCE WITH PROMINENT CRYSTALLINE SILICATE EMISSION EMBEDDED IN THE SUPERNOVA REMNANT MSH15-52

    SciTech Connect

    Koo, Bon-Chul; Kim, Hyun-Jeong; Im, Myungshin; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Lee, Ho-Gyu; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S.; Gaensler, B. M.; Lee, Jae-Joon; Jeong, Woong-Seob; Tatematsu, Ken'ichi; Kawabe, Ryohei; Ezawa, Hajime; Kohno, Kotaro; Wilson, Grant; Yun, Min S.

    2011-05-01

    We report new mid-infrared (MIR) observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended ({approx}4') arc-like filaments. The source is seen only at {>=}10 {mu}m. The Spitzer mid-infrared spectrum of IRS1 shows prominent emission features from Mg-rich crystalline silicates, strong [Ne II] 12.81 {mu}m, and several other faint ionic lines. We model the MIR spectrum as thermal emission from dust and compare with the Herbig Be star HD 100546 and the luminous blue variable R71, which show very similar MIR spectra. Molecular line observations reveal two molecular clouds around the source, but no associated dense molecular cores. We suggest that IRS1 is heated by UV radiation from the adjacent O star Muzzio 10 and that its crystalline silicates most likely originated in a mass outflow from the progenitor of the supernova remnant (SNR) MSH 15-52. IRS1, which is embedded in the SNR, could have been shielded from the SN blast wave if the progenitor was in a close binary system with Muzzio 10. If MSH 15-52 is a remnant of Type Ib/c supernova (SN Ib/c), as has been previously proposed, this would confirm the binary model for SN Ib/c. IRS1 and the associated structures may be the relics of massive star death, as shaped by the supernova explosion, the pulsar wind, and the intense ionizing radiation of the embedded O star.

  19. Two populations of X-ray pulsars produced by two types of supernova.

    PubMed

    Knigge, Christian; Coe, Malcolm J; Podsiadlowski, Philipp

    2011-11-17

    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained. PMID:22080948

  20. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  1. LIMITS ON THE NUMBER OF GALACTIC YOUNG SUPERNOVA REMNANTS EMITTING IN THE DECAY LINES OF {sup 44}Ti

    SciTech Connect

    Dufour, François; Kaspi, Victoria M.

    2013-09-20

    We revise the assumptions of the parameters involved in predicting the number of supernova remnants detectable in the nuclear lines of the decay chain of {sup 44}Ti. Specifically, we consider the distribution of the supernova progenitors, the supernova rate in the Galaxy, the ratios of supernova types, the Galactic production of {sup 44}Ti, and the {sup 44}Ti yield from supernovae of different types to derive credible bounds on the expected number of detectable remnants. We find that, within 1σ uncertainty, the Galaxy should contain an average of 5.1{sup +2.4}{sub -2.0} remnants detectable to a survey with a {sup 44}Ti decay line flux limit of 10{sup –5} photons cm{sup –2} s{sup –1}, with a probability of detecting a single remnant of 2.7{sup +10.0}{sub -2.4}%, and an expected number of detections between two and nine remnants, making the single detection of Cas A unlikely but consistent with our models. Our results show that the probability of detecting the brightest {sup 44}Ti flux source at the high absolute Galactic longitude of Cas A or above is ∼10%. Using the detected flux of Cas A, we attempt to constrain the Galactic supernova rate and Galactic production of {sup 44}Ti, but find the detection to be only weakly informative. We conclude that even future surveys having 200 times more sensitivity than state-of-the-art surveys can be guaranteed to detect only a few new remnants, with an expected number of detections between 8 and 21 at a limiting {sup 44}Ti decay flux of 10{sup –7} photons cm{sup –2} s{sup –1}.

  2. SWIFT/BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44

    SciTech Connect

    Troja, E.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Gehrels, N.; Segreto, A.; La Parola, V.; Cusumano, G.; Hartmann, D.

    2014-12-10

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  3. Spectroscopic studies of two supernova remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Pauletti, D.; Copetti, M. V. F.

    2014-10-01

    This work presents a study of two supernova remnants belonging to the Large Magellanic Cloud, N49 and N11L, based on the spectroscopic mapping of their physical properties. Long slit spectroscopy was used to collect data from a grid of different positions covering the whole nebula by positioning the slit on different and equally spaced declinations. The data were obtained with the 4.1 m SOAR telescope (Southern Astrophysical Research Telescope), in Chile. The spectral coverage was about 3500-8000 . For each object, about 50 emission lines were measured on the spectra, allowing to build maps of many interesting line intensity ratios. The maps of electron density and temperature were obtained using the [S II] ? 6717/? 6731 and [O III] (? 5007+? 4959)/? 4363 line ratio sensors, respectively. N49 presents a strong density gradient with the density varying from 600 cm^{-3} at the North-West to more than 3000 cm^{-3} at the South-East. The electron temperature distribution shows a rough spherical symmetry with the higher values found at the centre. In N11L the electron density varies from less than 100 cm^{-3} to about 400 cm^{-3}, with the higher values found on the bright filaments. These maps were used to build a picture of the structure of these two supernova remnants.

  4. Computer simulations of cosmic-ray diffusion near supernova remnant shock waves

    NASA Technical Reports Server (NTRS)

    Max, C. E.; Zachary, A. L.; Arons, J.

    1989-01-01

    A plasma simulation model was used to study the resonant interactions between streaming cosmic-ray ions and a self-consistent spectrum of Alfven waves, such as might exist in the interstellar medium upstream of a supernova remnant shock wave. The computational model is a hybrid one, in which the background interstellar medium is an MHD fluid and the cosmic-rays are discrete kinetic particles. The particle sources for the electromagnetic fields are obtained by averaging over the fast cyclotron motions. When the perturbed magnetic field is larger than 10 percent of the background field, the macro- and microphysics are no longer correctly predicted by quasi-linear theory. The particles are trapped by the waves and show sharp jumps in their pitch-angles relative to the background magnetic field, and the effective ninety-degree scattering time for diffusion parallel to the background magnetic field is reduced to between 5 and 30 cyclotron periods. Simulation results suggest that Type 1 supernova remnants may be the principal sites of cosmic ray acceleration.

  5. Comparison of the expected and observed supernova remnant counts with Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Vovk, Ie.; Neronov, A.; Malyshev, D.

    2015-12-01

    SNRs are commonly believed to be the accelerators of the galactic cosmic rays - mainly protons - and are expected to produce ?-rays through the inelastic proton-proton collisions. Fermi/LAT was expected to detect many of those, but only a dozen is listed in the recent Fermi/LAT 2nd Source catalogue. To test whether the observed number of SNRs is in agreement with the above assumption, we use a simplified model of an SNR and calculate the predicted amount of the observable remnants taking into account their distribution in the Galaxy and the sensitivity of Fermi/LAT. We find that the observed number of SNRs agrees with the prediction of our model if we assume a low, ? 1 cm-3, number density of the SNR's ambient medium. The result, presented here, suggests, that on average the supernova explosions happen in the under-dense regions, such as bubbles, creating by the winds of the progenitor stars. Under this natural supposition our result finds an agreement with the assumption, that the observed population of supernovae remnants is indeed responsible for the production of the galactic cosmic rays.

  6. AKARI AND BLAST OBSERVATIONS OF THE CASSIOPEIA A SUPERNOVA REMNANT AND SURROUNDING INTERSTELLAR MEDIUM

    SciTech Connect

    Sibthorpe, B.; Ade, P. A. R.; Griffin, M.; Hargrave, P. C.; Mauskopf, P.; Bock, J. J.; Chapin, E. L.; Halpern, M.; Marsden, G.; Devlin, M. J.; Dicker, S.; Klein, J.; Gundersen, J. O.; Hughes, D. H.; Jeong, W.-S.; Kaneda, H.; Koo, B.-C.; Lee, H.-G.; Martin, P. G.; Moon, D.-S.

    2010-08-20

    We use new large area far infrared maps ranging from 65 to 500 {mu}m obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high-resolution data we find a new 'tepid' dust grain population at a temperature of {approx}35 K and with an estimated mass of 0.06 M{sub sun}. This component is confined to the central area of the SNR and may represent newly formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 {mu}m to obtain maps of the column density and temperature of 'cold' dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected 'hot' dust in the remnant, with characteristic temperature 100 K.

  7. RADIOACTIVE SCANDIUM IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert

    2010-12-01

    We report the discovery of thermal X-ray emission from the youngest Galactic supernova remnant G1.9+0.3, from a 237 ks Chandra observation. We detect strong K{alpha} lines of Si, S, Ar, Ca, and Fe. In addition, we detect a 4.1 keV line with 99.971% confidence which we attribute to {sup 44}Sc, produced by electron capture from {sup 44}Ti. Combining the data with our earlier Chandra observation allows us to detect the line in two regions independently. For a remnant age of 100 yr, our measured total line strength indicates synthesis of (1-7) x 10{sup -5} M {sub sun} of {sup 44}Ti, in the range predicted for both Type Ia and core-collapse supernovae (SNe), but somewhat smaller than the 2 x 10{sup -4} M {sub sun} reported for Cas A. The line spectrum indicates supersolar abundances. The Fe emission has a width of about 28,000 km s{sup -1}, consistent with an age of {approx}100 yr and with the inferred mean shock velocity of 14,000 km s{sup -1} deduced assuming a distance of 8.5 kpc. Most thermal emission comes from regions of lower X-ray but higher radio surface brightness. Deeper observations should allow more detailed spatial mapping of {sup 44}Sc, with significant implications for models of nucleosynthesis in Type Ia SNe.

  8. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    SciTech Connect

    Ellison, Donald C.; Bykov, Andrei M. E-mail: byk@astro.ioffe.ru

    2011-04-20

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  9. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  10. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect

    Tian, W. W.; Leahy, D. A.

    2011-03-10

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  11. Electron Heating, Magnetic Field Amplification, and Cosmic-Ray Precursor Length at Supernova Remnant Shocks

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin; Hwang, Una; Ghavamian, Parviz; Rakowski, Cara

    2014-07-01

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and it may be quenched by either nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to 1017-1018 cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly generated shock precursor, which when expressed in terms of the cosmic-ray diffusion coefficient kappav and shock velocity vs is kappav/vs . In the nonresonantly saturated case, the precursor length declines less quickly with increasing vs . Where precursor length proportional to 1/vs gives constant electron heating, this increased precursor length could be expected to lead to higher electron temperatures for nonresonant amplification. This should be expected at faster supernova remnant shocks than studied by previous works. Existing results and new data analysis of SN 1006 and Cas A suggest some observational support for this idea.

  12. Thermal and non-thermal X-rays from the Galactic supernova remnant G348.5+0.1

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Minami, Sari; Ota, Naomi; Koyama, Katsuji

    2014-02-01

    We report on Suzaku results of the two distinct regions in the Galactic supernova remnant G348.5+0.1: extended thermal X-rays ("soft diffuse") at the north-east region and non-thermal X-rays (CXOU J171419.8-383023) at the north-west region. The X-ray spectrum of the soft diffuse X-rays can be fitted with neither an ionization equilibrium nor a non-equilibrium (ionizing) plasma model, leaving saw- tooth residuals in the 1.5-3 keV energy band. The residual structures can be produced when free electrons are recombined to the K-shells of highly ionized Mg and Si ions. In fact, the X-ray spectrum is nicely fitted with a recombination-dominant plasma model. We propose a scenario whereby the plasma in a nearly fully ionized state at high temperature quickly changed to a recombining phase due to selective cooling of electrons to a lower temperature of ˜ 0.5 keV. The spectrum of CXOU J171419.8-383023 is well explained by a simple power-law model with a photon index of 1.9, nearly equal to the typical value for pulsar wind nebulae. Since the distance is estimated to be the same as that of the soft diffuse radiation, we infer that both the soft diffuse X-rays and CXOU J171419.8-383023 are associated with the same object, SNR G348.5+0.1.

  13. The End of Amnesia: Measuring the Metallicities of Type Ia SN Progenitors with Manganese Lines in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Bravo, Eduardo; Hughes, John P.

    2009-05-01

    The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of the Tycho Supernova Remnant. The fluxes of the Mn and Cr Kα lines in the X-ray spectra of Tycho observed by the Suzaku satellite suggests a progenitors of supersolar metallicity.

  14. Deep Chandra Observations of the Composite Supernova Remnant G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Temim, Tea

    2014-11-01

    G327.1-1.1 is a composite SNR containing a symmetric radio shell and a PWN that has likely been disrupted by the reverse shock. Previous X-ray studies reveled a complex morphology; a compact core embedded in bow-shock-like structure, prong-like features extending into large arcs, and thermal emission from the SNR shell. We present deep, 350 ks Chandra observations of G327.1-1.1 that provide new information about the properties of the system, such as the spatial variations in the spectral index across the observed PWN structures, and the thermal temperature across the SNR shell. We also present preliminary HD simulations of an asymmetric PWN/SNR interaction in a system with a moving pulsar, expanding into a non-uniform ISM density, which offer new insight into the nature of the remnant.

  15. 3D hydrodynamic simulations of the Galactic supernova remnant CTB 109

    NASA Astrophysics Data System (ADS)

    Bolte, J.; Sasaki, M.; Breitschwerdt, D.

    2015-10-01

    Context. Using detailed 3D hydrodynamic simulations we study the nature of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well known for its semicircular shape and a bright diffuse X-ray emission feature inside the SNR. Aims: Our model has been designed to explain the observed morphology, with a special emphasis on the bright emission feature inside the SNR. Moreover, we determine the age of the remnant and compare our findings with X-ray observations. With CTB 109 we test a new method of detailed numerical simulations of diffuse young objects, using realistic initial conditions derived directly from observations. Methods: We performed numerical 3D simulations with the RAMSES code. The initial density structure has been directly taken from 12CO emission data, adding an additional dense cloud, which, when it is shocked, causes the bright emission feature. Results: From parameter studies we obtained the position (?,b) = (109.1545,-1.0078) for an elliptical cloud with ncloud = 25 cm-3 based on the preshock density from Chandra data and a maximum diameter of 4.54 pc, whose encounter with the supernova (SN) shock wave generates the bright X-ray emission inside the SNR. The calculated age of the remnant is about 11 000 yr according to our simulations. In addition, we can also determine the most probable site of the SN explosion. Conclusions: Hydrodynamic simulations can reproduce the morphology and the observed size of the SNR CTB 109 remarkably well. Moreover, the simulations show that it is very plausible that the bright X-ray emission inside the SNR is the result of an elliptical dense cloud shocked by the SN explosion wave. We show that numerical simulations using observational data for an initial model can produce meaningful results.

  16. Molecule and dust reprocessing by the reverse shock in the supernova remnant Cas A

    NASA Astrophysics Data System (ADS)

    Biscaro, C.; Cherchneff, I.

    Dust and molecules are observed in various supernovae (SNe) and their remnants, but their formation and evolution in these hostile, shocked environments are still unclear. In some remnants, such as the 330 years-old SN remnant Cas A, the reverse shock (RS) is currently reprocessing the material formed after the SN explosion. Recently, transitions of warm CO have been detected with the Spitzer, AKARI and Herschel telescopes in Cas A ([9], [12]). In particular, CO lines were detected with Herschel in a small O-rich clump, and a high CO column density and temperature, compatible with shocked gas, were derived from line modelling ([12]). These observations thus show that a fair quantity of CO reforms after the passage of the RS. The Cas A remnant results from the explosion of a 19 M star as a Type IIb supernova ([6]), characterised by a lowdensity ejecta. We first model the SN ejecta chemistry to identify the molecules and dust clusters that form after the explosion and are reprocessed by the RS. We find that Cas A progenitor could have formed large quantities of molecules and dust only in a dense ejecta involving clumps. We then model the impact of the RS on an oxygen-rich ejecta clump, considering various RS speeds and investigating the post-shock chemistry. We consider the destruction of molecules and dust clusters by the shock and their reformation using a chemical kinetic model. The impact of UV photons coming from the hot post-shock region on the ionization fraction of the post-shock gas is included. We also model the sputtering (thermal and non-thermal) of the dust by the RS. We found that the reverse shock destroys the molecules and clusters present in the O-rich clump. CO reforms in the post shock gas with abundances that concur with the latest Herschel observations, confirming a post-shock origin for the submm CO lines. We then derive a dust size distribution for the ejecta of the Cas A progenitor, and investigate the effect of different RS velocities on this dust size distribution. Our results show that medium- and large-sized grains can survive the RS and that small dust clusters do not efficiently reform in the shocked gas. This result indicates that the dust formed in the SN ejecta and destroyed by the RS is unable to reform from the gas phase in the SN remnant.

  17. High Resolution X-Ray Spectroscopy and Imaging of Supernova Remnant N132D

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Rasmussen, Andrew; Griffiths, R. Gareth; Dennerl, Konrad; Audard, Marc; Aschenbach, Bernd

    2000-01-01

    The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral lines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K - shell Fe seems to originate near the centre, all of the other ions are observed along the shell. An emission excess of O(6+) over O(7+) is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect a relatively cool region. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O(6+) spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.

  18. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Yuan Qiang; Bi Xiaojun; Liu Siming

    2012-12-20

    Shocks of supernova remnants (SNRs) are important (and perhaps the dominant) agents for the production of the Galactic cosmic rays. Recent {gamma}-ray observations of several SNRs have made this case more compelling. However, these broadband high-energy measurements also reveal a variety of spectral shapes demanding more comprehensive modeling of emissions from SNRs. According to the locally observed fluxes of cosmic-ray protons and electrons, the electron-to-proton number ratio is known to be about 1%. Assuming such a ratio is universal for all SNRs and identical spectral shape for all kinds of accelerated particles, we propose a unified model that ascribes the distinct {gamma}-ray spectra of different SNRs to variations of the medium density and the spectral difference between cosmic-ray electrons and protons observed from Earth to transport effects. For low-density environments, the {gamma}-ray emission is inverse-Compton dominated. For high-density environments like systems of high-energy particles interacting with molecular clouds, the {gamma}-ray emission is {pi}{sup 0}-decay dominated. The model predicts a hadronic origin of {gamma}-ray emission from very old remnants interacting mostly with molecular clouds and a leptonic origin for intermediate-age remnants whose shocks propagate in a low-density environment created by their progenitors via, e.g., strong stellar winds. These results can be regarded as evidence in support of the SNR origin of Galactic cosmic rays.

  19. Hard X-Ray Emission and 44Ti Line Features of the Tycho Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhuo

    2014-07-01

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ~ 0.81 ± 0.45 keV plus a power-law model of Γ ~ 3.01 ± 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral "knee." In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive 44Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the 44Ti line emission, is found with a marginal significance level of ~2.6σ. The corresponding 3σ upper limit on the 44Ti line flux amounts to 1.5 × 10-5 photon cm-2 s-1. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  20. Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44.

    PubMed

    Malkov, M A; Diamond, P H; Sagdeev, R Z

    2011-01-01

    Recent observations of supernova remnant W44 by the Fermi spacecraft observatory support the idea that the bulk of galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleration. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. Here, we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by exactly one power. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is calculated and successfully fitted to the Fermi Observatory data. The parent proton spectrum is best represented by a classical test particle power law ?E(-2), steepening to E(-3) at E(br)?7?GeV due to deteriorated particle confinement. PMID:21326226

  1. A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.

  2. CCD soft X-ray observations of the Puppis a supernova remnant

    NASA Technical Reports Server (NTRS)

    Berthiaume, G. D.; Burrows, D. N.; Garmire, G. P.; Nousek, J. A.

    1994-01-01

    We present the first images and spectra of an astronomical object, other than the Sun, acquired with a charge coupled device (CCD) imaging X-ray spectrometer. During a 230 s sounding rocket observation, we have acquired moderate-resolution spectra and moderate-resolution images of a portion of the Pup A supernova remnant (SNR). Based on these data, we conclude that the X-ray spectrum of Pup A is inconsistent with any single-temperature equilibrium or nonequilibrium plasma model. We find evidence for variations in the emitting plasma on scales as small as 5.0 min and as large as 30.0 min. The spatial structure of the spectral variations in the remnant is found to be inconsistent with the standard Sedov model for the evolution of a SRN into a homogeneous interstellar medium (ISM). We suggest that the remnant is expanding into a region of the ISM having a density of approximately 1 cm(exp -3) with inhomogeneities on the order of 50%. We have found evidence for the presence of a knot of plasma enriched in neon, but require more data to be conclusive.

  3. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-10-01

    Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths 1%-5% of remnant radius and magnetic field strengths 50-400 ?G assuming Bohm diffusion. X-ray rim widths are 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields ?20 ?G, affirming the necessity of magnetic field amplification beyond simple compression.

  4. Hard X-ray emission and {sup 44}Ti line features of the Tycho supernova remnant

    SciTech Connect

    Wang, Wei; Li, Zhuo E-mail: zhuo.li@pku.edu.cn

    2014-07-10

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ∼ 0.81 ± 0.45 keV plus a power-law model of Γ ∼ 3.01 ± 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive {sup 44}Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the {sup 44}Ti line emission, is found with a marginal significance level of ∼2.6σ. The corresponding 3σ upper limit on the {sup 44}Ti line flux amounts to 1.5 × 10{sup –5} photon cm{sup –2} s{sup –1}. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  5. An Archival X-ray Study of the Large Magellanic Cloud Supernova Remnant N132D

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul P.; Foster, Adam; Gaetz, Terrance; Jerius, Diab H.; Patnaude, Daniel; Edgar, Richard J.; Smith, Randall K.; Blair, William P.

    2016-01-01

    We present the results of an analysis of the archival XMM-Newton EPIC data (203ks for pn and 556/574ks for MOS1/MOS2) and the Chandra X-ray Observatory ACIS data (89ks) of the brightest X-ray supernova remnant (SNR) in the Large Magellanic Cloud (LMC) N132D. N132D has been classified as an ``O-rich'' remnant based on the UV and optical spectra which show emission from C, O, Ne, Mg, and Si. These spectra of the central optical knots do not show any emission from elements with Z higher than Si, yet the nucleosynthesis models predict significant quantities of these higher Z elements. Our spectral analysis of the deep XMM data clearly shows emission lines from S, Ar, Ca, and Fe, with indications of other possible features between Ca and Fe. We use a combination of the high resolution images from Chandra and the sensitive spectra from XMM to disentangle the emission from swept-up interstellar material and a possible hot ejecta component. We interpret these results in the context of a 3,000 year old remnant from a massive progenitor that has exploded into a cavity created by the progenitor.This research was supported by the NASA Astrophysics Data Analysis Program (ADAP) through grant number NNX11AD17G.

  6. X-ray, optical and UV observations of the young supernova remnant in the irregular galaxy NGC 4449

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Raymond, J. C.; Kirshner, R. P.; Winkler, P. F.; Fesen, R. A.; Gull, T. R.

    1983-01-01

    A powerful young supernova remnant (SNR) similar to Cas A has recently been discovered in the irregular galaxy NGC 4449. X-ray, optical and ultraviolet data have been obtained which allow possible models for this object to be investigated and its age to be estimated. Several lines of argument indicate a massive star of order 25 solar masses as the precursor to this remnant. If the X-ray emision is attributed to a reverse shock in the ejecta, the remnant should be about 120 years old.

  7. Giant-scale supernova remnants - The role of differential galactic rotation and the formation of molecular clouds

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Palous, J.

    1987-01-01

    The evolution of remnants produced by the total supernova power from an evolved OB association in a differentially rotating galactic disk is presented. The calculations at 5 kpc and 10 kpc from the galactic center lead to column densities across the remnant shell, or across sections of the remnants, which eventually exceed the opacity criterion of Franco and Cox (1986) and thus form molecular clouds. The resultant clouds have masses larger than 100,000 solar masses, dimensions of several hundred parsecs, and a separation larger than 1 kpc. In contrast, at 20 kpc from the galactic center the opacity criterion is never fulfilled.

  8. Chandra and XMM-Newton study of the supernova remnant Kes 73 hosting the magnetar 1E 1841-045

    SciTech Connect

    Kumar, Harsha S.; Safi-Harb, Samar; Slane, Patrick O.; Gotthelf, E. V. E-mail: samar@physics.umanitoba.ca E-mail: eric@astro.columbia.edu

    2014-01-20

    We present a Chandra and XMM-Newton study of the supernova remnant (SNR) Kes 73 hosting the anomalous X-ray pulsar 1E 1841045. The Chandra image reveals clumpy structures across the remnant with enhanced emission along the western rim. The X-ray emission fills the radio shell and spatially correlates with the infrared image. The global X-ray spectrum is described by a two-component thermal model with a column density N {sub H} = 2.6{sub ?0.3}{sup +0.4}10{sup 22} cm{sup 2} and a total luminosity of L{sub X} = 3.3{sub ?0.5}{sup +0.7}10{sup 37} erg s{sup 1} (0.5-10 keV, at an assumed distance of 8.5 kpc). The soft component is characterized by a temperature kT{sub s} = 0.5{sub ?0.2}{sup +0.1} keV, a high ionization timescale, and enhanced Si and S abundances, suggesting emission that is dominated by shocked ejecta. The hard component has a temperature kT{sub h} = 1.6{sub ?0.7}{sup +0.8} keV, a relatively low ionization timescale, and mostly solar abundances suggesting emission that is dominated by interstellar/circumstellar shocked material. A spatially resolved spectroscopy study reveals no significant variations in the spectral properties. We infer an SNR age ranging between 750 yr and 2100 yr, an explosion energy of 3.0{sub ?1.8}{sup +2.8}10{sup 50} erg and a shock velocity of (1.2 0.3)10{sup 3} km s{sup 1} (under the Sedov phase assumption). We also discuss the possible scenario for Kes 73 expanding into the late red-supergiant wind phase of its massive progenitor. Comparing the inferred metal abundances to core-collapse nucleosynthesis model yields, we estimate a progenitor mass ?20 M {sub ?}, adding a candidate to the growing list of highly magnetized neutron stars proposed to be associated with very massive progenitors.

  9. Chandra X-Ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E 0102.2-7219.

    PubMed

    Gaetz; Butt; Edgar; Eriksen; Plucinsky; Schlegel; Smith

    2000-05-01

    We present observations of the young, oxygen-rich supernova remnant 1E 0102.2-7219 taken by the Chandra X-Ray Observatory during its orbital activation and checkout phase. The boundary of the blast-wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast-wave velocity to be determined accurately. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O vii versus O viii emission indicates an ionizing shock propagating inward, possibly through a strong density gradient in the ejecta. We compare the X-ray emission with Australia Telescope Compact Array 6 cm radio observations (Amy & Ball) and with archival Hubble Space Telescope [O iii] observations. The ring of radio emission is predominantly inward of the outer blast wave, which is consistent with an interpretation of synchrotron radiation originating behind the blast wave but outward of the bright X-ray ring of emission. Many (but not all) of the prominent optical filaments are seen to correspond to X-ray bright regions. We obtain an upper limit of approximately 9x1033 ergs s-1 (3 sigma) on any potential pulsar X-ray emission from the central region. PMID:10790068

  10. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  11. EVOLUTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: MORPHOLOGICAL CHANGES FROM DAY 7000

    SciTech Connect

    Ng, C.-Y.; Zanardo, G.; Potter, T. M.; Staveley-Smith, L.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-11-10

    We present radio imaging observations of supernova remnant 1987A at 9 GHz, taken with the Australia Telescope Compact Array over 21 years from 1992 to 2013. By employing a Fourier modeling technique to fit the visibility data, we show that the remnant structure has evolved significantly since day 7000 (mid-2006): the emission latitude has gradually decreased such that the overall geometry has become more similar to a ring structure. Around the same time, we find a decreasing trend in the east-west asymmetry of the surface emissivity. These results could reflect the increasing interaction of the forward shock with material around the circumstellar ring, and the relative weakening of the interaction with the lower-density material at higher latitudes. The morphological evolution caused an apparent break in the remnant expansion measured with a torus model, from a velocity of 4600{sup +150}{sub -}200 km s{sup 1} between day 4000 and 7000 to 2400{sup +100}{sub -200} km s{sup 1} after day 7000. However, we emphasize that there is no conclusive evidence for a physical slowing of the shock at any given latitude in the expanding remnant, and that a change of radio morphology alone appears to dominate the evolution. This is supported by our ring-only fits which show a constant expansion of 3890 50 km s{sup 1} without deceleration between days 4000 and 9000. We suggest that once the emission latitude no longer decreases, the expansion velocity obtained from the torus model should return to the same value as that measured with the ring model.

  12. Spitzer observations of the type IA supernova remnant N103B: Kepler's older cousin?

    SciTech Connect

    Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Ghavamian, Parviz; Raymond, John C.; Long, Knox S.; Blair, William P.; Sankrit, Ravi; Hendrick, Sean P.

    2014-08-01

    We report results from Spitzer observations of SNR 0509-68.7, also known as N103B, a young Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC) that shows interaction with a dense medium in its western hemisphere. Our images show that N103B has strong IR emission from warm dust in the post-shock environment. The post-shock gas density we derive, 45 cm{sup –3}, is much higher than in other Type Ia remnants in the LMC, though a lack of spatial resolution may bias measurements toward regions of higher than average density. This density is similar to that in Kepler's SNR, a Type Ia interacting with a circumstellar medium (CSM). Optical images show Hα emission along the entire periphery of the western portion of the shock, with [O III] and [S II] lines emitted from a few dense clumps of material where the shock has become radiative. The dust is silicate in nature, though standard silicate dust models fail to reproduce the '18 μm' silicate feature that peaks instead at 17.3 μm. We propose that the dense material is circumstellar material lost from the progenitor system, as with Kepler. If the CSM interpretation is correct, this remnant would become the second member, along with Kepler, of a class of Type Ia remnants characterized by interaction with a dense CSM hundreds of years post-explosion. A lack of N enhancement eliminates symbiotic asymptotic giant branch progenitors. The white dwarf companion must have been relatively unevolved at the time of the explosion.

  13. THE DOUBLE PULSAR: EVIDENCE FOR NEUTRON STAR FORMATION WITHOUT AN IRON CORE-COLLAPSE SUPERNOVA

    SciTech Connect

    Ferdman, R. D.; Kramer, M.; Stappers, B. W.; Lyne, A. G.; Stairs, I. H.; Breton, R. P.; McLaughlin, M. A.; Freire, P. C. C.; Possenti, A.; Kaspi, V. M.; Manchester, R. N.

    2013-04-10

    The double pulsar system PSR J0737-3039A/B is a double neutron star binary, with a 2.4 hr orbital period, which has allowed measurement of relativistic orbital perturbations to high precision. The low mass of the second-formed neutron star, as well as the low system eccentricity and proper motion, point to a different evolutionary scenario compared to most other known double neutron star systems. We describe analysis of the pulse profile shape over 6 years of observations and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR J0737-3039A, to be a near-orthogonal rotator with an average separation between its spin and magnetic axes of 90 Degree-Sign {+-} 11 Degree-Sign {+-} 5 Degree-Sign . Furthermore, we find a mean 95% upper limit on the misalignment between its spin and orbital angular momentum axes of 3. Degree-Sign 2, assuming that the observed emission comes from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron capture onto an O-Ne-Mg core.

  14. The Double Pulsar: Evidence for Neutron Star Formation without an Iron Core-collapse Supernova

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Kramer, M.; Breton, R. P.; McLaughlin, M. A.; Freire, P. C. C.; Possenti, A.; Stappers, B. W.; Kaspi, V. M.; Manchester, R. N.; Lyne, A. G.

    2013-04-01

    The double pulsar system PSR J0737-3039A/B is a double neutron star binary, with a 2.4 hr orbital period, which has allowed measurement of relativistic orbital perturbations to high precision. The low mass of the second-formed neutron star, as well as the low system eccentricity and proper motion, point to a different evolutionary scenario compared to most other known double neutron star systems. We describe analysis of the pulse profile shape over 6 years of observations and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR J0737-3039A, to be a near-orthogonal rotator with an average separation between its spin and magnetic axes of 90 11 5. Furthermore, we find a mean 95% upper limit on the misalignment between its spin and orbital angular momentum axes of 3.2, assuming that the observed emission comes from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron capture onto an O-Ne-Mg core.

  15. The End of Amnesia: A New Method for Measuring the Metallicity of Type Ia Supernova Progenitors Using Manganese Lines in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Bravo, Eduardo; Hughes, John P.

    2008-06-01

    We propose a new method to measure the metallicity of Type Ia supernova progenitors using Mn and Cr lines in the X-ray spectra of young supernova remnants. We show that the Mn-to-Cr mass ratio in Type Ia supernova ejecta is tightly correlated with the initial metallicity of the progenitor, as determined by the neutron excess of the white dwarf material before thermonuclear runaway. We use this correlation, together with the flux of the Cr and Mn Kα X-ray lines in the Tycho supernova remnant recently detected by Suzaku, to derive a metallicity of log (Z) = ‑ 1.32+ 0.67‑0.33 for the progenitor of this supernova, which corresponds to log (Z/Z☉) = 0.60+ 0.31‑0.60 according to the latest determination of the solar metallicity by Asplund and coworkers. The uncertainty in the measurement is large, but metallicities much smaller than the solar value can be confidently discarded. We discuss the implications of this result for future research on Type Ia supernova progenitors.

  16. Very high energy gamma-ray emission from Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Saxon, Dana Boltuch

    Supernova remnant (SNR) G120.1+1.4 (also known as Tycho's SNR) is the remnant of one of only five confirmed historical supernovae. As such, it has been well studied across the electromagnetic spectrum. This thesis describes the first statistically significant detection of very high energy (VHE) ( 100 GeV to 100 TeV) gamma rays from Tycho's SNR, reported in 2011 by the VERITAS collaboration. The analysis that led to that detection was performed by this author, and this dissertation will discuss the process in detail. Subsequently, a statistically significant detection in high energy (HE) ( 30 MeV to 100 GeV) gamma rays was reported by other authors using data from the Fermi Gamma-Ray Space Telescope. Comparison of models to the spectral energy distribution of the photon flux from this remnant in HE and VHE gamma rays favors a hadronic origin for the emission, particularly when combined with current X-ray data, although a leptonic origin cannot be ruled out at this time. This is significant because a confirmed hadronic origin for the gamma-ray emission would identify this SNR as a site of cosmic ray acceleration, providing observational evidence for the idea that SNRs are the source of the Galactic cosmic ray population. Chapter 1 of this dissertation will provide historical background on Tycho's SNR, along with a summary of modern observations of the remnant across the electromagnetic spectrum. Chapter 2 is a discussion of the role played by SNRs in the process of cosmic ray acceleration, including both theoretical underpinnings and observational evidence. Chapter 3 provides an overview of the field of VHE gamma-ray astronomy, with discussions of gamma-ray production mechanisms and gamma-ray source classes. Chapter 4 describes the instruments used to observe HE and VHE gamma rays. Chapter 5 is a discussion of general analysis methods and techniques for data from Imaging Atmospheric Cherenkov Telescopes (IACTs). Chapter 6 provides details about the specific analysis I completed on VERITAS data on Tycho's SNR. Lastly, Chapter 7 discusses the modeling and interpretation of the VHE Tycho detection in the context of current multiwavelength observational results.

  17. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected suggests that long-lived supernova fallback disks may actually be much rarer than thought, or they exist only in conditions that arent compatible with planet formation.So if thats the case, what about the planets found around PSR 1257+12? This pulsar may actually be somewhat unique, in that it was born with an unusually weak magnetic field. This birth defect might have allowed it to form a fallback disk and, subsequently, planets where the sample of energetic pulsars studied here could not.CitationM. Kerr et al.2015 ApJ 809 L11 doi:10.1088/2041-8205/809/1/L11

  18. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected suggests that long-lived supernova fallback disks may actually be much rarer than thought, or they exist only in conditions that arent compatible with planet formation.So if thats the case, what about the planets found around PSR 1257+12? This pulsar may actually be somewhat unique, in that it was born with an unusually weak magnetic field. This birth defect might have allowed it to form a fallback disk and, subsequently, planets where the sample of energetic pulsars studied here could not.CitationM. Kerr et al.2015 ApJ 809 L11 doi:10.1088/2041-8205/809/1/L11

  19. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Kndlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rain, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgr, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. PMID:19574346

  20. Detection of class I methanol (CH{sub 3}OH) maser candidates in supernova remnants

    SciTech Connect

    Pihlström, Y. M.; Mesler, R. A.; McEwen, B. C.; Sjouwerman, L. O.; Frail, D. A.; Claussen, M. J.

    2014-04-01

    We have used the Karl G. Jansky Very Large Array to search for 36 GHz and 44 GHz methanol (CH{sub 3}OH) lines in a sample of 21 Galactic supernova remnants (SNRs). Mainly the regions of the SNRs with 1720 MHz OH masers were observed. Despite the limited spatial extent covered in our search, methanol masers were detected in both G1.4–0.1 and W28. Additional masers were found in Sgr A East. More than 40 masers were found in G1.4–0.1, which we deduce are due to interactions between the SNR and at least two separate molecular clouds. The six masers in W28 are associated with the molecular cloud that is also associated with the OH maser excitation. We discuss the possibility that the methanol maser may be more numerous in SNRs than the OH maser, but harder to detect due to observational constraints.

  1. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; elik, .; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Cillis, A. N.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbel, S.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hayashi, K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jhannesson, G.; Johnson, A. S.; Kamae, T.; Kataoka, J.; Katsuta, J.; Kndlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rain, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Romoli, C.; Snchez-Conde, M.; Schulz, A.; Sgr, C.; Simeon, P. E.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stecker, F. W.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.; Yamazaki, R.; Yang, Z.; Zimmer, S.

    2013-02-01

    Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

  2. The Second Epoch Molonglo Galactic Plane Survey: Images and Candidate Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Green, A. J.; Reeves, S. N.; Murphy, T.

    2014-11-01

    The second epoch Molonglo Galactic Plane Survey covers the area 245 ? l ? 365 and |b| ? 10 at a frequency of 843 MHz and an angular resolution of 45 arcsec 45 arcsec cosec(?). The sensitivity varies between 1-2 mJy beam- 1 depending on the presence of strong extended sources. This survey is currently the highest resolution and most sensitive large-scale continuum survey of the southern Galactic plane. In this paper, we present the images of the complete survey, including postage stamps of some new supernova remnant (SNR) candidates and a discussion of the highly structured features detected in the interstellar medium. The intersection of these two types of features is discussed in the context of the `missing' SNR population in the Galaxy.

  3. C IV EMISSION-LINE DETECTION OF THE SUPERNOVA REMNANT RCW 114

    SciTech Connect

    Kim, I.-J.; Min, K.-W.; Seon, K.-I.; Han, W.; Edelstein, J.

    2010-02-01

    We report the detection of the C IV lambdalambda1548,1551 emission line in the region of the RCW 114 nebula using the FIMS/SPEAR data. The observed C IV line intensity indicates that RCW 114 is much closer to us than WR 90, a Wolf-Rayet star that was thought to be associated with RCW 114 in some of the previous studies. We also found the existence of a small H I bubble centered on WR 90, with a different local standard of rest velocity range from that of the large H I bubble which was identified previously as related to RCW 114. These findings imply that the RCW 114 nebula is likely an old supernova remnant that is not associated with WR 90. Additionally, the global morphologies of the C IV, Halpha, and H I emissions show that RCW 114 has evolved in a non-uniform interstellar medium.

  4. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF SUPERNOVA REMNANTS INTERACTING WITH MOLECULAR CLOUDS

    SciTech Connect

    Castro, Daniel; Slane, Patrick

    2010-07-01

    We report the detection of {gamma}-ray emission coincident with four supernova remnants (SNRs) using data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. G349.7+0.2, CTB 37A, 3C 391, and G8.7-0.1 are SNRs known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in their directions. SNR shocks are expected to be sites of cosmic-ray acceleration, and clouds of dense material can provide effective targets for production of {gamma}-rays from {pi}{sup 0} decay. The observations reveal unresolved sources in the direction of G349.7+0.2, CTB 37A, and 3C 391, and a possibly extended source coincident with G8.7-0.1, all with significance levels greater than 10{sigma}.

  5. Gamma-ray and X-ray Observations Towards the Gamma-Cygni Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram; Weinstein, A.; Theiling, M.; VERITAS Collaboration

    2013-04-01

    We report on observations of the source VER J2019+407 towards the Gamma-Cygni supernova remnant. Very high energy (> 320 GeV) gamma-ray emission from the source was detected by the VERITAS observatory, an array of four 12-meter imaging atmospheric Cherenkov telescopes based near Tucson, Arizona. The proximity of this source to a diffuse region of gamma-ray emission detected by the Fermi Space Telescope increases its significance, and may suggest a connection between the two. To further investigate the properties of VER J2019+407, we have obtained a 50 ks Chandra observation of this region. Analysis of the Chandra data, and implications for the gamma-ray source, will be presented.

  6. The impact of supernova fragments on the evolution of multisupernova remnants

    NASA Technical Reports Server (NTRS)

    Franco, J.; Ferrara, A.; Rozyczka, M.; Tenorio-Tgale, G.; Cox, D. P.

    1993-01-01

    Analytical approximations and 2D hydrodynamical simulations are used to examine the interaction of supernova fragments with the internal structure of large multisupernova remnants (MSRs). The fragments are thermalized by reverse shocks generated in the interaction with the MSR interior, which is assumed to be hot and rarefied. The evolution is divided into two stages: before and after reaching a reference distance, R(E), from the explosion site. As the density of the expanding fragment drops, the reverse shock accelerates, and, when the distance R(E) is reached, it begins to effectively erode the fragment. At some selected evolutionary times, the X-ray emission from the shocked fragment is also calculated. The direct bombardment of the MRS shell by the shocked fragment has a series of important consequences: it excites, punctures, and deforms the expanding shell.

  7. Soft X-Ray Spectroscopy of the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-01

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 bandpass with a resolution up to ~60 (?/??). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at ~22 . Another emission feature at ~45 is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  8. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli,; Blair, William P.; Ghavamian, Parviz; Long, Knox S.

    2010-01-01

    Imaging and spectral observations of the Puppis A supernova remnant (SNR) with the Spitzer Space Telescope confirm that its IR emission is dominated by the thermal continuum emission of swept-up interstellar dust which is collisionally heated by the X-ray emitting gas of the SNR. Line emission is too weak to affect the fluxes measured in broadband observations, and is poorly correlated with the IR or X-ray emission. Modeling of spectra from regions both in the SNR and in the associated ISM show that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) of the ISM are destroyed within the SNR, along with nearly 25% of the mass of graphite and silicate dust grains.

  9. X-rays of IC443 - remnant of Tang dynasty supernova.

    NASA Astrophysics Data System (ADS)

    Wang, Zhenru

    Hard X-rays with energies up to 20 keV were observed from IC443 by the X-ray satellite Ginga. The X-ray flux below 6 keV is found consistent with that of earlier observations with Einstein and HEAO 1, and the X-ray spectrum smoothly extends to 20 keV. The feature of Fe K line is not conspicuous; an upper limit of the equivalent width for its emission is 250 eV. It is likely that the hard X-rays are emitted from a shock-heated plasma with a temperature higher than 10 keV and a number density smaller than 0.1 cm-3 which is probably located in the SW and W regions of IC443. This model predicts the age of IC443 to be about 1000 years. It is suggested that IC443 is the remnant of a supernova in AD 837.

  10. VizieR Online Data Catalog: NGC 3000 candidate supernova remnants (Millar+, 2012)

    NASA Astrophysics Data System (ADS)

    Millar, W. C.; White, G. L.; Filipovic, M. D.

    2012-11-01

    We present the results of a study of observational and identification techniques used for surveys and spectroscopy of candidate supernova remnants (SNRs) in the Sculptor Group galaxy NGC300. The goal of this study was to investigate the reliability of using [Sii]:H?>=0.4 in optical SNR surveys and spectra as an identifying feature of extra-galactic SNRs (egSNRs), and also to investigate the effectiveness of the observing techniques (which are hampered by seeing conditions and telescope pointing errors) using this criterion in egSNR surveys and spectrographs. This study is based on original observations of these objects and archival data obtained from the Hubble Space Telescope which contained images of some of the candidate SNRs in NGC300. We found that the reliability of spectral techniques may be questionable and very high-resolution images may be needed to confirm a valid identification of some egSNRs. (2 data files).

  11. Detection of the characteristic pion-decay signature in supernova remnants.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Busetto, G; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chaves, R C G; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Cillis, A N; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Hewitt, J W; Hill, A B; Hughes, R E; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kataoka, J; Katsuta, J; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Madejski, G M; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mignani, R P; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Romoli, C; Sánchez-Conde, M; Schulz, A; Sgrò, C; Simeon, P E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Stecker, F W; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Thorsett, S E; Tibaldo, L; Tibolla, O; Tinivella, M; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Werner, M; Winer, B L; Wood, K S; Wood, M; Yamazaki, R; Yang, Z; Zimmer, S

    2013-02-15

    Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs. PMID:23413352

  12. DISCOVERY OF THE SMALL-DIAMETER, YOUNG SUPERNOVA REMNANT G354.4+0.0

    SciTech Connect

    Roy, Subhashis; Pal, Sabyasachi E-mail: sabya@csp.res.in

    2013-09-10

    We report the discovery of a shell-like structure G354.4+0.0 of size 1.'6 that shows the morphology of a shell supernova remnant (SNR). Part of the structure shows polarized emission in a NRAO VLA sky survey map. Based on 330 MHz and 1.4 GHz Giant Metrewave Radio Telescope observations and existing observations at higher frequencies, we conclude that the partial shell structure showing synchrotron emission is embedded in an extended H II region of size {approx}4'. The spectrum of the diffuse H II region turns over between 1.4 GHz and 330 MHz. The H I absorption spectrum shows this objected to be located more than 5 kpc from Sun. Based on its morphology, non-thermal polarized emission, and size, this object is one of the youngest SNRs discovered in the Galaxy with an estimated age of {approx}100-500 yr.

  13. Application of a 3D, Adaptive, Parallel, MHD Code to Supernova Remnant Simulations

    NASA Astrophysics Data System (ADS)

    Kominsky, P.; Drake, R. P.; Powell, K. G.

    2001-05-01

    We at Michigan have a computational model, BATS-R-US, which incorporates several modern features that make it suitable for calculations of supernova remnant evolution. In particular, it is a three-dimensional MHD model, using a method called the Multiscale Adaptive Upwind Scheme for MagnetoHydroDynamics (MAUS-MHD). It incorporates a data structure that allows for adaptive refinement of the mesh, even in massively parallel calculations. Its advanced Godunov method, a solution-adaptive, upwind, high-resolution scheme, incorporates a new, flux-based approach to the Riemann solver with improved numerical properties. This code has been successfully applied to several problems, including the simulation of comets and of planetary magnetospheres, in the 3D context of the Heliosphere. The code was developed under a NASA computational grand challenge grant to run very rapidly on parallel platforms. It is also now being used to study time-dependent systems such as the transport of particles and energy from solar coronal mass ejections to the Earth. We are in the process of modifying this code so that it can accommodate the very strong shocks present in supernova remnants. Our test case simulates the explosion of a star of 1.4 solar masses with an energy of 1 foe, in a uniform background medium. We have performed runs of 250,000 to 1 million cells on 8 nodes of an Origin 2000. These relatively coarse grids do not allow fine details of instabilities to become visible. Nevertheless, the macroscopic evolution of the shock is simulated well, with the forward and reverse shocks visible in velocity profiles. We will show our work to date. This work was supported by NASA through its GSRP program.

  14. SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT

    SciTech Connect

    Kerzendorf, Wolfgang E.; Schmidt, Brian P.; Yong, David; Asplund, M.; Nomoto, Ken'ichi; Podsiadlowski, Ph.; Frebel, Anna; Fesen, Robert A. E-mail: brian@mso.anu.edu.au E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: anna@astro.as.utexas.edu

    2009-08-20

    It is widely believed that Type Ia supernovae (SNe Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova (SNe) explosion, providing an opportunity to understand the progenitors of SNe Ia. In this paper, we argue that rotation is a generic signature expected of most nongiant donor stars that is easily measurable. Ruiz-Lapuente et al. examined stars in the center of the remnant of SN 1572 (Tycho SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's center was the system's donor star. We present high-resolution (R {approx_equal} 40, 000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79 {+-} 2 km s{sup -1} with respect to the local standard of rest and put an upper limit on the star's rotation of 7.5 km s{sup -1}. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be {mu} {sub l} = -1.6 {+-} 2.1 mas yr{sup -1} and {mu} {sub b} = -2.7 {+-} 1.6 mas yr{sup -1}. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho SN that is not associated with the SN event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.

  15. Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-ray transport

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Lemoine, M.; Pelletier, G.

    2006-07-01

    Supernovae remnant shock waves could be at the origin of cosmic rays up to energies in excess of the knee (E?3 1015 eV) if the magnetic field is efficiently amplified by the streaming of accelerated particles in the shock precursor. This paper follows up on a previous paper (Pelletier et al. 2006, A&A, in press) which derived the properties of the MHD turbulence so generated, in particular its anisotropic character, its amplitude and its spectrum. In the present paper, we calculate the diffusion coefficients, also accounting for compression through the shock, and show that the predicted three-dimensional turbulence spectrum k_? S3d(k_?,k_?)? k_?-1k_?-? (with k_? and k_? the wavenumber components along and perpendicular to the shock normal) generally leads to Bohm diffusion in the parallel direction. However, if the anisotropy is constrained by a relation of the form k_? ? k_?2/3, which arises when the turbulent energy cascade occurs at a constant rate independent of scale, then the diffusion coefficient loses its Bohm scaling and scales as in isotropic Kolmogorov turbulence. We show that these diffusion coefficients allow to account for X-ray observations of supernova remnants. This paper also calculates the modification of the Fermi cycle due to the energy lost by cosmic rays in generating upstream turbulence and the concomittant steepening of the energy spectrum. Finally we confirm that cosmic rays can produced an amplified turbulence in young SNr during their free expansion phase such that the maximal energy is close to the knee and the spectral index is close to 2.3 in the warm phase of the interstellar medium.

  16. Two-dimensional magnetohydrodynamics simulations of young Type Ia supernova remnants

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Zhang, Li

    2012-08-01

    Using two-dimensional magnetohydrodynamics (MHD) simulations, we investigate the dynamical properties of Type Ia supernova remnants (SNRs) evolved either in a uniform ambient medium or from an interaction with a dense clump. The initial conditions assume that the expansion of the supernova ejecta is of free inertia with a power-law density distribution in the outer part of the ejecta. To include the effects of the diffusive shock acceleration process and the escape of the accelerated particles from the shock front, we use different adiabatic indices in the simulations to study the dynamical evolution of the Type Ia SNRs. Moreover, we investigate the interactions of a SNR with either a small or a large clump. A double-shock structure with a contact discontinuity is produced as the ejecta flow supersonically in the ambient medium; Rayleigh-Taylor instability is clearly shown as fingers near the contact discontinuity in the contour maps of density, and a high density and a high magnetic field can be triggered because of the instability around the Rayleigh-Taylor fingers. We perform simulations with different adiabatic indices, and the results show that a narrower intershock region is produced with a smaller adiabatic index because a larger compression ratio for the SNR shock is induced. The influence of the Rayleigh-Taylor instability on the morphologies of both the forward and reverse shocks is more significant with a smaller adiabatic index. Finally, the simulations of a SNR interacting with a dense clump show that the morphology of the remnant is greatly twisted after the collision, and a filament with a high density and a high magnetic field can be produced as a SNR colliding with a large dense clump.

  17. Electron heating, magnetic field amplification, and cosmic-ray precursor length at supernova remnant shocks

    SciTech Connect

    Laming, J. Martin; Hwang, Una; Ghavamian, Parviz; Rakowski, Cara E-mail: Una.Hwang-1@nasa.gov

    2014-07-20

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and it may be quenched by either nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to 10{sup 17}-10{sup 18} cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly generated shock precursor, which when expressed in terms of the cosmic-ray diffusion coefficient kappav and shock velocity v{sub s} is kappav/v{sub s} . In the nonresonantly saturated case, the precursor length declines less quickly with increasing v{sub s} . Where precursor length proportional to 1/v{sub s} gives constant electron heating, this increased precursor length could be expected to lead to higher electron temperatures for nonresonant amplification. This should be expected at faster supernova remnant shocks than studied by previous works. Existing results and new data analysis of SN 1006 and Cas A suggest some observational support for this idea.

  18. Supernova Remnants and Nucleosynthesis (fos 30): Augmentation Cycle 2 Observations - Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davidsen, Arthur

    1991-07-01

    Overall program: UV and optical spectra of four supernova remnants (SNRs) will be used to study a number of problems related to abundances, grain destruction, interstellar medium properties and physical conditions in SNR shocks. Representatives of three of the main classes of SNRs (Crab-nebula like, Balmer-line and "normal") will be studied in the LMC, where reasonably low reddening permits UV observations. An oxygen-rich SNR in NGC 4449 will be observed, taking advantage of the small FOS slits to isolate the SNR from surrounding H II emission. Two M33 SNRs that were previously part of this proposal have been dropped due to time limitations. This proposal is augmented time to obtain early acq images of two LMC remnants and spectra of N49, which had early acq images in Cy. 0. NOTE: SPECTROSCOPY AND IMAGING ORIGINALLY IN THIS CYCLE 2 PROPOSAL HAVE BEEN SPLIT BY STSCI INTO TWO SEPARATE PROPOSALS TO ALLOW FOR SCHEDULING OF CYCLE 2 EARLY ACQ IMAGING ( FOR LATER CYCLES ) SINCE CYCLE 2 SPECTROSCOPY DEPENDS ON MEASUREMENT OF EARLY ACQ IMAGING OF OTHER TARGETS FROM EARLIER CYCLES.

  19. Supernova Remnants and Nucleosynthesis (fos 30): Augmentation Cycle 2 Observations - Imaging

    NASA Astrophysics Data System (ADS)

    Davidsen, Arthur

    1991-07-01

    Overall program: UV and optical spectra of four supernova remnants (SNRs) will be used to study a number of problems related to abundances, grain destruction, interstellar medium properties and physical conditions in SNR shocks. Representatives of three of the main classes of SNRs (Crab-nebula like, Balmer-line and "normal") will be studied in the LMC, where reasonably low reddening permits UV observations. An oxygen-rich SNR in NGC 4449 will be observed, taking advantage of the small FOS slits to isolate the SNR from surrounding H II emission. Two M33 SNRs that were previously part of this proposal have been dropped due to time limitations. This proposal is augmented time to obtain early acq images of two LMC remnants and spectra of N49, which had early acq images in Cy. 0. NOTE: SPECTROSCOPY AND IMAGING ORIGINALLY IN THE CYCLE 2 PROPOSAL 4108 HAVE BEEN SPLIT BY STSCI INTO TWO SEPARATE PROPOSALS TO ALLOW FOR SCHEDULING OF CYCLE 2 EARLY ACQ IMAGING ( THIS PROPOSAL ) SINCE CYCLE 2 SPECTROSCOPY DEPENDS ON MEASUREMENT OF EARLY ACQ IMAGING OF OTHER TARGETS FROM EARLIER CYCLES.

  20. G33.6 + 0.1 - A shell type supernova remnant with unusual structure

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Becker, R. H.; Seward, F. D.

    1991-01-01

    The morphology of Supernova Remnant G33.6 + 0.1 (Kes 79) has been studied in the X-rays with Einstein and in the radio wavelengths using the VLA. Multifrequency high resolution observations of the VLA at 327, 1500, and 5000 MHz are used to study the radio spectrum and polarization. The radio emission shows well formed outer shell structure and very bright central emission. Although the overall distribution of spectral index (about -0.6 to -0.75) is consistent with that of shell type remnants, the bright filamentary emission along the 'inner ring' has relatively flatter spectrum (alpha about -0.4). Both radio and X-rays show strong central emission; existence of a plerion near the center cannot be ruled out. The X-ray image does not show the characteristic limb brightening for shell type SNRs. The X-ray and radio morphology may be understood in terms of very thick shell and the bright central emission as due to reverse shock.

  1. The effects of ejecta on the X-ray luminosities of supernova remnants

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Dopita, M. A.; Tuohy, I. R.

    1982-01-01

    Because X-ray luminosities of most SNRs are dominated by emission from heavy elements, estimates of the X-ray emitting mass based on cosmic abundances may be incorrect. Here we investigate the apparent density evolution of a SNR when substantial amounts of processed material are ejected by the supernova. If this material is shock heated, it will dominate X-ray emission from the remnant long after the SNR has swept up the equivalent amount of interstellar matter (ISM). Emission from metal-rich ejecta may explain why ISM densities of young remnants far from the galactic plane, deduced from standard analysis, are higher than expected, as well as why larger SNRs appear to be lying in regions of lower ISM density. It should be included in detailed calculations of SNR surface brightness distributions, along with effects due to departures from ionization equilibrium and cloudlet evaporation in a multiphase ISM which may also contribute to the apparent evolution of density with radius.

  2. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Finnegan, G. E-mail: wakely@uchicago.edu

    2011-04-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00{sup h}25{sup m}27.{sup s}0, + 64{sup 0}10'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV){sup -}{Gamma} with {Gamma} = 1.95 {+-} 0.51{sub stat} {+-} 0.30{sub sys} and C = (1.55 {+-} 0.43{sub stat} {+-} 0.47{sub sys}) x 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux above 1 TeV corresponds to {approx}0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is {approx}80 {mu}G, which may be interpreted as evidence for magnetic field amplification.

  3. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Ksenofontov, L. T.; Vlk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of 10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  4. VizieR Online Data Catalog: A catalogue of Galactic supernova remnants (Green, 2014)

    NASA Astrophysics Data System (ADS)

    Green, D. A.

    2014-09-01

    This catalogue of known Galactic supernova remnants (SNRs) is an updated version of the catalogues of Galactic SNRs presented in detail in Green (1984, 1988), in summary form in Green (1991, 1996, 2004, 2009), and on the Web (versions of 1995 July, 1996 August, 1998 September, 2000 August, 2001 December, 2004 January and 2006 April). (Note that version published in Green (1996) was produced in 1993.) This the 2014 May version of the catalogue contains 294 SNRs, and is based on results published in the literature up to the end of 2013. The basic summary data included in this catalogue for each SNR are its Galactic coordinates, RA and Dec (J2000.0), angular size, type, flux density at 1GHz, spectral index, and any other names. Notes on these parameters, on possible remnants not included, and questionable SNRs listed in the catalogue are given in the full version of the catalogue on the Web. It should be noted that there are selection effects which apply to the identification of Galactic SNRs (e.g., Green 1991, 2004, 2005, 2009), so that care should be taken if these data are used in any statistical studies. Published in Green, D.A., 2014, BASI, 42, 47 (2014BASI...42...47G). (1 data file).

  5. A new look at the 'jet' in the CTB 37A/B supernova remnant complex

    NASA Technical Reports Server (NTRS)

    Kassim, Namir E.; Weiler, Kurt W.; Baum, Stefi A.

    1991-01-01

    Very Large Array observations of the unusual southern Galactic supernova remnant (SNR) complex near l = 348 deg, b = 0 deg at wavelengths of 6, 20, and 90 cm are presented. Derived continuum spectra and observed morphologies indicate that G348.5 + 0.1 (CTB 37A) does not have a 'jet' as reported by previous observers but is instead superposed on a second, previously unidentified SNR lying along the line of sight. This new SNR is designated G348.5 - 0.0 according to the usual convention. Other observers have also noted a faint, flat spectrum bridge of emission possibly connecting the G348.5 + 0.1/G348.5 - 0.0 superposition with a third nearby remnant G348.7 + 0.3 (CTB 37B). However, a connection appears unlikely, and it is suggested that the 'bridge' merely consists of faint emission which has 'leaked' from the southeastern side of G348.7 + 0.3 and has no relation to the G348.5 + 0.1/G348.5 - 0.0 superposition. These new data also reveal a remarkable region of 'blown-out' emission from the southwestern part of G348.5 + 0.1 which most likely reflects the presence of large-scale density inhomogeneities in the interstellar medium into which the SNR shell is expanding.

  6. Fermi-LAT and WMAP Observations of the Puppis A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hewitt, J. W.; Grondin, M.-H.; Lemoine-Goumard, M.; Reposeur, T.; Ballet, J.; Tanaka, T.

    2012-11-01

    We report the detection of GeV ?-ray emission from the supernova remnant (SNR) Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest SNRs yet detected at GeV energies, with a luminosity of only 2.7 1034 (D/2.2 kpc)2 erg s-1 between 1 and 100 GeV. The ?-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution (SED), from radio to ?-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of Wilkinson Microwave Anisotropy Probe data to extend the radio spectrum up to 93 GHz. Both leptonic- and hadronic-dominated models can reproduce the nonthermal SED, requiring a total content of cosmic-ray electrons and protons accelerated in Puppis A of at least W CR ? (1-5) 1049 erg.

  7. FERMI-LAT AND WMAP OBSERVATIONS OF THE PUPPIS A SUPERNOVA REMNANT

    SciTech Connect

    Hewitt, J. W.; Grondin, M.-H.; Lemoine-Goumard, M.; Reposeur, T.

    2012-11-10

    We report the detection of GeV {gamma}-ray emission from the supernova remnant (SNR) Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest SNRs yet detected at GeV energies, with a luminosity of only 2.7 Multiplication-Sign 10{sup 34} (D/2.2 kpc){sup 2} erg s{sup -1} between 1 and 100 GeV. The {gamma}-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution (SED), from radio to {gamma}-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of Wilkinson Microwave Anisotropy Probe data to extend the radio spectrum up to 93 GHz. Both leptonic- and hadronic-dominated models can reproduce the nonthermal SED, requiring a total content of cosmic-ray electrons and protons accelerated in Puppis A of at least W {sub CR} Almost-Equal-To (1-5) Multiplication-Sign 10{sup 49} erg.

  8. Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Griffin, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, J. P.; Hui, C. M.; Humensky, T. B.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Ong, R. A.; Orr, M.; Otte, A. N.; Pandel, D.; Park, N. H.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Slane, P.; Smith, A. W.; Tešić, G.; Theiling, M.; Thibadeau, S.; Tsurusaki, K.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Vivier, M.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.

    2011-04-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00h25m27.s0, + 64°10'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV)-Γ with Γ = 1.95 ± 0.51stat ± 0.30sys and C = (1.55 ± 0.43stat ± 0.47sys) × 10-14 cm-2 s-1 TeV-1. The integral flux above 1 TeV corresponds to ~0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is ~80 μG, which may be interpreted as evidence for magnetic field amplification.

  9. Abundance gradients in M31: Comparison of results from supernova remnants and H II regions

    SciTech Connect

    Blair, W.P.; Kirshner, R.P.; Chevalier, R.A.

    1982-03-01

    We have obtained spectra of 11 H II regions and additional spectra of six previously reported supernova remnants (SNRs) in M31. The SNR spectra have been used in conjunction with shock model calculations to give abundances of oxygen, nitrogen, and sulfur in the interstellar gas comprising each remnant. We have also determined abundances for the H II regions using the empirical method described by Pagel et al. Both nitrogen and oxygen abundances decrease by about a factor of 4 from the innermost regions studied (approx.4 kpc) to the outer regions (approx.23 kpc). These gradients are similar to those found in other intermediate and late type spiral galaxies, including our own. The mean nitrogen and sulfur abundances are similar to those of the Orion Nebula, but the mean oxygen abundance is about a factor of 2 higher, accounting for the low excitation of the M31 h II regions. A comparison of the SNR and H II region abundance gradients shows substantial agreement for nitrogen, but discordant results for oxygen; this may be due to problems with the shock models since they do not reproduce the observed relative line intensities of O/sup 0/, O/sup +/, and O/sup + +/. Finally we present observations of SNR candidates in NGC 2403 and IC 342 and discuss the limitations and accuracy of the methods of detecting extragalactic SNRs.

  10. Nonthermal Emission from Middle-aged Supernova Remnants Interacting with Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Tang, Y. Y.; Fang, J.; Zhang, L.

    2011-09-01

    Supernova remnants (SNRs) interacting with dense molecular clouds (MCs) are proven to be bright ?-ray emitters by recent observations in the GeV-TeV band. We theoretically investigate the multiband radiative properties of the four middle-aged SNRs IC443, W51C, W28, and W44 with a time-dependent injection model. In the model, part of the SNR shell transports into a dense MC, with the other part of the shell evolving in a relatively tenuous interstellar medium. We find a broken power law with a break energy of ~3-40 GeV that must be imposed to reproduce the observed multiwavelength spectra for the four remnants. The results indicate that the observed ?-ray spectra can be reproduced as a p-p interaction of the high-energy protons injected by the shell interacting with the MC with the dense matter, whereas the radio emission is produced via synchrotron radiation of the injected electrons from the other part of the shell for the four middle-aged SNRs.

  11. NONTHERMAL EMISSION FROM MIDDLE-AGED SUPERNOVA REMNANTS INTERACTING WITH MOLECULAR CLOUDS

    SciTech Connect

    Tang, Y. Y.; Fang, J.; Zhang, L.

    2011-09-20

    Supernova remnants (SNRs) interacting with dense molecular clouds (MCs) are proven to be bright {gamma}-ray emitters by recent observations in the GeV-TeV band. We theoretically investigate the multiband radiative properties of the four middle-aged SNRs IC443, W51C, W28, and W44 with a time-dependent injection model. In the model, part of the SNR shell transports into a dense MC, with the other part of the shell evolving in a relatively tenuous interstellar medium. We find a broken power law with a break energy of {approx}3-40 GeV that must be imposed to reproduce the observed multiwavelength spectra for the four remnants. The results indicate that the observed {gamma}-ray spectra can be reproduced as a p-p interaction of the high-energy protons injected by the shell interacting with the MC with the dense matter, whereas the radio emission is produced via synchrotron radiation of the injected electrons from the other part of the shell for the four middle-aged SNRs.

  12. FERMI-LAT OBSERVATIONS AND A BROADBAND STUDY OF SUPERNOVA REMNANT CTB 109

    SciTech Connect

    Castro, Daniel; Slane, Patrick; Patnaude, Daniel J.; Ellison, Donald C.

    2012-09-01

    CTB 109 (G109.1-1.0) is a Galactic supernova remnant (SNR) with a hemispherical shell morphology in X-rays and in the radio band. In this work, we report the detection of {gamma}-ray emission coincident with CTB 109, using 37 months of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. We study the broadband characteristics of the remnant using a model that includes hydrodynamics, efficient cosmic-ray (CR) acceleration, nonthermal emission, and a self-consistent calculation of the X-ray thermal emission. We find that the observations can be successfully fit with two distinct parameter sets, one where the {gamma}-ray emission is produced primarily by leptons accelerated at the SNR forward shock and the other where {gamma}-rays produced by forward shock accelerated CR ions dominate the high-energy emission. Consideration of thermal X-ray emission introduces a novel element to the broadband fitting process, and while it does not rule out either the leptonic or the hadronic scenarios, it constrains the parameter sets required by the model to fit the observations. Moreover, the model that best fits the thermal and nonthermal emission observations is an intermediate case, where both radiation from accelerated electrons and hadrons contribute almost equally to the {gamma}-ray flux observed.

  13. IUE spectra and optical imaging of the oxygen-rich supernova remnant N132D

    NASA Technical Reports Server (NTRS)

    Blair, William P.; Raymond, John C.; Long, Knox S.

    1994-01-01

    We present new optical Charge Coupled Devices (CCD) interference filter imagery and International Ultraviolet Explorer (IUE) spectroscopy for the oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. The optical images show a wealth of structure, and comparison with an archival Einstein High Resolution Imager (HRI) X-ray image shows that a few optical features have X-ray counter-parts, but in general there is little correlation between X-ray and optical features. The IUE spectra at two positions show strong lines of carbon and oxygen, with lines of neon, magnesium, silicon, and helium also present and variable in relative intensities. We use optical data for N132D from Dopita & Tuohy (1984) with our UV observations to compare with shock models (both with and without thermal conduction) and X-ray photoionization model calculations. While none of the model fits is entirely satisfactory, the generally weak UV emission relative to optical disagrees with the general character of shock model predictions and indicates that photoionization is the dominant excitation mechanism for the UV/optical emission. This conclusion is similar to what was found for E0102 - 7219, the oxygen-rich remnant in the Small Magellanic Cloud. We derive rough abundances for the emitting material in N132D, compare to stellar nucleosynthesis models, and discuss the implications for its precursor. A precursor near 20 solar mass is consistent with the data.

  14. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    SciTech Connect

    Tappe, A.; Rho, J.; Micelotta, E. R.

    2012-08-01

    We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edge of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.

  15. CONSTRAINING EXPLOSION TYPE OF YOUNG SUPERNOVA REMNANTS USING 24 {mu}m EMISSION MORPHOLOGY

    SciTech Connect

    Peters, Charee L.; Stassun, Keivan G.; Lopez, Laura A.; Figueroa-Feliciano, Enectali; Ramirez-Ruiz, Enrico

    2013-07-10

    Determination of the explosion type of supernova remnants (SNRs) can be challenging, as SNRs are hundreds to thousands of years old and supernovae are classified based on spectral properties days after explosion. Previous studies of thermal X-ray emission from Milky Way and Large Magellanic Cloud SNRs have shown that Type Ia and core-collapse (CC) SNRs have statistically different symmetries, and thus these sources can be typed based on their X-ray morphologies. In this Letter, we extend the same technique, a multipole expansion technique using power ratios, to infrared (IR) images of SNRs to test whether they can be typed using the symmetry of their warm dust emission as well. We analyzed archival Spitzer Space Telescope Multiband Imaging Photometer 24 {mu}m observations of the previously used X-ray sample, and we find that the two classes of SNRs separate according to their IR morphologies. The Type Ia SNRs are statistically more circular and mirror symmetric than the CC SNRs, likely due to the different circumstellar environments and explosion geometries of the progenitors. Broadly, our work indicates that the IR emission retains information of the explosive origins of the SNR and offers a new method to type SNRs based on IR morphology.

  16. Dust and Molecule Formation and Processing in Supernovae and their Remnants

    NASA Astrophysics Data System (ADS)

    Rho, J.; Andersen, M.; Tappe, A.; Gomez, H.; Smith, M.; Bernard, J. P.; Onaka, T.; Cami, J.

    2015-03-01

    Supernovae (SNe) produce, fragment and destroy dust, molecules and nucleosynthetic elements, and reshape and modify the ISM. I will review recent infrared observations of supernova remnants (SNRs) and SNe which show that SNe are important sites of dust and molecule formation and are major dust creators in the Universe. Detection of carbon monoxide (CO) fundamental band from the young SNR Cas A indicates that astrochemical processes in SNRs interacting with molecular clouds provide astrophysical laboratories to study evolution of the ISM returning material from dense clouds into the more diffuse medium and galactic halo. Two dozen SNRs are known to be interacting with molecular clouds using H2 and millimeter observations. Recent Spitzer, Herschel and SOFIA observations along with ground-based observations have greatly advanced our understanding shock processing and astrochemistry of dust, H2, high J CO, and other neutral and ionized molecules and polycyclic aromatic hydrocarbon (PAH). Ionized molecules and warm layer of molecules that are excited by UV radiation, X-rays, or cosmic rays will be described. Finally I will discuss how astrochemical processes of dust and molecules in SNRs impact the large scale structures in the ISM.

  17. Evidence of hadronic interaction in Tycho Supernova Remnant using Fermi-LAT data

    NASA Astrophysics Data System (ADS)

    Caragiulo, M.; Di Venere, L.

    2014-11-01

    The Fermi Large Area Telescope (LAT) has observed Tycho Supernova Remnant in the MeV-GeV energy range. The spectrum has been studied using the first three years of data and new data are being collected. We present a multiwavelength model of the observed spectrum from radio to TeV energy range, based on the hypothesis of hadronic origin of γ-rays. As described by the Fermi acceleration theory, a single proton population was considered, modeled with a simple power-law in momentum. The photon emissivity is computed following Kamae et al (2006) [T. Kamae, et al., ApJ 647 (2006) 692]. The leptonic component is also taken into account according to Giordano et al. (2012) [F. Giordano, et al., ApJ 744 (2012) L2] prescriptions and it turns out to be negligible with respect to the hadronic one. The model returns a spectral index of 2.23 (± 0.05) and an acceleration efficiency of 5% of the total kinetic energy expelled in Supernova explosion and it may provide a hint of the acceleration processes in SNRs up to energies close to the knee of cosmic ray spectrum. This work shows that experimental data can be easily explained with a simple model, representing a good test for the acceleration theory.

  18. Infrared-Excess Stellar Objects in the Supernova Remnant G54.1+0.3

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul

    2012-01-01

    We propose COMICS N- and Q-band imaging observations of infrared-excess stellar objects in G54.1+0.3. G54.1+0.3 is a young supernova remnant (SNR) which has recently attracted considerable interest by its associated infrared (IR) loop and embedded stellar sources discovered by AKARI and Spitzer infrared space telescopes. Two scenarios have been proposed for the relation between the stellar sources with IR excess and the SNR: (i) the stellar sources are young massive stellar objects whose formation was triggered by the progenitor of the SNR, and the IR-excess emission is from their circumstellar material, (ii) the stellar sources are massive stars in a cluster to which the progenitor of the SNR belonged, and the IR-excess emission is from the supernova ejecta dusts. The COMICS silicate filter sets provide sufficient sensitivity and spectral resolution to derive the exact shape of spectra, which together with the Q-band photometry will reveal the nature of dusts in this intriguing object. We also propose [Ne II] and Q-band imaging observations of the brightest compact source in the IR loop to investigate the spatial correlation between the SN ejecta and dusts, which is essential to understand the nature of this compact source.

  19. Supernova Remnants Interacting with Molecular Clouds: X-Ray and Gamma-Ray Signatures

    NASA Astrophysics Data System (ADS)

    Slane, Patrick; Bykov, Andrei; Ellison, Donald C.; Dubner, Gloria; Castro, Daniel

    2015-05-01

    The giant molecular clouds (MCs) found in the Milky Way and similar galaxies play a crucial role in the evolution of these systems. The supernova explosions that mark the death of massive stars in these regions often lead to interactions between the supernova remnants (SNRs) and the clouds. These interactions have a profound effect on our understanding of SNRs. Shocks in SNRs should be capable of accelerating particles to cosmic ray (CR) energies with efficiencies high enough to power Galactic CRs. X-ray and ?-ray studies have established the presence of relativistic electrons and protons in some SNRs and provided strong evidence for diffusive shock acceleration as the primary acceleration mechanism, including strongly amplified magnetic fields, temperature and ionization effects on the shock-heated plasmas, and modifications to the dynamical evolution of some systems. Because protons dominate the overall energetics of the CRs, it is crucial to understand this hadronic component even though electrons are much more efficient radiators and it can be difficult to identify the hadronic component. However, near MCs the densities are sufficiently high to allow the ?-ray emission to be dominated by protons. Thus, these interaction sites provide some of our best opportunities to constrain the overall energetics of these particle accelerators. Here we summarize some key properties of interactions between SNRs and MCs, with an emphasis on recent X-ray and ?-ray studies that are providing important constraints on our understanding of cosmic rays in our Galaxy.

  20. MOLECULAR CLOUDS AS A PROBE OF COSMIC-RAY ACCELERATION IN A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Tanaka, Shuta J.; Takahara, Fumio

    2009-12-20

    We study cosmic-ray acceleration in a supernova remnant (SNR) and the escape from it. We model nonthermal particle and photon spectra for the hidden SNR in the open cluster Westerlund 2, and the old-age mixed-morphology SNR W 28. We assume that the SNR shock propagates in a low-density cavity, which is created and heated through the activities of the progenitor stars and/or previous supernova explosions. We indicate that the diffusion coefficient for cosmic rays around the SNRs is less than approx1% of that away from them. We compare our predictions with the gamma-ray spectra of molecular clouds illuminated by the cosmic rays (Fermi and H.E.S.S.). We found that the spectral indices of the particles are approx2.3. This may be because the particles were accelerated at the end of the Sedov phase, and because energy-dependent escape and propagation of particles did not much affect the spectrum.

  1. Filling the gap between supernova explosions and their remnants: the Cassiopeia A laboratory

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Pumo, M.; Bocchino, F.; Reale, F.; Peres, G.

    2014-07-01

    Supernova remnats (SNRs) show a complex morphology characterized by an inhomogeneous spatial distribution of ejecta, believed to reflect pristine structures and features of the progenitor supernova (SN) explosion. Filling the gap between SN explosions and their remnants is very important for a comprehension of the origin of present-day structure of ejecta in SNRs and to probe and constraint current models of SN explosions. The SNR Cassiopeia A (Cas A) is an attractive laboratory for studying the SNe-SNRs connection, being one of the best studied SNRs for which its 3D structure is known. We present a three-dimensional hydrodynamic model describing the evolution of Cas A from the immediate aftermath of the SN explosion to its expansion through the interstellar medium, taking into account the distribution of element abundances of the ejecta, the backreaction of accelerated cosmic rays at the shock front, and the deviations from equilibrium of ionizazion for the most important elements. We use the model to derive the physical parameters characterizing the SN explosion and reproducing the today morphology of Cas A.

  2. Changes in the optical remnant of Kepler's supernova during the period 1942-1989

    SciTech Connect

    Bandiera, R.; Van den bergh, S. Dominion Astrophysical Observatory, Victoria )

    1991-06-01

    Images of the optical nebulosity associated with Kepler's supernova have been obtained at the Mount Wilson Observatory in 1941-1943, at the Palomar Observatory in 1950-1983, and on La Silla in 1989. These data have been used to study the luminosity evolution of individual knots and the expansion and translation of the optical remnant of Kepler's supernova of 1604. From the study of the motions of 50 long-lived knots, expansion is {minus}0.623 + or {minus} 0.045 arcsec/century, translation is 0.484 + or {minus} 0.049 arcsec/century, and expansion time scale of 32,000 + or {minus} 12,000 yr. For an assumed distance of 4.5 kpc the centroid of the nebulosity tangential velocity is 117 + or {minus} 10 km/s to the W and 105 + or {minus} 11 km/s to the N. By combining astrometric and spectroscopic information, a space velocity of 278 + or {minus} 12 km/s is estimated. This indicates that the progenitor of SN 1604 was a high-velocity object. It could have been either a Population II star or a massive high-velocity runaway star. 30 refs.

  3. THE MORPHOLOGY AND DYNAMICS OF JET-DRIVEN SUPERNOVA REMNANTS: THE CASE OF W49B

    SciTech Connect

    González-Casanova, Diego F.; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lopez, Laura A.

    2014-02-01

    The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 M {sub ☉} Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.

  4. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  5. Spitzer IRS Observations of the XA Region in the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Raymond, John C.; Bautista, Manuel; Gaetz, Terrance J.; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.

    2014-05-01

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 μm wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km s-1 shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km s-1 that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3 × 1018 cm-2, and the gas has reached a temperature of 7000-8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position. Based on observations made with the Spitzer Space Telescope.

  6. Spitzer IRS observations of the XA region in the cygnus loop supernova remnant

    SciTech Connect

    Sankrit, Ravi; Bautista, Manuel; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.

    2014-05-20

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 ?m wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km s{sup 1} shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km s{sup 1} that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3 10{sup 18} cm{sup 2}, and the gas has reached a temperature of 7000-8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position.

  7. Possible detection of the stellar donor or remnant for the type Iax supernova 2008ha

    SciTech Connect

    Foley, Ryan J.; McCully, Curtis; Jha, Saurabh W.; Bildsten, Lars; Fong, Wen-fai; Narayan, Gautham; Rest, Armin; Stritzinger, Maximilian D.

    2014-09-01

    Type Iax supernovae (SNe Iax) are thermonuclear explosions that are related to SNe Ia, but are physically distinct. The most important differences are that SNe Iax have significantly lower luminosity (1%-50% that of typical SNe Ia), lower ejecta mass (∼0.1-0.5 M {sub ☉}), and may leave a bound remnant. The most extreme SN Iax is SN 2008ha, which peaked at M{sub V} = –14.2 mag, about 5 mag below that of typical SNe Ia. Here, we present Hubble Space Telescope (HST) images of UGC 12682, the host galaxy of SN 2008ha, taken 4.1 yr after the peak brightness of SN 2008ha. In these deep, high-resolution images, we detect a source coincident (0.86 HST pixels; 0.''043; 1.1σ) with the position of SN 2008ha with M {sub F814W} = –5.4 mag. We determine that this source is unlikely to be a chance coincidence, but that scenario cannot be completely ruled out. If this source is directly related to SN 2008ha, it is either the luminous bound remnant of the progenitor white dwarf (WD) or its companion star. The source is consistent with being an evolved >3 M {sub ☉} initial mass star, and is significantly redder than the SN Iax 2012Z progenitor system, the first detected progenitor system for a thermonuclear SN. If this source is the companion star for SN 2008ha, there is a diversity in SN Iax progenitor systems, perhaps related to the diversity in SN Iax explosions. If the source is the bound remnant of the WD, it must have expanded significantly. Regardless of the nature of this source, we constrain the progenitor system of SN 2008ha to have an age of <80 Myr.

  8. A Study of the Non-Thermal X-Ray Emission of Shell-Type Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Allen, Glenn E.

    2002-01-01

    The term of the second year of the award is the period from March 15, 2001 to March 14, 2002. As was the specified goal of the second year, we analyzed the spatial and spectral X-ray data for several young supernova remnants. I published a paper about an analysis of the ROSAT, ASCA, and RXTE data for the supernova remnant SN 1006. A copy of this paper is enclosed. As described in the paper, we believe that we accurately modeled the nonthermal X-ray emission from the remnant. The results of this analysis are used to infer properties about the cosmic rays accelerated in the remnant and to argue that the strength of the magnetic field in the remnant is considerably larger than the value of about 10 micro G reported elsewhere. The results were presented at the August 2001 International Cosmic Ray Conference in Hamburg, German),. I began analyzing new Chandra X-ray data for SN 1006. This analysis will yield the first measure of the strength of the magnetic field in the remnant for the first time. Preliminary results support our previous conclusion that the magnetic field strength in the remnant is much larger than 10 micro G. The field strength seems to be about the strength expected based on an equipartition calculation. The result supports recent models that describe the how the shock structure is influenced by the efficient acceleration of cosmic rays. This work will be presented at the April 2002 High Energy Astrophysics Division meeting in Albuquerque and published this summer. A copy of the abstract for the talk is enclosed. I began studying new Chandra X-ray data for the supernova remnant Cas A. The results of this work show that the forward shock is a region where cosmic-ray electrons are accelerated, which is consistent with theoretical expectations. The work was presented at the September 2001 Two Years of Science with Chandra symposium in Washington, DC. A copy of the poster paper is enclosed. Dr. Thomas Pannuti, whose research work is supported by the award, analyzed ROSAT, ASCA, and RXTE data for the supernova remnant G347.3-0.5. The results show for the first time that thermal X-ray emission is produced in the remnant. As expected, the thermal emission is consistent with a model in which the remnant is expanding into a very low density environment. The results also provide an accurate description of the nonthermal emission from the remnant. Dr. Pannuti presented this work at several conferences. A copy of the paper for the proceedings of the August 2001 Neutron Stars in Supernova Remnants symposium in enclosed. The work will be submitted to the Astrophysical Journal in the next few months.

  9. The structure of TeV-bright shell-type supernova remnants

    NASA Astrophysics Data System (ADS)

    Yang, Chuyuan; Liu, Siming; Fang, Jun; Li, Hui

    2015-01-01

    Aims: Two-dimensional magnetohydrodynamic (MHD) simulations are used to model the emission properties of TeV-bright shell-type supernova remnants (SNRs) and to explore their nature. Methods: In the leptonic scenario for the TeV emission, the ?-ray emission is produced via inverse Compton scattering of background soft photons by high-energy electrons accelerated by the shocks of the SNRs. In a previous paper, we showed that since the energy densities of the cosmic microwave background radiation and that of the IR/optical background photons are much higher than that of the photons produced by the same high-energy electrons via the synchrotron process, the observed correlation between X-ray and TeV brightness of SNR RX J1713.7-3946 can be readily explained with the assumption that the energy density of relativistic electrons is proportional to that of the magnetic field. The TeV emissivity is therefore proportional to the magnetic field energy density and MHD simulations can be used to model the TeV structure of such remnants directly. Two-dimensional MHD simulations for SNRs are then performed under the assumption that the ambient interstellar medium is turbulent with the magnetic field and density fluctuations, following a Kolmogorov-like power-law spectrum. Results: (1) As expected, these simulations confirm early 1D and 2D modelings of these sources, namely the hydrodynamical evolution of the shock waves and amplification of magnetic field by Rayleigh-Taylor convective flows and by shocks propagating in a turbulent medium; (2) we reproduce rather complex morphological structure for ?-rays, for example, the bright thin rim and significant asymmetry, suggesting intrinsic variations of the source morphology not related to the structure of the progenitor and environment; and (3) the observed radial profile of several remnants are well reproduced with an ambient medium density of 0.1-1 cm-3. An even lower ambient density leads to a sharper drop of the TeV brightness with radius than what is observed near the outer edge of these remnants. Conclusions: In a turbulent background medium, we can reproduce the observed characteristics of several shell-type TeV SNRs with reasonable parameters except for a higher ambient density than that inferred from X-ray observations.

  10. TeV Gamma-Ray Observations of the Supernova Remnant RCW86 with the CANGAROO-II Telescope

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Tanimori, T.; Kubo, H.; Asahara, A.; Bicknell, G. V.; Clay, R. W.; Doi, Y.; Edwards, P. G.; Enomoto, R.; sGunji, S.; Hara, S.; Hara, T.; Hattori, T.; Hayashi, S.; Itoh, C.; Kabuki, S.; Kajino, F.; Katagiri, H.; Kawachi, A.; Kifune, T.; Ksenofontov, L. T.; Kurihara, T.; Kurosaka, R.; Kushida, J.; Matsubara, Y.; Miyashita, Y.; Mizumoto, Y.; Mori, M.; Moro, H.; Muraishi, H.; Muraki, Y.; Naito, T.; Nakase, T.; Nishida, D.; Nishijima, K.; Ohishi, M.; Okumura, K.; Patterson, J. R.; Protheroe, R. J.; Sakamoto, N.; Sakurazawa, K.; Swaby, D. L.; Tanimura, H.; Thornton, G.; Tokanai, F.; Tsuchiya, K.; Uchida, T.; Yamaoka, T.; Yanagita, S.; Yoshida, T.; Yoshikoshi, T.

    2003-07-01

    The supernova remnant(SNR) RCW86(G315.4-2.3) has been observed as our third SNR in 2001 and 2002 with the CANGAROO-I I 10 m telescope from Wo omera, South Australia, to further test the hypothesis that SNR accelerate cosmic rays. RCW86 is a type I I and shell-like supernova remnant, and ASCA detected non-thermal X-ray emission from the southwest shell of RCW86, which is brighter than that from SN1006. The multiwavelength spectrum of RCW86 derived from radio and X-ray data indicates that the emission is due to the synchrotron radiation, and it is argued that high energy electrons emitting the detected synchrotron radiation are expected to be accelerated up to 20 TeV.

  11. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  12. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Pagnotta, Ashley

    2012-01-01

    A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a `double-degenerate' origin), or by mass transfer from a companion star (the `single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 +/- 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of MV = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3? maximum distance to which a companion could have been `kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.

  13. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5.

    PubMed

    Schaefer, Bradley E; Pagnotta, Ashley

    2012-01-12

    A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a 'double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 ± 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of M(V) = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been 'kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system. PMID:22237107

  14. The supernova remnant W50: understanding the magnetic fields in a unique outflow-driven object

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.; Gaensler, B. M.

    We present new radio observations of the nebula W50 (G39.7-2.0), using the Australia Telescope Compact Array (ATCA). Our understanding of this enigmatic object has previously been hindered by the large angular extent of the nebulae (2x1 degrees), with the Western edge dipping into the Galactic plane. Such large objects are typically poorly studied due to the considerable number of separate pointings required for full imaging. The nebula is also entirely unique in that it appears to be interacting with the central compact source and first known Galactic microquasar, SS433. Our mosaiced, spectropolarimetric ATCA observations of this field are centred at 2.1 GHz, using a large bandwidth of 2 GHz. This allows us to measure the polarised fraction, rotation measure, depolarisation, and spectral index of W50's emission, and to detect diffuse linearly polarised emission which 'lights up' the large-scale ordered magnetic fields in the object. The challenge of processing such wide-field, wide-band, spectropolarimetric observations is a significant technical issue that is currently being faced by the upcoming Square Kilometre Array (SKA) pathfinders and will be faced by the SKA itself. We therefore analyse the data using techniques that are fundamental to understanding cosmic magnetism - such as Rotation Measure Synthesis - and that allow us to probe Faraday rotation along the line of sight towards W50. Through these methods it is possible to distinguish between magnetic effects arising in the nebula itself, and those arising along the line of sight in intervening Faraday screens. While W50 is typically considered to be a supernova remnant, the contribution from the initial explosion that presumably preceded formation of the compact object SS433, has not previously been convincingly distinguished from the impact of the jet and wind activity of the central system. We shall discuss how we are able to put constraints on the formation of the object through our discovery of a 'ring' of ordered magnetic fields that surrounds SS433 - consistent with field compression from a shock wave, and evidence in favour of the supernova remnant hypothesis.

  15. The population of X-ray supernova remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Haberl, F.; Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Filipović, M. D.; Vasilopoulos, G.; Pietsch, W.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.; Greiner, J.

    2016-01-01

    Aims: We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). Using primarily XMM-Newton observations, we conduct a systematic spectral analysis of LMC SNRs to gain new insight into their evolution and the interplay with their host galaxy. Methods: We combined all the archival XMM-Newton observations of the LMC with those of our Very Large Programme LMC survey. We produced X-ray images and spectra of 51 SNRs, out of a list of 59 objects compiled from the literature and augmented with newly found objects. Using a careful modelling of the background, we consistently analysed all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. The locations of SNRs are compared to the distributions of stars, cold gas, and warm gas in the LMC, and we investigated the connection between the SNRs and their local environment, characterised by various star formation histories. We tentatively typed all LMC SNRs, in order to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We also compared the column densities derived from X-ray spectra to H i maps, thus probing the three-dimensional structure of the LMC. Results: This work provides the first homogeneous catalogue of the X-ray spectral properties of SNRs in the LMC. It offers a complete census of LMC remnants whose X-ray emission exhibits Fe K lines (13% of the sample), or reveals the contribution from hot supernova ejecta (39%), which both give clues to the progenitor types. The abundances of O, Ne, Mg, Si, and Fe in the hot phase of the LMC interstellar medium are found to be between 0.2 and 0.5 times the solar values with a lower abundance ratio [α/Fe] than in the Milky Way. The current ratio of core-collapse to type Ia SN rates in the LMC is constrained to NCC/NIa=1.35(-0.24+0.11), which is lower than in local SN surveys and galaxy clusters. Our comparison of the X-ray luminosity functions of SNRs in Local Group galaxies (LMC, SMC, M31, and M33) reveals an intriguing excess of bright objects in the LMC. Finally, we confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC to the far and near sides, respectively. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  16. NONUNIFORM EXPANSION OF THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2014-08-01

    We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the X-ray bright SE-NW axis from 0.84% 0.06% yr{sup 1} to 0.52% 0.03% yr{sup 1}. This corresponds to undecelerated ages of 120-190yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% 0.4% yr{sup 1}. We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor. Alternatively, the reverse shock might have encountered an order-of-magnitude density discontinuity within the ejecta, such as may be found in pulsating delayed-detonation Type Ia models. We demonstrate that the blast wave is much more decelerated than the reverse shock in these models for remnants at ages similar to G1.9+0.3. Similar effects may also be produced by dense shells possibly associated with high-velocity features in Type Ia spectra. Accounting for the asymmetry of G1.9+0.3 will require more realistic three-dimensional Type Ia models.

  17. THE MAGELLAN/IMACS CATALOG OF OPTICAL SUPERNOVA REMNANT CANDIDATES IN M83

    SciTech Connect

    Blair, William P.; Winkler, P. Frank; Long, Knox S. E-mail: winkler@middlebury.edu

    2012-11-15

    We present a new optical imaging survey of supernova remnants (SNRs) in M83, using data obtained with the Magellan I 6.5 m telescope and IMACS instrument under conditions of excellent seeing. Using the criterion of strong [S II] emission relative to H{alpha}, we confirm all but three of the 71 SNR candidates listed in our previous survey, and expand the SNR candidate list to 225 objects, more than tripling the earlier sample. Comparing the optical survey with a new deep X-ray survey of M83 with Chandra, we find that 61 of these SNR candidates have X-ray counterparts. We also identify an additional list of 46 [O III]-selected nebulae for follow-up as potential ejecta-dominated remnants, seven of which have associated X-ray emission that makes them strong candidates. Some of the other [O III]-bright objects could also be normal interstellar medium (ISM) dominated SNRs with shocks fast enough to doubly ionize oxygen, but with H{alpha} and [S II] emission faint enough to have been missed. A few of these objects may also be H II regions with abnormally high [O III] emission compared with the majority of M83 H II regions, compact nebulae excited by young Wolf-Rayet stars, or even background active galactic nuclei. The SNR H{alpha} luminosity function in M83 is shifted by a factor of {approx}4.5 times higher than for M33 SNRs, indicative of a higher mean ISM density in M83. We describe the search technique used to identify the SNR candidates and provide basic information and finder charts for the objects.

  18. The abundances of major elements in Cas A and Tycho supernova remnants

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1995-01-01

    The objective of this program was to map the abundances of major elements such as O, Si, S, and Fe in the supernova remnants, Tycho and Cas A. The approach was based upon using archival cosmic X-ray data from several space missions, notably, the Einstein Observatory, EXOSAT, ROSAT, BBSRT, and ASCA. Two of the missions, Einstein and ROSAT, had high resolution telescopes that provided excellent images, but no spectral information. Two missions with much poorer resolution telescopes, BBXRT and ASCA, gave good spectral information through pulse height of signals in their cooled solid state detector, but rather crude spatial information. Our goal was to extract spectral information from the combined analysis of the Einstein and ROSAT images of Cas A and Tycho and to verify or refine the spectral map by checking its agreement with the BBSRT or ASCA spectra results for larger regions. In particular, we note that the Einstein and ROSAT telescopes have different spectral responses. The Einstein bandwidth includes the 2-4 keV region which is absent from ROSAT. Hence, by forming linear combinations of the Einstein and ROSAT images, we are able to resolve the contributions of the 0.5-2 keV band from the 2-4 keV band. The former contains lines of O and Fe while the latter is dominated by Si and S. We correct for the expansion that has taken place in the remnants during the ten-year interval between the Einstein and ROSAT measurements, but we must assume that no significant spectral changes have occurred during that time. The analysis of the Tycho SNR was completed and the results have been published. A copy of the paper is included. The analysis of Cas A has proved to be more complicated. It is continuing with support from another program. Part of the problem may be due to difficulties in the aspect information which is needed to precisely register the ROSAT and Einstein images.

  19. Visibility of old supernova remnants in HI 21-cm emission line

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Kang, Ji-hyun

    2004-04-01

    We estimate the number of old, radiative supernova remnants (SNRs) detectable in HI 21-cm emission line in the Galaxy. We assume that old SNRs consist of expanding HI shells and that they are visible if the line-of-sight velocities are sufficiently outside the velocity range of the Galactic background HI emission. This criterion of visibility makes it possible to calculate the background contamination and to make a comparison with observation. The Galactic disc in our model is filled with atomic gas of moderate (~0.1 cm-3) density representing the warm neutral interstellar medium. We assume that only Type Ia supernovae produce isolated SNRs with expanding HI shells, or `HI SNRs'. According to our result, the contamination due to the Galactic background HI emission limits the number of visible SNRs to ~=270, or ~=9 per cent of the total HI SNRs. They are concentrated along the loci of tangential points. The telescope sensitivity further limits the number. We compare the result with observations to find that the observed number (<=25) of HI SNRs is much less than expected. A plausible explanation is that previous observational studies, which were made towards the SNRs identified mostly in radio continuum, missed most of the HI SNRs because they are too faint to be visible in radio continuum. We propose that the faint, extended HI 21-cm emission line wings protruding from the Galactic background HI emission in large-scale (l, v) diagrams could be possible candidates for HI SNRs, although our preliminary result shows that their number is considerably less than expected in the inner Galaxy. We conclude that a possible explanation for the small number of HI SNRs in the inner Galaxy is that the interstellar space there is largely filled with a very tenuous gas as in the three-phase interstellar medium (ISM) model, not with the warm neutral medium of moderate density.

  20. Suzaku spectra of a Type-II Supernova Remnant, Kes 79

    NASA Astrophysics Data System (ADS)

    Sato, Tamotsu; Koyama, Katsuji; Lee, Shiu-Hang; Takahashi, Tadayuki

    2016-01-01

    This paper reports on results of a Suzaku observation of the supernova remnant (SNR) Kes 79 (G33.6+0.1). The X-ray spectrum is best fitted by a two-temperature model: a non-equilibrium ionization (NEI) plasma and a collisional ionization equilibrium (CIE) plasma. The NEI plasma is spatially confined within the inner radio shell with kT ˜ 0.8 keV, while the CIE plasma is found in more spatially extended regions associated with the outer radio shell with kT ˜0.2 keV and solar abundance. Therefore, the NEI plasma is attributable to the SN ejecta, and the CIE plasma is the forward shocked interstellar medium. In the NEI plasma, we discovered K-shell lines of Al, Ar, and Ca for the first time. The abundance pattern and estimated mass of the ejecta are consistent with a core-collapse supernova explosion of a ˜30-40M⊙ progenitor star. An Fe line with a center energy of ˜6.4 keV is also found in the southeast (SE) portion of the SNR, a close peripheral region around dense molecular clouds. One possibility is that the line is associated with the ejecta. However, the centroid energy of ˜6.4 keV and the spatial distribution of enhancement near the SE peripheral do not favor this scenario. Since the ˜6.4 keV emitting region coincides with the molecular clouds, we propose another possibility, that the Fe line is due to K-shell ionization of neutral Fe by the interaction of locally accelerated protons (LECRp) with the surrounding molecular cloud. Both of these possibilities, heated ejecta or LECRp origin, are discussed based on the observational facts.

  1. Kinematics of Shocked Molecular Gas Adjacent to the Supernova Remnant W44

    NASA Astrophysics Data System (ADS)

    Sashida, Tomoro; Oka, Tomoharu; Tanaka, Kunihiko; Aono, Kazuya; Matsumura, Shinji; Nagai, Makoto; Seta, Masumichi

    2013-09-01

    We mapped molecular gas toward the supernova remnant W44 in the HCO+ J = 1-0 line with the Nobeyama Radio Observatory 45 m telescope and in the CO J = 3-2 line with the Atacama Submillimeter Telescope Experiment 10 m telescope. High-velocity emission wings were detected in both lines over the area where the radio shell of W44 overlaps with the molecular cloud in the plane of the sky. We found that the average velocity distributions of the wing emission can be fit by a uniform expansion model. The best-fit expansion velocities are 12.2 0.3 km s-1 and 13.2 0.2 km s-1 in HCO+ and CO, respectively. The non-wing CO J = 3-2 component is also fit by the same model with an expansion velocity of 4.7 0.1 km s-1. This component might be dominated by a post-shock higher-density region where the shock velocity had slowed down. The kinetic energy of the shocked molecular gas is estimated to be (3.5 1.3) 1049 erg. Adding this and the energy of the previously identified H I shell, we conclude that (1.2 0.2) 1050 erg has been converted into gas kinetic energy from the initial baryonic energy of the W44 supernova. We also found ultra-high-velocity CO J = 3-2 wing emission with a velocity width of ~100 km s-1 at (l, b) = (+34.73, -0.47). The origin of this extremely high velocity wing is a mystery.

  2. Cr-K EMISSION LINE AS A CONSTRAINT ON THE PROGENITOR PROPERTIES OF SUPERNOVA REMNANTS

    SciTech Connect

    Yang, X. J.; Xiang, F. Y.; Xiao, H. P.; Zhong, J. X.; Tsunemi, H.; Lu, F. J.; Li, Aigen

    2013-03-20

    We perform a survey of the Cr, Mn, and Fe-K emission lines in young supernova remnants (SNRs) with the Japanese X-ray astronomy satellite Suzaku. The Cr and/or Mn emission lines are detected in 3C 397 and 0519-69.0 for the first time. We also confirm the detection of these lines in Kepler, W49B, N103B, and Cas A. We derive the line parameters (i.e., the line centroid energy, flux, and equivalent width (EW)) for these six sources and perform a correlation analysis for the line center energies of Cr, Mn, and Fe. Also included in the correlation analysis are Tycho and G344.7-0.1 for which the Cr, Mn, and Fe-K line parameters were available in the literature through Suzaku observations. We find that the line center energies of Cr correlate very well with that of Fe and that of Mn. This confirms our previous findings that Cr, Mn, and Fe are spatially co-located, share a similar ionization state, and have a common origin in the supernova nucleosynthesis. We find that the ratio of the EW of the Cr emission line to that of Fe ({gamma}{sub Cr/Fe}{identical_to}EW(Cr)/EW(Fe)) provides useful constraints on the SNR progenitors and on the SN explosion mechanisms: for SNRs with {gamma}{sub Cr/Fe} > 2%, a Type Ia origin is favored (e.g., N103B, G344.7-0.1, 3C 397, and 0519-69.0); for SNRs with {gamma}{sub Cr/Fe} < 2%, they could be of either core-collapse origin or carbon-deflagration Ia origin.

  3. Nonthermal Radiation from Supernova Remnants: Effects of Magnetic Field Amplification and Particle Escape

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.; Edmon, Paul P.

    2013-11-01

    We explore nonlinear effects of wave-particle interactions on the diffusive shock acceleration (DSA) process in Type Ia-like supernova remnant (SNR) blast waves by implementing phenomenological models for magnetic field amplification (MFA), Alfvnic drift, and particle escape in time-dependent numerical simulations of nonlinear DSA. For typical SNR parameters, the cosmic-ray (CR) protons can be accelerated to PeV energies only if the region of amplified field ahead of the shock is extensive enough to contain the diffusion lengths of the particles of interest. Even with the help of Alfvnic drift, it remains somewhat challenging to construct a nonlinear DSA model for SNRs in which of the order of 10% of the supernova explosion energy is converted into CR energy and the magnetic field is amplified by a factor of 10 or so in the shock precursor, while, at the same time, the energy spectrum of PeV protons is steeper than E -2. To explore the influence of these physical effects on observed SNR emission, we also compute the resulting radio-to-gamma-ray spectra. Nonthermal emission spectra, especially in X-ray and gamma-ray bands, depend on the time-dependent evolution of the CR injection process, MFA, and particle escape, as well as the shock dynamic evolution. This result comes from the fact that the high-energy end of the CR spectrum is composed of particles that are injected in the very early stages of the blast wave evolution. Thus, it is crucial to better understand the plasma wave-particle interactions associated with collisionless shocks in detailed modeling of nonthermal radiation from SNRs.

  4. A CR-hydro-NEI Model of the Structure and Broadband Emission from Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Slane, P.; Lee, S.-H.; Ellison, D. C.; Patnaude, D. J.; Hughes, J. P.; Eriksen, K. A.; Castro, D.; Nagataki, S.

    2014-03-01

    Tycho's supernova remnant (SNR) is well-established as a source of particle acceleration to very high energies. Constraints from numerous studies indicate that the observed ?-ray emission results primarily from hadronic processes, providing direct evidence of highly relativistic ions that have been accelerated by the SNR. Here we present an investigation of the dynamical and spectral evolution of Tycho's SNR by carrying out hydrodynamical simulations that include diffusive shock acceleration of particles in the amplified magnetic field at the forward shock of the SNR. Our simulations provide a consistent view of the shock positions, the nonthermal emission, the thermal X-ray emission from the forward shock, and the brightness profiles of the radio and X-ray emission. We compare these with the observed properties of Tycho to determine the density of the ambient material, the particle acceleration efficiency and maximum energy, the accelerated electron-to-proton ratio, and the properties of the shocked gas downstream of the expanding SNR shell. We find that evolution of a typical Type Ia supernova in a low ambient density (n 0 ~ 0.3 cm-3), with an upstream magnetic field of ~5 ?G, and with ~16% of the SNR kinetic energy being converted into relativistic electrons and ions through diffusive shock acceleration, reproduces the observed properties of Tycho. Under such a scenario, the bulk of observed ?-ray emission at high energies is produced by ?0-decay resulting from the collisions of energetic hadrons, while inverse-Compton emission is significant at lower energies, comprising roughly half of the flux between 1 and 10 GeV.

  5. A systematic study of evolved supernova remnants in the large and small Magellanic Clouds with Suzaku

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yoko; Yamaguchi, Hiroya; Tamagawa, Toru

    2016-01-01

    Identifying the origin type (i.e., Type Ia or core-collapse) of supernova remnants (SNRs) is crucial to determining the rates of supernova (SN) explosions in a galaxy, which is a key to understanding its recent chemical evolution. However, evolved SNRs in the so-called Sedov phase are dominated by the swept-up interstellar medium (ISM), making it difficult to determine their ejecta composition and thus SN type. Here we present a systematic X-ray study of nine evolved SNRs in the Magellanic Clouds, DEM L238, DEM L249, 0534-69.9, 0548-70.4, B0532-71.0, B0532-67.5, 0103-72.6, 0049-73.6, and 0104-72.3, using archival data of the Suzaku satellite. Although Suzaku does not spatially resolve the SN ejecta from the swept-up ISM due to the limited angular resolution, its excellent energy resolution has enabled clear separation of emission lines in the soft X-ray band. This leads to the finding that the "spatially integrated" spectra of the evolved (˜104 yr) SNRs are still significantly contributed by emission from the ejecta at energies around 1 keV. The Fe/Ne mass ratios, determined mainly from the well-resolved Fe L-shell and Ne K-shell lines, clearly divide the observed SNRs into the Type Ia and core-collapse groups, confirming some previous typing made by Chandra observations that had utilized its extremely high angular resolution. This demonstrates that spatially integrated X-ray spectra of old SN