Science.gov

Sample records for pulsatile insulin secretion

  1. Synergistic interaction between insulin-like growth factors-I and -II in central regulation of pulsatile growth hormone secretion.

    PubMed

    Harel, Z; Tannenbaum, G S

    1992-08-01

    Insulin-like growth factor (IGF)-I and -II peptides, receptors, mRNAs, and binding proteins are widely distributed in the central nervous system (CNS), yet their physiological role in the brain remains largely unknown. While earlier in vivo studies in the rat suggested that IGF-I may participate in feedback regulation of GH secretion at a CNS level, the preparations used were only partially pure. The recent availability of purified recombinant IGF-I and -II peptides prompted us to reexamine the involvement of the IGFs in vivo in central regulation of pulsatile GH secretion. Five groups of free-moving adult male rats bearing chronic intracerebroventricular (icv) and intracardiac venous cannulae were icv administered IGF-I (in doses of 0.5, 2, 3, and 10 micrograms) or the acid-saline vehicle; an additional group received 1 microgram of the potent IGF-I analog, long R3 IGF-I. Spontaneous 6-h plasma GH secretory profiles were obtained from all groups. Vehicle-injected control animals exhibited the typical pulsatile pattern of GH secretion, with most peak GH values above 150 ng/ml and trough levels below 1.2 ng/ml. Central administration of IGF-I alone or long R3 IGF-I at all doses tested failed to alter the pulsatile pattern of GH release; there were no significant differences in GH peak amplitude, GH trough level, GH interpeak interval, or mean 6-h plasma GH level compared to those in vehicle-injected controls. In a second study, designed to determine the effects of central administration of IGF-I and IGF-II, in combination, icv injection of 1 microgram IGF-I and 1 microgram IGF-II resulted in a marked suppression in the amplitude of spontaneous GH secretory bursts approximately 3 h after injection; both GH pulse amplitude (43.5 +/- 5.6 vs. 130.6 +/- 14.6 ng/ml; P less than 0.001) and mean plasma GH level (16.3 +/- 1.9 vs. 35.2 +/- 1.8 ng/ml; P less than 0.001) were severely reduced 3-6 h after injection compared to those in vehicle-injected controls. These results

  2. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  3. Nonlinear analysis and prediction of pulsatile hormone secretion

    SciTech Connect

    Prank, K. |; Kloppstech, M.; Nowlan, S.J.; Harms, H.M.; Brabant, G.; Hesch, R.; Sejnowski, T.J.

    1996-06-01

    Pulsatile hormone secretion is observed in almost every hormonal system. The frequency of episodic hormone release ranges from approximately 10 to 100 pulses in 24 hours. This temporal mode of secretion is an important feature of intercellular information transfer in addition to a dose-response dependent regulation. It has been demonstrated in a number of experiments that changes in the temporal pattern of pulsatile hormone secretion specifically regulate cellular and organ function and structure. Recent evidence links osteoporosis, a disease characterized by loss of bone mass and structure, to changes in the dynamics of pulsatile parathyroid hormone (PTH) secretion. In our study we applied nonlinear and linear time series prediction to characterize the secretory dynamics of PTH in both healthy human subjects and patients with osteoporosis. Osteoporotic patients appear to lack periods of high predictability found in normal humans. In contrast to patients with osteoporosis patients with hyperparathyroidism, a condition which despite sometimes reduced bone mass has a preserved bone architecture, show periods of high predictability of PTH secretion. Using stochastic surrogate data sets which match certain statistical properties of the original time series significant nonlinear determinism could be found for the PTH time series of a group of healthy subjects. Using classical nonlinear analytical techniques we could demonstrate that the irregular pattern of pulsatile PTH secretion in healthy men exhibits characteristics of deterministic chaos. Pulsatile secretion of PTH in healthy subjects seems to be a first example of nonlinear determinism in an apparently irregular hormonal rhythm in human physiology. {copyright} {ital 1996 American Institute of Physics.}

  4. Ovarian tumors secreting insulin.

    PubMed

    Battocchio, Marialberta; Zatelli, Maria Chiara; Chiarelli, Silvia; Trento, Mariangela; Ambrosio, Maria Rosaria; Pasquali, Claudio; De Carlo, Eugenio; Dassie, Francesca; Mioni, Roberto; Rebellato, Andrea; Fallo, Francesco; Degli Uberti, Ettore; Martini, Chiara; Vettor, Roberto; Maffei, Pietro

    2015-08-01

    Combined ovarian germ cell and neuroendocrine tumors are rare. Only few cases of hyperinsulinism due to ovarian ectopic secretion have been hypothesized in the literature. An ovarian tumor was diagnosed in a 76-year-old woman, referred to our department for recurrent hypoglycemia with hyperinsulinism. In vivo tests, in particular fasting test, rapid calcium infusion test, and Octreotide test were performed. Ectopic hyperinsulinemic hypoglycemia was demonstrated in vivo and hypoglycemia disappeared after hysteroadnexectomy. Histological exam revealed an ovarian germ cell tumor with neuroendocrine and Yolk sac differentiation, while immunostaining showed insulin positivity in neuroendocrine cells. A cell culture was obtained by tumoral cells, testing Everolimus, and Pasireotide. Insulin was detected in cell culture medium and Everolimus and Pasireotide demonstrated their potentiality in reducing insulin secretion, more than controlling cell viability. Nine cases of hyperinsulinism due to ovarian ectopic secretion reported in literature have been reviewed. These data confirm the ovarian tissue potentiality to induce hyperinsulinemic hypoglycemic syndrome after neoplastic transformation. PMID:25896552

  5. An optimization formulation for characterization of pulsatile cortisol secretion.

    PubMed

    Faghih, Rose T; Dahleh, Munther A; Brown, Emery N

    2015-01-01

    Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an ℓ0-norm cost function for this controller, and solve a reweighed ℓ1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications. PMID:26321898

  6. An optimization formulation for characterization of pulsatile cortisol secretion

    PubMed Central

    Faghih, Rose T.; Dahleh, Munther A.; Brown, Emery N.

    2015-01-01

    Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an ℓ0-norm cost function for this controller, and solve a reweighed ℓ1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications. PMID:26321898

  7. Motivations and Methods for Analyzing Pulsatile Hormone Secretion

    PubMed Central

    Veldhuis, Johannes D.; Keenan, Daniel M.; Pincus, Steven M.

    2008-01-01

    Endocrine glands communicate with remote target cells via a mixture of continuous and intermittent signal exchange. Continuous signaling allows slowly varying control, whereas intermittency permits large rapid adjustments. The control systems that mediate such homeostatic corrections operate in a species-, gender-, age-, and context-selective fashion. Significant progress has been made in understanding mechanisms of adaptive interglandular signaling in vivo. Principal goals are to understand the physiological origins, significance, and mechanisms of pulsatile hormone secretion. Key analytical issues are: 1) to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics; 2) to evaluate regulation of the axis as a whole; and 3) to reconstruct dose-response interactions without disrupting hormone connections. This review will focus on the motivations driving and the methodologies used for such analyses. PMID:18940916

  8. Pulsatile glycoprotein hormone secretion in glycoprotein-producing pituitary tumors.

    PubMed

    Samuels, M H; Henry, P; Kleinschmidt-Demasters, B K; Lillehei, K; Ridgway, E C

    1991-12-01

    To study patterns of hormone production and secretion in glycoprotein-producing pituitary tumors, 12 patients with such tumors underwent the following studies. Preoperatively, all patients had serum TSH, LH, FSH, and alpha-subunit levels measured every 15 min for 24 h. Hormone pulses were located by cluster analysis, and pulse parameters were compared to those in healthy young men, healthy young women, healthy postmenopausal women, and subjects with primary hypothyroidism. After surgery, immunocytochemistry for the four glycoproteins was performed on all tumors, and Northern blot analysis was performed in six tumors with probes for the four subunits. By immunocytochemistry, 42% of the tumors were positive for TSH beta, 83% for LH beta, 75% for FSH beta, and 92% for alpha-subunit. Preoperative serum hormone levels varied widely between patients and were not well correlated with the intensity of immunocytochemical staining. Northern blot analysis did not appear to be as sensitive as immunocytochemistry for detection of the glycoproteins. All patients had pulsatile glycoprotein secretion, with pulses of normal frequency but varied amplitude. These results suggest that in patients with glycoprotein tumors, hormone pulses may be an integral part of autonomous secretion, or that hypothalamic control is involved in glycoprotein secretion and, perhaps, in the pathogenesis of these tumors. PMID:1955510

  9. Overtrained horses alter their resting pulsatile growth hormone secretion

    PubMed Central

    de Graaf-Roelfsema, E.; Veldhuis, P. P.; Keizer, H. A.; van Ginneken, M. M. E.; van Dam, K. G.; Johnson, M. L.; Barneveld, A.; Menheere, P. P. C. A.; van Breda, E.; Wijnberg, I. D.; van der Kolk, J. H.

    2009-01-01

    The influence of intensified and reduced training on nocturnal growth hormone (GH) secretion and elimination dynamics was studied in young (1.5 yr) Standardbred geldings to detect potential markers indicative for early overtraining. Ten horses trained on a treadmill for 32 wk in age-, breed-, and gender-matched fixed pairs. Training was divided into four phases (4, 18, 6, and 4 wk, respectively): 1) habituation to high-speed treadmill trotting, 2) normal training, in which speed and duration of training sessions were gradually increased, 3) in this phase, the horses were divided into 2 groups: control (C) and intensified trained (IT) group. In IT, training intensity, duration, and frequency were further increased, whereas in control these remained unaltered, and 4) reduced training (RT). At the end of phases 2, 3, and 4, blood was sampled overnight every 5 min for 8 h for assessment of GH secretory dynamics using pulse detection, deconvolution analysis, and approximate entropy (ApEn). Intensified training induced overtraining (performance decreased by 19% compared with C), which was associated with an increase in concentration peaks number (3.6 vs. 2.0, respectively), a smaller peak secretion pattern with a prolonged half-life (15.2 vs. 7.3 min, respectively), and an increased ApEn (0.89 vs. 0.49, respectively). RT did not lead to full recovery for the overtrained horses. The increased irregularity of nocturnal GH pulsatility pattern is indicative of a loss of coordinated control of GH regulation. Longer phases of somatostatin withdrawal are hypothesized to be the underlying mechanism for the observed changes in GH pulsatility pattern. PMID:19494168

  10. Insulin Receptor Signaling in the GnRH Neuron Plays a Role in the Abnormal GnRH Pulsatility of Obese Female Mice

    PubMed Central

    DiVall, Sara A.; Herrera, Danny; Sklar, Bonnie; Wu, Sheng; Wondisford, Fredric; Radovick, Sally; Wolfe, Andrew

    2015-01-01

    Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH) secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO) with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction. PMID:25780937

  11. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  12. Low- and high-frequency insulin secretion pulses in normal subjects and pancreas transplant recipients: role of extrinsic innervation.

    PubMed Central

    Sonnenberg, G E; Hoffmann, R G; Johnson, C P; Kissebah, A H

    1992-01-01

    Low-frequency ultradian and high-frequency insulin secretion pulses were studied in normal subjects and in metabolically stable pancreas transplant recipients. Insulin secretion pulsatility was evaluated after deconvoluting the pulsatile plasma C peptide concentrations with its kinetic coefficients. In normal subjects, ultradian insulin secretion pulses with periodicities of 75-115 min were consistently observed during the 24-h secretory cycle. Pulse period and relative amplitude during the overnight rest (95 +/- 4 min and 27.6 +/- 2.4%) were similar to those during the steady state of continuous enteral feeding (93 +/- 5 min and 32.6 +/- 3.3%). Sampling at 2-min intervals revealed the presence of high-frequency insulin secretion pulses with periodicities of 14-20 min and an average amplitude of 46.6 +/- 5.4%. Pancreas transplant recipients had normal fasting and fed insulin secretion rates. Both low- and high-frequency insulin secretion pulses were present. The high-frequency pulse characteristics were identical to normal. Low-frequency ultradian pulse periodicity was normal but pulse amplitude was increased. Thus, ultradian insulin secretory pulsatility is a consistent feature in normal subjects. The low- and high-frequency secretion pulsatilities are generated independent of extrinsic innervation. Autonomic innervation might modulate low-frequency ultradian pulse amplitude exerting a dampening effect. PMID:1644923

  13. Intra- and Inter-Islet Synchronization of Metabolically Driven Insulin Secretion

    PubMed Central

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    Insulin secretion from pancreatic β-cells is pulsatile with a period of 5–10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the insulin secretion from individual β-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical oscillations in combination with oscillations in glycolysis. We use this model to investigate possible mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model “liver,” which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter-islet synchronization of insulin oscillations may be achieved. PMID:15834002

  14. Insulin signaling pathways in lepidopteran ecdysone secretion

    PubMed Central

    Smith, Wendy A.; Lamattina, Anthony; Collins, McKensie

    2014-01-01

    Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori), the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx, the neuropeptide prothoracicotropic hormone (PTTH) appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K), LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the regulation of insect ecdysone secretion, and in the impact of nutritionally-sensitive hormones such as insulin in the control of ecdysone secretion and molting. PMID:24550835

  15. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  16. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  17. [Endogenous hyperlactatemia and insulin secretion].

    PubMed

    Ribes, G; Valette, G; Lignon, F; Loubatières-Mariani, M M

    1978-01-01

    In the normal anesthetized dog, the endogenous hyperlactatemia induced either by intense muscular work or by a high dose of phenformin (20 mg/kg subtucaneously) is followed by an increase in the pancreaticoduodenal insulin output. A previous perfusion of sodium dichloroacetate (50 mg/kg. h) opposes the hyperlactatemia, and reduces or suppresses the increase in insulin output. PMID:150887

  18. Nonlinear dynamics in pulsatile secretion of parathyroid hormone in normal human subjects

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Harms, Heio; Brabant, Georg; Hesch, Rolf-Dieter; Dämmig, Matthias; Mitschke, Fedor

    1995-03-01

    In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization. Phase space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition of a (in comparison to normal subjects) relatively quiet ``low dynamic'' secretory pattern in osteoporosis, and a ``high dynamic'' state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy men exhibits characteristics of nonlinear determinism. Our findings suggest that this is conceivable, although on the basis of presently available data and techniques, no proof can be established. Nevertheless, pulsatile secretion of PTH might be a first example of nonlinear deterministic dynamics in an apparently irregular hormonal rhythm in human physiology.

  19. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion

    PubMed Central

    Han, Su Young; McLennan, Timothy; Czieselsky, Katja; Herbison, Allan E.

    2015-01-01

    Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH. PMID:26443858

  20. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans.

    PubMed

    Yi, Lian; Wang, Xue; Dhumpa, Raghuram; Schrell, Adrian M; Mukhitov, Nikita; Roper, Michael G

    2015-02-01

    A microfluidic system was developed to investigate the entrainment of insulin secretion from islets of Langerhans to oscillatory glucose levels. A gravity-driven perfusion system was integrated with a microfluidic system to deliver sinusoidal glucose waveforms to the islet chamber. Automated manipulation of the height of the perfusion syringes allowed precise control of the ratio of two perfusion solutions into a chamber containing 1-10 islets. Insulin levels in the perfusate were measured using an online competitive electrophoretic immunoassay with a sampling period of 10 s. The insulin immunoassay had a detection limit of 3 nM with RSDs of calibration points ranging from 2-8%. At 11 mM glucose, insulin secretion from single islets was oscillatory with a period ranging from 3-6 min. Application of a small amplitude sinusoidal wave of glucose with a period of 5 or 10 min, shifted the period of the insulin oscillations to this forcing period. Exposing groups of 6-10 islets to a sinusoidal glucose wave synchronized their behavior, producing a coherent pulsatile insulin response from the population. These results demonstrate the feasibility of the developed system for the study of oscillatory insulin secretion and can be easily modified for investigating the dynamic nature of other hormones released from different cell types. PMID:25474044

  1. Blood Glucose Control Using a Novel Continuous Blood Glucose Monitor and Repetitive Intravenous Insulin Boluses: Exploiting Natural Insulin Pulsatility as a Principle for a Future Artificial Pancreas

    PubMed Central

    Skjaervold, Nils K.; Östling, Dan; Hjelme, Dag R.; Spigset, Olav; Lyng, Oddveig

    2013-01-01

    The aim of this study was to construct a glucose regulatory algorithm by employing the natural pulsatile pattern of insulin secretion and the oscillatory pattern of resting blood glucose levels and further to regulate the blood glucose level in diabetic pigs by this method. We developed a control algorithm based on repetitive intravenous bolus injections of insulin and combined this with an intravascular blood glucose monitor. Four anesthetized pigs were used in the study. The animals developed a mildly diabetic state from streptozotocin pretreatment. They were steadily brought within the blood glucose target range of 4.5–6.0 mmol/L in 21 to 121 min and kept within that range for 128 to 238 min (hypoglycemic values varied from 2.9 to 51.1 min). The study confirmed our hypotheses regarding the feasibility of this new principle for blood glucose control, and the algorithm was constantly improved during the study to produce the best results in the last animals. The main obstacles were the drift of the IvS-1 sensor and problems with the calibration procedure, which calls for an improvement in the sensor stability before this method can be applied fully in new studies in animals and humans. PMID:24369461

  2. Paliperidone Induced Hypoglycemia by Increasing Insulin Secretion.

    PubMed

    Omi, Tsubasa; Riku, Keisen; Fukumoto, Motoyuki; Kanai, Koji; Omura, Yumi; Takada, Hiromune; Matunaga, Hidenori

    2016-01-01

    We report the case of a 41-year-old woman with schizophrenia who developed persistent hypoglycemia following paliperidone administration. After discontinuing paliperidone, the hypoglycemia resolved, but symptoms of diabetes emerged. Therefore, it appears that the hypoglycemia induced by paliperidone may mask symptoms of diabetes. Paliperidone may induce hypoglycemia by increasing insulin secretion. This report could help elucidate the relationship between atypical antipsychotics and glucose metabolism. PMID:27478670

  3. Paliperidone Induced Hypoglycemia by Increasing Insulin Secretion

    PubMed Central

    Riku, Keisen; Fukumoto, Motoyuki; Kanai, Koji; Omura, Yumi; Matunaga, Hidenori

    2016-01-01

    We report the case of a 41-year-old woman with schizophrenia who developed persistent hypoglycemia following paliperidone administration. After discontinuing paliperidone, the hypoglycemia resolved, but symptoms of diabetes emerged. Therefore, it appears that the hypoglycemia induced by paliperidone may mask symptoms of diabetes. Paliperidone may induce hypoglycemia by increasing insulin secretion. This report could help elucidate the relationship between atypical antipsychotics and glucose metabolism. PMID:27478670

  4. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells.

    PubMed

    Durvasula, Kiranmai; Thulé, Peter M; Sambanis, Athanassios

    2012-04-01

    One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies. PMID:22094821

  5. Combinatorial Insulin Secretion Dynamics of Recombinant Hepatic and Enteroendocrine Cells

    PubMed Central

    Durvasula, Kiranmai; Thulé, Peter M.; Sambanis, Athanassios

    2012-01-01

    One of the more promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with one of three adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards pre-clinical studies. PMID:22094821

  6. Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects.

    PubMed

    Bingley, P J; Matthews, D R; Williams, A J; Bottazzo, G F; Gale, E A

    1992-01-01

    Basal insulin secretion was compared in nine islet-cell antibody positive, non-diabetic first-degree relatives of children with Type 1 (insulin-dependent) diabetes mellitus and nine normal control subjects matched for age, sex and weight. Acute insulin responses to a 25 g intravenous glucose tolerance test were similar in the two groups (243 (198-229) vs 329 (285-380) mU.l-1 x 10 min-1, mean (+/- SE), p = 0.25). Fasting plasma insulin was assayed in venous samples taken at one min intervals for 2 h. Time series analysis was used to demonstrate oscillatory patterns in plasma insulin. Autocorrelation showed that regular oscillatory activity was generally absent in the islet-cell antibody-positive group, whereas a regular 13 min cycle was shown in control subjects (p less than 0.0001). Fourier transformation did, however, show a 13 min spectral peak in the islet-cell antibody positive group, consistent with intermittent pulsatility. We conclude that overall oscillatory patterns of basal insulin secretion are altered in islet-cell antibody positive subjects even when the acute insulin response is within the normal range. PMID:1541379

  7. P2Y₁ receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion.

    PubMed

    Wuttke, Anne; Idevall-Hagren, Olof; Tengholm, Anders

    2013-04-01

    Diacylglycerol (DAG) controls numerous cell functions by regulating the localization of C1-domain-containing proteins, including protein kinase C (PKC), but little is known about the spatiotemporal dynamics of the lipid. Here, we explored plasma membrane DAG dynamics in pancreatic β cells and determined whether DAG signaling is involved in secretagogue-induced pulsatile release of insulin. Single MIN6 cells, primary mouse β cells, and human β cells within intact islets were transfected with translocation biosensors for DAG, PKC activity, or insulin secretion and imaged with total internal reflection fluorescence microscopy. Muscarinic receptor stimulation triggered stable, homogenous DAG elevations, whereas glucose induced short-lived (7.1 ± 0.4 s) but high-amplitude elevations (up to 109 ± 10% fluorescence increase) in spatially confined membrane regions. The spiking was mimicked by membrane depolarization and suppressed after inhibition of exocytosis or of purinergic P2Y₁, but not P2X receptors, reflecting involvement of autocrine purinoceptor activation after exocytotic release of ATP. Each DAG spike caused local PKC activation with resulting dissociation of its substrate protein MARCKS from the plasma membrane. Inhibition of spiking reduced glucose-induced pulsatile insulin secretion. Thus, stimulus-specific DAG signaling patterns appear in the plasma membrane, including distinct microdomains, which have implications for the kinetic control of exocytosis and other membrane-associated processes. PMID:23299857

  8. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.

    PubMed

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-09-26

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  9. Reactive oxygen and nitrogen species disturb Ca(2+) oscillations in insulin-secreting MIN6 β-cells.

    PubMed

    Antonucci, Salvatore; Tagliavini, Alessia; Pedersen, Morten Gram

    2015-01-01

    Disturbances in pulsatile insulin secretion and Ca(2+) oscillations in pancreatic β-cells are early markers of diabetes, but the underlying mechanisms are still incompletely understood. Reactive oxygen/nitrogen species (ROS/RNS) are implicated in reduced β-cell function, and ROS/RNS target several Ca(2+) pumps and channels. Thus, we hypothesized that ROS/RNS could disturb Ca(2+) oscillations and downstream insulin pulsatility. We show that ROS/RNS production by photoactivation of aluminum phthalocyanine chloride (AlClPc) abolish or accelerate Ca(2+) oscillations in the MIN6 β-cell line, depending on the amount of ROS/RNS. Application of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) inhibitor thapsigargin modifies the Ca(2+) response to high concentrations of ROS/RNS. Further, thapsigargin produces effects that resemble those elicited by moderate ROS/RNS production. These results indicate that ROS/RNS interfere with endoplasmic reticulum Ca(2+) handling. This idea is supported by theoretical studies using a mathematical model of Ca(2+) handling adapted to MIN6 cells. Our results suggest a putative link between ROS/RNS and disturbed pulsatile insulin secretion. PMID:26732126

  10. Vitamin D, Insulin Secretion, Sensitivity, and Lipids

    PubMed Central

    Grimnes, Guri; Figenschau, Yngve; Almås, Bjørg; Jorde, Rolf

    2011-01-01

    OBJECTIVE Vitamin D deficiency is associated with an unfavorable metabolic profile in observational studies. The intention was to compare insulin sensitivity (the primary end point) and secretion and lipids in subjects with low and high serum 25(OH)D (25-hydroxyvitamin D) levels and to assess the effect of vitamin D supplementation on the same outcomes among the participants with low serum 25(OH)D levels. RESEARCH DESIGN AND METHODS Participants were recruited from a population-based study (the Tromsø Study) based on their serum 25(OH)D measurements. A 3-h hyperglycemic clamp was performed, and the participants with low serum 25(OH)D levels were thereafter randomized to receive capsules of 20,000 IU vitamin D3 or identical-looking placebo twice weekly for 6 months. A final hyperglycemic clamp was then performed. RESULTS The 52 participants with high serum 25(OH)D levels (85.6 ± 13.5 nmol/L [mean ± SD]) had significantly higher insulin sensitivity index (ISI) and lower HbA1c and triglycerides (TGs) than the 108 participants with low serum 25(OH)D (40.3 ± 12.8 nmol/L), but the differences in ISI and TGs were not significant after adjustments. After supplementation, serum 25(OH)D was 142.7 ± 25.7 and 42.9 ± 17.3 nmol/L in 49 of 51 completing participants randomized to vitamin D and 45 of 53 randomized to placebo, respectively. At the end of the study, there were no statistically significant differences in the outcome variables between the two groups. CONCLUSIONS Vitamin D supplementation to apparently healthy subjects with insufficient serum 25(OH)D levels does not improve insulin sensitivity or secretion or serum lipid profile. PMID:21911741

  11. Vesicular Nucleotide Transporter-Mediated ATP Release Regulates Insulin Secretion

    PubMed Central

    Geisler, Jessica C.; Corbin, Kathryn L.; Li, Qin; Feranchak, Andrew P.; Nunemaker, Craig S.

    2013-01-01

    Extracellular ATP plays a critical role in regulating insulin secretion in pancreatic β cells. The ATP released from insulin secretory vesicles has been proposed to be a major source of extracellular ATP. Currently, the mechanism by which ATP accumulates into insulin secretory granules remains elusive. In this study, the authors identified the expression of a vesicular nucleotide transporter (VNUT) in mouse pancreas, isolated mouse islets, and MIN6 cells, a mouse β cell line. Immunohistochemistry and immunofluorescence revealed that VNUT colocalized extensively with insulin secretory granules. Functional studies showed that suppressing endogenous VNUT expression in β cells by small hairpin RNA knockdown greatly reduced basal- and glucose-induced ATP release. Importantly, knocking down VNUT expression by VNUT small hairpin RNA in MIN6 cells and isolated mouse islets dramatically suppressed basal insulin release and glucose-stimulated insulin secretion (GSIS). Moreover, acute pharmacologic blockade of VNUT with Evans blue, a VNUT antagonist, greatly attenuated GSIS in a dose-dependent manner. Exogenous ATP treatment effectively reversed the insulin secretion defect induced by both VNUT knockdown and functional inhibition, indicating that VNUT-mediated ATP release is essential for maintaining normal insulin secretion. In contrast to VNUT knockdown, overexpression of VNUT in β cells resulted in excessive ATP release and enhanced basal insulin secretion and GSIS. Elevated insulin secretion induced by VNUT overexpression was reversed by pharmacologic inhibition of P2X but not P2Y purinergic receptors. This study reveals VNUT is expressed in pancreatic β cells and plays an essential and novel role in regulating insulin secretion through vesicular ATP release and extracellular purinergic signaling. PMID:23254199

  12. Human Insulinomas Show Distinct Patterns of Insulin Secretion In Vitro.

    PubMed

    Henquin, Jean-Claude; Nenquin, Myriam; Guiot, Yves; Rahier, Jacques; Sempoux, Christine

    2015-10-01

    Insulinomas are β-cell tumors that cause hypoglycemia through inappropriate secretion of insulin. Characterization of the in vitro dynamics of insulin secretion by perifused fragments of 10 human insulinomas permitted their subdivision into three functional groups with similar insulin content. Group A (four patients with fasting and/or postprandial hypoglycemic episodes) showed qualitatively normal responses to glucose, leucine, diazoxide, tolbutamide, and extracellular CaCl2 omission or excess. The effect of glucose was concentration dependent, but, compared with normal islets, insulin secretion was excessive in both low- and high-glucose conditions. Group B (three patients with fasting hypoglycemic episodes) was mainly characterized by large insulin responses to 1 mmol/L glucose, resulting in very high basal secretion rates that were inhibited by diazoxide and restored by tolbutamide but were not further augmented by other agents except for high levels of CaCl2. Group C (three patients with fasting hypoglycemic episodes) displayed very low rates of insulin secretion and virtually no response to stimuli (including high CaCl2 concentration) and inhibitors (CaCl2 omission being paradoxically stimulatory). In group B, the presence of low-Km hexokinase-I in insulinoma β-cells (not in adjacent islets) was revealed by immunohistochemistry. Human insulinomas thus show distinct, though not completely heterogeneous, defects in insulin secretion that are attributed to the undue expression of hexokinase-I in 3 of 10 patients. PMID:26116696

  13. Suppression of Insulin Production and Secretion by a Decretin Hormone

    PubMed Central

    Alfa, Ronald W.; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C.; Kim, Seung K.

    2015-01-01

    SUMMARY Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila orthologue of Neuromedin U receptors (NMUR), in insulin-producing cells phenocopied limostatin deficiency, and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β-cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  14. Effects of aldosterone on insulin sensitivity and secretion

    PubMed Central

    Luther, James M.

    2014-01-01

    Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950’s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans. PMID:25194457

  15. Suppression of insulin production and secretion by a decretin hormone.

    PubMed

    Alfa, Ronald W; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C; Kim, Seung K

    2015-02-01

    Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia, and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila ortholog of Neuromedin U receptors (NMURs), in insulin-producing cells phenocopied limostatin deficiency and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  16. Insulin secretion after injuries of differing severity in the rat.

    PubMed Central

    Frayn, K. N.

    1976-01-01

    The effects on insulin secretion of injuries of differing severity have been studied in the rat. The injuries used were dorsal scalds to 20% and 40% of the body surface area, and a 4-h period of bilateral hind-limb ischaemia. These injuries resulted in 48 h mortality rates of 0/10, 7/10 and 5/10 respectively. Rats were studied 1-5-2 h after scalding or removal of tourniquets. The blood glucose concentration was markedly raised after all these injuries, and the plasma insulin concentration was also raised, so that the insulin to glucose ratio in any group did not differ significantly from that in non-injured controls. Injection of glucose (0-5 g/kg i.v.) induced a rise in insulin concentration in all groups, although the insulin to glucose ratio after the lethal 40% scald was lower than in control rats. It was concluded that in the rat normal insulin secretion is maintained even after lethal injuries, although some suppression of the insulin response to exogenous glucose may occur. Insulin resistance is more important in the rat than impairment of insulin secretion even at an early stage after injury. PMID:782499

  17. Galphaz negatively regulates insulin secretion and glucose clearance.

    PubMed

    Kimple, Michelle E; Joseph, Jamie W; Bailey, Candice L; Fueger, Patrick T; Hendry, Ian A; Newgard, Christopher B; Casey, Patrick J

    2008-02-22

    Relatively little is known about the in vivo functions of the alpha subunit of the heterotrimeric G protein Gz (Galphaz). Clues to one potential function recently emerged with the finding that activation of Galphaz inhibits glucose-stimulated insulin secretion in an insulinoma cell line (Kimple, M. E., Nixon, A. B., Kelly, P., Bailey, C. L., Young, K. H., Fields, T. A., and Casey, P. J. (2005) J. Biol. Chem. 280, 31708-31713). To extend this study in vivo, a Galphaz knock-out mouse model was utilized to determine whether Galphaz function plays a role in the inhibition of insulin secretion. No differences were discovered in the gross morphology of the pancreatic islets or in the islet DNA, protein, or insulin content between Galphaz-null and wild-type mice. There was also no difference between the insulin sensitivity of Galphaz-null mice and wild-type controls, as measured by insulin tolerance tests. Galphaz-null mice did, however, display increased plasma insulin concentrations and a corresponding increase in glucose clearance following intraperitoneal and oral glucose challenge as compared with wild-type controls. The increased plasma insulin observed in Galphaz-null mice is most likely a direct result of enhanced insulin secretion, since pancreatic islets isolated from Galphaz-null mice exhibited significantly higher glucose-stimulated insulin secretion than those of wild-type mice. Finally, the increased insulin secretion observed in Galphaz-null islets appears to be due to the relief of a tonic inhibition of adenylyl cyclase, as cAMP production was significantly increased in Galphaz-null islets in the absence of exogenous stimulation. These findings indicate that Galphaz may be a potential new target for therapeutics aimed at ameliorating beta-cell dysfunction in Type 2 diabetes. PMID:18096703

  18. Simultaneous measurement of insulin sensitivity, insulin secretion and the disposition index in conscious unhandled mice

    PubMed Central

    Alonso, L. C.; Watanabe, Y.; Stefanovski, D.; Lee, E. J.; Singamsetty, S.; Romano, L. C.; Zou, B.; Garcia-Ocana, A.; Bergman, R. N.; O’Donnell, C. P.

    2012-01-01

    Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness, insulin sensitivity, and the disposition index, only insulin sensitivity can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring insulin sensitivity in lean and obese mice. Insulin resistant mice had increased first-phase insulin secretion, decreased glucose effectiveness and a reduced disposition index, qualitatively similar to humans. Intriguingly, while insulin secretion explained most of the variation in glucose disposal in lean mice, glucose effectiveness and the disposition index more strongly predicted glucose disposal in obese mice. Disposition index curves identified individual diet-induced obese mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, glucose effectiveness and disposition index, and further validates the mouse as a model of metabolic disease. PMID:22331130

  19. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men.

    PubMed

    Pitteloud, Nelly; Hardin, Megan; Dwyer, Andrew A; Valassi, Elena; Yialamas, Maria; Elahi, Dariush; Hayes, Frances J

    2005-05-01

    Insulin resistance is associated with low testosterone (T) levels in men, the mechanism of which is unclear. Thus, the aim of this study was to evaluate the hypothalamic-pituitary-gonadal axis in men with a spectrum of insulin sensitivity. Twenty-one men (aged 25-65 yr) had a glucose tolerance test and assessment of insulin sensitivity using a hyperinsulinemic-euglycemic clamp. Insulin sensitivity, expressed as the M value (milligrams per kilograms(-1) per minute(-1)), was calculated from the glucose disposal rate during the final 30 min of the clamp. Eighteen subjects had blood sampling every 10 min for 12 h to assess LH pulsatility. Hypogonadism was then induced with a GnRH antagonist, followed by sequential stimulation testing with GnRH (750 ng/kg, iv) and human chorionic gonadotropin (hCG; 1000 IU, im) to assess pituitary and testicular responsiveness, respectively. Nine subjects had normal glucose tolerance, nine had impaired glucose tolerance, and three had diabetes mellitus. There was a positive relationship between M and T levels (r = 0.46; P < 0.05). No relationship was seen between M and parameters of LH secretion, including mean LH levels, LH pulse amplitude, LH pulse frequency, and LH response to exogenous GnRH administration. In contrast, a strong correlation was observed between M and the T response to hCG (r = 0.73; P < 0.005). Baseline T levels correlated with the increase in T after hCG administration (r = 0.47; P < 0.05). During the clamp, T levels increased from a baseline level of 367 +/- 30 to 419 +/- 38 ng/dl during the last 30 min (P < 0.05). From these data we conclude that insulin resistance is associated with a decrease in Leydig cell T secretion in men. Additional studies are required to determine the mechanism of this effect. PMID:15713702

  20. Decrease in glucose-stimulated insulin secretion with aging is independent of insulin action.

    PubMed

    Muzumdar, Radhika; Ma, Xiaohui; Atzmon, Gil; Vuguin, Patricia; Yang, Xiaoman; Barzilai, Nir

    2004-02-01

    While the incidence of diabetes increases with age, a decrease in beta-cell function independent of age-related insulin resistance has not been conclusively determined. We studied insulin secretion (by hyperglycemic clamp) in 3-, 9-, and 20-month-old chronically catheterized, awake, Sprague Dawley (SD) rats (n = 78). Insulin action was modulated in a group of old rats by caloric restriction (CR) or by surgical removal of visceral fat (VF-). During the first 2 h of the clamp (11 mmol/l glucose), insulin secretion and insulin resistance (S(i hyper clamp)) demonstrated the characteristic hyperbolic relationship. However, after hyperglycemia for an additional 2 h, the ability to maintain insulin secretion, commensurate with the degree of insulin resistance, was decreased in all aging rats (P < 0.05). Increasing plasma glucose levels to 18 mmol/l glucose, after clamp at 11 mmol/l, increased insulin secretion by approximately threefold in young rats, but failed to induce similar magnitude of response in the aging rats ( approximately 50%). However, elevation of plasma free fatty acid (FFA) levels by twofold (by intralipid infusion during 11 mmol/l glucose clamp) resulted in a robust, approximate twofold response in both young and old rats. Thus, prolonged stimulation by hyperglycemia unveiled a functional defect in insulin secretion with aging. This age-related defect is independent of insulin action and is specific to glucose and not FFAs. We suggest that prolonged hyperglycemic stimulation can be a tool to identify functional defects in insulin secretion, particularly in the context of the hyperbolic relationship with insulin action, in elderly subjects or those at risk for type 2 diabetes. PMID:14747296

  1. The effect of non-steroidal antiandrogen flutamide on luteinizing hormone pulsatile secretion in male-to-female transsexual subjects.

    PubMed

    Giusti, M; Falivene, M R; Carraro, A; Cuttica, C M; Valenti, S; Giordano, G

    1995-06-01

    We evaluated LH pulsatile patterns before and 4 weeks after the oral administration of flutamide (750 mg/day) in 9 male-to-female transsexuals (age range 17-28 yr) requesting gender reassignment. Flutamide was given to explore the feedback role of androgens on the LHRH-LH unit in LH pulsatility in transsexuals. Seven normal age-matched men served as a control group, without receiving flutamide, due to ethical considerations. LH pulsatility was evaluated on samples collected every 15 min for 360 min. FSH, PRL, cortisol, SHBG and sex steroids were evaluated on pooled samples. LH pulses were analyzed by the Santen and Bardin algorithm, slightly modified. No differences in FSH, PRL, total- or free-testosterone, estradiol and SHBG levels were noted between transsexuals and controls. Normal circadian cortisol decline was observed in all subjects. Mean LH levels (p < 0.05) and LH pulses (p < 0.01) were significantly lower in transsexuals. Flutamide induced an increase in mean LH and testosterone levels (p < 0.01). After flutamide administration there was an increase in LH pulse frequency (P < 0.01) and the frequency and amplitude of LH pulses in transsexuals were restored to levels observed in controls. No differences in FSH, PRL or estradiol levels were found after flutamide. These data suggest that a decrease in LH pulse frequency could be an endocrine marker in male-to-female transsexuals. An increase in endogenous androgen negative feed-back could be speculated in these subjects. However, normal testosterone levels indirectly suggest that a normal that a normal qualitative LH secretion is maintained.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7594235

  2. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase.

    PubMed

    Li, Changhong; Allen, Aron; Kwagh, Jae; Doliba, Nicolai M; Qin, Wei; Najafi, Habiba; Collins, Heather W; Matschinsky, Franz M; Stanley, Charles A; Smith, Thomas J

    2006-04-14

    Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED(50) values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the beta-cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH. PMID:16476731

  3. Effect of Naloxon on Counter Insulin Hormone Secretion in Insulin-Induced Hypoglycemia

    PubMed Central

    Ju, Yeong Shil; Kim, Sung Woon; Yang, In Myung; Kim, Jin Woo; Kim, Young Seol; Choi, Young Kil

    1987-01-01

    To investigate the normal physiologic role of endogenous opiates in glucose homeostasis and as a preliminary study for clarifying the association of endogenous opites with pathophysilogy of NIDDM, we obseved the changes in the secretion of counter-insulin hormones in response to insulin-induced hypoglycemia with or without naloxone. The results were as follows: Blood glucose was decreased significantly more rapidly with naloxone infusion than after insulin alone, which seems to play a role in the early responses of ACTH and GH.Not only was the more rapid response of ACTH and GH, but also the prolonged secretion of ACTH and Cortisol were observed after administration of insulin and naloxone. We concluded that endogenous opiates may be involved in the feedback regulation of secretion of ACTH and GH during hypoglycemia either at hypophysis or hypothalamus, and involved in glucose homeostasis via a certain direct mechanism other than regulation of counter hormone secretion. PMID:2856480

  4. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  5. Phosphate depletion impairs leucine-induced insulin secretion.

    PubMed

    Oh, H Y; Fadda, G Z; Smogorzewski, M; Liou, H H; Massry, S G

    1994-11-01

    Phosphate depletion (PD) in vivo causes a sundry of abnormalities in pancreatic islets including a rise in cytosolic calcium, low ATP content, reduced Ca2+ ATPase and Na(+)-K+ ATPase activity, and impaired insulin secretion in response to glucose or potassium. L-Leucine is a strong secretagogue that triggers insulin secretion by deamination to alpha-ketoisocaproic acid (KIC) and the subsequent metabolism of the latter to ATP and by the activation of glutamate dehydrogenase (GLDH), which acts on glutamate to generate alpha-ketoglutarate, the metabolism of which results in ATP production. The generation of ATP triggers events that lead to insulin secretion. It is not known whether PD impairs leucine-induced insulin secretion, and the cellular derangements that are involved in such an abnormality are not defined. These issues were studied in PD rats and in pair-weighed normal animals as controls. D-Leucine uptake by islets from PD rats is normal, but both leucine- and KIC-induced insulin secretions are impaired and the activity of branched-chain keto acid dehydrogenase, which facilitates the metabolism of KIC, is reduced. Both leucine and 2-aminobicyclo (2-2-1) haptene failed to stimulate GLDH and to augment the generation of alpha-ketoglutarate in the islets of PD rats. Also, the concentration of basal alpha-ketoglutarate was significantly higher in the islets of PD rats, suggesting that its metabolism is impaired. In addition, the activity of glutaminase is significantly reduced, an abnormality that would result in decreased production of glutamate, the substrate for GLDH. The data show that PD impairs leucine-induced insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873737

  6. Prkar1a in the regulation of insulin secretion.

    PubMed

    Hussain, M A; Stratakis, C; Kirschner, L

    2012-09-01

    The incidence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide with significant consequences on individual quality of life as well as economic burden on states' healthcare costs. While origins of the pathogenesis of T2DM are poorly understood, an early defect in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is considered a hallmark of T2DM. Upon a glucose stimulus, insulin is secreted in a biphasic manner with an early first-phase burst of insulin, which is followed by a second, more sustained phase of insulin output. First phase insulin secretion is diminished early in T2DM as well is in subjects who are at risk of developing T2DM. An effective treatment of T2DM with incretin hormone glucagon-like peptide-1 (GLP-1) or its long acting peptide analogue exendin-4 (E4), restores first-phase and augments second-phase glucose stimulated insulin secretion. This effect of incretin action occurs within minutes of GLP-1/E4 infusion in T2DM humans. An additional important consideration is that incretin hormones augment GSIS only above a certain glucose threshold, which is slightly above the normal glucose range. This ensures that incretin hormones stimulate GSIS only when glucose levels are high, while they are ineffective when insulin levels are below a certain threshold. Activation of the GLP-1 receptor, which is highly expressed on pancreatic β-cells, stimulates 2 -distinct intracellular signaling pathways: a) the cAMP-protein kinase A branch and b) the cAMP-EPAC2 (EPAC=exchange protein activated by cAMP) branch. While the EPAC2 branch is considered to mediate GLP-1 effects on first-phase GSIS, the PKA branch is necessary for the former branch to be active. However, how these 2 branches interplay and converge and how their effects on insulin secretion and insulin vesicle exocytosis are coordinated is poorly understood.Thus, at the outset of our studies we have a poorly understood intracellular interplay of cAMP-dependent signaling

  7. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  8. Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells.

    PubMed

    Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W; Powers, Alvin C; Gu, Guoqiang; Kaverina, Irina

    2015-09-28

    For glucose-stimulated insulin secretion (GSIS), insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295

  9. Insulin secretion and sensitivity in space flight: diabetogenic effects.

    PubMed

    Tobin, Brian W; Uchakin, Peter N; Leeper-Woodford, Sandra K

    2002-10-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss. PMID:12361776

  10. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  11. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  12. Nilotinib exacerbates diabetes mellitus by decreasing secretion of endogenous insulin.

    PubMed

    Ito, Yoshikiyo; Miyamoto, Toshihiro; Chong, Yong; Maki, Toshinobu; Akashi, Koichi; Kamimura, Tomohiko

    2013-01-01

    We report a 74-year-old female with chronic myelogenous leukemia (CML) in accelerated phase with pre-existing severe type 2 diabetes (T2D) and hemorrhagic gastric ulcers who was successfully treated with nilotinib. We first considered second-generation tyrosine kinase inhibitors for the treatment of this patient, as they elicit a superior response compared with imatinib. We next selected nilotinib, rather than dasatinib, since the increased risk of bleeding associated with dasatinib represented a greater risk of fatality than aggravation of T2D with nilotinib. After improvement of hemorrhagic gastric ulcers and T2D with exogenous insulin therapy, we began nilotinib administration; insulin dose was increased to maintain her glucose levels whereas urine C-peptide level decreased. Conversely, when nilotinib was discontinued due to liver dysfunction, the dosage of injected insulin was decreased and urine C-peptide levels increased. After re-starting nilotinib, the required dose of insulin gradually increased again, and urine C-peptide level decreased, indicating that nilotinib may have impaired secretion of endogenous insulin. The patient obtained a complete cytogenetic response after 3 months of nilotinib treatment. Her T2D has since been well controlled by insulin therapy. To our knowledge, this is the first report that nilotinib treatment for patients with severe T2D may induce a reversible decrease in endogenous insulin secretion, although the precise underlying mechanisms remain unknown. We highly recommend sufficient screening and early intervention with exogenous insulin therapy for diabetic CML patients who receive nilotinib. PMID:23179903

  13. Effect of glibenclamide in insulin-treated diabetic patients with a residual insulin secretion.

    PubMed

    Mauerhoff, T; Ketelslegers, J M; Lambert, A E

    1986-02-01

    We have studied the effect of the combination of a sulfonylurea (Hb 420 or glibenclamide) with insulin in 22 type II diabetic patients, treated with insulin and with residual insulin secretion (fasting plasma C peptide level greater than 0.2 pmol/ml). After a 3 week run-in period, the patients received either glibenclamide (7 mg of Hb 420 before breakfast and 3.5 mg before supper) or placebo in double blind fashion. Clinical and biological parameters (body weight, number of hypoglycemic episodes, daily insulin dose, fasting and postprandial glucose and C peptide levels after a standard meal) were collected during the basal (run-in) period and after 8 and 16 weeks of treatment. In the glibenclamide group, a significant increase in the number of hypoglycemic episodes was observed in spite of a 8 to 10% reduction in insulin requirements. A 18% reduction of both fasting and postprandial plasma glucose levels was found after 8 and 16 weeks of glibenclamide therapy. Concomitantly, a 35% increase of fasting and postprandial plasma C peptide levels occurred. The data suggest that the use of combined sulfonylurea and insulin therapy may be beneficial to type II diabetic patients with residual insulin secretion and poor glycemic control under insulin therapy alone. PMID:3084315

  14. A Unifying Organ Model of Pancreatic Insulin Secretion

    PubMed Central

    De Gaetano, Andrea; Gaz, Claudio; Palumbo, Pasquale; Panunzi, Simona

    2015-01-01

    The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes) and low-frequency oscillations (period approx. 1.5 hours). Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units) with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model’s success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different islets of Langerhans

  15. Oral glucose is the prime elicitor of preabsorptive insulin secretion.

    PubMed

    Grill, H J; Berridge, K C; Ganster, D J

    1984-01-01

    Seven sugars, two sugar alcohols, and a nonnutritive sweetener were orally administered to naive rats with and without gastric drainage fistulas. Although all taste solutions were ingested, only glucose evoked a statistically significant elevation of insulin levels. This rise was independent of a rise in glycemia. The preeminence of oral glucose as an elicitor of preabsorptive insulin secretion is especially striking, considering that glucose is neither the most intense (as measured electrophysiologically) nor the most palatable (as measured by behavioral preference tests) taste stimulus tested. These results suggest the existence of a gustatory and/or gastrointestinal chemoreceptor that is most responsive to glucose. PMID:6364839

  16. Optical Control of Insulin Secretion Using an Incretin Switch

    PubMed Central

    Broichhagen, Johannes; Podewin, Tom; Meyer‐Berg, Helena; von Ohlen, Yorrick; Johnston, Natalie R.; Jones, Ben J.; Bloom, Stephen R.; Rutter, Guy A.

    2015-01-01

    Abstract Incretin mimetics are set to become a mainstay of type 2 diabetes treatment. By acting on the pancreas and brain, they potentiate insulin secretion and induce weight loss to preserve normoglycemia. Despite this, incretin therapy has been associated with off‐target effects, including nausea and gastrointestinal disturbance. A novel photoswitchable incretin mimetic based upon the specific glucagon‐like peptide‐1 receptor (GLP‐1R) agonist liraglutide was designed, synthesized, and tested. This peptidic compound, termed LirAzo, possesses an azobenzene photoresponsive element, affording isomer‐biased GLP‐1R signaling as a result of differential activation of second messenger pathways in response to light. While the trans isomer primarily engages calcium influx, the cis isomer favors cAMP generation. LirAzo thus allows optical control of insulin secretion and cell survival. PMID:26585495

  17. Differences in insulin biosynthesis pathway between small and large islets do not correspond to insulin secretion

    PubMed Central

    Huang, Han-Hung; Stehno-Bittel, Lisa

    2015-01-01

    In a variety of mammalian species, small islets secrete more insulin per volume than large islets. This difference may be due to diffusional limitations of large islets, or inherent differences in the insulin production pathways. The purpose of this study was to identify possible differences in the early phase of glucose-stimulated insulin biosynthesis between large and small islets. Isolated small and large rat islets were challenged with 30 minutes of high glucose. The expression of insulin gene transcription factors (MafA, NeuroD/ Beta2, and PDX-1), preproinsulin mRNA, proinsulin and insulin were compared between large and small islets. Under basal (low glucose) conditions, MafA and NeuroD had higher mRNA levels and greater protein amounts in large islets compared to small when normalized to GAPDH levels. 30 minutes of high glucose stimulation failed to alter the mRNA or subsequent protein levels of either gene. However, 30 minutes of high glucose suppressed activated PDX-1 protein levels in both small and large islets. High glucose stimulation did not statistically alter the preproinsulin mRNA (insulin 1 and insulin 2) levels. At the translational level, high glucose increased the proinsulin levels, and large islets showed a higher proinsulin content per cell than small islets. Insulin content per cell was not significantly different between small and large islets under basal or high glucose levels. The results fail to explain the higher level of insulin secretion noted in small versus large islets and may suggest that possible differences lie downstream in the secretory pathway rather than insulin biosynthesis. PMID:26752360

  18. Insight into Insulin Secretion from Transcriptome and Genetic Analysis of Insulin-Producing Cells of Drosophila

    PubMed Central

    Cao, Jian; Ni, Julie; Ma, Wenxiu; Shiu, Vanessa; Milla, Luis A.; Park, Sangbin; Spletter, Maria L.; Tang, Sheng; Zhang, Jun; Wei, Xing; Kim, Seung K.; Scott, Matthew P.

    2014-01-01

    Insulin-producing cells (IPCs) in the Drosophila brain produce and release insulin-like peptides (ILPs) to the hemolymph. ILPs are crucial for growth and regulation of metabolic activity in flies, functions analogous to those of mammalian insulin and insulin-like growth factors (IGFs). To identify components functioning in IPCs to control ILP production, we employed genomic and candidate gene approaches. We used laser microdissection and messenger RNA sequencing to characterize the transcriptome of larval IPCs. IPCs highly express many genes homologous to genes active in insulin-producing β-cells of the mammalian pancreas. The genes in common encode ILPs and proteins that control insulin metabolism, storage, secretion, β-cell proliferation, and some not previously linked to insulin production or β-cell function. Among these novelties is unc-104, a kinesin 3 family gene, which is more highly expressed in IPCs compared to most other neurons. Knockdown of unc-104 in IPCs impaired ILP secretion and reduced peripheral insulin signaling. Unc-104 appears to transport ILPs along axons. As a complementary approach, we tested dominant-negative Rab genes to find Rab proteins required in IPCs for ILP production or secretion. Rab1 was identified as crucial for ILP trafficking in IPCs. Inhibition of Rab1 in IPCs increased circulating sugar levels, delayed development, and lowered weight and body size. Immunofluorescence labeling of Rab1 showed its tight association with ILP2 in the Golgi of IPCs. Unc-104 and Rab1 join other proteins required for ILP transport in IPCs. PMID:24558258

  19. Estradiol, but not testosterone, heightens cortisol-mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women.

    PubMed

    Sharma, Animesh N; Aoun, Paul; Wigham, Jean R; Weist, Suanne M; Veldhuis, Johannes D

    2014-05-01

    How sex steroids modulate glucocorticoid feedback on the hypothalamic-pituitary-corticotrope (HPC) unit is controversial in humans. We postulated that testosterone (T) in men and estradiol (E2) in women govern unstressed cortisol-mediated negative feedback on ACTH secretion. To test this hypothesis, 24 men and 24 women age 58 ± 2.4 yr were pretreated with leuprolide and either sex steroid (E2 in women, T in men) or placebo addback. Placebo or ketoconazole (KTCZ) was administered overnight to inhibit adrenal steroidogenesis during overnight 14-h intravenous infusions of saline or cortisol in a continuous versus pulsatile manner to test for feedback differences. ACTH was measured every 10 min during the last 8 h of the infusions. The main outcome measures were mean ACTH concentrations, pulsatile ACTH secretion, and ACTH approximate entropy (ApEn). ACTH concentrations were lower in women than men (P < 0.01), and in women in the E2+ compared with E2- group under both continuous (P = 0.01) and pulsatile (P = 0.006) cortisol feedback, despite higher cortisol binding globulin and lower free cortisol levels in women than men (P < 0.01). In the combined groups, under both modes of cortisol addback, ACTH concentrations, pulsatile ACTH secretion, and ACTH secretory-burst mass correlated negatively and univariately with E2 levels (each P < 0.005). E2 also suppressed ACTH ApEn (process randomness) during continuous cortisol feedback (P = 0.004). T had no univariate effect but was a positive correlate of ACTH when assessed jointly with E2 (negative) under cortisol pulses. In conclusion, sex steroids modulate selective gender-related hypothalamic-pituitary adrenal-axis adaptations to cortisol feedback in unstressed humans. PMID:24573184

  20. Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance.

    PubMed

    Zammit, V A; Waterman, I J; Topping, D; McKay, G

    2001-08-01

    The recent observations that insulin can either stimulate or inhibit triacylglycerol secretion by the liver, depending on prior metabolic (possibly insulinemic) state, have rationalized the many apparently contradictory observations, obtained over the past three decades, on the effects of the hormone on this aspect of hepatic metabolism. Extrapolation to the situation in vivo suggests that frequent stimulation of insulin secretion may result in a chronic stimulation of VLDL secretion, and increased delivery of acyl moieties to muscle, where they induce insulin resistance if provided in excess of the oxidative needs (mostly due to exercise) of the tissue. High fructose/sucrose diets, which also stimulate hepatic VLDL secretion, will have the same effect, especially if consumed frequently during the diurnal cycle. Due to the quantitative importance of muscle as a site for insulin-sensitive glucose metabolism, these effects may initiate the metabolic vicious cycle that results in the development of the metabolic syndrome, well in advance of overt obesity or the diagnosis of type-2 diabetes. PMID:11481396

  1. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  2. Insulin secretion as a determinant of pancreatic cancer risk.

    PubMed

    McCarty, M F

    2001-08-01

    New epidemiology confirms that glucose intolerance is a risk factor for pancreatic cancer, and that this association cannot be accounted for by an adverse impact of early pancreatic cancer on beta cell function. Previous reports indicate that risk for pancreatic cancer is increased in adult-onset diabetics. Since streptozotocin diabetes inhibits carcinogen-mediated induction of pancreatic cancer in hamsters, the most reasonable interpretation of these findings is that insulin (or some other beta cell product) acts as a promoter for pancreatic carcinogenesis. This view is consistent with a report that human pancreatic adenocarcinomas express insulin receptors that can stimulate mitosis; an additional possibility is that high insulin levels indirectly promote pancreatic carcinogenesis by boosting effective IGF-I activity via hepatic actions. In international ecologic epidemiology, pancreatic cancer rates correlate tightly with dietary intake of animal products; this may reflect the fact that vegan diets are associated with low diurnal insulin secretion. There is also suggestive evidence that macrobiotic vegan diets, which are low in glycemic index, may increase mean survival time in pancreatic cancer. However, other types of diets associated with decreased postprandial insulin response, such as high-protein diets or 'Mediterranean' diets high in oleic acid, may also have the potential for pancreatic cancer prevention. The huge increases of age-adjusted pancreatic cancer mortality in Japan and among African-Americans during the last century imply that pancreatic cancer is substantially preventable; a low-insulin-response diet coupled with exercise training, weight control, and smoking avoidance, commendable for a great many other reasons, may slash pancreatic cancer mortality dramatically. PMID:11461162

  3. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults.

    PubMed

    Hernández-Corona, Diana M; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2014-07-01

    The aim of this article is to evaluate the effect of fucoidan administration on insulin secretion and insulin sensitivity in overweight or obese adults. A randomized, double-blind, placebo-controlled clinical trial was carried out in 25 obese or overweight volunteers. Thirteen patients received an oral dose of 500 mg of fucoidan once daily before breakfast and 12 patients received placebo for 3 months. Before and after the intervention, fasting glucose and 2-h postload, total cholesterol, high-density lipoprotein cholesterol, triglycerides, and insulin levels were measured. Low-density lipoprotein cholesterol (LDL-C) and homeostasis model analysis formulas (HOMA) for β-cell function and insulin resistance were calculated. The results showed a significant decrease in diastolic blood pressure (71.7 ± 12.2 vs. 67.8 ± 13.8 mmHg; P<.05) and LDL-C (3.1 ± 0.5 vs. 2.7 ± 0.6 mmol/l; P<.01) with increase in insulin levels (60.6 ± 24.0 vs. 78.6 ± 32.4 pmol/l; P<.05), HOMA β-cell (35.0 ± 20.8 vs. 50.6 ± 18.7; P<.05) and HOMA IR (1.9 ± 1.2 vs. 2.6 ± 1.8; P<.05) were observed after fucoidan administration. We conclude that fucoidan administration during a 3-month period in overweight or obese adults decreased diastolic blood pressure and LDL-C concentrations, increasing insulin secretion and insulin resistance. PMID:24611906

  4. Liver Enzymes Are Associated With Hepatic Insulin Resistance, Insulin Secretion, and Glucagon Concentration in Healthy Men and Women

    PubMed Central

    Bonnet, Fabrice; Ducluzeau, Pierre-Henri; Gastaldelli, Amalia; Laville, Martine; Anderwald, Christian H.; Konrad, Thomas; Mari, Andrea; Balkau, Beverley

    2011-01-01

    OBJECTIVE The pathophysiological mechanisms to explain the association between risk of type 2 diabetes and elevated concentrations of γ-glutamyltransferase (GGT) and alanineaminotransferase (ALT) remain poorly characterized. We explored the association of liver enzymes with peripheral and hepatic insulin resistance, insulin secretion, insulin clearance, and glucagon concentration. RESEARCH DESIGN AND METHODS We studied 1,309 nondiabetic individuals from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study; all had a euglycemic-hyperinsulinemic clamp and an oral glucose tolerance test (OGTT) with assessment of insulin secretion and hepatic insulin extraction. The hepatic insulin resistance index was calculated in 393 individuals. RESULTS In both men and women, plasma concentrations of GGT and ALT were inversely related with insulin sensitivity (M/I) (all P < 0.01). Likewise, the hepatic insulin resistance index was positively correlated with both GGT (r = 0.37, P < 0.0001, men; r = 0.36, P < 0.0001, women) and ALT (r = 0.25, P = 0.0005, men; r = 0.18, P = 0.01, women). These associations persisted in multivariable models. Increased GGT and ALT were significantly associated with higher insulin secretion rates and with both reduced endogenous clearance of insulin and hepatic insulin extraction during the OGTT (P = 0.0005 in men; P = 0.003 in women). Plasma fasting glucagon levels increased over ALT quartiles (men, quartile 4 vs. quartile 1 11.2 ± 5.1 vs. 9.3 ± 3.8 pmol/L, respectively, P = 0.0002; women, 9.0 ± 4.3 vs. 7.6 ± 3.1, P = 0.001). CONCLUSIONS In healthy individuals, increased GGT and ALT were biomarkers of both systemic and hepatic insulin resistance with concomitant increased insulin secretion and decreased hepatic insulin clearance. The novel finding of a positive correlation between ALT and fasting glucagon level concentrations warrants confirmation in type 2 diabetes. PMID:21521874

  5. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep.

    PubMed Central

    Van Cauter, E; Blackman, J D; Roland, D; Spire, J P; Refetoff, S; Polonsky, K S

    1991-01-01

    To define the roles of circadian rhythmicity (intrinsic effects of time of day independent of the sleep or wake condition) and sleep (intrinsic effects of the sleep condition, irrespective of the time of day) on the 24-h variation in glucose tolerance, eight normal men were studied during constant glucose infusion for a total of 53 h. The period of study included 8 h of nocturnal sleep, 28 h of continuous wakefulness, and 8 h of daytime sleep. Blood samples for the measurement of glucose, insulin, C-peptide, cortisol, and growth hormone were collected at 20-min intervals throughout the entire study. Insulin secretion rates were derived from C-peptide levels by deconvolution. Sleep was polygraphically monitored. During nocturnal sleep, levels of glucose and insulin secretion increased by 31 +/- 5% and 60 +/- 11%, respectively, and returned to baseline in the morning. During sleep deprivation, glucose levels and insulin secretion rose again to reach a maximum at a time corresponding to the beginning of the habitual sleep period. The magnitude of the rise above morning levels averaged 17 +/- 5% for glucose and 49 +/- 8% for calculated insulin secretion. Serum insulin levels did not parallel the circadian variation in insulin secretion, indicating the existence of an approximate 40% increase in insulin clearance during the night. Daytime sleep was associated with a 16 +/- 3% rise in glucose levels, a 55 +/- 7% rise in insulin secretion, and a 39 +/- 5% rise in serum insulin. The diurnal variation in insulin secretion was inversely related to the cortisol rhythm, with a significant correlation of the magnitudes of their morning to evening excursions. Sleep-associated rises in glucose correlated with the amount of concomitant growth hormone secreted. These studies demonstrate previously underappreciated effects of circadian rhythmicity and sleep on glucose levels, insulin secretion, and insulin clearance, and suggest that these effects could be partially mediated by

  6. Environmental factors and dam characteristics associated with insulin sensitivity and insulin secretion in newborn Holstein calves.

    PubMed

    Kamal, M M; Van Eetvelde, M; Bogaert, H; Hostens, M; Vandaele, L; Shamsuddin, M; Opsomer, G

    2015-09-01

    The objective of the present retrospective cohort study was to evaluate potential associations between environmental factors and dam characteristics, including level of milk production during gestation, and insulin traits in newborn Holstein calves. Birth weight and gestational age of the calves at delivery were determined. On the next day, heart girth, wither height and diagonal length of both the calves and their dams were measured. Parity, body condition score and age at calving were recorded for all dams. For the cows, days open before last gestation, lactation length (LL), length of dry period (DP) and calving interval were also calculated. The magnitude and shape of the lactation curve both quantified using the MilkBot model based on monthly milk weights, were used to calculate the amount of milk produced during gestation. Using the same procedure, cumulative milk production from conception to drying off (MGEST) was calculated. A blood sample was collected from all calves (n=481; 169 born to heifers and 312 born to cows) at least 5 h after a milk meal on day 3 of life to measure basal glucose and insulin levels. In addition, an intravenous glucose-stimulated insulin secretion test was performed in a subset of the calves (n=316). After descriptive analysis, generalized linear mixed models were used to identify factors that were significantly associated with the major insulin traits (Insb, basal insulin level; QUICKI, quantitative insulin sensitivity check index; AIR, acute insulin response; DI, disposition index) of the newborn calves. The overall average birth weight of the calves was 42.7 ± 5.92 kg. The insulin traits were significantly associated with gender and season of birth when data of all calves were analyzed. In addition, the insulin traits in calves born to cows were significantly associated with MGEST, DP and LL. The Insb was estimated to be higher in calves born to the cows having passed a higher MGEST (P=0.076) and longer DP (P=0.034). The

  7. The possible mechanisms by which maternal hypothyroidism impairs insulin secretion in adult male offspring in rats.

    PubMed

    Karbalaei, Narges; Ghasemi, Asghar; Hedayati, Mehdi; Godini, Aliashraf; Zahediasl, Saleh

    2014-04-01

    Previous studies have recently shown that maternal hypothyroidism leads to impaired glucose metabolism and reduced insulin secretion in adult offspring in rats. The aim of this study was to locate the defect in the insulin secretion pathway induced by maternal hypothyroidism. Pregnant Wistar rats were divided into two groups; the control group consumed water, while the hypothyroid (FH) group received water containing 0.025% 6-propyl-2-thiouracil during gestation. An intravenous glucose tolerance test was carried out on 5-month-old male offspring. In in vitro studies, the effects of various secretagogues and inhibitors acting at different levels of the insulin secretion cascade were investigated, and insulin content, insulin secretion and glucokinase activity of the islets were compared. Although insulin content of the FH islets did not differ from that of control islets, insulin secretion from FH islets was reduced when it was challenged by glucose or arginine. Compared with control islets, activities of both hexokinase and glucokinase were also significantly decreased in the FH islets. Although, in both groups, increasing glibenclamide and nifedipine concentrations in the presence of 16.7 mmol l(-1) glucose increased and decreased insulin secretion, respectively, the percentage of changes in secretion of FH islets was significantly lower compared with control islets. The response of FH islets to high extracellular potassium concentration and diazoxide was also significantly lower than that of the control islets. These findings demonstrate that impaired insulin secretion in the FH group is probably related to alterations in different steps of the insulin secretion pathway and not in the insulin pool of β-cells. PMID:24097159

  8. Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects.

    PubMed

    Salgin, B; Marcovecchio, M L; Humphreys, S M; Hill, N; Chassin, L J; Lunn, D J; Hovorka, R; Dunger, D B

    2009-03-01

    Normal beta-cells adjust their function to compensate for any decrease in insulin sensitivity. Our aim was to explore whether a prolonged fast would allow a study of the effects of changes in circulating free fatty acid (FFA) levels on insulin secretion and insulin sensitivity and whether any potential effects could be reversed by the antilipolytic agent acipimox. Fourteen (8 female, 6 male) healthy young adults (aged 22.8-26.9 yr) without a family history of diabetes and a body mass index of 22.6 +/- 3.2 kg/m(2) were studied on three occasions in random order. Growth hormone and FFA levels were regularly measured overnight (2200-0759), and subjects underwent an intravenous glucose tolerance test in the morning (0800-1100) on each visit. Treatment A was an overnight fast, treatment B was a 24-h fast with regular administrations of a placebo, and treatment C was a 24-h fast with regular ingestions of 250 mg of acipimox. The 24-h fast increased overnight FFA levels (as measured by the area under the curve) 2.8-fold [51.3 (45.6-56.9) vs. 18.4 (14.4-22.5) *10(4) micromol/l*min, P < 0.0001], and it led to decreases in insulin sensitivity [5.7 (3.6-8.9) vs. 2.6 (1.3-4.7) *10(-4) min(-1) per mU/l, P < 0.0001] and the acute insulin response [16.3 (10.9-21.6) vs. 12.7 (8.7-16.6) *10(2) pmol/l*min, P = 0.02], and therefore a reduction in the disposition index [93.1 (64.8-121.4) vs. 35.5 (21.6-49.4) *10(2) pmol/mU, P < 0.0001]. Administration of acipimox during the 24-h fast lowered FFA levels by an average of 20% (range: -62 to +49%; P = 0.03), resulting in a mean increase in the disposition index of 31% (P = 0.03). In conclusion, the 24-h fast was accompanied by substantial increases in fasting FFA levels and induced reductions in the acute glucose-simulated insulin response and insulin sensitivity. The use of acipimox during the prolonged fast increased the disposition index, suggesting a partial reversal of the effects of fasting on the acute insulin response and insulin

  9. Pulsatile control of reproduction.

    PubMed

    1984-08-18

    An aspect of the neuroendocrine regulation of reproduction to emerge in the past decade is the pulsatile nature of hormone secretion. The pulse generator is in the central nervous system -- in the medial basal region of the hypothalamus. It works by a synchronous firing of entire populations of endocrine neurons, which discharge a quantum of the decapeptide gonadotropin-releasing hormone (GnRH) into the portal blood capillaries which then carry it to the anterior pituitary gland. In man, episodic secretion of pituitary gonadotropins, especially luteinizing hormone (LH) is considered to imply a preceding pulsatile GnRH stimulus also, though this cannot be observed directly. This LH pattern is characterized by discrete bursts (pulses) separated by periods of little or no secretion. It is observalbe at all stages and states of reproductive life, being most evident at high secretion rates (e.g., at midcycle and after menopause). The pulse frequency is important and leads to the possibility of physiological and pharmacological control of pituitary-gonadal function by frequency modulation. Physiologically, pulses of LH secretion occur every 1-2 hours. The need for pulsatility in therapeutic GnRH stimulation of the pituitary also has been established following the early days of GnRH therapy when both constant and infrequent administration were found to be ineffective. Pulsatile GnRH therapy through portable pumps delivering small doses subcutaneously or intravenously every 1-2 hours has now been successfully applied to the treatment of anovulatory infertility, male hypogonadism, and the initiation of puberty. Supraphysiological GnRH stimulation, whether through increased frequency or amplitude or use of the "superactive" agonist analogues, produces a seemingly paradoxical inhibition of gonadotropin secretion. Although a postreceptor effect has been proposed, the mechanism appears to be a "down-regulation" of the GnRH receptors. Normally, the gaps between the physiological

  10. MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion

    PubMed Central

    Gallo, Marco; Park, Donha; Luciani, Dan S.; Kida, Katarzyna; Palmieri, Ferdinando; Blacque, Oliver E.; Johnson, James D.; Riddle, Donald L.

    2011-01-01

    We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-xL, respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell. PMID:21448454

  11. KNDy (kisspeptin/neurokinin B/dynorphin) neurons are activated during both pulsatile and surge secretion of LH in the ewe.

    PubMed

    Merkley, Christina M; Porter, Katrina L; Coolen, Lique M; Hileman, Stanley M; Billings, Heather J; Drews, Sara; Goodman, Robert L; Lehman, Michael N

    2012-11-01

    KNDy (kisspeptin/neurokinin B/dynorphin) neurons of the arcuate nucleus (ARC) appear to mediate the negative feedback actions of estradiol and are thought to be key regulators of pulsatile LH secretion. In the ewe, KNDy neurons may also be involved with the positive feedback actions of estradiol (E(2)) to induce the LH surge, but the role of kisspeptin neurons in the preoptic area (POA) remains unclear. The goal of this study was to identify which population(s) of kisspeptin neurons is (are) activated during the LH surge and in response to the removal of E(2)-negative feedback, using Fos as an index of neuronal activation. Dual-label immunocytochemistry for kisspeptin and Fos was performed on sections containing the ARC and POA from ewes during the luteal phase of the estrous cycle, or before or after the onset of the LH surge (experiment 1), and from ovary-intact, short-term (24 h) and long-term (>30 d) ovariectomized (OVX) ewes in anestrus (experiment 2). The percentage of kisspeptin neurons expressing Fos in both the ARC and POA was significantly higher during the LH surge. In contrast, the percentage of kisspeptin/Fos colocalization was significantly increased in the ARC, but not POA, after both short- and long-term E(2) withdrawal. Thus, POA kisspeptin neurons in the sheep are activated during, and appear to contribute to, E(2)-positive feedback, whereas ARC kisspeptin (KNDy) neurons are activated during both surge and pulsatile modes of secretion and likely play a role in mediating both positive and negative feedback actions of E(2) on GnRH secretion in the ewe. PMID:22989631

  12. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro.

    PubMed

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L; Harris, Paul E

    2012-10-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  13. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  14. Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans

    PubMed Central

    Billing, Ola; Kao, Gautam; Naredi, Peter

    2011-01-01

    While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function. PMID:21264209

  15. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats.

    PubMed

    Freitas, Mariella B; Queiroz, Joicy F; Dias Gomes, Carolinne I; Collares-Buzato, Carla B; Barbosa, Helena C; Boschero, Antonio C; Gonçalves, Carlos A; Pinheiro, Eliana C

    2013-03-01

    Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility. PMID:23262275

  16. Endocrine Determinants of Changes in Insulin Sensitivity and Insulin Secretion during a Weight Cycle in Healthy Men

    PubMed Central

    Karschin, Judith; Lagerpusch, Merit; Enderle, Janna; Eggeling, Ben; Müller, Manfred J.; Bosy-Westphal, Anja

    2015-01-01

    Objective Changes in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear. Methods In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed. Results IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant. Conclusion Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and

  17. Glycemia Determines the Effect of Type 2 Diabetes Risk Genes on Insulin Secretion

    PubMed Central

    Heni, Martin; Ketterer, Caroline; Thamer, Claus; Herzberg-Schäfer, Silke A.; Guthoff, Martina; Stefan, Norbert; Machicao, Fausto; Staiger, Harald; Fritsche, Andreas; Häring, Hans-Ulrich

    2010-01-01

    OBJECTIVE Several single nucleotide polymorphisms (SNPs) in diabetes risk genes reduce glucose- and/or incretin-induced insulin secretion. Here, we investigated interactions between glycemia and such diabetes risk polymorphisms. RESEARCH DESIGN AND METHODS Insulin secretion was assessed by insulinogenic index and areas under the curve of C-peptide/glucose in 1,576 subjects using an oral glucose tolerance test (OGTT). Participants were genotyped for 10 diabetes risk SNPs associated with β-cell dysfunction: rs5215 (KCNJ11), rs13266634 (SLC30A8), rs7754840 (CDKAL1), rs10811661 (CDKN2A/2B), rs10830963 (MTNR1B), rs7903146 (TCF7L2), rs10010131 (WFS1), rs7923837 (HHEX), rs151290 (KCNQ1), and rs4402960 (IGF2BP2). Furthermore, the impact of the interaction between genetic variation in TCF7L2 and glycemia on changes in insulin secretion was tested in 315 individuals taking part in a lifestyle intervention study. RESULTS For the SNPs in TCF7L2 and WFS1, we found a significant interaction between glucose control and insulin secretion (all P ≤ 0.0018 for glucose × genotype). When plotting insulin secretion against glucose at 120 min OGTT, the compromising SNP effects on insulin secretion are most apparent under high glucose. In the longitudinal study, rs7903146 in TCF7L2 showed a significant interaction with baseline glucose tolerance upon change in insulin secretion (P = 0.0027). Increased glucose levels at baseline predicted an increase in insulin secretion upon improvement of glycemia by lifestyle intervention only in carriers of the risk alleles. CONCLUSIONS For the diabetes risk genes TCF7L2 and WFS1, which are associated with impaired incretin signaling, the level of glycemia determines SNP effects on insulin secretion. This indicates the increasing relevance of these SNPs during the progression of prediabetes stages toward clinically overt type 2 diabetes. PMID:20802253

  18. Dietary composition and its associations with insulin sensitivity and insulin secretion in youth.

    PubMed

    Henderson, Mélanie; Benedetti, Andrea; Gray-Donald, Katherine

    2014-02-01

    The objectives of the present study were to examine the associations between macronutrient intake and insulin sensitivity (IS) and insulin secretion (ISct), taking into consideration moderate-to-vigorous physical activity (MVPA), fitness and sedentary behaviour. Caucasian youth (n 630) aged 8-10 years at recruitment, with at least one obese biological parent, were studied (QUebec Adipose and Lifestyle InvesTigation in Youth cohort). IS was measured using the homeostasis model assessment (HOMA) of insulin resistance and Matsuda IS index. ISct was measured using HOMA2%-β, the ratio of the AUC of insulin:glucose over the first 30 min (AUC I/G(t= 30 min)) of the oral glucose tolerance test and AUC I/G(t= 120 min) over 2 h. Fitness was measured using VO₂(peak), percentage of fat mass by dual-energy X-ray absorptiometry, and 7 d MVPA using accelerometry; screen time (ST) by average daily hours of self-reported television, video game or computer use. Dietary composition was measured using three non-consecutive dietary recalls. Non-parametric smoothing splines were used to model non-linear associations; all models were adjusted for age, sex, season, pubertal stage, MVPA, fitness, ST and adiposity. The percentage of total daily energy from dietary protein, fat, saturated fat and carbohydrate and the consumption of dietary vitamin D, sugar-sweetened beverages, fibre and portions of fruits and vegetables were taken into consideration. No dietary component was associated with any measure of IS after adjusting for MVPA, fitness, ST and adiposity. For every 1% increase in daily protein intake (%), AUC I/G(t= 30 min) decreased by 1·1% (P= 0·033). Otherwise, dietary composition was not associated with ISct. While long-term excess of energy intake has been shown to lead to overweight and obesity, dietary macronutrient composition is not independently correlated with IS or ISct in youth. PMID:24047611

  19. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  20. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  1. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6

    PubMed Central

    Bhat, Uppoor G.; Watanabe, Keiko

    2015-01-01

    Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis. PMID

  2. The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion.

    PubMed

    Uchida, Kunitoshi; Tominaga, Makoto

    2011-01-01

    Insulin secretion from pancreatic β-cells is the only efficient means to decrease blood glucose concentrations. Glucose is the principal stimulator of insulin secretion with the ATP-sensitive K+ channel-voltage-gated Ca2+ channel-mediated pathway being the primary one involved in glucose-stimulated insulin secretion. Recently, several reports demonstrated that some transient receptor potential (TRP) channels are expressed in pancreatic β-cells and contribute to pancreatic β-cell functions. Interestingly, six of them (TRPM2, TRPM4, TRPM5, TRPV1, TRPV2 and TRPV4) are thermosensitive TRP channels. Thermosensitive TRP channels in pancreatic β-cells can function as multimodal receptors and cause Ca2+ influx and membrane depolarization at physiological body temperature. TRPM channels (TRPM2, TRPM4 and TRPM5) control insulin secretion levels by sensing intracellular Ca2+ increase, NAD metabolites, or hormone receptor activation. TRPV2 is involved not only in insulin secretion but also cell proliferation, and is regulated by the autocrine effects of insulin. TRPV1 expressed in sensory neurons is involved in β-cell stress and islet inflammation by controlling neuropeptide release levels. It is thus clear that thermosensitive TRP channels play important roles in pancreatic β-cell functions, and future analyses of TRP channel function will lead to better understanding of the complicated mechanisms involved in insulin secretion and diabetes pathogenesis. PMID:21785227

  3. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain.

    PubMed

    Scherer, Thomas; Lindtner, Claudia; O'Hare, James; Hackl, Martina; Zielinski, Elizabeth; Freudenthaler, Angelika; Baumgartner-Parzer, Sabina; Tödter, Klaus; Heeren, Joerg; Krššák, Martin; Scheja, Ludger; Fürnsinn, Clemens; Buettner, Christoph

    2016-06-01

    Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis. PMID:26861781

  4. Changing Clinical Characteristics according to Insulin Resistance and Insulin Secretion in Newly Diagnosed Type 2 Diabetic Patients in Korea

    PubMed Central

    Son, Jang Won; Park, Cheol-Young; Lee, Han-Kyu; Lee, Yil-Seob

    2015-01-01

    Background The role of increased insulin resistance in the pathogenesis of type 2 diabetes has been emphasized in Asian populations. Thus, we evaluated the proportion of insulin resistance and the insulin secretory capacity in patients with early phase type 2 diabetes in Korea. Methods We performed a cross-sectional analysis of 1,314 drug-naive patients with newly diagnosed diabetes from primary care clinics nationwide. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as an index to measure insulin resistance, which was defined as a HOMA-IR ≥2.5. Insulin secretory defects were classified based on fasting plasma C-peptide levels: severe (<1.1 ng/mL), moderate (1.1 to 1.7 ng/mL) and mild to non-insulin secretory defect (≥1.7 ng/mL). Results The mean body mass index (BMI) was 25.2 kg/m2; 77% of patients had BMIs >23.0 kg/m2. Up to 50% of patients had central obesity based on their waist circumference (≥90 cm in men and 85 cm in women), and 70.6% had metabolic syndrome. Overall, 59.5% of subjects had insulin resistance, and 20.2% demonstrated a moderate to severe insulin secretory defect. Among those with insulin resistance, a high proportion of subjects (79.0%) had a mild or no insulin secretory defect. Only 2.6% of the men and 1.9% of the women had both insulin resistance and a moderate to severe insulin secretory defect. Conclusion In this study, patients with early phase type 2 diabetes demonstrated increased insulin resistance, but preserved insulin secretion, with a high prevalence of obesity and metabolic syndrome. PMID:26566496

  5. SORCS1 polymorphism and insulin secretion in obese women with polycystic ovary syndrome.

    PubMed

    Hrovat, Ana; Kravos, Nika Aleksandra; Goričar, Katja; Jensterle Sever, Mojca; Janež, Andrej; Dolžan, Vita

    2016-01-01

    We investigated the influence of SORCS1 polymorphisms on insulin secretion in obese women with PCOS. Metabolic status was recorded in 50 clinically well characterized PCOS patients. Oral glucose tolerance test was performed and laboratory parameters of insulin resistance measured. All patients were genotyped for SORCS1 rs1358030, rs1416406 and rs11192966 polymorphisms. Statistical analysis was performed using the Mann-Whitney test. SORCS1 rs1416406 significantly influenced stimulated glucose plasma levels (p = 0.006) and increased glucose stimulated insulin secretion (p = 0.034). None of the polymorphisms influenced insulin resistance as measured by homeostatic model assessment. We report for the first time the relevance of SORCS1 polymorphisms for glycemic control and glucose stimulated insulin secretion in obese women with PCOS. PMID:27052493

  6. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    SciTech Connect

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji; Yamada, Shuhei; Kaneiwa, Tomoyuki; Mizumoto, Shuji; Ikeda, Takayuki; Sugihara, Kazushi; Asano, Masahide; Yoshikawa, Takeo; Yamauchi, Akiyo; Shervani, Nausheen Jamal; Uruno, Akira; Kato, Ichiro; Unno, Michiaki; Sugahara, Kazuyuki; Takasawa, Shin; and others

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  7. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity

    PubMed Central

    Hinoi, Eiichi; Gao, Nan; Jung, Dae Young; Yadav, Vijay; Yoshizawa, Tatsuya; Myers, Martin G.; Chua, Streamson C.; Kim, Jason K.; Kaestner, Klaus H.; Karsenty, Gerard

    2008-01-01

    The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis. PMID:19103808

  8. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells

    PubMed Central

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2014-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  9. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.

    PubMed

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2011-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  10. Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules.

    PubMed

    Stamper, I Johanna; Wang, Xujing

    2013-02-01

    In this paper we develop a new mathematical model of glucose-induced insulin secretion from pancreatic islet β-cells, and we use this model to investigate the rate limiting factors. We assume that insulin granules reside in different pools inside each β-cell, and that all β-cells respond homogeneously to glucose with the same recruitment thresholds. Consistent with recent experimental observations, our model also accounts for the fusion of newcomer granules that are not pre-docked at the plasma membrane. In response to a single step increase in glucose concentration, our model reproduces the characteristic biphasic insulin release observed in multiple experimental systems, including perfused pancreata and isolated islets of rodent or human origin. From our model analysis we note that first-phase insulin secretion depends on rapid depletion of the primed, release-ready granule pools, while the second phase relies on granule mobilization from the reserve. Moreover, newcomers have the potential to contribute significantly to the second phase. When the glucose protocol consists of multiple changes in sequence (a so-called glucose staircase), our model predicts insulin spikes of increasing height, as has been seen experimentally. This increase stems from the glucose-dependent increase in the fusion rate of insulin granules at the plasma membrane of single β-cells. In contrast, previous mathematical models reproduced the staircase experiment by assuming heterogeneous β-cell activation. In light of experimental data indicating limited heterogeneous activation for β-cells within intact islets, our findings suggest that a graded, dose-dependent cell response to glucose may contribute to insulin secretion patterns observed in multiple experiments, and thus regulate in vivo insulin release. In addition, the strength of insulin granule mobilization, priming and fusion are critical limiting factors in determining the total amount of insulin release. PMID:23154190

  11. Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells

    PubMed Central

    López Rodríguez, Maykel; Stančáková, Alena; Kuusisto, Johanna; Kokkola, Tarja; Laakso, Markku

    2015-01-01

    Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 β-cells by 59% and 79% (p<0.01) at glucose concentration of 5.5 mmol/l and 16.7 mmol/l, respectively, compared to control, whereas pravastatin did not impair insulin secretion. Simvastatin induced decrease in insulin secretion occurred through multiple targets. In addition to its established effects on ATP-sensitive potassium channels (p = 0.004) and voltage-gated calcium channels (p = 0.004), simvastatin suppressed insulin secretion stimulated by muscarinic M3 or GPR40 receptor agonists (Tak875 by 33%, p = 0.002; GW9508 by 77%, p = 0.01) at glucose level of 5.5 mmol/l, and inhibited calcium release from the endoplasmic reticulum. Impaired insulin secretion caused by simvastatin treatment were efficiently restored by GPR119 or GLP-1 receptor stimulation and by direct activation of cAMP-dependent signaling pathways with forskolin. The effects of simvastatin treatment on insulin secretion were not affected by the presence of hyperglycemia. Our observation of the opposite effects of simvastatin and pravastatin on glucose-stimulated insulin secretion is in agreement with previous reports showing that simvastatin, but not pravastatin, was associated with increased risk of incident diabetes. PMID:26561346

  12. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  13. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  14. Toxins that modulate ionic channels as tools for exploring insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2010-11-01

    Glucose-induced insulin secretion is a cardinal process in glucose homeostasis and metabolic expenditure. Uncoupling of the insulin response to glucose variations may lead to type-2 diabetes mellitus. Thus the identification of more specific drugs to facilitate the study of insulin secretion mechanisms and to develop new pharmacological agents for therapeutics is fundamental. Venomous organisms possess a great diversity of toxic molecules and some of them are neurotoxins that affect membrane excitability. This article reviews properties of those toxins affecting ion channels pivotal for insulin secretion and the usefulness of such compounds in the study of pancreatic beta-cell physiology. Here we examine the major contributions of toxinology to the understanding of the ionic phase of insulin secretion, to the determination of ion channel composition in different insulin secreting cell-line models as well as from primary cultures of different mammal species. Finally, we present a summary of the many diverse toxins affecting insulin release and a brief discussion of the potential of novel toxins in therapeutics. PMID:21046453

  15. Physical exercise and pancreatic islets: acute and chronic actions on insulin secretion.

    PubMed

    Almeida, Felipe N; Proença, André R G; Chimin, Patrícia; Marçal, Anderson C; Bessa-Lima, Fábio; Carvalho, Carla R O

    2012-01-01

    Diabetes mellitus (DM) is a great public health problem, which attacks part of the world population, being characterized by an imbalance in body glucose homeostasis. Physical exercise is pointed as a protective agent and is also recommended to people with DM. As pancreatic islets present an important role in glucose homeostasis, we aim to study the role of physical exercise (chronic adaptations and acute responses) in pancreatic islets functionality in Wistar male rats. First, animals were divided into two groups: sedentary (S) and aerobic trained (T). At the end of 8 weeks, half of them (S and T) were submitted to an acute exercise session (exercise until exhaustion), being subdivided as acute sedentary (AS) and acute trained (AT). After the experimental period, periepididymal, retroperitoneal and subcutaneous fat pads, blood, soleus muscle and pancreatic islets were collected and prepared for further analysis. From the pancreatic islets, total insulin content, insulin secretion stimulated by glucose, leucine, arginine and carbachol were analyzed. Our results pointed that body adiposity and glucose homeostasis improved with chronic physical exercise. In addition, total insulin content was reduced in group AT, insulin secretion stimulated by glucose was reduced in trained groups (T and AT) and insulin secretion stimulated by carbachol was increased in group AT. There were no significant differences in insulin secretion stimulated by arginine and leucine. We identified a possible modulating action on insulin secretion, probably related to the association of chronic adaptation with an acute response on cholinergic activity in pancreatic islets. PMID:22868676

  16. Indices of insulin secretion during a liquid mixed-meal test in obese youth with diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare indices of insulin secretion, insulin sensitivity (IS),and oral disposition index (oDI) during the liquid mixed-meal test in obese youth with clinically diagnosed type 2 diabetes mellitus (T2DM) and negative autoantibodies (Ab-) versus those with T2DM and positive autoantibodies (Ab+) to ...

  17. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    PubMed

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P < .05), A1C (5.8 ± 0.3 vs. 5.6% ± 0.4%, P < .05), AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P < .05), and total insulin secretion (0.45 ± 0.23 vs. 0.35 ± 0.18, P < .05), with a significant increase in high-density lipoprotein cholesterol (HDL-C) (1.3 ± 0.3 vs. 1.4 ± 0.3 mmol/L, P < .05). There were no significant differences after placebo administration. A. dracunculus administration for 90 days in patients with IGT significantly decreased SBP, A1C, AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels. PMID:27097076

  18. Effect of pantoprazole on insulin secretion in drug-naïve patients with type 2 diabetes.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Mercado-Sesma, Arieh R; Álvarez-Carrillo, Rebeca

    2015-04-01

    To evaluate the effect of pantoprazole during 45 days on insulin secretion in drug-naïve patients with type 2 diabetes, a randomized, double blind, placebo control clinical trial was performed in 14 drug-naïve volunteers. Significant increases in late insulin phase and total insulin secretion, and decreases in HbA1c levels were found. PMID:25704601

  19. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  20. The effect of thyroidectomy and propylthiouracil-induced hypothyroidism on insulin secretion in male rats.

    PubMed

    Godini, A; Ghasemi, A; Karbalaei, N; Zahediasl, S

    2014-09-01

    Data available on thyroid dysfunction and insulin secretion are inconsistent. The aim of this study was to assess the effect of hypothyroidism on insulin secretion, in vivo and in vitro, in rats. Adult Wistar male rats were divided into 4 groups, the control, the propylthiouracyl (PTU)-treated hypothyroid, the surgically thyroidectomized, and the sham-operated thyroidectomized. After 5 weeks, intravenous glucose tolerance test (IVGTT) was performed and 3 weeks later pancreatic islets were isolated to assess glucose induced insulin secretion and insulin content. Fasting serum glucose and insulin levels did not differ between the groups, but serum glucose concentration during IVGTT in the PTU-induced hypothyroid group was significantly higher as compared to controls, throughout 5-60 min. The serum glucose concentration during IVGTT in the thyroidectomized rats was also significantly higher than in the sham-operated ones, except at 10 and 60 min. The area under the curve of the serum insulin was significantly lower during IVGTT in the PTU-treated (10,010 ± 1,380 pmol/l/60 min) and thyroidectomized (13,930 ± 2,786) groups vs. their comparable groups (19,150 ± 2,110), p<0.01 and (20,650 ± 1,601), p<0.05, respectively. In the PTU-treated, but not in thyroidectomized animals, insulin secretion in response to glucose 8.3 and 16.7 mM was significantly lower than their comparable group. The results show that PTU- and thyroidectomy-induced hypothyroidism leads to impaired glucose tolerance due to reduced glucose stimulated insulin secretion. Islets insulin secretion is positively correlated with serum T3 and T4 concentrations. PMID:24627102

  1. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells

    PubMed Central

    Aguayo-Mazzucato, C.; Koh, A.; El Khattabi, I.; Li, W.-C.; Toschi, E.; Jermendy, A.; Juhl, K.; Mao, K.; Weir, G. C.

    2011-01-01

    Aim/hypothesis Neonatal beta cells lack glucose-stimulated insulin secretion and are thus functionally immature. We hypothesised that this lack of glucose responsiveness results from a generalised low expression of genes characteristic of mature functional beta cells. Important glucose-responsive transcription factors, Mafa and Pdx1, regulate genes involved in insulin synthesis and secretion, and have been implicated in late beta cell development. The aim of this study was to assess whether Mafa and/or Pdx1 regulates the postnatal functional maturation of beta cells. Methods By quantitative PCR we evaluated expression of these and other beta cell genes over the first month compared with adult. After infection with adenovirus expressing MAFA, Pdx1 or green fluorescent protein (Gfp), P2 rat islets were evaluated by RT-PCR and insulin secretion with static incubation and reverse haemolytic plaque assay (RHPA). Results At P2 most beta cell genes were expressed at about 10% of adult, but by P7 Pdx1 and Neurod1 no longer differ from adult; by contrast, Mafa expression remained significantly lower than adult through P21. Overexpression of Pdx1 increased Mafa, Neurod1, glucokinase (Gck) mRNA and insulin content but failed to enhance glucose responsiveness. Similar overexpression of MAFA resulted in increased Neurod1, Nkx6-1, Gck and Glp1r mRNAs and no change in insulin content but, importantly, acquisition of glucose-responsive insulin secretion. Both the percentage of secreting beta cells and the amount of insulin secreted per beta cell increased, approaching that of adult beta cells. Conclusions/interpretation In the process of functional maturation acquiring glucose-responsive insulin secretion, neonatal beta cells undergo a coordinated gene expression programme in which Mafa plays a crucial role. PMID:21190012

  2. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  3. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    PubMed Central

    Nøhr, Mark K.; Dudele, Anete; Poulsen, Morten M.; Ebbesen, Lene H.; Radko, Yulia; Christensen, Lars P.; Jessen, Niels; Richelsen, Bjørn; Lund, Sten; Pedersen, Steen B.

    2016-01-01

    Low-grade inflammation is seen with obesity and is suggested to be a mediator of insulin resistance. The eliciting factor of low-grade inflammation is unknown but increased permeability of gut bacteria-derived lipopolysaccharides (LPS) resulting in endotoxemia could be a candidate. Here we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during an oral glucose tolerance test was increased despite similar plasma glucose level resulting in an increase in the insulinogenic index (IGI; delta0-15insulin / delta0-15glucose) from 13.73 to 22.40 pmol/mmol (P < 0.001). This aberration in insulin and glucose homeostasis was normalized by resveratrol. In conclusion: Low-dose LPS enhanced the glucose-stimulated insulin secretion without affecting the blood glucose suggesting increased insulin resistance. Resveratrol restored LPS-induced alteration of the insulin secretion and demonstrated anti-inflammatory effects specifically in epididymal adipose tissue possibly due to preferential accumulation of resveratrol metabolites pointing towards a possible important involvement of this tissue for the effects on insulin resistance and insulin

  4. ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies

    PubMed Central

    Di Paola, Rosa; Caporarello, Nunzia; Marucci, Antonella; Dimatteo, Claudia; Iadicicco, Claudia; Del Guerra, Silvia; Prudente, Sabrina; Sudano, Dora; Miele, Claudia; Parrino, Cristina; Piro, Salvatore; Beguinot, Francesco; Marchetti, Piero

    2011-01-01

    The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance

  5. Snapin mediates incretin action and augments glucose-dependent insulin secretion.

    PubMed

    Song, Woo-Jin; Seshadri, Madhav; Ashraf, Uzair; Mdluli, Thembi; Mondal, Prosenjit; Keil, Meg; Azevedo, Monalisa; Kirschner, Lawrence S; Stratakis, Constantine A; Hussain, Mehboob A

    2011-03-01

    Impaired insulin secretion contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). Treatment with the incretin hormone glucagon-like peptide-1 (GLP-1) potentiates insulin secretion and improves metabolic control in humans with T2DM. GLP-1 receptor-mediated signaling leading to insulin secretion occurs via cyclic AMP stimulated protein kinase A (PKA)- as well as guanine nucleotide exchange factor-mediated pathways. However, how these two pathways integrate and coordinate insulin secretion remains poorly understood. Here we show that these incretin-stimulated pathways converge at the level of snapin, and that PKA-dependent phosphorylation of snapin increases interaction among insulin secretory vesicle-associated proteins, thereby potentiating glucose-stimulated insulin secretion (GSIS). In diabetic islets with impaired GSIS, snapin phosphorylation is reduced, and expression of a snapin mutant, which mimics site-specific phosphorylation, restores GSIS. Thus, snapin is a critical node in GSIS regulation and provides a potential therapeutic target to improve β cell function in T2DM. PMID:21356520

  6. mTOR Inhibition: Reduced Insulin Secretion and Sensitivity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Rovira, Jordi; Ramírez-Bajo, María Jose; Banon-Maneus, Elisenda; Moya-Rull, Daniel; Ventura-Aguiar, Pedro; Hierro-Garcia, Natalia; Lazo-Rodriguez, Marta; Revuelta, Ignacio; Torres, Armando; Oppenheimer, Federico; Campistol, Josep M.; Diekmann, Fritz

    2016-01-01

    Background Sirolimus (SRL) has been associated with new-onset diabetes mellitus after transplantation. The aim was to determine the effect of SRL on development of insulin resistance and β-cell toxicity. Methods Lean Zucker rat (LZR) and obese Zucker rat (OZR) were distributed into groups: vehicle and SRL (0.25, 0.5, or 1.0 mg/kg) during 12 or 28 days. Intraperitoneal glucose tolerance test (IPGTT) was evaluated at days 0, 12, 28, and 45. Islet morphometry, β-cell proliferation, and apoptosis were analyzed at 12 days. Islets were isolated to analyze insulin content, insulin secretion, and gene expression. Results After 12 days, SRL treatment only impaired IPGTT in a dose-dependent manner in OZR. Treatment prolongation induced increase of area under the curve of IPGTT in LZR and OZR; however, in contrast to OZR, LZR normalized glucose levels after 2 hours. The SRL reduced pancreas weight and islet proliferation in LZR and OZR as well as insulin content. Insulin secretion was only affected in OZR. Islets from OZR + SRL rats presented a downregulation of Neurod1, Pax4, and Ins2 gene. Genes related with insulin secretion remained unchanged or upregulated. Conclusions In conditions that require adaptive β-cell proliferation, SRL might reveal harmful effects by blocking β-cell proliferation, insulin production and secretion. These effects disappeared when removing the therapy.

  7. Biological effects of strong static magnetic fields on insulin-secreting cells

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Miyakoshi, J.

    2009-03-01

    The magnetic flux density of MRI for clinical diagnosis has been increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the biological effects of strong SMFs, we cultured INS-1 cells under exposure to sham and SMF conditions for 1 or 2 h, and analyzed insulin secretion, mRNA expression, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF did not affect cell proliferation and cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells.

  8. Functional Reconstitution of the Insulin-Secreting Porosome Complex in Live Cells.

    PubMed

    Naik, Akshata R; Kulkarni, Sanjana P; Lewis, Kenneth T; Taatjes, Douglas J; Jena, Bhanu P

    2016-01-01

    Supramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic β-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished. Earlier studies on mouse insulin-secreting Min6 cells report 100-nm porosome complexes composed of nearly 30 proteins. In the current study, porosomes have been functionally reconstituted for the first time in live cells. Isolated Min6 porosomes reconstituted into live Min6 cells demonstrate augmented levels of porosome proteins and a consequent increase in the potency and efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin secretion 48 hours after reconstitution, reflects on the remarkable stability and viability of reconstituted porosomes, documenting the functional reconstitution of native porosomes in live cells. These results, establish a new paradigm in porosome-mediated insulin secretion in β-cells. PMID:26523491

  9. Cooperation between cAMP signalling and sulfonylurea in insulin secretion.

    PubMed

    Shibasaki, T; Takahashi, T; Takahashi, H; Seino, S

    2014-09-01

    Although glucose is physiologically the most important regulator of insulin secretion, glucose-induced insulin secretion is modulated by hormonal and neural inputs to pancreatic β-cells. Most of the hormones and neurotransmitters evoke intracellular signals such as cAMP, Ca²⁺ , and phospholipid-derived molecules by activating G protein-coupled receptors (GPCRs). In particular, cAMP is a key second messenger that amplifies insulin secretion in a glucose concentration-dependent manner. The action of cAMP on insulin secretion is mediated by both protein kinase A (PKA)-dependent and Epac2A-dependent mechanisms. Many of the proteins expressed in β-cells are phosphorylated by PKA in vitro, but only a few proteins in which PKA phosphorylation directly affects insulin secretion have been identified. On the other hand, Epac2A activates the Ras-like small G protein Rap in a cAMP-dependent manner. Epac2A is also directly activated by various sulfonylureas, except for gliclazide. 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analogue, and glibenclamide, a sulfonylurea, synergistically activate Epac2A and Rap1, whereas adrenaline, which suppresses cAMP production in pancreatic β-cells, blocks activation of Epac2A and Rap1 by glibenclamide. Thus, cAMP signalling and sulfonylurea cooperatively activate Epac2A and Rap1. This interaction could account, at least in part, for the synergistic effects of incretin-related drugs and sulfonylureas in insulin secretion. Accordingly, clarification of the mechanism of Epac2A activation may provide therapeutic strategies to improve insulin secretion in diabetes. PMID:25200305

  10. Sodium arsenite impairs insulin secretion and transcription in pancreatic {beta}-cells

    SciTech Connect

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia . E-mail: mhiriart@ifc.unam.mx

    2006-07-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic {beta}-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic {beta}-cells. Cells were treated with 0.5, 1, 2, 5 and 10 {mu}M sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 {mu}M) decreased {beta}-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 {mu}M sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 {mu}M treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 {mu}M sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 {mu}M sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic {beta}-cell functions, particularly insulin synthesis and secretion.

  11. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest. PMID:26452321

  12. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes.

    PubMed

    Vatier, C; Fetita, S; Boudou, P; Tchankou, C; Deville, L; Riveline, Jp; Young, J; Mathivon, L; Travert, F; Morin, D; Cahen, J; Lascols, O; Andreelli, F; Reznik, Y; Mongeois, E; Madelaine, I; Vantyghem, Mc; Gautier, Jf; Vigouroux, C

    2016-07-01

    Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies. PMID:26584826

  13. Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

    PubMed Central

    Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.

    2008-01-01

    OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811

  14. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion.

    PubMed

    Zhao, Shangang; Mugabo, Yves; Iglesias, Jose; Xie, Li; Delghingaro-Augusto, Viviane; Lussier, Roxane; Peyot, Marie-Line; Joly, Erik; Taïb, Bouchra; Davis, Matthew A; Brown, J Mark; Abousalham, Abdelkarim; Gaisano, Herbert; Madiraju, S R Murthy; Prentki, Marc

    2014-06-01

    Glucose metabolism in pancreatic β cells stimulates insulin granule exocytosis, and this process requires generation of a lipid signal. However, the signals involved in lipid amplification of glucose-stimulated insulin secretion (GSIS) are unknown. Here we show that in β cells, glucose stimulates production of lipolysis-derived long-chain saturated monoacylglycerols, which further increase upon inhibition of the membrane-bound monoacylglycerol lipase α/β-Hydrolase Domain-6 (ABHD6). ABHD6 expression in β cells is inversely proportional to GSIS. Exogenous monoacylglycerols stimulate β cell insulin secretion and restore GSIS suppressed by the pan-lipase inhibitor orlistat. Whole-body and β-cell-specific ABHD6-KO mice exhibit enhanced GSIS, and their islets show elevated monoacylglycerol production and insulin secretion in response to glucose. Inhibition of ABHD6 in diabetic mice restores GSIS and improves glucose tolerance. Monoacylglycerol binds and activates the vesicle priming protein Munc13-1, thereby inducing insulin exocytosis. We propose saturated monoacylglycerol as a signal for GSIS and ABHD6 as a negative modulator of insulin secretion. PMID:24814481

  15. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

    PubMed Central

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I.; Cha, Chae Young; Chibalina, Margarita V.; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R.; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O.; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R.V.; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-01-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  16. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  17. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells

    PubMed Central

    Ferdaoussi, Mourad; Dai, Xiaoqing; Jensen, Mette V.; Wang, Runsheng; Peterson, Brett S.; Huang, Chao; Ilkayeva, Olga; Smith, Nancy; Miller, Nathanael; Hajmrle, Catherine; Spigelman, Aliya F.; Wright, Robert C.; Plummer, Gregory; Suzuki, Kunimasa; Mackay, James P.; van de Bunt, Martijn; Gloyn, Anna L.; Ryan, Terence E.; Norquay, Lisa D.; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.; Kibbey, Richard G.; Manning Fox, Jocelyn E.; Colmers, William F.; Shirihai, Orian S.; Neufer, P. Darrell; Yeh, Edward T.H.; Newgard, Christopher B.; MacDonald, Patrick E.

    2015-01-01

    Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D. PMID:26389676

  18. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  19. Evidence for a role of exogenous or endogenous hyperlactatemia in insulin secretion in the dog.

    PubMed

    Ribes, G; Blayac, J P; Valette, G; Loubatières-Mariani, M M

    1979-01-01

    Various types of experimental hyperlactatemia were induced in the normal anesthetized dog, and the changes in insulin secretion were measured in the pancreatico-duodenal vein. Hyperlactatemia was induced in the absence or in the presence of an infusion of sodium dichloroacetate (DCA), which activates pyruvate dehydrogenase. 1. Exogenous hyperlactatemia: The infusion of sodium L(+)lactate resulted in a strong increase in blood lactate level which was accompanied by a significant increase in the insulin output from the pancreatico-duodenal vein. The administration of DCA did not counteract the increase in lactate level and did not modify insulin output either. 2. Endogenous hyperlactatemia: This was induced either by pharmacological means: the subcutaneous injection of an antidiabetic biguanide, phenformin (20 mg/kg), or by physiological means: intense muscular work. In both cases an increase in the lactate level and in insulin output was recorded. The administration of DCA suppressed the hyperlactatemia and counteracted the increase in insulin output. These results show that there is a relationship between lactate level and insulin secretion, and give evidence for a role of endogenous lactate in the regulation of insulin secretion. PMID:399784

  20. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    SciTech Connect

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-(3-/sup 3/H)glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml/sup -1/ during continuous infusion and varied between 95 and 501 pg x ml/sup -1/ during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production.

  1. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice

    PubMed Central

    Yang, Zaigang; Chen, Xu; Chen, Yujuan; Zhao, Qian

    2015-01-01

    Aims: Recent studies have revealed the relationship between irisin and insulin signaling, while positive associations of muscle FNDC5 with insulin resistance is observed. However, the functional mechanism of irisin on muscle insulin resistance is still obscure. This study aims to investigate the effect of irisin on muscle insulin action. Methods: Diabetic mouse model was established by high fat diet (HFD) induced obesity in C57BL/6 mice. Body indexes and serum levels of triglyceride (TG), blood glucose and insulin were record. Oral glucose tolerance test (OGTT) was performed before being killed. Circulating irisin level was also detected, while FNDC5/irisin expression was determined by RT-PCR and western blot analysis in both muscle and adipose tissues. Insulin action was further evaluated by the phosphorylation of AKT and Erk, and palmitic acid treated muscle cells were introduced for mimicking diabetic status in vitro. Results: Obvious obese feathers associated with type 2 diabetes were observed in HFD feeding mice, with decreased circulating irisin level and FNDC5/irisin secretion in adipose tissues. Although FNDC5/irisin expression showed little change in skeletal muscle, the insulin action was inhibited significantly. Moreover, palmitic acid treated muscle cells showed similar inhibition of insulin action, and FNDC5/irisin expression change. Besides, insulin action could be reversed by irisin addition in muscle cells. Conclusion: HFD induced obese mice showed decreased irisin secretion from adipose tissues, which might contribute to muscle insulin resistance. Furthermore, irisin addition could recover insulin action in palmitic acid treated muscle cells, indicating the importance of irisin for preserving insulin signaling. PMID:26261526

  2. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice.

    PubMed

    Kang, Li; Dai, Chunhua; Lustig, Mary E; Bonner, Jeffrey S; Mayes, Wesley H; Mokshagundam, Shilpa; James, Freyja D; Thompson, Courtney S; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H; Powers, Alvin C

    2014-11-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  3. Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice

    PubMed Central

    Dai, Chunhua; Lustig, Mary E.; Bonner, Jeffrey S.; Mayes, Wesley H.; Mokshagundam, Shilpa; James, Freyja D.; Thompson, Courtney S.; Lin, Chien-Te; Perry, Christopher G.R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.; Powers, Alvin C.

    2014-01-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2+/+) and heterozygous knockout mice (sod2+/−) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2+/− and sod2+/+ but was markedly decreased in HF-fed sod2+/−. Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2+/− was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2+/− and sod2+/+ of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2+/− was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2+/− support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  4. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    SciTech Connect

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse; Bodnar, Wanda M.; Matoušek, Tomáš; Stýblo, Miroslav

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  5. Exercise Intensity Modulates Glucose-Stimulated Insulin Secretion when Adjusted for Adipose, Liver and Skeletal Muscle Insulin Resistance

    PubMed Central

    Malin, Steven K.; Rynders, Corey A.; Weltman, Judy Y.; Barrett, Eugene J.; Weltman, Arthur

    2016-01-01

    Little is known about the effects of exercise intensity on compensatory changes in glucose-stimulated insulin secretion (GSIS) when adjusted for adipose, liver and skeletal muscle insulin resistance (IR). Fifteen participants (8F, Age: 49.9±3.6yr; BMI: 31.0±1.5kg/m2; VO2peak: 23.2±1.2mg/kg/min) with prediabetes (ADA criteria, 75g OGTT and/or HbA1c) underwent a time-course matched Control, and isocaloric (200kcal) exercise at moderate (MIE; at lactate threshold (LT)), and high-intensity (HIE; 75% of difference between LT and VO2peak). A 75g OGTT was conducted 1 hour post-exercise/Control, and plasma glucose, insulin, C-peptide and free fatty acids were determined for calculations of skeletal muscle (1/Oral Minimal Model; SMIR), hepatic (HOMAIR), and adipose (ADIPOSEIR) IR. Insulin secretion rates were determined by deconvolution modeling for GSIS, and disposition index (DI; GSIS/IR; DISMIR, DIHOMAIR, DIADIPOSEIR) calculations. Compared to Control, exercise lowered SMIR independent of intensity (P<0.05), with HIE raising HOMAIR and ADIPOSEIR compared with Control (P<0.05). GSIS was not reduced following exercise, but DIHOMAIR and DIADIPOSEIR were lowered more following HIE compared with Control (P<0.05). However, DISMIR increased in an intensity based manner relative to Control (P<0.05), which corresponded with lower post-prandial blood glucose levels. Taken together, pancreatic insulin secretion adjusts in an exercise intensity dependent manner to match the level of insulin resistance in skeletal muscle, liver and adipose tissue. Further work is warranted to understand the mechanism by which exercise influences the cross-talk between tissues that regulate blood glucose in people with prediabetes. PMID:27111219

  6. p53- and ERK7-Dependent Ribosome Surveillance Response Regulates Drosophila Insulin-Like Peptide Secretion

    PubMed Central

    Hasygar, Kiran; Hietakangas, Ville

    2014-01-01

    Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs) regulate larval growth by secreting insulin-like peptides (dILPs) in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15), which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions. PMID:25393288

  7. Synchronization of Ca(2+)-signals within insulin-secreting pseudoislets: effects of gap-junctional uncouplers.

    PubMed

    Squires, P E; Hauge-Evans, A C; Persaud, S J; Jones, P M

    2000-05-01

    The secretory response of the intact islet is greater than the response of individual beta-cells in isolation, and functional coupling between cells is critical in insulin release. The changes in intracellular Ca(2+)([Ca(2+)](i)) which initiate insulin secretory responses are synchronized between groups of cells within the islet, and gap-junctions are thought to play a central role in coordinating signalling events. We have used the MIN6 insulin-secreting cell line, to examine whether uncoupling gap-junctions alters the synchronicity of nutrient- and non-nutrient-evoked Ca(2+)oscillations, or affects insulin secretion. MIN6 cells express mRNA species that can be amplified using PCR primers for connexin 36. A commonly used gap-junctional inhibitor, heptanol, inhibited glucose- and tolbutamide-induced Ca(2+)-oscillations to basal levels in MIN6 cell clusters at concentrations of 0.5 mM and greater, and it had similar effects in pseudoislets when used at 2.5 mM. Lower heptanol concentrations altered the frequency of Ca(2+)transients without affecting their synchronicity, in both monolayers and pseudoislets. Heptanol also had effects on insulin secretion from MIN6 pseudoislets such that 1 mM enhanced secretion while 2.5 mM was inhibitory. These data suggest that heptanol has multiple effects in pancreatic beta-cells, none of which appears to be related to uncoupling of synchronicity of Ca(2+)signalling between cells. A second gap-junction uncoupler, 18 alpha-glycyrrhetinic acid, also failed to uncouple synchronized Ca(2+)-oscillations, and it had no effect on insulin secretion. These data provide evidence that Ca(2+)signalling events occur simultaneously across the bulk mass of the pseudoislet, and suggest that gap-junctions are not required to coordinate the synchronicity of these events, nor is communication via gap junctions essential for integrated insulin secretory responses. PMID:10859595

  8. Zip4 Mediated Zinc Influx Stimulates Insulin Secretion in Pancreatic Beta Cells

    PubMed Central

    Hardy, Alexandre B.; Prentice, Kacey J.; Froese, Sean; Liu, Ying; Andrews, Glen K.; Wheeler, Michael B.

    2015-01-01

    Zinc has an important role in normal pancreatic beta cell physiology as it regulates gene transcription, insulin crystallization and secretion, and cell survival. Nevertheless, little is known about how zinc is transported through the plasma membrane of beta cells and which of the class of zinc influx transporters (Zip) is involved. Zip4 was previously shown to be expressed in human and mouse beta cells; however, its function there is still unknown. Therefore, the aim of this study was to define the zinc transport role of Zip4 in beta cells. To investigate this, Zip4 was over-expressed in MIN6 beta cells using a pCMV6-Zip4GFP plasmid. Organelle staining combined with confocal microscopy showed that Zip4 exhibits a widespread localization in MIN6 cells. Time-lapse zinc imaging experiments showed that Zip4 increases cytoplasmic zinc levels. This resulted in increased granular zinc content and glucose-stimulated insulin secretion. Interestingly, it is unlikely that the increased glucose stimulated insulin secretion was triggered by a modulation of mitochondrial function, as mitochondrial membrane potential remained unchanged. To define the role of Zip4 in-vivo, we generated a beta cell-specific knockout mouse model (Zip4BKO). Deletion of the Zip4 gene was confirmed in Zip4BKO islets by PCR, RT-PCR, and immuno-histochemistry. Zip4BKO mice showed slightly improved glucose homeostasis but no change in insulin secretion during an oral glucose tolerance test. While Zip4 was not found to be essential for proper glucose homeostasis and insulin secretion in vivo in mice, this study also found that Zip4 mediates increases in cytoplasmic and granular zinc pools and stimulates glucose dependant insulin secretion in-vitro. PMID:25806541

  9. Pulsatile growth hormone secretion in patients with acromegaly and normal men: the effects of growth hormone-releasing hormone infusion.

    PubMed

    Gelato, M C; Oldfield, E; Loriaux, D L; Merriam, G R

    1990-09-01

    Twenty-four GH secretory patterns were studied before and during continuous infusions of GHRH in six patients with active acromegaly and in six normal adult men. GH release was episodic in both groups. Control subjects showed a normal diurnal variation in GH release, with the majority of GH released at night (2200-0800 h); mean levels were 1.5 +/- 0.4 (SE) ng/mL (day) and 4.2 +/- 0.8 ng/mL (night). Acromegalics had no diurnal variation in GH; levels were 45.3 +/- 13.7 ng/mL (day) and 39.8 +/- 12.2 ng/mL (night). Acromegalics demonstrated an increased frequency of GH pulses compared to normals (11.8 +/- 0.8 vs. 2.2 +/- 0.3/24 h). During continuous 24-h infusions of GHRH, the normal subjects continued to show a diurnal variation in GH release, but GH pulse frequency increased to a rate (11.7 +/- 1.4 pulses/24 h) very similar to that of the patients with acromegaly. In contrast, GHRH infusion did not alter the GH pulse frequency in the acromegalics. GHRH increased the mean levels of GH in both groups (patients 80.2 +/- 20.3 vs. 41.0 +/- 12.1 ng/mL, x +/- SE. P less than 0.05; controls 10.2 +/- 2.0 vs. 3.33 +/- 0.5 ng/mL, P less than 0.01). Some of the patients with acromegaly showed a progressive decline in GH levels during the infusion period, suggesting desensitization or exhaustion of releaseable stores; however, GH levels remained above basal values in all patients. After the 24-h GHRH infusions, the GH response to a bolus of GHRH was diminished in the normal subjects (2.1 +/- 0.9 vs. 16.8 +/- 5 ng/mL, x +/- SE; P less than 0.01) but not in the acromegalic patients (30.2 +/- 8.9 vs. 35.5 +/- 12.5 ng/mL; NS). These results indicate that GH release is episodic under basal conditions and during continuous GHRH infusion in both acromegalic and normal subjects, indicating the importance of other modulators of GH release, such as somatostatin, which may remain pulsatile even in acromegaly. PMID:2118536

  10. Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo.

    PubMed

    Kushibiki, T; Okawa, S; Hirasawa, T; Ishihara, M

    2015-07-01

    The present study assessed the ability of optogenetics techniques to provide a better understanding of the control of insulin secretion, particularly regarding pancreatic β-cell function in homeostasis and pathological conditions such as diabetes mellitus (DM). We used optogenetics to investigate whether insulin secretion and blood glucose homeostasis could be controlled by regulating intracellular calcium ion concentrations ([Ca(2+)]i) in a mouse pancreatic β-cell line (MIN6) transfected with the optogenetic protein channelrhodopsin-2 (ChR2). The ChR2-transfected MIN6 (ChR2-MIN6) cells secreted insulin following irradiation with a laser (470 nm). The increase in [Ca(2+)]i was accompanied by elevated levels of messenger RNAs that encode calcium/calmodulin-dependent protein kinase II delta and adenylate cyclase 1. ChR2-MIN6 cells suspended in matrigel were inoculated into streptozotocin-induced diabetic mice that were then subjected to a glucose tolerance test. Laser irradiation of these mice caused a significant decrease in blood glucose, and the irradiated implanted cells expressed insulin. These findings demonstrate the power of optogenetics to precisely and efficiently controlled insulin secretion by pancreatic β-cells 'on demand', in contrast to techniques using growth factors or chemical inducers. Optogenetic technology shows great promise for understanding the mechanisms of glucose homeostasis and for developing treatments for metabolic diseases such as DM. PMID:25809465

  11. Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion.

    PubMed

    Yesildag, Burcak; Bock, Thomas; Herrmanns, Karolin; Wollscheid, Bernd; Stoffel, Markus

    2015-10-23

    Direct interactions among pancreatic β-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with β-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and β-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr(595-596) are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from β-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic β-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion. PMID:26324709

  12. Increased Expression of the Diabetes Gene SOX4 Reduces Insulin Secretion by Impaired Fusion Pore Expansion.

    PubMed

    Collins, Stephan C; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I; Rosengren, Anders H; Cox, Roger; Rorsman, Patrik

    2016-07-01

    The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  13. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes. PMID:26698567

  14. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    PubMed Central

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  15. A Role for SPARC in the Moderation of Human Insulin Secretion

    PubMed Central

    Harries, Lorna W.; McCulloch, Laura J.; Holley, Janet E.; Rawling, Thomas J.; Welters, Hannah J.; Kos, Katarina

    2013-01-01

    Aims/Hypothesis We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. Methods We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. Results SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). Conclusions Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue. PMID:23840838

  16. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity. PMID:25559846

  17. Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion.

    PubMed

    Strodthoff, Daniela; Ma, Zuheng; Wirström, Tina; Strawbridge, Rona J; Ketelhuth, Daniel F J; Engel, David; Clarke, Robert; Falkmer, Sture; Hamsten, Anders; Hansson, Göran K; Björklund, Anneli; Lundberg, Anna M

    2015-10-01

    Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes-related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3(-/-) mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3(-/-) islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation. PMID:25918231

  18. Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells.

    PubMed

    Gao, Jingying; Zhong, Xiangqin; Ding, Yaqin; Bai, Tao; Wang, Hui; Wu, Hongbin; Liu, Yunfeng; Yang, Jing; Zhang, Yi

    2016-04-15

    Insulin secretion from pancreatic β cells is important to maintain glucose homeostasis and is regulated by electrical activities. Uncarboxylated osteocalcin, a bone-derived protein, has been reported to regulate glucose metabolism by increasing insulin secretion, stimulating β cell proliferation and improving insulin sensitivity. But the underlying mechanisms of uncarboxylated osteocalcin-modulated insulin secretion remain unclear. In the present study, we investigated the relationship of uncarboxylated osteocalcin-regulated insulin secretion and voltage-gated potassium (KV) channels, voltage-gated calcium channels in rat β cells. Insulin secretion was measured by radioimmunoassay. Channel currents and membrane action potentials were recorded using the conventional whole-cell patch-clamp technique. Calcium imaging system was used to analyze intracellular Ca(2+) concentration ([Ca(2+)]i). The data show that under 16.7mmol/l glucose conditions uncarboxylated osteocalcin alone increased insulin secretion and [Ca(2+)]i, but with no such effects on insulin secretion and [Ca(2+)]i in the presence of a KV channel blocker, tetraethylammonium chloride. In the patch-clamp experiments, uncarboxylated osteocalcin lengthened action potential duration and significantly inhibited KV currents, but had no influence on the characteristics of voltage-gated calcium channels. These results indicate that KV channels are involved in uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells. By inhibiting KV channels, uncarboxylated osteocalcin prolongs action potential duration, increases intracellular Ca(2+) concentration and finally promotes insulin secretion. This finding provides new insight into the mechanisms of osteocalcin-modulated insulin secretion. PMID:26927753

  19. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  20. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  1. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    SciTech Connect

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.

  2. Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects.

    PubMed Central

    Bogardus, C; Lillioja, S; Howard, B V; Reaven, G; Mott, D

    1984-01-01

    The relationships between insulin secretion, insulin action, and fasting plasma glucose concentration (FPG) were examined in 34 southwest American Indians (19 nondiabetics, 15 noninsulin-dependent diabetics) who had a broad range of FPG (88-310 mg/100 ml). Fasting, glucose-stimulated, and meal-stimulated plasma insulin concentrations were negatively correlated with FPG in diabetics but not in nondiabetics. In contrast, fasting and glucose-stimulated plasma C-peptide concentrations did not decrease with increasing FPG in either group and 24-h urinary C-peptide excretion during a diet of mixed composition was positively correlated with FPG for all subjects (r = 0.36, P less than 0.05). Fasting free fatty acid (FFA) was correlated with FPG in nondiabetics (r = 0.49, P less than 0.05) and diabetics (r = 0.77, P less than 0.001). Fasting FFA was also correlated with the isotopically determined endogenous glucose production rate in the diabetics (r = 0.54, P less than 0.05). Endogenous glucose production was strongly correlated with FPG in the diabetics (r = 0.90, P less than 0.0001), but not in the nondiabetics. Indirect calorimetry showed that FPG was also negatively correlated with basal glucose oxidation rates (r = -0.61, P less than 0.001), but positively with lipid oxidation (r = 0.74, P less than 0.001) in the diabetics. Insulin action was measured as total insulin-mediated glucose disposal, glucose oxidation, and storage rates, using the euglycemic clamp with simultaneous indirect calorimetry at plasma insulin concentrations of 135 +/- 5 and 1738 +/- 59 microU/ml. These parameters of insulin action were significantly, negatively correlated with FPG in the nondiabetics at both insulin concentrations, but not in the diabetics although all the diabetics had markedly decreased insulin action. We conclude that decreased insulin action is present in the noninsulin-dependent diabetics in this population and marked hyperglycemia occurs with the addition of decreased

  3. Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets

    PubMed Central

    Auer, V J; Janas, E; Ninichuk, V; Eppler, E; Weiss, T S; Kirchner, S; Otto, A M; Stangl, M J

    2012-01-01

    Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells. PMID:23039895

  4. Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets.

    PubMed

    Auer, V J; Janas, E; Ninichuk, V; Eppler, E; Weiss, T S; Kirchner, S; Otto, A M; Stangl, M J

    2012-11-01

    Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells. PMID:23039895

  5. A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity.

    PubMed

    Oláhová, Monika; Veal, Elizabeth A

    2015-08-01

    Peroxiredoxins (Prx) are abundant thiol peroxidases with a conserved anti-ageing role. In contrast to most animals, the nematode worm, Caenorhabditis elegans, encodes a single cytosolic 2-Cys Prx, PRDX-2, rendering it an excellent model for examining how peroxiredoxins affect animal physiology and ageing. Our previous work revealed that, although PRDX-2 protects against the toxicity of peroxides, enigmatically, prdx-2-mutant animals are hyper-resistant to other forms of oxidative stress. Here, we have investigated the basis for this increased resistance. Mammalian FOXO and Nrf2 transcription factors directly promote the expression of a range of detoxification enzymes. We show that the FOXO orthologue, DAF-16, and the Nrf2 orthologue, SKN-1, are required for the increased stress resistance of prdx-2-mutant worms. Our data suggest that PRDX-2 is required for normal levels of insulin secretion and hence the inhibition of DAF-16 and SKN-1 by insulin/IGF-1-like signalling (IIS) under nutrient-rich conditions. Intriguingly, loss of PRDX-2 increases DAF-16 and SKN-1 activities sufficiently to increase arsenite resistance without initiating other IIS-inhibited processes. Together, these data suggest that loss of peroxiredoxin function may increase stress resistance by reducing insulin secretion, but that further changes in insulin signalling are required for the reprogramming of development and fat metabolism. In addition, we reveal that the temperature-dependent prolongevity function of PRDX-2 is required for the extended lifespan associated with several pathways, including further reductions in IIS. PMID:25808059

  6. Extracellular Nucleotides Inhibit Insulin Receptor Signaling, Stimulate Autophagy and Control Lipoprotein Secretion

    PubMed Central

    Chatterjee, Cynthia; Sparks, Daniel L.

    2012-01-01

    Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 µM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y13. Overexpression of P2Y13 increases cellular LC3-II levels by ∼50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y13 protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y13 gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y13 expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y13 expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y13, ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion. PMID:22590634

  7. Ion channels and regulation of insulin secretion in human β-cells

    PubMed Central

    Fridlyand, Leonid E.; Jacobson, David A.; Philipson, L.H.

    2013-01-01

    In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca2+ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion. PMID:23624892

  8. Probing cell type–specific functions of Gi in vivo identifies GPCR regulators of insulin secretion

    PubMed Central

    Regard, Jean B.; Kataoka, Hiroshi; Cano, David A.; Camerer, Eric; Yin, Liya; Zheng, Yao-Wu; Scanlan, Thomas S.; Hebrok, Matthias; Coughlin, Shaun R.

    2007-01-01

    The in vivo roles of the hundreds of mammalian G protein–coupled receptors (GPCRs) are incompletely understood. To explore these roles, we generated mice expressing the S1 subunit of pertussis toxin, a known inhibitor of Gi/o signaling, under the control of the ROSA26 locus in a Cre recombinase–dependent manner (ROSA26PTX). Crossing ROSA26PTX mice to mice expressing Cre in pancreatic β cells produced offspring with constitutive hyperinsulinemia, increased insulin secretion in response to glucose, and resistance to diet-induced hyperglycemia. This phenotype underscored the known importance of Gi/o and hence of GPCRs for regulating insulin secretion. Accordingly, we quantified mRNA for each of the approximately 373 nonodorant GPCRs in mouse to identify receptors highly expressed in islets and examined the role of several. We report that 3-iodothyronamine, a thyroid hormone metabolite, could negatively and positively regulate insulin secretion via the Gi-coupled α2A-adrenergic receptor and the Gs-coupled receptor Taar1, respectively, and protease-activated receptor–2 could negatively regulate insulin secretion and may contribute to physiological regulation of glucose metabolism. The ROSA26PTX system used in this study represents a new genetic tool to achieve tissue-specific signaling pathway modulation in vivo that can be applied to investigate the role of Gi/o-coupled GPCRs in multiple cell types and processes. PMID:17992256

  9. Central resistance to the inhibitory effects of leptin on stimulated insulin secretion with aging.

    PubMed

    Muzumdar, Radhika H; Ma, Xiaohui; Yang, Xiaoman; Atzmon, Gil; Barzilai, Nir

    2006-09-01

    Aging is associated with resistance to the effects of leptin on food intake and energy homeostasis. We examined if old rats were resistant to the effects of leptin on glucose stimulated insulin secretion. When leptin was infused intravenously (0.5 microg/kg/min) under hyperglycemic clamp conditions (11 mM) in young (n=5) and old rats (n=10, 5 ad libitum fed and five with surgical removal of visceral fat), glucose stimulated insulin secretion was significantly decreased by 44% in the young rats, but not in old rats (31.8+/-2.8 to 17.9+/-1.0 versus 33.7+/-1.4 versus 31.0+/-1.7 and 24.7+/-1.6 versus 21.0+/-2.8 in young versus old versus old VF- respectively, p<0.01). To identify if the resistance to leptin is secondary to impaired transport across the blood brain barrier (BBB), we infused leptin into the third ventricle (intra-cerebro ventricular, ICV). ICV infusion of leptin elicited a partial effect on glucose stimulated insulin secretion in the old (25.7+/-2.5 to 15.4+/-2.4 versus 24.4+/-2.4 to 19.0+/-2.0 in young versus old, respectively) suggesting that part of the leptin resistance was beyond the BBB. Resistance to the effects of leptin on insulin secretion in aging may protect against the onset of diabetes in old subjects. PMID:16122839

  10. Cinnamon Administration Enhances Glucose-Induced Insulin Secretion in Diabetic Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of these studies was to measure the effects of orally administered cinnamon on glucose tolerance and insulin secretion in vivo. Young male Wistar strain rats were rendered diabetic by intravenous administration of streptozotocin (40 mg/Kg body weight) to produce animals with Type 2 di...

  11. Antrodia camphorata Increases Insulin Secretion and Protects from Apoptosis in MIN6 Cells

    PubMed Central

    Vong, Chi Teng; Tseng, Hisa Hui Ling; Kwan, Yiu Wa; Lee, Simon Ming-Yuen; Hoi, Maggie Pui Man

    2016-01-01

    Antrodia camphorata is a Taiwanese-specific fungus which has been used clinically to treat hypertension, immune- and liver-related diseases and cancer; however, it has never been studied in type 2 diabetes mellitus (T2DM). Hyperglycemia in T2DM causes endoplasmic reticulum (ER) stress, leading to β-cell dysfunction. During chronic ER stress, misfolded proteins accumulate and initiate β-cell apoptosis. Moreover, β-cell dysfunction leads to defect in insulin secretion, which is the key process in the development and progression of T2DM. Therefore, the aim of the present study was to examine the effects of A. camphorata on insulin secretion and ER stress-induced apoptosis in a mouse β-cell line, MIN6, and their underlying mechanisms. We demonstrated that the ethanolic extract of A. camphorata increased glucose-induced insulin secretion dose-dependently through peroxisome proliferator-activated receptor-γ (PPAR-γ) pathway, and upregulated genes that were involved in insulin secretion, including PPAR-γ, glucose transporter-2 and glucokinase. Furthermore, A. camphorata slightly increased cell proliferation, as well as protected from ER stress-induced apoptosis in MIN6 cells. In conclusion, this study provided evidences that A. camphorata might have anti-diabetic effects and could be a novel drug for T2DM. PMID:27047382

  12. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  13. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.

    PubMed

    Li, Jiaming; Li, Qingrun; Tang, Jiashu; Xia, Fangying; Wu, Jiarui; Zeng, Rong

    2015-11-01

    As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field. PMID:26437020

  14. [Role of the NADH shuttle system in glucose-induced insulin secretion].

    PubMed

    Eto, K; Kadowaki, T

    1999-03-01

    To determine the role of the NADH shuttle system composed of the glycerol phosphate shuttle and malate-aspartate shuttle in glucose-induced insulin secretion from pancreatic beta cells, we have generated mice which lack mitochondrial glycerol-3 phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. When both shuttles were halted in mGPDH-deficient islets treated with aminooxyacetate, an inhibitor of the malate-aspartate shuttle, glucose-induced insulin secretion was almost completely abrogated. Under these conditions, although the flux of glycolysis and supply of glucose-derived pyruvate into mitochondria were unaffected, glucose-induced increases in NAD(P)H autofluorescence, mitochondrial membrane potential, Ca2+ entry into mitochondria, and ATP content were severely attenuated. This study provides the first direct evidence that the NADH shuttle system is essential for coupling glycolysis with the activation of mitochondrial energy metabolism to trigger glucose-induced insulin secretion and thus revises the classical model for the metabolic signals of glucose-induced insulin secretion. PMID:10199125

  15. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue

    PubMed Central

    Dave, Shruti D.; Vanikar, Aruna V.; Trivedi, Hargovind L

    2012-01-01

    Background: Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Materials and Methods: Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO2 for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45-/90+/73+), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Results: Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×103 cells/μl), CD45-/90+/73+ cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Conclusion: Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels. PMID:22701849

  16. The Possible Mechanisms of the Impaired Insulin Secretion in Hypothyroid Rats

    PubMed Central

    Godini, Aliashraf; Ghasemi, Asghar

    2015-01-01

    Although the insulin secretion deficit in hypothyroid male rats has been documented, the underling mechanisms of the effect of hypothyroidism on insulin secretion are not clear. Isolated islets of the PTU-induced hypothyroid and control rats were exposed to glibenclamide, acetylcholine, and nifedipine in the presence of glucose concentrations of 2.8 or 8.3 and 16.7 mmol/L. Glucokinase and hexokinase specific activity, glucokinase content, and glucose transporter 2 protein expression were also determined in the isolated islets. Isolated islets from the hypothyroid rats showed a defect in insulin secretion in response to high glucose. In the presence of glibenclamide or acetylcholine, the isolated islets from the hypothyroid and control rats stimulated by glucose concentration of 16.7 mmol/L secreted similar amounts of insulin. In the presence of glucose concentrations of 8.3 mmol/L and 16.7 mmol/L, nifedipine was able to diminish insulin secretion from isolated islets of both groups, indicating that probably the defect may not arise from L type calcium channels or the steps beyond depolarization or the elements involved in the acetylcoline signaling pathway. Glucokinase content and hexokinase specific activity were also the same in the control and hypothyroid groups. On the other hand, glucokinase specific activity and glucose transporter 2 protein expression were significantly (p<0.001 and p<0.01 respectively) lower in the islets isolated from the hypothyroid rats (6.50 ± 0.46 mU/min/mg protein and 0.55 ± 0.09 arbitrary unit) compared to the controls (10.93 ± 0.83 mU/min/mg protein and 0.98 ± 0.07 arbitrary unit) respectively. In conclusion, the results of this study indicated that hypothyroidism reduced insulin secretion from isolated pancreatic islets, which confirms the finding of the previous studies; in addition, the insulin secretion deficit observed in hypothyroid rats may arise from the abnormalities in some parts of the glucose sensor apparatus of the

  17. The NK3 Receptor Antagonist ESN364 Interrupts Pulsatile LH Secretion and Moderates Levels of Ovarian Hormones Throughout the Menstrual Cycle.

    PubMed

    Fraser, Graeme L; Hoveyda, Hamid R; Clarke, Iain J; Ramaswamy, Suresh; Plant, Tony M; Rose, Claudia; Millar, Robert P

    2015-11-01

    Women's health disorders such as uterine fibroids and endometriosis are currently treated by GnRH modulators that effectively suppress the hypothalamic-pituitary-gonadal axis. The neurokinin-3 receptor (NK3R) is an alternative target with an important role in the modulation of this axis. In this report, we demonstrate that systemic administration of an NK3R antagonist (ESN364) prolongs the LH interpulse interval in ovarectomized ewes and significantly lowers plasma LH and FSH concentrations in castrated nonhuman primates (Macaca fascicularis). Moreover, daily oral dosing of ESN364 throughout the menstrual cycle in M fascicularis lowered plasma estradiol levels in a dose-dependent manner, although nadir levels of estradiol were maintained well above menopausal levels. Nevertheless, estradiol levels during the follicular phase were sufficiently inhibited at all doses to preclude the triggering of ovulation as evidenced by the absence of the LH surge and failure of a subsequent luteal phase rise in plasma progesterone concentrations, consistent with the absence of normal cycle changes in the uterus. Apart from the point at surge, FSH levels were not altered over the course of the menstrual cycle. These effects of ESN364 were reversible upon cessation of drug treatment. Together these data support the proposed role of neurokinin B-NK3R signaling in the control of pulsatile GnRH secretion. Furthermore, in contrast to GnRH antagonists, NK3R antagonists induce a partial suppression of estradiol and thereby offer a viable therapeutic approach to the treatment of ovarian sex hormone disorders with a mitigated risk of menopausal-like adverse events in response to long-term drug exposure. PMID:26305889

  18. BAG3 regulates formation of the SNARE complex and insulin secretion.

    PubMed

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  19. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice.

    PubMed

    Shi, Yan-Chuan; Loh, Kim; Bensellam, Mohammed; Lee, Kailun; Zhai, Lei; Lau, Jackie; Cantley, James; Luzuriaga, Jude; Laybutt, D Ross; Herzog, Herbert

    2015-09-01

    Insulin secretion is tightly controlled through coordinated actions of a number of systemic and local factors. Peptide YY (PYY) is expressed in α-cells of the islet, but its role in control of islet function such as insulin release is not clear. In this study, we generated a transgenic mouse model (Pyy(tg/+)/Rip-Cre) overexpressing the Pyy gene under the control of the rat insulin 2 gene promoter and assessed the impact of islet-released PYY on β-cell function, insulin release, and glucose homeostasis in mice. Our results show that up-regulation of PYY in islet β-cells leads to an increase in serum insulin levels as well as improved glucose tolerance. Interestingly, PYY-overproducing mice show increased lean mass and reduced fat mass with no significant changes in food intake or body weight. Energy expenditure is also increased accompanied by increased respiratory exchange ratio. Mechanistically, the enhanced insulin levels and improved glucose tolerance are primarily due to increased β-cell mass and secretion. This is associated with alterations in the expression of genes important for β-cell proliferation and function as well as the maintenance of the β-cell phenotype. Taken together, these data demonstrate that pancreatic islet-derived PYY plays an important role in controlling glucose homeostasis through the modulation of β-cell mass and function. PMID:26125465

  20. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1.

    PubMed

    Eletto, Daniela; Eletto, Davide; Boyle, Sarah; Argon, Yair

    2016-02-01

    Protein disulfide isomerase A6 (PDIA6) interacts with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme (IRE)-1 and inhibits their unfolded protein response signaling. In this study, shRNA silencing of PDIA6 expression in insulin-producing mouse cells reduced insulin production (5-fold) and, consequently, glucose-stimulated insulin secretion (3-4-fold). This inhibition of insulin release was independent of the PDIA6-PERK interaction or PERK activity. Acute inhibition of PERK did not change the short-term response of β cells to glucose. Rather, PDIA6 affected insulin secretion by modulating one of the activities of IRE1. At 11 mM glucose and lower, the regulated IRE1-dependent decay (RIDD) of the mRNA activity of IRE1 was activated, but not its X-box binding protein (XBP)-1 splicing activity. In the absence of PDIA6, RIDD activity toward insulin transcripts was enhanced up to 4-fold, as shown by molecular assays in cultured cells and the use of a fluorescent reporter in intact islets. Such physiologic activation of IRE1 by glucose contrasted with IRE1 activation by chemical stress, when both IRE1 activities were induced. Thus, whereas the stimulus determines the quality of IRE1 signaling, PDIA6 attenuates multiple enzymatic activities of IRE1, maintaining its signaling within a physiologically tolerable range. PMID:26487694

  1. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  2. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation.

    PubMed

    Koyama, Takashi; Mirth, Christen K

    2016-02-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  3. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  4. A Reevaluation of the Question: Is the Pubertal Resurgence in Pulsatile GnRH Release in the Male Rhesus Monkey (Macaca mulatta) Associated With a Gonad-Independent Augmentation of GH Secretion?

    PubMed

    Shahab, M; Trujillo, M Vargas; Plant, T M

    2015-10-01

    A somatic signal has been posited to trigger the pubertal resurgence in pulsatile GnRH secretion that initiates puberty in highly evolved primates. That GH might provide such a signal emerged in 2000 as a result of a study reporting that circulating nocturnal GH concentrations in castrated juvenile male monkeys increased in a 3-week period immediately preceding the pubertal resurgence of LH secretion. The present study was conducted to reexamine this intriguing relationship, again in an agonadal model. Four castrated juvenile male monkeys were implanted with indwelling jugular catheters, housed in remote sampling cages, and subjected to 24 hours of sequential blood sampling (every 30 min) every 2 weeks from 19.5 to 22 months of age. Twenty-four-hour profiles of circulating GH concentrations were analyzed using the pulse detection algorithm, PULSAR, and developmental changes in pulsatile GH release with respect to the initiation of the pubertal rise of LH secretion (week 0; observed between 22.5 and 32 mo of age) were examined for significance by a repeated-measures ANOVA. Changes in the parameters of pulsatile GH secretion, including mean 24-hour GH concentration and GH pulse frequency and pulse amplitude for 3 (n = 4) and 6 (n = 3) months before week 0 were unremarkable and nonsignificant. These findings fail to confirm those of the earlier study and lead us to conclude that the timing of the pubertal resurgence of GnRH release in the male monkey is not dictated by GH. Reasons for the discrepancy between the two studies are unclear. PMID:26181107

  5. Decreased basal insulin secretion from pancreatic islets of pups in a rat model of maternal obesity.

    PubMed

    Zambrano, Elena; Sosa-Larios, Tonantzin; Calzada, Lizbeth; Ibáñez, Carlos A; Mendoza-Rodríguez, Carmen A; Morales, Angélica; Morimoto, Sumiko

    2016-10-01

    Maternal obesity (MO) is a deleterious condition that enhances susceptibility of adult offspring to metabolic diseases such as type 2 diabetes. The objective is to study the effect of MO on in vitro insulin secretion and pancreatic cellular population in offspring. We hypothesize that a harmful antenatal metabolic environment due to MO diminishes the basal glucose-responsive secretory function of pancreatic beta cells in offspring. Mothers were fed a control (C) or high-fat diet from weaning through pregnancy (120 days) and lactation. At postnatal days (PNDs) 36 and 110, pups were killed, peripheral blood was collected and pancreatic islets were isolated. Basal insulin secretion was measured in vitro in islets for 60 min. It was found that blood insulin, glucose and homeostasis model assessment (HOMA) index were unaffected by maternal diet and age in females. However, male MO offspring at PND 110 showed hyperinsulinemia and insulin resistance compared with C. Body weight was not modified by MO, but fat content was higher in MO pups compared with C pups. Triglycerides and leptin concentrations were higher in MO than in C offspring in all groups except in females at PND 36. Pancreatic islet cytoarchitecture was unaffected by MO. At PND 36, islets of male and female C and MO offspring responded similarly to glucose, but at PND 110, male and female MO offspring islets showed a 50% decrease in insulin secretion. It was concluded that MO impairs basal insulin secretion of offspring with a greater impact on males than females, and this effect mainly manifests in adulthood. PMID:27496224

  6. Angiotensin-converting enzyme inhibition increases glucose-induced insulin secretion in response to acute restraint.

    PubMed

    Schweizer, Júnia R O L; Miranda, Paulo A C; Fóscolo, Rodrigo B; Lemos, Joao P M; Paula, Luciano F; Silveira, Warley C; Santos, Robson A S; Pinheiro, Sérgio V B; Coimbra, Candido C; Ribeiro-Oliveira, Antônio

    2012-12-01

    There is increasing evidence suggesting involvement of the renin-angiotensin system (RAS) in carbohydrate metabolism and its response to stress. Thus, the aim of the present study was to evaluate the effects of chronic inhibition of the RAS on glucose and insulin levels during acute restraint stress. Male Holtzman rats were treated with 10 mg/kg per day enalapril solution or vehicle for 14 days. After 14 days, rats were divided into three experimental groups: enalapril + restraint (ER), vehicle + restraint (VR) and enalapril + saline (ES). Rats in the restraint groups were subjected to 30 min restraint stress, whereas rats in the ES groups were given saline infusion instead. Blood samples were collected at baseline and after 5, 10, 20 and 30 min restraint stress or saline infusion. After restraint, a hyperglycaemic response was observed in the ER and VR groups that peaked at 20 and 10 min, respectively (P < 0.05 compared with baseline). The area under the glucose curve was markedly increased in the ER and VR groups compared with that in the ES group (P < 0.05 for both). Importantly, restraint induced a marked increase in insulin secretion in the ER group compared with only a mild elevation in the VR group; insulin secretion in both groups peaked at 20 min (P < 0.05 compared with baseline). Analysis of the area under the insulin curve confirmed an increase in insulin secretion in the ER compared with the VR and ES groups (P < 0.05 for both). The results of the present study reinforce that the RAS is involved in modulating responses to stress and suggest that RAS inhibition with enalapril may increase glucose-induced insulin secretion in response to acute restraint. PMID:23734984

  7. Diapause is associated with a change in the polarity of secretion of insulin-like peptides.

    PubMed

    Matsunaga, Yohei; Honda, Yoko; Honda, Shuji; Iwasaki, Takashi; Qadota, Hiroshi; Benian, Guy M; Kawano, Tsuyoshi

    2016-01-01

    The insulin/IGF-1 signalling (IIS) pathway plays an important role in the regulation of larval diapause, the long-lived growth arrest state called dauer arrest, in Caenorhabditis elegans. In this nematode, 40 insulin-like peptides (ILPs) have been identified as putative ligands of the IIS pathway; however, it remains unknown how ILPs modulate larval diapause. Here we show that the secretory polarity of INS-35 and INS-7, which suppress larval diapause, is changed in the intestinal epithelial cells at larval diapause. These ILPs are secreted from the intestine into the body cavity during larval stages. In contrast, they are secreted into the intestinal lumen and degraded during dauer arrest, only to be secreted into the body cavity again when the worms return to developmental growth. The process that determines the secretory polarity of INS-35 and INS-7, thus, has an important role in the modulation of larval diapause. PMID:26838180

  8. Diapause is associated with a change in the polarity of secretion of insulin-like peptides

    PubMed Central

    Matsunaga, Yohei; Honda, Yoko; Honda, Shuji; Iwasaki, Takashi; Qadota, Hiroshi; Benian, Guy M.; Kawano, Tsuyoshi

    2016-01-01

    The insulin/IGF-1 signalling (IIS) pathway plays an important role in the regulation of larval diapause, the long-lived growth arrest state called dauer arrest, in Caenorhabditis elegans. In this nematode, 40 insulin-like peptides (ILPs) have been identified as putative ligands of the IIS pathway; however, it remains unknown how ILPs modulate larval diapause. Here we show that the secretory polarity of INS-35 and INS-7, which suppress larval diapause, is changed in the intestinal epithelial cells at larval diapause. These ILPs are secreted from the intestine into the body cavity during larval stages. In contrast, they are secreted into the intestinal lumen and degraded during dauer arrest, only to be secreted into the body cavity again when the worms return to developmental growth. The process that determines the secretory polarity of INS-35 and INS-7, thus, has an important role in the modulation of larval diapause. PMID:26838180

  9. Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells.

    PubMed Central

    Byrne, C D; Brindle, N P; Wang, T W; Hales, C N

    1991-01-01

    The role of insulin in the regulation of plasma triacylglycerol is poorly understood. Conflicting actions of insulin on rat liver cells have been reported, insulin inhibiting triacylglycerol secretion in short incubations (less than 24 h) and stimulating triacylglycerol secretion in longer incubations (48-72 h). The present study was undertaken to examine regulation of triacylglycerol secretion by insulin and investigate the interaction between insulin and non-esterified fatty acid over 72 h in human hepatoblastoma (Hep G2) cells. Insulin inhibited triacylglycerol secretion throughout the 72 h period. The inhibition increased from 66% in the first 24 h to 88% in the final 24 h. Increasing the initial concentration of oleic acid from 200 microM to 1000 microM resulted in a 358% increase in triacylglycerol secretion and a 712% increase in accumulation over 24 h. Oleic acid uptake by the cells was rapid, with only 2.4% of the initial concentration (500 microM) remaining after 24 h. Supplementation of the medium with oleic acid to maintain the concentration between 750 microM and 1000 microM throughout a 5 h period resulted in a 350% increase in triacylglycerol secretion. Supplementation also decreased the insulin-induced inhibition of triacylglycerol secretion (18.2 to 7.8%; P less than 0.001). These results demonstrate that there is not a biphasic action of insulin on triacylglycerol secretion by Hep G2 cells. Experiments of this nature have not previously taken into account the rapid uptake of non-esterified fatty acid by hepatocytes and have consequently underestimated the effect of a sustained concentration on triacylglycerol metabolism. Oleic acid is therefore an even more potent stimulus to triacylglycerol synthesis and secretion than has previously been recognized. In addition, in the presence of a sustained increase in oleic acid concentration, there is a decrease in the action of insulin to inhibit triacylglycerol secretion. PMID:1660268

  10. Association of Type 2 Diabetes Candidate Polymorphisms in KCNQ1 With Incretin and Insulin Secretion

    PubMed Central

    Müssig, Karsten; Staiger, Harald; Machicao, Fausto; Kirchhoff, Kerstin; Guthoff, Martina; Schäfer, Silke A.; Kantartzis, Konstantinos; Silbernagel, Günther; Stefan, Norbert; Holst, Jens J.; Gallwitz, Baptist; Häring, Hans-Ulrich; Fritsche, Andreas

    2009-01-01

    OBJECTIVE KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered β-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli. RESEARCH DESIGN AND METHODS We genotyped 1,578 nondiabetic subjects at increased risk of type 2 diabetes for rs151290, rs2237892, rs2237895, and rs2237897. All participants underwent an oral glucose tolerance test (OGTT); glucagon-like peptide (GLP)-1 and gastric inhibitory peptide secretion was measured in 170 participants. In 519 participants, a hyperinsulinemic-euglycemic clamp was performed, in 314 participants an intravenous glucose tolerance test (IVGTT), and in 102 subjects a hyperglycemic clamp combined with GLP-1 and arginine stimuli. RESULTS rs151290 was nominally associated with 30-min C-peptide levels during OGTT, first-phase insulin secretion, and insulinogenic index after adjustment in the dominant model (all P ≤ 0.01). rs2237892, rs2237895, and rs2237897 were nominally associated with OGTT-derived insulin secretion indexes (all P < 0.05). No SNPs were associated with β-cell function during intravenous glucose or GLP-1 administration. However, rs151290 was associated with glucose-stimulated gastric inhibitory polypeptide and GLP-1 increase after adjustment in the dominant model (P = 0.0042 and P = 0.0198, respectively). No associations were detected between the other SNPs and basal or stimulated incretin levels (all P ≥ 0.05). CONCLUSIONS Common genetic variation in KCNQ1 is associated with insulin secretion upon oral glucose load in a German population at increased risk of type 2 diabetes. The discrepancy between orally and intravenously administered glucose seems to be explained not by altered incretin signaling but most likely by changes in incretin secretion. PMID:19366866

  11. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.

    PubMed

    Lumelsky, N; Blondel, O; Laeng, P; Velasco, I; Ravin, R; McKay, R

    2001-05-18

    Although the source of embryonic stem (ES) cells presents ethical concerns, their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas, insulin is produced and secreted by specialized structures, islets of Langerhans. Diabetes, which affects 16 million people in the United States, results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice, the insulin-producing cells undergo rapid vascularization and maintain a clustered, islet-like organization. PMID:11326082

  12. GPR142 Agonists Stimulate Glucose-Dependent Insulin Secretion via Gq-Dependent Signaling

    PubMed Central

    Wang, Jingru; Carrillo, Juan J.; Lin, Hua V.

    2016-01-01

    GPR142 is an islet-enriched G protein-coupled receptor that has been investigated as a novel therapeutic target for the treatment of type 2 diabetes by virtue of its insulin secretagogue activity. However, the signaling pathways downstream of GPR142 and whether its stimulation of insulin release is glucose-dependent remain poorly characterized. In this study, we show that both native and synthetic GPR142 agonists can activate Gq as well as Gi signaling when GPR142 is recombinantly expressed in HEK293 cells. However, in primary pancreatic islets, a native cellular system, the insulin secretagogue activity of GPR142 agonists only requires Gq activation. In addition, our results show that stimulation of insulin secretion by GPR142 in pancreatic islets is strictly glucose-dependent. PMID:27104960

  13. Altered insulin and glucagon secretion in treated genetic hyperlipemia: a mechanism of theraphy?

    PubMed

    Eaton, R P; Oase, R; Schade, D S

    1976-03-01

    The influence of Halofenate therapy on insulin and glucagon secretion was examined in the Zucker rat with genetic endogenous hyperlipemia. Coincident with the lipid lowering effects of Halofenate, the net change in the basal bihormonal axis favored glucagon, with the I/G molar ratio (Insulin/Glucagon) decreasing from 2.72 +/- 0.53 to 0.96 +/- 0.20 during treatment with this drug. Following arginine stimulation the I/G ratio remained reduced at 0.87 +/- 0.13 in Halofenate treated animals, contrasting with the statistically greater ratio of 2.5 +/- 0.55 in control animals. The Halofenate induced state of reduced insulin:glucagon was associated with hypolipemia, postarginine hyperglycemia, and hyperketonemia,-three metabolic parameters characteristic of glucagon excess relative to insulin. It is suggested that the lipid-lowering action of Halofenate in genetic hyperlipemia may reflect the altered bihormonal axis induced by the drug. PMID:1250161

  14. Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction

    PubMed Central

    Limesand, Sean W; Hay, William W

    2003-01-01

    Fetal pancreatic adaptations to relative hypoglycaemia, a characteristic of intra-uterine growth restriction, may limit pancreatic β-cell capacity to produce and/or secrete insulin. The objective of this study was to measure β-cell responsiveness in hypoglycaemic (H) fetal sheep and ascertain whether a 5 day euglycaemic recovery period would restore insulin secretion capacity. Glucose-stimulated insulin secretion (GSIS) was measured in euglycaemic (E) control fetuses, fetuses made hypoglycaemic for 14 days, and in a subset of 14-day hypoglycaemic fetuses returned to euglycaemia for 5 days (R fetuses). Hypoglycaemia significantly decreased plasma insulin concentrations in H (0.13 ± 0.01 ng ml−1) and R fetuses (0.11 ± 0.01 ng ml−1); insulin concentrations returned to euglycaemic control values (0.30 ± 0.01 ng ml−1) in R fetuses (0.29 ± 0.04 ng ml−1) during their euglycaemic recovery period. Mean steady-state plasma insulin concentration during the GSIS study was reduced in H fetuses (0.40 ± 0.07 vs. 0.92 ± 0.10 ng ml−1 in E), but increased (P < 0.05) in R fetuses (0.73 ± 0.10 ng ml−1) to concentrations not different from those in the E group. Nonlinear modelling of GSIS showed that response time was greater (P < 0.01) in both H (15.6 ± 2.8 min) and R (15.4 ± 1.5 min) than in E fetuses (6.3 ± 1.1 min). In addition, insulin secretion responsiveness to arginine was reduced by hypoglycaemia (0.98 ± 0.11 ng ml−1 in H vs. 1.82 ± 0.17 ng ml−1 in E, P < 0.05) and did not recover (1.21 ± 0.15 ng ml−1 in R, P < 0.05vs. E). Thus, a 5 day euglycaemic recovery period from chronic hypoglycaemia reestablished GSIS to normal levels, but there was a persistent reduction of β-cell responsiveness to glucose and arginine. We conclude that programming of pancreatic insulin secretion responsiveness can occur in response to fetal glucose deprivation, indicating a possible mechanism for establishing, in fetal life, a predisposition to type 2 diabetes. PMID

  15. Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell.

    PubMed

    Petit, P; Hillaire-Buys, D; Manteghetti, M; Debrus, S; Chapal, J; Loubatières-Mariani, M M

    1998-11-01

    Adenine nucleotides have been shown to stimulate insulin secretion by acting on P2 receptors of the P2Y type. Since there have been some discrepancies in the insulin response of different analogues of ATP and ADP, we investigated whether two different types of P2 receptors exist on pancreatic B cells. The effects of alpha,beta-methylene ATP, which is more specific for the P2X subtype, were studied in vitro in pancreatic islets and isolated perfused pancreas from rats, in comparison with the potent P2Y receptor agonist ADPbetaS. In isolated islets, incubated with a slightly stimulating glucose concentration (8.3 mM), alpha,beta-me ATP (200 microM) and ADPbetaS (50 microM) similarly stimulated insulin secretion; by contrast, under a non stimulating glucose concentration (3 mM), alpha,beta-me ATP was still effective whereas ADPbetaS was not. In the same way, in islets perifused with 3 mM glucose, alpha,beta-me ATP but not ADPbetaS induced a partial but significant reduction in the peak 86Rb efflux induced by the ATP-dependent potassium channel opener diazoxide. In the isolated pancreas, perfused with a non stimulating glucose concentration (4.2 mM), ADPbetaS and alpha,beta-me ATP (5-50 microM), administered for 10 min, induced an immediate, transient and concentration-dependent increase in the insulin secretion; their relative potency was not significantly different. In contrast, with a slightly stimulating glucose concentration (8.3 mM), ADPbetaS was previously shown to be 100 fold more potent than alpha,beta-me ATP. Furthermore, at 4.2 mM glucose a second administration of alpha,beta-me ATP was ineffective. In the same way, ADPbetaS was also able to desensitize its own insulin response. At 3 mM glucose, alpha,beta-me ATP as well as ADPbetaS (50 microM) induced a transient stimulation of insulin secretion and down regulated the action of each other. These results give evidence that pancreatic B cells, in addition to P2Y receptors, which potentiate glucose

  16. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo.

    PubMed

    Ferri, C; Pittoni, V; Piccoli, A; Laurenti, O; Cassone, M R; Bellini, C; Properzi, G; Valesini, G; De Mattia, G; Santucci, A

    1995-03-01

    Endothelin-1 (ET-1) is a potent vasoactive and mitogenic peptide produced by the vascular endothelium. In this study, we evaluated whether insulin stimulates ET-1 secretion by human endothelial cells derived from umbilical cord veins and by human permanent endothelial hybrid cells Ea.hy 926. Moreover, to provide evidence that insulin may stimulate ET-1 secretion in vivo, plasma ET-1 levels were evaluated in 7 type II diabetic normotensive males (mean age, 54.3 +/- 4.0 yr) during 2-h hyperinsulinemic euglycemic clamps (287 pmol insulin/m2.min-1) as well as in 12 obese hypertensive males (mean age, 44.2 +/- 4.6 yr) before and after a 12-week period of caloric restriction. Our results showed that insulin stimulated ET-1 release from cultured endothelial cells in a dose-dependent fashion. ET-1 release persisted for 24 h and was also observed at physiological insulin concentrations (10(-9) mol/L). The insulin-induced ET-1 secretion was inhibited by genistein, a tyrosine kinase inhibitor, and by cycloheximide, a protein synthesis inhibitor, suggesting that it requires de novo protein synthesis rather than ET-1 release from intracellular stores. In the in vivo experiments, plasma ET-1 levels rapidly increased during euglycemic hyperinsulinemic clamps (from 0.76 +/- 0.18 pg/mL at time zero to 1.65 +/- 0.21 pg/mL at 60 min; P < 0.05) and persisted elevated until the end of insulin infusion (1.37 +/- 0.37 pg/mL at 120 min; P < 0.05 vs. time zero). In obese hypertensives, plasma ET-1 levels significantly decreased after 12 weeks of caloric restriction (from 0.85 +/- 0.51 to 0.48 +/- 0.28 pg/mL; P < 0.04). The decrease in body weight induced by caloric restriction was accompanied by a significant reduction in fasting insulin levels (from 167.2 +/- 94.0 to 98.9 +/- 44.9 pmol/L; P < 0.05) which correlated with the reduction in plasma ET-1 levels (r = 0.78; P < 0.003). In conclusion, our data show that insulin stimulates both in vitro and in vivo ET-1 secretion. Such interaction

  17. Genome-Wide Interaction with Insulin Secretion Loci Reveals Novel Loci for Type 2 Diabetes in African Americans.

    PubMed

    Keaton, Jacob M; Hellwege, Jacklyn N; Ng, Maggie C Y; Palmer, Nicholette D; Pankow, James S; Fornage, Myriam; Wilson, James G; Correa, Adolfo; Rasmussen-Torvik, Laura J; Rotter, Jerome I; Chen, Yii-Der I; Taylor, Kent D; Rich, Stephen S; Wagenknecht, Lynne E; Freedman, Barry I; Bowden, Donald W

    2016-01-01

    Type 2 diabetes (T2D) is the result of metabolic defects in insulin secretion and insulin sensitivity, yet most T2D loci identified to date influence insulin secretion. We hypothesized that T2D loci, particularly those affecting insulin sensitivity, can be identified through interaction with insulin secretion loci. To test this hypothesis, single nucleotide polymorphisms (SNPs) associated with acute insulin response to glucose (AIRg), a dynamic measure of first-phase insulin secretion, were identified in African Americans from the Insulin Resistance Atherosclerosis Family Study (IRASFS; n = 492 subjects). These SNPs were tested for interaction, individually and jointly as a genetic risk score (GRS), using genome-wide association study (GWAS) data from five cohorts (ARIC, CARDIA, JHS, MESA, WFSM; n = 2,725 cases, 4,167 controls) with T2D as the outcome. In single variant analyses, suggestively significant (Pinteraction<5×10-6) interactions were observed at several loci including LYPLAL1 (rs10746381), CHN2 (rs7796525), and EXOC1 (rs4289500). Notable AIRg GRS interactions were observed with SAMD4A (rs11627203) and UTRN (rs17074194). These data support the hypothesis that additional genetic factors contributing to T2D risk can be identified by interactions with insulin secretion loci. PMID:27448167

  18. Genome-Wide Interaction with Insulin Secretion Loci Reveals Novel Loci for Type 2 Diabetes in African Americans

    PubMed Central

    Keaton, Jacob M.; Hellwege, Jacklyn N.; Ng, Maggie C. Y.; Palmer, Nicholette D.; Pankow, James S.; Fornage, Myriam; Wilson, James G.; Correa, Adolfo; Rasmussen-Torvik, Laura J.; Rotter, Jerome I.; Chen, Yii-Der I.; Taylor, Kent D.; Rich, Stephen S.; Wagenknecht, Lynne E.; Freedman, Barry I.; Bowden, Donald W.

    2016-01-01

    Type 2 diabetes (T2D) is the result of metabolic defects in insulin secretion and insulin sensitivity, yet most T2D loci identified to date influence insulin secretion. We hypothesized that T2D loci, particularly those affecting insulin sensitivity, can be identified through interaction with insulin secretion loci. To test this hypothesis, single nucleotide polymorphisms (SNPs) associated with acute insulin response to glucose (AIRg), a dynamic measure of first-phase insulin secretion, were identified in African Americans from the Insulin Resistance Atherosclerosis Family Study (IRASFS; n = 492 subjects). These SNPs were tested for interaction, individually and jointly as a genetic risk score (GRS), using genome-wide association study (GWAS) data from five cohorts (ARIC, CARDIA, JHS, MESA, WFSM; n = 2,725 cases, 4,167 controls) with T2D as the outcome. In single variant analyses, suggestively significant (Pinteraction<5×10−6) interactions were observed at several loci including LYPLAL1 (rs10746381), CHN2 (rs7796525), and EXOC1 (rs4289500). Notable AIRg GRS interactions were observed with SAMD4A (rs11627203) and UTRN (rs17074194). These data support the hypothesis that additional genetic factors contributing to T2D risk can be identified by interactions with insulin secretion loci. PMID:27448167

  19. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  20. Ectopic insulin secreting neuroendocrine tumor of kidney with recurrent hypoglycemia: a diagnostic dilemma

    PubMed Central

    2014-01-01

    Background Hypoglycemia secondary to ectopic insulin secretion of non-pancreatic tumors is rare. Case presentation We describe a middle aged woman with recurrent hypoglycemia. On evaluation, she was detected to have hyperinsulinemic hypoglycemia and right sided renal mass lesion. 68Ga-Dotanoc and 99mTc-HYNICTOC scans confirmed the intrarenal mass to be of neuroendocrine origin. Right nephrectomy was done and it turned out to be an insulin secreting neuroendocrine tumour. Neuroendocrine nature of this tumour was further confirmed by ultra-structural examination. Her hypoglycemia did not recur after resection of this tumour. Conclusion Few cases of ectopic insulin secretion have been reported though some are not proven convincingly. This case addresses all the issues raised in previous case reports and proves by clinical, laboratory, functional imaging and immunohistochemical analysis that ectopic origin of insulin by non-pancreatic tumors does occur. To our knowledge, this is the first reported case of ectopic insulinoma arising from the kidney. PMID:24741994

  1. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells.

    PubMed

    Velasco, Myrian; Díaz-García, Carlos Manlio; Larqué, Carlos; Hiriart, Marcia

    2016-09-01

    Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion. PMID:27436126

  2. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    PubMed Central

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  3. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

    PubMed

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-06-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  4. Phosphorylation and Degradation of Tomosyn-2 De-represses Insulin Secretion*

    PubMed Central

    Bhatnagar, Sushant; Soni, Mufaddal S.; Wrighton, Lindsay S.; Hebert, Alexander S.; Zhou, Amber S.; Paul, Pradyut K.; Gregg, Trillian; Rabaglia, Mary E.; Keller, Mark P.; Coon, Joshua J.; Attie, Alan D.

    2014-01-01

    The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from β-cells must involve reversing the inhibitory action of tomosyn. Here, we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mm glucose, ∼50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using 32P labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagogues. We identified 11 phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (Ser → Asp) and loss-of-function (Ser → Ala) mutants. The Ser → Asp mutant had enhanced protein turnover compared with the Ser → Ala mutant and wild type tomosyn-2. Additionally, the Ser → Asp tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2-binding proteins, we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase. PMID:25002582

  5. Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse β Cell

    PubMed Central

    Jonatan, Diva; Spence, Jason R.; Method, Anna M.; Kofron, Matthew; Sinagoga, Katie; Haataja, Leena; Arvan, Peter; Deutsch, Gail H.; Wells, James M.

    2014-01-01

    SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes. PMID:25144761

  6. TRPV6 channel modulates proliferation of insulin secreting INS-1E beta cell line.

    PubMed

    Skrzypski, M; Khajavi, N; Mergler, S; Szczepankiewicz, D; Kołodziejski, P A; Metzke, D; Wojciechowicz, T; Billert, M; Nowak, K W; Strowski, M Z

    2015-12-01

    Transient receptor potential channel vanilloid type 6 (TRPV6) is a non-selective cation channel with high permeability for Ca²⁺ ions. So far, the role of TRPV6 in pancreatic beta cells is unknown. In the present study, we characterized the role of TRPV6 in controlling calcium signaling, cell proliferation as well as insulin expression, and secretion in experimental INS-1E beta cell model. TRPV6 protein production was downregulated using siRNA by approx. 70%, as detected by Western blot. Intracellular free Ca²⁺ ([Ca²⁺]i) was measured by fluorescence Ca²⁺ imaging using fura-2. Calcineurin/NFAT signaling was analyzed using a NFAT reporter assay as well as a calcineurin activity assay. TRPV6 downregulation resulted in impaired cellular calcium influx. Its downregulation also reduced cell proliferation and decreased insulin mRNA expression. These changes were companied by the inhibition of the calcineurin/NFAT signaling. In contrast, insulin exocytosis was not affected by TRPV6 downregulation. In conclusion, this study demonstrates for the first time the expression of TRPV6 in INS-1E cells and rat pancreatic beta cells and describes its role in modulating calcium signaling, beta cell proliferation and insulin mRNA expression. In contrast, TRPV6 fails to influence insulin secretion. PMID:26384871

  7. Histopathology and ex vivo insulin secretion of pancreatic islets in gestational diabetes: A case report.

    PubMed

    Tancredi, Mariella; Marselli, Lorella; Lencioni, Cristina; Masini, Matilde; Bugliani, Marco; Suleiman, Mara; Masiello, Pellegrino; Boggi, Ugo; Filipponi, Franco; Dotta, Francesco; Marchetti, Piero; Di Cianni, Graziano

    2011-01-01

    Gestational diabetes (GD) results from insufficient endogenous insulin supply. No information is available on features of islet cells in human GD. Herein, we describe several properties of islets from a woman with GD. Immunohistochemical stainings and EM analyses were performed on pancreatic samples. Islet isolation was achieved by enzymatic dissociation and density gradient centrifugation. Ex vivo insulin secretion was studied in response to fuel secretagogues. Control islets were obtained from matched non-pregnant, non-diabetic women. Total insulin positive area was lower in GD, mainly due to the presence of smaller islets. β-cell apoptosis and the presence of Ki67 positive islet cells were similar in GD and controls, whereas the amount of insulin positive cells in or close to the ducts was decreased in GD. Ex vivo insulin secretion did not differ between GD and non-pregnant, non-diabetic islets. These findings suggest that in this case of human GD there might mainly be a defect of β-cell amount, not due to increased apoptosis, but possibly to insufficient regeneration. PMID:21765242

  8. Nuclear SREBP-1a causes loss of pancreatic {beta}-cells and impaired insulin secretion

    SciTech Connect

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-16

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.

  9. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice

    PubMed Central

    Iglesias, José; Barg, Sebastian; Vallois, David; Lahiri, Shawon; Roger, Catherine; Yessoufou, Akadiri; Pradevand, Sylvain; McDonald, Angela; Bonal, Claire; Reimann, Frank; Gribble, Fiona; Debril, Marie-Bernard; Metzger, Daniel; Chambon, Pierre; Herrera, Pedro; Rutter, Guy A.; Prentki, Marc; Thorens, Bernard; Wahli, Walter

    2012-01-01

    PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action. PMID:23093780

  10. Changes of insulin sensitivity and secretion after bariatric/metabolic surgery.

    PubMed

    Mingrone, Geltrude; Cummings, David E

    2016-07-01

    Type 2 diabetes (T2D) is classically characterized by failure of pancreatic β-cell function and insulin secretion to compensate for a prevailing level of insulin resistance, typically associated with visceral obesity. Although this is usually a chronic, progressive disease in which delay of end-organ complications is the primary therapeutic goal for medical and behavioral approaches, several types of bariatric surgery, especially those that include intestinal bypass components, exert powerful antidiabetes effects to yield remission of T2D in most cases. It has become increasingly clear that in addition to the known benefits of acute caloric restriction and chronic weight loss to ameliorate T2D, bariatric/metabolic operations also engage a variety of weight-independent mechanisms to improve glucose homeostasis, enhancing insulin sensitivity and secretion to varying degrees depending on the specific operation. In this paper, we review the effects of Roux-en-Y gastric bypass, biliopancreatic diversion, and vertical sleeve gastrectomy on the primary determinants of glucose homeostasis: insulin sensitivity, insulin secretion, and, to the lesser extent that it is known, insulin-independent glucose disposal. A full understanding of these effects should help optimize surgical and device-based designs to provide maximal antidiabetes impact, and it holds the promise to identify targets for possible novel diabetes pharmacotherapeutics. These insights also contribute to the conceptual rationale for use of bariatric operations as "metabolic surgery," employed primarily to treat T2D, including among patients not obese enough to qualify for surgery based on traditional criteria related to high body mass index. PMID:27568471

  11. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans.

    PubMed

    Christensen, Mikkel Bring

    2016-04-01

    The hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted by enteroendocrine cells in the intestinal mucosa in response to nutrient ingestion. They are called incretin hormones because of their ability to enhance insulin secretion. However, in recent years it has become clear that the incretin hormones also affect glucagon secretion. While GLP-1 decreases glucagon levels, the effect of GIP on glucagon levels has been unclear. The regulation of glucagon secretion is interesting, as the combination of inadequate insulin secretion and excessive glucagon secretion are essential contributors to the hyperglycaemia that characterise patients with type 2 diabetes. Moreover, the near absence of a well-timed glucagon response contributes to an increased risk of hypoglycaemia in patients with type 1 diabetes. The overall aim of this PhD thesis was to investigate how the blood glucose level affects the glucagon and insulin responses to GIP in healthy subjects (Study 1) and patients with Type 2 diabetes (Study 2), and more specifically to investigate the effects of GIP and GLP-1 at low blood glucose in patients with Type 1 diabetes without endogenous insulin secretion (Study 3). The investigations in the three mentioned study populations have been described in three original articles. The employed study designs were in randomised, placebo-controlled, crossover set-up, in which the same research subject is subjected to several study days thereby acting as his own control. Interventions were intravenous administration of hormones GIP, GLP-1 and placebo (saline) during different blood glucose levels maintained (clamped) at a certain level. The end-points were plasma concentrations of glucagon and insulin as well as the amount of glucose used to clamp the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during

  12. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  13. Cafestol, a Bioactive Substance in Coffee, Stimulates Insulin Secretion and Increases Glucose Uptake in Muscle Cells: Studies in Vitro.

    PubMed

    Mellbye, Fredrik Brustad; Jeppesen, Per Bendix; Hermansen, Kjeld; Gregersen, Søren

    2015-10-23

    Diet and exercise intervention can delay or prevent development of type-2-diabetes (T2D), and high habitual coffee consumption is associated with reduced risk of developing T2D. This study aimed to test whether selected bioactive substances in coffee acutely and/or chronically increase insulin secretion from β-cells and improve insulin sensitivity in skeletal muscle cells. Insulin secretion from INS-1E rat insulinoma cells was measured after acute (1-h) and long-term (72-h) incubation with bioactive substances from coffee. Additionally, we measured uptake of radioactive glucose in human skeletal muscle cells (SkMC) after incubation with cafestol. Cafestol at 10(-8) and 10(-6) M acutely increased insulin secretion by 12% (p < 0.05) and 16% (p < 0.001), respectively. Long-term exposure to 10(-10) and 10(-8) M cafestol increased insulin secretion by 34% (p < 0.001) and 68% (p < 0.001), respectively. Caffeic acid also increased insulin secretion acutely and chronically. Chlorogenic acid, trigonelline, oxokahweol, and secoisolariciresinol did not significantly alter insulin secretion acutely. Glucose uptake in SkMC was significantly enhanced by 8% (p < 0.001) in the presence of 10(-8) M cafestol. This newly demonstrated dual action of cafestol suggests that cafestol may contribute to the preventive effects on T2D in coffee drinkers and be of therapeutic interest. PMID:26465380

  14. Effect of Salsalate on Insulin Action, Secretion, and Clearance in Nondiabetic, Insulin-Resistant Individuals: A Randomized, Placebo-Controlled Study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Ochoa, Hector; Reaven, Gerald

    2014-01-01

    OBJECTIVE Salsalate treatment has been shown to improve glucose homeostasis, but the mechanism remains unclear. The aim of this study was to evaluate the effect of salsalate treatment on insulin action, secretion, and clearance rate in nondiabetic individuals with insulin resistance. RESEARCH DESIGN AND METHODS This was a randomized (2:1), single-blind, placebo-controlled study of salsalate (3.5 g daily for 4 weeks) in nondiabetic individuals with insulin resistance. All individuals had measurement of glucose tolerance (75-g oral glucose tolerance test), steady-state plasma glucose (SSPG; insulin suppression test), and insulin secretion and clearance rate (graded-glucose infusion test) before and after treatment. RESULTS Forty-one individuals were randomized to salsalate (n = 27) and placebo (n = 14). One individual from each group discontinued the study. Salsalate improved fasting (% mean change −7% [95% CI −10 to −14] vs. 1% [−3 to 5], P = 0.005) but not postprandial glucose concentration compared with placebo. Salsalate also lowered fasting triglyceride concentration (−25% [−34 to −15] vs. −6% [−26 to 14], P = 0.04). Salsalate had no effect on SSPG concentration or insulin secretion rate but significantly decreased insulin clearance rate compared with placebo (−23% [−30 to −16] vs. 3% [−10 to 15], P < 0.001). Salsalate was well tolerated, but four individuals needed a dose reduction due to symptoms. CONCLUSIONS Salsalate treatment in nondiabetic, insulin-resistant individuals improved fasting, but not postprandial, glucose and triglyceride concentration. These improvements were associated with a decrease in insulin clearance rate without change in insulin action or insulin secretion. PMID:24963111

  15. Aqueous extract of Abutilon indicum Sweet inhibits glucose absorption and stimulates insulin secretion in rodents.

    PubMed

    Krisanapun, Chutwadee; Peungvicha, Penchom; Temsiririrkkul, Rungravi; Wongkrajang, Yuvadee

    2009-08-01

    The objective of this study was to evaluate the antidiabetic effects of the aqueous extract derived from the Thai Abutilon indicum Sweet plant and to explore its effects on intestinal glucose absorption and insulin secretion. The authors hypothesized that the plasma glucose level could be reduced through the inhibition of glucose absorption and/or the enhancement of insulin secretion. Administration of the extract (0.5 and 1 g/kg body weight) in an oral glucose tolerance test led to a significant reduction in plasma glucose levels in 30 minutes after the administration in moderately diabetic rats, as compared with untreated rats (P < .05), and this was at a faster rate than the use of an antidiabetic drug, glibenclamide. The inhibition of glucose absorption through the small intestine was investigated using an everted intestinal sac. The results showed that the extract at concentrations of 0.156 to 5 mg/mL caused a reduction of glucose absorption in a dose response manner. The maximum response was noted at a dose of 2.5 mg/mL. The promotion of the extract on insulin secretion was confirmed by incubating beta cell of pancreatic islets and INS-1E insulinoma cells with the extract at 1 to 1000 microg/mL. These observations suggest that the aqueous extract from the A indicum plant has antidiabetic properties, which inhibited glucose absorption and stimulated insulin secretion. Phytochemical screening also revealed that the extract contained alkaloids, flavonoids, tannins, glycosides, and saponins that could account for the observed pharmacologic effects of the plant extract. PMID:19761892

  16. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  17. Silk matrices promote formation of insulin-secreting islet-like clusters.

    PubMed

    Shalaly, Nancy Dekki; Ria, Massimiliano; Johansson, Ulrika; Åvall, Karin; Berggren, Per-Olof; Hedhammar, My

    2016-06-01

    Ex vivo expansion of endocrine cells constitutes an interesting alternative to be able to match the unmet need of transplantable pancreatic islets. However, endocrine cells become fragile once removed from their extracellular matrix (ECM) and typically become senescent and loose insulin expression during conventional 2D culture. Herein we develop a protocol where 3D silk matrices functionalized with ECM-derived motifs are used for generation of insulin-secreting islet-like clusters from mouse and human primary cells. The obtained clusters were shown to attain an islet-like spheroid shape and to maintain functional insulin release upon glucose stimulation in vitro. Furthermore, in vivo imaging of transplanted murine clusters showed engraftment with increasing vessel formation during time. There was no sign of cell death and the clusters maintained or increased in size throughout the period, thus suggesting a suitable cluster size for transplantation. PMID:26986856

  18. Parathyroid hormone pulsatility: physiological and clinical aspects

    PubMed Central

    Chiavistelli, Silvia; Giustina, Andrea; Mazziotti, Gherardo

    2015-01-01

    Parathyroid hormone (PTH) secretion is characterized by an ultradian rhythm with tonic and pulsatile components. In healthy subjects, the majority of PTH is secreted in tonic fashion, whereas approximately 30% is secreted in low-amplitude and high-frequency bursts occurring every 10–20 min, superimposed on tonic secretion. Changes in the ultradian PTH secretion were shown to occur in patients with primary and secondary osteoporosis, with skeletal effects depending on the reciprocal modifications of pulsatile and tonic components. Indeed, pathophysiology of spontaneous PTH secretion remains an area potentially suitable to be explored, particularly in those conditions such as secondary forms of osteoporosis, in which conventional biochemical and densitometric parameters may not always give reliable diagnostic and therapeutic indications. This review will highlight the literature data supporting the hypothesis that changes of ultradian PTH secretion may be correlated with skeletal fragility in primary and secondary osteoporosis. PMID:26273533

  19. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells.

    PubMed

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O'Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  20. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    PubMed

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function. PMID:17400930

  1. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion

    PubMed Central

    van der Meulen, Talitha; Donaldson, Cynthia J.; Cáceres, Elena; Hunter, Anna E.; Cowing–Zitron, Christopher; Pound, Lynley D.; Adams, Michael W.; Zembrzycki, Andreas; Grove, Kevin L.; Huising, Mark O.

    2015-01-01

    The peptide hormone Urocortin3 (Ucn3) is abundantly expressed by mature beta cells, yet its physiological role is unknown. Here we demonstrate that Ucn3 is stored and co–released with insulin and potentiates glucose–stimulated somatostatin secretion via cognate receptor on delta cells. Further, we found that islets lacking endogenous Ucn3 demonstrate fewer delta cells, reduced somatostatin content, impaired somatostatin secretion and exaggerated insulin release, and that these defects are rectified by synthetic Ucn3 in vitro. Our observations indicate that the paracrine actions of Ucn3 activate a negative feedback loop that promotes somatostatin release to ensure the timely reduction of insulin secretion upon normalization of plasma glucose. Moreover, Ucn3 is markedly depleted from beta cells in mouse and macaque diabetes models and in human diabetic islets. This suggests that Ucn3 is a key contributor to stable glycemic control whose reduction during diabetes aggravates glycemic volatility and contributes to the pathophysiology of this disease. PMID:26076035

  2. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells

    PubMed Central

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O’Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  3. Delayed improvement of insulin secretion after autologous islet transplantation in partially pancreatectomized patients.

    PubMed

    Jung, Hye Seung; Choi, Seong-Ho; Kim, Sung-Joo; Choi, Dong-Wook; Heo, Jin-Seok; Lee, Kyu Taek; Lee, Jong Kyun; Jang, Kee-Taek; Lee, Byung-Wan; Jee, Jae-Hwan; Noh, Jung-Hyun; Jeong, In Kyung; Yang, Tae-Young; Oh, Seung-Hoon; Ahn, You-Ran; Kim, Young-Seok; No, Heesung; Lee, Moon-Kyu; Kim, Kwang-Won

    2009-11-01

    The purpose of this study was to evaluate the effects of autologous islet transplantation (ITx) on glucose homeostasis and insulin secretory function after partial pancreatectomy (Px). Fourteen nondiabetic patients who underwent distal Px and autologous ITx for benign pancreatic tumors were enrolled in the study (Px + ITx group). Fourteen normal glucose-tolerant controls and 6 Px without ITx controls were recruited, and all groups were followed over a 24-month period. They performed the 75-g oral glucose tolerance test and the 1-mg glucagon stimulation test. Hemoglobin A(1c) was measured, and indices of insulin secretion were calculated. In the Px + ITx group, insulin secretion increased after a nadir at 6 months. Glucose tolerance, which had been abruptly impaired immediately after Px, recovered until 6 months and stabilized thereafter. As a result, differences in glucose intolerance emerged between the subjects in the Px group and those in the Px + ITx group at 24 months after Px. Characteristic variables in the better insulin secretory subjects in the Px + ITx group included younger age, less extensive pancreas resection, and a greater number of total islets. In summary, delayed amelioration of glucose intolerance was induced by autologous ITx after partial Px, even with a small number of islets. PMID:19604519

  4. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.

    PubMed

    Al-Romaiyan, A; Liu, B; Asare-Anane, H; Maity, C R; Chatterjee, S K; Koley, N; Biswas, T; Chatterji, A K; Huang, G-C; Amiel, S A; Persaud, S J; Jones, P M

    2010-09-01

    Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in human studies, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA(R)) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA(R) (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA(R) on insulin secretion from human ß-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA(R) may provide a potential alternative therapy for the hyperglycemia associated with T2DM. PMID:20812281

  5. Restructuring of Pancreatic Islets and Insulin Secretion in a Postnatal Critical Window

    PubMed Central

    Aguayo-Mazzucato, Cristina; Sanchez-Soto, Carmen; Godinez-Puig, Victoria; Gutiérrez-Ospina, Gabriel; Hiriart, Marcia

    2006-01-01

    Function and structure of adult pancreatic islets are determined by early postnatal development, which in rats corresponds to the first month of life. We analyzed changes in blood glucose and hormones during this stage and their association with morphological and functional changes of alpha and beta cell populations during this period. At day 20 (d20), insulin and glucose plasma levels were two- and six-fold higher, respectively, as compared to d6. Interestingly, this period is characterized by physiological hyperglycemia and hyperinsulinemia, where peripheral insulin resistance and a high plasmatic concentration of glucagon are also observed. These functional changes were paralleled by reorganization of islet structure, cell mass and aggregate size of alpha and beta cells. Cultured beta cells from d20 secreted the same amount of insulin in 15.6 mM than in 5.6 mM glucose (basal conditions), and were characterized by a high basal insulin secretion. However, beta cells from d28 were already glucose sensitive. Understanding and establishing morphophysiological relationships in the developing endocrine pancreas may explain how events in early life are important in determining adult islet physiology and metabolism. PMID:17183663

  6. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells.

    PubMed

    Dai, Feihan F; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B

    2015-10-01

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion. PMID:26272612

  7. [Differentiation of human amniotic mesenchymal stem cells into insulin-secreting cells induced by regenerating pancreatic extract].

    PubMed

    Zhang, Yanmei; Wang, Dianliang; Zeng, Hongyan; Wang, Lieming; Sun, Jinwei; Zhang, Zhen; Dong, Shasha

    2012-02-01

    In this study, the natural biological inducer, rat regenerating pancreatic extract (RPE), was used to induce human amniotic mesenchymal stem cells (hAMSCs) into insulin-secreting cells. We excised 60% of rat pancreas in order to stimulate pancreatic regeneration. RPE was extracted and used to induce hAMSCs at a final concentration of 20 microg/mL. The experiment methods used were as follows: morphological-identification, dithizone staining, immumofluorescence analysis, reverse transcription-PCR (RT-PCR) and insulin secretion stimulated by high glucose. The results show that the cell morphology of passge3 hAMSCs changed significantly after the induction of RPE, resulting in cluster shape after induction for 15 days. Dithizone staining showed that there were scarlet cell masses in RPE-treated culture. Immumofluorescence analysis indicated that induced cells were insulin-positive expression. RT-PCR showed the positive expression of human islet-related genes Pdx1 and insulin in the induced cells. The result of insulin secretion stimulated by high glucose indicated that insulin increasingly secreted and then kept stable with prolongation of high glucose stimulation. In conclusion, hAMSCs had the potential to differentiate into insulin-secreting cells induced by RPE in vitro. PMID:22667123

  8. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion.

    PubMed

    Gray, Joshua P; Heart, Emma

    2010-05-01

    Insulin secretion from pancreatic beta cells is a process dependent on metabolism. While oxidative stress is a well-known inducer of beta cell toxicity and impairs insulin secretion, recent studies suggest that low levels of metabolically-derived reactive oxygen intermediates (ROI) also play a positive role in insulin secretion. Glucose metabolism is directly correlated with ROI production, particularly in beta cells in which glucose uptake is proportional to the extracellular concentration of glucose. Low levels of exogenously added ROI or quinones, which stimulate ROI production, positively affect insulin secretion, while antioxidants block insulin secretion, suggesting that ROI activate unidentified redox-sensitive signal transduction components within these cells. The mitochondria are one source of ROI: increased metabolic flux increases mitochondrial membrane potential resulting in electron leakage and adventitious ROI production. A second source of ROI are cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and directly produce ROI through the reduction of molecular oxygen. The mechanism of ROI-mediated potentiation of insulin secretion remains an important topic for future study. PMID:20397883

  9. Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes

    PubMed Central

    Duan, Franklin F.; Liu, Joy H.

    2015-01-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1–secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25–33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)–secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737

  10. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes.

    PubMed

    Duan, Franklin F; Liu, Joy H; March, John C

    2015-05-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1-secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25-33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)-secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737

  11. Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity

    PubMed Central

    2013-01-01

    Background In the progression towards diabetes, glucolipotoxicity is one of the main causes of pancreatic beta cell pathology. The aim of this study was to examine the in vitro effects of chronic glucolipotoxic conditions on cellular responses in pancreatic islets, including glucose and fat metabolism, Calcium mobilization, insulin secretion and insulin content. Results Exposure of islets to chronic glucolipotoxic conditions decreased glucose stimulated insulin secretion in vitro. Reduced protein levels of Glut2/slc2a2, and decreased glucokinase and pyruvate carboxylase mRNA levels indicated a significant lowering in glucose sensing. Concomitantly, both fatty acid uptake and triglyceride accumulation increased significantly while fatty acid oxidation decreased. This general suppression in glucose metabolism correlated well with a decrease in mitochondrial number and activity, reduction in cellular ATP content and dampening of the TCA cycle. Further, we also observed a decrease in IP3 levels and lower Calcium mobilization in response to glucose. Importantly, chronic glucolipotoxic conditions in vitro decreased insulin gene expression, insulin content, insulin granule docking (to the plasma membrane) and insulin secretion. Conclusions Our results present an integrated view of the effects of chronic glucolipotoxic conditions on known and novel signaling events, in vitro, that results in reduced glucose responsiveness and insulin secretion. PMID:23815372

  12. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents

    PubMed Central

    Yasuda, Shin-ichiro; Tsuchida, Takuma; Oguma, Takahiro; Marley, Anna; Wennberg-Huldt, Charlotte; Hovdal, Daniel; Fukuda, Hajime; Yoneyama, Yukimi; Sasaki, Kazuyo; Johansson, Anders; Lundqvist, Sara; Brengdahl, Johan; Isaacs, Richard J.; Brown, Daniel; Geschwindner, Stefan; Benthem, Lambertus; Priest, Claire; Turnbull, Andrew

    2015-01-01

    Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents. PMID:26720709

  13. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells.

    PubMed

    Brevini, T A L; Pennarossa, G; Acocella, F; Brizzola, S; Zenobi, A; Gandolfi, F

    2016-05-01

    Diabetes is among the most frequently diagnosed endocrine disorder in dogs and its prevalence continues to increase. Medical management of this pathology is lifelong and challenging because of the numerous serious complications. A therapy based on the use of autologous viable insulin-producing cells to replace the lost β cell mass would be very advantageous. A protocol to enable the epigenetic conversion of canine dermal fibroblasts, obtained from a skin biopsy, into insulin-producing cells (EpiCC) is described in the present manuscript. Cells were briefly exposed to the DNA methyltransferase inhibitor 5-azacytidine (5-aza-CR) in order to increase their plasticity. This was followed by a three-step differentiation protocol that directed the cells towards the pancreatic lineage. After 36 days, 38 ± 6.1% of the treated fibroblasts were converted into EpiCC that expressed insulin mRNA and protein. Furthermore, EpiCC were able to release insulin into the medium in response to an increased glucose concentration. This is the first evidence that generating a renewable autologous, functional source of insulin-secreting cells is possible in the dog. This procedure represents a novel and promising potential therapy for diabetes in dogs. PMID:27033591

  14. Hormones and Obesity: Changes in Insulin and Growth Hormone Secretion Following Surgically Induced Weight Loss

    PubMed Central

    Crockford, P. M.; Salmon, P. A.

    1970-01-01

    Ten obese patients were subjected to insulin tolerance tests (0.2 unit per kg. regular insulin intravenously) and/or treadmill exercise tolerance testing (2.6 m.p.h. at 11° angulation) before and after surgically induced weight reduction. Immunoreactive growth hormone (IRGH) responses returned to normal with weight reduction in all but one—a grossly obese woman studied relatively early in the postoperative period when still far from the ideal body weight. Five of these patients and two additional subjects had intravenous glucose tolerance tests (0.5 g. per kg.) before and after weight reduction. In all, there was a significant diminution in immunoreactive insulin (IRI) values, accompained by little or no change in the glucose disappearance rate (KG) and a significant improvement in insulin effectiveness as indicated by the calculated “insulinogenic index”. It was concluded that the abnormalities in IRGH and IRI secretion, as well as the insulin resistance in obesity, are probably secondary and not of primary importance in the etiology of this disorder. PMID:5430052

  15. Novel I1-Imidazoline Agonist S43126 Augment Insulin Secretion in Min6 Cells

    PubMed Central

    Tesfai, Jerusalem; Crane, Louis; Baziard-Mouysset, Genevieve; Edwards, Lincoln P.

    2016-01-01

    The I1-imidazoline receptor is a novel drug target for hypertension and insulin resistance which are major disorders associated with Type II diabetes. In the present study, we examined the effects of a novel imidazoline agonist S43126 on calcium fluxes and insulin secretion from Min6 β-cells. We also examined the effects of S43126 on the induction of IRAS, and phosphorylation of components in the I1-imidazoline signaling pathways, namely ERK and PKB. Min6 β-cells were treated with varying doses of S43126 [10−8M to 10−5M] for various time (5–60mins). S43126 at higher dose [10−5M] stimulated insulin secretion under elevated glucose concentration compared to basal. In addition, insulin secretion and Ca2+ influx mediated by S43126 [10−5M] were decreased following co-treatment with efaroxan (I1-antagonist) and nifedipine (L-type voltage-gated Ca2+-channel blocker) at various times (5–60mins). Furthermore, S43126 at [10−5M] increased Ca2+ oscillation, [Ca2+] and 45Ca2+ uptake in a time and dose-dependent manner. Moreover, Western blot analysis of treated samples showed that S43126 caused an increased protein expression of IRAS as well as phosphorylation of both ERK1/2 and PKB in a concentration-dependent manner. We conclude that S43126 exerts its insulinotropic effect in a glucose dependent manner by a mechanism involving L-type calcium channels and imidazoline I1-receptors.

  16. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion.

    PubMed

    Lee, Soh-Hyun; Jouihan, Hani A; Cooksey, Robert C; Jones, Deborah; Kim, Hyung J; Winge, Dennis R; McClain, Donald A

    2013-03-01

    Mitochondrial dysfunction is both a contributing mechanism and complication of diabetes, and oxidative stress contributes to that dysfunction. Mitochondrial manganese-superoxide dismutase (MnSOD) is a metalloenzyme that provides antioxidant protection. We have previously shown in a mouse model of hereditary iron overload that cytosolic iron levels affected mitochondrial manganese availability, MnSOD activity, and insulin secretion. We therefore sought to determine the metallation status of MnSOD in wild-type mice and whether altering that status affected β-cell function. 129/SvEVTac mice given supplemental manganese exhibited a 73% increase in hepatic MnSOD activity and increased metallation of MnSOD. To determine whether manganese supplementation offered glucose homeostasis under a situation of β-cell stress, we challenged C57BL/6J mice, which are more susceptible to diet-induced diabetes, with a high-fat diet for 12 weeks. Manganese was supplemented or not for the final 8 weeks on that diet, after which we examined glucose tolerance and the function of isolated islets. Liver mitochondria from manganese-injected C57BL/6J mice had similar increases in MnSOD activity (81%) and metallation as were seen in 129/SvEVTac mice. The manganese-treated group fed high fat had improved glucose tolerance (24% decrease in fasting glucose and 41% decrease in area under the glucose curve), comparable with mice on normal chow and increased serum insulin levels. Isolated islets from the manganese-treated group exhibited improved insulin secretion, decreased lipid peroxidation, and improved mitochondrial function. In conclusion, MnSOD metallation and activity can be augmented with manganese supplementation in normal mice on normal chow, and manganese treatment can increase insulin secretion to improve glucose tolerance under conditions of dietary stress. PMID:23372018

  17. Sortilin facilitates VLDL-B100 secretion by insulin sensitive McArdle RH7777 cells.

    PubMed

    Sparks, Robert P; Guida, Wayne C; Sowden, Mark P; Jenkins, Jermaine L; Starr, Matthew L; Fratti, Rutilio A; Sparks, Charles E; Sparks, Janet D

    2016-09-16

    Studies examining the relationship between cellular sortilin and VLDL-B100 secretion demonstrate inconsistent results. Current studies explore the possibility that discrepancies may be related to insulin sensitivity. McArdle RH7777 cells (McA cells) cultured under serum enriched conditions lose sensitivity to insulin. Following incubation in serum-free DMEM containing 1% BSA, McA cells become insulin responsive and demonstrate reduced apo B secretion. Current studies indicate that insulin sensitive McA cells express lower cellular sortilin that corresponds with reduction in VLDL-B100 secretion without changes in mRNA of either sortilin or apo B. When sortilin expression is further reduced by siRNA knockdown (KD), there are additional decreases in VLDL-B100 secretion. A crystal structure of human sortilin (hsortilin) identifies two binding sites on the luminal domain for the N- and C-termini of neurotensin (NT). A small organic compound (cpd984) was identified that has strong theoretical binding to the N-terminal site. Both cpd984 and NT bind hsortilin by surface plasmon resonance. In incubations with insulin sensitive McA cells, cpd984 was shown to enhance VLDL-B100 secretion at each level of sortilin KD suggesting cpd984 acted through sortilin in mediating its effect. Current results support a role for sortilin to facilitate VLDL-B100 secretion which is limited to insulin sensitive McA cells. Inconsistent reports of the relationship between VLDL-B100 secretion and sortilin in previous studies may relate to differing functions of sortilin in VLDL-B100 secretion depending upon insulin sensitivity. PMID:27495870

  18. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.

    PubMed

    Wang, Chih-Hao; Wang, Ching-Chu; Huang, Hsin-Chang; Wei, Yau-Huei

    2013-02-01

    Adipocytes play an integrative role in the regulation of energy metabolism and glucose homeostasis in the human body. Functional defects in adipocytes may cause systemic disturbance of glucose homeostasis. Recent studies revealed mitochondrial abnormalities in the adipose tissue of patients with type 2 diabetes. In addition, patients with mitochondrial diseases usually manifest systemic metabolic disorder. However, it is unclear how mitochondrial dysfunction in adipocytes affects the regulation of glucose homeostasis. In this study, we induced mitochondrial dysfunction and overproduction of reactive oxygen species (ROS) by addition of respiratory inhibitors oligomycin A and antimycin A and by knockdown of mitochondrial transcription factor A (mtTFA), respectively. We found an attenuation of the insulin response as indicated by lower glucose uptake and decreased phosphorylation of Akt upon insulin stimulation of adipocytes with mitochondrial dysfunction. Furthermore, the expression of glucose transporter 4 (Glut4) and secretion of adiponectin were decreased in adipocytes with increased ROS generated by defective mitochondria. Moreover, the severity of insulin insensitivity was correlated with the extent of mitochondrial dysfunction. These results suggest that higher intracellular ROS levels elicited by mitochondrial dysfunction resulted in impairment of the function of adipocytes in the maintenance of glucose homeostasis through attenuation of insulin signaling, downregulation of Glut4 expression, and decrease in adiponectin secretion. Our findings substantiate the important role of mitochondria in the regulation of glucose homeostasis in adipocytes and also provide a molecular basis for the explanation of the manifestation of diabetes mellitus or insulin insensitivity in a portion of patients with mitochondrial diseases such as MELAS or MERRF syndrome. PMID:23253816

  19. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells.

    PubMed

    Salunkhe, Vishal A; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24-48 h inhibited voltage-gated Ca(2+) channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  20. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  1. Identification of ABCC8 as a contributory gene to impaired early-phase insulin secretion in NZO mice.

    PubMed

    Andrikopoulos, Sofianos; Fam, Barbara C; Holdsworth, Anita; Visinoni, Sherley; Ruan, Zheng; Stathopoulos, Maria; Thorburn, Anne W; Joannides, Christos N; Cancilla, Michael; Balmer, Lois; Proietto, Joseph; Morahan, Grant

    2016-01-01

    Type 2 diabetes (T2D) is associated with defective insulin secretion, which in turn contributes to worsening glycaemic control and disease progression. The genetic cause(s) associated with impaired insulin secretion in T2D are not well elucidated. Here we used the polygenic New Zealand Obese (NZO) mouse model, which displays all the cardinal features of T2D including hyperglycaemia to identify genes associated with β-cell dysfunction. A genome-wide scan identified a major quantitative trait locus (QTL) on chromosome 7 associated with defective glucose-mediated insulin secretion. Using congenic strains, the locus was narrowed to two candidate genes encoding the components of the KATP channel: Abcc8 (SUR1) and Kcnj11 (Kir6.2). The NZO Abcc8 allele was associated with a ∼211 bp deletion in its transcript and reduced expression of SUR1. Transgenic NZO mice were generated that expressed the WT Abcc8/Kcnj11 genes and displayed significant improvements in early-phase glucose-mediated insulin secretion and glucose tolerance, confirming Abcc8 as a causative gene. Importantly, we showed that despite improving β-cell function in the NZO transgenic mice, there was no enhancement of insulin sensitivity or body weight. This study provides evidence for a role of Abcc8 in early-phase glucose-mediated insulin secretion and validates this gene as a contributor to β-cell dysfunction in T2D. PMID:26493453

  2. Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus.

    PubMed

    Andrews, Sasha E; Brown, Laura D; Thorn, Stephanie R; Limesand, Sean W; Davis, Melissa; Hay, William W; Rozance, Paul J

    2015-01-01

    Insulin may stimulate its own insulin secretion and is a potent growth factor for the pancreatic β-cell. Complications of pregnancy, such as diabetes and intrauterine growth restriction, are associated with changes in fetal insulin concentrations, secretion, and β-cell mass. However, glucose concentrations are also abnormal in these conditions. The direct effect of chronic fetal hyperinsulinemia with euglycemia on fetal insulin secretion and β-cell mass has not been tested. We hypothesized that chronic fetal hyperinsulinemia with euglycemia would increase glucose-stimulated insulin secretion (GSIS) and β-cell mass in the ovine fetus. Singleton ovine fetuses were infused with iv insulin to produce high physiological insulin concentrations, or saline for 7-10 days. The hyperinsulinemic animals also received a direct glucose infusion to maintain euglycemia. GSIS, measured at 133 ± 1 days of gestation, was significantly attenuated in the hyperinsulinemic fetuses (P < .05). There was no change in β-cell mass. The hyperinsulinemic fetuses also had decreased oxygen (P < .05) and higher norepinephrine (1160 ± 438 vs 522 ± 106 pg/mL; P < .005). Acute pharmacologic adrenergic blockade restored GSIS in the hyperinsulinemic-euglycemic fetuses, demonstrating that increased adrenergic signaling mediates decreased GSIS in these fetuses. PMID:25343274

  3. Insulin-secreting β cells require a post-genomic concept

    PubMed Central

    Jiang, Fang-Xu; Morahan, Grant

    2016-01-01

    Pancreatic insulin-secreting β cells are essential in maintaining normal glucose homeostasis accomplished by highly specialized transcription of insulin gene, of which occupies up to 40% their transcriptome. Deficiency of these cells causes diabetes mellitus, a global public health problem. Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells (i.e., primitive cells capable of giving rise to all cell types in the body), a regenerative therapy to diabetes has not yet been established. Furthermore, the nomenclature of β cells has become inconsistent, confusing and controversial due to the lack of standardized positive controls of developmental stage-matched in vivo cells. In order to minimize this negative impact and facilitate critical research in this field, a post-genomic concept of pancreatic β cells might be helpful. In this review article, we will briefly describe how β cells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy, suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell. PMID:27226815

  4. Intravenous infusion of glucose and insulin in relation to milk secretion in the sow.

    PubMed

    Reynolds, L; Rook, J A

    1977-01-01

    1. A comparison was made of the composition of milk from front and rear tetas in four sows. There were small and not significant differences in fat, protein and lactose contents, and in the fatty-acid composition of the milk fat with the exception of the 18:3 acid where the difference was also small but significant. 2. The effects of intravenous infusions of glucose and insulin in lactating sows on milk secretion and blood composition were investigated in two sows. 3. Intravenous infusion of glucose had no effect on blood plasma glucose concentration but increased the yields of lactose, protein and water. 4. Intravenous infusion of insulin depressed plasma glucose concentration and the yields of lactose and water. The yield of protein was unaffected. 5. It is concluded that differences between the non-ruminant (the sow) and the ruminant in the responses in milk secretion to glucose infusion may be related to differences in the sensitivity to insulin of mammary tissue. PMID:849401

  5. Insulin-secreting β cells require a post-genomic concept.

    PubMed

    Jiang, Fang-Xu; Morahan, Grant

    2016-05-25

    Pancreatic insulin-secreting β cells are essential in maintaining normal glucose homeostasis accomplished by highly specialized transcription of insulin gene, of which occupies up to 40% their transcriptome. Deficiency of these cells causes diabetes mellitus, a global public health problem. Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells (i.e., primitive cells capable of giving rise to all cell types in the body), a regenerative therapy to diabetes has not yet been established. Furthermore, the nomenclature of β cells has become inconsistent, confusing and controversial due to the lack of standardized positive controls of developmental stage-matched in vivo cells. In order to minimize this negative impact and facilitate critical research in this field, a post-genomic concept of pancreatic β cells might be helpful. In this review article, we will briefly describe how β cells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy, suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell. PMID:27226815

  6. Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa

    PubMed Central

    Santos, Gustavo Jorge dos; Ferreira, Sandra Mara; Ortis, Fernanda; Rezende, Luiz Fernando; Li, Chengyang; Naji, Ali; Carneiro, Everardo Magalhães; Kaestner, Klaus H.; Boschero, Antonio Carlos

    2014-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of “metabolic memory”, just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h consolidation period to eliminate any acute metabolic effects. Strikingly, ß-cells exposed to this high-glucose pulse paradigm exhibited significantly stronger insulin secretion. This metabolic memory was entirely dependent on CaMKII. Metabolic memory was reflected on the protein level by increased expression of proteins involved in glucose sensing and Ca2+-dependent vesicle secretion, and by elevated levels of the key ß-cell transcription factor MAFA. In summary, like neurons, human and mouse ß-cells are able to acquire and retrieve information. PMID:24944908

  7. Nucleobindin-1 encodes a nesfatin-1-like peptide that stimulates insulin secretion.

    PubMed

    Ramesh, Naresh; Mohan, Haneesha; Unniappan, Suraj

    2015-05-15

    Nesfatin-1 (82 amino acid) is an anorexigenic and insulinotropic peptide encoded in a secreted precursor, nucleobindin-2 (NUCB2). Nucleobindin-1 (NUCB1) is a protein with very high sequence similarity to NUCB2. We hypothesized that a nesfatin-1 like peptide (NLP) is encoded in NUCB1, and this peptide is biologically active. In silico analysis found a signal peptide cleavage site at position 25 (Arginine) and 26 (Valine) preceding the NLP region in NUCB1 sequence, and potential proprotein convertase cleavage sites at Lys-Arg (KR), forming a 77 amino acid NLP. RT-PCR studies found NUCB1 mRNA in both pancreas and MIN6 cells. NUCB1-like immunoreactivity was detected in mouse insulinoma (MIN6) cells, and pancreatic islet beta cells of mice. In order to determine the biological activity of NLP, MIN6 cells were incubated with synthetic rat NLP. NLP (10nM and 100nM) upregulated preproinsulin mRNA expression and insulin secretion at 1h post-incubation. In identical experiments using MIN6 cells, a scrambled peptide based on the NLP sequence did not elicit any effects on preproinsulin mRNA expression or insulin secretion. From this result, it is clear that an intact NLP sequence is required for its biological activity. NLP appears as another endogenous insulinotropic peptide encoded in NUCB1. PMID:25907657

  8. Development of genetically engineered human intestinal cells for regulated insulin secretion using rAAV-mediated gene transfer.

    PubMed

    Tang, Shiue-Cheng; Sambanis, Athanassios

    2003-04-01

    Cell-based therapies for treating insulin-dependent diabetes (IDD) can provide a more physiologic regulation of blood glucose levels in a less invasive fashion than daily insulin injections. Promising cells include intestinal enteroendocrine cells genetically engineered to secrete insulin in response to physiologic stimuli; responsiveness occurs at the exocytosis level to regulate the acute release of recombinant insulin. In this work, we established a human cellular model to demonstrate that meat hydrolysate can simultaneously stimulate glucagon-like peptide-1 (GLP-1, an enteroendocrine cell-derived incretin hormone) and recombinant insulin secretion from the engineered human NCI-H716 intestinal cell line. Cells were genetically modified using the recombinant adeno-associated virus (rAAV)-mediated insulin gene transfer. Recombinant cells were then differentiated to display endocrine features, in particular the formation of granule-like compartments. A fusion protein of insulin and enhanced green fluorescence protein (EGFP) was designed to reveal the compartments of localization of the fusion protein and assess its co-localization with endogenous GLP-1. Our work provides a unique human cellular model for regulated insulin release through genetic engineering of GLP-1-secreting intestinal cells, which is expected to be useful for cell-based therapies of IDD. PMID:12659868

  9. Differentiation of pancreatic stem and progenitor β-cells into insulin secreting cells in mice with diabetes mellitus.

    PubMed

    Skurikhin, E G; Ermakova, N N; Khmelevskaya, E S; Pershina, O V; Krupin, V A; Ermolaeva, L A; Dygai, A M

    2014-04-01

    We studied in vitro differentiation of pancreatic stem and progenitor cells into insulin secreting cells in the model of streptozotocin-induced diabetes in C57Bl/6 mice. Streptozotocin was shown to increase the population of pancreatic oligopotent β-cell precursors (CD45(-), TER119(-), CD133(+), and CD49f(low)) and did not affect multipotent (stem) progenitor cells (CD45(-), TER119(-), CD17(-), CD309(-)). During long-term culturing, diabetic multipotent progenitor cells showed high capacity for self-renewal. A population of dithizone-positive (insulin secreting cells) mononuclear cells was obtained releasing insulin after prolonged culturing in suspension enriched with diabetic CD45(-), TER119(-), CD17(-), and CD309(-) cells. The rate of generation of "new" insulin-producing cells and insulin release in the samples of experimental group considerably exceeded activity of the corresponding processes in the control group. PMID:24824681

  10. Comparison of effects of phorbol esters and glucose on protein kinase C activation and insulin secretion in pancreatic islets.

    PubMed Central

    Easom, R A; Hughes, J H; Landt, M; Wolf, B A; Turk, J; McDaniel, M L

    1989-01-01

    The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion. PMID:2690823

  11. Thyrotropin inhibits while insulin, epidermal growth factor and tetradecanoyl phorbol acetate stimulate insulin-like growth factor binding protein secretion from sheep thyroid cells.

    PubMed

    Eggo, M C; Bachrach, L K; Brown, A L; Burrow, G N

    1991-01-01

    Six insulin-like growth factor binding proteins (IGFBP) have been identified in the conditioned medium from sheep thyroid cells cultured under serum-free conditions. IGFBPs of 32, 28, 23 and 19 kDa were secreted by cells cultured for 14 days in serum-free and hormone-free medium. The constitutive secretion of IGFBP was inhibited by thyrotropin (TSH, 0.3 mU per mL). The effect was most marked on the secretion of the 28 kDa BP. High insulin concentrations stimulated the secretion of this IGFBP. The stimulatory effects of insulin were inhibited by TSH. Growth hormone treatment decreased the secretion of the 28 kDa protein. Tetradecanoylphorbol-13 acetate (TPA) and epidermal growth factor (EGF) both of which stimulate thyroid cell growth but inhibit differentiated function, markedly stimulated IGFBP secretion and induced the appearance of a 46 and a 150 kDa IGFBP. The effects of EGF and TPA were not identical. A rat IGFBP-2 cDNA reacted with sheep thyroid RNA of approximate size 1.6 kb. TPA treatment increased IGFBP-2 mRNA. Other hormones used to enhance differentiation and growth in thyroid cells in culture i.e. transferrin, somatostatin, cortisol and glycyl-histidyl-lysine acetate had no marked effects on IGFBP secretion nor on TSH-dependent, insulin-mediated iodide uptake and organification and cell growth. We show a correlation between secretion of high molecular weight IGFBP with enhanced growth but decreased function. Conversely, we find a correlation between decreased secretion of the 28 kDa BP and increased growth and function. PMID:1722684

  12. Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats.

    PubMed

    Yang, Hye Jeong; Kwon, Dae Young; Kim, Min Jung; Kang, Suna; Kim, Da Sol; Park, Sunmin

    2012-01-01

    Jerusalem artichoke (Helianthus tuberosus Linne, HTL) and chungkookjang (CKJ; fermented soybeans) both modulate energy and glucose metabolism. However, the mechanism and their additive effects are unknown. We investigated whether the consumption of HTL and CKJ altered insulin sensitivity, insulin secretion capacity and β-cell survival in type 2 diabetic animals. Rats were divided into partially pancreatectomized (Px) diabetic rats, and sham operated non-diabetic control rats and all fed high fat diets. Diabetic rats were sub-divided into an untreated diabetic control group and those fed 5% HTL, 5% CKJ or 5% HTL+5% CKJ for 8 weeks. HTL+CKJ treatment reduced visceral fat without modulating energy intake compared to the diabetic-control. Glucose tolerance was improved in an ascending order of diabetic-control, CKJ, HTL, HTL+CKJ, and normal-control, but by different mechanisms. CKJ and CKJ+HTL, but not HTL, increased first and second phase insulin secretion in comparison to the diabetic-control at hyperglycemic clamp. However, glucose infusion rates (mg/kg bw/min) were increased by and CKJ+HTL (13.5), but not HTL (9.4) or CKJ (9.5) alone, and HTL and CKJ+ HTL decreased hepatic glucose compared to diabetic-control during the hyperinsulinemic euglycemic study and were associated with decreased triglyceride accumulation and increased glycogen storage. The improved hepatic insulin sensitivity by HTL and CKJ+HTL was explained by potentiated insulin signaling (tyrosine phosphorylation of insulin receptor substrate 2→phosphorylation of Akt) and phosphorylation of AMPK→phosphorykation of acetyl Co carboxlase in comparison to diabetic-control and decreased PEPCK expression. Absolute β-cell mass was increased by CKJ (23.4mg) and CKJ+HTL (26.3 mg) by increasing proliferation compared to the diabetic-control (21.26 mg). Although HTL lowered β-cell apoptosis, it did not increase β-cell mass (20.8 mg). In conclusions, HTL and CKJ enhanced glucose tolerance in different

  13. Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats

    PubMed Central

    2012-01-01

    Jerusalem artichoke (Helianthus tuberosus Linne, HTL) and chungkookjang (CKJ; fermented soybeans) both modulate energy and glucose metabolism. However, the mechanism and their additive effects are unknown. We investigated whether the consumption of HTL and CKJ altered insulin sensitivity, insulin secretion capacity and β-cell survival in type 2 diabetic animals. Rats were divided into partially pancreatectomized (Px) diabetic rats, and sham operated non-diabetic control rats and all fed high fat diets. Diabetic rats were sub-divided into an untreated diabetic control group and those fed 5% HTL, 5% CKJ or 5% HTL+5% CKJ for 8 weeks. HTL+CKJ treatment reduced visceral fat without modulating energy intake compared to the diabetic-control. Glucose tolerance was improved in an ascending order of diabetic-control, CKJ, HTL, HTL+CKJ, and normal-control, but by different mechanisms. CKJ and CKJ+HTL, but not HTL, increased first and second phase insulin secretion in comparison to the diabetic-control at hyperglycemic clamp. However, glucose infusion rates (mg/kg bw/min) were increased by and CKJ+HTL (13.5), but not HTL (9.4) or CKJ (9.5) alone, and HTL and CKJ+ HTL decreased hepatic glucose compared to diabetic-control during the hyperinsulinemic euglycemic study and were associated with decreased triglyceride accumulation and increased glycogen storage. The improved hepatic insulin sensitivity by HTL and CKJ+HTL was explained by potentiated insulin signaling (tyrosine phosphorylation of insulin receptor substrate 2→phosphorylation of Akt) and phosphorylation of AMPK→phosphorykation of acetyl Co carboxlase in comparison to diabetic-control and decreased PEPCK expression. Absolute β-cell mass was increased by CKJ (23.4mg) and CKJ+HTL (26.3 mg) by increasing proliferation compared to the diabetic-control (21.26 mg). Although HTL lowered β-cell apoptosis, it did not increase β-cell mass (20.8 mg). In conclusions, HTL and CKJ enhanced glucose tolerance in different

  14. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia

    PubMed Central

    Fung, Ellen B.; Gildengorin, Ginny; Talwar, Siddhant; Hagar, Leah; Lal, Ashutosh

    2015-01-01

    Up to 20% of adult patients with Thalassemia major (Thal) live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years) with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05) and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048). Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL), showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL) and insulin to glucose ratios at 120 min post glucose dose (p = 0.05). Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient. PMID:26043030

  15. Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia.

    PubMed

    Fung, Ellen B; Gildengorin, Ginny; Talwar, Siddhant; Hagar, Leah; Lal, Ashutosh

    2015-06-01

    Up to 20% of adult patients with Thalassemia major (Thal) live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years) with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05) and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048). Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (-19.0 ± 9.6 μg/dL), showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL) and insulin to glucose ratios at 120 min post glucose dose (p = 0.05). Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient. PMID:26043030

  16. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells.

    PubMed

    Chandra, Vikash; Albagli-Curiel, Olivier; Hastoy, Benoit; Piccand, Julie; Randriamampita, Clotilde; Vaillant, Emmanuel; Cavé, Hélène; Busiah, Kanetee; Froguel, Philippe; Vaxillaire, Martine; Rorsman, Patrik; Polak, Michel; Scharfmann, Raphael

    2014-12-24

    Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca(2+)-channel genes resulting in the reduction in L-type Ca(2+)-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G) that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca(2+)-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes. PMID:25497100

  17. Protein Fractions from Korean Mistletoe (Viscum Album coloratum) Extract Induce Insulin Secretion from Pancreatic Beta Cells

    PubMed Central

    Kim, Jong-Bae

    2014-01-01

    Mistletoe (Viscum Album coloratum) has been known as a medicinal plant in European and Asian countries. Recent data show that biological activity of mistletoe alleviates hypertension, heart disease, renal failure, and cancer development. In this study, we report the antidiabetic effect of Korean mistletoe extract (KME). KME treatments enhanced the insulin secretion from the pancreatic β-cell without any effects of cytotoxicity. PDX-1 and beta2/neuroD known as transcription factors that regulate the expression of insulin gene were upregulated by treatment of the KME protein fractions isolated by ion-exchange chromatography after ammonium sulfate precipitation. Furthermore, these KME protein fractions significantly lowered the blood glucose level and the volume of drinking water in alloxan induced hyperglycemic mice. Taken together with the findings, it provides new insight that KME might be served as a useful source for the development of medicinal reagent to reduce blood glucose level of type I diabetic patients. PMID:24959189

  18. Group X Secretory Phospholipase A2 Regulates Insulin Secretion through a Cyclooxygenase-2-dependent Mechanism*

    PubMed Central

    Shridas, Preetha; Zahoor, Lubna; Forrest, Kathy J.; Layne, Joseph D.; Webb, Nancy R.

    2014-01-01

    Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production. PMID:25122761

  19. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin.

    PubMed

    Renström, E; Ding, W G; Bokvist, K; Rorsman, P

    1996-09-01

    Neurotransmitters and hormones such as somatostatin, galanin, and adrenalin reduce insulin secretion. Their inhibitory action involves direct interference with the exocytotic machinery. We have examined the molecular processes underlying this effect using high resolution measurements of cell capacitance. Suppression of exocytosis was maximal at concentrations that did not cause complete inhibition of glucose-stimulated electrical activity. This action was dependent on activation of G proteins but was not associated with inhibition of the voltage-dependent Ca2+ currents or adenylate cyclase activity. The molecular processes initiated by the agonists culminate in the activation of the Ca(2+)-dependent protein phosphatase calcineurin, and suppression of the activity of this enzyme abolishes their action on exocytosis. We propose that mechanisms similar to those we report here may contribute to adrenergic and peptidergic inhibition of secretion in other neuroendocrine cells and in nerve terminals. PMID:8816714

  20. Gene networks modified by sulphonylureas in beta cells: a pathway-based analysis of insulin secretion and cell death.

    PubMed

    Magnusson, Nils E; Dyrskjøt, Lars; Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Rungby, Jørgen

    2012-10-01

    Sulphonylureas (SUs) used in the treatment for type 2 diabetes have been shown to result in different clinical outcome. This study hypothesized that three widely used SUs, glibenclamide, glimepiride and gliclazide, may affect function and survival of insulin-producing cells differently. To evaluate differences between SUs, insulin secretion and cell death were measured, and genome-wide gene expression patterns were compared using a bioinformatics approach focusing on functional relationships between molecules. Insulin-producing INS-1E cells exposed to SUs for 6 and 24 hr were assayed using GeneChip. Cluster and pathway analyses were used to identify differentially expressed genes and patterns of potential biological functions associated with SU treatment. Cell death was measured using acridine orange/Hoechst 33342 staining. Short-term treatment (6 hr) yielded up-regulation of insulin secretion and genes associated with insulin secretion for all three SUs applied. While long-term treatment (24-72 hr) with gliclazide did not change gene expression or cell survival, treatment with glibenclamide or glimepiride up-regulated genes associated with oxidative stress and hypoxia, but did not induce cell death. Short-term treatment with SUs initiates gene regulation that can be attributed to insulin secretion with few differences between individual SUs. This regulation was temporal and returned to baseline after 24 hr. Individual differences observed after 24-72 hr indicate that glibenclamide and glimepiride induce potentially harmful cell signalling insufficient for triggering beta cell death. PMID:22642398

  1. The effect of a low-calorie diet with and without fenfluramine on the glucose tolerance and insulin secretion of obese maturity-onset diabetics

    PubMed Central

    Dykes, J. Ranald W.

    1973-01-01

    Glucose tolerance and insulin secretion have been measured in twenty-three obese maturity-onset diabetics (twelve high-insulin secretors and eleven lowor normal-insulin secretors) on first presentation and after 10 weeks on a low-calorie diet. There was a significant improvement in glucose tolerance alone, when the results were compared with those from diabetics not on any form of treatment. Thereafter nine of these subjects (five high-insulin secretors and four low- or normal-insulin secretors) continued on the dietary therapy alone, and eleven of the remaining fourteen subjects (six high-insulin secretors and five low- or normal-insulin secretors) continued on the low-calorie diet with the addition of fenfluramine, and their glucose tolerance and insulin secretion were measured again after a further 10 weeks. The remaining three subjects were no longer studied. The nine subjects continuing on the diet alone showed maintenance of the improvement in glucose tolerance achieved during the first 10-week period with no significant change in insulin secretion. The eleven subjects placed on fenfluramine in addition to the diet also showed maintenance of the improvement in glucose tolerance achieved during the first 10-week period with a significant decrease in insulin secretion in the six high-insulin secreting subjects and no significant change in insulin secretion in the five lowor normal-secretors. PMID:4804456

  2. Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets.

    PubMed

    Barlow, Jonathan; Jensen, Verena Hirschberg; Jastroch, Martin; Affourtit, Charles

    2016-02-15

    It has been well established that excessive levels of glucose and palmitate lower glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells. This β-cell 'glucolipotoxicity' is possibly mediated by mitochondrial dysfunction, but involvement of bioenergetic failure in the pathological mechanism is the subject of ongoing debate. We show in the present study that increased palmitate levels impair GSIS before altering mitochondrial function. We demonstrate that GSIS defects arise from increased insulin release under basal conditions in addition to decreased insulin secretion under glucose-stimulatory conditions. Real-time respiratory analysis of intact mouse pancreatic islets reveals that mitochondrial ATP synthesis is not involved in the mechanism by which basal insulin is elevated. Equally, mitochondrial lipid oxidation and production of reactive oxygen species (ROS) do not contribute to increased basal insulin secretion. Palmitate does not affect KCl-induced insulin release at a basal or stimulatory glucose level, but elevated basal insulin release is attenuated by palmitoleate and associates with increased intracellular calcium. These findings deepen our understanding of β-cell glucolipotoxicity and reveal that palmitate-induced GSIS impairment is disconnected from mitochondrial dysfunction, a notion that is important when targeting β-cells for the treatment of diabetes and when assessing islet function in human transplants. PMID:26621874

  3. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  4. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. PMID:27015674

  5. Influence of hemorrhage on adrenal secretion, blood glucose and serum insulin in the awake pig.

    PubMed Central

    Carey, L C; Curtin, R; Sapira, J D

    1976-01-01

    A study was performed to quantitate the adrenal medullary and cortical response to hemorrhage in awake animals bled at different rates and to relate these responses to simultaneous changes in blood glucose and serum insulin. A series of awake pigs were bled either slowly or rapidly of 30% of their calculated blood volume. Infusions of exogenous epinephrine were performed in an additional series of unbled animals and infusions of epinephrine plus hydrocortisone were similarly performed in an additonal series. Increase in blood glucose and epinephrine secretion rate following hemorrhage were found to be significantly dependent upon the rate of initial hemorrhage. Cortisol secretion was found to rise significantly during and following hemorrhage in both rapidly and slowly bled animals. Serum insulin levels remained at baseline levels during shock, despite the presence of significant hyperglycemia. In unbled animals infused with epinephrine at rates comparable to those measured in shock, elevations in blood glucose were markedly lower, shifting to the right of the dose-response curve during hemorrhage. Simultaneous infusions of cortisol and epinephrine resulted in a dose-response curve which did not differ significantly from that following infusion of epinephrine alone. Images Fig. 2. PMID:1247317

  6. Cryopreservation of insulin-secreting INS832/13 cells using a wheat protein formulation.

    PubMed

    Grondin, Mélanie; Robinson, Isabelle; Do Carmo, Sonia; Ali-Benali, Mohamed A; Ouellet, François; Mounier, Catherine; Sarhan, Fathey; Averill-Bates, Diana A

    2013-04-01

    Diabetes is a global epidemic that affects about 285million people worldwide. For severely-ill patients with type I diabetes, whole pancreas or islet transplantation is the only therapeutic option. Islet transplantation is hindered by the scarce supply of fresh functional islets and limitations in cryopreservation procedures. Thus, improved cryopreservation procedures are needed to increase the availability of functional islets for clinical applications. Towards this goal, this work developed a cryopreservation protocol for pancreatic cells using proteins that accumulate naturally in freezing-tolerant plants. A preincubation of cells with 1% lecithin-1% glycerol-1% N-methylpyrrolidone followed by cryopreservation with partially purified proteins from wheat improved the viability and insulin-secreting properties of INS832/13 cells, compared to cryopreservation with 10% dimethyl sulfoxide (Me2SO). The major factor that enhanced the cryoprotective effect of the wheat protein formulation was preincubation with the lipid lecithin. Expression profiles of genes involved in metabolic and signaling functions of pancreatic cells (Ins, Glut1/2/3, Pdx1, Reg1α) were similar between fresh cells and those cryopreserved with the plant protein formulation. This novel plant-based technology, which is non-toxic and contains no animal material, is a promising alternative to Me2SO for cryopreservation of insulin-secreting pancreatic cells. PMID:23313787

  7. [Role of peripheral serotonin in the insulin secretion and glucose homeostasis].

    PubMed

    Cataldo, Luis Rodrigo; Cortés, Víctor Antonio; Galgani, José Eduardo; Olmos, Pablo Roberto; Santos, José Luis

    2014-01-01

    The most studied roles of serotonin (5-hydroxytryptamine, 5HT) have been related to its action in the Central Nervous System (CNS). However, most of 5HT is produced outside the CNS, mainly in the enterochromaffin cells of the gut. Additionally, other tissues such as the endocrine pancreas, particularly β-cells, have its own serotonin system able to synthesize, secrete and respond to extracellular 5HT through cell surface receptors subtypes that have been grouped in 7 families (HTR1-7). Interestingly, 5HT is stored in granules and released together with insulin from β-cells and its biological significance is likely a combination of intra and extracellular actions. The expression of enzymes involved in 5HT synthesis and their receptors varied markedly in β-pancreatic cells during pregnancy, in parallel with an increase in their insulin secretion potential (probably through the action of Htr3a) and an increase in β-cell mass (through the action of Htr2b and Htr1d). In addition, it has been suggested that gut-derived 5HT may promote hepatic gluconeogenesis during prolonged fasting through Htr2b receptor. Taken together, these findings suggest that peripheral 5HT plays an important role in the regulation of glucose homeostasis through the differential expression and activation of 5-HT membrane receptors on the surface of hepatocytes, adipocytes and pancreatic β-cells. PMID:25238823

  8. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    SciTech Connect

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE/sub 2/ levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE/sub 2/ in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/..mu..g islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE/sub 2/ levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10/sup -9/M, while lowering islet PGE/sub 2/. Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE/sub 2/ levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE/sub 2/. PGE/sub 2/ at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE/sub 2/ stimulated insulin release in the presence of 6mM glucose.

  9. Prehepatic secretion and disposal of insulin in obese adolescents as estimated by three-hour, eight-sample oral glucose tolerance tests.

    PubMed

    Vogt, Josef A; Domzig, Christian; Wabitsch, Martin; Denzer, Christian

    2016-07-01

    The body compensates for early-stage insulin resistance by increasing insulin secretion. A reliable and easy-to-use mathematical assessment of insulin secretion and disposal could be a valuable tool for identifying patients at risk for the development of type 2 diabetes. Because the pathophysiology of insulin resistance is incompletely understood, assessing insulin metabolism with minimal assumptions regarding its metabolic regulation is a major challenge. To assess insulin secretion and indexes of insulin disposal, our marginalized and regularized absorption approach (MRA) was applied to a sparse sampling oral glucose tolerance test (OGTT) protocol measuring the insulin and C-peptide concentrations. Identifiability and potential bias of metabolic parameters were estimated from published data with dense sampling. The MRA was applied to OGTT data from 135 obese adolescents to demonstrate its clinical applicability. Individual prehepatic basal and dynamic insulin secretion and clearance levels were determined with a precision and accuracy greater than 10% of the nominal value. The intersubject variability in these parameters was approximately four times higher than the intrasubject variability, and there was a strong negative correlation between prehepatic secretion and plasma clearance of insulin. MRA-based analysis provides reliable estimates of insulin secretion and clearance, thereby enabling detailed glucose homeostasis characterization based on restricted datasets that are obtainable during routine patient care. PMID:27143555

  10. Cytosolic free Ca2+ in insulin secreting cells and its regulation by isolated organelles.

    PubMed

    Prentki, M; Wollheim, C B

    1984-10-15

    The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of 45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release. PMID:6436050