Science.gov

Sample records for pulsating da white

  1. A NEW TIMESCALE FOR PERIOD CHANGE IN THE PULSATING DA WHITE DWARF WD 0111+0018

    SciTech Connect

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Mullally, Fergal; Bischoff-Kim, A.

    2013-03-20

    We report the most rapid rate of period change measured to date for a pulsating DA (hydrogen atmosphere) white dwarf (WD), observed in the 292.9 s mode of WD 0111+0018. The observed period change, faster than 10{sup -12} s s{sup -1}, exceeds by more than two orders of magnitude the expected rate from cooling alone for this class of slow and simply evolving pulsating WDs. This result indicates the presence of an additional timescale for period evolution in these pulsating objects. We also measure the rates of period change of nonlinear combination frequencies and show that they share the evolutionary characteristics of their parent modes, confirming that these combination frequencies are not independent modes but rather artifacts of some nonlinear distortion in the outer layers of the star.

  2. The pulsation index, effective temperature, and thickness of the hydrogen layer in the pulsating DA white dwarf G117-B15A

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Mailloux, T. M.; Zhang, E.; Koester, D.; Stiening, R. F.; Bless, R. C.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have measured the amplitude of the 215 s pulsation of the pulsating DA white dwarf, or ZZ Ceti star, G117-B15A in six passbands with effective wavelengths from 1570 to 6730 A. We find that the index of the pulsation is l = 1 with a high degree of confidence, the first unambiguous determination of l for a pulsation of a ZZ Ceti star. We also find that log g and T(sub eff) are tightly correlated for model atmospheres that fit the data, such that at log g = 7.5 the temperature is 11,750 K and at log g = 8.0 the temperature is 12,375 K. Adopting log g = 7.97 +/- 0.06 from published observations of the optical spectrum of G117-B15A, the correlation yields T(sub eff) = 12,375 +/- 125 K. This temperature is free of flux calibration errors and should be substantially more reliable than temperatures derived for IUE spectra. Since G117-B15A is thought to lie close to the blue edge of the ZZ Ceti instability strip, this low temperature also implies a low temperature for the blue edge. Using pulsation models calculated by Fontaine et al. (1992) and Bradley (1994), we find that the mass of the hydrogen layer in G117-B15A lies between 1.0 x 10(exp -6) solar mass (for k = 1) and 8 x 10(exp -5) solar mass (for k = 2). This range of masses is (barely) consistent with the masses predicted by recent models for the ejection of planetary nebulae, (8-13) x 10(exp -5) solar mass. The mass is too large to be consistent with models invoking thin hydrogen layers to explain the spectral evolution of white dwarfs.

  3. Nonlinear Analysis of Pulsating White Dwarf Lightcurves

    NASA Astrophysics Data System (ADS)

    Provencal, J. L.; Montgomery, M. H.; Shipman, H.; WET TEam

    2015-06-01

    Convection remains one of the largest sources of theoretical uncertainty in our understanding of stellar physics. For example, Bergeron (1995) show that basic parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed convective parameterization. This is compelling, since we use our knowledge of these basic parameters to calibrate white dwarf cooling sequences, provide detailed estimates for the ages of individual white dwarfs, and determine the age of the Galactic disk. The Whole Earth Telescope (WET) is engaged in a long term project to empirically calibrate the physical properties of convection in pulsating white dwarfs by combining asteroseismology and analysis of nonlinear light curves. Nonsinusoidal distortions, in the form of narrow peaks and wider valleys, are observed in many pulsating white dwarf light curves. These are a reflection of the local depth of the convection zone, a value which varies during a pulsation cycle. Applying asteroseismology and convective light curve fitting to a wide sample of pulsating white dwarfs provides an empirical map of how the convective response time (the convection zone “depth”) varies as a function of effective temperature, and this can be compared with theoretical models, both MLT and hydrodynamic. This project has resulted in a large database of white dwarf lightcurves and pulsation frequencies. We present current results for DA and DB pulsators, and provide a few examples of interesting pulsation behavior seen along the way.

  4. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  5. Radial pulsations in DB white dwarfs?

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1993-01-01

    Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near 20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acoustic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed efficiency of convection. Models with increased convective efficiency have radial blue edges that are increasingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip. Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance for detection would be observations in the ultraviolet. These models also explain why searches for radial pulsations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations. The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the mass of the star.

  6. Two new extremely hot pulsating white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Grauer, A. D.; Green, R. F.; Liebert, J. W.

    1984-01-01

    High speed photometry of the extremely hot, nearly degenerate stars PG 1707 + 427 and PG 2131 + 066 reveals that they are low-amplitude pulsating variables. Power spectral analysis shows both to be multiperiodic, with dominant periods of 7.5 and 6.4-6.9 minutes, respectively. Together with the known pulsators PG 1159 - 035 and the central star of the planetary nebula Kohoutek 1-16, these objects define a new pulsational instability strip at the hot edge of the H-R diagram. The variations of these objects closely resemble those of the much cooler pulsating ZZ Ceti DA white dwarfs; both groups are probably nonradial g-mode pulsators. Evolutionary contraction of the PG 1159 - 035 variables may lead to period changes that would be detectable in as little as 1 year. The optical and IUE spectra of the PG 1159 - 035 variables are characterized by absorption lines of C IV and other CNO ions, indicating radiative levitation of species heavier than helium. He II is also present in the spectra, but the hydrogen Balmer lines are absent. Effective temperatures near 100,000 K are required, and the He II 4686 A profiles indicate log g greater than 6. These helium-rich pulsators form the hottest known subgroup of the DO white dwarfs.

  7. The Pulsating White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.

    2008-10-01

    We present a summary of what is currently known about the three distinct families of isolated pulsating white dwarfs. These are the GW Vir stars (He/C/O-atmosphere stars with Teff sime 120,000 K), the V777 Her stars (He-atmosphere, Teff sime 25,000 K), and the ZZ Ceti stars (H-atmosphere, Teff sime 12,000 K), all showing multiperiodic luminosity variations caused by low-order and low-degree g-mode instabilities. We also provide, in an Appendix, a very brief overview of the newly found evidence in favor of the existence of a fourth category of oscillating white dwarfs bearing strong similarities with these families of pulsators. We begin our survey with a short historical introduction, followed by a general discussion of pulsating white dwarfs as compact pulsators. We then discuss the class properties of these objects, including an updated census. We next focus on the instability domains for each family of pulsators in the log g - Teff diagram, and present their time-averaged properties in more detail. This is followed by a section on excitation physics, i.e., the causes of the pulsational instabilities, with emphasis on the common properties of the different types of pulsator. We then discuss the time-dependent properties of the pulsating white dwarfs featuring, among other things, a brief "picture tour" across the ZZ Ceti instability strip. We next review the methods used to infer or constrain the angular geometry of a pulsation mode in a white dwarf. These include multicolor photometry and time-resolved spectroscopy, the exploitation of the nonlinear features in the observed light curves, and rotational splitting. We also consider basic adiabatic asteroseismology starting with a discussion of the reaction of the period spectrum to variations of model parameters. We next review the various asteroseismological inferences that have so far been claimed for white dwarfs. We also discuss the potential of exploiting the rates of period change. We finally provide some

  8. Pulsating Helium Atmosphere White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith; Montgomery, Michael H.; Bischoff-Kim, Agnes; Shipman, Harry; Nitta, Atsuko; Whole Earth Telescope Collaboration

    2015-08-01

    The overwhelming majority of all stars currently on the main sequence as well as those from earlier generations will or have ended their stellar lives as white dwarf stars. White dwarfs are rich forensic laboratories linking the history and future evolution of our Galaxy. Their structure and atmospheric composition provide evidence of how the progenitors lived, how they evolved, and how they died. This information reveals details of processes governing the behavior of contemporary main sequence stars. Combined with their distribution in luminosity/temperature, white dwarfs strongly constrain models of galactic and cosmological evolution.GD358 is among the brightest (mv =13.7) and best studied of the pulsating white dwarfs. This helium atmoshere pulsator (DBV) has an extensive photometric database spanning 30 years, including nine multisite Whole Earth Telescope campaigns. GD358 exhibits a range of behaviors, from drastic changes in excited pulsation modes to variable multiplet splittings. We use GD358 as a template for an examination of the DBV class, combining photometric results with recent COS spectroscopy. The results present new questions concerning DB formation and evolution.

  9. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  10. An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2

    NASA Astrophysics Data System (ADS)

    Córsico, Alejandro H.; Romero, Alejandra D.; Althaus, Leandro G.; García-Berro, Enrique; Isern, Jordi; Kepler, S. O.; Miller Bertolami, Marcelo M.; Sullivan, Denis J.; Chote, Paul

    2016-07-01

    We employ an asteroseismic model of L19-2, a relatively massive (Mstar ~ 0.75 Msolar) and hot (Teff ~ 12 100 K) pulsating DA (H-rich atmosphere) white dwarf star (DAV or ZZ Ceti variable), and use the observed values of the temporal rates of period change of its dominant pulsation modes (Π ~ 113 s and Π ~ 192 s), to derive a new constraint on the mass of the axion, the hypothetical non-barionic particle considered as a possible component of the dark matter of the Universe. If the asteroseismic model employed is an accurate representation of L19-2, then our results indicate hints of extra cooling in this star, compatible with emission of axions of mass ma cos2β lesssim 25 meV or an axion-electron coupling constant of gae lesssim 7 × 10‑13.

  11. New pulsating white dwarfs in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Nilsson, R.; Uthas, H.; Ytre-Eide, M.; Solheim, J.-E.; Warner, B.

    2006-07-01

    The number of discovered non-radially pulsating white dwarfs (WDs) in cataclysmic variables (CVs) is increasing rapidly by the aid of the Sloan Digital Sky Survey (SDSS). We performed photometric observations of two additional objects, SDSS J133941.11+484727.5 (SDSS 1339), independently discovered as a pulsator by Gänsicke et al., and SDSS J151413.72+454911.9, which we identified as a CV/ZZ Ceti hybrid. In this Letter we present the results of the remote observations of these targets performed with the Nordic Optical Telescope (NOT) during the Nordic-Baltic Research School at Molėtai Observatory, and follow-up observations executed by NOT in service mode. We also present three candidates we found to be non-pulsating. The results of our observations show that the main pulsation frequencies agree with those found in previous CV/ZZ Ceti hybrids, but specifically for SDSS 1339 the principal period differs slightly between individual observations and also from the recent independent observation by Gänsicke et al. Analysis of SDSS colour data for the small sample of pulsating and non-pulsating CV/ZZ Ceti hybrids found so far seems to indicate that the r - i colour could be a good marker for the instability strip of this class of pulsating WDs. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. E-mail: ricky@astro.lu.se

  12. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  13. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  14. Excitation and Saturation of White Dwarf Pulsations

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin

    1998-06-01

    Variable hydrogen white dwarfs (DAV) pulsate in a number of low-order gravity-modes with periods from 100 s to 1200 s and amplitudes no larger than a few percent. We answer two questions in this thesis: the driving for these pulsations, and the saturation of their amplitudes. The surface convection zone in these stars, which adjusts its entropy level instantaneously during the pulsation, can drive the observed modes. This mechanism (called 'convective driving') was discovered by Brickhill but has been largely neglected so far. We find that modes with periods shorter than the thermal adjustment time of the convection zone can become overstable, but those with very short periods are hardly visible at the surface. As the star cools and the convection zone deepens, longer period modes can be excited. The driving rates increase sharply with period. We relate these to the time-scale of mode variability. We include complications arising from nonadiabaticity in the radiative interior and turbulent damping at the convective-radiative boundary. The former limits the driving and damping rates for strongly nonadiabatic modes, and relates the phase and amplitude of surface horizontal velocity in a gravity-mode to those of its flux variation. The turbulent damping results from the horizontal velocity shear below the convection zone, inside which there is little velocity shear and negligible damping. This suppresses the amplitudes of long period modes to below detection. The width of the theoretical DAV instability strip is about 1000 K. The growth of an overstable mode can be saturated by parametric instability, where energy transfers resonantly into two damped modes of roughly half its frequency. This occurs above a critical amplitude which depends on the 3-mode coupling coefficient and the nonadiabatic damping rates. The critical amplitudes all fall below a few percent, with longer period modes having larger surface amplitudes. Combined with the amplitude limits due to

  15. A Pulsational Study of Crystallized White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Montgomery, M. H.; Winget, D. E.

    1998-03-01

    The DAV BPM 37093 should have a substantially crystallized core based on its mass and temperature. Using this as a motivation, we examine the way in which a crystalline interior affects the nonradial g-mode frequencies of a white dwarf star. We confine ourselves to a relatively massive model within the DA instability strip (M_⋆ = 1.1Msun), since crystallization in this temperature range should be important only for high-mass white dwarfs. We find that crystallization has a significant effect on the mean period spacing of adjacent radial overtones, of order 10--30 %. Thus, a correct pulsational treatment of crystallization is vital if we are to make reliable asteroseismological measurements of a given stars' properties.

  16. Adiabatic properties of pulsating DA white dwarfs. I - The treatment of the Brunt-Vaisala frequency and the region of period formation

    NASA Technical Reports Server (NTRS)

    Brassard, P.; Fontaine, G.; Wesemael, F.; Kawaler, S. D.; Tassoul, M.

    1991-01-01

    The fundamental issue of the region of period formaton in a degenerate star is examined, with special attention given to the treatment of the Brunt-Vaisala frequency. It is shown that, in order to obtain reliable numerical results in degenerate stellar models, the Brunt-Vaisala frequency must be appropriately transformed, because it is defined in terms of a difference between two numbers which become nearly equal in highly degenerate matter, causing serious numerical problems and systematic errors. An alternative expression is derived, which is valid for multicomponent nonideal partially degenerate and partially ionized plasmas such as those encountered in white dwarf envelopes. This expression is used to compute the period structure of the same white dwarf considered by Pesnell (1987). It is shown that the implicit numerical differencing used in the Lagrangian pulsation code of Pesnell leads to very serious difficulties when used with models of degenerate stars.

  17. Peculiar variations of white dwarf pulsation frequencies and maestro

    NASA Astrophysics Data System (ADS)

    Dalessio, James Ruland

    In Part I we report on variations of the normal mode frequencies of the pulsating DB white dwarfs EC 20058-5234 and KIC 8626021 and the pulsating DA white dwarf GD 66. The observations of EC 20058-5234 and KIC 8626021 were motivated by the possibility of measuring the plasmon neutrino production rate of a white dwarf, while the observations of GD 66 were part of a white dwarf pulsation timing based planet search. We announce the discovery of periodic and quasi-periodic variations of multiple normal mode frequencies that cannot be due to the presence of planetary companions. We note the possible signature of a planetary companion to EC 20058-5234 and show that GD 66 cannot have a planet in a several AU orbit down to half a Jupiter mass. We also announce the discovery of secular variations of the normal mode frequencies of all three stars that are inconsistent with cooling alone. Importantly, the rates of period change of several modes of KIC 8626021 are consistent with evolutionary cooling, but are not yet statistically significant. These modes offer the best possibility of measuring the neutrino production rate in a white dwarf. We also observe periodic and secular variations in the frequency of a combination mode that exactly matches the variations predicted by the parent modes, strong observational evidence that combination modes are created by the convection zone and are not normal modes. Periodic variations in the amplitudes of many of these modes is also noted. We hypothesize that these frequency variations are caused by complex variations of the magnetic field strength and geometry, analogous to behavior observed in the Sun. In Part II we describe the MAESTRO software framework and the MAESTRO REDUCE algorithm. MAESTRO is a collection of astronomy specific MatLab software developed by the Whole Earth Telescope. REDUCE is an an algorithm that can extract the brightness of stars on a set of CCD images with minimal configuration and human interaction. The key to

  18. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  19. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  20. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  1. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  2. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  3. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320–590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  4. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    SciTech Connect

    Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S.; Fraga, Luciano; Hermes, J. J.; Winget, D. E.; Castanheira, Barbara; Corsico, A. H.; Romero, A. D.; Althaus, Leandro; Kleinman, S. J.; Nitta, A.; Koester, D.; Kuelebi, Baybars; Kanaan, Antonio

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M{sub *} = 0.88 {+-} 0.02 M{sub Sun} and T{sub eff} = 12, 100 {+-} 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  5. WD 0158-160, a new pulsating DB white dwarf

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.

    2016-03-01

    The DB star, WD 0158-160 (=EC 01585-1600) is shown to be a variable white dwarf with a rich pulsation spectrum, dominated by a strong variation with a frequency near 1637 μHz (amplitude ˜0.024 mag, period 598 s), though at least 10 frequencies are detected between about 1285 and 5747 μHz (780-173 s) in a relatively small data set. At ˜14.5 mag, the star is one of the brightest known DBV stars.

  6. A Second Case of Outbursts in a Pulsating White Dwarf Observed by Kepler

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Montgomery, M. H.; Bell, Keaton J.; Chote, P.; Gänsicke, B. T.; Kawaler, Steven D.; Clemens, J. C.; Dunlap, Bart H.; Winget, D. E.; Armstrong, D. J.

    2015-09-01

    We present observations of a new phenomenon in pulsating white dwarf stars: large-amplitude outbursts at timescales much longer than the pulsation periods. The cool ({T}{eff} = 11,060 K), hydrogen-atmosphere pulsating white dwarf PG 1149+057 was observed nearly continuously for more than 78.8 day by the extended Kepler mission in K2 Campaign 1. The target showed 10 outburst events, recurring roughly every 8 day and lasting roughly 15 hr, with maximum flux excursions up to 45% in the Kepler bandpass. We demonstrate that the outbursts affect the pulsations and therefore must come from the white dwarf. Additionally, we argue that these events are not magnetic reconnection flares, and are most likely connected to the stellar pulsations and the relatively deep surface convection zone. PG 1149+057 is now the second cool pulsating white dwarf to show this outburst phenomenon, after the first variable white dwarf observed in the Kepler mission, KIC 4552982. Both stars have the same effective temperature, within the uncertainties, and are among the coolest known pulsating white dwarfs of typical mass. These outbursts provide fresh observational insight into the red edge of the DAV instability strip and the eventual cessation of pulsations in cool white dwarfs.

  7. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    SciTech Connect

    Steinfadt, Justin D. R.; Bildsten, Lars; Arras, Phil E-mail: bildsten@kitp.ucsb.ed

    2010-07-20

    Helium core white dwarfs (WDs) with mass M {approx}< 0.20 M {sub sun} undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  8. GW Librae: A unique laboratory for pulsations in an accreting white dwarf

    NASA Astrophysics Data System (ADS)

    Toloza, O.; Gänsicke, B. T.; Hermes, J. J.; Townsley, D. M.; Schreiber, M. R.; Szkody, P.; Pala, A.; Beuermann, K.; Bildsten, L.; Breedt, E.; Cook, M.; Godon, P.; Henden, A. A.; Hubeny, I.; Knigge, C.; Long, K. S.; Marsh, T. R.; de Martino, D.; Mukadam, A. S.; Myers, G.; Nelson, P.; Oksanen, A.; Patterson, J.; Sion, E. M.; Zorotovic, M.

    2016-04-01

    Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of HST ultraviolet spectroscopy taken in 2002, 2010 and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in May 2013, we obtained new HST/COS ultraviolet observations that displayed unexpected behaviour: besides showing variability at ≃275 s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on a ≃4.4 h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to ≃30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star.

  9. GW Librae: a unique laboratory for pulsations in an accreting white dwarf

    NASA Astrophysics Data System (ADS)

    Toloza, O.; Gänsicke, B. T.; Hermes, J. J.; Townsley, D. M.; Schreiber, M. R.; Szkody, P.; Pala, A.; Beuermann, K.; Bildsten, L.; Breedt, E.; Cook, M.; Godon, P.; Henden, A. A.; Hubeny, I.; Knigge, C.; Long, K. S.; Marsh, T. R.; de Martino, D.; Mukadam, A. S.; Myers, G.; Nelson, P.; Oksanen, A.; Patterson, J.; Sion, E. M.; Zorotovic, M.

    2016-07-01

    Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of Hubble Space Telescope (HST) ultraviolet spectroscopy taken in 2002, 2010, and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in 2013 May, we obtained new HST/Cosmic Origin Spectrograph ultraviolet observations that displayed unexpected behaviour: besides showing variability at ≃275 s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on an ≃4.4 h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to ≃30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star.

  10. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin

    2012-05-10

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T{sub eff} = 9100 {+-} 170 K and log g = 6.22 {+-} 0.06, which corresponds to a mass of {approx}0.17 M{sub Sun }. This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  11. First axion bounds from a pulsating helium-rich white dwarf star

    NASA Astrophysics Data System (ADS)

    Battich, T.; Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.

    2016-08-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain gae < 3.3 × 10‑13 for the axion-electron coupling constant, or macos2β lesssim 11.5 meV for the axion mass. This constraint is relaxed to gae < 5.5 × 10‑13 (macos2β lesssim 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.

  12. Searching for Pulsations from a Helium White Dwarf Companion to a Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2009-07-01

    The low mass white dwarf {WD} companion to the 3.26 ms pulsar PSR J1911-5958A offers an unprecedented opportunity for seismological study of the interior of a helium core WD. While much more massive carbon/oxygen core WDs are observed to pulsate in normal modes of oscillation called g-modes {known as ZZ Ceti stars}, no helium core pulsator is known. By extrapolating the boundaries of the ZZ Ceti instability strip downward in surface gravity by a factor of 20 below any known pulsator, we find that the effective temperature of this WD makes it an excellent candidate to search for pulsation. Detection of g-mode pulsations in the lightcurve would have a transformative effect on the field of WD pulsations, as this would allow the first seismological study of the interior of a helium core WD, and the low gravity strongly constrains theories for the driving and amplitudes of pulsations. We show that with 3 orbits of HST, we will detect photometric variations with amplitudes of 1%, lower than typically seen in other hydrogen-dominated ZZ Ceti stars. A set of measured mode periods would also constrain the thickness of the presumed stably hydrogen burning shell, and help us determine its age more securely.

  13. The post-outburst pulsations of the accreting white dwarf in the cataclysmic variable GW Librae

    NASA Astrophysics Data System (ADS)

    Chote, P.; Sullivan, D. J.

    2016-05-01

    We present new time series photometry of the accreting pulsating white dwarf system GW Librae obtained in 2012 and 2013 at the University of Canterbury Mt John Observatory in New Zealand. Our 2012 data show the return of a ˜19 min periodicity that was previously detected in 2008. This pulsation mode was a dominant feature of our quality 2012 May data set, which consisted of six contiguous nights; a detailed analysis indicated a degree of frequency variability. We show by comparison with the previously identified pulsation modes that this periodicity is best explained as a new mode, and that the quasi-stability of the periods appears to be a general feature of the pulsations in these systems. We also find a previously unreported 3-h modulation period, which we believe to be related to the known two and four hour periods of so far unknown origin.

  14. THE NEWLY DISCOVERED PULSATING LOW-MASS WHITE DWARFS: AN EXTENSION OF THE ZZ CETI INSTABILITY STRIP

    SciTech Connect

    Van Grootel, V.; Dupret, M.-A.; Fontaine, G.; Brassard, P.

    2013-01-01

    In light of the exciting discovery of g-mode pulsations in extremely low-mass, He-core DA white dwarfs, we report on the results of a detailed stability survey aimed at explaining the existence of these new pulsators as well as their location in the spectroscopic Hertzsprung-Russell diagram. To this aim, we calculated some 28 evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/{alpha} = 1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We pulsated the models with the nonadiabatic code MAD, which incorporates a detailed treatment of time-dependent convection. On the other hand, given the failure of all nonadiabatic codes, including MAD, to account properly for the red edge of the strip, we resurrect the idea that the red edge is due to energy leakage through the atmosphere. We thus estimated the location of that edge by requiring that the thermal timescale in the driving region-located at the base of the H convection zone-be equal to the critical period beyond which l = 1 g-modes cease to exist. Using this approach, we find that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip, including the low-gravity, low-temperature regime where the three new pulsators are found. We also account for the relatively long periods observed in these stars, and thus conclude that they are true ZZ Ceti stars, but with low masses.

  15. Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.

    2013-08-01

    This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 Msun) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized.

  16. Amplitude Variability as Evidence of Crystallization in GD 518 and Other Massive Pulsating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Kepler, S. O.; Montgomery, M. H.; Gianninas, A.; Castanheira, Barbara G.; Winget, D. E.

    2015-06-01

    In 2013 March we discovered pulsations in the most massive pulsating hydrogen-atmosphere white dwarf to date, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a Teff = 12,030±210 K, log g = 9.08±0.06 white dwarf, which corresponds to a mass of 1.20±0.03 M⊙. Such a massive WD should also be significantly crystallized at this temperature, and may possibly contain an oxygen-neon core. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7% in a given night, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, although the pulsation amplitudes change drastically over the 33 days of our discovery observations. We investigate the possibility that these amplitude variations are a consequence of the pulsation modes sampling only the non-crystallized outer mass fraction of the white dwarf (perhaps <0.05 M⊙ of material), and thus have very low mode inertia. Amplitude variability could be an observational consequence of a significantly crystallized stellar interior.

  17. A search for p-mode pulsations in white dwarf stars using the Berkeley Visible Imaging Tube detector

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Welsh, B. Y.; Koen, C.; Gulbis, A. A. S.; Kotze, M. M.

    2014-01-01

    We present high-speed photometry (resolution 0.1 s) obtained during the commissioning of the Berkely Visible Imaging Tube system on the Southern African Large Telescope (SALT). The observations were an attempt to search for very rapid p-mode oscillations in white dwarf stars and included three DA stars known to be g-mode pulsators (ZZ Cet, HK Cet and AF Pic), one other DA star (WD 1056-384) not known to be variable and one AM Cvn star (HP Lib). No evidence was found for any variations greater than about 1 mmag in amplitude (˜0.1 per cent) at frequencies in excess of 60 mHz (periods <17 s) in any of the target stars, though several previously known g-mode frequencies were recovered.

  18. High-Speed Hubble Space Telescope Ultraviolet photometry of two DB white dwarfs: Nonradial and radial pulsations

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.; Bond, Howard E.; Sherbert, Lisa E.; Watson, Todd K.

    1994-01-01

    We observed two DB white dwarf stars with the High Speed Photometer aboard the Hubble Space Telescope. The two targets, the nonradial pulsator GD 358, and PG 0112+104, a non-pulsating white dwarf with similar temperature, were each observed for 1800 s with a time resolution of 10 ms. We used the F140LP configuration, which gives a broadband response in the UV between 1400 and 3000 A. The data clearly show the long period (about 700 s) pulsations in GD 358. Comparison with optical observations obtained two weeks earlier shows that the amplitude of the pulsations in the UV is approximately 1.4 times higher, consistent with nonradial pulsations due solely to temperature changes at constant radius. The high time resolution of these observations allows us to search for high-frequency pulsations (such as p modes or high overtone radial modes). No firm evidencefor high-frequency pulsations was seen in either object between 1 and 12 Hz. Correlation analysis of GD 358 shows no clear signal of multifrequency high overtone radial pulsations at the 0.00075 mag level, with no individual modes above the 0.0016 mag level. Upper limits for PG 0112+104 are approximately 2 times higher than for GD 358. Implications of this study for the theory of white dwarf pulsations are discussed.

  19. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  20. Temperatures for hot and pulsating DB white dwarfs obtained with the IUE Observatory

    NASA Technical Reports Server (NTRS)

    Liebert, James; Wesemael, F.; Hansen, C. J.; Fontaine, G.; Shipman, Harry L.

    1986-01-01

    Ultraviolet energy distributions are presented for 12 hot, helium-atmosphere DB white dwarfs, including the four known pulsating stars which define an empirical DB instability strip. The UV spectrophotometry is reported, and the energy distributions are matched with two separate grids of DB model atmosphere calculations, so that effective temperature estimates may be derived. The sources of uncertainty in the UV temperature fits are assessed, and a comparison with estimates from optical data is made.

  1. Limits from the Ongoing Search for Planets Around White Dwarf Stars Using Pulsation Timings

    NASA Astrophysics Data System (ADS)

    Winget, D. E.; Hermes, J. J.; Mullally, Fergal; Bell, K. J.; Montgomery, M. H.; Williams, S. G.; Harrold, S. T.; Kepler, S. O.; Castanheira, B.; Chandler, D. W.; Winget, K. I.; Mukadam, A. S.; Nather, R. E.

    2015-06-01

    Evidence from searches of stars in our galaxy for exoplanet companions suggests that most lower main sequence stars likely have one or more planets; the vast majority of these planet-hosting stars will evolve into white dwarf stars. Some planets may survive this process and new ones may form in a sort of second generation from the cast-off material. If we combine this argument with evidence of a substantial population of metal polluted white dwarf stars, we may plausibly expect that planets may be common around white dwarf stars. Empirically, however, little is known about the presence of planets, new or old around white dwarf stars. Our search is small (˜15 white dwarf stars), but sensitive. Using pulsation arrival times we reach a large search volume around each star: we are sensitive to 1 MJupiter planets at distances ranging from 1- 100AU. In this context, our tightening constraints from pulsation timings become increasingly important to the broader study of planet formation, dynamical evolution, and ultimate survival.

  2. The Driving Mechanism of Pulsating Pre-White Dwarfs: Variability of the "Hybrid" PG 1159 Star HS 2324+3944

    NASA Astrophysics Data System (ADS)

    Handler, G.; Silvotti, R.

    We acquired 8 nights of time-series photometric observations of the variable RhybridS PG 1159 star HS 2324+3944. These data allow us to demonstrate the presence of four frequencies in the stellar light variations with evidence for more. The dominating time scale of the variability (around 35 minutes) is much longer than that of GW Vir pulsators. Binarity is not likely to cause the object's light variations. A pulsational origin of the variability seems more attractive. Recent theoretical investigations suggest that pre-white dwarf pulsations can be excited despite the presence of hydrogen in the model's driving region.

  3. PERIODIC VARIATIONS IN THE O - C DIAGRAMS OF FIVE PULSATION FREQUENCIES OF THE DB WHITE DWARF EC 20058-5234

    SciTech Connect

    Dalessio, J.; Provencal, J. L.; Shipman, H. L.; Sullivan, D. J.; Sullivan, T.; Kilkenny, D.; Fraga, L.; Sefako, R.

    2013-03-01

    Variations in the pulsation arrival time of five independent pulsation frequencies of the DB white dwarf EC 20058-5234 individually imitate the effects of reflex motion induced by a planet or companion but are inconsistent when considered in unison. The pulsation frequencies vary periodically in a 12.9 year cycle and undergo secular changes that are inconsistent with simple neutrino plus photon-cooling models. The magnitude of the periodic and secular variations increases with the period of the pulsations, possibly hinting that the corresponding physical mechanism is located near the surface of the star. The phase of the periodic variations appears coupled to the sign of the secular variations. The standards for pulsation-timing-based detection of planetary companions around pulsating white dwarfs, and possibly other variables such as subdwarf B stars, should be re-evaluated. The physical mechanism responsible for this surprising result may involve a redistribution of angular momentum or a magnetic cycle. Additionally, variations in a supposed combination frequency are shown to match the sum of the variations of the parent frequencies to remarkable precision, an expected but unprecedented confirmation of theoretical predictions.

  4. Precision asteroseismology of the pulsating white dwarf GD 1212 using a two-wheel-controlled Kepler spacecraft

    SciTech Connect

    Hermes, J. J.; Charpinet, S.; Barclay, Thomas; Mullally, Fergal; Huber, Daniel; Still, Martin; Howell, Steve B.; Caldwell, Douglas A.; Haas, Michael R.; Bryson, Stephen T.; Pakštienė, E.; Kawaler, Steven D.; Bloemen, S.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Van Grootel, V.

    2014-07-01

    We present a preliminary analysis of the cool pulsating white dwarf (WD) GD 1212, enabled by more than 11.5 days of space-based photometry obtained during an engineering test of the two-reaction-wheel-controlled Kepler spacecraft. We detect at least 19 independent pulsation modes, ranging from 828.2-1220.8 s, and at least 17 nonlinear combination frequencies of those independent pulsations. Our longest uninterrupted light curve, 9.0 days in length, evidences coherent difference frequencies at periods inaccessible from the ground, up to 14.5 hr, the longest-period signals ever detected in a pulsating WD. These results mark some of the first science to come from a two-wheel-controlled Kepler spacecraft, proving the capability for unprecedented discoveries afforded by extending Kepler observations to the ecliptic.

  5. Enigmatic Recurrent Pulsational Variability of the Accreting White Dwarf EQ Lyn (SDSS J074531.92+453829.6)

    NASA Astrophysics Data System (ADS)

    Mukadam, Anjum S.; Townsley, D. M.; Szkody, Paula; Gänsicke, B. T.; Southworth, J.; Brockett, T.; Parsons, S.; Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Harrold, S.; Tovmassian, G.; Zharikov, S.; Drake, A. J.; Henden, A.; Rodriguez-Gil, P.; Sion, E. M.; Zola, S.; Szymanski, T.; Pavlenko, E.; Aungwerojwit, A.; Qian, S.-B.

    2013-09-01

    Photometric observations of the cataclysmic variable EQ Lyn (SDSS J074531.92+453829.6), acquired from 2005 October to 2006 January, revealed high-amplitude variability in the range 1166-1290 s. This accreting white dwarf underwent an outburst in 2006 October, during which its brightness increased by at least five magnitudes, and it started exhibiting superhumps in its light curve. Upon cooling to quiescence, the superhumps disappeared and it displayed the same periods in 2010 February as prior to the outburst within the uncertainties of a couple of seconds. This behavior suggests that the observed variability is likely due to nonradial pulsations in the white dwarf star, whose core structure has not been significantly affected by the outburst. The enigmatic observations begin with an absence of pulsational variability during a multi-site campaign conducted in 2011 January-February without any evidence of a new outburst; the light curve is instead dominated by superhumps with periods in the range of 83-87 minutes. Ultraviolet Hubble Space Telescope time-series spectroscopy acquired in 2011 March reveals an effective temperature of 15,400 K, placing EQ Lyn within the broad instability strip of 10,500-16,000 K for accreting pulsators. The ultraviolet light curve with 90% flux from the white dwarf shows no evidence of any pulsations. Optical photometry acquired during 2011 and Spring 2012 continues to reflect the presence of superhumps and an absence of pulsations. Subsequent observations acquired in 2012 December and 2013 January finally indicate the disappearance of superhumps and the return of pulsational variability with similar periods as previous data. However, our most recent data from 2013 March to May reveal superhumps yet again with no sign of pulsations. We speculate that this enigmatic post-outburst behavior of the frequent disappearance of pulsational variability in EQ Lyn is caused either by heating the white dwarf beyond the instability strip due to an

  6. ENIGMATIC RECURRENT PULSATIONAL VARIABILITY OF THE ACCRETING WHITE DWARF EQ LYN (SDSS J074531.92+453829.6)

    SciTech Connect

    Mukadam, Anjum S.; Szkody, Paula; Townsley, D. M.; Brockett, T.; Gaensicke, B. T.; Parsons, S.; Southworth, J.; Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Harrold, S.; Tovmassian, G.; Zharikov, S.; Drake, A. J.; Henden, A.; Rodriguez-Gil, P.; Sion, E. M.; Zola, S.; Szymanski, T.; Pavlenko, E.; and others

    2013-09-15

    Photometric observations of the cataclysmic variable EQ Lyn (SDSS J074531.92+453829.6), acquired from 2005 October to 2006 January, revealed high-amplitude variability in the range 1166-1290 s. This accreting white dwarf underwent an outburst in 2006 October, during which its brightness increased by at least five magnitudes, and it started exhibiting superhumps in its light curve. Upon cooling to quiescence, the superhumps disappeared and it displayed the same periods in 2010 February as prior to the outburst within the uncertainties of a couple of seconds. This behavior suggests that the observed variability is likely due to nonradial pulsations in the white dwarf star, whose core structure has not been significantly affected by the outburst. The enigmatic observations begin with an absence of pulsational variability during a multi-site campaign conducted in 2011 January-February without any evidence of a new outburst; the light curve is instead dominated by superhumps with periods in the range of 83-87 minutes. Ultraviolet Hubble Space Telescope time-series spectroscopy acquired in 2011 March reveals an effective temperature of 15,400 K, placing EQ Lyn within the broad instability strip of 10,500-16,000 K for accreting pulsators. The ultraviolet light curve with 90% flux from the white dwarf shows no evidence of any pulsations. Optical photometry acquired during 2011 and Spring 2012 continues to reflect the presence of superhumps and an absence of pulsations. Subsequent observations acquired in 2012 December and 2013 January finally indicate the disappearance of superhumps and the return of pulsational variability with similar periods as previous data. However, our most recent data from 2013 March to May reveal superhumps yet again with no sign of pulsations. We speculate that this enigmatic post-outburst behavior of the frequent disappearance of pulsational variability in EQ Lyn is caused either by heating the white dwarf beyond the instability strip due to an

  7. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    SciTech Connect

    Córsico, A. H.; Althaus, L. G.

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  8. Precise Atmospheric Parameters for the Shortest-period Binary White Dwarfs: Gravitational Waves, Metals, and Pulsations

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Dufour, P.; Kilic, Mukremin; Brown, Warren R.; Bergeron, P.; Hermes, J. J.

    2014-10-01

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T eff <~ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  9. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    SciTech Connect

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  10. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. III. The pre-ELM white dwarf instability strip

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Serenelli, A. M.; Kepler, S. O.; Jeffery, C. S.; Corti, M. A.

    2016-04-01

    Context. Many low-mass (M⋆/M⊙ ≲ 0.45) and extremely low-mass (ELM, M⋆/M⊙ ≲ 0.18-0.20) white-dwarf stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period gravity-mode (g-mode) pulsations, and constitute the class of pulsating white dwarfs called ELMV stars. In addition, two low-mass pre-white dwarfs, which could be precursors of ELM white dwarfs, have been observed to show multiperiodic photometric variations. They could constitute a new class of pulsating low-mass pre-white dwarf stars. Aims: Motivated by this finding, we present a detailed nonadiabatic pulsation study of such stars, employing full evolutionary sequences of low-mass He-core pre-white dwarf models. Methods: Our pulsation stability analysis is based on a set of low-mass He-core pre-white dwarf models with masses ranging from 0.1554 to 0.2724 M⊙, which were derived by computing the nonconservative evolution of a binary system consisting of an initially 1 M⊙ ZAMS star and a 1.4 M⊙ neutron star companion. We have considered models in which element diffusion is accounted for and also models in which it is neglected. Results: We confirm and explore in detail a new instability strip in the domain of low gravities and low effective temperatures of the Teff - log g diagram, where low-mass pre-white dwarfs are currently found. The destabilized modes are radial and nonradial p and g modes excited by the κ - γ mechanism acting mainly at the zone of the second partial ionization of He, with non-negligible contributions from the region of the first partial ionization of He and the partial ionization of H. The computations with element diffusion are unable to explain the pulsations observed in the two known pulsating pre-white dwarfs, suggesting that element diffusion might be inhibited at these stages of the pre-white dwarf evolution. Our nonadiabatic models without diffusion, on the other hand, naturally explain the existence and range of

  11. An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs

    SciTech Connect

    Córsico, Alejandro H.; Althaus, Leandro G.

    2013-06-01

    A secular variation of the gravitational constant modifies the structure and evolutionary time scales of white dwarfs. Using an state-of-the-art stellar evolutionary code and an up-to-date pulsational code we compute the effects of a secularly varying G on the pulsational properties of variable white dwarfs. Comparing the the theoretical results obtained taking into account the effects of a running G with the observed periods and measured rates of change of the periods of two well studied pulsating white dwarfs, G117-B15A and R548, we place constraints on the rate of variation of Newton's constant. We derive an upper bound Ġ/G ∼ −1.8 × 10{sup −10} yr{sup −1} using the variable white dwarf G117-B15A, and Ġ/G ∼ −1.3 × 10{sup −10} yr{sup −1} using R548. Although these upper limits are currently less restrictive than those obtained using other techniques, they can be improved in a future measuring the rate of change of the period of massive white dwarfs.

  12. The Effect of 22NE Diffusion in the Evolution and Pulsational Properties of White Dwarfs with Solar Metallicity Progenitors

    NASA Astrophysics Data System (ADS)

    Camisassa, María E.; Althaus, Leandro G.; Córsico, Alejandro H.; Vinyoles, Núria; Serenelli, Aldo M.; Isern, Jordi; Miller Bertolami, Marcelo M.; García–Berro, Enrique

    2016-06-01

    Because of the large neutron excess of 22Ne, sedimentation of this isotope occurs rapidly in the interior of white dwarfs. This process releases an additional amount of energy, thus delaying the cooling times of the white dwarf. This influences the ages of different stellar populations derived using white dwarf cosmochronology. Furthermore, the overabundance of 22Ne in the inner regions of the star modifies the Brunt–Väisälä frequency, thus altering the pulsational properties of these stars. In this work we discuss the impact of 22Ne sedimentation in white dwarfs resulting from solar metallicity progenitors (Z = 0.02). We performed evolutionary calculations of white dwarfs with masses of 0.528, 0.576, 0.657, and 0.833 {M}ȯ derived from full evolutionary computations of their progenitor stars, starting at the zero-age main sequence all the way through the central hydrogen and helium burning, the thermally pulsing asymptotic giant branch (AGB), and post-AGB phases. Our computations show that at low luminosities ({log}(L/{L}ȯ )≲ -4.25), 22Ne sedimentation delays the cooling of white dwarfs with solar metallicity progenitors by about 1 Gyr. Additionally, we studied the consequences of 22Ne sedimentation on the pulsational properties of ZZ Ceti white dwarfs. We find that 22Ne sedimentation induces differences in the periods of these stars larger than the present observational uncertainties, particularly in more massive white dwarfs.

  13. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    SciTech Connect

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T.; Brown, Warren R.; Kenyon, Scott J.; Gianninas, A.; Kilic, Mukremin

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  14. A First Look at the Nonadiabatic Properties of Pulsating Accreting White Dwarfs of the GW Lib Type

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Fontaine, G.; Brassard, P.; Dupret, M.-A.

    2015-06-01

    We present results of a detailed stability survey of the pulsation properties of accreting white dwarfs of the GW Lib type. This is based on several state-of-the-art white dwarf evolutionary sequences with varying envelope compositions, from pure hydrogen to pure helium. Using the same tools as in Van Grootel et al. (2013), where we have presented the first consistent view of the ZZ Ceti instability strip, we have mapped the GW Lib instability strip over the effective temperature-surface gravity plane, and as a function of envelope composition. We find that the location of the GW Lib instability domain is a strong and continuous function of the assumed envelope composition. We can accomodate all of the known GW Lib pulsators in various strips according to their atmospheric compositions.

  15. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  16. The discovery of non-radially pulsating white dwarfs in cataclysmic variables from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Woudt, P. A.; Warner, B.; Pretorius, M. L.; Dale, D.

    2005-08-01

    The group of known non-radially pulsating white dwarfs in cataclysmic variables (CVs) has quintupled in the last year. These are all systems of low mass-transfer rate in which the central white dwarf is located in the ZZ Ceti instability strip (Teff ˜ 11,000 - 12,500 K). Due to the low mass-transfer rate, these systems are intrinsically faint and it is only due to surveys such as the Sloan Digital Sky Survey (SDSS) that this population of CV/ZZ hybrids is being uncovered in a systematic way. It is estimated that among the ˜ 400 CVs expected in the SDSS, about ˜ 32 systems will be CV/ZZ stars. Within such a sample undoubtedly some (low amplitude ZZ Ceti pulsators) will exist that are suitable for detailed analysis and identification of pulsation modes in order to study the influence of accretion on the internal structure of white dwarfs. Here we present results from our ongoing high-speed photometric survey (using the UCT CCD) of the newly identified SDSS CV/ZZ stars, including two CV/ZZ candidates.

  17. Statistical Properties of Quasi-Periodic Pulsations in White-Light Flares Observed With Kepler

    NASA Astrophysics Data System (ADS)

    Pugh, C. E.; Armstrong, D. J.; Nakariakov, V. M.; Broomhall, A.-M.

    2016-04-01

    We embark on a study of quasi-periodic pulsations (QPPs) in the decay phase of white-light stellar flares observed by Kepler. Out of the 1439 flares on 216 different stars detected in the short-cadence data using an automated search, 56 flares are found to have pronounced QPP-like signatures in the light curve, of which 11 have stable decaying oscillations. No correlation is found between the QPP period and the stellar temperature, radius, rotation period and surface gravity, suggesting that the QPPs are independent of global stellar parameters. Hence they are likely to be the result of processes occurring in the local environment. There is also no significant correlation between the QPP period and flare energy, however there is evidence that the period scales with the QPP decay time for the Gaussian damping scenario, but not to a significant degree for the exponentially damped case. This same scaling has been observed for MHD oscillations on the Sun, suggesting that they could be the cause of the QPPs in those flares. Scaling laws of the flare energy are also investigated, supporting previous reports of a strong correlation between the flare energy and stellar temperature/radius. A negative correlation between the flare energy and stellar surface gravity is also found.

  18. Statistical properties of quasi-periodic pulsations in white-light flares observed with Kepler

    NASA Astrophysics Data System (ADS)

    Pugh, C. E.; Armstrong, D. J.; Nakariakov, V. M.; Broomhall, A.-M.

    2016-07-01

    We embark on a study of quasi-periodic pulsations (QPPs) in the decay phase of white-light stellar flares observed by Kepler. Out of the 1439 flares on 216 different stars detected in the short-cadence data using an automated search, 56 flares are found to have pronounced QPP-like signatures in the light curve, of which 11 have stable decaying oscillations. No correlation is found between the QPP period and the stellar temperature, radius, rotation period and surface gravity, suggesting that the QPPs are independent of global stellar parameters. Hence they are likely to be the result of processes occurring in the local environment. There is also no significant correlation between the QPP period and flare energy, however there is evidence that the period scales with the QPP decay time for the Gaussian damping scenario, but not to a significant degree for the exponentially damped case. This same scaling has been observed for MHD oscillations on the Sun, suggesting that they could be the cause of the QPPs in those flares. Scaling laws of the flare energy are also investigated, supporting previous reports of a strong correlation between the flare energy and stellar temperature/radius. A negative correlation between the flare energy and stellar surface gravity is also found.

  19. FIRST UNAMBIGUOUS DETECTION OF THE RETURN OF PULSATIONS IN THE ACCRETING WHITE DWARF SDSS J074531.92+453829.6 AFTER AN OUTBURST

    SciTech Connect

    Mukadam, Anjum S.; Szkody, P.; Townsley, D. M.; Gaensicke, B. T.; Winget, D. E.; Hermes, J. J.; Howell, Steve B.; Teske, J.; Patterson, Joseph; Armstrong, Eve; Kemp, Jonathan

    2011-02-20

    The primary white dwarf of the cataclysmic variable SDSS J074531.92+453829.6 was discovered to exhibit non-radial pulsations in 2006 January. This accreting white dwarf underwent its first recorded dwarf nova outburst in 2006 October, during which its brightness increased by more than 5 mag. A Hubble Space Telescope (HST) ultraviolet spectrum, obtained one year after the outburst, revealed a white dwarf temperature of 16,500 K, hotter than all other known accreting white dwarf pulsators. This implies that the accreting primary white dwarf of SDSS J074531.92+453829.6 was heated to temperatures beyond the instability strip during the outburst. Optical observations acquired a year after the outburst did not reveal any evidence of pulsations, suggesting that the white dwarf had not cooled to quiescence by then. We recently acquired optical high-speed time-series photometry on this cataclysmic variable SDSS J074531.92+453829.6 more than three years after its outburst to find that pulsations have now returned to the primary white dwarf. Moreover, the observed pulsation periods agree with pre-outburst periods within the uncertainties of a few seconds. This discovery is significant because it indicates that the outburst did not affect the interior stellar structure, which governs the observed pulsation frequencies. It also suggests that the surface of the white dwarf has now cooled to quiescence. Using this discovery in addition to the prior HST temperature measurement of 16,500 K, we have been able to constrain the matter accreted during the 2006 outburst. This is the first time an accreting white dwarf was unambiguously observed to resume pulsating after an outburst.

  20. Preliminary XCOV26 Results For The Da White Dwarf EC14012-1446

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Thompson, S.; Montgomery, M.; Shipman, H.; Dalessio, J.; Whole Earth Telescope Team

    2010-01-01

    EC14012-1446 is a hydrogen atmosphere (DA) white dwarf pulsator. Its rich pulsation spectrum displays a range of excited modes with complex multiplet structure, in addition to numerous combination frequencies. In April 2008, EC14012-1446 was the primary target of XCOV26. We obtained over 300 hrs of nearly continuous high speed photometry with the goal of using the nonlinear pulse shapes to empirically determine the parameters of the convection zone. The Fourier transform (FT) of the light curve contains power between 1000 to 4000 microHz, with the dominant peak at 1234 microHz. We find 13 independent frequencies distributed in 8 modes, as well as a myriad of combination frequencies. We present preliminary results of our asteroseismological investigation and lay the groundwork for future investigation leading to light curve fitting of EC14012-1446. This research is funded by Mt. Cuba Observatory (Greenville, DE) and the Crystal Trust Foundation.

  1. FOLLOW-UP STUDIES OF THE PULSATING MAGNETIC WHITE DWARF SDSS J142625.71+575218.3

    SciTech Connect

    Green, E. M.; Dufour, P.; Fontaine, G.; Brassard, P. E-mail: dufourpa@astro.umontreal.ca E-mail: brassard@astro.umontreal.ca

    2009-09-10

    We present a follow-up analysis of the unique magnetic luminosity-variable carbon-atmosphere white dwarf SDSS J142625.71+575218.3. This includes the results of some 106.4 hr of integrated light photometry which have revealed, among other things, the presence of a new periodicity at 319.720 s which is not harmonically related to the dominant oscillation (417.707 s) previously known in that star. Using our photometry and available spectroscopy, we consider the suggestion made by Montgomery et al. that the luminosity variations in SDSS J142625.71+575218.3 may not be caused by pulsational instabilities, but rather by photometric activity in a carbon-transferring analog of AM CVn. This includes a detailed search for possible radial velocity variations due to rapid orbital motion on the basis of Multiple Mirror Telescope spectroscopy. At the end of the exercise, we unequivocally rule out the interacting binary hypothesis and conclude instead that, indeed, the luminosity variations are caused by g-mode pulsations as in other pulsating white dwarfs. This is in line with the preferred possibility put forward by Montgomery et al.

  2. Metal Lines in DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Zuckerman, B.; Koester, D.; Reid, I. N.; Hünsch, M.

    2003-10-01

    We report Keck telescope HIRES echelle observations of DA white dwarfs in a continuation of an extensive search for metals. These spectra are supplemented with new JHK magnitudes that are used to determine improved atmospheric parameters. Of the DA white dwarfs not in binary or common proper motion systems, about 25% show Ca II lines. For these, Ca abundances are determined from comparison with theoretical equivalent widths from model atmosphere calculations; in a few cases we also obtain Mg, Fe, Si, and Al abundances. If Ca is not observed, we generally determine very stringent upper limits. We compare the data to predictions of previously published models involving the accretion/diffusion of interstellar matter and of comets. The derived abundances are not obviously compatible with the predictions of either model, which up to now could only be tested with traces of metals in helium-rich white dwarfs. By modifying certain assumptions in the published interstellar accretion model we are able to match the distribution of the elements in the white dwarf atmospheres, but, even so, tests of other expectations from this scenario are less successful. Because comet accretion appears unlikely to be the primary cause of the DAZ phenomenon, the data suggest that no more than about 20% of F-type main-sequence stars are accompanied by Oort-like comet clouds. This represents the first observational estimate of this fraction. A plausible alternative to the accretion of cometary or interstellar matter is disruption and accretion of asteroidal material, a model first suggested in 1990 to explain excess near-infrared emission from the DAZ G29-38. An asteroidal debris model to account for the general DAZ phenomenon does not presently disagree with the HIRES data, but neither is there any compelling evidence in support of such a model. The HIRES data indicate that in close red dwarf/white dwarf binaries not known to be cataclysmic variables there is, nonetheless, significant mass

  3. The asteroseismological potential of the pulsating DB white dwarf stars CBS 114 and PG 1456+103

    NASA Astrophysics Data System (ADS)

    Handler, G.; Metcalfe, T. S.; Wood, M. A.

    2002-09-01

    We have acquired 65 h of single-site time-resolved CCD photometry of the pulsating DB white dwarf star (DBV) CBS 114 and 62 h of two-site high-speed CCD photometry of another DBV, PG 1456+103. The pulsation spectrum of PG 1456+103 is complicated and variable on time-scales of approximately 1 week and could only partly be deciphered with our measurements. The modes of CBS 114 are more stable in time and we were able to arrive at a frequency solution somewhat affected by aliasing, but still satisfactory, involving seven independent modes and two combination frequencies. These frequencies also explain the discovery data of the star, taken 13 yr earlier. We find a mean period spacing of 37.1 +/- 0.7 s significant at the 98 per cent level between the independent modes of CBS 114 and argue that they are caused by non-radial g-mode pulsations of spherical degree l= 1. We performed a global search for asteroseismological models of CBS 114 using a genetic algorithm, and we examined the susceptibility of the results to the uncertainties of the observational frequency determinations and mode identifications (we could not provide m values). The families of possible solutions are identified correctly even without knowledge of m. Our best-fitting model suggests Teff= 21 000 K, M*= 0.730 Msolar and log(MHe/M*) =-6.66, XO= 0.61. The latter value of the central oxygen mass fraction implies a rate for the 12C(α,γ)16O nuclear reaction near S300= 180 keV b, consistent with laboratory measurements.

  4. Origin of the DA and non-DA white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1989-01-01

    Various proposals for the bifurcation of the white dwarf cooling sequence are reviewed. 'Primordial' theories, in which the basic bifurcation of the white dwarf sequence is rooted in events predating the white dwarf stage of stellar evolution, are discussed, along with the competing 'mixing' theories in which processes occurring during the white dwarf stage are responsible for the existence of DA or non-DA stars. A new proposal is suggested, representing a two-channel scenario. In the DA channel, some process reduces the hydrogen layer mass to the value of less than 10 to the -7th. The non-DA channel is similar to that in the primordial scenario. These considerations suggest that some mechanism operates in both channels to reduce the thickness of the outermost layer of the white dwarf. It is also noted that accretion from the interstellar medium has little to do with whether a particular white dwarf becomes a DA or a non-DA star.

  5. The Instability Strip of ZZ Ceti White Dwarfs and Its Extension to the Extremely Low Mass Pulsators

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Fontaine, G.; Brassard, P.; Dupret, M.-A.

    2013-12-01

    The determination of the location of the theoretical ZZ Ceti instability strip in the log g - Teff diagram has remained a challenge over the years, due to the lack of a suitable treatment for convection in these stars. We report here a detailed stability survey over the whole ZZ Ceti regime, including the very low masses where three pulsators have recently been found. With this in mind, we computed twenty-nine evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/α = 1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We computed power spectra for these models with the Liège nonadiabatic pulsation code MAD, which is the only one to conveniently incorporate a full time-dependent convection treatment and, thus, provides the best available description of the blue edge of the instability strip. On the other hand, given the failure of all nonadiabatic codes to properly account for the red edge of the strip, including MAD, we tested the idea that the red edge is due to energy leakage through the atmosphere. Using this approach, we found that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip.

  6. A subsynchronously rotating pulsating subdwarf B star in a short-period binary with a white dwarf companion

    NASA Astrophysics Data System (ADS)

    Baran, A. S.; Telting, J. H.; Németh, P.; Østensen, R. H.; Reed, M. D.; Kiaeerad, F.

    2016-01-01

    We present our analysis of KIC 7664467, an sdB pulsator that we have found to be residing in a 1.56-day binary system with a white-dwarf companion. This system was observed photometrically with the Kepler spacecraft and spectroscopically with ground-based telescopes. We analyzed the amplitude spectra detecting 61 periods, rotationally split multiplets, and an equally spaced sequence in period. These two features helped with the mode identification. We derived both the binary and rotation periods showing that this is another binary system with a subsynchronous sdB star. From our spectroscopy of the sdB star, we determined Teff = 27440 ± 120 K, log g = 5.38 ± 0.02 dex. The abundance pattern follows the general trend observed in sdB stars, where light metals are subsolar, while the Fe abundance is very close to the solar value. We found the N enrichment and low abundances of C and O that resemble the equilibrium abundances of the CNO cycle. We could also measure the Mg and Si abundances. Using the radial velocity amplitude K1 = 57(3) km s-1 and the Doppler boosting-dominated photometric signal at the orbital period, we constrained the companion to be a compact object, almost certainly a white dwarf.

  7. Pulsating white dwarfs in cataclysmic variables: The marriage of ZZ Cet and dwarf nova

    NASA Astrophysics Data System (ADS)

    Warner, Brian; Woudt, Patrick A.

    2004-05-01

    There are now four dwarf novae known with white dwarf primaries that show large amplitude non-radial oscillations of the kind seen in ZZ Cet stars. We compare the properties of these stars and point out that by the end of Sloan Digital Sky Survey more than 30 should be known.

  8. EVOLUTION OF THE SYMBIOTIC NOVA PU VUL-OUTBURSTING WHITE DWARF, NEBULAE, AND PULSATING RED GIANT COMPANION

    SciTech Connect

    Kato, Mariko; Mikolajewska, Joanna; Hachisu, Izumi

    2012-05-01

    We present a composite light-curve model of the symbiotic nova PU Vul (Nova Vulpeculae 1979) that shows a long-lasting flat optical peak followed by a slow decline. Our model light curve consists of three components of emission, i.e., an outbursting white dwarf (WD), its M-giant companion, and the nebulae. The WD component dominates in the flat peak while the nebulae dominate after the photospheric temperature of the WD rises to log T (K) {approx}> 4.5, suggesting its WD origin. We analyze the 1980 and 1994 eclipses to be total eclipses of the WD occulted by the pulsating M-giant companion with two sources of the nebular emission; one is an unocculted nebula of the M-giant's cool-wind origin and the other is a partially occulted nebula associated to the WD. We confirmed our theoretical outburst model of PU Vul by new observational estimates, which spanned 32 yr, of the temperature and radius. Also our eclipse analysis confirmed that the WD photosphere decreased by two orders of magnitude between the 1980 and 1994 eclipses. We obtain the reddening E(B - V) {approx} 0.3 and distance to PU Vul d {approx} 4.7 kpc. We interpret the recent recovery of brightness in terms of eclipse of the hot nebula surrounding the WD, suggesting that hydrogen burning is ongoing. To detect supersoft X-rays, we recommend X-ray observations around 2014 June when absorption by neutral hydrogen is minimum.

  9. A detection of the evolutionary time scale of the DA white dwarf G117 - B15A with the Whole Earth Telescope

    NASA Technical Reports Server (NTRS)

    Kepler, S. O.; Fontaine, G.; Bergeron, P.; Winget, D. E.; Nather, R. E.; Bradley, P. A.; Claver, C. F.; Grauer, A. D.; Vauclair, G.; Marar, T. M. K.

    1991-01-01

    The time rate of change for the main pulsation period of the 13,000 K DA white dwarf G117 - B15A has been detected using the Whole Earth Telescope (WET). The observed rate of period change, P(dot) = (12.0 + or - 3.5) x 10 to the -15th s/s, is somewhat larger than the published theoretical calculations of the rate of period change due to cooling, based on carbon core white dwarf models. Other effects that could contribute to the observed rate of period change are discussed.

  10. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  11. Evolution of DA white dwarfs in the context of a new theory of convection

    NASA Astrophysics Data System (ADS)

    Althaus, L. G.; Benvenuto, O. G.

    1998-05-01

    In this study we compute the structure and evolution of carbon-oxygen DA (hydrogen-rich envelope) white dwarf models by means of a detailed and updated evolutionary code. We consider models with masses from 0.5 to 1.0Msolar and we vary the hydrogen layer mass in the interval 10^-13<=M_H/M≮10^-4. In particular, we treat the energy transport by convection within the formalism of the full-spectrum turbulence theory, as given by the Canuto, Goldman & Mazzitelli (CGM) model. We explore the effect of various hydrogen layer masses on both the surface gravity and the hydrogen burning. Convective mixing at low luminosities is also considered. One of our main interests in this work has been to study the evolution of ZZ Ceti models, with the aim of comparing the CGM and mixing-length theory (MLT) predictions. In this connection, we find that the temperature profile given by the CGM model is markedly different from that of the ML1 and ML2 versions of the MLT. In addition, the evolving outer convection zone behaves differently in both theories. We have also computed approximate effective temperatures for the theoretical blue edge of the DA instability strip by using thermal time-scale arguments for our evolving DA models. In this context, we found that the CGM theory leads to blue edges that are cooler than the observed ones. However, because the determination of atmospheric parameters of ZZ Ceti stars is dependent on the assumed convection description in model atmosphere calculations, observed blue edges based on model atmospheres computed considering the CGM theory are required in order to perform a self-consistent comparison of our results with observations. Finally, detailed non-adiabatic pulsational computations of ZZ Ceti models considering the CGM convection would be necessary to place the results found in this paper on a firmer basis.

  12. Amplitude and frequency variations of oscillation modes in the pulsating DB white dwarf star KIC 08626021. The likely signature of nonlinear resonant mode coupling

    NASA Astrophysics Data System (ADS)

    Zong, W.; Charpinet, S.; Vauclair, G.; Giammichele, N.; Van Grootel, V.

    2016-01-01

    Context. The signatures of nonlinear effects affecting stellar oscillations are difficult to observe from ground observatories because of the lack of continuous high-precision photometric data spanning extended enough time baselines. The unprecedented photometric quality and coverage provided by the Kepler spacecraft offers new opportunities to search for these phenomena. Aims: We use the Kepler data accumulated on the pulsating DB white dwarf KIC 08626021 to explore in detail the stability of its oscillation modes, searching, in particular, for evidence of nonlinear behaviors. Methods: We analyze nearly two years of uninterrupted short-cadence data, concentrating on identified triplets that are caused by stellar rotation and that show intriguing behaviors during the course of the observations. Results: We find clear signatures of nonlinear effects that could be attributed to resonant mode coupling mechanisms. These couplings occur between the components of the triplets and can induce different types of behaviors. We first notice that a structure at 3681 μHz, identified as a triplet in previous published studies, is in fact forming a doublet, with the third component being an independent mode. We find that a triplet at 4310 μHz and this doublet at 3681 μHz (most likely the two visible components of an incomplete triplet) have clear periodic frequency and amplitude modulations, which are typical of the so-called intermediate regime of the resonance, with timescales consistent with theoretical expectations. Another triplet at 5073 μHz is likely in a narrow transitory regime in which the amplitudes are modulated while the frequencies are locked. Using nonadiabatic pulsation calculations, based on a model representative of KIC 08626021 to evaluate the linear growth rates of the modes in the triplets, we also provide quantitative information that could be useful for future comparisons with numerical solutions of the amplitude equations. Conclusions: The observed

  13. 70 DA WHITE DWARFS IDENTIFIED IN LAMOST PILOT SURVEY

    SciTech Connect

    Zhao, J. K.; Luo, A. L.; Zhao, G.; Oswalt, T. D. E-mail: gzhao@bao.ac.cn E-mail: toswalt@fit.edu

    2013-06-01

    We present a spectroscopically identified catalog of 70 DA white dwarfs (WDs) from the LAMOST pilot survey. Thirty-five are found to be new identifications after cross-correlation with the Eisenstein et al. and Villanova catalogs. The effective temperature and gravity of these WDs are estimated by Balmer lines fitting. Most of them are hot WDs. The cooling times and masses of these WDs are estimated by interpolation in theoretical evolution tracks. The peak of the mass distribution is found to be {approx}0.6 M {sub Sun }, which is consistent with prior work in the literature. The distances of these WDs are estimated using the method of synthetic spectral distances. All of these WDs are found to be in the Galactic disk from our analysis of space motions. Our sample supports the expectation that WDs with high mass are concentrated near the plane of the Galactic disk.

  14. DA WHITE DWARFS OBSERVED IN THE LAMOST PILOT SURVEY

    SciTech Connect

    Zhang Yueyang; Deng Licai; Liu Chao; Carrell, Kenneth; Yang Fan; Gao Shuang; Xu Yan; Li Jing; Zhang Haotong; Zhao Yongheng; Luo Ali; Bai Zhongrui; Yuan Hailong; Lepine, Sebastien; Newberg, Heidi Jo; Carlin, Jeffrey L.; Jin Ge

    2013-08-01

    A total of {approx}640, 000 objects from the LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs (DAWDs) from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs (WDs) by fitting Sersic profiles to the Balmer H{beta}, H{gamma}, and H{delta} lines of the spectra, and calculating the equivalent width of the Ca II K line. Two thousand nine hundred sixty-four candidates are selected by constraining the fitting parameters and the equivalent width of the Ca II K line. All the spectra of candidates are visually inspected. We identify 230 DAWDs (59 of which are already included in the Villanova and SDSS WD catalogs), 20 of which are DAWDs with non-degenerate companions. In addition, 128 candidates are classified as DAWDs/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DAWD number estimated based on the LEGUE target selection algorithm.

  15. The temperatures, masses and pulsation modes of three ZZ Cetis in the Kepler field

    NASA Astrophysics Data System (ADS)

    Greiss, Sandra

    2013-10-01

    Most stars in our Galaxy, including all known planet hosts, will end or have already ended their lives as white dwarfs, dense stellar remnants sustained by electron degeneracy. Here, we propose to obtain COS far-ultraviolet spectroscopy of three pulsating hydrogen-atmosphere {DA} white dwarfs {ZZ Ceti stars} that for which we are obtaining Kepler short-cadence data. Far-ultraviolet spectroscopy of white dwarfs, covering the H2/H2+ quasi-molecular satellites around 1400A and 1600A, is essential to determine accurate atmospheric parameters, and precision asteroseismology of white dwarfs has the potential to probe in detail the structure of their cores and envelopes that is not possible in any other way. A succesful asteroseismologial analysis requires, however, the correct identification of the pulsation modes. Because ZZ Ceti stars have typically only few large-amplitude modes, the mode identification based on their optical light curves is often ambiguous. Because the ratio of ultraviolet-to-optical pulsation amplitudes depends strongly on the pulsatoin mode, our COS data will also enable us to identify the pulsation modes in the Kepler light curves of these three stars. The unique combination of HST and Kepler observations will enable to investigate the atmospheric and internal structure of three white dwarfs with an unprecedented accuracy. The proposed research is part of the PI's doctoral thesis.

  16. Near-UV absorption in very cool DA white dwarfs

    SciTech Connect

    Saumon, D.; Holberg, J. B.; Kowalski, P. M. E-mail: holberg@argus.lpl.arizona.edu

    2014-07-20

    The atmospheres of very cool, hydrogen-rich white dwarfs (WDs) (T{sub eff} < 6000 K) are challenging to model because of the increased complexity of the equation of state, chemical equilibrium, and opacity sources in a low-temperature, weakly ionized dense gas. In particular, many models that assume relatively simple models for the broadening of atomic levels and mostly ideal gas physics overestimate the flux in the blue part of their spectra. A solution to this problem that has met with some success is that additional opacity at short wavelengths comes for the extreme broadening of the Lyman α line of atomic H by collisions primarily with H{sub 2}. For the purpose of validating this model more rigorously, we acquired Hubble Space Telescope STIS spectra of eight very cool WDs (five DA and three DC stars). Combined with their known parallaxes, BVRIJHK, and Spitzer IRAC photometry, we analyze their entire spectral energy distribution (from 0.24 to 9.3 μm) with a large grid of model atmospheres and synthetic spectra. We find that the red wing of the Lyman α line reproduces the rapidly decreasing near-UV flux of these very cool stars very well. We determine better constrained values of T{sub eff} and gravity as well as upper limits to the helium abundance in their atmospheres.

  17. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    SciTech Connect

    Chen, Eugene Y.; Hansen, Brad M. S. E-mail: hansen@astro.ucla.edu

    2012-07-01

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen. We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.

  18. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  19. Prospective EUV observations of hot DA white dwarfs with the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Malina, Roger F.; Bowyer, Stuart

    1987-01-01

    The Extreme Ultraviolet Explorer (EUVE) will perform a high sensitivity EUV all-sky survey. A major category of sources which will be detected with the EUVE instruments consists of hot white dwarfs. Detailed preliminary studies of synthetic EUV observations of white dwarfs have been carried out using the predicted EUVE instrumental response functions. Using available information regarding space densities of white dwarfs and the distribution of neutral hydrogen in the interstellar medium, the numbers of DA white dwarfs which will be detectable in the different EUV bandpasses have been estimated.

  20. Detection of trace helium in G104 - 27, a 26,000 K DA white dwarf

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Kidder, K. M.; Wesemael, F.

    1990-01-01

    The detection of the He I 4471 A feature in the moderately hot DA white dwarf G104 - 27 places this star within the rather sparse class of DAB white dwarfs. It does not appear possible, on the basis of the present data, to distinguish between a stratified and a homogeneously mixed atmosphere. While a stratified structure would be natural for a DA white dwarf, G104 - 27 resides near the red edge of the DB gap, in a region where DA stars could transform into DB stars through convective mixing in the underlying He envelope and thereby destroy envelope stratification. Both atmospheres are consistent with the existing soft X-ray flux limit for this star.

  1. On the interpretation of the Exosat photometry of two hot DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Shipman, Harry L.; Petre, Robert

    1990-01-01

    Exosat photometric observations of the hot DA white dwarfs GD 2 and EG 70 are presented and analyzed using model atmosphere and synthetic spectrum calculations. The numerical accuracy of the calculations and their impact on the reliability of the results are addressed. The optimum atmospheric parameters that explain the complete spectral coverage are derived. The consequences of these conjectures for the spectral evolution theory of white dwarf stars are considered.

  2. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Shipman, Harry L.; Thorstensen, John R.; Thejll, Peter

    1991-01-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or - 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or - 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star.

  3. Iron abundance in the hot DA white dwarfs Feige 24 and G191 B2B

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Chayer, Pierre; Thorstensen, John R.; Bowyer, Stuart; Shipman, Harry L.

    1992-01-01

    Attention is given to model calculations of the far- and extreme-UV line spectra of highly ionized Fe species (Fe IV, Fe V, and Fe VI) for hot high-gravity H-rich stars. A spectral analysis of 31 hr of exposure of the DA white dwarf Feige 24 with IUE in the echelle mode reveals the presence of Fe with an abundance relative to H by number of (5-10) x 10 exp -6 with an uncertainty dominated by the determination of stellar parameters. An analysis of IUE data from the white dwarf G191 B2B results in a similar Fe abundance if this star shares similar atmospheric parameters (Teff, g) with Feige 24. Fe is thus the second most abundant photospheric element in hot DA white dwarfs.

  4. The coolest DA white dwarfs detected at soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Kidder, K. M.; Holberg, J. B.; Barstow, M. A.; Tweedy, R. W.; Wesemael, F.

    1992-01-01

    New soft X-ray/EUV photometric observations of the DA white dwarfs KPD 0631 + 1043 = WD 0631 + 107 and PG 1113 + 413 = WD 1113 + 413 are analyzed. Previously reported soft X-ray detections of three other DAs and the failure to detect a fourth DA in deep Exosat observations are investigated. New ground-based spectra are presented for all of the objects, with IUE Ly-alpha spectra for some. These data are used to constrain the effective temperatures and surface gravities. The improved estimates of these parameters are employed to refer a photospheric He abundance for the hotter objects and to elucidate an effective observational low-temperature threshold for the detection of pure hydrogen DA white dwarfs at soft X-ray wavelengths.

  5. THE KEPLER LIGHT CURVE OF THE UNIQUE DA WHITE DWARF BOKS 53856

    SciTech Connect

    Holberg, J. B.; Howell, Steve B. E-mail: howell@noao.edu

    2011-08-15

    The faint (g = 16.9) hot white dwarf BOKS 53856 was observed by the Kepler Mission in short cadence mode during mid-2009. Analysis of these observations reveals a highly stable modulation with a period of 6.1375 hr and a 2.46% half-amplitude. The folded light curve has an unusual shape that is difficult to explain in terms of a binary system containing an unseen companion more luminous than an L0 brown dwarf. Optical spectra of BOKS 53856 show a T{sub eff} = 34,000 K, log g = 8.0 DA white dwarf. There are few, if any, known white dwarfs in this temperature range exhibiting photometric variations similar to those we describe. A magnetic spin-modulated white dwarf model can in principle explain the light curve, an interpretation supported by spectral observations of the H{alpha} line showing evidence of Zeeman splitting.

  6. High-speed Photometric Observations of ZZ Ceti White Dwarf Candidates

    NASA Astrophysics Data System (ADS)

    Green, E. M.; Limoges, M.-M.; Gianninas, A.; Bergeron, P.; Fontaine, G.; Dufour, P.; O'Malley, C. J.; Guvenen, B.; Biddle, L. I.; Pearson, K.; Deyoe, T. W.; Bullivant, C. W.; Hermes, J. J.; Van Grootel, V.; Grosjean, M.

    2015-06-01

    We present high-speed photometric observations of ZZ Ceti white dwarf candidates drawn from the spectroscopic survey of bright DA stars from the Villanova White Dwarf Catalog by Gianninas et al., and from the recent spectroscopic survey of white dwarfs within 40 parsecs of the Sun by Limoges et al. We report the discovery of six new ZZ Ceti pulsators from these surveys, and several photometrically constant DA white dwarfs, which we then use to refine the location of the ZZ Ceti instability strip.

  7. Two hot, low-field magnetic DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Liebert, J.; Schmidt, G. D.; Green, R. F.; Stockman, H. S.; Mcgraw, J. T.

    1983-01-01

    Two hot stars discovered in the Palomar Green survey which were found to exhibit peculiarly broad and strong Balmer lines possibly indicative of low magnetic fields are discussed. The stars, PG 1658+441 and PG 0136+251, were found to have extended trough-shaped Balmer and Lyman-alpha line profiles when compared to nonmagnetic dwarfs of similar temperatures. Further observations of PG 1658+441 show it to correspond to a 30,000 K pure hydrogen atmosphere and confirm its nature as a magnetic object with a longitudinal field strength of about 0.7 megagauss and a mean surface field of about 2.3 megagauss. PG 0136+251 is found to be a hotter star (40,000-50,000 K) with weaker lines. Although no strong evidence for magnetic line splitting was obtained, it is argued that neither a high surface gravity nor very rapid rotation can account for the Balmer line shapes. Results thus extend the range of magnetic degenerates to include very hot white dwarfs, and demonstrate the usefulness of line-widths as indicators of possible low-field magnetic sources.

  8. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  9. Spectroscopy of the DA white dwarfs - Automatic atmospheric parameterization and mass distribution

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert K.

    1989-01-01

    A method for the automatic calculation of the atmospheric parameters (Teff and log g) of hydrogen-rich degenerate stars from low-resolution spectra is described, and then applied to the spectra of 53 DA white dwarfs. A value for the width of the DA mass distribution of sigma M/solar-M not greater than +0.10 is obtained using the proposed approach. The data indicate that the distribution is asymmetrically skewed to low masses; however, there is also evidence of a high-mass non-Gaussian tail.

  10. AN IMPROVED SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 4

    SciTech Connect

    Tremblay, P.-E.; Bergeron, P.; Gianninas, A. E-mail: bergeron@astro.umontreal.ca

    2011-04-01

    We present an improved spectroscopic and photometric analysis of hydrogen-line DA white dwarfs from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4) based on model atmospheres that include improved Stark broadening profiles with non-ideal gas effects. We also perform a careful visual inspection of all spectroscopic fits with high signal-to-noise ratios (S/Ns > 12) and present improved atmospheric parameters (T{sub eff} and log g) for each white dwarf. Through a comparison of spectroscopic and photometric temperatures, we report the discovery of 35 DA+DB/DC double degenerate candidates and two helium-rich DA stars. We also determine that a cutoff at S/N = 15 optimizes the size and quality of the sample for computing the mean mass of DA white dwarfs, for which we report a value of 0.613 M{sub sun}. We compare our results to previous analyses of the SDSS DR4 and find a good agreement if we account for the shift produced by the improved Stark profiles. Finally, the properties of DA white dwarfs in the SDSS are weighed against those of the Villanova White Dwarf Catalog sample of Gianninas et al. We find systematically lower masses (by about 3% on average), a difference that we trace back to the data reduction procedure of the SDSS. We conclude that a better understanding of these differences will be important to determine the absolute temperature scale and mean mass of DA white dwarfs.

  11. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    SciTech Connect

    Vennes, S.; Shipman, H.L.; Thorstensen, J.R.; Thejll, P. Dartmouth College, Hanover, NH NORDITA, Copenhagen, Denmark )

    1991-05-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or {minus} 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or {minus} 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star. 27 refs.

  12. Radial pulsation stability as a function of hydrogen abundance

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Saio, Hideyuki

    2015-08-01

    Following the discovery of pulsation in an extremely low-mass pre-white dwarf by Maxted et al. (2011, 2013), Jeffery & Saio (2013) showed that pulsations in such stars would be excited in high radial overtones provided that the driving zone was sufficiently depleted in hydrogen. Following previous work which shows that pulsations are more easily excited in stars where the damping effects of hydrogen are somehow reduced (Jeffery & Saio 2006), we have completed a survey of radial pulsation stability across a substantially larger parameter space. The object is to identify new regions of the HR diagram where stars should be unstable to radial pulsations, or where closely related p-modes might be excited. These would enable targeted surveys for new classes of pulsating variable. This poster reports the survey results and the identification of new instability regions.

  13. Atmospheric parameters of a soft X ray selected set of hot DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Kenneth Mark

    Soft x-ray/EUV observations provide a sensitive means of probing the structure and composition of the atmospheres of hot hydrogen-rich (DA) white dwarf stars. This is due to the fact that soft x-rays originate from hotter, deeper layers of the photosphere than do longer wavelengths. A primary aim of this research is to expand the sample of DA's observed with soft x-ray instrumentation through a search for serendipitous observations of catalogued hot DA white dwarfs in existing soft x-ray databases. The positional coincidences of 31 catalogued DA's (McCook and Sion 1987) were examined in Einstein IPC and EXOSAT LE fields. As a result, three soft x-ray sources have been identified corresponding to the white dwarfs (WD0631 + 107, WD1113 + 413 and WD0425 + 168) and a fourth source which is probably not due to photospheric thermal emission from the coincident white dwarf. The three detected DA's have relatively low effective temperatures (27,200 +/- 400 K, 26,200 +/- 1100 K and 24,000 +/- 500 K, respectively), as determined independently using complementary optical and UV spectroscopy. Applying these temperature constraints to the soft x-ray photometric data, the photospheres of these stars must be composed of effectively pure hydrogen (n(He)/n(H) less than 10 exp -5), although the hottest star, WD0631 + 107, can have trace levels of homogeneously mixed helium less than 10 exp -4.2. The analysis of the soft x-ray observations are supplemented with independent determinations of temperature, gravity, and V magnitude. The method of determination employed is to fit the well-sampled wings of the broad hydrogen absorption profiles with self-consistent model atmosphere predictions. Precise temperatures and gravities are obtained by fitting the observed profiles independently, then jointly determining a consistent solution for each object. In this effort, a ground-based observation program was established to obtain high quality spectra of the Balmer delta and gamma lines and in

  14. New Insights into the Problem of the Surface Gravity Distribution of Cool DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Bergeron, P.; Kalirai, J. S.; Gianninas, A.

    2010-04-01

    We review at length the longstanding problem in the spectroscopic analysis of cool hydrogen-line (DA) white dwarfs (T eff< 13,000 K) where gravities are significantly higher than those found in hotter DA stars. The first solution that has been proposed for this problem is a mild and systematic helium contamination from convective mixing that would mimic the high gravities. We constrain this scenario by determining the helium abundances in six cool DA white dwarfs using high-resolution spectra from the Keck I 10 m telescope. We obtain no detections, with upper limits as low as He/H = 0.04 in some cases. This allows us to put this scenario to rest for good. We also extend our model grid to lower temperatures using improved Stark profiles with non-ideal gas effects from Tremblay & Bergeron and find that the gravity distribution of cool objects remains suspiciously high. Finally, we find that photometric masses are, on average, in agreement with expected values, and that the high-log g problem is so far unique to the spectroscopic approach.

  15. NEW INSIGHTS INTO THE PROBLEM OF THE SURFACE GRAVITY DISTRIBUTION OF COOL DA WHITE DWARFS

    SciTech Connect

    Tremblay, P.-E.; Bergeron, P.; Gianninas, A.; Kalirai, J. S. E-mail: bergeron@astro.umontreal.c E-mail: gianninas@astro.umontreal.c

    2010-04-01

    We review at length the longstanding problem in the spectroscopic analysis of cool hydrogen-line (DA) white dwarfs (T{sub eff}< 13,000 K) where gravities are significantly higher than those found in hotter DA stars. The first solution that has been proposed for this problem is a mild and systematic helium contamination from convective mixing that would mimic the high gravities. We constrain this scenario by determining the helium abundances in six cool DA white dwarfs using high-resolution spectra from the Keck I 10 m telescope. We obtain no detections, with upper limits as low as He/H = 0.04 in some cases. This allows us to put this scenario to rest for good. We also extend our model grid to lower temperatures using improved Stark profiles with non-ideal gas effects from Tremblay and Bergeron and find that the gravity distribution of cool objects remains suspiciously high. Finally, we find that photometric masses are, on average, in agreement with expected values, and that the high-log g problem is so far unique to the spectroscopic approach.

  16. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  17. Toward a Network of Faint DA White Dwarfs as High-precision Spectrophotometric Standards

    NASA Astrophysics Data System (ADS)

    Narayan, G.; Axelrod, T.; Holberg, J. B.; Matheson, T.; Saha, A.; Olszewski, E.; Claver, J.; Stubbs, C. W.; Bohlin, R. C.; Deustua, S.; Rest, A.

    2016-05-01

    We present the initial results from a program aimed at establishing a network of hot DA white dwarfs to serve as spectrophotometric standards for present and future wide-field surveys. These stars span the equatorial zone and are faint enough to be conveniently observed throughout the year with large-aperture telescopes. The spectra of these white dwarfs are analyzed in order to generate a non-local-thermodynamic-equilibrium model atmosphere normalized to Hubble Space Telescope colors, including adjustments for wavelength-dependent interstellar extinction. Once established, this standard star network will serve ground-based observatories in both hemispheres as well as space-based instrumentation from the UV to the near IR. We demonstrate the effectiveness of this concept and show how two different approaches to the problem using somewhat different assumptions produce equivalent results. We discuss the lessons learned and the resulting corrective actions applied to our program.

  18. DA white dwarfs from the LSS-GAC survey DR1: the preliminary luminosity and mass functions and formation rate

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Liu, X.-W.; Cojocaru, R.; Yuan, H.-B.; Torres, S.; García-Berro, E.; Xiang, M.-X.; Huang, Y.; Koester, D.; Hou, Y.; Li, G.; Zhang, Y.

    2015-06-01

    Modern large-scale surveys have allowed the identification of large numbers of white dwarfs. However, these surveys are subject to complicated target selection algorithms, which make it almost impossible to quantify to what extent the observational biases affect the observed populations. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) Spectroscopic Survey of the Galactic anticentre (LSS-GAC) follows a well-defined set of criteria for selecting targets for observations. This advantage over previous surveys has been fully exploited here to identify a small yet well-characterized magnitude-limited sample of hydrogen-rich (DA) white dwarfs. We derive preliminary LSS-GAC DA white dwarf luminosity and mass functions. The space density and average formation rate of DA white dwarfs we derive are 0.83 ± 0.16 × 10-3 pc-3 and 5.42 ± 0.08 × 10-13 pc-3 yr-1, respectively. Additionally, using an existing Monte Carlo population synthesis code we simulate the population of single DA white dwarfs in the Galactic anticentre, under various assumptions. The synthetic populations are passed through the LSS-GAC selection criteria, taking into account all possible observational biases. This allows us to perform a meaningful comparison of the observed and simulated distributions. We find that the LSS-GAC set of criteria is highly efficient in selecting white dwarfs for spectroscopic observations (80-85 per cent) and that, overall, our simulations reproduce well the observed luminosity function. However, they fail at reproducing an excess of massive white dwarfs present in the observed mass function. A plausible explanation for this is that a sizable fraction of massive white dwarfs in the Galaxy are the product of white dwarf-white dwarf mergers.

  19. The discontinuity near 1600 A in the spectra of DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1984-01-01

    Ultraviolet spectroscopic observations of two relatively cool DA white dwarfs, L481 - 60 (= WD 1544 - 37) and BPM 1266 ( = WD 2105 - 82), with the International Ultraviolet Explorer (IUE) satellite show a strong drop in their spectral energy distributions below 1600 A. Published model atmospheres and thier visual spectra suggest that these two stars have effective temperatures in the vicinity of 9,000-10,000 K, and it is proposed that the 1600 A feature could be due to the 342(1S) 3s2(1S) photoionization edge of Mg I.

  20. A Possible Solution to the Lyman/Balmer Line Problem in Hot DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Preval, Simon P.; Barstow, Martin A.; Badnell, Nigel R.; Holberg, Jay B.; Hubeny, Ivan

    2015-06-01

    Arguably, the best method for determining the effective temperature (Teff) and surface gravity (log g) of a DA white dwarf is by fitting the Hydrogen Lyman and Balmer absorption features. However, as has been shown for white dwarfs with Teff>50,000K, the calculated value from the Lyman and Balmer lines are discrepant, which worsens with increasing temperature. Many different solutions have been suggested, ranging from the input physics used to calculate the models, to interstellar reddening. We will focus on the former, and consider three variables. The first is the atomic data used, namely the number of transitions included in line blanketing treatments and the photoionization cross sections. The second is the stark broadening treatment used to synthesise the Lyman and Balmer line profiles, namely the calculations performed by Lemke (1997) and Tremblay & Bergeron (2009). Finally, the third is the atmospheric content. The model grids are calculated with a pure H composition, and a metal polluted composition using the abundances of Preval et al. (2013). We present the preliminary results of our analysis, whereby we have determined the Teff for a small selection of white dwarfs. We plan to extend our analysis by allowing metallicity to vary in future model grids.

  1. L151-81A/B - A unique white dwarf binary with DB and DA components

    NASA Technical Reports Server (NTRS)

    Oswalt, Terry D.; Hintzen, Paul M.; Liebert, James W.; Sion, Edward M.

    1988-01-01

    Spectroscopic observations of the wide binary L151-81A/B reveal that both components are white dwarfs with spectral types DB3 and DA4, the first such binary identified in a comprehensive survey of Luyten and Giclas common proper motion pairs. Assuming log g = 8, measurements of the helium line profiles in the DB primary yield Teff = 16,000 + or - 2,000, while the hydrogen profiles for the DA companion yield Teff =12,000 + or - 2,000. The existence of a helium-rich/hydrogen-rich degenerate pair offers several interesting tests of theoretical white dwarf formation channels and surface abundance evolution.

  2. High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey. III. DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Koester, D.; Voss, B.; Napiwotzki, R.; Christlieb, N.; Homeier, D.; Lisker, T.; Reimers, D.; Heber, U.

    2009-10-01

    Context: The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims: Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods: The spectra are compared with theoretical model atmospheres using a χ2 fitting technique. Results: Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new). Based on data obtained at the Paranal Observatory of the European Southern Observatory for programmes 165.H-0588 and 167.D-0407.

  3. Why DA and DB white dwarfs do not show coronal activity and p-mode oscillations

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Fontenla, J. M.

    1989-01-01

    The problems of nonradiative heating of outer atmospheric layers and p-mode oscillations in white dwarfs caused by acoustic waves generated in convective zones are discussed. These effects have been studied by calculating the cutoff periods for adiabatic and isothermal waves propagating in atmospheres of DA and DB stars with Teff greater than or equal 20,000 K and log g = 6-9. The obtained cutoff periods are approximately bounded by 0.01 and 40 sec for high- and low-gravity white dwarfs, respectively. Expected amplitudes of p-mode oscillations corresponding to trapped acoustic waves with small angular wave numbers are estimated, indicating that the amplitudes could be observed as Doppler shifts of spectral lines which might be detectable if adequate spectral resolution were available. The luminosity variations corresponding to these amplitudes are unlikely to be observable when all damping processes are accounted for. Results also indicate that the present theory of convection predicts some irregularities in the behavior of physical parameters.

  4. Why DA and DB white dwarfs do not show coronal activity and p-mode oscillations

    SciTech Connect

    Musielak, Z.E.; Fontenla, J.M. )

    1989-11-01

    The problems of nonradiative heating of outer atmospheric layers and p-mode oscillations in white dwarfs caused by acoustic waves generated in convective zones are discussed. These effects have been studied by calculating the cutoff periods for adiabatic and isothermal waves propagating in atmospheres of DA and DB stars with Teff greater than or equal 20,000 K and log g = 6-9. The obtained cutoff periods are approximately bounded by 0.01 and 40 sec for high- and low-gravity white dwarfs, respectively. Expected amplitudes of p-mode oscillations corresponding to trapped acoustic waves with small angular wave numbers are estimated, indicating that the amplitudes could be observed as Doppler shifts of spectral lines which might be detectable if adequate spectral resolution were available. The luminosity variations corresponding to these amplitudes are unlikely to be observable when all damping processes are accounted for. Results also indicate that the present theory of convection predicts some irregularities in the behavior of physical parameters. 34 refs.

  5. A new driving mechanism for stellar pulsations

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    1987-03-01

    A new driving mechanism termed "convective blocking", a variation of the normal κ- and γ-mechanisms in Cepheids, is demonstrated using two models of hydrogen white dwarf stars. This mechanism is shown to be physically reasonable in the limit of frozen convection (implying the time scale for convective readjustment is long compared to a pulsation period). Some qualitative effects are given for when the two time scales are not as disparate.

  6. Characteristics of Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Mann, I. R.; Samara, M.; Michell, R.

    2013-12-01

    We have investigated the spatiotemporal characteristics of pulsating auroral patches observed with an all-sky imager located at Poker Flat, Alaska. Pulsating aurora often covers the entire sky with intermixed large and small-scale patches that vary in intensity or disappear and reappear on different time scales and timings. The broad definition of pulsating aurora covers patches and bands from tens to several tens of km which have a quasi-periodic temporal variation from 1 s to tens of seconds. In this paper we examine >15 patches from different events. We analyze all-sky movies (557.7 nm, 3.31 Hz) with a simple, yet robust, technique that allows us to determine the scale size dependent variability of the >15 individual patches. A spatial 2D Fourier Transform is used to separate the aurora into different horizontal scale sizes, and by correlating each patch for all image separations and available scale sizes smaller than the patch itself, we reveal what scale sizes are pulsating and their variability. The patches are found to be persistent, meaning that we can follow them for typically 5 minutes. The period of the pulsations is often remarkably variable and it seems that only certain scale sizes pulsate (typically the size of the patch). The patches drift with the background ExB plasma drift indicating that the magnetospheric source mechanism drifts with the field lines.

  7. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    NASA Astrophysics Data System (ADS)

    Bell, K. J.; Hermes, J. J.; Bischoff-Kim, A.; Moorhead, S.; Castanheira, B. G.; Montgomery, M. H.; Winget, D. E.

    2015-09-01

    KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf) identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  8. The circumstellar nature of the metallic features in a hot DA white dwarf

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Bruhweiler, F. C.; Andersen, J.

    1995-01-01

    A new co-added IUE echelle spectrum of the bright DA white dwarf CD -38 deg 10980, together with a newly determined radial velocity for this star, indicate that the sharp lined Si and C absorption features seen in the UV are clearly circumstellar in origin. Absorption in both excited and ground state transitions occurs at a velocity displaced by -12.1 +/- 2.0 km.s with respect to the photospheric velocity. Weak features due to the Si IV doublet are seen at a velocity intermediate between that of the circumstellar features and the photosphere. First time estimates of column densities for excited and ground states of C II, Si II, and Si III are derived. These quantities are used with electron density estimates derived from these species to determine the location and physical conditions of the circumstellar gas in the vicinity of CD -38 deg 10980. If collisional excitation alone is responsible for the excited levels of Si III observed in CD -38 deg 10980, then electron densities in the circumstellar gas must exceed 10(exp 9)/cu cm. Substantially lower electron densities are possible if the circumstellar gas is located near enough to the star so that photoexcitation is the dominant process responsible for the excited lines seen in the UV. Strong limits are placed on the photospheric abundance of Si and C in the star itself. These limits are in sharp contrast to the theoretical predictions of radiative levitation in which Si, but not C, is expected in the photosphere of a white dwarf such as CD -38 deg 10980. The interstellar line of sight to CD -38 deg 10980 is also investigated.

  9. SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS: STARK BROADENING OF HYDROGEN LINES INCLUDING NONIDEAL EFFECTS

    SciTech Connect

    Tremblay, P.-E.; Bergeron, P. E-mail: bergeron@astro.umontreal.ca

    2009-05-10

    We present improved calculations for the Stark broadening of hydrogen lines in dense plasmas typical of white dwarf atmospheres. Our new model is based on the unified theory of Stark broadening from Vidal, Cooper, and Smith. For the first time, we account for the nonideal effects in a consistent way directly inside the line profile calculations. The Hummer and Mihalas theory is used to describe the nonideal effects due to perturbations on the absorber from protons and electrons. We use a truncation of the electric microfield distribution in the quasi-static proton broadening to take into account the fact that high electric microfields dissociate the upper state of a transition. This approach represents a significant improvement over previous calculations that relied on the use of an ad hoc parameter to mimic these nonideal effects. We obtain the first model spectra with line profiles that are consistent with the equation of state. We revisit the properties of DA stars in the range 40,000 K >T {sub eff}> 13,000 K by analyzing the optical spectra with our improved models. The updated atmospheric parameters are shown to differ substantially from those published in previous studies, with a mean mass shifted by +0.034 M {sub sun}. We also show that these revised atmospheric parameters yield absolute visual magnitudes that remain in excellent agreement with trigonometric parallax measurements.

  10. Establishing a Network of Next Generation SED Standards with DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Saha, Abhijit; Matheson, Thomas; Holberg, Jay B.; Olszewski, Edward W.; Stubbs, Christopher; Deustua, Susana E.; Bohlin, Ralph; Gilliland, Ronald L.; Rest, Armin; Sabbi, Elena; MacKenty, John W.; Axelrod, Tim S.

    2015-01-01

    Photometric calibration uncertainties are the dominant source of error in current type Ia supernova dark energy studies, and other forefront cosmology efforts, e.g., photo-redshifts for weak lensing mass tomography. Modern 'all-sky' surveys require a network of calibration stars with 1) known SEDs (to properly and unambiguously account for filter differences), and 2) that are on a common photometric zero-point scale. We use the HST to establish this essential network of faint (16-20th mag) spectrophotometric standards, by eliminating the time-variable Earth's atmosphere, and by exploiting the well-understood energy distributions of DA white dwarfs. We present UVOIR data from cycle 20, early data from cycle 22, and high S/N ground-based spectroscopy from a variety of large aperture facilities. Our data allows us to simultaneously determine temperature, log(g) and any applicable reddening. This allows our sample to be used as flux standards at wavelengths well beyond the range of HST, and in any arbitrary passband. This sample will constitute the gold-standard with which to directly calibrate, and cross-validate the survey data products. We demonstrate sub-percent precision between the different objects. Our program is critical to extending the precision photometric heritage from HST to the benefit of essentially all existing and upcoming surveys, standardizes (spectro)photometry across observatories and facilities, and directly addresses one of the current barriers to understanding the nature of dark energy.

  11. A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DA Stars

    NASA Astrophysics Data System (ADS)

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.; Williams, Kurtis A.

    2010-03-01

    We measure apparent velocities (v app) of the Hα and Hβ Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the European Southern Observatory SN Ia progenitor survey (SPY). Assuming these WDs are nearby and comoving, we correct our velocities to the local standard of rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, [vg]: we find [vg] = [vapp] = 32.57 ± 1.17 km s-1. Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647+0.013 -0.014 Msun. We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay & Bergeron. Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic T eff both above and below 12,000 K fits to line profiles give a rapid increase in the mean mass with decreasing Teff. Our results are consistent with no significant change in mean mass: [M]hot = 0.640 ± 0.014 M⊙ and [M]cool = 0.686+0.035 -0.039 M⊙.

  12. Spectroscopic Analysis of DA White Dwarfs: Stark Broadening of Hydrogen Lines Including Nonideal Effects

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Bergeron, P.

    2009-05-01

    We present improved calculations for the Stark broadening of hydrogen lines in dense plasmas typical of white dwarf atmospheres. Our new model is based on the unified theory of Stark broadening from Vidal, Cooper, and Smith. For the first time, we account for the nonideal effects in a consistent way directly inside the line profile calculations. The Hummer and Mihalas theory is used to describe the nonideal effects due to perturbations on the absorber from protons and electrons. We use a truncation of the electric microfield distribution in the quasi-static proton broadening to take into account the fact that high electric microfields dissociate the upper state of a transition. This approach represents a significant improvement over previous calculations that relied on the use of an ad hoc parameter to mimic these nonideal effects. We obtain the first model spectra with line profiles that are consistent with the equation of state. We revisit the properties of DA stars in the range 40,000 K >T eff> 13,000 K by analyzing the optical spectra with our improved models. The updated atmospheric parameters are shown to differ substantially from those published in previous studies, with a mean mass shifted by +0.034 M sun. We also show that these revised atmospheric parameters yield absolute visual magnitudes that remain in excellent agreement with trigonometric parallax measurements.

  13. Components of chicken egg white extract smaller than 3 kDa in size promote 293T cell proliferation.

    PubMed

    Ruan, Guang-Ping; Yao, Xiang; Wang, Jin-Xiang; Liu, Ju-Fen; Shu, Fan; Li, Zi-An; Pang, Rong-Qing; Pan, Xing-Hua

    2016-08-01

    We previously found that chicken egg white extract could promote cell survival and proliferation. In the present study, we further separated this extract into its components to identify those primarily responsible for promoting cell proliferation. Components of differing molecular weight were separated from chicken egg white extract by ultrafiltration and 293T cell cultures were supplemented with various concentrations. The effects on cell proliferation were subsequently determined by a CellTiter 96 Aqueous One Solution Cell Proliferation Assay kit (Promega). We demonstrate that components from chicken egg white smaller than 3 kDa in size are able to function as active ingredients promoting cellular proliferation. This discovery may identify a new and convenient additive for cell culture media to promote cell growth and proliferation. PMID:26541834

  14. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  15. Interaction Between Convection and Pulsation

    NASA Astrophysics Data System (ADS)

    Houdek, Günter; Dupret, Marc-Antoine

    2015-12-01

    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.

  16. Pulsating aurora: Source region & morphology

    NASA Astrophysics Data System (ADS)

    Jaynes, Allison

    Pulsating aurora, a common phenomenon in the polar night sky, offers a unique opportunity to study the precipitating particle populations responsible for this subtle yet fascinating display of lights. The conjecture that the source of these electrons originates near the equator, made decades ago, has now been confirmed using in-situ measurements. In this thesis, we present these results that compare the frequencies of equatorial electron flux pulsations and pulsating aurora luminosity fluctuations at the ionospheric footprint. We use simultaneous satellite-based data from GOES 13 and ground-based data from the THEMIS allsky imager array to show that there is a direct correlation between luminosity fluctuations near the ground and particle pulsations in equatorial space; the source region of the pulsating aurora. Pulsating aurora almost exclusively occurs embedded within a region of diffuse aurora. By studying the two particle populations, one can contribute to the theory behind auroral pulsations. The interplay between the two auroral types, and the systems that control them, are not yet well known. We analyze ground optical observations of pulsating aurora events to attempt to characterize the relationship between the two types of auroral precipitation. Pulsating aurora is a significant component of energy transfer within the framework of magnetosphere-ionosphere coupling. Further study of the morphology, total energy deposition, and the pulsation mechanism of pulsating aurora is key to a better understanding of our earth-sun system.

  17. Establishing a Network of faint DA white dwarfs as Spectrophotometric Standards

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Narayan, Gautham; Holberg, Jay; Matheson, Thomas; Olszewski, Edward; Stubbs, Christopher; Bohlin, Ralph; Sabbi, Elena; Deustua, Susana; Rest, Armin; Axelrod, Tim; MacKenty, John W.; Camarota, Larry; Gilliland, Ron

    2015-08-01

    Systematic uncertainties in photometric calibration are the dominant source of error in current type Ia supernova dark energy studies, as well as other forefront cosmology efforts, e.g. photo-redshift determinations for weak lensing mass tomography. Current and next-generation ground-based all-sky surveys require a network of calibration stars with 1) known SEDs (to properly and unambiguously take into account filter differences), and 2) that are on a common photometric zeropoint scale across the sky to sub-percent accuracy. We are using a combination of HST panchromatic photometry and ground based spectroscopy to establish such an essential network of faint primary photometric standards, exploiting the well-understood spectral energy distributions of DA white dwarf stars that are free from the complications of observing through the Earth's time-variable atmosphere. The Balmer features in the spectra are used to deduce the two parameters (temperature and log(g)) from which we model the spectral energy distribution (SED) from these stars which have pure hydrogen atmospheres. By comparing against panchromatic broadband HST photometry, and allowing for an achromatic zero-point adjustment and mild scaling of the interstellar reddening, we find that model prediction and observation agree to a few milli-mag. By combining the zero-point and reddening adjustments with the modeled SED, for each star we obtain the incident SED above the terrestrial atmosphere, thus establishing these objects as spectrophotometric standards. We are pursuing 23 objects between 16 and 19 mag spread over the sky uniformly around the equator and northern mid-latitudes, with plans to extend this to southern latitudes. This precision photometric heritage from HST will benefit essentially all existing and upcoming survey projects, and in prticular, directly addresses one of the current barriers to understanding the nature of dark energy.

  18. A GRAVITATIONAL REDSHIFT DETERMINATION OF THE MEAN MASS OF WHITE DWARFS. DA STARS

    SciTech Connect

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.; Williams, Kurtis A. E-mail: dew@astro.as.utexas.ed E-mail: kurtis@astro.as.utexas.ed

    2010-03-20

    We measure apparent velocities (v{sub app}) of the Halpha and Hbeta Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the European Southern Observatory SN Ia progenitor survey (SPY). Assuming these WDs are nearby and comoving, we correct our velocities to the local standard of rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, (v{sub g}): we find (v{sub g}) = (v{sub app}) = 32.57 +- 1.17 km s{sup -1}. Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647{sup +0.013}{sub -0.014} M{sub sun}. We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay and Bergeron. Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic T{sub eff} both above and below 12,000 K; fits to line profiles give a rapid increase in the mean mass with decreasing T{sub eff}. Our results are consistent with no significant change in mean mass: (M){sup hot} = 0.640 +- 0.014 M{sub sun} and (M){sup cool} = 0.686{sup +0.035}{sub -0.039} M{sub sun}.

  19. Search for optical pulsations in PSR J0337+1715

    DOE PAGESBeta

    Strader, M. J.; Archibald, A. M.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; van Eyken, J. C.; Ulbricht, G.; Stoughton, C.; Bumble, B.; Kaplan, D. L.; et al

    2016-03-20

    In this study, we report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS) at the 200" Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11000 angstroms, and we can limit pulsed emission in g-band to be fainter than 25 mag.

  20. Search for optical pulsations in PSR J0337+1715

    NASA Astrophysics Data System (ADS)

    Strader, M. J.; Archibald, A. M.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; van Eyken, J. C.; Ulbricht, G.; Stoughton, C.; Bumble, B.; Kaplan, D. L.; Mazin, B. A.

    2016-06-01

    We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 arcsec Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11 000 Å, and we can limit pulsed emission in g band to be fainter than 25 mag.

  1. The Fraction of DA White Dwarfs with Kilo--Gauss Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jordan, S.; Aznar Cuadrado, R.; Napiwotzki, R.; Schmid, H. M.; Solanki, S. K.

    2007-09-01

    Current estimates for white dwarfs with fields in excess of 1 MG are about 10%; according to our first high-precision circular-polarimetric study of 12 bright white dwarfs with the VLT tep{p26_Aznar-etal:04} this number increases up to about 25%\\ in the kG regime. With our new sample of ten white dwarf observations (plus one sdO star) we wanted to improve the sample statistics to determine the incident of kG magnetic fields in white dwarfs. In one of our objects (LTT 7987) we detected a statistically significant (97% confidence level) longitudinal magnetic field varying between (-1± 0.5) kG and (+1± 0.5) kG. This would be the weakest magnetic field ever found in a white dwarf, but at this level of accuracy, systematic errors cannot completely be ruled out. Together with previous investigations, the fraction of kG magnetic fields in white dwarfs amounts to about 11-15% , which is close to current estimates for highly magnetic white dwarfs (>1 MG).

  2. OGLE and pulsating stars

    NASA Astrophysics Data System (ADS)

    Udalski, A.

    2016-05-01

    OGLE-IV is currently one of the largest sky variability surveys worldwide, focused on the densest stellar regions of the sky. The survey covers over 3000 square degrees and monitors regularly over a billion sources. The main targets include the inner Galactic bulge and the Magellanic System. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk. The current status, prospects, and the latest results of the OGLE-IV survey focused on pulsating stars, in particular RR Lyrae variables, are presented.

  3. Comparison of atmospheric parameters determined from spectroscopy and photometry for DA white dwarfs in the Sloan Digital Sky Survey

    SciTech Connect

    Genest-Beaulieu, C.; Bergeron, P. E-mail: bergeron@astro.umontreal.ca

    2014-12-01

    We present a comparative analysis of atmospheric parameters obtained with the so-called photometric and spectroscopic techniques. Photometric and spectroscopic data for 1360 DA white dwarfs from the Sloan Digital Sky Survey (SDSS) are used, as well as spectroscopic data from the Villanova White Dwarf Catalog. We first test the calibration of the ugriz photometric system by using model atmosphere fits to observed data. Our photometric analysis indicates that the ugriz photometry appears well calibrated when the SDSS to AB{sub 95} zeropoint corrections are applied. The spectroscopic analysis of the same data set reveals that the so-called high-log g problem can be solved by applying published correction functions that take into account three-dimensional hydrodynamical effects. However, a comparison between the SDSS and the White Dwarf Catalog spectra also suggests that the SDSS spectra still suffer from a small calibration problem. We then compare the atmospheric parameters obtained from both fitting techniques and show that the photometric temperatures are systematically lower than those obtained from spectroscopic data. This systematic offset may be linked to the hydrogen line profiles used in the model atmospheres. We finally present the results of an analysis aimed at measuring surface gravities using photometric data only.

  4. Chandra grating spectroscopy of three hot white dwarfs

    NASA Astrophysics Data System (ADS)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2012-10-01

    Context. High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB 1919) and the other is a non-DA of spectral type PG 1159 (PG 1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD 246). Aims: The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB 1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD 246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG 1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods: The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results: No metals could be identified in LB 1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD 246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG 1520+525 constrains the effective temperature to Teff = 150 000 ± 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GW Vir class (PG 1159 - 035) defines the location of the blue edge of the GW Vir

  5. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    NASA Technical Reports Server (NTRS)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  6. A search for pulsations in planetary nebulae nuclei

    SciTech Connect

    Hine, B.P.A. III.

    1988-01-01

    The author presents the results of a survey of the central stars of planetary nebulae design to detect g-mode pulsations driven by hydrogen and/or helium shell burning. Using newly developed high-speed photometric instrumentation to overcome the inherent difficulties in observing these central stars in the presence of their nebulae, he has obtained time-series photometric data for 51 central stars in an effort to detect the g-mode pulsations predicted by Kawaler and his colleagues. He detects no periodic variations, for periods between 40 and 500 seconds, in the data down to a limit of approximately 0.5 (average) millimagnitudes. Since the theoretical calculations require these pulsations in the presence of shell burning, he must conclude that either the shell burning sources are extinguished prior to this evolutionary stage, or some mechanism is inhibiting the growth of these pulsations. If the shell burning source is indeed extinguished prior to the central star becoming a white dwarf, then this implies that white dwarfs are formed with hydrogen layer masses less than 10{sup {minus}6}M mass of sum.

  7. Pulsating incinerator hearth

    SciTech Connect

    Basic, J.N. Sr.

    1984-10-09

    A pulsating hearth for an incinerator wherein the hearth is suspended on a fixed frame for movement in a limited short arc to urge random size particles burning in a pile on the hearth in a predetermined path intermittently across the surface of the heart. Movement is imparted to the hearth in periodic pulses preferably by inflating sets of air bags mounted on the frame, which stroke the hearth to move it a short distance from an initial position and jar it against the frame, thus impelling the burning particles a short distance by inertia and concurrently stoking the burning pile upon each stroke, and then returning the hearth to its initial position. The hearth may also have a plurality of nozzles connected to a source of air for delivering gently flowing air to the burning pile on the hearth.

  8. A Search for Metal Lines in the Spectra of DA White Dwarfs

    NASA Technical Reports Server (NTRS)

    Wegner, G. A.

    1986-01-01

    A theoretical analysis was carried out in order to interpret the ultraviolet spectra of DB white dwarfs obtained earlier with the International Ultraviolet Explorer (IUE) satellite. Here the results of the IUE ultraviolet spectroscopy combined with visual data and model atmospheres of DB white dwarfs are reported. In particular, a search for spectra lines due to the element carbon using the ultraviolet was made. In no case is there a positive detection of carbon and from these data, and upper limits for carbon by number relative to helium are derived in the range of C: He 10 to the minus 5 power to 10 to the minus 7 power for the 16 DB stars with ultraviolet spectra in the temperature range 11400 K T sub EFF less than 2300 K. The low carbon abundances found in the atmospheres of the DB stars agree well with the hypothesis that the atmospheric carbon observed in the cooler DQ members of the helium-rich white dwarf sequence is produced by a convective dredging mechanism.

  9. Decoding the Rich Pulsation Spectrum of EC 14012-1446

    NASA Astrophysics Data System (ADS)

    Bischoff-Kim, A.

    2013-12-01

    EC 14012-1446 is a ZZ Ceti star (DAV) that was the object of a Whole Earth Telescope run in 2008. The extended coverage run provided a detailed and well resolved period spectrum for the star, confirming and revealing twenty independent modes of vibration, including one triplet and a few more incomplete triplets. With a large number of modes (for pulsating white dwarfs) and good clues for some of the mode identifications from independent methods, EC 14012-1446 is a good candidate for “fast” asteroseismology, where we try to infer interior structure based on a minimal set of assumptions about stellar evolution. The method also allows some numerical experiments that test the validity of asteroseismic techniques used on white dwarfs. Here we experiment with using modified Echelle diagrams on the pulsation spectrum of EC 14012-1446 to aid mode identification.

  10. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  11. SPECTROSCOPIC ANALYSIS OF THE WHITE DWARF KUV 02196+2816: A NEW UNRESOLVED DA+DB DEGENERATE BINARY

    SciTech Connect

    Limoges, M.-M.; Bergeron, P.; Dufour, Pierre E-mail: bergeron@astro.umontreal.ca

    2009-05-10

    A spectroscopic analysis of the DBA (or DAB) white dwarf KUV 02196+2816 is presented. The observed hydrogen- and helium-line profiles are shown to be incompatible with model spectra calculated under the assumption of a homogeneous hydrogen and helium chemical composition. In contrast, an excellent fit to the optical spectrum of KUV 02196+2816 can be achieved if the object is interpreted as an unresolved double degenerate composed of a hydrogen-line DA star and a helium-line DB star. The atmospheric parameters obtained from the best fit are T {sub eff} = 27170 K and log g = 8.09 for the DA star, T {sub eff} = 36340 K and log g = 8.09 for the DB star, which implies that the total mass of the system (M {approx} 1.4 M {sub sun}) is very close to the Chandrasekhar limit. Moreover, the effective temperature of the DB stars lies well within the so-called DB gap where very few bright DB stars are found. The implications of this discovery with respect to the DAB and DBA spectral classes and to the evolution of double-degenerate binaries are discussed.

  12. On the Role of Resonances in Nonradial Pulsators

    NASA Technical Reports Server (NTRS)

    Buchler, J. R.; Goupil, M. J.; Hansen, C. J.

    1997-01-01

    Resonances or near resonances are ubiquitous among the excited nonradial pulsation modes of variable stars and they must play an important role in determining their pulsational behavior. Here in a first step at nonlinear asteroseismology, we explore some of the consequences of resonances by means of the amplitude equation formalism. We show how parity and angular momentum constraints can be used to eliminate many of the possible nonlinear resonant couplings between modes (and multiplets of modes), and how the amplitude equations can thus be simplified. Even when we may not be able, nor wish, to make an ab initio computation of the values of the coupling coefficients, it is still possible to obtain constraints on the nature of the excited modes if a resonance between observed frequencies can be identified. Resonances can cause nonlinear frequency locking of modes. This means that the observed frequencies appear in exact resonance even though the linear frequencies are only approximately in resonance. The nonlinear frequency lock, when it occurs, it does so over a range of departures from linear resonance, and it is accompanied by constant pulsation amplitudes. The locked, nonlinear frequencies can differ noticeably from their nonresonant counterparts which are usually used in seismology. This is particularly true for multiplets of modes split by rotation. Beyond the regime of the frequency lock, amplitude and frequency modulations can appear in the pulsations. Far from the resonance condition one recovers the regime of steady pulsations with nonresonant frequencies for which the seismological studies, as they are presently carried out, are justified (provided furthermore, of course, that nonlinear frequency shifts are negligible). Success in identifying a resonance in an observed power spectrum depends on the quality of the data. While keeping this limitation in mind, ew discuss the possible existence of peculiar resonances the pulsations specific variable white

  13. Discovery of X-ray pulsations from a massive star.

    PubMed

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-01-01

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism. PMID:24892504

  14. High latitude pulsating aurorae revisited

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. )

    1992-01-03

    Dayside auroral pulsations (10-40 s periods) have been studied for different levels of geomagnetic disturbance with N{sub 2}{sup +} 427.8 nm emission data obtained at South Pole station, Antarctica ({minus}74.2{degree} MLAT). The occurrence distribution exhibits a single peak at magnetic noon under geomagnetically quiet conditions (0 {le} Kp < 1). With increased Kp, the distribution shifts to earlier times, the peak occurring at 1000-1030 MLT for 1 {le} Kp < 4. At these higher Kp levels a secondary occurrence peak is evident in the afternoon sector between 1400 and 1600 MLT, occurring earlier as Kp increases. These results are compared with those obtained separately for pre-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Davis, northern and southern hemisphere sites at approximately the same magnetic latitude as South Pole. South Pole and Ny Alesund observe morning peaks at the same time and with a similar lack of Kp dependence; South Pole and Davis observe afternoon peaks with similar Kp dependence, though the peak occurs earlier at Davis. In contrast to the results from the earlier studies, the South Pole observations show larger pulsation amplitudes in the morning sector and significantly higher occurrence rates overall.

  15. [Bachelard and the mathematical pulsation].

    PubMed

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation. PMID:26223414

  16. Synchronization Model for Pulsating Variables

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Morikawa, M.

    2013-12-01

    A simple model is proposed, which describes the variety of stellar pulsations. In this model, a star is described as an integration of independent elements which interact with each other. This interaction, which may be gravitational or hydrodynamic, promotes the synchronization of elements to yield a coherent mean field pulsation provided some conditions are satisfied. In the case of opacity driven pulsations, the whole star is described as a coupling of many heat engines. In the case of stochastic oscillation, the whole star is described as a coupling of convection cells, interacting through their flow patterns. Convection cells are described by the Lorentz model. In both models, interactions of elements lead to various pulsations, from irregular to regular. The coupled Lorenz model also describes a light curve which shows a semi-regular variability and also shows a low-frequency enhancement proportional to 1/f in its power spectrum. This is in agreement with observations (Kiss et al. 2006). This new modeling method of ‘coupled elements’ may provide a powerful description for a variety of stellar pulsations.

  17. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  18. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  19. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    WDs, causing an overestimated surface gravity, and ultimately determine if these magnetic fields are likely developed through the star's own surface convection zone, or inherited from massive Ap/Bp progenitors. We discovered around 20 000 spectroscopic white dwarfs with the Sloan Digital Sky Survey (SDSS), with a corresponding increase in relatively rare varieties of white dwarfs, including the massive ones (Kleinman et al. 2013, ApJS, 204, 5, Kepler et al. 2013, MNRAS, 439, 2934). The mass distributions of the hydrogen-rich (DA) measured from fitting the spectra with model atmospheres calculated using unidimensinal mixing lenght-theory (MLT) shows the average mass (as measured by the surface gravity) increases apparently below 13 000K for DAs (e.g. Bergeron et al. 1991, ApJ, 367, 253; Tremblay et al. 2011, ApJ, 730, 128; Kleinman et al. 2013). Only with the tridimensional (3D) convection calculations of Tremblay et al. 2011 (A&A, 531, L19) and 2013 (A&A, 552, 13; A&A, 557, 7; arXiv 1309.0886) the problem has finally been solved, but the effects of magnetic fields are not included yet in the mass determinations. Pulsating white dwarf stars are used to measure their interior and envelope properties through seismology, and together with the luminosity function of white dwarf stars in clusters and around the Sun are valuable tools for the study of high density physics, and the history of stellar formation.

  20. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  1. Translocator Protein 18 kDa (TSPO) Is Regulated in White and Brown Adipose Tissue by Obesity

    PubMed Central

    Thompson, Misty M.; Manning, H. Charles; Ellacott, Kate L. J.

    2013-01-01

    Translocator protein 18 kDa (TSPO) is an outer-mitochondrial membrane transporter which has many functions including participation in the mitochondrial permeability transition pore, regulation of reactive oxygen species (ROS), production of cellular energy, and is the rate-limiting step in the uptake of cholesterol. TSPO expression is dysregulated during disease pathologies involving changes in tissue energy demands such as cancer, and is up-regulated in activated macrophages during the inflammatory response. Obesity is associated with decreased energy expenditure, mitochondrial dysfunction, and chronic low-grade inflammation which collectively contribute to the development of the Metabolic Syndrome. Therefore, we hypothesized that dysregulation of TSPO in adipose tissue may be a feature of disease pathology in obesity. Radioligand binding studies revealed a significant reduction in TSPO ligand binding sites in mitochondrial extracts from both white (WAT) and brown adipose tissue (BAT) in mouse models of obesity (diet-induced and genetic) compared to control animals. We also confirmed a reduction in TSPO gene expression in whole tissue extracts from WAT and BAT. Immunohistochemistry in WAT confirmed TSPO expression in adipocytes but also revealed high-levels of TSPO expression in WAT macrophages in obese animals. No changes in TSPO expression were observed in WAT or BAT after a 17 hour fast or 4 hour cold exposure. Treatment of mice with the TSPO ligand PK11195 resulted in regulation of metabolic genes in WAT. Together, these results suggest a potential role for TSPO in mediating adipose tissue homeostasis. PMID:24260329

  2. A New Analysis of the Two Classical ZZ Ceti White Dwarfs GD 165 and Ross 548. I. Photometry and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Fontaine, G.; Bergeron, P.; Brassard, P.; Charpinet, S.; Pfeiffer, B.; Vauclair, G.

    2015-12-01

    We present the first of a two-part seismic analysis of the two bright hot ZZ Ceti stars GD 165 and Ross 548. In this first part, we report the results of frequency extraction exercises based on time-series data sets of exceptional quality. We uncovered up to 13 independent pulsation modes in GD 165, regrouped into six main frequency multiplets. These include 9 secure (signal-to-noise ratio, S/N > 4) detections and 4 possible ones (4 ≥ S/N ≥ 3). Likewise, we isolated 11 independent modes in Ross 548 (9 secure and 2 possible detections), also regrouped into 6 multiplets. The multiplet structure is likely caused by rotational splitting. We also provide updated estimates of the time-averaged atmospheric properties of these two pulsators in the light of recent developments on the front of atmospheric modeling for DA white dwarfs.

  3. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey and Ultraviolet Absorptions in the Spectra of DA White Dwarfds

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1988-01-01

    Research under NASA Grant NAG5-287 has carried out a number of projects in conjunction with the International Ultraviolet Explorer (IUE) satellite. These include: (1) studies of the UV spectra of DA white dwarfs which show quasi-molecular bands of H2 and H2(+); (2) the peculiar star HR6560; (3) the UV spectra of two magnetic white dwarfs that also show the quasi-molecular features; (4) investigations of the UV spectra of subluminous stars, primarily identified from visual wavelength spectroscopy in the Kiso survey of UV excess stars, some of which show interesting metal lines in their UV spectra; and (5) completion of studies of UV spectra of DB stars. The main result of this research has been to further knowledge of the structure and compositions of subluminous stars which helps cast light on their formation and evolution.

  4. Pulsations, Boundary Layers, and Period Bounce in the Cataclysmic Variable RE J1255+266

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Thorstensen, John R.; Kemp, Jonathan

    2005-05-01

    We report time-series photometry of the quiescent optical counterpart of the EUV transient RE J1255+266. The star appears as a DA white dwarf with bright emission lines and a complex spectrum of periodic signals in its light curve. A signal at 0.0829 days is likely to be the orbital period of the underlying cataclysmic binary (probably a dwarf nova). Characteristic periods of 1344, 1236, and 668 s are seen, as well as a host of weaker signals. We interpret these noncommensurate signals as (nonradial) pulsation periods of the white dwarf. The donor star is unseen at all wavelengths, and the accretion rate is very low. We estimate a distance of 180+/-50 pc and MV=14.6+/-1.3 for the accretion light. The binary probably represents a very late stage of evolution, with the donor star whittled down to M2<0.05 Msolar. Such binaries stubbornly resist discovery due to their faintness and reluctance to erupt, but are probably a very common type of cataclysmic variable. If the signal at 0.0829 days is indeed the orbital period, then the binary is an excellent candidate as a ``period bouncer.'' Plausible colleagues in this club include four dwarf novae and the (so far) noneruptive stars GD 552 and 1RXS J105010.3-140431. The 1994 EUV eruption implies a soft X-ray/EUV luminosity of 1034-1035 ergs s-1, greater than that of any other dwarf nova. We attribute that to a favorable blend of properties: a high-mass white dwarf, a very transparent line of sight (the ``local chimney''), and a low binary inclination. The first maximizes the expected temperature and luminosity of boundary-layer emission; the other two increase the likelihood that soft X-rays can survive their perilous passage through an accretion-disk wind and the interstellar medium.

  5. Auroral pulsations from ionospheric winds

    SciTech Connect

    Nakada, M.P. )

    1989-11-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pederson currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  6. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  7. Discovery of a new PG 1159 (GW Vir) pulsator

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Fraga, Luciano; Winget, Don Earl; Bell, Keaton; Córsico, Alejandro H.; Werner, Klaus

    2014-08-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12 + 085232.18. Analysis of the spectrum by Werner et al. indicated Teff = 120 000 ± 10 000 K, log g = 7.0 ± 0.3, mass {M}=0.52 ± 0.02 M_{⊙}, C/He = 0.33 by number. We obtained time series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  8. The discovery of Ni V in the photospheres of the hot DA white dwarfs RE 2214-492 and G191-B2B

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Hubeny, I.; Barstow, M. A.; Lanz, T.; Sion, E. M.; Tweedy, R. W.

    1994-01-01

    We have co-added six recently obtained International Ultraviolet Explorer (IUE) echelle spectra of the hot DA white dwarf RE 2214-492 and 10 existing archive spectra of the well-known hot DA, G191-B2B. We find that both stars contain numerous weak features due to Ni V. Nickel is thus the second iron-group element to be found in the spectra of the very hottest DA white dwarfs. In addition to Ni V, we also observe Al III in both stars and present evidence for the possible presence of Ni IV and Fe IV in RE 2214-492. The presence of Ni and Al, together with previously reported elements, will contribute significantly to both the EUV opacity and to the apparent complexity of the UV spectra of these stars. Using Non-Local Thermodynamic Equilibrium (NLTE) model atmospheres we estimate the Ni abundances in RE 2214-492 the G191-B2B to be log(Ni/H) = -5.5 +/- 0.3 and -6.0 +/- 0.3, respectively.

  9. The morphology of displays of pulsating auroras.

    NASA Technical Reports Server (NTRS)

    Cresswell, G. R.

    1972-01-01

    An auroral substorm generates displays of pulsating auroras in ways which show a dependence upon both local time and latitude relative to the auroral oval. For several hours after midnight pulsating auroras can be observed in the wake of poleward expansions or within equatorward spreading diffuse envelopes of meridional extent of several hundred kilometers. As the dawn meridian is approached the displays of pulsating auroras tend increasingly to be comprised of distinct eastward drifting patches easily recorded by all-sky cameras.

  10. Dayside Pi 2 pulsations at low altitudes

    SciTech Connect

    Sutcliffe, P.R. ); Yumoto, Kiyohumi )

    1989-08-01

    In this paper the authors investigate the occurrence of dayside Pi 2 geomagnetic pulsations at low and mid latitudes. The technique of data adaptive filtering is used to identify Pi 2's concealed by the presence of typical daytime Pc type pulsations. Convincing new evidence is presented demonstrating that Pi 2 pulsations occur simultaneously in both the nightside and dayside hemispheres at low latitudes. Dayside Pi 2's are occasionally identified at mid latitudes. These results have implications with regard to the source mechanism for low latitude Pi 2 pulsations and allude to a global cavity mode.

  11. Constant auroral forms during regular pulsations

    NASA Astrophysics Data System (ADS)

    Roldugin, V. K.; Roldugin, A. V.

    2016-01-01

    A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.

  12. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Warnecke, Sascha; Hof, Bjoern; Avila, Marc

    2014-11-01

    We report an experimental investigation of the transition to turbulence in a pulsating pipe flow. This flow is a prototype of various pulsating flows in both nature and engineering, such as in the cardiovascular system where the onset of turbulence is often possibly related to various diseases (e.g., the formation of aneurysms). The experiments are carried out in a straight rigid pipe using water with a sinusoidal modulation of the flow rate. The governing parameters, Reynolds number, Womersley number α (dimensionless pulsating frequency) and the pulsating amplitude A, cover a wide range 3 < α < 23 and 0 < A < 1 . To characterize the transition to turbulence, we determine how the characteristic lifetime of turbulent spots (/puffs) are affected by the pulsation. While at high pulsation frequencies (α > 12) lifetimes of turbulent spots are entirely unaffected by the pulsation, at lower frequencies they are substantially affected. With decreasing frequency much larger Reynolds numbers are needed to obtain spots of the same characteristic lifetime. Hence at low frequency transition is delayed significantly. In addition the effect of the pulsation amplitude on the transition delay is quantified. Duo Xu would like to acknowledge the support from Humboldt Foundation.

  13. Pi2 pulsations in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lin, C. C.; Cahill, L. J., Jr.

    1975-01-01

    Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.

  14. A COMPREHENSIVE SPECTROSCOPIC ANALYSIS OF DB WHITE DWARFS

    SciTech Connect

    Bergeron, P.; Wesemael, F.; Dufour, Pierre; Beauchamp, A.; Hunter, C.; Gianninas, A.; Limoges, M.-M.; Dufour, Patrick; Fontaine, G.; Saffer, Rex A.; Ruiz, M. T.; Liebert, James E-mail: wesemael@astro.umontreal.ca E-mail: limoges@astro.umontreal.ca E-mail: fontaine@astro.umontreal.ca E-mail: chris.hunter@yale.edu E-mail: mtruiz@das.uchile.cl

    2011-08-10

    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 M{sub sun} for our sample, with a dispersion of only 0.09 M{sub sun}. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M < 0.5 M{sub sun}) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green Survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above T{sub eff} {approx} 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer and a second channel where DB stars retain a helium atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no non-variables, if the hydrogen content of these stars is properly accounted for.

  15. A Dark Spot on a Massive White Dwarf

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope. This work is based on observations obtained at the Gemini Observatory, McDonald Observatory, and the Apache Point Observatory 3.5-m telescope. The latter is owned and operated by the Astrophysical Research Consortium. Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  16. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  17. Limestone calcination during pulsating combustion

    SciTech Connect

    James, R.E. III ); Richards, G.A. )

    1992-01-01

    METC is currently conducting research on enhanced calcination during pulsating combustion as part of the Heat Engines program. It has been shown elsewhere that rapid, high temperature calcination will result in a calcined product with relatively large surface area, as desired for sulfur capture. It is proposed that such a process may occur during pulsating combustion where the oscillating pressure/velocity field around a particle increases the heat/mass transfer to and from the particle. To test this hypothesis, calcination tests in progress at METC use a novel form of pulse combustion called thermal'' pulse combustion, operating at 60000 BTUH, 100 Hz, and 5--15 psig peak-to- peak amplitude. Two configurations are being studied during the testing: one configuration is injection of sorbent into a refractory lined drop tube being heated by the pulse combustor, and the other configuration is injection of the sorbent into the pulse combustor through its centerbody and along the tailpipe at various positions. To understand the observed behavior, a characterization study of the pulse combustor is being conducted. Different flow rates, equivalence ratios, and injection positions are being tested.

  18. A study of the pulsation driving mechanism in pulsating combustors

    NASA Astrophysics Data System (ADS)

    Goldman, Y.; Timnat, Y. M.

    Experiments performed in a facility consisting of a Schmidt-type pulsating combustor, in which high-speed photographs were taken and pressure, temperature and gas composition measured, showed that the air supply conditions at the inlet and the volume of the combustor strongly influence the oscillation frequency. From the measurements, the existence of two separate regions, one containing cold air and the other containing fuel-rich gas, was found, and a pressure-volume diagram was drawn, showing the effect of chemical energy release and heat supply during the compression stroke and differentiating it from the expansion. A model of the interaction between the cyclic combustion process and the acoustic oscillations of the gas volume within the chamber and the tail-pipe is presented. The conditions for chemical energy release that result in high-pressure amplitude are described.

  19. Persistent, widespread pulsating aurora: A case study

    NASA Astrophysics Data System (ADS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.; Jaynes, A. N.

    2013-06-01

    Observations of a pulsating aurora event occurring on 11 February 2008, using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) All-Sky Imager (ASI) array, indicate a spatially and temporally continuous event with a duration of greater than 15 h and covering a region with a maximum size of greater than 10 h magnetic local time. The optical pulsations are at times locally interrupted or drowned out by auroral substorm activity but are observed in the same location once the discrete aurora recedes. The pulsations following the auroral breakup appear to be brighter and have a larger patch size than before breakup. This suggests that, while the onset of pulsating aurora is not necessarily dependent upon a substorm precursor, the pulsations are affected and possibly enhanced by the substorm process. The long duration of this pulsating aurora event, lasting approximately 8 h without interruption as imaged from Gillam station, is significantly longer than the typical 2-3 h substorm recovery phase, suggesting that pulsating aurora is not strictly a recovery phase phenomenon. This paper is accompanied by a movie of the THEMIS ASI array data, from 0000 to 1715 UT, plotted in mosaic and superimposed onto a map of North America.

  20. Pulsations and outbursts of luminous blue variables

    SciTech Connect

    Cox, A.N.; Guzik, J.A.; Soukup, M.S.; Despain, K.M.

    1997-06-01

    We propose an outburst mechanism for the most luminous stars in our and other galaxies. These million solar luminosity stars, with masses (after earlier mass loss) of between 20 and maybe 70 solar masses, are pulsationally unstable for both radial and low-degree nonradial modes. Some of these modes are ``strange,`` meaning mostly that the pulsations are concentrated near the stellar surface and have very rapid growth rates in linear theory. The pulsation driving is by both the high iron line opacity (near 150,000 K) and the helium opacity (near 30,000 K) kappa effects. Periods range from 5 to 40 days. Depending on the composition, pulsations periodically produce luminosities above the Eddington limit for deep layers. The radiative luminosity creates an outward push that readily eases the very low gamma envelope to very large outburst radii. A key point is that a super-Eddington luminosity cannot be taken up by the sluggish convection rapidly enough to prevent an outward acceleration of much of the envelope. As the helium abundance in the envelope stellar material increases by ordinary wind mass loss and the luminous blue variable outbursts, the opacity in the deep pulsation driving layers decreases. This makes the current Eddington luminosity even higher so that pulsations can then no longer give radiative luminosities exceeding the limit. For the lower mass and luminosity luminous blue variables there is considerably less iron line opacity driving, and pulsations are almost all caused by the helium ionization kappa effect.

  1. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes. PMID:23803845

  2. The White Mountain Apache Child Protection Service Training Curriculum. Nohwii Chaghashe Baa da gontzaa (Protect Our Apache Children).

    ERIC Educational Resources Information Center

    Gonzalez-Santin, Edwin, Comp.

    This curriculum manual provides 8 days of training for child protective services (CPS) personnel (social workers and administrators) working in the White Mountain Apache tribal community. Each of the first seven units in the manual contains a brief description of contents, course objectives, time required, key concepts, possible discussion topics,…

  3. EX-111 Thermal Emission from Hot White Dwarfs: The Suggested He Abundance-Temperature Correlation. EX-112: The Unique Emission Line White Dwarf Star GD 356

    NASA Technical Reports Server (NTRS)

    Shipman, H. L.

    1986-01-01

    Progress in the EXOSAT data analysis program is reported. EXOSAT observations for four white dwarfs (WD1031-115, WD0004+330, WD1615-154, and WD0109-264) were obtained. Counting rates were unexpectedly low, indicating that these objects have a substantial amount of x-ray absorbing matter in their photosheres. In addition, soft x-ray pulsations characterized by a 9.25 minute cycle were discovered in the DA white dwarf V471 Tauri. A residual x-ray flux from the K dwarf companion can be seen during the white dwarf eclipse at orbital phase 0.0. Pronounced dips in the soft x-ray light curve occur at orbital phases 0.15, 0.18, and 0.85. The dips may be correlated with the triangular Lagrangian points of the binary orbit. Smaller dips at phases near the eclipse may be associated with cool loops in the K star corona. Data for the white dwarf H1504+65 was also analyzed. This object is particularly unusual in that its photoshere is devoid of hydrogen and helium. Finally, existing data on the white dwarf Sirius B were analyzed to see what constraints from other data can be placed on the properties of this star. Interrelationships between radius, rotational velocity, and effective temperature were derived.

  4. Pulsations in close binaries: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Maceroni, C.; Lehmann, H.; Da Silva, R.; Montalbán, J.

    2015-09-01

    CoRoT and Kepler provided a precious by-product: a number of eclipsing binaries containing variable stars and, among these, non-radial pulsators. This providential occurrence allows combining independent information from two different phenomena whose synergy yields scientific results well beyond those from the single sources. In particular, the analysis of pulsations in eclipsing binary components throws light on the internal structure of the pulsating star, on the system evolution, and on the role of tidal forces in exciting the oscillations. The case study of the Kepler target KIC 3858884 is illustrative of the difficulties of analysis and of the achievements in this rapidly developing field.

  5. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  6. Statistical study of dayside pulsating aurora

    NASA Astrophysics Data System (ADS)

    Kanmae, T.; Kadokura, A.; Ogawa, Y.; Ebihara, Y.; Motoba, T.; Gerrard, A. J.; Weatherwax, A. T.

    2015-12-01

    Pulsating aurora normally occurs after a substorm breakup in the midnight sector, often observed to persist through the morning sector and beyond. Indeed, it has also been observed on the dayside; however, the characteristics of the dayside pulsating aurora are poorly known. A handful of observational studies have been reported, but the results are somewhat disputable because most of the studies had non-uniform sampling of the dark dayside region. Furthermore, the previous studies used photometer data, with which the spatial characteristics of the pulsating aurora cannot be examined. To determine both temporal and spatial characteristics of the pulsating aurora, we have studied three years of all-sky image data obtained at the South Pole station. Because of its unique geographical location, the station has 24 hours of darkness during the austral winter from April to August, providing an ideal platform for studying dayside aurora. In a preliminary survey of the data, we have identified the pulsating auroras in 198 days out of 365 days of observations. The magnetic local time (MLT) distribution of the occurrence peaks between 9:00 and 11:00, but shows no or little dependence on the geomagnetic activity. In many events, pulsating patches initially appear as east-west aligned arc segments and later in the afternoon sector develop into large, diffuse patches, which occasionally fill a large part of the field of view. Using the long-term data, we will statistically examine both temporal (occurrence rate, duration and pulsation period) and spatial (sizes and shapes) characteristics of the dayside pulsating aurora.

  7. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  8. The pulsations of ZZ Ceti stars. III - The driving mechanism

    NASA Astrophysics Data System (ADS)

    Brickhill, A. J.

    1991-08-01

    The outer layers of the variable white dwarfs are in a state of partial ionization. During the pulsation cycle the base of the ionization zone is strongly heated by the radiative layers below, in phase with the pressure perturbation. If this excess heat is not quickly lost at the surface, then the driving effect is strong. The surface flux perturbation tends to be small and delayed in phase because the surface flux is remarkably insensitive to temperature changes in the deeper layers of the ionization zone. This insensitivity is closely associated with the well known inward divergence of the solutions for the equilibrium thermal structure in the convective layers. The mechanism which excites the oscillations could be called 'convective driving'.

  9. The pulsating central star of the planetary nebula Kohoutek 1-16

    NASA Astrophysics Data System (ADS)

    Grauer, A. D.; Bond, H. E.

    1984-02-01

    High-speed photometry of the central star of the planetary nebula Kohoutek 1-16 shows it to be a low-amplitude pulsating variable. The dominant period is 28.3 minutes, with a semiamplitude that is usually about 0.01 mag. However, several additional periods sometimes appear in power spectra computed from light curves, and on two occasions a rapid drop into, or emergence from, a state in which no detectable variations were present was observed. Such 'mode switching' is typical of some of the ZZ Ceti-type white dwarf nonradial pulsators, but, at effective temperatures higher than 80,000 K, K1-16 is much too hot to be a ZZ Ceti variable. Spectroscopically and photometrically, the central star of K1-16 closely resembles the previously known hot pulsator PG 1159-035; these two objects represent a new pulsational instability mechanism for extremely hot degenerate or predegenerate stars. It is predicted that the evolutionary contraction of K1-16 will lead to a period decrease so rapid that it should be detectable over an interval of about 2 yr.

  10. AT LAST-A V777 HER PULSATOR IN THE KEPLER FIELD

    SciTech Connect

    Oestensen, R. H.; Bloemen, S.; Vuckovic, M.; Aerts, C.; Oreiro, R.; Kinemuchi, K.; Still, M.

    2011-08-01

    We present the discovery of the first-and so far the only-pulsating white dwarf star located in the field of view of the Kepler spacecraft. During our ongoing effort to search for compact pulsator candidates that can benefit from the near-continuous coverage of Kepler, we recently identified a faint DB star from spectroscopy obtained with the William Herschel Telescope. After establishing its physical parameters to be T{sub eff} = 24,950 K and log g = 7.91 dex, placing it right in the middle of the V777 Her instability strip, we immediately submitted the target for follow-up space observations. The Kepler light curve reveals a pulsation spectrum consisting of five modes that follow a sequence roughly equally spaced in period with a mean spacing of 37 s. The three strongest modes show a triplet structure with a mean splitting of 3.3 {mu}Hz. We conclude that this object is a V777 Her pulsator with a mass of {approx}0.56 M{sub sun}, and very similar to the class prototype.

  11. Detection of the 1400 A absorption in the ultraviolet spectrum of the DA white dwarf LB 3303

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1982-01-01

    Low-resolution ultraviolet International Ultraviolet Explorer spectra of the southern white dwarf LB 3303 show the presence of the wavelength 1400 absorption feature reported by Greenstein in the spectrum of 40 Eri B. The equivalent width is 5.7 A, and the measured wavelength is 1394 A. A comparison of the ultraviolet fluxes with model atmospheres confirms that LB 3303 has an effective temperature near 16,000 K, as found earlier from visual wavelength data. There are still problems with the identification of this line. The star is not hot enough to explain the presence of Si IV, and the agreement with the spectrum of the H2 molecule is not convincing.

  12. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  13. Modeling of pulsating heat pipes.

    SciTech Connect

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  14. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Hof, Bjorn; Warnecke, Sascha; Xu, Duo

    2013-11-01

    We report an experimental study of the transition to turbulence in a pulsating pipe flow the most important example of pulsating flows is the cardiovascular system where the onset of fluctuations and turbulence can be a possible cause for various diseases such as the formation of aneurysms. The present study is limited to a straight rigid pipe, sinusoidal modulation of the flow rate and a Newtonian fluid. The dimensionless parameters (Womersley and Reynolds numbers) were chosen to include the parameter range encountered in larger arteries. We observe that at large frequencies the critical point for the onset of turbulence remains completely unaffected by pulsation for all amplitudes investigated (up to 40%). However for smaller frequencies (Womersley numbers below 10) the critical point considerably increases. Furthermore we investigate how the transition scenario is affected for a fixed frequency and increasing amplitudes (approaching oscillatory flow).

  15. Benefit of pulsation in soft corals

    PubMed Central

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-01-01

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes. PMID:23610420

  16. Gas compressor with side branch absorber for pulsation control

    SciTech Connect

    Harris, Ralph E.; Scrivner, Christine M.; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  17. SuperDARN observations of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Clausen, L. B. N.; Yeoman, T. K.; Hosokawa, K.; Yukimatu, A. S.; Sato, N.; Milan, S. E.; Lester, M.

    2009-04-01

    On 25 September 2006 the all-sky camera located in Tjornes, Iceland observed pulsating aurora. During the event, the SuperDARN radar at Pykkvibaer was running in a high time, high spatial resolution mode and observed oscillating Doppler velocities. The pulsating velocities were observed in two separate patches of backscatter at different range gates, with different velocities. Backscattered power and spectral width as well as elevation angle data suggest that the power associated with each patch travelled along different ray paths. We discuss possible ray paths as well as the mechanisms that could have led to the difference in Doppler velocity observed for each patch.

  18. Ionospheric variation during pulsating aurora

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Ogawa, Y.

    2015-07-01

    We have statistically analyzed data from the European Incoherent Scatter (EISCAT) UHF/VHF radars in Tromsø (69.60°N, 19.20°E), Norway, to reveal how the occurrence of pulsating auroras (PsAs) modifies the electron density profile in the ionosphere. By checking five winter seasons' (2007-2012) observations of all-sky aurora cameras of the National Institute of Polar Research in Tromsø, we have extracted 21 cases of PsA. During these PsA events, either the UHF or VHF radar of EISCAT was operative and the electron density profiles were obtained along the field-aligned or vertical direction near the zenith. From these electron density measurements, we calculated hmE (E region peak height) and NmE (E region peak density), which are proxies for the energy and flux of the precipitating PsA electrons, respectively. Then, we examined how these two parameters changed during the evolution of 21 PsA events in a statistical fashion. The results can be summarized as follows: (1) hmE is lower (the energy of precipitation electrons is higher) during the periods of PsA than that in the surrounding interval; (2) when NmE is higher (flux of PsA electrons is larger), hmE tends to be lower (precipitation is harder); (3) hmE is lower and NmE is larger in the later magnetic local time; and (4) when the AE index during the preceding substorm is larger, hmE is lower and NmE is larger. These tendencies are discussed in terms of the characteristics of particles and plasma waves in the source of PsA in the magnetosphere. In addition to the statistics of the EISCAT data, we carried out several detailed case studies, in which the altitude profiles of the electron density were derived by separating the On and Off phases of PsA. This allows us to estimate the true altitude profiles of the PsA ionization, which can be used for estimating the characteristic energy of the PsA electrons and better understanding the wave-particle interaction process in the magnetosphere.

  19. Large Variety of New Pulsating Stars in the OGLE-III Galactic Disk Fields

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Dziembowski, W. A.; Mróz, P.; Soszyński, I.; Udalski, A.; Poleski, R.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Skowron, J.

    2013-12-01

    We present the results of a search for pulsating stars in the 7.12 deg2 OGLE-III Galactic disk area in the direction tangent to the Centaurus Arm. We report the identification of 20 Classical Cepheids, 45 RR Lyr type stars, 31 Long-Period Variables, such as Miras and Semi-Regular Variables, one pulsating white dwarf, and 58 very likely δ Sct type stars. Based on asteroseismic models constructed for one quadruple-mode and six triple-mode δ Sct type pulsators, we estimated masses, metallicities, ages, and distance moduli to these objects. The modeled stars have masses in the range 0.9-2.5 MSun and are located at distances between 2.5 kpc and 6.2 kpc. Two triple-mode and one double-mode pulsators seem to be Population II stars of the SX Phe type, probably from the Galactic halo. Our sample also includes candidates for Type II Cepheids and unclassified short-period (P<0.23 d) multi-mode stars which could be either δ Sct or β Cep type stars. One of the detected variables is a very likely δ Sct star with an exceptionally high peak-to-peak I-band amplitude of 0.35 mag at the very short period of 0.0196 d. All reported pulsating variable stars but one object are new discoveries. They are included in the OGLE-III Catalog of Variable Stars. Finally, we introduce the on-going OGLE-IV Galactic Disk Survey, which covers more than half of the Galactic plane. For the purposes of future works on the spiral structure and star formation history of the Milky Way, we have already compiled a list of known Galactic Classical Cepheids.

  20. Analysis of ultraviolet and extreme-ultraviolet spectra of the DA white dwarf G 191-B2B using self-consistent diffusion models

    NASA Astrophysics Data System (ADS)

    Dreizler, S.; Wolff, B.

    1999-08-01

    We present a multi-wavelength spectral analysis of the DA white dwarf G 191-B2B. The employed atmospheric models account for gravitational settling and radiative levitation, which are, for the first time, calculated self-consistently with the atmospheric structure. The resulting spectra can reproduce the complete EUVE spectrum and the ultraviolet lines of iron. Some restrictions regarding the UV lines of other elements (C, N, O, Ni), however, still remain. In contrast to homogeneous models, it is not necessary to introduce additional photospheric or interstellar absorbers to account for the high opacity at lambda <~ 230 Ä. Abundance profile changing mechanisms, like mass-loss or accretion, are also not needed. Based on observations made with the EUVE Sattelite and with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  1. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part I. Pulsation Measurements

    PubMed Central

    Lee, Eun Gyung; Lee, Larry; Möhlmann, Carsten; Flemmer, Michael M.; Kashon, Michael; Harper, Martin

    2015-01-01

    Pulsations generated by personal sampling pumps modulate the airflow through the sampling trains, thereby varying sampling efficiencies, and possibly invalidating collection or monitoring. The purpose of this study was to characterize pulsations generated by personal sampling pumps relative to a nominal flow rate at the inlet of different respirable cyclones. Experiments were conducted using a factorial combination of 13 widely used sampling pumps (11 medium and 2 high volumetric flow rate pumps having a diaphragm mechanism) and 7 cyclones [10-mm nylon also known as Dorr-Oliver (DO), Higgins-Dewell (HD), GS-1, GS-3, Aluminum, GK2.69, and FSP-10]. A hot- wire anemometer probe cemented to the inlet of each cyclone type was used to obtain pulsation readings. The three medium flow rate pump models showing the highest, a midrange, and the lowest pulsations and two high flow rate pump models for each cyclone type were tested with dust-loaded filters (0.05, 0.21, and 1.25 mg) to determine the effects of filter loading on pulsations. The effects of different tubing materials and lengths on pulsations were also investigated. The fundamental frequency range was 22–110 Hz and the magnitude of pulsation as a proportion of the mean flow rate ranged from 4.4 to 73.1%. Most pump/cyclone combinations generated pulse magnitudes >10% (48 out of 59 combinations), while pulse shapes varied considerably. Pulsation magnitudes were not considerably different for the clean and dust-loaded filters for the DO, HD, and Aluminum cyclones, but no consistent pattern was observed for the other cyclone types. Tubing material had less effect on pulsations than tubing length; when the tubing length was 183 cm, pronounced damping was observed for a pump with high pulsation (>60%) for all tested tubing materials except for the Tygon Inert tubing. The findings in this study prompted a further study to determine the possibility of shifts in cyclone sampling efficiency due to sampling pump pulsations

  2. VOLUME COMPENSATING MEANS FOR PULSATING PUMPS

    DOEpatents

    Weaver, D.L.W.; MacCormack, R.S. Jr.

    1959-12-01

    A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.

  3. Pulsations in total columnar electron content

    NASA Technical Reports Server (NTRS)

    Okuzawa, T.; Davies, K.

    1981-01-01

    Radio signals from the ATS 6 beacon received at Boulder reveal small-amplitude, quasi-sinusoidal fluctuations with periods in the range of 10 to 50 s. Visual comparisons of these data (116 events for October 1974 to April 1975) shows a good correspondence with simultaneous geomagnetic pulsations at Boulder in two thirds of the cases for which Boulder magnetograms were available, but they do not necessarily correspond with magnetic pulsations on ATS 6. Spectral analyses, by the method of maximum entropy, were made on sample records. The principal results are the following: (1) The occurrence of the pulsations is higher on magnetically disturbed days. (2) The maximum likelihood of occurrence is around 2100 UT (1400 LT). (3) The dominant spectrum peaks of the radio fluctuations and geomagnetic field on the ground generally coincide. Cases are found also in which temporal characteristics of the spectra are similar. These results indicate a close association of the radio fluctuations with the Pc 3-4 type pulsations of the geomagnetic field on the ground. It is suggested that the radio fluctuations originate mainly in the F region of the ionosphere, while some of them could be due to plasmapause effects.

  4. Blackworms, Blood Vessel Pulsations and Drug Effects.

    ERIC Educational Resources Information Center

    Lesiuk, Nalena M.; Drewes, Charles D.

    1999-01-01

    Introduces the freshwater oligochaete worm, lumbriculus variegatus (common name: blackworms), an organism that is well suited for classroom study because of its closed circulatory system. Describes a set of simple, fast, noninvasive, and inexpensive methods for observing pulsations of the worm's dorsal blood vessels under baseline conditions, and…

  5. X-ray Pulsation Searches with NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  6. Physical Properties of the Current Census of Northern White Dwarfs within 40 pc of the Sun

    NASA Astrophysics Data System (ADS)

    Limoges, M.-M.; Bergeron, P.; Lépine, S.

    2015-08-01

    We present a detailed description of the physical properties of our current census of white dwarfs within 40 pc of the Sun, based on an exhaustive spectroscopic survey of northern hemisphere candidates from the SUPERBLINK proper motion database. Our method for selecting white dwarf candidates is based on a combination of theoretical color-magnitude relations and reduced proper motion diagrams. We reported in an earlier publication the discovery of nearly 200 new white dwarfs, and we present here the discovery of an additional 133 new white dwarfs, among which we identify 96 DA, 3 DB, 24 DC, 3 DQ, and 7 DZ stars. We further identify 178 white dwarfs that lie within 40 pc of the Sun, representing a 40% increase of the current census, which now includes 492 objects. We estimate the completeness of our survey at between 66% and 78%, allowing for uncertainties in the distance estimates. We also perform a homogeneous model atmosphere analysis of this 40 pc sample and find a large fraction of massive white dwarfs, indicating that we are successfully recovering the more massive, and less luminous objects often missed in other surveys. We also show that the 40 pc sample is dominated by cool and old white dwarfs, which populate the faint end of the luminosity function, although trigonometric parallaxes will be needed to shape this part of the luminosity function more accurately. Finally, we identify 4 probable members of the 20 pc sample, 4 suspected double degenerate binaries, and we also report the discovery of two new ZZ Ceti pulsators.

  7. On the standing wave mode of giant pulsations

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Sato, N.; Warnecke, J.; Luehr, H.; Spence, H. E.; Tonegawa, Y.

    1992-01-01

    In order to determine the standing wave mode of giant pulsations, a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE was made. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator. It is concluded that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure, which places a strong constraint on the generation mechanism of giant pulsations.

  8. The Origin and Evolution of the White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Clemens, J. C.

    1994-05-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using asteroseismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we call the Whole Earth Telescope (WET). By combining data from the WET with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10(-4) times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via

  9. The Origin and Evolution of the White-Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Clemens, J. C.

    1994-12-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using "asteroseismology," a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10^-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured

  10. The origin and evolution of the white dwarf stars

    NASA Astrophysics Data System (ADS)

    Clemens, James Christopher

    1994-01-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell Us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using 'asteroseismology', a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer, it is about 10-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties and the mass of the hydrogen layer measured for

  11. Pulsating instability and self-acceleration of fast turbulent flames

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.

    2015-01-01

    A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. The computational domain is unconfined to prevent the onset of thermoacoustic instabilities. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damköhler numbers Da = 0.1 - 6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. (1) Turbulent flame speed, ST, develops pulsations with the observed peak-to-peak amplitude ST max / ST min > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. (2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when ST approaches or exceeds the speed of a Chapman-Jouguet deflagration. (3) Coupling of pressure gradients formed during pulsations with density gradients across the flame leads to the anisotropic amplification of turbulence inside the flame volume and flame acceleration. Such process, which is driven by the baroclinic term in the vorticity transport equation, is a reacting-flow analog of the mechanism underlying the Richtmyer-Meshkov instability. With the increase in turbulent intensity, the limit-cycle instability discussed here transitions to the regime described in our previous work, in which the growth of ST becomes unbounded and produces a detonation.

  12. Evaluation of hydro-mechanical pulsation for rocket injector research

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew B.

    The Propulsion Research Center at the University of Alabama in Huntsville has designed and built a hydro-mechanical pulsator to simulate the pressure fluctuations created by high frequency combustion instability. The pressure response characteristics were evaluated in an atmospheric test rig using filtered de-ionized water as the working fluid. The outlet of the pulsator was connected to a swirl injector post to provide downstream flow resistance. Previous low pressure and mass flow experimental data revealed a complex relationship between the control parameters and the pulsation response. For each test, the average mass flow rates of the waste water, water lost through the seals, and injector mass flow rates are measured. A dynamic pressure transducer at the pulsator exit measures and records the pressure waveform. Pulsation magnitude, reliability, repeatability, pulsation effects, and detailed variable control are examined. The data shows the pulsator is capable of generating 30% pulsation at 1575 Hz input. The repeatability of the pulsator is questionable because the standard deviations exceeded 40% of the average. The detailed data obtained during this research provides is sufficient to develop a pulsator tuning procedure for future applications.

  13. Pulsation and mass loss in Mira variables

    NASA Technical Reports Server (NTRS)

    Wood, P. R.

    1980-01-01

    The behavior of pulsation in the outer layers of a typical Mira variable was studied in the adiabatic and isothermal limits. A shock wave propagates outward once per period and the radial velocity obtained from observations of hydrogen emission lines is identified with the velocity of gas in the post shock region. In the adiabatic case, mass loss in the form of a steady stellar wind was produced. In the isothermal case, no continuous mass loss was produced but occasional ejection of shells occur. Pulsation introduced into a star undergoing steady mass loss as a result of radiation pressure acting on grains caused the mass loss rate to increase by a factor of approximately 40, while the terminal velocity of the flow was almost unaltered.

  14. The eight-schwabe-cycle pulsation

    NASA Astrophysics Data System (ADS)

    Richard, Jean-Guillaume

    2004-09-01

    The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4‧ (1793 1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610 2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.

  15. Pulsating aurorae: Evidence for flux limiting

    SciTech Connect

    Davidson, G.T.; Sears, R.D.

    1980-03-01

    Theoretical models based upon the concept of self-modulated VLF wave-electron interactions have been proposed to explain pulsating aurorae. These models incorporate the idea of a trapping limit, above which strong diffusion into the loss cone rapidly removes any excess electrons. At flux values near the trapping limit, perturbations of the trapped electron distribution can result in cyclic wave growth and electron precipitation. The trapping limit is thus related to the energy deposited and the characteristic energy of electrons precipitated in pulsating aurorae. Photometric measurements of the total energy deposit and of the mean energy parameter made at Chatanika, Alaska (invariant geomagnetic latitude, 65 /sup 0/) indicate that the well-developed pulsations are caused mainly by a modulation of the mean energy parameter. Thus, a nearly constant ''limiting'' value for the precipitating flux is measured F=7 x 10/sup 8/ el/cm/sup 2/ sec from which a trapped flux limit of Japprox. =3 x 10/sup 9/ el/cm/sup 2/ sec can be inferred.

  16. Simultaneous observation of monochromatic and variable period geomagnetic pulsations

    SciTech Connect

    McDiarmid, D.R.; Nielsen, E. )

    1987-05-01

    On February 4, 1983, following a storm sudden commencement, a monochromatic and a variable period pulsation were simultaneously observed by the Scandinavian Twin Auroral Radar Experiment (STARE) and Sweden and Britain Radar Experiment (SABRE) radar systems. Both pulsations differed from previously analyzed examples of their class. The phase of the monochromatic pulsation increased linearly with latitude rather than decreased. Its amplitude remained relatively constant over the latitude interval of linear phase change. The variable period pulsation experienced a change of orientation of its essentially linear polarization diagram in association with a discontinuity of its period. The variable period pulsation was thus manifest in both the toroidal and poloidal components. The results are discussed in terms of recent developments in theoretical pulsation modeling.

  17. White dwarfs in Be star binary systems

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.

    1991-01-01

    An evaluation is made of possible reasons for the persistent inability to identify white dwarf stars in the Be binary systems. It is noted that many Be stars exhibiting large optical enhancements may be Be + WD and Be + He systems, and that observations of pulsations in the H-alpha emission, as well as observation of time delays between enhancements of optical line and continuum, can identify such systems.

  18. The δ Scuti Pulsation Periods in KIC 5197256

    NASA Astrophysics Data System (ADS)

    Turner, G.; Holaday, J.

    2015-06-01

    In this paper we present the pulsational spectrum for KIC 5197256. This object is an eclipsing binary system with a period of 6.96 days. We demonstrate that the light curve shows presence of δ Scuti pulsations with a dominant period of 0.1015 day. The object should therefore be included in the ever-growing class of eclipsing binary systems with at least one pulsating component.

  19. Detection and characterization of geomagnetic pulsations using HF ionospheric heating

    SciTech Connect

    Lee, H.S.; Ferraro, A.J.; Olson, J.V. Alaska Univ., Fairbanks )

    1990-12-01

    This paper describes the geomagnetic pulsations observed in the high-latitude ionosphere during an experiment dealing with the ionospheric generation of ELF/VLF EM waves in June and October 1987. There was clear evidence of geomagnetic pulsations intermixed with the ELF/VLF signals in both the magnitude and phase data. A simple simulation model is introduced to facilitate the interpretation of the data, and a procedure for characterizing the pulsation is described. 5 refs.

  20. Helium abundance effects on RR Lyrae pulsation properties

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Coppola, G.; Bono, G.; Braga, V.; Pietrinferni, A.

    2016-05-01

    A new set of nonlinear convective pulsation models of RR Lyrae stars has been computed varying both the metallicity and the helium content. To constrain the helium dependence of pulsation observables we adopted, for each metal content, at least three different helium abundances. We provide for the first time a homogeneous evolutionary and pulsation framework covering the entire range of cluster and field variables. The implications for the use of RR Lyrae as stellar population tracers and distance indicators are briefly discussed.

  1. On the pulsation and evolutionary properties of helium burning radially pulsating variables

    NASA Astrophysics Data System (ADS)

    Bono, G.; Pietrinferni, A.; Marconi, M.; Braga, V. F.; Fiorentino, G.; Stetson, P. B.; Buonanno, R.; Castellani, M.; Dall'Ora, M.; Fabrizio, M.; Ferraro, I.; Giuffrida, G.; Iannicola, G.; Marengo, M.; Magurno, D.; Martinez-Vazquez, C. E.; Matsunaga, N.; Monelli, M.; Neeley, J.; Rastello, S.; Salaris, M.; Short, L.; Stellingwerf, R. F.

    2016-05-01

    We discuss pulsation and evolutionary properties of low- (RR Lyrae, Type II Cepheids) and intermediate-mass (Anomalous Cepheids) radial variables. We focus our attention on the topology of the instability strip and the distribution of the quoted variables in the Hertzsprung-Russell diagram. We discuss their evolutionary status and the dependence on the metallicity. Moreover, we address the diagnostics (period derivative, difference in luminosity, stellar mass) that can provide solid constraints on their progenitors and on the role that binarity and environment have in shaping their current pulsation characteristics. Finally, we briefly outline their use as standard candles.

  2. Periodic stellar pulsations - Stability analysis and amplitude equations

    NASA Astrophysics Data System (ADS)

    Buchler, J. R.; Moskalik, Pawel; Kovacs, Geza

    1991-10-01

    The stability properties of nonlinear periodic stellar pulsations are studied within the amplitude equation formalism. Both nonresonant and resonant pulsations are considered. A comparison to a sequence of classical Cepheid models shows that the formalism provides a good qualitative and quantitative description of the behavior of the Floquet coefficients and that it also captures the most important features of the Floquet eigenvectors. It thus helps shed new light on the behavior (bifurcations) of pulsating stars. In addition, the predictive powers of the analytical approach allow a systematic search for models with specific pulsational properties.

  3. Magnetic pulsations at the quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Russell, C. T.

    1990-01-01

    The plasma and field properties of large-amplitude magnetic field pulsatins upstream from the quasi-parallel region of the earth's bow shock are examined in high time resolution using data from ISEE 1 and 2. The relative timing of the magnetic field profiles observed at the two spacecraft shows that some of the pulsations are convecting antisunward across the spacecraft while others are brief out/in motions of bow shock across the spacecraft. Pulsations with both timing signatures are the site of slowing and heating of the solar wind plasma. The ions tend to be only weakly heated in the convecting pulsations, while within the out/in pulsations the ion heating can be quite substantial but variable. This variation occurs not only from pulsation to pulsation but also from point to point within a given pulsation. In general, the hottest distributions within the out/in pulsations tend to occur in regions of lower density and field strength. Magnetic pulsations bear a number of similarities to previously identified hot diamagnetic cavity events as well as to more durable crossings of the quasi-parallel shock itself. These various phenomena may be different manifestations of the same basic physical processes, in particular the coupling of coherently reflected ions to the solar wind beam.

  4. Large-Scale Aspects and Temporal Evolution of Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.

    2010-01-01

    Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup.

  5. DRIVING G-MODE PULSATIONS IN GAMMA DORADUS VARIABLES

    SciTech Connect

    J. GUZIK; A. KAYE; ET AL

    2000-10-10

    The {gamma} Doradus stars are a newly-discovered class of gravity-mode pulsators which lie just at or beyond the red edge of the {delta} Scuti instability strip. We present the results of calculations which predict pulsation instability of high-order g-modes with periods between 0.4 and 3 days, as observed in these stars. The pulsations are driven by the modulation of radiative flux by convection at the base of a deep envelope convection zone. Pulsation instability is predicted only for models with temperatures at the convection zone base between {approximately}200,000 and {approximately}480,000 K. The estimated shear dissipation due to turbulent viscosity within the convection zone, or in an overshoot region below the convection zone, can be comparable to or even exceed the predicted driving, and is likely to reduce the number of unstable modes, or possibly to quench the instability. Additional refinements in the pulsation modeling are required to determine the outcome. A few Doradus stars have been observed that also pulsate in {delta} Scuti-type p-modes, and at least two others have been identified as chemically peculiar. Since our calculated driving region is relatively deep, Doradus pulsations are not necessarily incompatible with surface abundance peculiarities or with {delta} Scuti p-mode pulsations driven by the H and He-ionization {kappa} effect. Such stars will provide useful observational constraints on the proposed Doradus pulsation mechanism.

  6. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  7. Substellar companions to white dwarves

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal Robert

    2007-08-01

    We search for planets and brown dwarves around white dwarves (WDs). Finding extra-solar planets is the first step toward establishing the existence and abundance of life in the Universe. The low mass and luminosity of WDs make them ideal stars to search for low mass companion objects. Theoretical predictions generally agree that a star will consume and destroy close-in, low mass planets as it ascends the red giant and asymptotic giant branch evolutionary tracks, but larger mass objects and those further out will survive. The matter ejected from the star as it evolves into a white dwarf may also be accreted onto daughter planets, or may coalesce into a disk from which planets can then form. We employ two techniques to search for planets and brown dwarves (BDs) around WDs. A subset of pulsating white dwarf stars have a pulsational stability that rivals pulsars and atomic clocks. When a planet is in orbit around a such a star the orbital motion of the star around the centre of mass is detectable as a change in arrival times of the otherwise stable pulsations. We search for, and find, a sample of suitable pulsators, monitor them for between three and four years, and place limits on companions by constraining the variation in the pulse arrival times. For one star, we detect a variation consistent with a 2.4M J planet in a 4.6 year orbit. We also observe a large sample of WDs to search for a mid-infrared excess caused by the presence of sub-stellar companions. We present evidence for a potential binary system consisting of a WD and a BD on the basis of an observed excess flux at near and mid-infrared wavelengths. We also place limits on the presence of planetary mass companions around these stars and compare our results to predictions of planetary survival theories. Our findings do not support suggestions of planet formation or accretion of extra mass during stellar death.

  8. Identification of pulsational modes in rotating slowly pulsating B-type stars

    NASA Astrophysics Data System (ADS)

    Szewczuk, W.; Daszyńska-Daszkiewicz, J.

    2015-06-01

    Knowledge of the geometry of pulsational modes is a prerequisite for seismic modelling of stars. In the case of slowly pulsating B-type (SPB) pulsators, the simple zero-rotation approach so far used for mode identification is usually not valid because pulsational frequencies are often of the order of the rotational frequency. Moreover, this approach allows us to determine only the spherical harmonic degree, ℓ, while the azimuthal order, m, is beyond its reach. On the other hand, because of the density of oscillation spectra of SPB stars, knowledge of m is indispensable if one wants to assign the radial order, n, to the observed frequency peaks. Including the effects of rotation via the traditional approximation, we perform identification of the mode angular numbers (ℓ, m) for 31 SPB stars with available multicolour time series photometry. Simultaneously, constraints on the rotational velocity, Vrot, and the inclination angle, i, are determined assuming uniform rotation and a constant value of Vrot sin i. Dependence of the results on the adopted model is tested using HD 21071 as an example. Despite some model uncertainties and limitations of the method, our studies show the correct approach to identifying the low-frequency oscillation modes.

  9. Construction of Database for Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  10. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  11. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  12. Multidimensional modelling of classical pulsating stars

    NASA Astrophysics Data System (ADS)

    Muthsam, H. J.; Kupka, F.

    2016-05-01

    After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.

  13. Pulsating laminar fully developed channel and pipe flows.

    PubMed

    Haddad, Kais; Ertunç, Ozgür; Mishra, Manoranjan; Delgado, Antonio

    2010-01-01

    Analytical investigations are carried out on pulsating laminar incompressible fully developed channel and pipe flows. An analytical solution of the velocity profile for arbitrary time-periodic pulsations is derived by approximating the pulsating flow variables by a Fourier series. The explicit interdependence between pulsations of velocity, mass-flow rate, pressure gradient, and wall shear stress are shown by using the proper dimensionless parameters that govern the flow. Utilizing the analytical results, the scaling laws for dimensionless pulsation amplitudes of the velocity, mass-flow rate, pressure gradient, and wall shear stress are analyzed as functions of the dimensionless pulsation frequency. Special attention has been given to the scaling laws describing the flow reversal phenomenon occurring in pulsating flows, such as the condition for flow reversal, the dependency of the reversal duration, and the amplitude. It is shown that two reversal locations away from the wall can occur in pulsating flows in pipes and channels and the reversed amount of mass per period reaches a maximum at a certain dimensionless frequency for a given amplitude of mass-flow rate fluctuations. These analyses are numerically conducted for pipe and channel flows over a large frequency range in a comparative manner. PMID:20365456

  14. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  15. Chandra Discovers Eruption and Pulsation in Nova Outburst

    NASA Astrophysics Data System (ADS)

    2001-09-01

    NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6

  16. Pulsation, mass loss, and evolution of upper asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Bedijn, P. J.

    1988-10-01

    model of the evolution on the upper AGB for stars with various main sequence masses. We incorporate mass loss according to the expression derived beginning at the moment a star starts to pulsate in the fundamental mode; this we assume is the onset of AGB evolution as a Mira variable. The moment when fundamental mode pulsation sets in is obtained from recent stellar pulsation models. We use this model of upper AGB evolution together with an essentially constant past star formation rate in the solar neighbourhood to obtain a model fit to the period distribution of classical Miras as well as to the 1612 MHz OH luminosity function of OH emitting Miras and OH/IR stars in the solar neighbourhood. The average past star formation rate as obtained from fitting the observed period distribution of classical Miras is in good agreement with that obtained by analysing the present day mass function of solar neighbourhood stars as outlined in Scalo (1986). We also calculate a model mass distribution for white dwarfs and a local white dwarf formation rate in good agreement with observations.

  17. Heat transfer characteristics of pulsated turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Said, S. A. M.; Al-Farayedhi, A. A.; Al-Dini, S. A.; Asghar, A.; Gbadebo, S. A.

    Heat Transfer characteristics of pulsated turbulent pipe flow under different conditions of pulsation frequency, amplitude and Reynolds number were experimentally investigated. The pipe wall was kept at uniform heat flux. Reynolds number was varied from 5000 to 29 000 while frequency of pulsation ranged from 1 to 8 Hz. The results show an enhancement in the local Nusselt number at the entrance region. The rate of enhancement decreased as Re increased. Reduction of heat transfer coefficient was observed at higher frequencies and the effect of pulsation is found to be significant at high Reynolds number. It can be concluded that the effect of pulsation on the mean Nusselt numbers is insignificant at low values of Reynolds number.

  18. Recurrent pulsations in Saturn's high latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Carbary, J. F.; Bunce, E. J.; Radioti, A.; Badman, S. V.; Pryor, W. R.; Hospodarsky, G. B.; Kurth, W. S.

    2016-01-01

    Over the course of about 6 h on Day 129, 2008, the UV imaging spectrograph (UVIS) on the Cassini spacecraft observed a repeated intensification and broadening of the high latitude auroral oval into the polar cap. This feature repeated at least 5 times with about a 1 h period, as it rotated in the direction of corotation, somewhat below the planetary rotation rate, such that it moved from noon to post-dusk, and from roughly 77° to 82° northern latitudes during the observing interval. The recurring UV observation was accompanied by pronounced ∼1 h pulsations in auroral hiss power, magnetic perturbations consistent with small-scale field aligned currents, and energetic ion conics and electrons beaming upward parallel to the local magnetic field at the spacecraft location. The magnetic field and particle events are in phase with the auroral hiss pulsation. This event, taken in the context of the more thoroughly documented auroral hiss and particle signatures (seen on many high latitude Cassini orbits), sheds light on the possible driving mechanisms, the most likely of which are magnetopause reconnection and/or Kelvin Helmholtz waves.

  19. Computational model of miniature pulsating heat pipes.

    SciTech Connect

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  20. KIC 7668647: a 14 day beaming sdB+WD binary with a pulsating subdwarf

    NASA Astrophysics Data System (ADS)

    Telting, J. H.; Baran, A. S.; Nemeth, P.; Østensen, R. H.; Kupfer, T.; Macfarlane, S.; Heber, U.; Aerts, C.; Geier, S.

    2014-10-01

    The recently discovered subdwarf B (sdB) pulsator KIC 7668647 is one of the 18 pulsating sdB stars detected in the Kepler field. It features a rich g-mode frequency spectrum, with a few low-amplitude p-modes at short periods. This makes it a promising target for a seismic study aiming to constrain the internal structure of this star, and of sdB stars in general. We use new ground-based low-resolution spectroscopy, and the near-continuous 2.88 year Kepler light curve, to reveal that KIC 7668647 consists of a subdwarf B star with an unseen white-dwarf companion with an orbital period of 14.2 d. An orbit with a radial-velocity amplitude of 39 km s-1 is consistently determined from the spectra, from the orbital Doppler beaming seen by Kepler at 163 ppm, and from measuring the orbital light-travel delay of 27 s by timing of the many pulsations seen in the Kepler light curve. The white dwarf has a minimum mass of 0.40 M⊙. We use our high signal-to-noise average spectra to study the atmospheric parameters of the sdB star, and find that nitrogen and iron have abundances close to solar values, while helium, carbon, oxygen and silicon are underabundant relative to the solar mixture. We use the full Kepler Q06-Q17 light curve to extract 132 significant pulsation frequencies. Period-spacing relations and multiplet splittings allow us to identify the modal degree ℓ for the majority of the modes. Using theg-mode multiplet splittings we constrain the internal rotation period at the base of the envelope to 46-48 d as a first seismic result for this star. The few p-mode splittings may point at a slightly longer rotation period further out in the envelope of the star. From mode-visibility considerations we derive that the inclination of the rotation axis of the sdB in KIC 7668647 must be around ~60°. Furthermore, we find strong evidence for a few multiplets indicative of degree 3 ≤ ℓ ≤ 8, which is another novelty in sdB-star observations made possible by Kepler. Based on

  1. The ionospheric signature of Pi 2 pulsations observed by STARE

    SciTech Connect

    Sutcliffe, P.R. ); Nielsen, E. )

    1992-07-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 {degree} phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere.

  2. On the standing wave mode of giant pulsations

    SciTech Connect

    Takahashi, K. ); Sato, N. ); Warnecke, J.; Luehr, H. ); Spence, H.E. ); Tonegawa, Y. )

    1992-07-01

    Both odd-mode and even-mode standing were structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, the authors have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. They selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et at., 1982). In agreement with Hillebrand et al., they conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations.

  3. Pulsations in the free oscillations of the Earth

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.

    2015-05-01

    The records from wideband IRIS stations after a strong earthquake are analyzed. A few days after the earthquake, pulsations with a period of 128 min arise and last for about a week. They appear as a periodical variation in the amplitude of the free radial oscillation of the Earth 0S0 having a period of 20.46 min. The period of the pulsations is more than double the period of the lowest-frequency free spheroidal oscillations of the Earth (53.9 min). The pulsations are most pronounced at the mid-latitudinal and equatorial stations and less distinct near the poles. The pulsations are phase synchronous at the nearby stations and antiphase at the stations located in the western and eastern hemispheres. The pulsation amplitude does not depend on the phase of the Earth's tide. The shape and period of the pulsations are fitted by the model of beatings appearing in the Van der Pol oscillator with periodic forcing. The pulsations are hypothesized to result from asynchronous interaction between the free oscillations of the Earth.

  4. The stellar seismology of hot white dwarfs and planetary nebula nuclei

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1987-01-01

    The pulsation properties of hot white dwarfs make it possible to determine their mass, surface composition, rotation, and rate of evolution, and provide constraints on their internal structure. Period spacings are sensitive measures of stellar mass and indicate surface layer structure. Measurement of the rate of period change for these stars provide a way to determine their cooling rates. Attention is also given to how well (or poorly) models of excitation of the pulsations fit within current models of planetary nebula nuclei and hot white dwarfs.

  5. The attractor dimension of solar decimetric radio pulsations

    NASA Technical Reports Server (NTRS)

    Kurths, J.; Benz, A. O.; Aschwanden, M. J.

    1991-01-01

    The temporal characteristics of decimetric pulsations and related radio emissions during solar flares are analyzed using statistical methods recently developed for nonlinear dynamic systems. The results of the analysis is consistent with earlier reports on low-dimensional attractors of such events and yield a quantitative description of their temporal characteristics and hidden order. The estimated dimensions of typical decimetric pulsations are generally in the range of 3.0 + or - 0.5. Quasi-periodic oscillations and sudden reductions may have dimensions as low as 2. Pulsations of decimetric type IV continua have typically a dimension of about 4.

  6. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  7. Ambiguity of mapping the relative phase of blood pulsations

    PubMed Central

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A.; Giniatullin, Rashid; Kamshilin, Alexei A.

    2014-01-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation. PMID:25401026

  8. Interplanetary navigation using pulsating radio sources

    NASA Technical Reports Server (NTRS)

    Downs, G. S.

    1974-01-01

    Radio beacons with distinguishing signatures exist in nature as pulsating radio sources (pulsars). These objects radiate well determined pulse trains over hundreds of megahertz of bandwidth at radio frequencies. Since they are at known positions, they can also be used as navigation beacons in interplanetary space. Pulsar signals are weak and dispersive when viewed from earth. If an omnidirectional antenna is connected to a wideband receiver (200 MHz bandwidth centered at 200 MHz) in which dispersion effects are removed, nominal spacecraft position errors of 1500 km can be obtained after 24 h of signal integration. An antenna gain of 10 db would produce errors as low as 150 km. Since the spacecraft position is determined from the measurement of the phase of a periodic signal, ambiguities occur in the position measurement. Simultaneous use of current spacecraft navigation schemes eliminates these ambiguities.

  9. Total-pressure averaging in pulsating flows.

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a nonsteady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered with the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles.

  10. THE PULSATION MODE OF THE CEPHEID POLARIS

    SciTech Connect

    Turner, D. G.; Kovtyukh, V. V.; Usenko, I. A.; Gorlova, N. I.

    2013-01-01

    A previously derived photometric parallax of 10.10 {+-} 0.20 mas, d = 99 {+-} 2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of (M{sub V} ) = -3.07 {+-} 0.01 s.e., average effective temperature of (T{sub eff}) = 6025 {+-} 1 K s.e., and intrinsic color of ((B) - (V)){sub 0} = +0.56 {+-} 0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E{sub B-V} = 0.02 {+-} 0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.

  11. Optical noninvasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  12. Total pressure averaging in pulsating flows

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a non-steady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered within the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure, and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles. The experiments were performed at a pressure level of 1 bar, for Mach number up to near 1, and frequencies up to 3 kHz.

  13. Theoretical Period Changes in Yellow Giant Pulsators

    SciTech Connect

    Cox, A.N.

    1998-03-01

    Period changes in RR Lyrae variables and Cepheids, known for more than 60 years, can possibly be explained by small changes in a helium composition gradient below the hydrogen and helium convection zones. The particular cases for the globular cluster M15 double-mode RR Lyrae variable V53 and the Cepheid Polaris are studied. For the last 80 years, the fundamental mode period of V53 has been decreasing while the overtone mode period in this same star has been increasing. The rather steady overtone mode period increase for Polaris stopped very recently, and the period now seems constant. Diffusive settling of helium in these kinds of stars has been known to be slight because of the two convection zones and the long diffusion timescale below them. But a small amount of helium settling, even before the star begins to pulsate, and then a dredge-up of just a little helium by an occasional overshooting can change surface layer structures and periods. This dredge-up can have a timescale as short as the convection turnover time, i.e., a few days. A slight helium dredge-up episode may now have temporarily stopped the decaying pulsations and period increase of Polaris. Such an episode cannot explain the double-mode V53 case, but possibly the helium composition gradient is deepened enough by matter accretion in only 80 years to explain its observed opposite period changes. Another mechanism that might be important for period changes is tidal mixing of the small composition gradients caused by occasional close encounters of stars in clusters. Significant stellar rotation would keep the surface layer composition homogeneous and not allow the anomalous period changes discussed here. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  14. A novel and sensitive method for measuring very weak magnetic fields of DA white dwarfs. A search for a magnetic field at the 250 G level in 40 Eridani B

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.; Bagnulo, S.; Valyavin, G. G.; Gadelshin, D.; Martin, A. J.; Galazutdinov, G.; Semenko, E.

    2015-08-01

    Context. Searches for magnetic fields in white dwarfs have clarified both the frequency of occurrence and the global structure of the fields found down to field strengths of the order of 500 kG. Below this level, the situation is still very unclear. Aims: We are engaged in a project to find and study the weakest magnetic fields that are detectable in white dwarfs, in order to empirically determine how the frequency of occurrence and the structure of fields present changes with field strength. In this paper we report the successful testing of a very sensitive method of longitudinal field detection in DA white dwarfs. We use this method to carry out an extremely sensitive search for magnetism in the bright white dwarf 40 Eri B. Methods: The method of field measurement we use is to measure, at high spectral resolution, the polarisation signal V/I of the narrow non-LTE line core in Hα in DA stars. This small feature provides a much higher amplitude polarisation signal than the broad Balmer line wings. We test the usefulness of this technique by searching for a weak magnetic field in 40 Eri B. Results: One hour of observation of I and V Stokes components of the white dwarf 40 Eri B using ESPaDOnS at the CFHT is found to provide a standard error of measurement of the mean longitudinal magnetic field ⟨ Bz ⟩ of about 85 G. This is the smallest standard error of field measurement ever obtained for a white dwarf. The non-detections obtained are generally consistent with slightly less accurate measurements of 40 Eri B obtained with ISIS at the WHT and the Main Stellar Spectrograph at SAO, in order to provide comparison standards for the new method. These further measurements allow us to make a quantitative comparison of the relative efficiencies of low-resolution spectropolarimetery (using most or all of the Balmer lines) with the new method (using only the core of Hα). Conclusions: The new method of field detection reaches the level of sensitivity that was expected. It

  15. Revealing the pulsational properties of the V777 Herculis star KUV 05134+2605 by its long-term monitoring

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Paparó, M.; Córsico, A. H.; Kepler, S. O.; Győrffy, Á.

    2014-10-01

    Context. KUV 05134+2605 is one of the 21 pulsating DB white dwarfs (V777 Her or DBV variables) known so far. The detailed investigation of the short-period and low-amplitude pulsations of these relatively faint targets requires considerable observational efforts from the ground, long-term single-site or multi-site observations. The observed amplitudes of excited modes undergo short-term variations in many cases, which makes determining pulsation modes difficult. Aims: We aim to determine the pulsation frequencies of KUV 05134+2605, find regularities between the frequency and period components, and perform an asteroseismic investigation for the first time. Methods: We re-analysed the published data and collected new measurements. We compared the frequency content of the different datasets from the different epochs and performed various tests to check the reliability of the frequency determinations. The mean period spacings were investigated with linear fits to the observed periods, Kolmogorov-Smirnov and inverse variance significance tests, and with a Fourier analysis of different period sets, including a Monte Carlo test that simulated the effect of alias ambiguities. We employed fully evolutionary DB white dwarf models for the asteroseismic investigations. Results: We identified 22 frequencies between 1280 and 2530 μHz. These form 12 groups, which suggests at least 12 possible frequencies for the asteroseismic investigations. Thanks to the extended observations, KUV 05134+2605 joined the group of rich white dwarf pulsators. We identified one triplet and at least one doublet with a ≈ 9 μHz frequency separation, from which we derived a stellar rotation period of 0.6 d. We determined the mean period spacings of ≈ 31 s and 18 s for the modes we propose as dipole and quadrupole. We found an excellent agreement between the stellar mass derived from the ℓ = 1 period spacing and the period-to-period fits, all providing M∗ = 0.84 - 0.85 M⊙ solutions. Our study

  16. Gaia --- A White Dwarf Discovery Machine

    NASA Astrophysics Data System (ADS)

    Jordan, S.

    2007-09-01

    Gaia is a satellite mission of the ESA, aiming at absolute astrometric measurements of about one billion stars (V<20) with unprecedented accuracy. Additionally, magnitudes and colors will be obtained for all these stars, while radial-velocities will be determined only for bright objects (V<17.5). However, the wavelength range for the radial-velocity instrument is rather unsuitable for most white dwarfs. Gaia will probably discover about 400,000 white dwarfs; up to 100 pc the detection probability for white dwarfs is almost 100 %. This survey of white dwarfs will have very clear, easy to understand selection criteria, and will therefore be very suitable for statistical investigations. The Gaia data will help to improve the construction of a luminosity function for the disk and the halo and will provide a more accurate determination of the age of our solar neighborhood. Moreover, reliable stellar dynamical investigations of the disk and halo components will be possible. For the first time it will be possible to test the mass-radius relation of white dwarfs in great detail. Moreover, more accurate masses of magnetic and cool white dwarfs can be expected. Gaia is also expected to discover many new pulsating white dwarfs. The Gaia measurements can also complement the measurements of gravitational waves from close white dwarf binaries with Lisa.

  17. The Virtual Observatory Service TheoSSA: Establishing a Database of Synthetic Stellar Flux Standards I. NLTE Spectral Analysis of the DA-Type White Dwarf G191-B2B *,**,***,****

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.

    2013-01-01

    Hydrogen-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to compare with observations. Aims. We will establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. Methods. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. Results. TheoSSA is in operation and contains presently a variety of SEDs for DA-type white dwarfs. It will be extended in the near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G191-B2B has shown that our hydrostatic models reproduce the observations best at Teff =60 000 +/- 2000K and log g=7.60 +/- 0.05.We newly identified Fe vi, Ni vi, and Zn iv lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of -4.89 (7.5 × solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance limits of about 10% solar were derived for Ti, Cr, Mn, and Co. Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronomical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different model-atmosphere codes and are easy to compare.

  18. 3D Model Atmospheres for Extremely Low-mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gianninas, A.; Kilic, M.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Hermes, J. J.

    2015-08-01

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering Teff = 6000–11,500 K and log g = 5–6.5 (g in cm s‑2) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  19. Canards in a rheodynamic model of cardiac pressure pulsations

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Chen, Xian-Feng

    2007-09-01

    This paper reports on the canard phenomenon occurring in a rheodynamic model of cardiac pressure pulsations. By singular perturbation techniques the corresponding parameter value at which canards exist is obtained. The physiological significance of canards in this model is given.

  20. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  1. Photometric study of the pulsating, eclipsing binary OO DRA

    SciTech Connect

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  2. Pulsations of B stars: A review of observations and theories

    SciTech Connect

    Cox, A.N.

    1986-01-01

    The observational and theoretical status are discussed for several classes of variable B stars. The older classes now seem to be better understood in terms of those stars that probably have at least one radial mode and those that have only nonradial modes. The former are the ..beta.. Cephei variables, and the latter are the slowly rotating 53 Persei and the rapidly rotating zeta Ophiuchi variables. It seems that in this last class there are also some Be stars that show nonradial pulsations from the variations of the line shapes and their light. Among the nonradial pulsators, we must also include the supergiants which show pulsations with very short lifetimes. A review of the present observational and theoretical problems is given. The most persistent problem of the cause for the pulsations is briefly discussed, and many proposed mechanisms plus some new thoughts are presented. 57 refs., 4 figs.

  3. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  4. Studying geomagnetic pulsation characteristics with the local approximation method

    NASA Astrophysics Data System (ADS)

    Getmanov, V. G.; Dabagyan, R. A.; Sidorov, R. V.

    2016-03-01

    A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral-time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.

  5. Observation and modeling of compressional Pi 3 magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Matsuoka, Hitoshi; Takahashi, K.; Yumoto, K.; Anderson, B. J.; Sibeck, D. G.

    1995-01-01

    Compressional magnetic pulsations with irregular waveforms and periods longer than 150 s (here termed Pi 3) have been studied by using data from Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) and GOES 5 and 6 in the dayside magnetosphere and compared with signatures on the ground at low latitudes by using data from Kakioka station (L = 1.25). On the ground, the pulsations appear in the horizontal component. A study of 17 such concurrent events during a 2-month period in 1986 reveals the following pulsation characteristics. (1) The peak-to-peak amplitudes in space (delta B(sub T)) and on the ground (delta H) are comparable and are in the range of 0.5-7 nT. (2) On the ground the pulsations can be seen at all local times, even at midnight, while at geostationary orbit they are observed only on the dayside with a clear amplitude maximum at noon. (3) The pulsations on the ground lag those observed by CCE near local noon, and the lag increases as the local time separation between CCE and the ground station increases. The time lag is 1-2 min longer when the ground station is on the nightside than when it is on the dayside. (4) The time lag between pulsations observed at geostationary orbit and near noon by CCE varies systematically with local time and is about 2 min per 6 hours of local time separation. These observations indicate that some nightside pulsations in the Pi 3 band have dayside origins. The position dependence of the pulsation amplitude can be explained well by changes in the magnetopause current, which are in turn presumably caused by changes in the solar wind dynamic pressure. The time lags observed in space are consistent with signal propagation in the MHD fast mode, but the variation in space-ground time lags with ground station local time must be attributed to another mechanism.

  6. Ionospheric ion heating by ULF Pc 5 magnetic pulsations

    SciTech Connect

    Lathuillere, C.; Glangeaud, F.; Zhao, Z.Y.

    1986-02-01

    Frictional heating of the ions resulting from dc ionospheric electric fields is experimentally and theoretically well known. We extend these results to ion heating due to ULF magnetic pulsations of periods as low as 3 min. Ion temperature fluctuations as measured by the European incoherent scatter facility are very well correlated to magnetic Pc 5 pulsations. We present a method which estimates these ion temperature enhancements from ion velocity measurements.

  7. Structure of black aurora associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Fritz, Bruce A.; Lessard, Marc L.; Blandin, Matthew J.; Fernandes, Philip A.

    2015-11-01

    Morphological behavior of black aurora as it relates to pulsating aurora is investigated by examining a collection of ground-based observations from January 2007 in support of the Rocket Observations of Pulsating Aurora rocket campaign. Images were sampled from video recorded by a Xybion intensified camera (30 fps) at Poker Flat Research Range, AK. The primary observations of black aurora recorded during the substorm recovery phase were between separate patches of pulsating aurora as well as pulsating aurora separated from diffuse aurora. In these observations the black aurora forms an apparent firm boundary between the auroral forms in a new behavior that is in contrast with previously reported observations. Also presented for the first time are black curls in conjunction with pulsating aurora. Curl structures that indicate shear plasma flows in the ionosphere may be used as a proxy for converging/diverging electric fields in and above the ionosphere. This new subset of black auroral behavior may provide visual evidence of black aurora as an ionospheric feedback mechanism as related to pulsating aurora.

  8. Optical emissions and ionization profiles during an intense pulsating aurora

    SciTech Connect

    Sears, R.D.; Vondrak, R.R.

    1981-08-01

    Coordinated spectrophotometric and incoherent scatter radar measurements were made of an intense early-morning pulsating aurora at Chatanika, Alaska. Both instruments were operated simultaneously with temporal resolution of 1 s and were boresighted at geomagnetic zenith. The goals of the collaborative experimental were to determine the total energy flux E/sub t/ and the characteristic energy parameter ..cap alpha.. of the precipitating electrons on a time scale smaller than the pulsation duration and to investigate the response of the ionospheric electron density on a comparable time scale. The relationship between total energy flux and the characteristic energy parameter suggests that during these observations the pulsations were caused by a modulation of ..cap alpha.. rather than by a modulation of the total precipitating particle flux. The values of E/sub t/ and ..cap alpha.. derived from photometric data were used to model the electron density versus altitude in the ionosphere for comparison with the incoherent scatter radar measurements. Measured altitude profiles of ionization did not change significantly on the time scale of the pulsations. The E region maximum electron density typically was 7 x 10/sup 5/ at an altitude of 99 km. Variations in ionospheric conductivity were less than 15% on the pulsation time scale. These results suggest that a magnetospheric modulation mechanism is required to explain diffuse pulsating auroras.

  9. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  10. On the temporal fluctuations of pulsating auroral luminosity

    SciTech Connect

    Yamamoto, Tatsundo )

    1988-02-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations.