Science.gov

Sample records for pulsator devices

  1. 21 CFR 870.5225 - External counter-pulsating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., prescription device used to assist the heart by applying positive or negative pressure to one or more of the body's limbs in synchrony with the heart cycle. (b) Classification. (1) Class II (special controls... angina pectoris; acute myocardial infarction; cardiogenic shock; congestive heart failure;...

  2. Controlling methods of a newly developed extra aortic counter-pulsation device using shape memory alloy fibers.

    PubMed

    Hashem, Mohamed O; Yamada, A; Tsuboko, Y; Muira, H; Homma, D; Shiraishi, Y; Yambe, T

    2013-01-01

    Diastolic counter-pulsation has been used to provide circulatory augmentation for short term cardiac support. The success of intra-aortic balloon pump (IABP) therapy has generated interest in long term counter-pulsation strategies to treat heart failure patients. The authors have been developing a totally implantable extra aortic pulsation device for the circulatory support of heart failure patients, using 150 µm Ni-Ti anisotropic shape memory alloy (SMA) fibers. These fibers contract by Joule heating with an electric current supply. The special features of our design are as follow: non blood contacting, extra aortic pulsation function synchronizing with the native heart, a wrapping mechanical structure for the aorta in order to achieve its assistance as the aortomyoplsty and the extra aortic balloon pump. The device consisted of rubber silicone wall plates, serially connected for radial contraction. We examined the contractile function of the device, as well as it controlling methods; the phase delay parameter and the pulse width modulation, in a systemic mock circulatory system, with a pneumatically driven silicone left ventricle model, arterial rubber tubing, a peripheral resistance unit, and a venous reservoir. The device was secured around the aortic tubing with a counter-pulsation mode of 1:4 against the heartbeat. Pressure and flow waveforms were measured at the aortic outflow, as well as its driving condition of the contraction phase width and the phase delay. The device achieved its variable phase control for co-pulsation or counter-pulsation modes by changing the phase delay of the SMA fibers. Peak diastolic pressure significantly augmented, mean flow increased (p<0.05) according to the pulse width modulation. Therefore the newly developed extra aortic counter-pulsation device using SMA fibers, through it controlling methods indicated its promising alternative extra aortic approach for non-blood contacting cardiovascular circulatory support. PMID

  3. Cardiovascular devices; reclassification of external counter-pulsating devices for treatment of chronic stable angina; effective date of requirement for premarket approval for external counter-pulsating devices for other specified intended uses. Final order.

    PubMed

    2013-12-30

    The Food and Drug Administration (FDA) is issuing a final order to reclassify external counter-pulsating (ECP) devices for treatment of chronic stable angina that is refractory to optimal anti-anginal medical therapy and without options for revascularization, which is a preamendments class III device, into class II (special controls), and to require the filing of a premarket approval application (PMA) or a notice of completion of a product development protocol (PDP) for ECP devices for other intended uses specified in this proposed order. PMID:24383148

  4. 78 FR 29672 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... the 90-day period. Since these devices were classified in 1980, the 30-month period has expired (45 FR.... Regulatory History of the Device In the preamble to the proposed rule (44 FR 13426, March 9, 1979), the... devices into class III after receiving no comments on the proposed rule (45 FR 7966, February 5, 1980)....

  5. Effect of counter-pulsation control of a pulsatile left ventricular assist device on working load variations of the native heart

    PubMed Central

    2014-01-01

    Background When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. Methods A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. Results Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. Conclusions Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs. PMID:24708625

  6. Numerical simulation of the pulsating catheter pump: A left ventricular assist device.

    PubMed

    Verkerke, G J; Mihaylov, D; Geertsema, A A; Lubbers, J; Rakhorst, G

    1999-10-01

    The pulsating catheter (PUCA) pump, a left ventricular assist device, consists of a hydraulically or pneumatically driven membrane pump, extracorporeally placed and mounted to a valved catheter. The catheter is introduced into an easily accessible artery and positioned with its distal tip in the left ventricle. Blood is aspirated from the left ventricle during systole and ejected into the ascending aorta during diastole. A numerical model of the PUCA pump has been developed to determine the internal diameter of the PUCA pump catheter that allows a certain blood flow. The model considers a limitation of mechanical blood damage and determines the accompanying pressure and flow profile for driving the pump. For a flow of 5 L/min, a catheter with an internal diameter of at least 6. 95 mm is required. For 3 L/min, the minimal diameter is 5.50 mm. The latter catheter can be introduced in the axillary artery, the former via the aorta during an open thorax surgical procedure. To validate the numerical model, 2 different PUCA pump configurations were tested in vitro. Results showed a good resemblance between model and in vitro behavior of the PUCA pump. PMID:10564291

  7. Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2001-02-01

    The discussions, presented in this article, suppose that the reader is familiar with the contents of the accompanying article ``Thermal-Gravitational Modeling and Scaling of Two-Phase Heat Transport Systems from Micro-Gravity to Super-Gravity Levels.'' The latter article describes the history of this particular research at NLR, the approach (based on dimension analysis and similarity considerations), the derivation of constitutive equations for (annular) two-phase flow and heat transfer, the identification of thermal-gravitational scaling possibilities, condensation length issues, and the impact of the magnitude of super-gravity and its direction relative to the flow direction. But the discussions are restricted to ``classical'' two-phase loops. The most recent part of the research is discussed in this follow-up article. It concerns the extension of the research to the modelling, scaling and testing of the steady and transient performance of various types of oscillating or pulsating single-phase and two-phase heat transfer devices. This extension was opportune, as it turned out to be essential to properly support the research and development of such oscillating or pulsating heat transfer devices. For these devices several very promising applications have been identified, not only to cool commercial electronics, but also for cooling high-power electronics in spinning satellites and in military combat aircraft. In such applications, the electronics can be exposed to steady and transient accelerations up to levels around 120 m/s2. .

  8. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  9. Development of a thermodynamic control system for the Fontan circulation pulsation device using shape memory alloy fibers.

    PubMed

    Yamada, Akihiro; Shiraishi, Yasuyuki; Miura, Hidekazu; Hashem, Hashem Mohamed Omran; Tsuboko, Yusuke; Yamagishi, Masaaki; Yambe, Tomoyuki

    2015-09-01

    The Fontan procedure is one of the common surgical treatments for circulatory reconstruction in pediatric patients with congenital heart disease. In Fontan circulation, low pulsatility may induce localized lung ischemia and may impair the development of pulmonary peripheral endothelial cells. To promote pulmonary circulation in Fontan circulation, we have been developing a pediatric pulmonary circulatory pulsation device using shape memory alloy fibers attached from the outside of total cavopulmonary connection. In this study, we developed a new thermal control system for the device and examined its functions. We mounted on the device 16 fibers connected in parallel around an ePTFE graft circumferentially. To provide optimized contraction, we designed the new thermal control system. The system consisted of a thermistor, a pressure sensor, and a regulator that was controlled by the adaptive thermodynamic transfer functions. We monitored the parameters and calculated heat transfer function as well as pressure distribution on the graft surface. Then we examined and compared the dynamic contractile pressure and changes in surface temperature. As a result, by the application of the control based on the new feedback system analysis, the circumferential contractile pressure increased by 35%. The adaptive thermodynamic regulation was useful for the selection of alternative thresholds of the surface temperature of the graft. The system could achieve effective contraction for the pulsatile flow generation by the device. PMID:25894077

  10. Characteristics of Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Mann, I. R.; Samara, M.; Michell, R.

    2013-12-01

    We have investigated the spatiotemporal characteristics of pulsating auroral patches observed with an all-sky imager located at Poker Flat, Alaska. Pulsating aurora often covers the entire sky with intermixed large and small-scale patches that vary in intensity or disappear and reappear on different time scales and timings. The broad definition of pulsating aurora covers patches and bands from tens to several tens of km which have a quasi-periodic temporal variation from 1 s to tens of seconds. In this paper we examine >15 patches from different events. We analyze all-sky movies (557.7 nm, 3.31 Hz) with a simple, yet robust, technique that allows us to determine the scale size dependent variability of the >15 individual patches. A spatial 2D Fourier Transform is used to separate the aurora into different horizontal scale sizes, and by correlating each patch for all image separations and available scale sizes smaller than the patch itself, we reveal what scale sizes are pulsating and their variability. The patches are found to be persistent, meaning that we can follow them for typically 5 minutes. The period of the pulsations is often remarkably variable and it seems that only certain scale sizes pulsate (typically the size of the patch). The patches drift with the background ExB plasma drift indicating that the magnetospheric source mechanism drifts with the field lines.

  11. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  12. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  13. Interaction Between Convection and Pulsation

    NASA Astrophysics Data System (ADS)

    Houdek, Günter; Dupret, Marc-Antoine

    2015-12-01

    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.

  14. Pulsating aurora: Source region & morphology

    NASA Astrophysics Data System (ADS)

    Jaynes, Allison

    Pulsating aurora, a common phenomenon in the polar night sky, offers a unique opportunity to study the precipitating particle populations responsible for this subtle yet fascinating display of lights. The conjecture that the source of these electrons originates near the equator, made decades ago, has now been confirmed using in-situ measurements. In this thesis, we present these results that compare the frequencies of equatorial electron flux pulsations and pulsating aurora luminosity fluctuations at the ionospheric footprint. We use simultaneous satellite-based data from GOES 13 and ground-based data from the THEMIS allsky imager array to show that there is a direct correlation between luminosity fluctuations near the ground and particle pulsations in equatorial space; the source region of the pulsating aurora. Pulsating aurora almost exclusively occurs embedded within a region of diffuse aurora. By studying the two particle populations, one can contribute to the theory behind auroral pulsations. The interplay between the two auroral types, and the systems that control them, are not yet well known. We analyze ground optical observations of pulsating aurora events to attempt to characterize the relationship between the two types of auroral precipitation. Pulsating aurora is a significant component of energy transfer within the framework of magnetosphere-ionosphere coupling. Further study of the morphology, total energy deposition, and the pulsation mechanism of pulsating aurora is key to a better understanding of our earth-sun system.

  15. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  16. OGLE and pulsating stars

    NASA Astrophysics Data System (ADS)

    Udalski, A.

    2016-05-01

    OGLE-IV is currently one of the largest sky variability surveys worldwide, focused on the densest stellar regions of the sky. The survey covers over 3000 square degrees and monitors regularly over a billion sources. The main targets include the inner Galactic bulge and the Magellanic System. Supplementary shallower Galaxy Variability Survey covers the extended Galactic bulge and 2/3 of the whole Galactic disk. The current status, prospects, and the latest results of the OGLE-IV survey focused on pulsating stars, in particular RR Lyrae variables, are presented.

  17. Computational model of miniature pulsating heat pipes.

    SciTech Connect

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  18. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  19. Pulsating incinerator hearth

    SciTech Connect

    Basic, J.N. Sr.

    1984-10-09

    A pulsating hearth for an incinerator wherein the hearth is suspended on a fixed frame for movement in a limited short arc to urge random size particles burning in a pile on the hearth in a predetermined path intermittently across the surface of the heart. Movement is imparted to the hearth in periodic pulses preferably by inflating sets of air bags mounted on the frame, which stroke the hearth to move it a short distance from an initial position and jar it against the frame, thus impelling the burning particles a short distance by inertia and concurrently stoking the burning pile upon each stroke, and then returning the hearth to its initial position. The hearth may also have a plurality of nozzles connected to a source of air for delivering gently flowing air to the burning pile on the hearth.

  20. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  1. Optical noninvasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  2. The Pulsating White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.

    2008-10-01

    We present a summary of what is currently known about the three distinct families of isolated pulsating white dwarfs. These are the GW Vir stars (He/C/O-atmosphere stars with Teff sime 120,000 K), the V777 Her stars (He-atmosphere, Teff sime 25,000 K), and the ZZ Ceti stars (H-atmosphere, Teff sime 12,000 K), all showing multiperiodic luminosity variations caused by low-order and low-degree g-mode instabilities. We also provide, in an Appendix, a very brief overview of the newly found evidence in favor of the existence of a fourth category of oscillating white dwarfs bearing strong similarities with these families of pulsators. We begin our survey with a short historical introduction, followed by a general discussion of pulsating white dwarfs as compact pulsators. We then discuss the class properties of these objects, including an updated census. We next focus on the instability domains for each family of pulsators in the log g - Teff diagram, and present their time-averaged properties in more detail. This is followed by a section on excitation physics, i.e., the causes of the pulsational instabilities, with emphasis on the common properties of the different types of pulsator. We then discuss the time-dependent properties of the pulsating white dwarfs featuring, among other things, a brief "picture tour" across the ZZ Ceti instability strip. We next review the methods used to infer or constrain the angular geometry of a pulsation mode in a white dwarf. These include multicolor photometry and time-resolved spectroscopy, the exploitation of the nonlinear features in the observed light curves, and rotational splitting. We also consider basic adiabatic asteroseismology starting with a discussion of the reaction of the period spectrum to variations of model parameters. We next review the various asteroseismological inferences that have so far been claimed for white dwarfs. We also discuss the potential of exploiting the rates of period change. We finally provide some

  3. High latitude pulsating aurorae revisited

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. )

    1992-01-03

    Dayside auroral pulsations (10-40 s periods) have been studied for different levels of geomagnetic disturbance with N{sub 2}{sup +} 427.8 nm emission data obtained at South Pole station, Antarctica ({minus}74.2{degree} MLAT). The occurrence distribution exhibits a single peak at magnetic noon under geomagnetically quiet conditions (0 {le} Kp < 1). With increased Kp, the distribution shifts to earlier times, the peak occurring at 1000-1030 MLT for 1 {le} Kp < 4. At these higher Kp levels a secondary occurrence peak is evident in the afternoon sector between 1400 and 1600 MLT, occurring earlier as Kp increases. These results are compared with those obtained separately for pre-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Ny Alesund and post-noon pulsations observed at Davis, northern and southern hemisphere sites at approximately the same magnetic latitude as South Pole. South Pole and Ny Alesund observe morning peaks at the same time and with a similar lack of Kp dependence; South Pole and Davis observe afternoon peaks with similar Kp dependence, though the peak occurs earlier at Davis. In contrast to the results from the earlier studies, the South Pole observations show larger pulsation amplitudes in the morning sector and significantly higher occurrence rates overall.

  4. [Bachelard and the mathematical pulsation].

    PubMed

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation. PMID:26223414

  5. Synchronization Model for Pulsating Variables

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Morikawa, M.

    2013-12-01

    A simple model is proposed, which describes the variety of stellar pulsations. In this model, a star is described as an integration of independent elements which interact with each other. This interaction, which may be gravitational or hydrodynamic, promotes the synchronization of elements to yield a coherent mean field pulsation provided some conditions are satisfied. In the case of opacity driven pulsations, the whole star is described as a coupling of many heat engines. In the case of stochastic oscillation, the whole star is described as a coupling of convection cells, interacting through their flow patterns. Convection cells are described by the Lorentz model. In both models, interactions of elements lead to various pulsations, from irregular to regular. The coupled Lorenz model also describes a light curve which shows a semi-regular variability and also shows a low-frequency enhancement proportional to 1/f in its power spectrum. This is in agreement with observations (Kiss et al. 2006). This new modeling method of ‘coupled elements’ may provide a powerful description for a variety of stellar pulsations.

  6. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  7. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  8. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE PAGESBeta

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C. -W; Nomura, R.; Sakaguchi, K.; et al

    2016-08-14

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensitymore » showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  9. Auroral pulsations from ionospheric winds

    SciTech Connect

    Nakada, M.P. )

    1989-11-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pederson currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  10. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  11. Pulsating Helium Atmosphere White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith; Montgomery, Michael H.; Bischoff-Kim, Agnes; Shipman, Harry; Nitta, Atsuko; Whole Earth Telescope Collaboration

    2015-08-01

    The overwhelming majority of all stars currently on the main sequence as well as those from earlier generations will or have ended their stellar lives as white dwarf stars. White dwarfs are rich forensic laboratories linking the history and future evolution of our Galaxy. Their structure and atmospheric composition provide evidence of how the progenitors lived, how they evolved, and how they died. This information reveals details of processes governing the behavior of contemporary main sequence stars. Combined with their distribution in luminosity/temperature, white dwarfs strongly constrain models of galactic and cosmological evolution.GD358 is among the brightest (mv =13.7) and best studied of the pulsating white dwarfs. This helium atmoshere pulsator (DBV) has an extensive photometric database spanning 30 years, including nine multisite Whole Earth Telescope campaigns. GD358 exhibits a range of behaviors, from drastic changes in excited pulsation modes to variable multiplet splittings. We use GD358 as a template for an examination of the DBV class, combining photometric results with recent COS spectroscopy. The results present new questions concerning DB formation and evolution.

  12. The morphology of displays of pulsating auroras.

    NASA Technical Reports Server (NTRS)

    Cresswell, G. R.

    1972-01-01

    An auroral substorm generates displays of pulsating auroras in ways which show a dependence upon both local time and latitude relative to the auroral oval. For several hours after midnight pulsating auroras can be observed in the wake of poleward expansions or within equatorward spreading diffuse envelopes of meridional extent of several hundred kilometers. As the dawn meridian is approached the displays of pulsating auroras tend increasingly to be comprised of distinct eastward drifting patches easily recorded by all-sky cameras.

  13. Dayside Pi 2 pulsations at low altitudes

    SciTech Connect

    Sutcliffe, P.R. ); Yumoto, Kiyohumi )

    1989-08-01

    In this paper the authors investigate the occurrence of dayside Pi 2 geomagnetic pulsations at low and mid latitudes. The technique of data adaptive filtering is used to identify Pi 2's concealed by the presence of typical daytime Pc type pulsations. Convincing new evidence is presented demonstrating that Pi 2 pulsations occur simultaneously in both the nightside and dayside hemispheres at low latitudes. Dayside Pi 2's are occasionally identified at mid latitudes. These results have implications with regard to the source mechanism for low latitude Pi 2 pulsations and allude to a global cavity mode.

  14. Optical multichannel monitoring of skin blood pulsations for cardiovascular assessment

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Ozols, Maris

    2004-07-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for cardiovascular assessment. The multichannel PPG concept has been developed and clinically verified in this work. Simultaneous data flow from several body locations allows to study the heartbeat pulse wave propagation in real time and to evaluate the vascular resistance. Portable two- and four-channel PPG monitoring devices and special software have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions.

  15. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  16. Constant auroral forms during regular pulsations

    NASA Astrophysics Data System (ADS)

    Roldugin, V. K.; Roldugin, A. V.

    2016-01-01

    A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.

  17. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Warnecke, Sascha; Hof, Bjoern; Avila, Marc

    2014-11-01

    We report an experimental investigation of the transition to turbulence in a pulsating pipe flow. This flow is a prototype of various pulsating flows in both nature and engineering, such as in the cardiovascular system where the onset of turbulence is often possibly related to various diseases (e.g., the formation of aneurysms). The experiments are carried out in a straight rigid pipe using water with a sinusoidal modulation of the flow rate. The governing parameters, Reynolds number, Womersley number α (dimensionless pulsating frequency) and the pulsating amplitude A, cover a wide range 3 < α < 23 and 0 < A < 1 . To characterize the transition to turbulence, we determine how the characteristic lifetime of turbulent spots (/puffs) are affected by the pulsation. While at high pulsation frequencies (α > 12) lifetimes of turbulent spots are entirely unaffected by the pulsation, at lower frequencies they are substantially affected. With decreasing frequency much larger Reynolds numbers are needed to obtain spots of the same characteristic lifetime. Hence at low frequency transition is delayed significantly. In addition the effect of the pulsation amplitude on the transition delay is quantified. Duo Xu would like to acknowledge the support from Humboldt Foundation.

  18. Pi2 pulsations in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lin, C. C.; Cahill, L. J., Jr.

    1975-01-01

    Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.

  19. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  20. Limestone calcination during pulsating combustion

    SciTech Connect

    James, R.E. III ); Richards, G.A. )

    1992-01-01

    METC is currently conducting research on enhanced calcination during pulsating combustion as part of the Heat Engines program. It has been shown elsewhere that rapid, high temperature calcination will result in a calcined product with relatively large surface area, as desired for sulfur capture. It is proposed that such a process may occur during pulsating combustion where the oscillating pressure/velocity field around a particle increases the heat/mass transfer to and from the particle. To test this hypothesis, calcination tests in progress at METC use a novel form of pulse combustion called thermal'' pulse combustion, operating at 60000 BTUH, 100 Hz, and 5--15 psig peak-to- peak amplitude. Two configurations are being studied during the testing: one configuration is injection of sorbent into a refractory lined drop tube being heated by the pulse combustor, and the other configuration is injection of the sorbent into the pulse combustor through its centerbody and along the tailpipe at various positions. To understand the observed behavior, a characterization study of the pulse combustor is being conducted. Different flow rates, equivalence ratios, and injection positions are being tested.

  1. A study of the pulsation driving mechanism in pulsating combustors

    NASA Astrophysics Data System (ADS)

    Goldman, Y.; Timnat, Y. M.

    Experiments performed in a facility consisting of a Schmidt-type pulsating combustor, in which high-speed photographs were taken and pressure, temperature and gas composition measured, showed that the air supply conditions at the inlet and the volume of the combustor strongly influence the oscillation frequency. From the measurements, the existence of two separate regions, one containing cold air and the other containing fuel-rich gas, was found, and a pressure-volume diagram was drawn, showing the effect of chemical energy release and heat supply during the compression stroke and differentiating it from the expansion. A model of the interaction between the cyclic combustion process and the acoustic oscillations of the gas volume within the chamber and the tail-pipe is presented. The conditions for chemical energy release that result in high-pressure amplitude are described.

  2. Persistent, widespread pulsating aurora: A case study

    NASA Astrophysics Data System (ADS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.; Jaynes, A. N.

    2013-06-01

    Observations of a pulsating aurora event occurring on 11 February 2008, using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) All-Sky Imager (ASI) array, indicate a spatially and temporally continuous event with a duration of greater than 15 h and covering a region with a maximum size of greater than 10 h magnetic local time. The optical pulsations are at times locally interrupted or drowned out by auroral substorm activity but are observed in the same location once the discrete aurora recedes. The pulsations following the auroral breakup appear to be brighter and have a larger patch size than before breakup. This suggests that, while the onset of pulsating aurora is not necessarily dependent upon a substorm precursor, the pulsations are affected and possibly enhanced by the substorm process. The long duration of this pulsating aurora event, lasting approximately 8 h without interruption as imaged from Gillam station, is significantly longer than the typical 2-3 h substorm recovery phase, suggesting that pulsating aurora is not strictly a recovery phase phenomenon. This paper is accompanied by a movie of the THEMIS ASI array data, from 0000 to 1715 UT, plotted in mosaic and superimposed onto a map of North America.

  3. Nonlinear Analysis of Pulsating White Dwarf Lightcurves

    NASA Astrophysics Data System (ADS)

    Provencal, J. L.; Montgomery, M. H.; Shipman, H.; WET TEam

    2015-06-01

    Convection remains one of the largest sources of theoretical uncertainty in our understanding of stellar physics. For example, Bergeron (1995) show that basic parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed convective parameterization. This is compelling, since we use our knowledge of these basic parameters to calibrate white dwarf cooling sequences, provide detailed estimates for the ages of individual white dwarfs, and determine the age of the Galactic disk. The Whole Earth Telescope (WET) is engaged in a long term project to empirically calibrate the physical properties of convection in pulsating white dwarfs by combining asteroseismology and analysis of nonlinear light curves. Nonsinusoidal distortions, in the form of narrow peaks and wider valleys, are observed in many pulsating white dwarf light curves. These are a reflection of the local depth of the convection zone, a value which varies during a pulsation cycle. Applying asteroseismology and convective light curve fitting to a wide sample of pulsating white dwarfs provides an empirical map of how the convective response time (the convection zone “depth”) varies as a function of effective temperature, and this can be compared with theoretical models, both MLT and hydrodynamic. This project has resulted in a large database of white dwarf lightcurves and pulsation frequencies. We present current results for DA and DB pulsators, and provide a few examples of interesting pulsation behavior seen along the way.

  4. Pulsations and outbursts of luminous blue variables

    SciTech Connect

    Cox, A.N.; Guzik, J.A.; Soukup, M.S.; Despain, K.M.

    1997-06-01

    We propose an outburst mechanism for the most luminous stars in our and other galaxies. These million solar luminosity stars, with masses (after earlier mass loss) of between 20 and maybe 70 solar masses, are pulsationally unstable for both radial and low-degree nonradial modes. Some of these modes are ``strange,`` meaning mostly that the pulsations are concentrated near the stellar surface and have very rapid growth rates in linear theory. The pulsation driving is by both the high iron line opacity (near 150,000 K) and the helium opacity (near 30,000 K) kappa effects. Periods range from 5 to 40 days. Depending on the composition, pulsations periodically produce luminosities above the Eddington limit for deep layers. The radiative luminosity creates an outward push that readily eases the very low gamma envelope to very large outburst radii. A key point is that a super-Eddington luminosity cannot be taken up by the sluggish convection rapidly enough to prevent an outward acceleration of much of the envelope. As the helium abundance in the envelope stellar material increases by ordinary wind mass loss and the luminous blue variable outbursts, the opacity in the deep pulsation driving layers decreases. This makes the current Eddington luminosity even higher so that pulsations can then no longer give radiative luminosities exceeding the limit. For the lower mass and luminosity luminous blue variables there is considerably less iron line opacity driving, and pulsations are almost all caused by the helium ionization kappa effect.

  5. Pulsations in close binaries: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Maceroni, C.; Lehmann, H.; Da Silva, R.; Montalbán, J.

    2015-09-01

    CoRoT and Kepler provided a precious by-product: a number of eclipsing binaries containing variable stars and, among these, non-radial pulsators. This providential occurrence allows combining independent information from two different phenomena whose synergy yields scientific results well beyond those from the single sources. In particular, the analysis of pulsations in eclipsing binary components throws light on the internal structure of the pulsating star, on the system evolution, and on the role of tidal forces in exciting the oscillations. The case study of the Kepler target KIC 3858884 is illustrative of the difficulties of analysis and of the achievements in this rapidly developing field.

  6. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  7. Statistical study of dayside pulsating aurora

    NASA Astrophysics Data System (ADS)

    Kanmae, T.; Kadokura, A.; Ogawa, Y.; Ebihara, Y.; Motoba, T.; Gerrard, A. J.; Weatherwax, A. T.

    2015-12-01

    Pulsating aurora normally occurs after a substorm breakup in the midnight sector, often observed to persist through the morning sector and beyond. Indeed, it has also been observed on the dayside; however, the characteristics of the dayside pulsating aurora are poorly known. A handful of observational studies have been reported, but the results are somewhat disputable because most of the studies had non-uniform sampling of the dark dayside region. Furthermore, the previous studies used photometer data, with which the spatial characteristics of the pulsating aurora cannot be examined. To determine both temporal and spatial characteristics of the pulsating aurora, we have studied three years of all-sky image data obtained at the South Pole station. Because of its unique geographical location, the station has 24 hours of darkness during the austral winter from April to August, providing an ideal platform for studying dayside aurora. In a preliminary survey of the data, we have identified the pulsating auroras in 198 days out of 365 days of observations. The magnetic local time (MLT) distribution of the occurrence peaks between 9:00 and 11:00, but shows no or little dependence on the geomagnetic activity. In many events, pulsating patches initially appear as east-west aligned arc segments and later in the afternoon sector develop into large, diffuse patches, which occasionally fill a large part of the field of view. Using the long-term data, we will statistically examine both temporal (occurrence rate, duration and pulsation period) and spatial (sizes and shapes) characteristics of the dayside pulsating aurora.

  8. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  9. Two new extremely hot pulsating white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Grauer, A. D.; Green, R. F.; Liebert, J. W.

    1984-01-01

    High speed photometry of the extremely hot, nearly degenerate stars PG 1707 + 427 and PG 2131 + 066 reveals that they are low-amplitude pulsating variables. Power spectral analysis shows both to be multiperiodic, with dominant periods of 7.5 and 6.4-6.9 minutes, respectively. Together with the known pulsators PG 1159 - 035 and the central star of the planetary nebula Kohoutek 1-16, these objects define a new pulsational instability strip at the hot edge of the H-R diagram. The variations of these objects closely resemble those of the much cooler pulsating ZZ Ceti DA white dwarfs; both groups are probably nonradial g-mode pulsators. Evolutionary contraction of the PG 1159 - 035 variables may lead to period changes that would be detectable in as little as 1 year. The optical and IUE spectra of the PG 1159 - 035 variables are characterized by absorption lines of C IV and other CNO ions, indicating radiative levitation of species heavier than helium. He II is also present in the spectra, but the hydrogen Balmer lines are absent. Effective temperatures near 100,000 K are required, and the He II 4686 A profiles indicate log g greater than 6. These helium-rich pulsators form the hottest known subgroup of the DO white dwarfs.

  10. Radial pulsations in DB white dwarfs?

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1993-01-01

    Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near 20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acoustic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed efficiency of convection. Models with increased convective efficiency have radial blue edges that are increasingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip. Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance for detection would be observations in the ultraviolet. These models also explain why searches for radial pulsations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations. The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the mass of the star.

  11. New pulsating white dwarfs in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Nilsson, R.; Uthas, H.; Ytre-Eide, M.; Solheim, J.-E.; Warner, B.

    2006-07-01

    The number of discovered non-radially pulsating white dwarfs (WDs) in cataclysmic variables (CVs) is increasing rapidly by the aid of the Sloan Digital Sky Survey (SDSS). We performed photometric observations of two additional objects, SDSS J133941.11+484727.5 (SDSS 1339), independently discovered as a pulsator by Gänsicke et al., and SDSS J151413.72+454911.9, which we identified as a CV/ZZ Ceti hybrid. In this Letter we present the results of the remote observations of these targets performed with the Nordic Optical Telescope (NOT) during the Nordic-Baltic Research School at Molėtai Observatory, and follow-up observations executed by NOT in service mode. We also present three candidates we found to be non-pulsating. The results of our observations show that the main pulsation frequencies agree with those found in previous CV/ZZ Ceti hybrids, but specifically for SDSS 1339 the principal period differs slightly between individual observations and also from the recent independent observation by Gänsicke et al. Analysis of SDSS colour data for the small sample of pulsating and non-pulsating CV/ZZ Ceti hybrids found so far seems to indicate that the r - i colour could be a good marker for the instability strip of this class of pulsating WDs. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. E-mail: ricky@astro.lu.se

  12. Effect of pulsation rest phase duration on teat end congestion.

    PubMed

    Upton, J; Penry, J F; Rasmussen, M D; Thompson, P D; Reinemann, D J

    2016-05-01

    The objective of this study was to quantify the effect of d-phase (rest phase) duration of pulsation on the teat canal cross-sectional area during the period of peak milk flow from bovine teats. A secondary objective was to test if the effect of d-phase duration on teat canal cross-sectional area was influenced by milking system vacuum level, milking phase (b-phase) duration, and liner overpressure. During the d-phase of the pulsation cycle, liner compression facilitates venous flow and removal of fluids accumulated in teat-end tissues. It was hypothesized that a short-duration d-phase would result in congestion of teat-end tissue and a corresponding reduction in the cross-sectional area of the teat canal. A quarter milking device, designed and built at the Milking Research and Instruction Laboratory at the University of Wisconsin-Madison, was used to implement an experiment to test this hypothesis. Pulsator rate and ratios were adjusted to achieve 7 levels of d-phase duration: 50, 100, 150, 175, 200, 250, and 300ms. These 7 d-phase durations were applied during one milking session and were repeated for 2 vacuum levels (40 and 50kPa), 2 milking phase durations (575 and 775ms), and 2 levels of liner overpressure (9.8 and 18kPa). We observed a significant reduction in the estimated cross-sectional area of the teat canal with d-phase durations of 50 and 100ms when compared with d-phase durations of 150, 175, 225, 250, and 300ms. No significant difference was found in the estimated cross-sectional area of the teat canal for d-phase durations from 150 to 300ms. No significant interaction was observed between the effect of d-phase and b-phase durations, vacuum level, or liner overpressure. PMID:26947293

  13. Modeling of pulsating heat pipes.

    SciTech Connect

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  14. FUNCTIONS AND REQUIREMENTS FOR RUSSIAN PULSATING MONITOR DEPLOYMENT IN THE GUNITE AND ASSOCIATED TANKS AT OAK RIDGE NATIONAL LABORATORY

    SciTech Connect

    Thomas Albert

    1999-01-01

    This document provides functions and requirements to support deployment of pulsating mixer pump technology in the Oak Ridge National Laboratory (ORNL) Gunite and Associated Tanks to mobilize and mix the settled sludge and solids in these tanks. In FY 1998 pulsating mixer pump technology, a jet mixer powered by a reciprocating air supply, was selected for FY 1999 deployment in one of the GAAT tanks to mobilize settled solids. Pulsating mixer pump technology was identified in FY 1996 during technical exchanges between the US Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the US. The pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to mobilize settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for bulk mobilization of Gunite tank sludge prior to deployment of other retrieval systems. The deployment of this device is expected to significantly reduce the costs of operation and maintenance of more expensive retrieval systems. The functions and requirements presented here were developed by evaluating the results and recommendations that resulted from the pulsating mixer pump demonstration at PNNL, and by coupling this with the remediation needs identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks.

  15. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Hof, Bjorn; Warnecke, Sascha; Xu, Duo

    2013-11-01

    We report an experimental study of the transition to turbulence in a pulsating pipe flow the most important example of pulsating flows is the cardiovascular system where the onset of fluctuations and turbulence can be a possible cause for various diseases such as the formation of aneurysms. The present study is limited to a straight rigid pipe, sinusoidal modulation of the flow rate and a Newtonian fluid. The dimensionless parameters (Womersley and Reynolds numbers) were chosen to include the parameter range encountered in larger arteries. We observe that at large frequencies the critical point for the onset of turbulence remains completely unaffected by pulsation for all amplitudes investigated (up to 40%). However for smaller frequencies (Womersley numbers below 10) the critical point considerably increases. Furthermore we investigate how the transition scenario is affected for a fixed frequency and increasing amplitudes (approaching oscillatory flow).

  16. Benefit of pulsation in soft corals

    PubMed Central

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-01-01

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes. PMID:23610420

  17. Gas compressor with side branch absorber for pulsation control

    SciTech Connect

    Harris, Ralph E.; Scrivner, Christine M.; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  18. SuperDARN observations of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Clausen, L. B. N.; Yeoman, T. K.; Hosokawa, K.; Yukimatu, A. S.; Sato, N.; Milan, S. E.; Lester, M.

    2009-04-01

    On 25 September 2006 the all-sky camera located in Tjornes, Iceland observed pulsating aurora. During the event, the SuperDARN radar at Pykkvibaer was running in a high time, high spatial resolution mode and observed oscillating Doppler velocities. The pulsating velocities were observed in two separate patches of backscatter at different range gates, with different velocities. Backscattered power and spectral width as well as elevation angle data suggest that the power associated with each patch travelled along different ray paths. We discuss possible ray paths as well as the mechanisms that could have led to the difference in Doppler velocity observed for each patch.

  19. Ionospheric variation during pulsating aurora

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Ogawa, Y.

    2015-07-01

    We have statistically analyzed data from the European Incoherent Scatter (EISCAT) UHF/VHF radars in Tromsø (69.60°N, 19.20°E), Norway, to reveal how the occurrence of pulsating auroras (PsAs) modifies the electron density profile in the ionosphere. By checking five winter seasons' (2007-2012) observations of all-sky aurora cameras of the National Institute of Polar Research in Tromsø, we have extracted 21 cases of PsA. During these PsA events, either the UHF or VHF radar of EISCAT was operative and the electron density profiles were obtained along the field-aligned or vertical direction near the zenith. From these electron density measurements, we calculated hmE (E region peak height) and NmE (E region peak density), which are proxies for the energy and flux of the precipitating PsA electrons, respectively. Then, we examined how these two parameters changed during the evolution of 21 PsA events in a statistical fashion. The results can be summarized as follows: (1) hmE is lower (the energy of precipitation electrons is higher) during the periods of PsA than that in the surrounding interval; (2) when NmE is higher (flux of PsA electrons is larger), hmE tends to be lower (precipitation is harder); (3) hmE is lower and NmE is larger in the later magnetic local time; and (4) when the AE index during the preceding substorm is larger, hmE is lower and NmE is larger. These tendencies are discussed in terms of the characteristics of particles and plasma waves in the source of PsA in the magnetosphere. In addition to the statistics of the EISCAT data, we carried out several detailed case studies, in which the altitude profiles of the electron density were derived by separating the On and Off phases of PsA. This allows us to estimate the true altitude profiles of the PsA ionization, which can be used for estimating the characteristic energy of the PsA electrons and better understanding the wave-particle interaction process in the magnetosphere.

  20. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part I. Pulsation Measurements

    PubMed Central

    Lee, Eun Gyung; Lee, Larry; Möhlmann, Carsten; Flemmer, Michael M.; Kashon, Michael; Harper, Martin

    2015-01-01

    Pulsations generated by personal sampling pumps modulate the airflow through the sampling trains, thereby varying sampling efficiencies, and possibly invalidating collection or monitoring. The purpose of this study was to characterize pulsations generated by personal sampling pumps relative to a nominal flow rate at the inlet of different respirable cyclones. Experiments were conducted using a factorial combination of 13 widely used sampling pumps (11 medium and 2 high volumetric flow rate pumps having a diaphragm mechanism) and 7 cyclones [10-mm nylon also known as Dorr-Oliver (DO), Higgins-Dewell (HD), GS-1, GS-3, Aluminum, GK2.69, and FSP-10]. A hot- wire anemometer probe cemented to the inlet of each cyclone type was used to obtain pulsation readings. The three medium flow rate pump models showing the highest, a midrange, and the lowest pulsations and two high flow rate pump models for each cyclone type were tested with dust-loaded filters (0.05, 0.21, and 1.25 mg) to determine the effects of filter loading on pulsations. The effects of different tubing materials and lengths on pulsations were also investigated. The fundamental frequency range was 22–110 Hz and the magnitude of pulsation as a proportion of the mean flow rate ranged from 4.4 to 73.1%. Most pump/cyclone combinations generated pulse magnitudes >10% (48 out of 59 combinations), while pulse shapes varied considerably. Pulsation magnitudes were not considerably different for the clean and dust-loaded filters for the DO, HD, and Aluminum cyclones, but no consistent pattern was observed for the other cyclone types. Tubing material had less effect on pulsations than tubing length; when the tubing length was 183 cm, pronounced damping was observed for a pump with high pulsation (>60%) for all tested tubing materials except for the Tygon Inert tubing. The findings in this study prompted a further study to determine the possibility of shifts in cyclone sampling efficiency due to sampling pump pulsations

  1. VOLUME COMPENSATING MEANS FOR PULSATING PUMPS

    DOEpatents

    Weaver, D.L.W.; MacCormack, R.S. Jr.

    1959-12-01

    A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.

  2. Pulsations in total columnar electron content

    NASA Technical Reports Server (NTRS)

    Okuzawa, T.; Davies, K.

    1981-01-01

    Radio signals from the ATS 6 beacon received at Boulder reveal small-amplitude, quasi-sinusoidal fluctuations with periods in the range of 10 to 50 s. Visual comparisons of these data (116 events for October 1974 to April 1975) shows a good correspondence with simultaneous geomagnetic pulsations at Boulder in two thirds of the cases for which Boulder magnetograms were available, but they do not necessarily correspond with magnetic pulsations on ATS 6. Spectral analyses, by the method of maximum entropy, were made on sample records. The principal results are the following: (1) The occurrence of the pulsations is higher on magnetically disturbed days. (2) The maximum likelihood of occurrence is around 2100 UT (1400 LT). (3) The dominant spectrum peaks of the radio fluctuations and geomagnetic field on the ground generally coincide. Cases are found also in which temporal characteristics of the spectra are similar. These results indicate a close association of the radio fluctuations with the Pc 3-4 type pulsations of the geomagnetic field on the ground. It is suggested that the radio fluctuations originate mainly in the F region of the ionosphere, while some of them could be due to plasmapause effects.

  3. Blackworms, Blood Vessel Pulsations and Drug Effects.

    ERIC Educational Resources Information Center

    Lesiuk, Nalena M.; Drewes, Charles D.

    1999-01-01

    Introduces the freshwater oligochaete worm, lumbriculus variegatus (common name: blackworms), an organism that is well suited for classroom study because of its closed circulatory system. Describes a set of simple, fast, noninvasive, and inexpensive methods for observing pulsations of the worm's dorsal blood vessels under baseline conditions, and…

  4. X-ray Pulsation Searches with NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  5. On the standing wave mode of giant pulsations

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Sato, N.; Warnecke, J.; Luehr, H.; Spence, H. E.; Tonegawa, Y.

    1992-01-01

    In order to determine the standing wave mode of giant pulsations, a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE was made. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator. It is concluded that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure, which places a strong constraint on the generation mechanism of giant pulsations.

  6. Optical non-invasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spīgulis, Jānis

    2005-08-01

    Time resolved detection and analysis of the skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. The single- and multi-channel PPG concepts are discussed in this work. Simultaneous data flow from several body locations allows one to study the heartbeat pulse wave propagation in real time and evaluate the vascular resistance. Portable single-, dual- and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The clinical studies confirmed their potential in the monitoring of heart arrhythmias, drug tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions.

  7. Evaluation of hydro-mechanical pulsation for rocket injector research

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew B.

    The Propulsion Research Center at the University of Alabama in Huntsville has designed and built a hydro-mechanical pulsator to simulate the pressure fluctuations created by high frequency combustion instability. The pressure response characteristics were evaluated in an atmospheric test rig using filtered de-ionized water as the working fluid. The outlet of the pulsator was connected to a swirl injector post to provide downstream flow resistance. Previous low pressure and mass flow experimental data revealed a complex relationship between the control parameters and the pulsation response. For each test, the average mass flow rates of the waste water, water lost through the seals, and injector mass flow rates are measured. A dynamic pressure transducer at the pulsator exit measures and records the pressure waveform. Pulsation magnitude, reliability, repeatability, pulsation effects, and detailed variable control are examined. The data shows the pulsator is capable of generating 30% pulsation at 1575 Hz input. The repeatability of the pulsator is questionable because the standard deviations exceeded 40% of the average. The detailed data obtained during this research provides is sufficient to develop a pulsator tuning procedure for future applications.

  8. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  9. Pulsation and mass loss in Mira variables

    NASA Technical Reports Server (NTRS)

    Wood, P. R.

    1980-01-01

    The behavior of pulsation in the outer layers of a typical Mira variable was studied in the adiabatic and isothermal limits. A shock wave propagates outward once per period and the radial velocity obtained from observations of hydrogen emission lines is identified with the velocity of gas in the post shock region. In the adiabatic case, mass loss in the form of a steady stellar wind was produced. In the isothermal case, no continuous mass loss was produced but occasional ejection of shells occur. Pulsation introduced into a star undergoing steady mass loss as a result of radiation pressure acting on grains caused the mass loss rate to increase by a factor of approximately 40, while the terminal velocity of the flow was almost unaltered.

  10. The eight-schwabe-cycle pulsation

    NASA Astrophysics Data System (ADS)

    Richard, Jean-Guillaume

    2004-09-01

    The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4‧ (1793 1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610 2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.

  11. 21 CFR 870.5225 - External counter-pulsating device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... used to assist the heart by applying positive or negative pressure to one or more of the body's limbs in synchrony with the heart cycle. (b) Classification. Class III (premarket approval). (c) Date...

  12. 21 CFR 870.5225 - External counter-pulsating device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... used to assist the heart by applying positive or negative pressure to one or more of the body's limbs in synchrony with the heart cycle. (b) Classification. Class III (premarket approval). (c) Date...

  13. 21 CFR 870.5225 - External counter-pulsating device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... used to assist the heart by applying positive or negative pressure to one or more of the body's limbs in synchrony with the heart cycle. (b) Classification. Class III (premarket approval). (c) Date...

  14. 21 CFR 870.5225 - External counter-pulsating device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... used to assist the heart by applying positive or negative pressure to one or more of the body's limbs in synchrony with the heart cycle. (b) Classification. Class III (premarket approval). (c) Date...

  15. A new driving mechanism for stellar pulsations

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    1987-03-01

    A new driving mechanism termed "convective blocking", a variation of the normal κ- and γ-mechanisms in Cepheids, is demonstrated using two models of hydrogen white dwarf stars. This mechanism is shown to be physically reasonable in the limit of frozen convection (implying the time scale for convective readjustment is long compared to a pulsation period). Some qualitative effects are given for when the two time scales are not as disparate.

  16. Pulsating aurorae: Evidence for flux limiting

    SciTech Connect

    Davidson, G.T.; Sears, R.D.

    1980-03-01

    Theoretical models based upon the concept of self-modulated VLF wave-electron interactions have been proposed to explain pulsating aurorae. These models incorporate the idea of a trapping limit, above which strong diffusion into the loss cone rapidly removes any excess electrons. At flux values near the trapping limit, perturbations of the trapped electron distribution can result in cyclic wave growth and electron precipitation. The trapping limit is thus related to the energy deposited and the characteristic energy of electrons precipitated in pulsating aurorae. Photometric measurements of the total energy deposit and of the mean energy parameter made at Chatanika, Alaska (invariant geomagnetic latitude, 65 /sup 0/) indicate that the well-developed pulsations are caused mainly by a modulation of the mean energy parameter. Thus, a nearly constant ''limiting'' value for the precipitating flux is measured F=7 x 10/sup 8/ el/cm/sup 2/ sec from which a trapped flux limit of Japprox. =3 x 10/sup 9/ el/cm/sup 2/ sec can be inferred.

  17. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  18. Simultaneous observation of monochromatic and variable period geomagnetic pulsations

    SciTech Connect

    McDiarmid, D.R.; Nielsen, E. )

    1987-05-01

    On February 4, 1983, following a storm sudden commencement, a monochromatic and a variable period pulsation were simultaneously observed by the Scandinavian Twin Auroral Radar Experiment (STARE) and Sweden and Britain Radar Experiment (SABRE) radar systems. Both pulsations differed from previously analyzed examples of their class. The phase of the monochromatic pulsation increased linearly with latitude rather than decreased. Its amplitude remained relatively constant over the latitude interval of linear phase change. The variable period pulsation experienced a change of orientation of its essentially linear polarization diagram in association with a discontinuity of its period. The variable period pulsation was thus manifest in both the toroidal and poloidal components. The results are discussed in terms of recent developments in theoretical pulsation modeling.

  19. Radial pulsation stability as a function of hydrogen abundance

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Saio, Hideyuki

    2015-08-01

    Following the discovery of pulsation in an extremely low-mass pre-white dwarf by Maxted et al. (2011, 2013), Jeffery & Saio (2013) showed that pulsations in such stars would be excited in high radial overtones provided that the driving zone was sufficiently depleted in hydrogen. Following previous work which shows that pulsations are more easily excited in stars where the damping effects of hydrogen are somehow reduced (Jeffery & Saio 2006), we have completed a survey of radial pulsation stability across a substantially larger parameter space. The object is to identify new regions of the HR diagram where stars should be unstable to radial pulsations, or where closely related p-modes might be excited. These would enable targeted surveys for new classes of pulsating variable. This poster reports the survey results and the identification of new instability regions.

  20. The δ Scuti Pulsation Periods in KIC 5197256

    NASA Astrophysics Data System (ADS)

    Turner, G.; Holaday, J.

    2015-06-01

    In this paper we present the pulsational spectrum for KIC 5197256. This object is an eclipsing binary system with a period of 6.96 days. We demonstrate that the light curve shows presence of δ Scuti pulsations with a dominant period of 0.1015 day. The object should therefore be included in the ever-growing class of eclipsing binary systems with at least one pulsating component.

  1. Detection and characterization of geomagnetic pulsations using HF ionospheric heating

    SciTech Connect

    Lee, H.S.; Ferraro, A.J.; Olson, J.V. Alaska Univ., Fairbanks )

    1990-12-01

    This paper describes the geomagnetic pulsations observed in the high-latitude ionosphere during an experiment dealing with the ionospheric generation of ELF/VLF EM waves in June and October 1987. There was clear evidence of geomagnetic pulsations intermixed with the ELF/VLF signals in both the magnitude and phase data. A simple simulation model is introduced to facilitate the interpretation of the data, and a procedure for characterizing the pulsation is described. 5 refs.

  2. Helium abundance effects on RR Lyrae pulsation properties

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Coppola, G.; Bono, G.; Braga, V.; Pietrinferni, A.

    2016-05-01

    A new set of nonlinear convective pulsation models of RR Lyrae stars has been computed varying both the metallicity and the helium content. To constrain the helium dependence of pulsation observables we adopted, for each metal content, at least three different helium abundances. We provide for the first time a homogeneous evolutionary and pulsation framework covering the entire range of cluster and field variables. The implications for the use of RR Lyrae as stellar population tracers and distance indicators are briefly discussed.

  3. On the pulsation and evolutionary properties of helium burning radially pulsating variables

    NASA Astrophysics Data System (ADS)

    Bono, G.; Pietrinferni, A.; Marconi, M.; Braga, V. F.; Fiorentino, G.; Stetson, P. B.; Buonanno, R.; Castellani, M.; Dall'Ora, M.; Fabrizio, M.; Ferraro, I.; Giuffrida, G.; Iannicola, G.; Marengo, M.; Magurno, D.; Martinez-Vazquez, C. E.; Matsunaga, N.; Monelli, M.; Neeley, J.; Rastello, S.; Salaris, M.; Short, L.; Stellingwerf, R. F.

    2016-05-01

    We discuss pulsation and evolutionary properties of low- (RR Lyrae, Type II Cepheids) and intermediate-mass (Anomalous Cepheids) radial variables. We focus our attention on the topology of the instability strip and the distribution of the quoted variables in the Hertzsprung-Russell diagram. We discuss their evolutionary status and the dependence on the metallicity. Moreover, we address the diagnostics (period derivative, difference in luminosity, stellar mass) that can provide solid constraints on their progenitors and on the role that binarity and environment have in shaping their current pulsation characteristics. Finally, we briefly outline their use as standard candles.

  4. Periodic stellar pulsations - Stability analysis and amplitude equations

    NASA Astrophysics Data System (ADS)

    Buchler, J. R.; Moskalik, Pawel; Kovacs, Geza

    1991-10-01

    The stability properties of nonlinear periodic stellar pulsations are studied within the amplitude equation formalism. Both nonresonant and resonant pulsations are considered. A comparison to a sequence of classical Cepheid models shows that the formalism provides a good qualitative and quantitative description of the behavior of the Floquet coefficients and that it also captures the most important features of the Floquet eigenvectors. It thus helps shed new light on the behavior (bifurcations) of pulsating stars. In addition, the predictive powers of the analytical approach allow a systematic search for models with specific pulsational properties.

  5. Magnetic pulsations at the quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Russell, C. T.

    1990-01-01

    The plasma and field properties of large-amplitude magnetic field pulsatins upstream from the quasi-parallel region of the earth's bow shock are examined in high time resolution using data from ISEE 1 and 2. The relative timing of the magnetic field profiles observed at the two spacecraft shows that some of the pulsations are convecting antisunward across the spacecraft while others are brief out/in motions of bow shock across the spacecraft. Pulsations with both timing signatures are the site of slowing and heating of the solar wind plasma. The ions tend to be only weakly heated in the convecting pulsations, while within the out/in pulsations the ion heating can be quite substantial but variable. This variation occurs not only from pulsation to pulsation but also from point to point within a given pulsation. In general, the hottest distributions within the out/in pulsations tend to occur in regions of lower density and field strength. Magnetic pulsations bear a number of similarities to previously identified hot diamagnetic cavity events as well as to more durable crossings of the quasi-parallel shock itself. These various phenomena may be different manifestations of the same basic physical processes, in particular the coupling of coherently reflected ions to the solar wind beam.

  6. Large-Scale Aspects and Temporal Evolution of Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.

    2010-01-01

    Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup.

  7. DRIVING G-MODE PULSATIONS IN GAMMA DORADUS VARIABLES

    SciTech Connect

    J. GUZIK; A. KAYE; ET AL

    2000-10-10

    The {gamma} Doradus stars are a newly-discovered class of gravity-mode pulsators which lie just at or beyond the red edge of the {delta} Scuti instability strip. We present the results of calculations which predict pulsation instability of high-order g-modes with periods between 0.4 and 3 days, as observed in these stars. The pulsations are driven by the modulation of radiative flux by convection at the base of a deep envelope convection zone. Pulsation instability is predicted only for models with temperatures at the convection zone base between {approximately}200,000 and {approximately}480,000 K. The estimated shear dissipation due to turbulent viscosity within the convection zone, or in an overshoot region below the convection zone, can be comparable to or even exceed the predicted driving, and is likely to reduce the number of unstable modes, or possibly to quench the instability. Additional refinements in the pulsation modeling are required to determine the outcome. A few Doradus stars have been observed that also pulsate in {delta} Scuti-type p-modes, and at least two others have been identified as chemically peculiar. Since our calculated driving region is relatively deep, Doradus pulsations are not necessarily incompatible with surface abundance peculiarities or with {delta} Scuti p-mode pulsations driven by the H and He-ionization {kappa} effect. Such stars will provide useful observational constraints on the proposed Doradus pulsation mechanism.

  8. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  9. Identification of pulsational modes in rotating slowly pulsating B-type stars

    NASA Astrophysics Data System (ADS)

    Szewczuk, W.; Daszyńska-Daszkiewicz, J.

    2015-06-01

    Knowledge of the geometry of pulsational modes is a prerequisite for seismic modelling of stars. In the case of slowly pulsating B-type (SPB) pulsators, the simple zero-rotation approach so far used for mode identification is usually not valid because pulsational frequencies are often of the order of the rotational frequency. Moreover, this approach allows us to determine only the spherical harmonic degree, ℓ, while the azimuthal order, m, is beyond its reach. On the other hand, because of the density of oscillation spectra of SPB stars, knowledge of m is indispensable if one wants to assign the radial order, n, to the observed frequency peaks. Including the effects of rotation via the traditional approximation, we perform identification of the mode angular numbers (ℓ, m) for 31 SPB stars with available multicolour time series photometry. Simultaneously, constraints on the rotational velocity, Vrot, and the inclination angle, i, are determined assuming uniform rotation and a constant value of Vrot sin i. Dependence of the results on the adopted model is tested using HD 21071 as an example. Despite some model uncertainties and limitations of the method, our studies show the correct approach to identifying the low-frequency oscillation modes.

  10. Construction of Database for Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  11. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  12. Excitation and Saturation of White Dwarf Pulsations

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin

    1998-06-01

    Variable hydrogen white dwarfs (DAV) pulsate in a number of low-order gravity-modes with periods from 100 s to 1200 s and amplitudes no larger than a few percent. We answer two questions in this thesis: the driving for these pulsations, and the saturation of their amplitudes. The surface convection zone in these stars, which adjusts its entropy level instantaneously during the pulsation, can drive the observed modes. This mechanism (called 'convective driving') was discovered by Brickhill but has been largely neglected so far. We find that modes with periods shorter than the thermal adjustment time of the convection zone can become overstable, but those with very short periods are hardly visible at the surface. As the star cools and the convection zone deepens, longer period modes can be excited. The driving rates increase sharply with period. We relate these to the time-scale of mode variability. We include complications arising from nonadiabaticity in the radiative interior and turbulent damping at the convective-radiative boundary. The former limits the driving and damping rates for strongly nonadiabatic modes, and relates the phase and amplitude of surface horizontal velocity in a gravity-mode to those of its flux variation. The turbulent damping results from the horizontal velocity shear below the convection zone, inside which there is little velocity shear and negligible damping. This suppresses the amplitudes of long period modes to below detection. The width of the theoretical DAV instability strip is about 1000 K. The growth of an overstable mode can be saturated by parametric instability, where energy transfers resonantly into two damped modes of roughly half its frequency. This occurs above a critical amplitude which depends on the 3-mode coupling coefficient and the nonadiabatic damping rates. The critical amplitudes all fall below a few percent, with longer period modes having larger surface amplitudes. Combined with the amplitude limits due to

  13. Multidimensional modelling of classical pulsating stars

    NASA Astrophysics Data System (ADS)

    Muthsam, H. J.; Kupka, F.

    2016-05-01

    After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.

  14. Pulsating laminar fully developed channel and pipe flows.

    PubMed

    Haddad, Kais; Ertunç, Ozgür; Mishra, Manoranjan; Delgado, Antonio

    2010-01-01

    Analytical investigations are carried out on pulsating laminar incompressible fully developed channel and pipe flows. An analytical solution of the velocity profile for arbitrary time-periodic pulsations is derived by approximating the pulsating flow variables by a Fourier series. The explicit interdependence between pulsations of velocity, mass-flow rate, pressure gradient, and wall shear stress are shown by using the proper dimensionless parameters that govern the flow. Utilizing the analytical results, the scaling laws for dimensionless pulsation amplitudes of the velocity, mass-flow rate, pressure gradient, and wall shear stress are analyzed as functions of the dimensionless pulsation frequency. Special attention has been given to the scaling laws describing the flow reversal phenomenon occurring in pulsating flows, such as the condition for flow reversal, the dependency of the reversal duration, and the amplitude. It is shown that two reversal locations away from the wall can occur in pulsating flows in pipes and channels and the reversed amount of mass per period reaches a maximum at a certain dimensionless frequency for a given amplitude of mass-flow rate fluctuations. These analyses are numerically conducted for pipe and channel flows over a large frequency range in a comparative manner. PMID:20365456

  15. Heat transfer characteristics of pulsated turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Said, S. A. M.; Al-Farayedhi, A. A.; Al-Dini, S. A.; Asghar, A.; Gbadebo, S. A.

    Heat Transfer characteristics of pulsated turbulent pipe flow under different conditions of pulsation frequency, amplitude and Reynolds number were experimentally investigated. The pipe wall was kept at uniform heat flux. Reynolds number was varied from 5000 to 29 000 while frequency of pulsation ranged from 1 to 8 Hz. The results show an enhancement in the local Nusselt number at the entrance region. The rate of enhancement decreased as Re increased. Reduction of heat transfer coefficient was observed at higher frequencies and the effect of pulsation is found to be significant at high Reynolds number. It can be concluded that the effect of pulsation on the mean Nusselt numbers is insignificant at low values of Reynolds number.

  16. Recurrent pulsations in Saturn's high latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Carbary, J. F.; Bunce, E. J.; Radioti, A.; Badman, S. V.; Pryor, W. R.; Hospodarsky, G. B.; Kurth, W. S.

    2016-01-01

    Over the course of about 6 h on Day 129, 2008, the UV imaging spectrograph (UVIS) on the Cassini spacecraft observed a repeated intensification and broadening of the high latitude auroral oval into the polar cap. This feature repeated at least 5 times with about a 1 h period, as it rotated in the direction of corotation, somewhat below the planetary rotation rate, such that it moved from noon to post-dusk, and from roughly 77° to 82° northern latitudes during the observing interval. The recurring UV observation was accompanied by pronounced ∼1 h pulsations in auroral hiss power, magnetic perturbations consistent with small-scale field aligned currents, and energetic ion conics and electrons beaming upward parallel to the local magnetic field at the spacecraft location. The magnetic field and particle events are in phase with the auroral hiss pulsation. This event, taken in the context of the more thoroughly documented auroral hiss and particle signatures (seen on many high latitude Cassini orbits), sheds light on the possible driving mechanisms, the most likely of which are magnetopause reconnection and/or Kelvin Helmholtz waves.

  17. The ionospheric signature of Pi 2 pulsations observed by STARE

    SciTech Connect

    Sutcliffe, P.R. ); Nielsen, E. )

    1992-07-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 {degree} phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere.

  18. On the standing wave mode of giant pulsations

    SciTech Connect

    Takahashi, K. ); Sato, N. ); Warnecke, J.; Luehr, H. ); Spence, H.E. ); Tonegawa, Y. )

    1992-07-01

    Both odd-mode and even-mode standing were structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, the authors have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. They selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et at., 1982). In agreement with Hillebrand et al., they conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations.

  19. Pulsations in the free oscillations of the Earth

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.

    2015-05-01

    The records from wideband IRIS stations after a strong earthquake are analyzed. A few days after the earthquake, pulsations with a period of 128 min arise and last for about a week. They appear as a periodical variation in the amplitude of the free radial oscillation of the Earth 0S0 having a period of 20.46 min. The period of the pulsations is more than double the period of the lowest-frequency free spheroidal oscillations of the Earth (53.9 min). The pulsations are most pronounced at the mid-latitudinal and equatorial stations and less distinct near the poles. The pulsations are phase synchronous at the nearby stations and antiphase at the stations located in the western and eastern hemispheres. The pulsation amplitude does not depend on the phase of the Earth's tide. The shape and period of the pulsations are fitted by the model of beatings appearing in the Van der Pol oscillator with periodic forcing. The pulsations are hypothesized to result from asynchronous interaction between the free oscillations of the Earth.

  20. A helium based pulsating heat pipe for superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  1. The attractor dimension of solar decimetric radio pulsations

    NASA Technical Reports Server (NTRS)

    Kurths, J.; Benz, A. O.; Aschwanden, M. J.

    1991-01-01

    The temporal characteristics of decimetric pulsations and related radio emissions during solar flares are analyzed using statistical methods recently developed for nonlinear dynamic systems. The results of the analysis is consistent with earlier reports on low-dimensional attractors of such events and yield a quantitative description of their temporal characteristics and hidden order. The estimated dimensions of typical decimetric pulsations are generally in the range of 3.0 + or - 0.5. Quasi-periodic oscillations and sudden reductions may have dimensions as low as 2. Pulsations of decimetric type IV continua have typically a dimension of about 4.

  2. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  3. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  4. Ambiguity of mapping the relative phase of blood pulsations

    PubMed Central

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A.; Giniatullin, Rashid; Kamshilin, Alexei A.

    2014-01-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation. PMID:25401026

  5. Interplanetary navigation using pulsating radio sources

    NASA Technical Reports Server (NTRS)

    Downs, G. S.

    1974-01-01

    Radio beacons with distinguishing signatures exist in nature as pulsating radio sources (pulsars). These objects radiate well determined pulse trains over hundreds of megahertz of bandwidth at radio frequencies. Since they are at known positions, they can also be used as navigation beacons in interplanetary space. Pulsar signals are weak and dispersive when viewed from earth. If an omnidirectional antenna is connected to a wideband receiver (200 MHz bandwidth centered at 200 MHz) in which dispersion effects are removed, nominal spacecraft position errors of 1500 km can be obtained after 24 h of signal integration. An antenna gain of 10 db would produce errors as low as 150 km. Since the spacecraft position is determined from the measurement of the phase of a periodic signal, ambiguities occur in the position measurement. Simultaneous use of current spacecraft navigation schemes eliminates these ambiguities.

  6. Total-pressure averaging in pulsating flows.

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a nonsteady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered with the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles.

  7. THE PULSATION MODE OF THE CEPHEID POLARIS

    SciTech Connect

    Turner, D. G.; Kovtyukh, V. V.; Usenko, I. A.; Gorlova, N. I.

    2013-01-01

    A previously derived photometric parallax of 10.10 {+-} 0.20 mas, d = 99 {+-} 2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of (M{sub V} ) = -3.07 {+-} 0.01 s.e., average effective temperature of (T{sub eff}) = 6025 {+-} 1 K s.e., and intrinsic color of ((B) - (V)){sub 0} = +0.56 {+-} 0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E{sub B-V} = 0.02 {+-} 0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.

  8. Total pressure averaging in pulsating flows

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a non-steady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered within the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure, and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles. The experiments were performed at a pressure level of 1 bar, for Mach number up to near 1, and frequencies up to 3 kHz.

  9. Theoretical Period Changes in Yellow Giant Pulsators

    SciTech Connect

    Cox, A.N.

    1998-03-01

    Period changes in RR Lyrae variables and Cepheids, known for more than 60 years, can possibly be explained by small changes in a helium composition gradient below the hydrogen and helium convection zones. The particular cases for the globular cluster M15 double-mode RR Lyrae variable V53 and the Cepheid Polaris are studied. For the last 80 years, the fundamental mode period of V53 has been decreasing while the overtone mode period in this same star has been increasing. The rather steady overtone mode period increase for Polaris stopped very recently, and the period now seems constant. Diffusive settling of helium in these kinds of stars has been known to be slight because of the two convection zones and the long diffusion timescale below them. But a small amount of helium settling, even before the star begins to pulsate, and then a dredge-up of just a little helium by an occasional overshooting can change surface layer structures and periods. This dredge-up can have a timescale as short as the convection turnover time, i.e., a few days. A slight helium dredge-up episode may now have temporarily stopped the decaying pulsations and period increase of Polaris. Such an episode cannot explain the double-mode V53 case, but possibly the helium composition gradient is deepened enough by matter accretion in only 80 years to explain its observed opposite period changes. Another mechanism that might be important for period changes is tidal mixing of the small composition gradients caused by occasional close encounters of stars in clusters. Significant stellar rotation would keep the surface layer composition homogeneous and not allow the anomalous period changes discussed here. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  10. Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry

    NASA Astrophysics Data System (ADS)

    Dragostinoff, Nikolaus; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold

    2009-09-01

    A device that allows for the measurement of ocular fundus pulsations at preselected axial positions of a subject's eye is presented. Unlike previously presented systems, which only allow for observation of the strongest reflecting retinal layer, our system enables the measurement of fundus pulsations at a preselected ocular layer. For this purpose the sample is illuminated by light of low temporal coherence. The layer is then selected by positioning one mirror of a Michelson interferometer according to the depth of the layer. The device contains a length measurement system based on partial coherence interferometry and a line scan charge-coupled device camera for recording and online inspection of the fringe system. In-vivo measurements in healthy humans are performed as proof of principle. The algorithms used for enhancing the recorded images are briefly introduced. The contrast of the observed interference pattern is evaluated for different positions of the measurement mirror and at various distances from the front surface of the cornea. The applications of such a system may be wide, including assessment of eye elongation during myopia development and blood-flow-related changes in intraocular volume.

  11. Canards in a rheodynamic model of cardiac pressure pulsations

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Chen, Xian-Feng

    2007-09-01

    This paper reports on the canard phenomenon occurring in a rheodynamic model of cardiac pressure pulsations. By singular perturbation techniques the corresponding parameter value at which canards exist is obtained. The physiological significance of canards in this model is given.

  12. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  13. Photometric study of the pulsating, eclipsing binary OO DRA

    SciTech Connect

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  14. Pulsations of B stars: A review of observations and theories

    SciTech Connect

    Cox, A.N.

    1986-01-01

    The observational and theoretical status are discussed for several classes of variable B stars. The older classes now seem to be better understood in terms of those stars that probably have at least one radial mode and those that have only nonradial modes. The former are the ..beta.. Cephei variables, and the latter are the slowly rotating 53 Persei and the rapidly rotating zeta Ophiuchi variables. It seems that in this last class there are also some Be stars that show nonradial pulsations from the variations of the line shapes and their light. Among the nonradial pulsators, we must also include the supergiants which show pulsations with very short lifetimes. A review of the present observational and theoretical problems is given. The most persistent problem of the cause for the pulsations is briefly discussed, and many proposed mechanisms plus some new thoughts are presented. 57 refs., 4 figs.

  15. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  16. Studying geomagnetic pulsation characteristics with the local approximation method

    NASA Astrophysics Data System (ADS)

    Getmanov, V. G.; Dabagyan, R. A.; Sidorov, R. V.

    2016-03-01

    A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral-time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.

  17. Observation and modeling of compressional Pi 3 magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Matsuoka, Hitoshi; Takahashi, K.; Yumoto, K.; Anderson, B. J.; Sibeck, D. G.

    1995-01-01

    Compressional magnetic pulsations with irregular waveforms and periods longer than 150 s (here termed Pi 3) have been studied by using data from Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) and GOES 5 and 6 in the dayside magnetosphere and compared with signatures on the ground at low latitudes by using data from Kakioka station (L = 1.25). On the ground, the pulsations appear in the horizontal component. A study of 17 such concurrent events during a 2-month period in 1986 reveals the following pulsation characteristics. (1) The peak-to-peak amplitudes in space (delta B(sub T)) and on the ground (delta H) are comparable and are in the range of 0.5-7 nT. (2) On the ground the pulsations can be seen at all local times, even at midnight, while at geostationary orbit they are observed only on the dayside with a clear amplitude maximum at noon. (3) The pulsations on the ground lag those observed by CCE near local noon, and the lag increases as the local time separation between CCE and the ground station increases. The time lag is 1-2 min longer when the ground station is on the nightside than when it is on the dayside. (4) The time lag between pulsations observed at geostationary orbit and near noon by CCE varies systematically with local time and is about 2 min per 6 hours of local time separation. These observations indicate that some nightside pulsations in the Pi 3 band have dayside origins. The position dependence of the pulsation amplitude can be explained well by changes in the magnetopause current, which are in turn presumably caused by changes in the solar wind dynamic pressure. The time lags observed in space are consistent with signal propagation in the MHD fast mode, but the variation in space-ground time lags with ground station local time must be attributed to another mechanism.

  18. Ionospheric ion heating by ULF Pc 5 magnetic pulsations

    SciTech Connect

    Lathuillere, C.; Glangeaud, F.; Zhao, Z.Y.

    1986-02-01

    Frictional heating of the ions resulting from dc ionospheric electric fields is experimentally and theoretically well known. We extend these results to ion heating due to ULF magnetic pulsations of periods as low as 3 min. Ion temperature fluctuations as measured by the European incoherent scatter facility are very well correlated to magnetic Pc 5 pulsations. We present a method which estimates these ion temperature enhancements from ion velocity measurements.

  19. Structure of black aurora associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Fritz, Bruce A.; Lessard, Marc L.; Blandin, Matthew J.; Fernandes, Philip A.

    2015-11-01

    Morphological behavior of black aurora as it relates to pulsating aurora is investigated by examining a collection of ground-based observations from January 2007 in support of the Rocket Observations of Pulsating Aurora rocket campaign. Images were sampled from video recorded by a Xybion intensified camera (30 fps) at Poker Flat Research Range, AK. The primary observations of black aurora recorded during the substorm recovery phase were between separate patches of pulsating aurora as well as pulsating aurora separated from diffuse aurora. In these observations the black aurora forms an apparent firm boundary between the auroral forms in a new behavior that is in contrast with previously reported observations. Also presented for the first time are black curls in conjunction with pulsating aurora. Curl structures that indicate shear plasma flows in the ionosphere may be used as a proxy for converging/diverging electric fields in and above the ionosphere. This new subset of black auroral behavior may provide visual evidence of black aurora as an ionospheric feedback mechanism as related to pulsating aurora.

  20. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  1. Optical emissions and ionization profiles during an intense pulsating aurora

    SciTech Connect

    Sears, R.D.; Vondrak, R.R.

    1981-08-01

    Coordinated spectrophotometric and incoherent scatter radar measurements were made of an intense early-morning pulsating aurora at Chatanika, Alaska. Both instruments were operated simultaneously with temporal resolution of 1 s and were boresighted at geomagnetic zenith. The goals of the collaborative experimental were to determine the total energy flux E/sub t/ and the characteristic energy parameter ..cap alpha.. of the precipitating electrons on a time scale smaller than the pulsation duration and to investigate the response of the ionospheric electron density on a comparable time scale. The relationship between total energy flux and the characteristic energy parameter suggests that during these observations the pulsations were caused by a modulation of ..cap alpha.. rather than by a modulation of the total precipitating particle flux. The values of E/sub t/ and ..cap alpha.. derived from photometric data were used to model the electron density versus altitude in the ionosphere for comparison with the incoherent scatter radar measurements. Measured altitude profiles of ionization did not change significantly on the time scale of the pulsations. The E region maximum electron density typically was 7 x 10/sup 5/ at an altitude of 99 km. Variations in ionospheric conductivity were less than 15% on the pulsation time scale. These results suggest that a magnetospheric modulation mechanism is required to explain diffuse pulsating auroras.

  2. On the temporal fluctuations of pulsating auroral luminosity

    SciTech Connect

    Yamamoto, Tatsundo )

    1988-02-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations.

  3. PULSATION FREQUENCIES AND MODES OF GIANT EXOPLANETS

    SciTech Connect

    Le Bihan, Bastien; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-02-10

    We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency {nu}{sub 0} and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency {nu}{sub 0} which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 M{sub J} {<=} M{sub P} {<=} 15 M{sub J} , and fixing the planet radius to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (M{sub P} /M{sub J} ){sup 0.48}{mu}Hz, where M{sub P} is the planet mass and M{sub J} is Jupiter's mass. For the radius range from 0.9 to 2.0 R{sub J} , and fixing the planet's mass to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (R{sub P} /R{sub J} ){sup -2.09}{mu}Hz, where R{sub P} is the planet radius and R{sub J} is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

  4. The Evolved Pulsating CEMP Star HD 112869

    NASA Astrophysics Data System (ADS)

    Začs, Laimons; Sperauskas, Julius; Grankina, Aija; Deveikis, Viktoras; Kaminskyi, Bogdan; Pavlenko, Yakiv; Musaev, Faig A.

    2015-04-01

    Radial velocity measurements, BVRC photometry, and high-resolution spectroscopy in the wavelength region from blue to near-infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD 112869 with a unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self-consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 km {{s}-1} and a dominating period of about 115 days. The light, color, and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD 112869 appears to be less metal-poor than reported before, [Fe/H] = -2.3 ± 0.2 dex. Carbon-to-oxygen and carbon isotope ratios are found to be extremely high, C/O ≃ 12.6 and12C/13C ≳ 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundant. The magnesium abundance seems to be lower than the average found for CEMP stars, [Mg/Fe] < +0.4 dex. HD 112869 could be a single low-mass halo star in the stage of asymptotic giant branch evolution.

  5. Fine droplet generation using tunable electrohydrodynamic pulsation

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Ba, Zhengyu; Xiong, Zhenhua

    2015-07-01

    High-efficiency generation of fine droplets is significant for many microfluidic chips and sensor applications. To produce fine droplets, nozzles with small diameters are needed, which results in a high cost for nozzles and low efficiency of droplet generation. In this paper, a tunable electrohydrodynamic pulsation method which can generate fine droplets with high frequency and controllable size is presented using low conductivity liquids. The effects of flow rates and voltage parameters with respect to deposition frequency and droplet size are investigated. The influence of these parameters on Taylor cone formation time are also discussed and simple scaling laws are proposed to reveal and guide the droplet generation process. Experimental results show that single cycle deposition frequency decreases with increasing voltage frequency, but is only slightly influenced by the flow rates. The droplet size also decreases with voltage frequency, while large flow rates can make this decline gradual allowing better control. Moreover, the Taylor cone formation time may greatly affect the stability of the deposition frequency when the voltage frequency is larger than 30 Hz. Due to the short cycle time of high voltage frequencies, the hydrodynamic behavior in the emission process may be considerably affected by the increase of volume, which is also related to the flow rates. Tunable micropatterns consisting of fine droplets can be achieved by using this method in combination with motion stages.

  6. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  7. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  8. Heartbeat Stars and the Ringing of Tidal Pulsations

    NASA Astrophysics Data System (ADS)

    Hambleton, Kelly; Kurtz, Don; Prša, Andrej; Fuller, Jim; Thompson, Susan

    2015-09-01

    With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccentric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. A subset of these objects (~20%) show prominent tidally induced pulsations: pulsations forced by the binary orbit. We now have a fully functional code that models binary star features (using PHOEBE) and stellar pulsations simultaneously, enabling a complete and accurate heartbeat star model to be determined. In this paper we show the results of our new code, which uses emcee, a variant of mcmc, to generate a full set of stellar parameters. We further highlight the interesting features of KIC 8164262, including its tidally induced pulsations and resonantly locked pulsations.

  9. Pc 3 magnetic pulsations and precipitation of energetic electrons

    NASA Technical Reports Server (NTRS)

    Arthur, C. W.; Bjordal, J.; Rosenberg, T. J.

    1979-01-01

    The synchronous altitude satellite ATS 1 data and near-conjugate measurements of bremsstrahlung X-rays and ground magnetic variations were used to analyze an event of modulated auroral zone electron precipitation and magnetic pulsations in the Pc range. Transverse, azimuthal, nearly linearly polarized waves observed at ATS 1, ground magnetic pulsations at College, Alaska, and intervals of modulated electron precipitation centered on local magnetic moon, and noted in the X-ray data from Fort Yukon, Alaska, are discussed, noting that the origin of the Pc 3 waves is attributed to local field line resonances induced by Kelvin-Helmholtz instability at the magnetopause. The wave resonance model can explain observed differences in the pulsation activity at the ground, balloon, and satellite if account is taken of the spatial sensitivities of the techniques and the location of observing sites with respect to the probable location of resonant field lines. The data suggest that electron precipitation pulsations will correlate with Pc 3 magnetic pulsations when substorm injections coupled with azimuthal drift provide enhanced energetic particle fluxes with dayside resonance regions.

  10. Low Latitude Pulsations Associated with Different Phases of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Bulusu, J.; Vankayala, R. C.; Sinha, A. K.; Vichare, G.; Thomas, N.

    2014-12-01

    During geomagnetic storm lot of free energy is available in the magnetosphere and this energy can act as feeder to electromagnetic waves in different frequency bands. A classical geomagnetic storm consists mainly of four phases i.e. SSC (Sudden Storm commencement), initial Phase, main phase and recovery phase. In this paper, we investigate the characteristics of electromagnetic waves in ULF (ultra low frequency) band associated with different phases of geomagnetic storms. Electromagnetic waves in ULF band (Period~ 10-100s) in the Earth's magnetosphere are generally termed as geomagnetic pulsations. A detailed statistical analysis has been performed over ten years of geomagnetic data from low latitude ground stations in Indian and Japanese sectors. The study reveals that storms in general, are accompanied with continuous pulsations of different frequency bands during different phases. In particular, the main phase of 91 % of intense storms was accompanied with pulsations in Pc5 band (frequency~ 2-7 mHz). However, the occurrence of these pulsations was less frequent during main phase of weak to moderate storms. Further, the amplitude of these pulsations increased with the intensity of storm.

  11. THE DISCOVERY OF PULSATING HOT SUBDWARFS IN NGC 2808

    SciTech Connect

    Brown, Thomas M.; Landsman, Wayne B.; Randall, Suzanna K.; Sweigart, Allen V.; Lanz, Thierry E-mail: Wayne.Landsman@nasa.gov E-mail: allen.sweigart@gmail.com

    2013-11-10

    We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of ω Cen. Both NGC 2808 and ω Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous 'blue-hook' stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the ω Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.

  12. Theoretical rates of pulsation period change in the Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Fadeyev, Yu. A.

    2014-05-01

    Theoretical estimates of the rates of radial pulsation period change in Galactic Cepheids with initial masses 5.5 M ⊙ ≤ M ZAMS ≤ 13 M ⊙, chemical composition X = 0.7, Z = 0.02 and periods 1.5 day ≤ Π ≤ 100 day are obtained from consistent stellar evolution and nonlinear stellar pulsation computations. Pulsational instability was investigated for three crossings of the instability strip by the evolutionary track in the HR diagram. The first crossing occurs at the post-main sequence helium core gravitational contraction stage which proceeds in the Kelvin-Helmholtz timescale whereas the second and the third crossings take place at the evolutionary stage of thermonuclear core helium burning. During each crossing of the instability strip the period of radial pulsations is a quadratic function of the stellar evolution time. Theoretical rates of the pulsation period change agree with observations but the scatter of observational estimates of noticeably exceeds the width of the band confining evolutionary tracks in the period-period change rate diagram. One of the causes of the large scatter with very high values of in Cepheids with increasing periods might be the stars that cross the instability strip for the first time. Their fraction ranges from 2% for M ZAMS = 5.5 M ⊙ to 9% for M ZAMS = 13 M ⊙ and variables α UMi and IX Cas seem to belong to such objects.

  13. Lattice melting and rotation in perpetually pulsating equilibria

    SciTech Connect

    Pichon, C.; Lynden-Bell, D.; Pichon, J.; Lynden-Bell, R.

    2007-01-15

    Systems whose potential energies consists of pieces that scale as r{sup -2} together with pieces that scale as r{sup 2}, show no violent relaxation to Virial equilibrium but may pulsate at considerable amplitude forever. Despite this pulsation these systems form lattices when the nonpulsational ''energy'' is low, and these disintegrate as that energy is increased. The ''specific heats'' show the expected halving as the ''solid'' is gradually replaced by the ''fluid'' of independent particles. The forms of the lattices are described here for N{<=}18 and they become hexagonal close packed for large N. In the larger N limit, a shell structure is formed. Their large N behavior is analogous to a {gamma}=5/3 polytropic fluid with a quasigravity such that every element of fluid attracts every other in proportion to their separation. For such a fluid, we study the ''rotating pulsating equilibria'' and their relaxation back to uniform but pulsating rotation. We also compare the rotating pulsating fluid to its discrete counterpart, and study the rate at which the rotating crystal redistributes angular momentum and mixes as a function of extra heat content.

  14. The nature of the rapidly oscillating Ap stars' pulsations

    NASA Astrophysics Data System (ADS)

    Cunha, M. S.; Perraut, K.

    2013-12-01

    Chemically peculiar stars are stage to a wide variety of physical phenomena, including diffusion, convection, magnetism and pulsation. Progress in the understanding of these objects, through the study of their oscillations, can help us to characterize these physical phenomena and better understand the way they are coupled in stars. A number of chemically peculiar A-type stars, known as rapidly oscillating Ap (roAp) stars, have been known to exhibit high frequency oscillations since the early 80s. Despite this, the mechanism responsible for driving these oscillations is not fully understood. Currently, the most widely accepted theory states that oscillations in this class of pulsators are excited by the opacity mechanism acting on the hydrogen ionization region, in an envelope where convection has been suppressed by a strong magnetic field. Nevertheless, this theory fails to correctly predict some of the observations for this class of pulsators. In this paper we briefly review the current status of understanding of the driving of pulsations in roAp stars. In particular, we shall emphasize the comparison between predictions of nonadiabatic models of roAp stars with observations of a subset of pulsators of this class for which stringent data on global parameters are available.

  15. The Discovery of Pulsating Hot Subdwarfs in NGC 2808

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Landsman, Wayne B.; Randall, Suzanna K.; Sweigert, Allen V.; Lanz, Thierry

    2013-01-01

    We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of Omega Cen. Both NGC 2808 and ? Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous "blue-hook" stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the ? Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.

  16. Ionospheric signatures of cusp latitude Pc 3 pulsations

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Anderson, B. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Rosenberg, T. J.

    1990-01-01

    Search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica during selected days in March and April 1986 are compared. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low IMF cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the dayside cusp/cleft region. Pulsations in auroral light at 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. The observations suggest that precipitating magnetosheathlike electrons at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. These particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  17. Epsilon Aur monitoring during predicted pulsation phase

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.; Templeton, Matthew R.

    2014-09-01

    Dr. Robert Stencel (University of Denver Astronomy Program) has requested that AAVSO observers monitor epsilon Aurigae from now through the end of the observing season. "Studies of the long-term, out-of-eclipse photometry of this enigmatic binary suggest that intervals of coherent pulsation occur at roughly 1/3 of the 27.1-year orbital period. Kloppenborg, et al. noted that stable variation patterns develop at 3,200-day intervals' implying that 'the next span of dates when such events might happen are circa JD ~2457000 (2014 December)'. "These out-of-eclipse light variations often have amplitudes of ~0.1 magnitude in U, and ~0.05 in V, with characteristic timescales of 60-100 days. The AAVSO light curve data to the present may indicate that this coherent phenomenon has begun, but we encourage renewed efforts by observers...to help deduce whether these events are internal to the F star, or externally-driven by tidal interaction with the companion star." Nightly observations or one observation every few days (CCD/PEP/DSLR, VUBR (amplitude too small for visual)) are requested. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Epsilon Aur was the subject of major international campaigns and the AAVSO's Citizen Sky project as it went through its 27.1-year eclipse in 2009-2011. Over 700 observers worldwide submitted over 20,000 multicolor observations to the AAVSO International Database for this project. Much information on eps Aur is available from the AAVSO, including material on the Citizen Sky website (http://www.aavso.org/epsilon-aurigae and http://www.citizensky.org/content/star-our-project). The Journal of the AAVSO, Volume 40, No. 2 (2012) was devoted to discussion of and research results from this event. See full Alert Notice for more details and observations.

  18. Ground magnetic field fluctuations associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.

    2015-10-01

    A case study of an intense pulsating auroral event is presented where the large-scale (100-200 km) optical intensity variations are anticorrelated with fluctuations in the ground magnetometer data at a frequency of 0.1 Hz. The auroral event occurred over Poker Flat, Alaska, on 1 March 2012 and was imaged optically with several different fields of view and filters. The fluctuations in the magnetometer data were most prominent in the D component and had magnitudes of 1 to 5 nT. The auroral intensity variations had amplitudes of 200 to 400 R, comprising 25% to 50% of the total auroral luminosity at 427.8 nm. The direction of the magnetometer deflections is consistent with a south-to-north ionospheric current present when each pulsation is on, thus providing closure for the field-aligned currents associated with each of the pulsating patches.

  19. An Adaptive Code for Radial Stellar Model Pulsations

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Kolláth, Zoltán; Marom, Ariel

    1997-09-01

    We describe an implicit 1-D adaptive mesh hydrodynamics code that is specially tailored for radial stellar pulsations. In the Lagrangian limit the code reduces to the well tested Fraley scheme. The code has the useful feature that unwanted, long lasting transients can be avoided by smoothly switching on the adaptive mesh features starting from the Lagrangean code. Thus, a limit cycle pulsation that can readily be computed with the relaxation method of Stellingwerf will converge in a few tens of pulsation cycles when put into the adaptive mesh code. The code has been checked with two shock problems, viz. Noh and Sedov, for which analytical solutions are known, and it has been found to be both accurate and stable. Superior results were obtained through the solution of the total energy (gravitational + kinetic + internal) equation rather than that of the internal energy only.

  20. Geomagnetic pulsations observed simultaneously on three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Hughes, W. J.; Mcpherron, R. L.; Barfield, J. N.

    1978-01-01

    Simultaneous observations of magnetic pulsations have been made by three geostationary satellites carrying similar magnetometers and acting as an azimuthal array. Autospectral and cross-spectral analysis yields coherence and phase differences between the pulsations at the satellite positions. The majority of the data fit the Kelvin-Helmholtz generation mechanism. The azimuthal wave number changes sign near noon and corresponds to propagation away from noon. Usually, the wave number is less than 10 deg per degree of longitude. Later in the afternoon, however, strong pulsations are observed with low coherence, implying large wave numbers. This suggests an instability driven by a gradient in the intensity of energetic protons, which may be expected at this local time. The data also suggest that some of the observed phase difference between the azimuthal components is due to small separations in magnetic shell, whereas this is not the case for the radial components. This implies a localized field-line resonance.

  1. Ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.

    1990-01-01

    Spacecraft observations have shown that geomagnetic pulsations originating in magnetospheric processes, in spite of their small amplitude on the ground, have amplitudes in space relative to the local magnetic field of 5-10 percent and occasionally up to about 50 percent. It is noted that by studying geomagnetic pulsations, a detailed comparison can be made between plasma physics theory and observations that are not possible in laboratory experiments. Also geomagnetic pulsations play a role in magnetospheric dynamics and energy transport, and their study forms an integral part of enhancing the knowledge of the magnetosphere. The importance of spacecraft observations are discussed and attention is given to such topics as waves in the magnetosphere, field-line resonances, the quantitative analysis of a dipole field, plasma instabilities, and energy flow.

  2. On permanent and sporadic pulsations of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.

    2015-05-01

    A question concerning the influence of permanent Pc3-band pulsations (periods from 10 to 45 s) on the excitation of sporadic Pi2-band pulsations (40 to 150 s) is raised. It is hypothesized that, being generated ahead of the front of the Earth's magnetosphere, the Pc3 penetrate into the geomagnetic tail where they cause local depression in the electric current in the neutral sheet and, under favorable conditions, initiate tearing instability. This leads to the reconnection of the magnetic field lines and explosion-like release of the magnetic energy stored in the tail. As a result, a substorm arises with the sporadic Pi2 pulsations being its important element. Ways are suggested to theoretically substantiate and experimentally validate this hypothesis.

  3. Ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    SciTech Connect

    Anderson, B.J. )

    1990-12-01

    Spacecraft observations have shown that geomagnetic pulsations originating in magnetospheric processes, in spite of their small amplitude on the ground, have amplitudes in space relative to the local magnetic field of 5-10 percent and occasionally up to about 50 percent. It is noted that by studying geomagnetic pulsations, a detailed comparison can be made between plasma physics theory and observations that are not possible in laboratory experiments. Also geomagnetic pulsations play a role in magnetospheric dynamics and energy transport, and their study forms an integral part of enhancing the knowledge of the magnetosphere. The importance of spacecraft observations are discussed and attention is given to such topics as waves in the magnetosphere, field-line resonances, the quantitative analysis of a dipole field, plasma instabilities, and energy flow. 28 refs.

  4. Substorm onset identification using neural networks and Pi2 pulsations

    NASA Astrophysics Data System (ADS)

    Sutcliffe, P. R.

    1997-10-01

    The pattern recognition capabilities of artificial neural networks (ANNs) have for the first time been used to identify Pi2 pulsations in magnetometer data, which in turn serve as indicators of substorm onsets and intensifications. The pulsation spectrum was used as input to the ANN and the network was trained to give an output of +1 for Pi2 signatures and -1 for non-Pi2 signatures. In order to evaluate the degree of success of the neural-network procedure for identifying Pi2 pulsations, the ANN was used to scan a number of data sets and the results compared with visual identification of Pi2 signatures. The ANN performed extremely well with a success rate of approximately 90% for Pi2 identification and a timing accuracy generally within 1 min compared to visual identification. A number of potential applications of the neural-network Pi2 scanning procedure are discussed.

  5. On the Stenbaek-Nielsen and Hallinan pulsating auroras

    SciTech Connect

    D'Angelo, N. )

    1991-02-01

    Stenbaek-Nielsen and Hallinan (1979) argued that if the pulsating auroras are caused by precipitating electrons, the data suggest that noncollisional interactions, localized in the lower E region (90-107 km), where most of the pulsations are observed, may play a dominant role in thermalizing the particles. They also stated that one type of process that comes to mind is a wave-particle interaction in the ionosphere. If, through one or more instabilities, waves grow at the expense of beam energy and, in turn, energize ambient electrons, the energized ambient electrons could ionize the background gas and, in process, produce luminosity. The exceptionally thin pulsating auroral patches observed by Stenbaek-Nielsen and Hallinan (1979) may be caused by an ionization instability occurring at the end of the range of precipitating electrons. A comparison is made to laboratory results reported by Johnson et al. (1990).

  6. 78 FR 79304 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... FR 7966; February 5, 1980). Therefore, section 501(f)(2)(B) of the FD&C Act requires that a PMA for... Federal Register of May 21, 2013 (78 FR 29672). FDA received and has considered one comment on this... controls for these uses. FDA published a proposed order in the Federal Register of May 21, 2013 (78...

  7. 76 FR 51876 - Medical Devices; Ophthalmic Devices; Classification of the Eyelid Thermal Pulsation System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... conditions of the eyelids, including meibomian gland dysfunction (MGD), also known as evaporative dry eye or... used in adult patients with chronic cystic conditions of the eyelids, ] including meibomian gland dysfunction (MGD), also known as evaporative dry eye or lipid deficiency dry eye. The system consists of...

  8. On the Role of Resonances in Nonradial Pulsators

    NASA Technical Reports Server (NTRS)

    Buchler, J. R.; Goupil, M. J.; Hansen, C. J.

    1997-01-01

    Resonances or near resonances are ubiquitous among the excited nonradial pulsation modes of variable stars and they must play an important role in determining their pulsational behavior. Here in a first step at nonlinear asteroseismology, we explore some of the consequences of resonances by means of the amplitude equation formalism. We show how parity and angular momentum constraints can be used to eliminate many of the possible nonlinear resonant couplings between modes (and multiplets of modes), and how the amplitude equations can thus be simplified. Even when we may not be able, nor wish, to make an ab initio computation of the values of the coupling coefficients, it is still possible to obtain constraints on the nature of the excited modes if a resonance between observed frequencies can be identified. Resonances can cause nonlinear frequency locking of modes. This means that the observed frequencies appear in exact resonance even though the linear frequencies are only approximately in resonance. The nonlinear frequency lock, when it occurs, it does so over a range of departures from linear resonance, and it is accompanied by constant pulsation amplitudes. The locked, nonlinear frequencies can differ noticeably from their nonresonant counterparts which are usually used in seismology. This is particularly true for multiplets of modes split by rotation. Beyond the regime of the frequency lock, amplitude and frequency modulations can appear in the pulsations. Far from the resonance condition one recovers the regime of steady pulsations with nonresonant frequencies for which the seismological studies, as they are presently carried out, are justified (provided furthermore, of course, that nonlinear frequency shifts are negligible). Success in identifying a resonance in an observed power spectrum depends on the quality of the data. While keeping this limitation in mind, ew discuss the possible existence of peculiar resonances the pulsations specific variable white

  9. Photometric Survey to Search for Field sdO Pulsators

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Green, E.; Wallace, S.; O'Malley, C.; Amaya, H.; Biddle, L.; Fontaine, G.

    2014-04-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011) of four rapidly pulsating sdO stars in the globular cluster ω Cen, with Teff near 50,000 K, 5.4 < log g < 6.0, and hydrogen-rich atmospheres. The only previously known sdO pulsator is significantly hotter at 68,500 K and log g = 6.1. All of the sdO pulsators identified so far are fainter than V≍17.4 and, thus, are poor candidates for an in-depth follow-up with asteroseismology. We therefore obtained high S/N light curves and spectroscopy for a number of field sdO stars to attempt to discover bright counterparts to these stars, particularly the ω Cen pulsators. Our primary sample consisted of 19 sdO stars with hydrogen-rich atmospheres, log N(He)/N(H) < -1.0, effective temperatures in the range 40,000 K < Teff < 67,000 K, and surface gravities 5.3 < log g < 6.1. We also observed 17 additional helium-rich sdO stars with log N(He)/N(H) > -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in ω Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the ω Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  10. Resonant self-pulsations in coupled nonlinear microcavities

    SciTech Connect

    Grigoriev, Victor; Biancalana, Fabio

    2011-04-15

    A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.

  11. Pulsation research during the IMS. [International Magnetospheric Study

    NASA Technical Reports Server (NTRS)

    Hughes, W. J.

    1982-01-01

    After describing the development status of the field of magnetic pulsations in 1975, before the initiation of the International Magnetospheric Study (IMS), attention is given to the IMS's novel observational results and an attempt is made to identify the most effective research methods employed. It is found that the most fruitful work involved small-scale collaboration between a few individuals or a few groups possessing complementary data sets. Consideration is restricted to research on the long period pulsations which can be broadly classified as field line resonances. Recommendations are made for future research efforts.

  12. Effects of pulsating flow on current meter performance

    USGS Publications Warehouse

    Fulford, Janice M.

    1995-01-01

    Summarized are laboratory tests for current meter response to pulsating flows. Included are results for mechanical and electromagnetic water-current meters that are commonly used for stream gaging. Most of the vertical-axis and horizontal-axis types of mechanical meters that were tested significantly underregistered the mean flow velocity when the magnitude of the pulsating portion of the flow velocity was greater than half the mean velocity but less than the mean velocity. Errors for all meters tested were largest at the lowest mean flow velocity, 0.076 m/s.

  13. Search for optical pulsations in PSR J0337+1715

    DOE PAGESBeta

    Strader, M. J.; Archibald, A. M.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; van Eyken, J. C.; Ulbricht, G.; Stoughton, C.; Bumble, B.; Kaplan, D. L.; et al

    2016-03-20

    In this study, we report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS) at the 200" Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11000 angstroms, and we can limit pulsed emission in g-band to be fainter than 25 mag.

  14. Search for optical pulsations in PSR J0337+1715

    NASA Astrophysics Data System (ADS)

    Strader, M. J.; Archibald, A. M.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; van Eyken, J. C.; Ulbricht, G.; Stoughton, C.; Bumble, B.; Kaplan, D. L.; Mazin, B. A.

    2016-06-01

    We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 arcsec Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11 000 Å, and we can limit pulsed emission in g band to be fainter than 25 mag.

  15. Unusual pulsating states in hydrocarbon-oxygen premixed flames.

    PubMed

    Gorman, M; Perrollier, S

    2006-12-01

    An unusual type of pulsating state has been observed using a new ignition protocol for heavy hydrocarbon-oxygen premixed flames on a circular porous plug burner. The shape and motion of these states are quasicircular, luminous, pulsating regions of M (M=1, 2, 3, or 4) lobes that increase in size as the flame propagates outward. As the lobes expand, they break apart near their midpoints and form counterpropagating spiral-like arms. These spiral arms rotate, "collide" with arms generated by adjacent lobes, and are extinguished. We will describe the unusual characteristics of the dynamics of these states. PMID:17199402

  16. Mode identification from spectroscopy of gravity-mode pulsators

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Brunsden, E.; Cottrell, P. L.; Davie, M.; Greenwood, A.; Wright, D. J.; De Cat, P.

    2014-02-01

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. For the MUSICIAN programme at the University of Canterbury, we obtain extensive high-resolution echelle spectra of γ Dor stars from the Mt John University Observatory in New Zealand. We analyze these to obtain the pulsational frequencies and identify these with the multiple pulsational modes excited in the star. A summary of recent results from our spectroscopic mode-identification programme is given.

  17. Search for pulsating stars in multiple stellar systems

    NASA Astrophysics Data System (ADS)

    Antonello, E.; Pastori, L.; Fracassini, M.; Pasinetti, L. E.

    Two lists of possible Delta Scuti stars are compiled, one for the wide visual binaries, the other for the spectroscopic binaries in the catalogue of Batten et al. (1978). For companions with normal spectral type A, F belonging to the instability strip, the expected periods and maximum amplitudes of pulsation are calculated and shown. A list of 21 spectroscopic binaries is presented containing the star identifications, apparent visual magnitudes, spectral type, possible period and maximum visual amplitude of pulsation, sepration of components, and remarks.

  18. Compressible pulsating convection through regular and random porous media: the thermoacoustic case

    NASA Astrophysics Data System (ADS)

    Tasnim, Syeda Humaira; Mahmud, Shohel; Fraser, Roydon Andrew

    2012-02-01

    The effects of material, geometry, length and position of the porous channels on energy transfer in air-filled enclosures carrying a compressible pulsating wave are investigated. The pulsating fluid motion is created by an acoustic driver in a resonant chamber. Three different porous materials (Corning Celcor, Reticulated Vitreous Carbon (RVC), and Mylar plastic), three different geometries (square, open foam, and circular cross-section), six different lengths, " L" (varying between 1 and 6.5 cm, L = 0.01-0.068 λ, where λ is the wavelength of the fundamental acoustic mode), and eight different positions (hot end of the channel, varying between 0.5 and 8 cm) of the channels from the pressure anti-node is experimentally measured. The surface temperature distribution on the channel wall and temperature difference generated across the channel walls are measured while energy flow along the channel walls is calculated analytically. The experimental results are compared with a 1-D numerical code and found excellent agreement. The material, geometry, length, and position of the porous channel strongly affect the energy interactions between the porous channel and the working fluid. The temperature difference generated across the porous RVC channel increases as the porosity increases form 20 to 80 PPI; but decreases if the porosity increases further. Corning Celcor shows improved temperature difference generated across the channel as the length of the channel increases; but then decreases if the length is further increased. The results of this study are applicable to the design of thermoacoustic devices.

  19. Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Manzoni, M.; Marengo, M.

    2015-11-01

    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  20. PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.

    2015-09-01

    In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  1. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone.

    PubMed

    Remer, Itay; Bilenca, Alberto

    2015-11-01

    Photoplethysmography is a well-established technique for the noninvasive measurement of blood pulsation. However, photoplethysmographic devices typically need to be in contact with the surface of the tissue and provide data from a single contact point. Extensions of conventional photoplethysmography to measurements over a wide field-of-view exist, but require advanced signal processing due to the low signal-to-noise-ratio of the photoplethysmograms. Here, we present a noncontact method based on temporal sampling of time-integrated speckle using a camera-phone for noninvasive, widefield measurements of physiological parameters across the human fingertip including blood pulsation and resting heart-rate frequency. The results show that precise estimation of these parameters with high spatial resolution is enabled by measuring the local temporal variation of speckle patterns of backscattered light from subcutaneous skin, thereby opening up the possibility for accurate high resolution blood pulsation imaging on a camera-phone. Camera-phone laser speckle imager along with measured relative blood perfusion maps of a fingertip showing skin perfusion response to a pulse pressure applied to the upper arm. The figure is for illustration only; the imager was stabilized on a stand throughout the experiments. PMID:25908015

  2. Experimental and numerical study of pulsating transversal jets

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.

    2015-06-01

    Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.

  3. Radar auroral observations during a burst of irregular magnetic pulsations

    SciTech Connect

    Haldoupis, C.I.; Nielsen, E.; Holtet, J.A.; Egeland, A.; Chivers, H.A.

    1982-03-01

    Micropulsation data from an auroral state are compared with concurrent STARE radar observations from the E region above the station during a substorm event. The substorm onset is marked by a strong burst of irregular pulsations, (Pi B) accompanied by abrupt intensifications in the equivalent current, the backscatter intensity, and the riometer absorption. The magnetic Px and Py pulsation components have a reasonable degree of correlation and the polarization properties of the horizontal disturbance vetor exhibit well-defined changes during the first few minutes after onset. The radio signal undergoes deep quasiperiodic fading that is closely related to simultaneous PiB amplitude variations. The radar Dopplar data, which show normal fluctuations in the electron drift velocity, exclude modulation of radio backscatter by directional variations of the electric field. It is argued that the PiB pulsations and the variations seen in the backscatter are reflecting changes of the ionospheric currents due to conductivity modifications dictated by variations in the field-aligned currents flowing in the region. The possibility exists that the Pi B is closely related to precipitation pulsations as reported by Heacock and Hunsucker (1977).

  4. Constraints on pre-main-sequence evolution from stellar pulsations

    NASA Astrophysics Data System (ADS)

    Casey, M. P.; Zwintz, K.; Guenther, D. B.

    2014-02-01

    Pulsating pre-main-sequence (PMS) stars afford the earliest opportunity in the lifetime of a star to which the concepts of asteroseismology can be applied. PMS stars should be structurally simpler than their evolved counterparts, thus (hopefully!) making any asteroseismic analysis relatively easier. Unfortunately, this isn't necessarily the case. The majority of these stars (around 80) are δ Scuti pulsators, with a couple of γ Doradus, γ Doradus - δ Scuti hybrids, and slowly pulsating B stars thrown into the mix. The majority of these stars have only been discovered within the last ten years, with the community still uncovering the richness of phenomena associated with these stars, many of which defy traditional asteroseismic analysis. A systematic asteroseismic analysis of all of the δ Scuti PMS stars was performed in order to get a better handle on the properties of these stars as a group. Some strange results have been found, including one star pulsating up to the theoretical acoustic cut-off frequency of the star, and a number of stars in which the most basic asteroseismic analysis suggests problems with the stars' positions in the Hertzsprung-Russell diagram. From this we get an idea of the\\break constraints - or lack thereof - that these results can put on PMS stellar evolution.

  5. A search for pulsations in planetary nebulae nuclei

    SciTech Connect

    Hine, B.P.A. III.

    1988-01-01

    The author presents the results of a survey of the central stars of planetary nebulae design to detect g-mode pulsations driven by hydrogen and/or helium shell burning. Using newly developed high-speed photometric instrumentation to overcome the inherent difficulties in observing these central stars in the presence of their nebulae, he has obtained time-series photometric data for 51 central stars in an effort to detect the g-mode pulsations predicted by Kawaler and his colleagues. He detects no periodic variations, for periods between 40 and 500 seconds, in the data down to a limit of approximately 0.5 (average) millimagnitudes. Since the theoretical calculations require these pulsations in the presence of shell burning, he must conclude that either the shell burning sources are extinguished prior to this evolutionary stage, or some mechanism is inhibiting the growth of these pulsations. If the shell burning source is indeed extinguished prior to the central star becoming a white dwarf, then this implies that white dwarfs are formed with hydrogen layer masses less than 10{sup {minus}6}M mass of sum.

  6. A statistical method for draft tube pressure pulsation analysis

    NASA Astrophysics Data System (ADS)

    Doerfler, P. K.; Ruchonnet, N.

    2012-11-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  7. Discovery of X-ray pulsations from a massive star.

    PubMed

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-01-01

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism. PMID:24892504

  8. Electron precipitation response to geomagnetic pulsations: Riometer revelation

    NASA Astrophysics Data System (ADS)

    Honary, Farideh; Kavanagh, Andrew

    Electron precipitation modulations by geomagnetic pulsation have been observed in cosmic noise absorption (CNA) as early as 1965 by widebeam riometers (Barcus and Rosenberg, 1965). The first observation of pulsation with high m-number was reported by Kikuchi et al.(1988) em-ploying a scanning narrow-beam riometer to investigate the spatial structure in one dimension with a high resolution. However, the advances in high spatial resolution imaging riometers has provided the ability to observe pulsating cosmic noise absorption with azimuthal wave numbers as high as 380 as well as providing the capability of mapping their structures. These waves are commonly observed during the morning and early afternoon and exhibit eastward propagation. In this presentation a complete generating mechanism for these high m-number waves is dis-cussed as a five step process, beginning with the solar wind as a source for the excitation of dayside magnetospheric cavity modes, mode conversion, energisation of drift-bounce protons by Landau damping, followed by inverse Landau damping as a driving mechanism for the high m number secondary waves that ultimately modulate the electron precipitation. This modulation is observed as pulsations in cosmic noise absorption.

  9. Observations of Cepheids with the MOST satellite: contrast between pulsation modes

    NASA Astrophysics Data System (ADS)

    Evans, N. R.; Szabó, R.; Derekas, A.; Szabados, L.; Cameron, C.; Matthews, J. M.; Sasselov, D.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Weiss, W. W.

    2015-02-01

    The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadian MOST (Microvariability and Oscillations of Stars) satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modelled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light-curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O - C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short time-scales.

  10. Conjugate Event Study of Geomagnetic ULF Pulsations with Wavelet-based Indices

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Clauer, C. R.; Kim, H.; Weimer, D. R.; Cai, X.

    2013-12-01

    The interactions between the solar wind and geomagnetic field produce a variety of space weather phenomena, which can impact the advanced technology systems of modern society including, for example, power systems, communication systems, and navigation systems. One type of phenomena is the geomagnetic ULF pulsation observed by ground-based or in-situ satellite measurements. Here, we describe a wavelet-based index and apply it to study the geomagnetic ULF pulsations observed in Antarctica and Greenland magnetometer arrays. The wavelet indices computed from these data show spectrum, correlation, and magnitudes information regarding the geomagnetic pulsations. The results show that the geomagnetic field at conjugate locations responds differently according to the frequency of pulsations. The index is effective for identification of the pulsation events and measures important characteristics of the pulsations. It could be a useful tool for the purpose of monitoring geomagnetic pulsations.

  11. Device For Perception Of Polarization

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S.; Coulson, Kinsel

    1993-01-01

    Polarized image viewed through rotating polarizing filter appears to pulsate. Optical device enables human observer to perceive polarization of light. Used alone for viewing in real time and/or in conjunction with video or movie camera to record for subsequent detailed quantitative analysis of polarization in scene. Device used in remote sensing to classify portions of scenes according to polarization characteristics, to enhance viewing through atmosphere and oceans and to enhance contrasts. Used to monitor oilspill from air and detect changes in soil moisture and to map wetlands, among many other possible civilian and military applications.

  12. Kappa effect pulsational instability for hot extreme helium stars

    SciTech Connect

    Cox, A.N.

    1990-01-01

    A long standing problem for the hydrogen deficient stars has been the mechanism for the pulsation instability for the hottest members of this class. The usual {kappa} mechanism works well for stars that are in the hydrogen and helium ionization instability strip, and this strip extends to perhaps 20,000K at high luminosity. However, several stars are definitely hotter. Investigations for another ionization instability strip, such as for carbon, have always shown that there is not enough carbon to produce a rapid enough increase of opacity with temperature to give the well-known {kappa} effect. This is so even though these hydrogen deficient stars do show enhanced carbon in their spectra. A strong stellar wind can produce the observed hydrogen deficiency. Another popular mechanism is mass loss in a binary system through the Roche lobe. It now is possible that the missing pulsational instability mechanism is the rapid increase of iron lines absorption as the temperature increases above about 150,000K in the low density envelopes of these luminous stars. Recent calculations shows that the n = 3 to n = 3 transitions in iron that were assumed unimportant in the earlier Los Alamos calculations can double or triple the opacity suddenly as the iron lines appear in a very sensitive part of the spectrum of the diffusing photons. It has been proposed that these iron lines also cause the many varieties of normal B star pulsations, and the hydrogen deficient stars are merely another example of this new {kappa} effect for pulsating stars. The extreme helium star V2076 Oph at 31,900K, and 38,900 L{sub {circle dot}} for a mass of 1.4 M{sub {circle dot}} pulsates in the radial fundamental model at about 1 day period with a very large linear growth rate when the iron lines more than double the opacity, but is stable otherwise.

  13. On the Polarization Properties of Magnetar Giant Flare Pulsating Tails

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Zhang, Bing

    2015-12-01

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ˜100 s, an isotropic energy of ˜1044 erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron-positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1-30 keV band, and Π ≃ 10% in the 30-100 keV band, if the line of sight is perpendicular to the magnetic axis.

  14. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. II. TWO-DIMENSIONAL CONVECTION IN FULL AMPLITUDE RADIAL PULSATION

    SciTech Connect

    Geroux, Chris M.; Deupree, Robert G.

    2013-07-10

    We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.

  15. Understanding thermo-fluidic characteristics of a glass tube closed loop pulsating heat pipe: flow patterns and fluid oscillations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, V. K.; Ramachandran, K.; Pillai, B. C.; Brusly Solomon, A.

    2015-12-01

    An experimental program has been carried out to understand the thermo-fluidic characterization of deionized (DI) water charged closed loop pulsating heat pipe (CLPHP) with flow patterns and fluid oscillations. The CLPHP is examined under vertical and horizontal heating modes with varying heat power. The flow patterns along with fluid oscillations are correlated with thermal performance of the CLPHP. Further, the CLPHP with copper oxide nanofluid study is carried out to understand operational behavior of the device. Fast Fourier frequencies, average frequency of the internal fluid temperature are investigated. Several important features of CLPHP operation are identified by the visual study.

  16. Disk Variability and Pulsation in the Be Star π Aquarii

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Gies, Douglas R.; Wang, Luqian

    2015-01-01

    π Aqr is a bright Be star that lost its circumstellar disk in the late-1990s after showing strong disk emission lines for about five decades. We have analyzed spectra in the Hα/He I 6678 region that were obtained during the hiatus in its mass loss and the epoch of early disk buildup afterwards to investigate the star's pulsation and its possible connection with mass loss activity. The spectra were obtained with the Coudé Feed Telescope at KPNO during three observing runs on 1999 November 20-29, 2000 October 29 - November 3, and 2001 January 4-8. A total of 55 images with a S/N~350 and spectral resolution of 0.103 Å/pixel were obtained. The time resolution was 15 m and the observation sets spanned 1.5-3.0 hr. Rapid nonradial pulsations (NRP) with l=|m| =5 were observed with a period of 1.88 ± 0.02 hours. The motion was prograde for a rotation period of 1.8 days. Pulsation amplitudes were largest during the middle observing run. The power in the high frequency signal declined in the final run accompanied by an increase in the low frequency power (as in HD 49330, Huat et al. 2009) suggesting that p waves may have been replaced with g waves. The photospheric lines are broader during a mass loss episode (increased Hα emission). The NRP variations in Hα during 2000 Nov. 1 suggest a formation in a low pressure gas perhaps at the equator. The NRP bumps are slightly broader in Hα than in He I and C II, which implies a photospheric origin. Since the structure is quite visible in Hα, the apparent NRP is probably occurring in the upper atmosphere, as Stark line broadening would render the features more diffuse if they prevailed at deep layers. Narrow stationary violet and red-shifted features that varied in strength on the time scale of the pulsations were observed in Hα, and suggest that disk changes may be driven by pulsation. Additional spectra from KPNO and the BeSS archive reveal that Hα disk emission peaked in 2011 July (comparable to that observed in 1993

  17. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and Riometer absorption

    NASA Astrophysics Data System (ADS)

    Belakhovsky, V. B.; Pilipenko, V. A.; Samsonov, S. N.; Lorentsen, D.

    2016-01-01

    Simultaneous morning Pc5 pulsations ( f ~ 3-5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.

  18. Red-Line (630nm) Pulsating Auroras And Their Possible Magnetospheric Driver

    NASA Astrophysics Data System (ADS)

    Liang, J.; Donovan, E.; Zhang, X.; Spanswick, E.; Gillies, M.; Jackel, B. J.

    2015-12-01

    Pulsating auroras are usually known to be led by the precipitation of energetic electrons from the central plasma sheet, and are thus often displayed in blue-line and/or green-line auroral emission lines. In this study we report the observations of 630nm oxygen red-line auroras by REGO imager, and explore their possible underlying mechanisms. Upon inspecting the temporal/spatial pattern of the red-line pulsating auroras and comparing with concurrent/collocated observations from THEMIS and RAINBOW imagers, we distinguish two types of red-line pulsating auroras. In one type of red-line pulsating aurora, the emission is weak in intensity, but its pulsation is synchronous with that of the collocated green-line pulsating aurora. The other type of red-line pulsating aurora is fairly strong in intensity, but its temporal pattern contains much longer-period components as compared to the green-line pulsating aurora. In both types of pulsating auroras, the spatial dimension and motion speed of the red- and green-line auroral patches are rather comparable. We suggest that the first type of red-line pulsating aurora is caused by secondary electrons and/or a cascading excitation of O(1D) as the byproduct of the primary electron precipitation (and the resulting green-line emission), while the second type of red-line pulsating aurora is directly led by the low-energy part (hundreds of eV) of the electron precipitation in the lower F-region ionosphere. In the latter regard, we present in-situ RBSP observations conjugate to the pulsating auroral patches in a few events, and explore a potential relationship between the red-line pulsating aurora and the electron cyclotron harmonic (ECH) wave, which is capable of scattering the low-energy electrons into the loss-cone in the inner magnetosphere.

  19. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    SciTech Connect

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; Molenda-Zakowicz, J.; Uytterhoeven, K.; Kinemuchi, K.

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics of variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).

  20. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE PAGESBeta

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; Molenda-Zakowicz, J.; Uytterhoeven, K.; Kinemuchi, K.

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  1. Hydrodynamic Modeling of Pulsation-Initiated Luminous Blue Variable Outbursts

    NASA Astrophysics Data System (ADS)

    Onifer, Andrew J.; Guzik, J. A.

    2007-12-01

    Luminous Blue Variables (LBVs) are characterized by semi-periodic episodes of outburst. The cause of these outbursts has thus far been a mystery. One possible explanation is that they are initiated by pulsations in the atmosphere caused by a buildup of luminosity at temperatures near the so-called "iron bump" ( 200,000 K). Due to a lag in the onset of convection in the presence of these pulsations, this luminosity can build until it exceeds the Eddington limit locally, driving some mass from the star. We present results from a parameter study focusing on the conditions necessary to trigger normal AG Car-like (as opposed to extreme η Carinae-like) outbursts. The implications for mass loss will also be discussed. This work was performed under the auspices of the U. S. Department of Energy by the Los Alamos National Security (LANS), LLC under contract No. DE-AC52-06NA25396.

  2. Decoding the Rich Pulsation Spectrum of EC 14012-1446

    NASA Astrophysics Data System (ADS)

    Bischoff-Kim, A.

    2013-12-01

    EC 14012-1446 is a ZZ Ceti star (DAV) that was the object of a Whole Earth Telescope run in 2008. The extended coverage run provided a detailed and well resolved period spectrum for the star, confirming and revealing twenty independent modes of vibration, including one triplet and a few more incomplete triplets. With a large number of modes (for pulsating white dwarfs) and good clues for some of the mode identifications from independent methods, EC 14012-1446 is a good candidate for “fast” asteroseismology, where we try to infer interior structure based on a minimal set of assumptions about stellar evolution. The method also allows some numerical experiments that test the validity of asteroseismic techniques used on white dwarfs. Here we experiment with using modified Echelle diagrams on the pulsation spectrum of EC 14012-1446 to aid mode identification.

  3. Experimental investigation on a pulsating heat pipe with hydrogen

    NASA Astrophysics Data System (ADS)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  4. Pulsation effects on the air fuel ratio of carburetor engines

    SciTech Connect

    Tanaka, M.; Sato, T.; Watanabe, K.

    1986-01-01

    A significant wavewise change of air fuel ratio in line with the engine speed having a long intake pipe was studied experimentally and theoretically. The results show the pulsewise change in fuel flow plays the dominant role in the wavewise change in the air fuel ratio. It is found that this pulsewise fluctuation of the fuel flow forms an oscillation wave with both the amplitude and frequency becoming larger according to the engine speed resulted by the phase change of the pulsation wave in the intake pipe according to the engine speed. A modified frequency ratio of gas vibration in the intake pipe to that of engine intake stroke is proposed to explain this pulsation effect on the fuel flow and an effective simulator for this phenomena is established.

  5. Motion analysis of artery pulsation in neonatal cranial ultrasonogram

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kubo, Hiroki; Kitsunezuka, Yoshiki; Yamada, Masayoshi

    1999-05-01

    Using an optical-flow technique, we have quantitatively analyzed tissue motion due to artery pulsation accompanied with blood flow in a neonatal cranial ultrasonogram. The tissue motion vector was successfully calculated at each pixel in a series of echo images (32 frames, 640 X 480 pixels/frame, 8 bits/pixel, 33 ms/frame) taken in the brightness mode by using an ultrasound probe of 5.0 MHz. The optical-flow technique used was a gradient method combined with local optimization for 3 X 3 neighbors. From 2D mappings of tissue motion vectors and their time-sequence variations, it was found that the tissue motion due to artery pulsation revealed periodic to-and-fro motion synchronized with heartbeat (300 - 500 ms), clearly distinguishing from unwanted non-periodic motion due to the sway of neonatal head during diagnosis.

  6. Multiple satellite observations of pulsation resonance structure in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Hughes, W. J.; Mcpherron, R. L.; Russell, C. T.

    1977-01-01

    Data from two intervals when pulsation activity was simultaneously observed on both ATS 1 and Ogo 5 satellites are presented. The first example, a Pc 4, indicates that this pulsation is caused by a field line near L = 7 resonating in its second-harmonic mode. This is inferred from both plasma density measurements and polarization characteristics. The wave was not observed at three ground stations in the vicinity of the satellite conjugate points. This indicates that Pc 4 waves are very localized in latitude and that a close array (less than 100 km) is needed to perform effective correlation with satellites. The second event, which is also in the Pc 4 band, can again be inferred to be a field line resonance from the polarization characteristics

  7. Pc 3 pulsation eigenperiod determination at low latitudes

    SciTech Connect

    Hattingh, S.K.F.; Sutcliffe, P.R. )

    1987-11-01

    A realistic method of calculating the eigenperiod of Pc 3 pulsations at low latitudes is discussed. Solution of the problem requires a magnetic field model and a model for the plasma distribution along the resonating field line. The calculated eigenperiods obtained using the dipole field model and the IGRF model are found to be similar. The inclusion of the F region O{sup +} in the plasma distribution noticeably affects the calculated eigenperiod at low latitudes. This effect decreases with increasing L value. Pulsation periods obtained from recordings made at four stations lying on a geomagnetic meridian demonstrate the importance of including O{sup +} in the plasma model if realistic periods are to be calculated at low latitudes.

  8. Impulse-excited pulsations during the July 29, 1977 event

    SciTech Connect

    Nopper, R.W. Jr.; Hughes, W.J.; Maclennan, C.G.; McPherron, R.L.

    1982-08-01

    The propagation of a geomagnetic sudden impulse (si) and the magnetic field pulsations excited by it in the magnetosphere is traced from the bow shock in the solar wind, through the magnetosphere, to the ground. Within the magnetosphere the impulse appears as a compressive magnetohydrodynamic (MHD) impulse that travels rapidly (approx.1500 km/s) tailward. A resonant oscillation observed both in space and on the ground is excited near geostationary orbit. The effect of the si is enhanced by a factor of at least 5 on the ground near the geomagnetic equator. We suggest that discontinuities in the solar wind may be a more important source of exciting dayside pulsations than has been commonly assumed.

  9. Long-period geomagnetic pulsations as solar flare precursors

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Obridko, V. N.; Revunov, S. E.; Snegirev, S. D.; Shadrukov, D. V.; Sheiner, O. A.

    2016-03-01

    We compare long-period pulsations of the horizontal component of the geomagnetic field at intervals that precede extreme solar flares. To this end, we use the wavelet-skeleton technique to process the geomagnetic field disturbances recorded at magnetic stations over a wide geographical range. The synchronization times of wavelet-skeleton spectral distributions of long-period pulsations of geomagnetic oscillations over all magnetic stations are shown as normalized histograms. A few days before an intense solar flare, the histograms show extremes. This means that these extremes can be regarded as flare precursors. The same technique is used to analyze the parameters of near-Earth space. The histograms obtained in this case are free of the aforementioned extrema and, therefore, cannot point to an upcoming flare. The goal of this study is to construct a correlation-spectral method for the short-term prediction of solar flare activity.

  10. The unique dynamical system underlying RR Lyrae pulsations

    NASA Astrophysics Data System (ADS)

    Kollath, Z.

    2016-05-01

    Hydrodynamic models of RR Lyrae pulsation display a very rich behaviour. Contrary to earlier expectations, high order resonances play a crucial role in the nonlinear dynamics representing the interacting modes. Chaotic attractors can be found at different time scales: both in the pulsation itself and in the amplitude equations shaping the possible modulation of the oscillations. Although there is no one-to-one connection between the nonlinear features found in the numerical models and the observed behaviour, the richness of the found phenomena suggests that the interaction of modes should be taken seriously in the study of the still unsolved puzzle of Blazhko effect. One of the main lessons of this complex system is that we should rethink the simple interpretation of the observed effect of resonances.

  11. Quantitative results of stellar evolution and pulsation theories.

    NASA Technical Reports Server (NTRS)

    Fricke, K.; Stobie, R. S.; Strittmatter, P. A.

    1971-01-01

    The discrepancy between the masses of Cepheid variables deduced from evolution theory and pulsation theory is examined. The effect of input physics on evolutionary tracks is first discussed; in particular, changes in the opacity are considered. The sensitivity of pulsation masses to opacity changes and to the ascribed values of luminosity and effective temperature are then analyzed. The Cepheid mass discrepancy is discussed in the light of the results already obtained. Other astronomical evidence, including the mass-luminosity relation for main sequence stars, the solar neutrino flux, and cluster ages are also considered in an attempt to determine the most likely source of error in the event that substantial mass loss has not occurred.

  12. Comparative pulsation calculations with OP and OPAL opacities

    NASA Technical Reports Server (NTRS)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  13. Characteristics of velocity pulsations in a turbulent recirculated melt flow

    NASA Astrophysics Data System (ADS)

    Kirpo, M.; Jakovics, A.; Baake, E.

    2005-06-01

    For the modern industrial applications it is necessary to develop and investigate metallic and oxide materials of high purity or predicted composition. Such materials can be produced by the induction melting method, especially in inductor and cold crucible furnaces. Measurements taken in experimental furnaces show that the velocity pulsations dominate for the heat and mass exchange in the melt, especially in a zone between typical upper and lower eddies. Understanding of the pulsation mechanism and development of models to estimate the exchange characteristics are very important for the development and optimisation of industrial furnaces. The authors present experimental results and propose a simple 3D large eddy simulation (LES) model of the induction furnace that can be adapted to qualitative analysis of experimental data. Tables 2, Figs 13, Refs 7.

  14. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  15. Pulsating aurora induced by upper atmospheric barium releases

    NASA Technical Reports Server (NTRS)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  16. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    SciTech Connect

    Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S.; Fraga, Luciano; Hermes, J. J.; Winget, D. E.; Castanheira, Barbara; Corsico, A. H.; Romero, A. D.; Althaus, Leandro; Kleinman, S. J.; Nitta, A.; Koester, D.; Kuelebi, Baybars; Kanaan, Antonio

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M{sub *} = 0.88 {+-} 0.02 M{sub Sun} and T{sub eff} = 12, 100 {+-} 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  17. Self-Sustained Ultrafast Pulsation in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng

    2001-01-01

    High frequency, narrow-band self-pulsating operation is demonstrated in two coupled vertical-cavity surface-emitting lasers (VCSELs). The coupled VCSELs provide an ideal source for high-repetition rate (over 40 GHz), sinusoidal-like modulated laser source with Gaussian-like near- and far-field profiles. We also show that the frequency of the modulation can be tuned by the inter-VCSEL separation or by DC-bias level.

  18. Pulsating proton aurora caused by rising tone Pc1 waves

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Shiokawa, K.; Omura, Y.; Ebihara, Y.; Miyoshi, Y.; Sakaguchi, K.; Otsuka, Y.; Connors, M.

    2016-02-01

    We found rising tone emissions with a dispersion of ˜1 Hz per several tens of seconds in the dynamic spectrum of a Pc1 geomagnetic pulsation (Pc1) observed on the ground. These Pc1 rising tones were successively observed over ˜30 min from 0250 UT on 14 October 2006 by an induction magnetometer at Athabasca, Canada (54.7°N, 246.7°E, magnetic latitude 61.7°N). Simultaneously, a Time History of Events and Macroscale Interactions during Substorms panchromatic (THEMIS) all-sky camera detected pulsations of an isolated proton aurora with a period of several tens of seconds, ˜10% variations in intensity, and fine structures of 3° in magnetic longitudes. The pulsations of the proton aurora close to the zenith of ATH have one-to-one correspondences with the Pc1 rising tones. This suggests that these rising tones scatter magnetospheric protons intermittently at the equatorial region. The radial motion of the magnetospheric source, of which the isolated proton aurora is a projection, can explain the central frequency increase of Pc1, but not the shorter period (tens of seconds) frequency increase of ˜1 Hz in Pc1 rising tones. We suggest that EMIC-triggered emissions generate the frequency increase of Pc1 rising tones on the ground and that they also cause the Pc1 pearl structure, which has a similar characteristic time.

  19. An Observational Study of Pulsations in Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Lu, Wenxian; Henson, Gary D.; Hillwig, Todd C.

    2016-01-01

    We have been carrying out a long-term monitoring program to study the light variability in proto-planetary nebulae (PPNe). PPNe are post-Asymptotic Giant Branch objects in transition between the AGB and PN phases in the evolution of low and intermediate-mass stars. As such, it is not surprising that they display pulsational variability. We have been carrying out photometric monitoring of 30 of these at the Valparaiso University campus observatory over the last 20 years, with the assistance of undergraduate students. The sample size has been enlarged over the past six years by observations made using telescopes in the SARA consortium at KPNO and CTIO. Periods have been determined for those of F-G spectral types. We have also enlarged the sample with PPNe from outside the Milky Way by determining periods of eight PPNe in the lower metalicity environment of the Magellanic Clouds. Periods for the entire sample range from 35 to 160 days. Some clear patterns have emerged, with those of higher temperature possessing shorter periods and smaller amplitudes, indicating a reduction in period and pulsation amplitude as the objects evolve. Radial velocity monitoring of several of the brightest of these has allowed us to document their changes in brightness, color, and size during a pulsation cycle. The results of this study will be presented. This research is supported by grants from the National Science Foundation (most recently AST 1413660), with additional student support from the Indiana Space Grant Consortium.

  20. The pulsating laminar flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Valueva, E. P.; Purdin, M. S.

    2015-11-01

    The finite difference method is used to solve the task of the developed pulsating laminar flow in a rectangular channel. The optimum of the difference scheme parameters was determined. Data on the amplitude and phase of the longitudinal velocity oscillations, the hydraulic and friction drag coefficients, the shear stress on the wall have been obtained. Using the dimensionless value of the frequency pulsations two characteristic regimes — the quasisteady-state regime and the high-frequency regime have been identified. In the quasi-steady-state regime, the values of all hydrodynamic quantities at each instant of time correspond to the velocity value averaged over the cross section at a given moment of time. It is shown that in the high-frequency regime, the dependences on the dimensionless oscillation frequency of oscillating components of hydrodynamic quantities are identical for rectilinear channels with a different cross-sectional form (round pipe, flat and a rectangular channels). The effect of the aspect ratio of the rectangular channel sides channel on the pulsating flow dynamics has been analyzed.

  1. Russian Pulsating Mixer Pump. Innovative Technology Summary Report

    SciTech Connect

    2002-03-01

    This sludge mixing/mobilization system was developed in Russia. A prototype system was evaluated by the Tanks Focus Area (TFA) and Industry and University Programs (INDP). The Russian Pulsating Mixer Pump showed promise for mixing highly viscous sludges. This project is to refine the system design (especially the control subsystem) and manufacture the system in Russia in accordance with quality standards required for deployment in radioactive waste storage tanks. Specifications and requirements are being developed by the TFA and INDP. The requirements may call for two or three of the sludge mixing systems to be delivered to Oak Ridge. DOE-Oak Ridge and the Oak Ridge National Laboratory will deploy the pulsating mixing pump system in their Gunite Tanks. These tanks are being emptied and cleaned prior to closure. Oak Ridge has deployed a number of innovative technologies in these efforts. If successful at Oak Ridge, the pulsating mixing pump system has potential application at several other DOE sites, including Savannah River, Hanford, and Idaho.

  2. THE PULSATION MODE AND DISTANCE OF THE CEPHEID FF AQUILAE

    SciTech Connect

    Turner, D. G.; Kovtyukh, V. V.; Luck, R. E.; Berdnikov, L. N. E-mail: val@deneb1.odessa.ua E-mail: leonid.berdnikov@gmail.com

    2013-07-20

    The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47 day s-Cepheid FF Aql. Line ratios in high dispersion spectra of the variable yield values of (M{sub V} ) = -3.40 {+-} 0.02 s.e. ({+-}0.04 s.d.), average effective temperature T{sub eff} = 6195 {+-} 24 K, and intrinsic color ((B) - (V)){sub 0} = +0.506 {+-} 0.007, corresponding to a reddening of E{sub B-V} = 0.25 {+-} 0.01, or E{sub B-V}(B0) = 0.26 {+-} 0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small-amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413 {+-} 14 pc is estimated from the Cepheid's angular diameter in conjunction with a mean radius of (R) = 39.0 {+-} 0.7 R{sub Sun} inferred from its luminosity and effective temperature. The dust extinction toward FF Aql is described by a ratio of total-to-selective extinction of R{sub V} = A{sub V} /E(B - V) = 3.16 {+-} 0.34 according to the star's apparent distance modulus.

  3. Ionospheric signatures of cusp-latitude Pc 3 pulsations

    SciTech Connect

    Engebretson, M.J. ); Cahill, L.J. Jr. ); Arnoldy, R.L. )

    1988-01-01

    It has been well established that many of the disturbances in the Earth's magnetosphere, such as auroral substorms, are a response to variations in the solar wind that continually sweeps from the Sun past the Earth and other planets. Studies over the past several years, most recently reviewed by Odera (1986) and Arnoldy at el. (1988), have shown that Pc 3 pulsations, a class of ultra-low-frequency waves in the Earth's magnetic field with periods between 15 and 40 seconds, are also directly related to activity in the solar wind just upstream of the Earth. The authors present in this report new observations from South Pole Station, Antarctica, which during certain hours every day is located under the nominal position of the magnetospheric cleft/cusp region. There has been ample evidence that plasmas from interplanetary space can penetrate to ionospheric altitudes in the cusp region. Two earlier papers based on South Pole data noted that large-amplitude, narrowband Pc 3 magnetic pulsations occurred at South Pole Station near local magnetic noon when the interplanetary magnetic field was aligned near the Earth-Sun direction (low interplanetary magnetic field cone angle). They have now found evidence of these pulsations in data from other South Pole instruments as well.

  4. Harmonic structure of Pc 3--4 pulsations

    SciTech Connect

    Takahashi, K.; McPherron, R.L.

    1982-03-01

    Power spectra of magnetic pulsations observed at synchronous orbit by the ATS 6 satellite often show several spectral peaks simultaneously. Such pulsations, which we call harmonic events because of the nearly constant separation between successive peaks, are continuously observed in the dayside in the Pc 3--4 frequency range (6.6--100 mHz). The harmonic events are seen clearly only in the east-west magnetic field component. The spectral peaks are regularly spaced with a typical minimum separation of 14 mHz in the morining gradually decreasing to 10 mHz in the afternoon. In the dynamic spectra of harmonic events, the fundamental mode is usually absent. In addition, the relative amplitudes of the higher harmonics depend on the magnetic latitude. These observed features can be explained by a standing Alfven wave consisting of many discrete harmonic frequencies. A statistical analysis of power spectra demonstrates that at least 10--30% of Pc 3 pulsations can be classified as harmonic events. Using the harmonic events, we are able to estimate the plasma mass density. For a selected event on August 7, 1975, the plasma mass density at the synchronous orbit is estimated to be 3--8 hydrogen mass/cm/sup 3/.

  5. [Relation between microcirculation parameters and Pc3 geomagnetic pulsations].

    PubMed

    Zenchehko, T A; Poskotinova, L V; Rekhtina, A G; Zaslavskaia, R M

    2010-01-01

    An individual analysis of long-term monitoring of microcirculation parameters of nine healthy volunteers showed that an increase in the geomagnetic activity led to an increase in tissue perfusion, variability of blood flow and growth of the amplitude of neurogenic and myogenic oscillations in four volunteers. It was found that the degree of microcirculation sensitivity to the level of geomagnetic activity values with time and is proportional to its average level in the period of measurement. A comparison of frequency ranges of oscillations of blood flow and variations of the geomagnetic activity shows that neurogenic and myogenic oscillations showing the highest sensitivity to the geomagnetic activity have the same frequency as geomagnetic Pc3 pulsations. The pulsations of this frequency range are excited mainly during geomagnetic disturbances, which may explain the correlation between the microcirculation parameters and the Kp index. The relation of the amplitude-frequency characteristics of Pc3-pulsations can explain the results obtained using the alternating magnetic fields. PMID:20968090

  6. Synchronous manifestations of 160-min pulsations of the ground pressure

    NASA Astrophysics Data System (ADS)

    Timofeev, V.; Miroshnichenko, L.; Samsonov, S.; Skryabin, N.

    The oscillations of ground pressure with a period of sim 160 min in December 2003 and March 2004 relatively to the zero meridian are studied using 5-min data of 4 stations Moskow Yakutsk Apatity and Tixie separated in longitude The choice of time is caused by the fact that in December the territory of Russia is the nearest to the direction to the Galaxy center under such a choice of the reper point through the Earth The most removal of the zero meridian from this direction is realized in March If we suppose that 160-min pulsations arrive from the Galaxy center then they synchronously manifest themselves most of all on the territory of Russia only in December As the analysis has shown really in December the mentioned oscillations are synchronously manifested in Moscow Yakutsk Apatity and Tixie mainly in the form of packets quanta in 2-5 impulses The mean amplitude of synchronous ground pressure variations on the territory of Russia is approx 0 0115 mb During other seasons the synchronism is observed considerably worse The manifestation of oscillations in the form of packets is also observed worse The authors suppose that 160-min pulsations of the ground pressure are not related to pulsations of the Sun s brightness The the most favorable time for their observations coincides with the moments of appearance of the stations near the direction to the Galaxy center

  7. Searching for pulsations in Kepler eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Guzik, Joyce A.

    2014-02-01

    Eclipsing binaries can in principle provide additional constraints to facilitate asteroseismology of one or more pulsating components. We have identified 94 possible eclipsing binary systems in a sample of over 1800 stars observed in long cadence as part of the Kepler Guest Observer Program to search for γ Doradus and δ Scuti star candidates. We show the results of a procedure to fold the light curve to identify the potential binary period, subtract a fit to the binary light curve, and perform a Fourier analysis on the residuals to search for pulsation frequencies that may arise in one or both of the stellar components. From this sample, we have found a large variety of light curve types; about a dozen stars show frequencies consistent with δ Sct or γ Dor pulsations, or light curve features possibly produced by stellar activity (rotating spots). For several stars, the folded candidate `binary' light curve resembles more closely that of an RR Lyr, Cepheid, or high-amplitude δ Sct star. We show highlights of our results and discuss the potential for asteroseismology of the most interesting objects.

  8. Are dayside long-period pulsations related to the cusp?

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Belakhovsky, V.; Engebretson, M. J.; Kozlovsky, A.; Yeoman, T.

    2015-03-01

    We compare simultaneous observations of long-period ultra-low-frequency (ULF) wave activity from a Svalbard/IMAGE fluxgate magnetometer latitudinal profile covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the Super Dual Auroral Radar Network (SuperDARN) radar covering the Svalbard archipelago, predictions of empirical cusp models, augmented whenever possible by Defense Meteorological Satellite Program (DMSP) identification of magnetospheric boundary domains. The meridional spatial structure of broadband dayside Pc5-6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. The earlier claims of the dayside monochromatic Pc5 wave association with the open-closed boundary also seems doubtful. Transient currents producing broadband Pc5-6 probably originate at the low-latitude boundary layer/central plasma sheet (LLBL/CPS) interface, though such identification with available DMSP data is not very precise. The occurrence of broadband Pc5-6 pulsations in the dayside boundary layers is a challenge to modelers because so far their mechanism has not been firmly identified.

  9. The anticorrelation of auroral arc and Pc5 pulsation occurrence

    NASA Astrophysics Data System (ADS)

    Donovan, E.; Knudsen, D.; Rankin, R.; Baker, G.; Jackel, B.; Cogger, L.; Wallis, D.

    2003-04-01

    Using extensive data sets from the CANOPUS All-Sky Imager (ASI) and magnetometer at Gillam, Canada (manetic latitude 67 degrees), we have compiled occurrence statistics of Pc5 pulsations, and auroral arcs. For our purpose, Pc5 pulsations were defined as monochromatic, quasisunsoidal magnetic perturbations, with a frequency between 1.7 and 6.7 mHz, and that underwent at least four complete cycles. Auroral arcs were defined to be elongated auroral features. We find, consistent with the results of previous studies, that Pc5 pulsation occurrence peaks near both the dawn and dusk meridians, and auroral arc occurrence in the late evening sector, near 2300 hours MLT. We discuss the implications of these results for candidate auroral mechanism, in particular those which demand time variation ( ie., the field line resonance) versus those that rely on static processes, showing examples of auroral arcs which display characteristics which could be attributed to mechanisms from one or the other category. We conclude that while it is clear that field-line resonances with frequencies in the Pc5 band cause or at least modulate electron precipitation in some arcs, there are equally clearly arcs for which this is not true.

  10. Stellar Pulsations Excited by Planetary Tides in WASP-33

    NASA Astrophysics Data System (ADS)

    Cameron, Andrew; Guenther, E.; Matthews, J. M.; Amado, P. J.; McDonald, I.; Shkolnik, E.; Smith, A. M. S.; Telting, J.; Walker, G. A. H.; MOST Science Team

    2011-09-01

    The bright, rapidly-rotating A5 star HD 15082 (= WASP-33) has a transiting gas-giant planet in a 1.22-day retrograde orbit, only 5.5 stellar radii from the stellar photosphere (Collier Cameron et al 2010, MNRAS 407, 507). Time-resolved spectra of the system during several transits revealed a complex pattern of non-radial pulsations of the gamma Dor and/or delta Scuti type. The extreme proximity of the planet to the host star raises the possibility that some of these pulsation modes could be excited by planetary tides (Herrero et al 2011 A&A 526, L10). The system was observed continuously by the MOST satellite(*) from 2010 October 07.0 to October 31.0. The MOST data establish the frequency spectrum of the stellar pulsations, providing a direct test of theories of planetary tidal evolution via excitation of inertial waves in the host star. The ellipsoidal variation of the host star places limits on the mass of the planet. During the MOST run, a ground-based support campaign of time-resolved echelle spectroscopy yielded tomographic data sets suitable for mode identification and precise determination of the orientation of the planet's orbit. (*) MOST is a Canadian Space Agency mission, operated by Microsat Systems Canada Inc. (formerly the space division of Dynacon Inc.), the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with support from the University of Vienna.

  11. Mass-spring model of a self-pulsating drop.

    PubMed

    Antoine, Charles; Pimienta, Véronique

    2013-12-01

    Self-pulsating sessile drops are a striking example of the richness of far-from-equilibrium liquid/liquid systems. The complex dynamics of such systems is still not fully understood, and simple models are required to grasp the mechanisms at stake. In this article, we present a simple mass-spring mechanical model of the highly regular drop pulsations observed in Pimienta, V.; Brost, M.; Kovalchuk, N.; Bresch, S.; Steinbock, O. Complex shapes and dynamics of dissolving drops of dichloromethane. Angew. Chem., Int. Ed. 2011, 50, 10728-10731. We introduce an effective time-dependent spreading coefficient that sums up all of the forces (due to evaporation, solubilization, surfactant transfer, coffee ring effect, solutal and thermal Marangoni flows, drop elasticity, etc.) that pull or push the edge of a dichloromethane liquid lens, and we show how to account for the periodic rim breakup. The model is examined and compared against experimental observations. The spreading parts of the pulsations are very rapid and cannot be explained by a constant positive spreading coefficient or superspreading. PMID:24200165

  12. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  13. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

    2016-07-01

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2mm,outer diameter is 2.5mm and 250mm long. The CLPHP has 8 loops where the evaporation section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  14. Some spectral and pulsation characteristics of a horizontal gas-liquid stream

    NASA Astrophysics Data System (ADS)

    Krokovnyi, P. M.

    1980-07-01

    In the experiments described, the turbulence characteristics of a two-phase gas-liquid pipe flow were studied, using a 6 m long, 19-mm-diam tube. The inlet temperature of the suspension was maintained at 25 C. The friction energy spectra and the relative intensity of the friction pulsations were measured. The spectral and pulsation characteristics were obtained by an electrodiffusion technique which provided reliable data on the pulsations of the wall shear stress.

  15. An experimental investigation of heat transfer to pulsating pipe air flow with different amplitudes

    NASA Astrophysics Data System (ADS)

    Zohir, A. E.; Habib, M. A.; Attya, A. M.; Eid, A. I.

    2006-05-01

    Heat transfer characteristics to both laminar and turbulent pulsating pipe flows under different conditions of Reynolds number, pulsation frequency, pulsator location and tube diameter were experimentally investigated. The tube wall of uniform heat flux condition was considered for both cases. Reynolds number varied from 750 to 12,320 while the frequency of pulsation ranged from 1 to 10 Hz. With locating the pulsator upstream of the inlet of the test section tube, results showed an increase in heat transfer rate due to pulsation by as much as 30% with flow Reynolds number of 1,643 and pulsation frequency of 1 Hz, depending on the upstream location of the pulsator valve. Closer the valve to the tested section inlet, the better improvement in the heat transfer coefficient is achieved. Upon comparing the heat transfer results of the upstream and the downstream pulsation, at Reynolds number of 1,366 and 1,643, low values of the relative mean Nusselt number were obtained with the upstream pulsation. Comparing the heat transfer results of the two studied test sections tubes for Reynolds number range from 8,000 to 12,000 and pulsation frequency range from 1.0 to 10 Hz showed that more improvement in heat transfer rate was observed with a larger tube diameter. For Reynolds number ranging from 8,000 to 12,000 and pulsation frequency of 10 Hz, an improvement in the relative mean Nusselt number of about 50% was obtained at Reynolds number of 8,000 for the large test section diameter of 50 mm. While, for the small test section diameter of 15 mm, at same conditions of Reynolds number and frequency, a reduction in the relative mean Nusselt number of up to 10% was obtained.

  16. Some spectral and pulsation characteristics of the horizontal flow of a gas-liquid suspension

    NASA Astrophysics Data System (ADS)

    Krokovnyi, P. M.

    1980-02-01

    In the experiments described, the turbulence characteristics of a two-phase gas-liquid pipe flow were studied, using a 6 m long, 19-mm-diam tube. The inlet temperature of the suspension was maintained at 25 C. The friction energy spectra and the relative intensity of the friction pulsations were measured. The spectral and pulsation characteristics were obtained by an electrodiffusion technique which provided reliable data on the pulsations of the wall shear stress.

  17. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  18. A new pulsation spectrum and asteroseismology of {delta} Scuti

    SciTech Connect

    Templeton, M.R.; McNamara, B.J.; Guzik, J.A.; Bradley, P.A.; Cox, A.N.; Middleditch, J.

    1997-10-01

    We present the results of a five-year Str{umlt o}mgren y photometric campaign on {delta} Scuti. Our data set consists of 6515 discrete differential magnitudes, and spans the period of 1983 June to 1988 September. We found the primary pulsation mode at 59.731129{plus_minus}0.000002 {mu}Hz, in close agreement with the frequency determination of Fitch (1976, IAU Colloquium, 29, 167), but we find our best-fit observed frequencies for other pulsation modes differ by 0.5{endash}2 cycles per year from Fitch{close_quote}s results. In the case of the second strongest pulsation mode, we found a frequency of 61.936104{plus_minus}0.000009 {mu}Hz{emdash}one cycle per year off of the commonly quoted frequency. All of the other modes not classified as harmonics or beating modes were identified in our data, as well as a new pulsation frequency at 96.21443{plus_minus}0.00005 {mu}Hz discovered in both Str{umlt o}mgren y and b observations. We measured the phase differences between our Str{umlt o}mgren y data and a short string of Str{umlt o}mgren b data taken during the 1987 multisite campaign, and find phase differences ranging from 0 to 0.33 radians, suggesting that there are modes of different spherical harmonic order present in {delta} Scuti. Finally, we evolved a set of M=1.8{endash}2.4 M{sub {circle_dot}} models with solar abundances (X=0.7,Z=0.02) and two (M=2.2 and M=2.4 M{sub {circle_dot}}) models with solar abundances scaled to (X=0.66,Z=0.06), using recent opacity and reaction rate data, and applied linear, nonadiabatic pulsation analysis to models in the shell hydrogen burning phase. The Z=0.02 model which best fit the observed spectral type of F2III, the {ital Hipparcos} absolute magnitude of M{sub V}=1.0, and the radius estimate of Cugier and Monier of R=4.1 R{sub {circle_dot}}, and which has a pure radial mode at 59.731 {mu}Hz has a mass of 2.1 M{sub {circle_dot}}, with T{sub eff}=6894 K, R=4.14 R{sub {circle_dot}}, and M{sub V}=1.0. (Abstract Truncated)

  19. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  20. Cepheids in Magellanic Cloud star clusters - Fundamental and overtone pulsators in NGC 2157

    NASA Technical Reports Server (NTRS)

    Mateo, Mario; Olszewski, Edward W.; Madore, Barry F.

    1990-01-01

    CCD survey data are employed to examine Cepheids in young Magellanic Cloud star clusters. The properties of three Cepheids observed in NGC 2157 are described. It is detected that the two short-period (3 days) Cepheids have photometric properties that correspond to overtone pulsators and the long-period (7.7 days) Cepheid pulses in the fundamental mode. The pulsational masses for the three Cepheids are calculated to be about 5 solar masses. This mass value does not correlate with the average pulsational mass for Cepheids of 3.0 + or - 0.4 solar masses. The potential cause of this deviation in evolutionary/pulsational mass is investigated.

  1. Analysis of a subdwarf B pulsator observed during Campaign 2 of K2

    NASA Astrophysics Data System (ADS)

    Ketzer, Laura; Baran, Andrzej; Reed, Mike; Telting, John H.; Nemeth, Peter

    2016-06-01

    We present an analysis of the pulsating subdwarf B (sdB) star EPIC 203948264, observed during Campaign 2 of the extended Kepler mission. A time series analysis of the short cadence data set has revealed a rich g-mode pulsation spectrum with 17 independent pulsation periods between 0.5 and 2.8 hours. All of the pulsations fit the asymptotic period sequences for ell=1 or 2, with average period spacings of 259+/-1.4 and 149+/-0.3 s, respectively. The pulsation amplitudes range from 0.77 to the detection limit at 0.26 ppt, with amplitudes that vary over time. Radial velocity measurements give no indication for binarity in this star. We did not find rotationally induced pulsation multiplets, which indicates that the rotation period of the star is longer than about 45 days, which would make the data too short to resolve multiplets. By characterizing the various pulsation modes present in pulsating sdB stars, and by examining the time-dependence of pulsation amplitudes, we can constrain structural models of the interiors of sdB stars. This is a promising approach to enhancing our understanding of these stars.

  2. First Satellite Imaging of Auroral Pulsations by the Fast Auroral Imager on e-POP

    NASA Astrophysics Data System (ADS)

    Lui, A.; Cogger, L.; Howarth, A. D.; Yau, A. W.

    2015-12-01

    We report the first satellite imaging of auroral pulsations by the Fast Auroral Imager (FAI) onboard the Enhanced Polar Outflow Probe (e-POP) satellite. The near-infrared camera of FAI is capable of providing up to two auroral images per second, ideal for investigation of pulsating auroras. The auroral pulsations were observed within the auroral bulge formed during a substorm interval on 2014 February 19. This first satellite view of these pulsations from FAI reveals that (1) several pulsating auroral channels (PACs) occur within the auroral bulge, (2) periods of the intensity pulsations span over one decade within the auroral bulge, and (3) there is no apparent trend of longer pulsation periods associated with higher latitudes for these PACs. Although PACs resemble in some respect stable pulsating auroras reported previously but they have several important differences in characteristics.PACs are not embedded in or emerging from omega bands or torches and are located at significant distances from the equatorward boundary of the auroral oval, unlike the characteristics of stable pulsating auroras.

  3. On resonances in the pulsations of stars - II. Canonical perturbation theories

    NASA Astrophysics Data System (ADS)

    Vandervoort, Peter O.

    2015-10-01

    This is a study of stellar pulsations that are dominated by the non-linear interaction of a pair of nearly degenerate modes of infinitesimal pulsation. We describe two examples in which the equations that govern the adiabatic, non-linear pulsations of a star admit of Hamiltonian formulations, and we construct canonical perturbation theories for the solution of the canonical equations of motion in those examples. The primary example is a model of non-linear pulsations described in an earlier paper, in which we have represented the pulsations as quasi-homologous oscillations of a compressible, heterogeneous spheroid. The tensor virial equations of the second order and an equation representing an integral form of the first law of thermodynamics govern the pulsations of that model. The second example is a Hamiltonian representation of stellar pulsations of the kind originally formulated by J. Woltjer. In these examples the pulsations are quasi-periodic in two or more degrees of freedom. Two degrees of freedom characterize the non-linear interaction of the nearly degenerate modes of infinitesimal pulsation. The period of the motion in one of those degrees of freedom is a non-linear counterpart of the beat period of a superposition of the two nearly degenerate modes. It appears that episodes of this non-linear beat phenomenon must occur during the evolution of β Cephei stars.

  4. Interaction between ELF-VLF emission and magnetic pulsations: quasi-periodic ELF-VLF emissions associated with Pc 3--4 magnetic pulsations and their geomagnetic conjugacy

    SciTech Connect

    Sato, N.; Kokubun, S.

    1980-01-01

    The characteristics of quasi-periodic (QP) ELF-VLF emissions with periods of 10--150 s and their relationships to magnetic pulsations are studied by using data obtained from Syowa and Mizuho Stations in Antarctica and at Husafell in Iceland, which is located near the geomagnetic conjugate point of Syowa. From the coherency analysis between QP emissions and Pc 3--4 magnetic pulsations it is found that the coherency between the D component of magnetic pulsations and the intensity fluctuations of QP's is much higher than that between the H component of magnetic pulsations and QP's. It is also found that the propagation time of magnetic pulsations (HM waves) from the interaction region between magnetic pulsations and QP's in the magnetosphere to the ground is 20--30 s. These properties are observed at conjugate-pair stations with good conjugacy. The results strongly suggest that QP emissions are modulated by compressional mode Pc 3--4 magnetic pulsations near the equatorial plane in the outer magnetosphere.

  5. Pulsations of rapidly rotating stars. I. The ACOR numerical code

    NASA Astrophysics Data System (ADS)

    Ouazzani, R.-M.; Dupret, M.-A.; Reese, D. R.

    2012-11-01

    Context. Very high precision seismic space missions such as CoRoT and Kepler provide the means of testing the modeling of transport processes in stellar interiors. For some stars, such as solar-like and red giant stars, a rotational splitting is measured. However, to fully exploit these splittings and constrain the rotation profile, one needs to be able to calculate them accurately. For some other stars, such as δ Scuti and Be stars, for instance, the observed pulsation spectra are modified by rotation to such an extent that a perturbative treatment of the effects of rotation is no longer valid. Aims: We present here a new two-dimensional non-perturbative code called ACOR (adiabatic code of oscillation including rotation) that allows us to compute adiabatic non-radial pulsations of rotating stars without making any assumptions on the sphericity of the star, the fluid properties (i.e., baroclinicity) or the rotation profile. Methods: The 2D non-perturbative calculations fully take into account the centrifugal distortion of the star and include the full influence of the Coriolis acceleration. The numerical method is based on a spectral approach for the angular part of the modes and a fourth-order finite differences approach for the radial part. Results: We test and evaluate the accuracy of the calculations by comparing them with those coming from the TOP (two-dimensional oscillation program) for the same polytropic models. We illustrate the effects of rapid rotation on stellar pulsations through the phenomenon of avoided crossings. Conclusions: As shown by the comparison with the TOP for simple models, the code is stable, and gives accurate results up to near-critical rotation rates.

  6. Nonlinear resonance theory of Pc 3 magnetic pulsation

    SciTech Connect

    Yumoto, K.; Saito, T.

    1982-07-01

    Compressional Pc 3 magnetic pulsations with large wave numbers normal to the static magnetic field in the magnetosphere and the beating type Pc 3 pulsations on the ground are hardly interpreted with respect to the linear resonance theory based on the idea of a resonance coupling between a monochromatic surface wave at the magnetopause and a shear Alfven wave at a local field line in the inner magnetosphere. A parametric excitation of an Alfven wave (k/sup A/, ..omega../sub A/) by a magnetosonic pump wave (k/sup tsf/s/sub 1/, ..omega../sub 1f/s), which propagates obliquely to the static magnetic field, has been analyzed. The resonance conditions are chosen such that k/sup tsf/s/sub 1/ = k/sup tsf/s/sub 2/+k/sup A/ and ..omega../sub 1f/s-..omega../sub A/ = deltaapprox...omega../sub 2f/s. For both standing and propagating pumps the growth rates of the excited HM waves depend not only on the pump power but also on ..beta... It is found that large growth rates of parametric excitation of Alfven waves by the fast magnetosonic pump waves arise if theta/sub 1f/ = angle(k/sup tsf//sub 1/, B/sub 0/) approx.70/sup 0/--80/sup 0/ and the regions of parametric excitation are localized at the resonance point in the magnetosphere where ..beta..approx.m/sub e//m/sub i/. It is concluded that parametric excitation of Pc 3 range HM waves is a more attractive theory of the beating type geomagnetic pulsations than the linear resonance theory.

  7. The Domains of Instability for the Pulsating PG 1159 Stars

    NASA Astrophysics Data System (ADS)

    Quirion, P.-O.; Fontaine, G.; Brassard, P.; Herwig, F.

    2005-07-01

    The fact that we find pulsating and nonpulsating stars mixed together in the PG 1159 region of the log g-Teff diagram has been a long standing puzzle. The poor understanding of the driving mechanism in those stars has been the reason why it has taken so long to address properly this problem. Following the work of Saio (1996) and Gautchy (1997) based on the OPAL opacities, Quirion et al. (2004) recently showed that we are now able to understand and reproduce the ranges of observed periods in the pulsating PG 1159 stars in terms of the original κ-mechanism associated with the partial ionization of the K-shell electrons of C and O which, along with He, make up the composition of the envelope of those stars. Contrary to others, those three studies agree in that no composition gradients are needed between the atmospheric layers and the driving region. Furthermore, the cohabitation of pulsating and nonpulsating PG 1159 stars is naturally explained in terms of a dispersion in atmospheric parameters and in terms of a variation in surface composition from star to star. In particular, the most He-rich stars tend to be stable. We go beyond the findings discussed by Quirion et al. (2004) in this paper, and present the results of additional calculations aimed at describing better the role of the chemical composition (in particular the role of metallicity) as well as that of the stellar mass on the boundaries of the instability domain in the log g-Teff plane.

  8. DARK STARS: IMPROVED MODELS AND FIRST PULSATION RESULTS

    SciTech Connect

    Rindler-Daller, T.; Freese, K.; Montgomery, M. H.; Winget, D. E.; Paxton, B.

    2015-02-01

    We use the stellar evolution code MESA to study dark stars (DSs). DSs, which are powered by dark matter (DM) self-annihilation rather than by nuclear fusion, may be the first stars to form in the universe. We compute stellar models for accreting DSs with masses up to 10{sup 6} M {sub ☉}. The heating due to DM annihilation is self-consistently included, assuming extended adiabatic contraction of DM within the minihalos in which DSs form. We find remarkably good overall agreement with previous models, which assumed polytropic interiors. There are some differences in the details, with positive implications for observability. We found that, in the mass range of 10{sup 4}-10{sup 5} M {sub ☉}, our DSs are hotter by a factor of 1.5 than those in Freese et al., are smaller in radius by a factor of 0.6, denser by a factor of three to four, and more luminous by a factor of two. Our models also confirm previous results, according to which supermassive DSs are very well approximated by (n = 3)-polytropes. We also perform a first study of DS pulsations. Our DS models have pulsation modes with timescales ranging from less than a day to more than two years in their rest frames, at z ∼ 15, depending on DM particle mass and overtone number. Such pulsations may someday be used to identify bright, cool objects uniquely as DSs; if properly calibrated, they might, in principle, also supply novel standard candles for cosmological studies.

  9. 9 Aurigae: strong evidence for non-radial pulsations

    NASA Astrophysics Data System (ADS)

    Krisciunas, K.; Griffin, R. F.; Guinan, E. F.; Luedeke, K. D.; McCook, G. P.

    1995-04-01

    We present further photometric observations of the unusual F0 V star 9 Aurigae and present evidence that this star's radial velocity, spectroscopic line widths and line depths are also variable with the same frequencies as the photometric data (f_1~=0.795 and f_2~=0.345 d^-1). The phases of these sinusoids are stable over time-scales of longer than one year, though the amplitudes can vary, making the prediction of photometric behaviour impossible. Given that a variety of other explanations have already been discounted (e.g. interactions with a close companion, the existence of a lumpy, orbiting ring of dust, or star spots) and that these variations occur on time-scales an order of magnitude slower than the fundamental radial pulsation period, we have very strong evidence that 9 Aurigae exhibits non-radial g-mode pulsations. Since the power spectrum of the radial velocity data shows frequency f_2 but does not clearly show f_1, the present data suggest that f_2 is associated with a low-degree spherical harmonic L=1 or 2), while f_1 is associated with a higher degree harmonic. 9 Aurigae, along with such stars as gamma Doradus, HD 224638, HD 224945, and HD 164615, appears to constitute a new class of pulsating variables. These stars are to be found at or beyond the cool edge of the Cepheid instability strip in the HR Diagram. Prior to this, only much hotter stars have been shown to exhibit non-radial g-modes.

  10. Pi2 pulsations and substorm onsets: A review

    NASA Astrophysics Data System (ADS)

    Olson, John V.

    1999-08-01

    Pi2 pulsations have been the subject of continuous study since they were recognized to be an integral part of the magnetospheric substorm. With the advent of arrays of ground instruments the nature of the Pi2 has begun to be understood. As adopted by the 13th General Assembly of the International Union of Geodesy and Geophysics in 1963, Pi2 is a designation that includes impulsive pulsations in the period range from 40 to 150 s. The Pi2 signal encompasses a class of pulsations that represents two fundamental processes. The first process is the sudden generation of field-aligned currents in association with the disruption of cross-tail currents in the plasma sheet and their subsequent effects on the ionosphere. The ionosphere appears to be something more than a passive load for this electrodynamic impulse. It responds, sending currents back into a magnetosphere whose topology is changing and, perhaps producing the feedback necessary to cause the explosive growth of the substorm current system. Oscillations of these currents are detected across the nightside of the Earth at onset as the midlatitude and high-latitude portions of Pi2. The second process is the impulse response of the inner magnetosphere to the compressional waves that are generated at substorm onset. Traveling inward, they stimulate field line resonances and surface waves at the plasmapause and excite global oscillations in the inner magnetosphere. The two processes produce wave modes that couple and cross-couple threading energy into the inner magnetosphere and ultimately to the ground. The purpose of this review is to construct a phenomenological overview of the Pi2.

  11. The domains of instability for the pulsating PG1159 stars.

    SciTech Connect

    Quirion, P.-O.; Fontaine, Gilles.; Brassard, Pierre; Herwig, F. H.

    2004-01-01

    The fact that we find pulsating and nonpulsating stars mixed together in the PG 1159 region of the log g - T{sub eff} diagram has been a long standing puzzle. The poor understanding of the driving mechanism in those stars has been the reason why it has taken so long to address properly this problem. Following the work of Saio (1996) and Gautschy (1997) based on the OPAL opacities, Quirion, Fontaine, & Brassard (2004) recently showed that we are now able to understand and reproduce the ranges of observed periods in the pulsating PG 1159 stars in terms of the original {kappa}-mechanism associated with the partial ionization of the K-shell electrons of C and O which, along with He, make up the composition of the envelope of those stars. Contrary to others, those three studies agree in that no composition gradients are needed between the atmospheric layers and the driving region. Furthermore, the cohabitation of pulsating and nonpulsating PG 1159 stars is naturally explained in terms of a dispersion in atmospheric parameters and in terms of a variation in surface composition from star to star. In particular, the most He-rich stars tend to be stable. We go beyond the findings discussed by Quirion et al. (2004) in this paper, and present the results of additional calculations aimed at describing better the role of the chemical composition (in particular the role of metallicity) as well as that of the stellar mass on the boundaries of the instability domain in the log g - T{sub eff} plane.

  12. WD 0158-160, a new pulsating DB white dwarf

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.

    2016-03-01

    The DB star, WD 0158-160 (=EC 01585-1600) is shown to be a variable white dwarf with a rich pulsation spectrum, dominated by a strong variation with a frequency near 1637 μHz (amplitude ˜0.024 mag, period 598 s), though at least 10 frequencies are detected between about 1285 and 5747 μHz (780-173 s) in a relatively small data set. At ˜14.5 mag, the star is one of the brightest known DBV stars.

  13. Discovery of a new PG 1159 (GW Vir) pulsator

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Fraga, Luciano; Winget, Don Earl; Bell, Keaton; Córsico, Alejandro H.; Werner, Klaus

    2014-08-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12 + 085232.18. Analysis of the spectrum by Werner et al. indicated Teff = 120 000 ± 10 000 K, log g = 7.0 ± 0.3, mass {M}=0.52 ± 0.02 M_{⊙}, C/He = 0.33 by number. We obtained time series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  14. Stellar Pulsations and Stellar Evolution: Conflict, Cohabitation, or Symbiosis?

    NASA Astrophysics Data System (ADS)

    Weiss, Achim

    While the analysis of stellar pulsations allows the determination of current properties of a star, stellar evolution models connect it with its previous history. In many cases results from both methods do not agree. In this review some classical and current cases of disagreement are presented. In some cases these conflicts led to an improvement of the theory of stellar evolution, while in others they still remain unsolved. Some well-known problems of stellar physics are pointed out as well, for which it is hoped that seismology—or in general the analysis of stellar pulsations—will help to resolve them. The limits of this symbiosis will be discussed as well.

  15. Electrodynamic response of the middle atmosphere to auroral pulsations

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Barcus, J. R.

    1990-01-01

    The MAC/EPSILON observational campaign encompassed the use of two Nike Orion rocket payloads which studied the effects of auroral energetics on the middle atmosphere. While one payload was launched during the recovery phase of a moderate magnetic substorm, during fairly stable auroral conditions, the other was launched during highly active postbreakup conditions during which Pc5 pulsations were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV, while that of the second was dominated by much softer electrons whose high X-ray fluxes exceeded the cosmic ray background as an ionizing source down to below 30 km.

  16. Dissipative double-well potential: Nonlinear stationary and pulsating modes

    SciTech Connect

    Zezyulin, Dmitry A.; Konotop, Vladimir V.; Alfimov, Georgy L.

    2010-11-15

    The analysis of nonlinear modes in a complex absorbing double-well potential supported by linear gain is presented. Families of the nonlinear modes and their bifurcations are found numerically by means of the properly modified 'shooting' method. Linear stability and dynamics of the modes are studied. It is shown that no stable modes exist in the case of attractive nonlinearity, while stable modes, including nonsymmetric ones, are found when the nonlinearity is repulsive. Varying a control parameter (e.g., the height of barrier between the wells) results in switching from one mode to another. Apart from stationary modes we have found pulsating solutions emergent from unstable modes.

  17. The Interesting Light Curve and Pulsation Frequencies of KIC 9204718

    NASA Astrophysics Data System (ADS)

    Turner, G.; Holaday, J.

    2013-06-01

    In previous work by Uytterhoeven et al. (2011) the Kepler object KIC 9204718 (HD 176843) was identified as a binary system with a d Scuti-type component. Both long- and short-cadence data were obtained from the MAST archive and analyzed. In this paper we show the results of period analysis on one quarter of short-cadence data in which were obtained two pulsation periods, the dominant of which has a period of 0.026479 day and the secondary of 0.029068 day, respectively. We also present the interesting light curve of the object over several quarters of long-cadence data sets.

  18. A Second Case of Outbursts in a Pulsating White Dwarf Observed by Kepler

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Montgomery, M. H.; Bell, Keaton J.; Chote, P.; Gänsicke, B. T.; Kawaler, Steven D.; Clemens, J. C.; Dunlap, Bart H.; Winget, D. E.; Armstrong, D. J.

    2015-09-01

    We present observations of a new phenomenon in pulsating white dwarf stars: large-amplitude outbursts at timescales much longer than the pulsation periods. The cool ({T}{eff} = 11,060 K), hydrogen-atmosphere pulsating white dwarf PG 1149+057 was observed nearly continuously for more than 78.8 day by the extended Kepler mission in K2 Campaign 1. The target showed 10 outburst events, recurring roughly every 8 day and lasting roughly 15 hr, with maximum flux excursions up to 45% in the Kepler bandpass. We demonstrate that the outbursts affect the pulsations and therefore must come from the white dwarf. Additionally, we argue that these events are not magnetic reconnection flares, and are most likely connected to the stellar pulsations and the relatively deep surface convection zone. PG 1149+057 is now the second cool pulsating white dwarf to show this outburst phenomenon, after the first variable white dwarf observed in the Kepler mission, KIC 4552982. Both stars have the same effective temperature, within the uncertainties, and are among the coolest known pulsating white dwarfs of typical mass. These outbursts provide fresh observational insight into the red edge of the DAV instability strip and the eventual cessation of pulsations in cool white dwarfs.

  19. Time series and correlation of pulsations observed simultaneously by two aircraft

    SciTech Connect

    Ochadlick, A.R. Jr.

    1990-10-01

    Geomagnetic pulsations are an interesting and ubiquitous component of the geomagnetic field and they have been studied extensively for several decades. Numerous comparisons have been made of pulsations at a variety of sites for various objectives. However, conductivity anomalies introduce a number of complexities into the interpretations of pulsations at ground sites through the action of the primary fields on the electrical properties of the local geologic structure. To avoid the difficulties associated with conductivity irregularities, Ochadlick et al. (1985) described an aeromagnetic approach using two aircraft for studying the relationship between pulsations observed over a deep ocean area. Relative to land regions, a deep sea is presumably a more uniform conductor. Using the dual aeromagnetic results, Ochadlick found that the correlation coefficient of pulsations remained relatively constant for observation points spaced apart from a few to about 150 km. Beyond 150 km the correlation coefficient was found to decrease. This letter summarizes the time series records of pulsations, totaling about 9 h, acquired during several dual aircraft flights performed between 20 May and 15 Aug 1985 and presents the associated correlation coefficient between the dual aircraft data sets. Apparently, those measurements show for the first time that a strong similarity of pulsations weakens quickly at a distance of {approximately}150 km which is remarkably close to the ionospheric height and is thus suggestive of a strong ionospheric control on the spatial coherence of pulsations.

  20. Heat transfer in a turbulent separation region with superimposed stream pulsations

    NASA Astrophysics Data System (ADS)

    Davletshin, I. A.; Mikheev, N. I.; Molochnikov, V. M.

    2008-06-01

    Experimental data on heat transfer in turbulent separation region behind obstacle in a broad frequency range of superimposed free-stream pulsations are reported. The heat-transfer coefficient was determined by solving an inverse non-stationary heat conduction problem based on experimentally measured wall transient temperature. Substantial heat-transfer intensification in the separation region of the pulsating flow was identified.

  1. Radial stellar pulsation and three-dimensional convection. III. Comparison of two-dimensional and three-dimensional convection effects on radial pulsation

    SciTech Connect

    Geroux, Christopher M.; Deupree, Robert G.

    2014-03-10

    We have developed a multi-dimensional radiation hydrodynamics code to simulate the interaction of radial stellar pulsation and convection for full-amplitude pulsating models. Convection is computed using large eddy simulations. Here, we perform three-dimensional (3D) simulations of RR Lyrae stars for comparison with previously reported 2D simulations. We find that the time-dependent behavior of the peak convective flux on pulsation phase is very similar in both the 2D and 3D calculations. The growth rates of the pulsation in the 2D calculations are about 0.1% higher than in the 3D calculations. The amplitude of the light curve for a 6500 K RR Lyrae model is essentially the same for our 2D and 3D calculations, as is the rising light curve. There are differences in the slope at various times during falling light.

  2. A Real-Time Processing System for Pulsation Detection in Neonatal Cranial Ultrasonogram

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Yamada, Masayoshi

    1998-05-01

    In order to observe artery pulsation in the neonatal cranium at the site of pediatric diagnosis, a real-time processing system was developed for continuous detection and display of artery pulsation, from the moving images of the neonatal cranial ultrasonogram.The pulsation images were continuously generated by calculating the absolute difference between each pixel value at the two images corresponding to about half a heartbeat interval.The system was confirmed to process and continuously display at intervals of about 150 ms while capturing the echo images at the video rate of 30 ms, showing that the system performance was good enough to observe the artery pulsation in real-time.By monitoring the pulsation images continuously redisplayed, the critical conditions of the echo image such as the sway of the ultrasound probe could be easily avoided at the site of diagnosis.

  3. Field and thermal plasma observations of ULF pulsations during a magnetically disturbed interval

    NASA Technical Reports Server (NTRS)

    Lin, N.; Engebretson, M. J.; Reinleitner, L. A.; Olson, J. V.; Gallagher, D. L.; Cahill, L. J., Jr.; Slavin, J. A.; Persoon, A. M.

    1992-01-01

    A ULF pulsation event is discussed on the basis of experimental observations of electric and magnetic field measurements as well as particle measurements from the DE 1 spacecraft. The observations were made near the magnetic equator in a space covering a large range of L shells and magnetic latitudes, and comparisons are made to ground observations. Azimuthal oscillations are observed following gradually decaying long-period compressional waves. Weak interaction between magnetic shells indicates that the source is probably weak, and ground data on magnetic pulsations showed strong signals that did not necessarily correspond to the quasisinusoidal pulsations observed in space. Azimuthal pulsations observed by the spacecraft indicate that there was a plasma density gradient beyond the plasmapause. The ULF pulsations were probably affected by changes in the magnetic field and solar-wind dynamic pressure, and their periods are found to be linked to geomagnetic latitude.

  4. Nature of Pi1B pulsations as inferred from ground and satellite observations

    NASA Astrophysics Data System (ADS)

    Lessard, M. R.; Lund, E. J.; Jones, S. L.; Arnoldy, R. L.; Posch, J. L.; Engebretson, M. J.; Hayashi, K.

    2006-07-01

    The occurrence of Pi1B pulsations is well-documented, including the fact that these pulsations can be observed both on the ground and at geosynchronous orbit at substorm onset, although information about their propagation characteristics has been lacking. In this paper, data are presented from FAST, GOES 9 and various ground stations that show the simultaneous observations of Pi1B pulsations in association with an onset. While the data at GOES 9 show that the pulsations are compressional in nature, data from FAST show the presence of shear mode waves, implying that Pi1B mode conversion of some type must take place in the region between geosynchronous orbit and FAST altitudes. An additional point is that Pi1B pulsations apparently propagate through auroral phenomena routinely, begging the question of what role they may play.

  5. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. I. NUMERICAL METHODS AND ADIABATIC TEST CASES

    SciTech Connect

    Geroux, Chris M.; Deupree, Robert G.

    2011-04-10

    We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.

  6. V2653 Ophiuchii with a pulsating component and Ppuls - Porb, Ppuls - g correlations for γ Dor type pulsators

    NASA Astrophysics Data System (ADS)

    Çakırlı, Ö.; Ibanoglu, C.

    2016-05-01

    We present new spectroscopic observations of the double-lined eclipsing binary V2653 Ophiuchii. The photometric observations obtained by ASAS were analyzed and combined with the analysis of radial velocities for deriving the absolute parameters of the components. Masses and radii were determined for the first time as Mp = 1.537 ± 0.021 M⊙ and Rp = 2.215 ± 0.055 R⊙, Ms = 1.273 ± 0.019 M⊙ and Rs = 2.000 ± 0.056 R⊙ for the components of V2653 Oph. We estimate an interstellar reddening of 0.15 ± 0.08 mag and a distance of 300 ± 50 pc for the system, both supporting the membership of the open cluster Collinder 359. Using the out-of-eclipse photometric data we have made frequency analysis and detected a periodic signal at 1.0029 ± 0.0019 c/d. This frequency and the location of the more massive star on the HR diagram lead to classification of a γ Dor type variable. Up to date only eleven γ Dor type pulsators in the eclipsing binaries have been discovered. For six out of 11 systems, the physical parameters were determined. Although a small sample, we find empirical relations that Ppuls ∝ Porb0.43 and Ppuls ∝ g-0.83. While the pulsation periods increase with longer orbital periods, they decrease with increasing surface gravities of pulsating components and gravitational pull exerted by the companions. We present, briefly, the underlying physics behind the correlations we derived.

  7. Characterization of ultra low frequency (ULF) pulsations and the investigation of their possible source

    NASA Astrophysics Data System (ADS)

    Mthembu, S. H.; Malinga, S. B.; Walker, A. D. M.; Magnus, L.

    2009-08-01

    In this paper we present the results from the observation of ultra low frequency (ULF) pulsations in the Doppler velocity data from SuperDARN HF radar located at Goose Bay (61.94° N, 23.02° E, geomagnetic). Fourier spectral techniques were used to determine the spectral content of the data and the results show Pc 5 ULF pulsations (with a frequency range of 1 to 4 mHz) where the magnetic field lines were oscillating at discrete frequencies of about 1.3 and 1.9 mHz. These pulsations are classified as field lines resonance (FLR) since the 1.9 mHz component exhibited an enhancement in amplitude with an associated phase change of approximately 180° across a resonance latitude of 71.3°. The spatial and temporal structure of the ULF pulsations was examined by investigating their instantaneous amplitude which was calculated as the amplitude of the analytic signal. The results presented a full field of view which exhibit pulsations activity simultaneously from all beams. This representation shows that the peak amplitude of the 1.9 mHz component was observed over the longitudinal range of 13°. The temporal structure of the pulsations was investigated from the evolution of the 1.9 mHz component and the results showed that the ULF pulsations had a duration of about 1 h. Wavelet analysis was used to investigate solar wind as a probable source of the observed ULF pulsations. The time delay compared well with the solar wind travel time estimates and the results suggest a possible link between the solar wind and the observed pulsations. The sudden change in dynamic pressure also proved to be a possible source of the observed ULF pulsations.

  8. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus

    SciTech Connect

    Wagshul, M.; Smith, S.; Wagshul, M.; McAllister, J.P.; Rashid, S.; Li, J.; Egnor, M.R.; Walker, M.L.; Yu, M.; Smith, S.D.; Zhang, G.; Chen, J.J.; Beneveniste, H.

    2009-03-01

    In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular volume and aqueductal pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 {+-} 83.21 {mu}l vs. 15.52 {+-} 2.00 {mu}l; pulsations: 114.51 nl {+-} 106.29 vs. 0.72 {+-} 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-field MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation.

  9. Consecutive PIV Analyses on a Finite-Amplitude Pulsating Jet

    NASA Astrophysics Data System (ADS)

    Funaki, Jiro; Kobayashi, Daizo; Shobu, Kazuaki; Hirata, Katsuya

    Pulsating jets are very common and sometimes useful in industrial fields, due to some differences in basic characteristics from steady jets. In this research, the authors focus upon the mechanism of the frequency effect on a finite-amplitude pulsating jet. Experiments are conducted at a Reynolds number of 5,000, Strouhal numbers of 0.13, 0.20 and 0.27, and a velocity-amplitude ratio of 0.5. Using olive-oil smoke, the authors visualise the flow from a nozzle exit with a circular cross section, and get quantitative information by a PIV technique. As a result, the authors have succeeded in defining the locations of main and subsidiary ring vortices. And, the authors have revealed the vortices' convection manners at three frequencies. Besides, the instantaneous measurements on entraining flow with a conditional-sampling technique have shown the complexity of the frequency effect, which is affected by two factors in a trade-off relation.

  10. Resonances and period doubling in the pulsations of stellar models

    NASA Astrophysics Data System (ADS)

    Moskalik, Pawel; Buchler, J. Robert

    1990-06-01

    The nonlinear pulsational behavior of several sequences of state-of-the-art Cepheid models is computed with a numerical hydrodynamics code. These sequences exhibit period doubling as the control parameter, the effective temperature, is changed. By following the evolution of the Floquet stability coefficients of the periodic pulsations, this period doubling is identified with the destabilization of a vibrational overtone mode through a resonance of the type (2n + 1) omega (0) equal to about 2 omega (k) (n integer). In the weakly dissipative Population I Cepheids, only a single period doubling and subsequent undoubling is observed, whereas in the case of the strongly dissipative Population II Cepheids, a cascade of period doublings and chaos can occur. The basic properties of the period doubling bifurcation are examined within the amplitude equation formalism, leaving little doubt about the resonance origin of the phenomenon. A simple model system to two coupled nonlinear oscillators which mimics the behavior of the complicated stellar models is also analyzed.