Science.gov

Sample records for pulse based rf

  1. Flexible Non-Constrained RF Wrist Pulse Detection Sensor Based on Array Resonators.

    PubMed

    An, Yong-Jun; Kim, Byung-Hyun; Yun, Gi-Ho; Kim, Sung-Woo; Hong, Seung-Bum; Yook, Jong-Gwan

    2016-04-01

    This paper presents the development of a non-contact, nonintrusive wrist pulse sensor based on the near-field variation of an array resonator. A compact resonator and its array were designed and fabricated on flexible substrate. The reflection coefficient of the resonator can vary as a function of the distance between the resonator and the walls of the major arteries, and the corresponding variation is utilized to obtain heart rate information at the wrist. To detect very weak pulse signals from the main arteries, a sensitivity enhancement technique was devised using a radio frequency (RF) array resonator. The sensor system was implemented with an RF switch to combine or select appropriate signals from the resonator element and was tested using the 2.4 GHz ISM band. The results demonstrated the sensor system's excellent performance in both sequential and simultaneous detection schemes. The measurement results showed that a heartbeat pulse can be detected from both radial and ulnar arteries via the array resonators. Considering the high sensitivity and characteristics, the proposed detection system can be utilized as a wearable, long-term health monitoring device. PMID:25966481

  2. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  3. Research of photonic-assisted triangular-shaped pulses generation based on quadrupling RF modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Jin; Ning, Ti-gang; Li, Jing; Li, Yue-qin; Chen, Hong-yao; Zhang, Chan

    2015-05-01

    We propose an approach to generate optical triangular-shaped pulse train with tunable repetition rate using quadrupling radio frequency (RF) modulation and optical grating dispersion-induced power fading. In this work, a piece of chirped fiber Bragg grating (FBG) is employed as the dispersive media to remove the undesired 8th harmonic in optical intensity. Thus, the generated harmonics of optical intensity can be corresponding to the first two Fourier components of typical periodic triangular pulses. This work also analyzes the impacts of the extinction ratio and the bias voltage drift on the harmonic distortion suppression ratio. After that, the value of the extinction ratio and the range of the bias voltage drift can be obtained. The advantage of this proposal is that it can generate high order frequency-multiplexed optical pulses train which can be applied in all optical signal processing and other fields.

  4. High pulse power rf sources for linear colliders

    SciTech Connect

    Wilson, P.B.

    1983-09-01

    RF sources with high peak power output and relatively short pulse lengths will be required for future high gradient e/sup +/e/sup -/ linear colliders. The required peak power and pulse length depend on the operating frequency, energy gradient and geometry of the collider linac structure. The frequency and gradient are in turn constrained by various parameters which depend on the beam-beam collision dynamics, and on the total ac wall-plug power that has been committed to the linac rf system. Various rf sources which might meet these requirements are reviewed. Existing source types (e.g., klystrons, gyrotrons) and sources which show future promise based on experimental prototypes are first considered. Finally, several proposals for high peak power rf sources based on unconventional concepts are discussed. These are an FEL source (two beam accelerator), rf energy storage cavities with switching, and a photocathode device which produces an rf current by direct emission modulation of the cathode.

  5. Multiband RF pulses with improved performance via convex optimization

    NASA Astrophysics Data System (ADS)

    Shang, Hong; Larson, Peder E. Z.; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W.; Ohliger, Michael A.; Pauly, John M.; Lustig, Michael; Vigneron, Daniel B.

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.

  6. Multiband RF pulses with improved performance via convex optimization.

    PubMed

    Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested. PMID:26754063

  7. Pulsed rf superconductivity program at SLAC

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM/sub 010/ caavities using short rf pulses (less than or equal to 2.5 ..mu..s) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible.

  8. RF pulse compression for future linear colliders

    SciTech Connect

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  9. High field rf superconductivity: to pulse or not to pulse

    SciTech Connect

    Campisi, I.E.

    1984-10-01

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.

  10. Binary rf pulse compression experiment at SLAC

    SciTech Connect

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.

  11. Experimental Study of RF Pulsed Heating

    SciTech Connect

    Laurent, Lisa; Tantawi, Sami; Dolgashev, Valery; Nantista, Christopher; Higashi, Yasuo; Aicheler, Markus; Heikkinen, Samuli; Wuensch, Walter; /CERN

    2011-11-04

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop(reg. sign), copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110 C and remained at this temperature for approximately 10 x 10{sup 6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  12. Implementation equations for HS n RF pulses.

    PubMed

    Tesiram, Yasvir A

    2010-06-01

    Implementation equations for the family of stretched hyperbolic secant (HS(n)) pulses are derived in the linear adiabatic range for inversion of spins. These master equations provide convenience relations for relating the peak amplitude RF(max) of the pulse to the frequency sweep (bwdth) range of the pulse and its duration T(p). The bandwidth of the pulse can also be related to the effective coverage (bw(eff)) of the pulse to a defined or chosen spectral region. The choice of pulse determined by the use of these derived expressions guarantees uniform inversion to a prescribed efficiency across the selected spectral region. The performance of HS(n) pulses in determining the cut-off region between spectral regions was also examined. It is found that beyond a unique T(p)bwdth product no additional gain may be obtained by extending pulse durations for a chosen bwdth of pulse. An example of practical implementation of the inversion pulses is presented for adiabatic decoupling using HS(7) and HS(8) pulses. It is shown that despite added B(1) inhomogeneity in the form of additional amplifier power to 400% from optimal, these pulses can still yield reproducible decoupled spectra. PMID:20227899

  13. Pulsed RF Plasma Source for Materials Processing

    NASA Astrophysics Data System (ADS)

    Nasiruddin, Abutaher Mohammad

    A pulsed rf plasma source was evaluated for materials processing. A pulsed rf discharge of carbon tetrafluoride (CF_4), sulfur hexafluoride (SF _6), oxygen (O_2), or acetylene (C_2H_2 ) created the plasmas. The frequency and duration of the rf discharge were about 290 kHz and 30 musec, respectively. The repetition rate was 1 discharge per minute. Plasma diagnostics included Langmuir probes, a photodiode dectector, an optical multichannel analyzer (OMA), and a microwave interferometer. Langmuir probe measurements showed that at a position 67 cm away from the rf coil, CF_4 plasma arrived in separate packets. Plasma densities and electron temperatures at this position were in the range 4 times 10^{11} cm ^{-3} to 1.8 times 10^{13} cm ^{-3} and 2 eV to 8.3 eV, respectively. The OMA measurements identified neutral atomic fluorine in the CF_4 plasma and neutral atomic oxygen in the O_2 plasma. A plasma slab model of the microwave interferometer was applied to predict the interferometer response. The measured response was found to be almost identical to the predicted response. The influence of different reactor parameters on plasma parameters was studied. Metal barriers of different geometry were used to control the ratio of charged particles to atomic neutrals in the plasma chamber. Four plasma structures were identified: precursor plasma, shock induced plasma, driver plasma, and delayed glow plasma. Pulsed CF _4 and SF_6 plasmas were used to etch silicon dioxide (SiO_2 ) grown on silicon wafers. The SF_6 plasma etched SiO_2 at a rate of about 0.71 A per discharge and the CF_4 plasma deposited a non-uniform film (possibly polymer) instead of etching. The C_2H _2 plasma deposited plasma polymerized acetylene on a KBr pellet with a deposition rate of 127 A per discharge. An FT-IR spectrum of the deposited film showed that carbon -to-carbon double bonds as well as carbon-to-hydrogen bonds were present. This device can be used in plasma assisted deposition and/or synthesis

  14. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    SciTech Connect

    Guo, Jiquan

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  15. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    SciTech Connect

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  16. RF MEMS Based Reconfigurable Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  17. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  18. RF-Based Accelerators for HEDP Research

    SciTech Connect

    Staples, John W.; Sessler, Andrew; Keller, Roderich; Ostroumov,Petr; Chou, Weiren

    2005-05-09

    Accelerator-driven High-Energy Density Physics (HEDP) experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the warm dense matter regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field compact superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with multiple parallel beams combined at the target. The beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  19. Design of Multidimensional Shinnar-Le Roux RF Pulses

    PubMed Central

    Ma, Chao; Liang, Zhi-Pei

    2014-01-01

    Purpose To generalize the conventional Shinnar-Le Roux (SLR) method for the design of multidimensional RF pulses. Methods Using echo-planar gradients, the multidimensional RF pulse design problem was converted into a series of 1D polynomial design problems. Each of the 1D polynomial design problems was solved efficiently. B0 inhomogeneity compensation and design of spatial-spectral pulses were also considered. Results The proposed method was used to design 2D excitation and refocusing pulses. The results were validated through Bloch equation simulation and experiments on a 3.0 T scanner. Large-tip-angle, equiripple-error, multidimensional excitation was achieved with ripple levels closely matching the design specifications. Conclusion The conventional SLR method can be extended to design multidimensional RF pulses. The proposed method achieves almost equiripple excitation errors, allows easy control of the tradeoff among design parameters, and is computationally efficient. PMID:24578212

  20. Possible high power limitations from RF pulsed heating

    SciTech Connect

    Pritzkau, D.P.; Bowden, G.B.; Menegat, A.; Siemann, R.H.

    1999-05-01

    One of the possible limitations to achieving high power in RF structures is damage to metal surfaces due to RF pulsed heating. Such damage may lead to degradation of RF performance. An experiment to study RF pulsed heating on copper has been developed at SLAC. The experiment consists of operating two pillbox cavities in the TE{sub 011} mode using a 50 MW X-Band klystron. The estimated temperature rise of the surface of copper is 350&hthinsp;{degree}C for a power input of 20 MW to each cavity with a pulse length of 1.5 {mu}s. Preliminary results from an experiment performed earlier are presented. A revised design for continued experiments is also presented along with relevant theory and calculations. {copyright} {ital 1999 American Institute of Physics.}

  1. Controlling the dipole-dipole interaction using NMR composite rf pulses

    SciTech Connect

    Baudin, Emmanuel

    2014-08-07

    New composite rf pulses are proposed during which the average dipole-dipole interactions within a spin ensemble are controlled, while a global rotation is achieved. The method used to tailor the pulses is based on the average Hamiltonian theory and relies on the geometrical properties of the spin-spin dipolar interaction. I describe several such composite pulses and analyze quantitatively the improvement brought on the control of the NMR dynamics. Numerical simulations show that the magic sandwich pulse sequence, during which the average dipolar field is effectively reversed, is plagued by defects originating from the finite initial and final π/2 rf pulses. A numerical test based on a classical description of nuclear magnetic resonance is used to check that, when these pulses are replaced by magic composite pulses, the efficiency of the magic sandwich is improved.

  2. A Generalized Estimate of the SLR B Polynomial Ripples for RF Pulse Generation.

    PubMed

    Raddi; Klose

    1998-06-01

    The nonlinearity of the parameter relations for the Shinnar-Le Roux RF pulse design algorithm has induced to performa classification based on the features of the slice profile dueto the RF pulse. In the present paper a generalization ofthe relation between the ripple amplitudes of the SLR B polynomial and those of the slice profile is given. It allows generation of RF pulses with better slice profiles and slightly reduced energy, avoiding any a priori classification. The effect of our estimation has been shown by generating several pulses by generalized estimation of B polynomial ripples. In addition, their behavior has been compared to that of analogous pulses generated by means of the classification just mentioned. Copyright 1998 Academic Press. PMID:9632551

  3. High repetition rate multi-channel source of high-power rf-modulated pulses

    NASA Astrophysics Data System (ADS)

    Ulmaskulov, M. R.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Yalandin, M. I.; Romanchenko, I. V.; Rostov, V. V.

    2015-07-01

    This paper presents the results of testing a high voltage pulse generator based on parallel gyromagnetic nonlinear transmission lines filled with saturable ferrite. The generator is capable of producing almost identical stable rf-modulated nanosecond high voltage pulses in each of the two, or four, parallel output channels. The output voltage amplitude in each channel can reach -285 or -180 kV, respectively, with a rf modulation depth of up to 60%. Drive pulses were produced as the packets of duration 1-5 s at a pulse repetition frequency of 800 Hz using a driver equipped with all-solid-state switches. Splitting the driver pulse provided electric field strengths in the channels which were below the breakdown field strength of the transmission lines. As a result, the use of nonlinear transmission lines of reduced diameter made it possible to increase the center frequency of the excited rf oscillations to ˜2 GHz.

  4. Advances in pulsed-laser-deposited AIN thin films for high-temperature capping, device passivation, and piezoelectric-based RF MEMS/NEMS resonator applications

    NASA Astrophysics Data System (ADS)

    Hullavarad, S. S.; Vispute, R. D.; Nagaraj, B.; Kulkarni, V. N.; Dhar, S.; Venkatesan, T.; Jones, K. A.; Derenge, M.; Zheleva, T.; Ervin, M. H.; Lelis, A.; Scozzie, C. J.; Habersat, D.; Wickenden, A. E.; Currano, L. J.; Dubey, M.

    2006-04-01

    In this paper we report recent advances in pulsed-laser-deposited AIN thin films for high-temperature capping of SiC, passivation of SiC-based devices, and fabrication of a piezoelectric MEMS/NEMS resonator on Pt-metallized SiO2/Si. The AlN films grown using the reactive laser ablation technique were found to be highly stoichiometric, dense with an optical band gap of 6.2 eV, and with a surface smoothness of less than 1 nm. A low-temperature buffer-layer approach was used to reduce the lattice and thermal mismatch strains. The dependence of the quality of AlN thin films and its characteristics as a function of processing parameters are discussed. Due to high crystallinity, near-perfect stoichiometry, and high packing density, pulsed-laser-deposited AlN thin films show a tendency to withstand high temperatures up to 1600°C, and which enables it to be used as an anneal capping layer for SiC wafers for removing ion-implantation damage and dopant activation. The laser-deposited AlN thin films show conformal coverage on SiC-based devices and exhibit an electrical break-down strength of 1.66 MV/cm up to 350°C when used as an insulator in Ni/AlN/SiC metal-insulator-semiconductor (MIS) devices. Pulsed laser deposition (PLD) AlN films grown on Pt/SiO2/Si (100) substrates for radio-frequency microelectrical and mechanical systems and nanoelectrical and mechanical systems (MEMS and NEMS) demonstrated resonators having high Q values ranging from 8,000 to 17,000 in the frequency range of 2.5-0.45 MHz. AlN thin films were characterized by x-ray diffraction, Rutherford backscattering spectrometry (in normal and oxygen resonance mode), atomic force microscopy, ultraviolet (UV)-visible spectroscopy, and scanning electron microscopy. Applications exploiting characteristics of high bandgap, high bond strength, excellent piezoelectric characteristics, extremely high chemical inertness, high electrical resistivity, high breakdown strength, and high thermal stability of the pulsed

  5. Experiments with very-high-power RF pulses at SLAC

    SciTech Connect

    Hogg, H.A.; Loew, G.A.; Price, V.G.

    1983-03-01

    Experiments in which the powers of two SLAC klystrons were combined and fed into a resonant cavity pulse-compression system (SLED) are described. Pulse powers up to 65 MW into SLED were reached. The corresponding instantaneous peak power out of SLED was 390 MW. After normal initial aging, no persistent RF breakdown problems were encountered. X-radiation at the SLED cavities was generally less than 400 mR/h after aging. The theoretical relationship between x-radiation intensity and RF electric field strength is discussed.

  6. Segmentation of fat in MRI using a preparatory pair of rectangular RF pulses of opposite direction.

    PubMed

    Yee, Seonghwan

    2016-05-01

    A radiofrequency (RF) pulse-based MRI method is introduced as a novel fat (or water) segmentation method that, unlike the mostly used Dixon's method, does not depend on the echo times. A pair of rectangular RF pulses of opposite direction, when the duration of its rectangular pulse and the off-resonance of its carrier frequency are set to specific values, is proposed as a preparatory RF pulse to be used for the quantitative fat segmentation. The optimal duration of its rectangular pulse and its specific off-resonance were first determined theoretically. Then, such pair of rectangular pulses of opposite direction (PROD pulse) was applied in imaging a few phantoms and volunteers. During the imaging experiments, MRI images were dynamically acquired with the PROD pulse while its carrier frequency was varied in a predefined off-resonance range. By analyzing the dynamically acquired signal changes, the theoretical properties of the PROD pulse were confirmed and the utility of the PROD pulse for the fat segmentation was verified. All MRI scans were performed in a clinical 3T system. The PROD pulse, if the duration of each rectangular pulse was set to 1.66ms and its carrier frequency was set to a specific off-resonance (e.g. ±223.5Hz, or -670.5Hz) in 3T, was effective in optimally modulating MRI signals to be used for the fat-water segmentation. Therefore, the PROD pulse can successfully be used as a preparatory RF pulse in MRI to achieve effective fat (or water) segmentation in MRI. PMID:26612077

  7. Pulsed high-voltage dc RF sputtering

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S., Jr.; Shaltens, R. K.

    1969-01-01

    Sputtering technique uses pulsed high voltage direct current to the object to be plated and a radio frequency sputtered film source. Resultant film has excellent adhesion, and objects can be plated uniformly on all sides.

  8. Compact rf polarizer and its application to pulse compression systems

    NASA Astrophysics Data System (ADS)

    Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; Tantawi, Sami

    2016-06-01

    We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate T E114 modes. The overcoupled spherical cavity has a Q0 of 9.4 ×104 and coupling factor (β ) of 7.69 thus providing a loaded quality factor QL of 1.06 ×104 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  9. A very high sensitivity RF pulse profile measurement system.

    SciTech Connect

    Christodoulou, Christos George; Lai, Jesse B.

    2009-06-01

    A technique for characterizing the pulse profile of a radio-frequency (RF) amplifier over a very wide power range under fast-pulsing conditions is presented. A pulse-modulated transmitter is used to drive a device under test (DUT) with a phase-coded signal that allows for an increased measurement range beyond standard techniques. A measurement receiver that samples points on the output pulse power profile and performs the necessary signal processing and coherent pulse integration, improving the detectability of low-power signals, is described. The measurement technique is applied to two sample amplifiers under fast-pulsing conditions with a pulsewidth of 250 ns at 3-GHz carrier frequency. A full measurement range of greater than 160 dB is achieved, extending the current state of the art in pulse-profiling techniques.

  10. Velocity of an RF pulse signal propagating in a waveguide

    NASA Astrophysics Data System (ADS)

    Su, Wansheng; Besieris, Ioannis M.; Riad, Sedki M.

    1992-06-01

    An experiment is described to check the finding (Giakos and Ishii, 1991) that the leading edge of a pulse-modulated microwave signal propagates in a waveguide with a velocity equal to the phase velocity, or faster than the speed of light. Measurement results demonstrate that an RF pulse signal cannot travel faster than light. The energy of the signal is transported at the 'subluminal' group speed that can be measured.

  11. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    SciTech Connect

    Schmerge, J.

    2005-01-31

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels.

  12. Efficient high-resolution RF pulse design applied to simultaneous multi-slice excitation

    NASA Astrophysics Data System (ADS)

    Aigner, Christoph Stefan; Clason, Christian; Rund, Armin; Stollberger, Rudolf

    2016-02-01

    RF pulse design via optimal control is typically based on gradient and quasi-Newton approaches and therefore suffers from slow convergence. We present a flexible and highly efficient method that uses exact second-order information within a globally convergent trust-region CG-Newton method to yield an improved convergence rate. The approach is applied to the design of RF pulses for single- and simultaneous multi-slice (SMS) excitation and validated using phantom and in vivo experiments on a 3 T scanner using a modified gradient echo sequence.

  13. Lidar-radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser.

    PubMed

    Vallet, M; Barreaux, J; Romanelli, M; Pillet, G; Thévenin, J; Wang, L; Brunel, M

    2013-08-01

    An rf-modulated pulse train from a passively Q-switched Nd:YAG laser has been generated using an extra-cavity acousto-optic modulator. The rf modulation reproduces the spectral quality of the local oscillator. It leads to a high pulse-to-pulse phase coherence, i.e., phase memory, over thousands of pulses. The potentialities of this transmitter for lidar-radar are demonstrated by performing Doppler velocimetry on indoor moving targets. The experimental results are in good agreement with a model based on elementary signal processing theory. In particular, we show experimentally and theoretically that lidar-radar is a promising technique that allows discrimination between translation and rotation movements. Being independent of the laser internal dynamics, this scheme can be applied to any Q-switched laser. PMID:23913058

  14. RF Pulse Signal Integrity Analysis for Nonlinear Ended Microstrip Line Atom-Probe Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Delamare, A.; Normand, A.; Delaroche, F.; Latry, O.; Vurpillot, F.; Ravelo, B.

    2016-03-01

    A signal integrity (SI) analysis of high voltage rectangular short pulses for the atom- probe system is explored in this paper. The operated RF transient pulse is considered for exciting on material sample inside an ultra-high vacuum (UHV) cryogenic chamber. The ns- duration pulse signal is injected into the cryogenic analysis chamber through the transmitting system mainly constituted by a microstrip interconnect line ended by optical controlled nonlinear load. The whole system frequency characterization is performed based on the S- parameter measurements. As expected, a challenging ultra-short rectangular shape pulse is exhibited by the pulser. Promising experimental results with the improvement of ion mass spectrum is demonstrated with the designed RF pulser.

  15. Automatic detection of pulsed radio frequency (RF) targets using sparse representations in undercomplete learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.; Brumby, Steven P.

    2014-06-01

    Automatic classification of transitory or pulsed radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such transients are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models. Conventional representations using orthogonal bases, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of transients, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular target signal. They do not usually lead to sparse decompositions, and require separate feature selection algorithms, creating additional computational overhead. We propose a fast, adaptive classification approach based on non-analytical dictionaries learned from data. Our goal is to detect chirped pulses from a model target emitter in poor signal-to-noise and varying levels of simulated background clutter conditions. This paper builds on our previous RF classification work, and extends it to more complex target and background scenarios. We use a Hebbian rule to learn discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows containing a target pulse. We demonstrate that learned dictionary techniques are highly suitable for pulsed RF analysis and present results with varying background clutter and noise levels. The target detection decision is obtained in almost real-time via a parallel, vectorized implementation.

  16. Investigation of Readout RF Pulse Impact on the Chemical Exchange Saturation Transfer Spectrum.

    PubMed

    Huang, Sheng-Min; Jan, Meei-Ling; Liang, Hsin-Chin; Chang, Chia-Hao; Wu, Yi-Chun; Tsai, Shang-Yueh; Wang, Fu-Nien

    2015-01-01

    Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses. Both theoretical computer simulation and phantom experiments were performed to examine the influence of readout RF pulses. Our results showed that the length of readout RF pulses has unremarkable impact on the Z-spectrum and CEST effect in both computer simulation and phantom experiment. Moreover, we demonstrated that multiple refocusing RF pulses used in rapid acquisition with relaxation enhancement (RARE) sequence induced no obvious saturation transfer contrast. Therefore, readout RF pulse has negligible effect on CEST Z-spectrum and the optimization of readout RF pulse length can be disregarded in CEST imaging protocol. PMID:26455576

  17. Investigation of Readout RF Pulse Impact on the Chemical Exchange Saturation Transfer Spectrum

    PubMed Central

    Huang, Sheng-Min; Jan, Meei-Ling; Liang, Hsin-Chin; Chang, Chia-Hao; Wu, Yi-Chun; Tsai, Shang-Yueh; Wang, Fu-Nien

    2015-01-01

    Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses. Both theoretical computer simulation and phantom experiments were performed to examine the influence of readout RF pulses. Our results showed that the length of readout RF pulses has unremarkable impact on the Z-spectrum and CEST effect in both computer simulation and phantom experiment. Moreover, we demonstrated that multiple refocusing RF pulses used in rapid acquisition with relaxation enhancement (RARE) sequence induced no obvious saturation transfer contrast. Therefore, readout RF pulse has negligible effect on CEST Z-spectrum and the optimization of readout RF pulse length can be disregarded in CEST imaging protocol. PMID:26455576

  18. RF modulation studies on an S band pulse compressor

    NASA Astrophysics Data System (ADS)

    Guan, Shu; Feng-Li, Zhao; Shi-Lun, Pei; Ou-Zheng, Xiao

    2016-03-01

    An S band SLED-type pulse compressor has been manufactured by the Institute of High Energy Physics, Beijing, trying to reach 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. To improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output are considered, and RF modulation studies on the S-band SLED are presented in this paper. Furthermore, a method is developed using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can verify the modulation theory. In addition, the experimental setup was constructed and the flat-top output obtained in low power tests. Both amplitude modulation and phase modulation methods can give flat-top output, and the average power gain for both methods is almost the same. Supported by National Natural Science Foundation of China (11475201)

  19. Concurrent recording of RF pulses and gradient fields - comprehensive field monitoring for MRI.

    PubMed

    Brunner, David O; Dietrich, Benjamin E; Çavuşoğlu, Mustafa; Wilm, Bertram J; Schmid, Thomas; Gross, Simon; Barmet, Christoph; Pruessmann, Klaas P

    2016-09-01

    Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via (19) F NMR and simultaneously pick up RF pulses in the MRI system's (1) H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd

  20. Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses

    NASA Astrophysics Data System (ADS)

    Kobzar, Kyryl; Skinner, Thomas E.; Khaneja, Navin; Glaser, Steffen J.; Luy, Burkhard

    2008-09-01

    In [K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, Exploring the limits of broadband excitation and inversion, J. Magn. Reson. 170 (2004) 236-243], optimal control theory was employed in a systematic study to establish physical limits for the minimum rf-amplitudes required in broadband excitation and inversion pulses. In a number of cases, however, experimental schemes are not limited by rf-amplitudes, but by the overall rf-power applied to a sample. We therefore conducted a second systematic study of excitation and inversion pulses of varying pulse durations with respect to bandwidth and rf-tolerances, but this time using a modified algorithm involving restricted rf-power. The resulting pulses display a variety of pulse shapes with highly modulated rf-amplitudes and generally show better performance than corresponding pulses with identical pulse length and rf-power, but limited rf-amplitude. A detailed description of pulse shapes and their performance is given for the so-called power-BEBOP and power-BIBOP pulses.

  1. Perfectly matched pulsed 2MHz RF network and CW 30MHz RF matching network for the J-PARC RF-driven H- ion source

    NASA Astrophysics Data System (ADS)

    Ueno, A.; Namekawa, Y.; Yamazaki, S.; Ohkoshi, K.; Koizumi, I.; Ikegami, K.; Takagi, A.; Oguri, H.

    2013-02-01

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of an H- ion beam current of 60mA within normalized emittances of 1.5πmmṡmrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of more than 50days, a cesiated RF-driven H- ion source using a internal-antenna developed at the Spallation Neutron Source (SNS) was developed. As similar as the SNS ion source, the 60kW pulsed 2MHz-RF and 200W CW 30MHz-RF systems are used in order to produce pulsed high-temperature 2MHz-RF plasma and CW low-temperature 30MHz-RF plasma. Each matching network for each system is composed of two vacuum variable condensers (VVCs). In order to supply pulsed 60kW-2MHz-RF power from the power supply (PS) on the ground level, a one-turn isolation transformer using FINEMET cores is installed between the PS and the J-PARC ion source. By comprehending the matching networks with the LTspice IV simulations and high- and low- power experiments and setting the parameters properly, the pulsed 2MHz-RF power up to 46 kW is successfully input to the hydrogen plasma without any misfire and with almost no reflected power.

  2. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode

    NASA Astrophysics Data System (ADS)

    Bulychev, Sergey V.; Dubinov, Alexander E.; L'vov, Igor L.; Popolev, Vyacheslav L.; Sadovoy, Sergey A.; Sadchikov, Eugeny A.; Selemir, Victor D.; Valiulina, Valeria K.; Vyalykh, Dmitry V.; Zhdanov, Victor S.

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ˜90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ˜25%.

  3. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode.

    PubMed

    Bulychev, Sergey V; Dubinov, Alexander E; L'vov, Igor L; Popolev, Vyacheslav L; Sadovoy, Sergey A; Sadchikov, Eugeny A; Selemir, Victor D; Valiulina, Valeria K; Vyalykh, Dmitry V; Zhdanov, Victor S

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%. PMID:27250451

  4. The Next Linear Collider Test Accelerator's RF Pulse Compression And Transmission

    SciTech Connect

    Tantawi, S.G.; Adelphson, C.; Holmes, S.; Lavine, Theodore L.; Loewen, R.J.; Nantista, C.; Pearson, C.; Pope, R.; Rifkin, J.; Ruth, R.D.; Vlieks, A.E.; /SLAC

    2011-09-14

    The overmoded rf transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit rf power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II* pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II. The NLC rf systems use low loss highly over-moded circular waveguides operating in the TE01 mode. The efficiency of the systems is sensitive to the mode purity of the mode excited inside these guides. We used the so called flower petal mode transducer [2] to excite the TE01 mode. This type of mode transducer is efficient, compact and capable of handling high levels of power. To make more efficient systems, we modified this device by adding several mode selective chokes to act as mode purifiers. To manipulate the rf signals we used these modified mode converters to convert back and forth between over-moded circular waveguides and single-moded WR90 rectangular waveguides. Then, we used the relatively simple rectangular waveguide components to do the actual manipulation of rf signals. For example, two mode transducers and a mitered rectangular waveguide bend comprise a 90 degree bend. Also, a magic tee and four mode transducers would comprise a four-port-hybrid, etc. We will discuss the efficiency of an rf transport system based on the above methodology. We also used this methodology in building the SLEDII pulse compression system. At SLAC we built 4 of these pulse systems. In this paper we describe the SLEDII system and compare the performance of these 4 systems at SLAC. We

  5. A high-charge and short-pulse RF photocathode gun for wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Gai, W.; Li, X.; Conde, M.; Power, J.; Schoessow, P.

    1998-02-01

    In this paper we present a design report on 1-1/2 cell, L-Band RF photocathode gun which is capable of generating and accelerating electron beams with peak currents >10 kA. We address several critical issues of high-current RF photoinjectors such as longitudinal space charge effect, and transverse emittance growth. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 100 nC beam at 18 MeV with r.m.s. bunch length 1.25 mm and normalized transverse emittance 108 mm mrad. Applications of this source beam for wake-field acceleration are also discussed.

  6. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  7. Si-based RF MEMS components.

    SciTech Connect

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  8. Revealing the properties of the radical-pair magnetoreceptor using pulsed photo-excitation timed with pulsed rf.

    PubMed

    Mouloudakis, K; Kominis, I K

    2016-09-01

    The radical-pair mechanism is understood to underlie the magnetic navigation capability of birds and possibly other species. Experiments with birds have provided indirect and in cases conflicting evidence on the actual existence of this mechanism. We here propose a new experiment that can unambiguously identify the presence of the radical-pair magnetoreceptor in birds and unravel some of its basic properties. The proposed experiment is based on modulated light excitation with a pulsed laser, combined with delayed radio-frequency magnetic field pulses. We predict a resonance effect in the birds' magnetic orientation versus the rf-pulse delay time. The resonance's position reflects the singlet-triplet mixing time of the magnetoreceptor. PMID:27450635

  9. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    NASA Astrophysics Data System (ADS)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  10. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    SciTech Connect

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  11. Active RF Pulse Compression using Electrically Controlled Semiconductor Switches

    SciTech Connect

    Guo, J.; Tantawi, S.G.; /SLAC

    2008-01-30

    In this paper, we will present our recent results on the research of the ultra-fast high power RF switches based on silicon. We have developed a switch module at X-band which can use a silicon window as the switch. The switching is realized by generation of carriers in the bulk silicon. The carriers can be generated electrically or/and optically. The electrically controlled switches use PIN diodes to inject carrier. We have built the PIN diode switches at X-band, with <300ns switching time. The optically controlled switches use powerful lasers to excite carriers. By combining the laser excitation and electrical carrier generation, significant reduction in the required power of both the laser and the electrical driver is expected. High power test is under going.

  12. Long pulse H- beam extraction with a rf driven ion source on a high power level.

    PubMed

    Kraus, W; Fantz, U; Franzen, P

    2010-02-01

    IPP Garching is investigating the applicability of rf driven negative ion sources for the neutral beam injection of International Thermonuclear Experimental Reactor. The setup of the tested source was improved to enable long pulses up to 100 kW rf power. The efficiency of negative ion production decreases at high power. The extracted H(-) currents as well as the symmetry of the plasma density close to the plasma grid and of the beam divergence depend on the magnetic filter field. The pulse duration is limited by the increase in coextracted electrons, which depends on the rf power and the caesium conditions on the plasma grid. PMID:20192417

  13. Quasi-Optical 34-GHz Rf Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L

    2007-06-19

    Designs have been carried out on non-high-vacuum, low-power versions of three- and four-mirror quasi-optical passive and active Ka-band pulse compressors, and prototypes built and tested based on these designs. The active element is a quasi-optical grating employing gas discharge tubes in the gratings. Power gains of about 3:1 were observed experimentally for the passive designs, and about 7:1 with the active designs. High-power, high-vacuum versions of the three-and four-mirror quasi-optical pulse compressors were built and tested at low power. These now await installation and testing using multi-MW power from the 34-GHz magnicon.

  14. Extended phase graphs: dephasing, RF pulses, and echoes - pure and simple.

    PubMed

    Weigel, Matthias

    2015-02-01

    The extended phase graph (EPG) concept represents a powerful tool for depicting and understanding the magnetization response of a broad variety of MR sequences. EPGs focus on echo generation as well as on classification and use a Fourier based magnetization description in terms of "configurations states". The effect of gradients, radiofrequency (RF) pulses, relaxation, and motion phenomena during the MR sequence is characterized as the action of a few matrix operations on these configuration states. Thus, the EPG method allows for fast and precise quantitation of echo intensities even if several gradients and RF pulses are applied. EPG diagrams aid in the comprehension of different types of echoes and their corresponding echo time. Despite its several benefits in regard to a large number of problems and issues, researchers and users still often refrain from applying EPGs. It seems that "phase graphing" is still seen as a kind of "magic." The present review investigates the foundation of EPGs and sheds light on prerequisites for adding more advanced phenomena such as diffusion. The links between diagrams and calculations are discussed. A further focus is on limitations and simplifications as well recent extensions within the EPG concept. To make the review complete, representative software for EPG coding is provided. PMID:24737382

  15. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    NASA Astrophysics Data System (ADS)

    Ekedahl, Annika; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-01

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m2), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at IP = 0.8 MA) or high fluence (up to 10 MW / 1000 s at IP = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  16. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    SciTech Connect

    Ekedahl, Annika Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  17. Response of a coupled two-spin system to on-resonance amplitude modulated RF pulses

    NASA Astrophysics Data System (ADS)

    Zhou, Jinyuan; Ye, Chaohui; Sanctuary, B. C.

    A weakly scalar-coupled two-spin system subjected to two amplitude modulated RF pulses on exact resonance is treated by means of the rotation operator approach. The theory presented here enables coherence evolution to be evaluated by the routine procedure and to be expressed in analytical form. The evolution behaviour from the equilibrium state is discussed in some detail. It is shown that the application of rotation matrix and quaternion elements clarifies evolution expressions. The numerical calculation is performed by way of quaternions. Examples of BURP (band-selective, uniform response, purephase) and sinc-shaped RF pulses are given and the case of time-symmetrical RF pulses is analysed further.

  18. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    PubMed

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power. PMID:20366937

  19. RF cavity with co -based amorphous core

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Misu, T.; Sugiura, A.; Sato, K.; Katsuki, K.; Kusaka, T.

    2006-10-01

    A compact cavity for acceleration has been developed with cobalt-based amorphous cores, which is a part of research and development (R&D) for a synchrotron in a cancer therapy facility. This core has high permeability that enables the cavity length to be made short, and its low Q-value of about 0.5 permits an RF system without tuning control of the cavity. The developed acceleration cavity consists of two acceleration gaps; at both sides of the gap there are quarter-wave coaxial resonators. The total length of the cavity is as short as 1.5 m and the inner diameter of the vacuum chamber is 190 mm. Considering the requirements for easy operation and maintenance, a transistor RF amplifier was used instead of the commonly used tetrode in the final stage. Each resonator has a maximum impedance of 400 Ω at 2 MHz, and a 1:9 impedance transformer has been attached to use a solid state amplifier of 50 Ω output impedance. In the frequency range from 0.4 to 8 MHz, an acceleration voltage of more than 4 kV can be obtained with a total input RF power of 8 kW. In this paper the structure of the cavity, the obtained core impedance, and their performances under high-power test are presented.

  20. Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering.

    PubMed

    Gao, Meng; Jean-Ruel, Hubert; Cooney, Ryan R; Stampe, Jonathan; de Jong, Mark; Harb, Maher; Sciaini, German; Moriena, Gustavo; Dwayne Miller, R J

    2012-05-21

    High bunch charge, femtosecond, electron pulses were generated using a 95 kV electron gun with an S-band RF rebunching cavity. Laser ponderomotive scattering in a counter-propagating beam geometry is shown to provide high sensitivity with the prerequisite spatial and temporal resolution to fully characterize, in situ, both the temporal profile of the electron pulses and RF time timing jitter. With the current beam parameters, we determined a temporal Instrument Response Function (IRF) of 430 fs FWHM. The overall performance of our system is illustrated through the high-quality diffraction data obtained for the measurement of the electron-phonon relaxation dynamics for Si (001). PMID:22714191

  1. RF photoinjector development for a short-pulse, hard x-ray Thomson scattering source

    SciTech Connect

    Le Sage, G P; Anderson, S G; Cowan, T E; Crane, J K; Ditmire, T; Rosenzweig, J B

    2000-08-15

    An important motivation in the development of the next generation x-ray light sources is to achieve picosecond and sub-ps pulses of hard x-rays for dynamic studies of a variety of physical, chemical and biological processes. Present hard x-ray sources are either pulse-width or intensity limited, which allows ps-scale temporal resolution only for signal averaging of highly repetitive processes. A much faster and brighter hard x-ray source is being developed at LLNL, based on Thomson scattering of fs-laser pulses by a relativistic electron beam, which will enable x-ray characterization of the transient structure of a sample in a single shot. Experimental and diagnostic techniques relevant to the development of next generation sources including the Linac Coherent Light Source can be tested with the Thomson scattering hard x-ray source. This source will combine an RF photoinjector with a 100 MeV S-band linac. The photoinjector and linac also provide an ideal test-bed for examining space-charge induced emittance growth effects. A program of beam dynamics and diagnostic experiments are planned in parallel with Thomson source development. Our experimental progress and future plans will be discussed.

  2. Suppression of beam induced pulse shortening modes in high power RF generator TW output structures

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    1992-12-31

    Several different style 11.4 GHz relativistic klystrons, operating with beam pulse widths of 50 ns and using large aperture, tapered phase-velocity TW structures,` have recently demonstrated output RF power levels in the range of 100 to 300 MW without breakdown or pulse shortening. To extend this performance into the long pulse regime (1 {mu}s) or to demonstrate a threefold increase in output power by using higher currents, the existing TW circuit designs must be modified (a) to reduce the cavity maximum surface E-fields by a factor of 2 to 3, and (b) to elevate the current threshold values of the beam induced higher order modes (HOM) to ensure avoidance of RF pulse shortening and associated instabilities. A technique for substantially elevating this threshold current is described, and microwave data and photographs are presented showing the degree of HOM damping achieved in a recently constructed 11.4 GHz TW structure.

  3. Double half RF pulses for reduced sensitivity to eddy currents in UTE imaging.

    PubMed

    Josan, Sonal; Pauly, John M; Daniel, Bruce L; Pauly, Kim Butts

    2009-05-01

    Ultrashort echo time imaging with half RF pulse excitation is challenging as eddy currents induced by the slice-select gradient distort the half pulse slice profile. This work presents two pulses with T(2)-dependent slice profiles that are less sensitive to eddy currents. The double half pulse improves the slice selectivity for long T(2) components, while the inverted double half pulse suppresses the unwanted long T(2) signal. Thus, both approaches prevent imperfect cancellation of out-of-slice signal from contaminating the desired slice. Experimental results demonstrate substantially improved slice selectivity and R(2)* quantitation accuracy with these pulses. These pulses are effective in making short T(2) imaging and quantitation less sensitive to eddy currents and provide an alternative to time-consuming gradient characterization. PMID:19235919

  4. Spatially selective RF pulses and the effects of digitization on their performance.

    PubMed

    Slotboom, J; Creyghton, J H; Korbee, D; Mehlkopf, A F; Bovée, W M

    1993-12-01

    Spectrometers make use of D/A converters to generate RF and gradient shapes. This paper examines by exact simulations the time and amplitude digitization effects, inherent to the use of D/A converters, on the performance of amplitude modulated (AM) frequency selective RF pulses. By making use of Fourier theory and the small tip angle approximation, an approximate model of these effects on the magnetization slice profiles is derived and verified for several pulse types by computer simulations. This approximate model will be used to derive requirements for D/A converters with respect to spatial localization. The dynamics of the spin system allows pulse width modulation (PWM) as an alternative to AM for pulse envelope encoding. The effects of PWM on the slice profile are examined and compared with conventional AM pulses. It is shown by simulation and measurement that adiabatic PWM pulses can be found. In contrast to AM modulated adiabatic pulses, adiabatic PWM pulses have side bands with the same slice quality as the main slice and might therefore be useful as multislice selective pulses. PMID:8139455

  5. Swept acquisition for pulsed radio frequency (RF) phase lock loop

    NASA Astrophysics Data System (ADS)

    Campbell, J. T.

    1986-03-01

    Swept acquisition of reference signals, including pulsed radio frequency radar waveforms, is achieved using sample-and-hold circuitry to track and hold in-phase and quadrature error signals (E1 and Eq) from a voltage controlled oscillator which is swept by a sweep generator. This presents a constant in-phase error signal to the integrator is the loop so that the phase lock loop may be implemented by conventional means. The quadrature error signal is filtered and compared with a threshold to determine when frequency lock has been obtained when the voltage control oscillator is swept at high speed. Then the voltage controlled oscillator is swept at a lower speed to distinguish the center lobe of the reference signal and attain phase lock. Finally, the voltage controlled oscillator is swept only while sampling the reference signal by gating the sweep rate signal with a sampling signal. This method enables one to acquire a pulsed radio frequency signal with jittered pulse repetition intervals while preventing locking on before or after the center frequency of the main lobe of the reference signal.

  6. Controlled Fluxes of Silicon Nanoparticles By Extraction from a Pulsed RF Plasma

    NASA Astrophysics Data System (ADS)

    Girshick, Steven; Larriba-Andaluz, Carlos

    2015-09-01

    Deposition of silicon nanoparticles onto substrates may be a means of growing monocrystalline silicon films at low substrate temperature if the nanoparticles' impact energy and size can be controlled to provide melting or amorphization of the nanoparticle without damaging the underlying film. In order to explore conditions that could produce such controlled fluxes of nanoparticles we numerically model a pulsed RF argon-silane plasma, with a positive DC bias applied during the afterglow phase of each pulse so as to extract and accelerate negatively charged silicon particles. Operating parameters studied include pulse on time, pulse off time, DC bias voltage, RF voltage and pressure. This set of parameters is tested to find conditions under which one can achieve a periodic steady state with repeatable pulse-to-pulse conditions that maximize silicon film growth rates while maintaining nanoparticle impact energies in the range 0.5-2.0 eV/atom. We utilize a previously developed 1-D dusty plasma numerical model, modified to consider pulsing and applied substrate bias. This model self-consistently solves for the coupled behavior of plasma, chemistry, and aerosol. Results show that it is possible by this method to produce nanoparticle fluxes that are tailored with respect to their distribution of impact energies and mass deposition rates. Partially supported by US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), US National Science Foundation (CHE-124752), and Minnesota Supercomputing Institute.

  7. Composite RF pulses for B1+-insensitive volume excitation at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Moore, Jay; Jankiewicz, Marcin; Zeng, Huairen; Anderson, Adam W.; Gore, John C.

    2010-07-01

    A new class of composite RF pulses that perform well in the presence of specific ranges of B0 and B1+ inhomogeneities has been designed for volume (non-selective) excitation in MRI. The pulses consist of numerous (˜100) short (˜10 μs) block-shaped sub-pulses each with different phases and amplitudes derived from numerical optimization. Optimized pulses are designed to be effective over a specific range of frequency offsets and transmit field variations and are thus implementable regardless of field strength, transmit coil configuration, or the subject-specific spatial distribution of the static and RF fields. In the context of 7 T human brain imaging, both simulations and phantom experiments indicate that optimized pulses result in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the advantages of superior off-resonance stability and significantly reduced average power. The pulse design techniques presented here are thus well-suited for practical application in ultra-high field human MRI.

  8. The effect of Si content on structure and mechanical features of silicon-containing calcium-phosphate-based films deposited by RF-magnetron sputtering on titanium substrate treated by pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Surmeneva, M.; Tyurin, A.; Mukhametkaliyev, T.; Teresov, A.; Koval, A.; Pirozhkova, T.; Shuvarin, I.; Chudinova, E.; Surmenev, R.

    2015-11-01

    Silicon-containing calcium phosphate (Si-CaP) coatings were fabricated by radio frequency (rf) magnetron sputtering using the targets prepared from hydroxyapatite (HA) powder with different silicon content. A powder of Si-HA (Ca10(PO4)6-x(SiO4)x(OH)2-x, x=0.5 and 1.72) was prepared by mechanochemical activation and then used as a precursor-powder to prepare a target for sputtering. The titanium substrate was acid etched and treated with pulsed electron beam with an energy density of 15 J/cm2. The average crystallite size as determined by XRD was 28 nm for the coatings obtained using the target prepared from the Si-HA powder (x=0.5), whereas Si-CaP (Si-HA powder x=1.72) films showed an amorphous structure. The nanohardness and the Young's modulus of the Si-CaP coating (x=0.5) deposited on titanium treated by pulsed electron beam are enhanced to 4.5 and 113 GPa compared to titanium substrate. Increase of Si content resulted in a dramatic decrease of the nanohardness and Young's modulus of Si-CaP films. However, Si-CaP coatings with the highest Si content revealed significantly lower values of elastic modulus, but slightly higher values of H/E and H3/E2 than did the non-coated specimens. Rf-magnetron sputtering allowed us to produce Si- CaP coatings with higher nanohardness and lower elastic modulus compared to titanium substrate.

  9. Synthesis of silicon nitride particles in pulsed Rf plasmas

    SciTech Connect

    Buss, R.J.; Babu, S.V.

    1995-11-01

    Silicon nitride (hydrogenated) particles are synthesized using a pulsed 13.56 Mhz glow discharge. The plasma is modulated with a square-wave on/off cycle of varying period to study the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar and SiH{sub 4}/NH{sub 3} plasmas, an initial very rapid growth phase is followed by slower growth, approaching the rate of thin film deposition on adjacent flat surfaces. The average particle size can be controlled in the 10-100 nm range by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continuous nucleation during the plasma-on period. The large polydispersity is also reported for silicon particles from silane and differs from that reported in other laboratories. The silicon nitride particle morphology is compared to that of silicon and silicon carbide particles generated by the same technique. Whereas Si particles appear as rough clusters of smaller subunits, the SiC particles are smooth spheres, and the Si{sub 3}N{sub 4} particles are smooth but non-spherical. Post-plasma oxidation kinetics of the particles are studied with FTIR and are consistent with a hydrolysis mechanism proposed in earlier work with continuous plasmas. Heat treatment of the powder in an ammonia atmosphere results in the elimination of hydrogen, rendering the silicon nitride resistant to atmospheric oxidation.

  10. High-power rf pulse compression with SLED-II at SLAC

    SciTech Connect

    Nantista, C.; Kroll, N.M.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, P.B.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE{sub 01} mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator).

  11. An integrated program for amplitude-modulated RF pulse generation and re-mapping with shaped gradients.

    PubMed

    Matson, G B

    1994-01-01

    Efficient generation of amplitude modulated, frequency selective RF pulses has been demonstrated by the Shinnar-Le Roux (SLR) algorithm. In the present article, we provide an overview of a relatively comprehensive computer program that includes a version of the SLR algorithm and also incorporates an algorithm for re-mapping a selective RF pulse onto a new dwell time with modulated gradients. The re-mapping may be used to reduce SAR, or to shorten the RF pulse time by increasing the gradient and RF strength in regions where the original RF pulse amplitude was low. The program includes additional useful features including a Bloch equations algorithm, and pulse scaling, to enable examination of pulse profiles under a variety of conditions such as RF inhomogeneity and even nuclear relaxation. The program, MATPULSE, was developed with the MATLAB for Windows programming language and makes extensive use of the MATLAB graphical user interface (GUI) features to generate a user-friendly interface. A number of examples are provided to illustrate the capabilities of the MATPULSE program. PMID:7854027

  12. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  13. RF system developments for CW and/or long pulse linacs

    SciTech Connect

    Lynch, M.

    1998-12-31

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued.

  14. Ultra-fast pulse radiolysis system combined with a laser photocathode RF gun and a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Muroya, Y.; Lin, M.; Watanabe, T.; Wu, G.; Kobayashi, T.; Yoshii, K.; Ueda, T.; Uesaka, M.; Katsumura, Y.

    2002-08-01

    In order to study the early events in radiation physics and chemistry, two kinds of new pulse radiolysis systems with higher time resolution based on pump-and-probe method have been developed at the Nuclear Engineering Research Laboratory, the University of Tokyo. The first one, a few picosecond (2 ps at FWHM) electron beam (pump) from an 18 MeV S-band Linac using a laser photocathode RF gun (BNL/KEK/SHI type: GUN IV) was operated with a femtosecond laser pulse (100 fs at FWHM), which also acted as the analyzing light (probe). The synchronization precision between the pump and the probe was 1.7 ps (rms). In a 1.0 cm sample cell, a time resolution of 12 ps was achieved. The second one, a picosecond (4 ps at FWHM) electron pulse from a 35 MeV S-band Linac employing a conventional thermionic gun with a sub-harmonic buncher, was synchronized with the femtosecond laser pulse, with a synchronization jitter of 2.8 ps (rms). A time resolution of 22 ps was obtained with 2 cm cell. This makes it possible to do the pulse radiolysis experiments in the time range from picosecond to sub-microsecond.

  15. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  16. Measurement of electron density transients in pulsed RF discharges using a frequency boxcar hairpin probe

    NASA Astrophysics Data System (ADS)

    Peterson, David; Coumou, David; Shannon, Steven

    2015-11-01

    Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.

  17. Dynamics of pulsed reactive RF discharges in response to thin film deposition

    NASA Astrophysics Data System (ADS)

    Sikimić, B.; Stefanović, I.; Denysenko, I. B.; Winter, J.; Sadeghi, N.

    2014-04-01

    A power-modulated radio-frequency (f = 13.56 MHz) argon plasma supplied by reactive acetylene to deposit an amorphous hydrocarbon film on the electrodes is studied. The effects of gradual film deposition on electron density, electron temperature, argon metastable Arm(3P2) density, and dc-bias voltage are investigated. The time evolutions of plasma parameters during a pulsing cycle are studied as a function of the applied RF power and the thickness of the deposited film. Analytical estimations show a slower expansion of the sheath size and a slower decay of the ion flux after film deposition on the electrodes. The observed changes in the plasma parameters during the power-on and afterglow phases of the pulsed plasma can be correlated with the presence of impurities desorbed from the chamber walls in the discharge volume.

  18. Adaptive sparse signal processing of satellite-based radio frequency (RF) recordings of lightning events

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2014-05-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive events are dispersed through the ionosphere and appear as broadband nonlinear chirps at a receiver on-orbit. They occur in the presence of additive noise and structured clutter, making their classification challenging. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lightning database. Application of modern pattern recognition techniques to this database may further lightning research in the scientific community, and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. Conventional feature extraction techniques using analytical dictionaries, such as a short-time Fourier basis or wavelets, are not comprehensively suitable for analyzing the broadband RF pulses under consideration here. We explore an alternative approach based on non-analytical dictionaries learned directly from data, and extend two dictionary learning algorithms, K-SVD and Hebbian, for use with satellite RF data. Both algorithms allow us to learn features without relying on analytical constraints or additional knowledge about the expected signal characteristics. We then use a pursuit search over the learned dictionaries to generate sparse classification features, and discuss their performance in terms of event classification. We also use principal component analysis to analyze and compare the respective learned dictionary spaces to the real data space.

  19. A semiconductor opening switch based generator with pulse repetitive frequency of 4 MHz.

    PubMed

    Wang, Gang; Su, Jiancang; Ding, Zhenjie; Yuan, Xuelin; Pan, Yafeng

    2013-12-01

    A MHz repetitive and nanosecond pulsed power generator based on the semiconductor opening switch (SOS) is developed, in which the pulse compression unit utilizes several Radio Frequency (RF) MOSFETs and a saturable Linear Transformer Driver (LTD). The RF MOSFETs are employed to obtain the forward pumping current pulses with the duration of tens of nanoseconds; the saturable LTD is used to raise the pulse voltage, to compress the pulse width and to pump SOS reversely. The SOS assembly cuts off the reverse current in a few nanoseconds, leading to a narrow output pulse on an external load. The experimental results show that the amplitude of the output pulse on a 106 Ω resistive load is about 3.8 kV and the width is 2 ns. Due to the repetitive ability of the RF MOSFETs, the generator can operate at a repetitive frequency of higher than 4 MHz in burst mode. PMID:24387463

  20. Magnetization reversal of a single cobalt cluster using a RF field pulse

    NASA Astrophysics Data System (ADS)

    Tamion, A.; Raufast, C.; Bonet, E.; Dupuis, V.; Fournier, T.; Crozes, T.; Bernstein, E.; Wernsdorfer, W.

    2010-05-01

    Technological improvements require the understanding of dynamical magnetization reversal processes at the nanosecond time scales. In this paper, we present the first magnetization reversal measurements performed on a single cobalt cluster (counting only a thousand of spins), using the micro-superconducting quantum interference device (SQUID) technique by applying a constant magnetic field combined with a radio-frequency (RF) field pulse. First of all, we present the different technical steps necessary to detect the magnetic reversals at low temperature ( T=35 mK) of a well-defined nanoparticle prepared by low energy clusters beam deposition (LECBD). We previously showed that the three-dimensional (3D)-switching Stoner-Wohlfarth astroid represents the magnetic anisotropy of the nanoparticle. Then, an improved device coupled with a gold stripe line, allow us to reverse such macrospin, using a RF pulse. A qualitative understanding of the magnetization reversal by non-linear resonance has been obtained with the Landau-Lifschitz-Gilbert (LLG) equation.

  1. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    NASA Astrophysics Data System (ADS)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH‑3 and SiH‑2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  2. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  3. Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals

    SciTech Connect

    Power, John G.; Jing Chunguang

    2009-01-22

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  4. Temporal laser pulse shaping for RF photocathode guns : the cheap and easy way using UV birefringent crystals.

    SciTech Connect

    Power, J. G.; Jing, C.; High Energy Physics; Euclid Techlabs, LLC

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  5. Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses.

    PubMed

    Yao, Shenggen; Weber, Daniel K; Separovic, Frances; Keizer, David W

    2014-07-01

    Molecular translational self-diffusion, a measure of diffusive motion, provides information on the effective molecular hydrodynamic radius, as well as information on the properties of media or solution through which the molecule diffuses. Protein translational diffusion measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) has seen increased application in structure and interaction studies, as structural changes or protein-protein interactions are often accompanied by alteration of their effective hydrodynamic radii. Unlike the analysis of complex mixtures by PFG-NMR, for monitoring changes of protein translational diffusion under various conditions, such as different stages of folding/unfolding, a partial region of the spectrum or even a single resonance is sufficient. We report translational diffusion coefficients measured by PFG-NMR with a modified stimulated echo (STE) sequence where band-selective pulses are employed for all three (1)H RF pulses. Compared with conventional non-selective sequence, e.g. the BPP-LED sequence, the advantage of this modified band-selective excitation short transient (BEST) version of STE (BEST-STE) sequence is multi-fold, namely: (1) potential sensitivity gain as in generalized BEST-based sequences, (2) water suppression is no longer required as the magnetization of solvent water is not perturbed during the measurement, and (3) dynamic range problems due to the presence of intense resonances from molecules other than the protein or peptide of interest, such as non-deuterated detergent micelles, are avoided. PMID:24824112

  6. Superconducting RF Deflecting Cavity Design and Prototype for Short X-ray Pulse Generation

    SciTech Connect

    Shi, Jiaru; Chen, H.; Tang, C.-X.; Cheng, Guangfeng; Ciovati, Gianluigi; Kneisel, Peter; Rimmer, Robert; Slack, Gary; Turlington, Larry; Wang, Haipeng; Li, D.; Nassiri, Alireza; Waldschmidt, G.J.

    2008-07-01

    Deflecting RF cavities are proposed to be used in generating short x-ray pulses (on ~1-picosecond order) at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL)* using a novel scheme by Zholents**. To meet the required deflecting voltage, impedance budget from higher order, lower order and the same order modes (HOM, LOM and SOM) of the APS storage ring, extensive deflecting cavity design studies have been conducted with numerical simulations and cavity prototypes. In this paper, we report recent progress on a single cell S-band (2.8-GHz) superconducting deflecting cavity design with waveguide damping. A copper and a niobium prototype cavity were fabricated and tested, respectively to benchmark the cavity and damping designs. A new damping scheme has been proposed which provides stronger damping to both HOM and LOM by directly coupling to a damping waveguide on the cavity equator.

  7. rf streak camera based ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes. PMID:19191429

  8. Cardiac Imaging at 7T: Single- and Two-Spoke RF Pulse Design with 16-channel Parallel Excitation

    PubMed Central

    Schmitter, Sebastian; DelaBarre, Lance; Wu, Xiaoping; Greiser, Andreas; Wang, Dingxin; Auerbach, Edward J.; Vaughan, J. Thomas; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2013-01-01

    Purpose Higher SNR and improved contrast have been demonstrated at Ultra-high magnetic fields (≥7T) in multiple targets, often with multi-channel transmit B1+ methods to address the deleterious impact on tissue contrast due to spatial variations in B1+ profiles. When imaging the heart at 7T, however, respiratory and cardiac motion, as well as B0 inhomogeneity, greatly increase the methodological challenge. In this study we compare 2-spoke parallel transmit (pTX) RF pulses with static B1+ shimming in cardiac imaging at 7T. Methods Using a 16-channel pTX system, slice-selective 2-spoke pTX pulses and static B1+ shimming were applied in cardiac CINE imaging. B1+ and B0 mapping required modified cardiac triggered sequences. Excitation homogeneity and RF energy were compared in different imaging orientations. Results 2-spoke pulses provide higher excitation homogeneity than B1+ shimming, especially in the more challenging posterior region of the heart. The peak value of channel-wise RF energy was reduced, allowing for higher flip angle, hence increased tissue contrast. Image quality with 2-spoke excitation proved to be stable throughout the entire cardiac cycle. Conclusion 2-spoke pTX excitation has been successfully demonstrated in the human heart at 7T, with improved image quality and reduced RF pulse energy when compared to B1+ shimming. PMID:24038314

  9. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  10. Simulation and optimization of pulsed radio frequency (RF) irradiation scheme for chemical exchange saturation transfer (CEST) MRI – demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia

    PubMed Central

    Sun, Phillip Zhe; Wang, Enfeng; Cheung, Jerry S.; Zhang, Xiaoan; Benner, Thomas; Sorensen, A Gregory

    2011-01-01

    Chemical exchange saturation transfer (CEST) MRI is capable of measuring dilute labile protons and microenvironment properties; however, the CEST contrast is also dependent upon experimental conditions, particularly, the RF irradiation scheme. Although continuous-wave (CW) RF irradiation has been conventionally utilized, the RF pulse duration or duty cycle are limited on most clinical systems, for which pulsed RF irradiation must be chosen. Here, conventional numerical simulation was extended to describe pulsed-CEST MRI contrast as a function of RF pulse parameters (i.e., RF pulse duration and flip angle) and labile proton properties (i.e., exchange rate and chemical shift). For diamagnetic CEST agents undergoing slow/intermediate chemical exchange, our simulation showed a linear regression relationship between the optimal mean RF power for pulsed-CEST MRI and that of CW-CEST MRI. Worth noting, the optimized pulsed-CEST contrast was approximately equal to that of CW-CEST MRI for exchange rates below 50 s−1, as confirmed experimentally using a multi-compartment pH phantom. Moreover, acute stroke animals were imaged with both pulsed- and CW- amide protons CEST MRI, which showed similar contrast. In summary, our study elucidated the RF irradiation dependence of pulsed-CEST MRI contrast, providing useful insights to guide its experimental optimization and quantification. PMID:21437977

  11. Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields

    NASA Astrophysics Data System (ADS)

    Stockmann, Jason P.; Cooley, Clarissa Z.; Guerin, Bastien; Rosen, Matthew S.; Wald, Lawrence L.

    2016-07-01

    Transmit Array Spatial Encoding (TRASE) is a promising new MR encoding method that uses transmit RF (B1+) phase gradients over the field-of-view to perform Fourier spatial encoding. Acquisitions use a spin echo train in which the transmit coil phase ramp is modulated to jump from one k-space point to the next. This work extends the capability of TRASE by using swept radiofrequency (RF) pulses and a quadratic phase removal method to enable TRASE where it is arguably most needed: portable imaging systems with inhomogeneous B0 fields. The approach is particularly well-suited for portable MR scanners where (a) inhomogeneous B0 fields are a byproduct of lightweight magnet design, (b) heavy, high power-consumption gradient coil systems are a limitation to siting the system in non-conventional locations and (c) synergy with the use of spin echo trains is required to overcome intra-voxel dephasing (short T2∗) in the inhomogeneous field. TRASE does not use a modulation of the B0 field to encode, but it does suffer from secondary effects of the inhomogeneous field. Severe artifacts arise in TRASE images due to off-resonance effects when the RF pulse does not cover the full bandwidth of spin resonances in the imaging FOV. Thus, for highly inhomogeneous B0 fields, the peak RF power needed for high-bandwidth refocusing hard pulses becomes very expensive, in addition to requiring RF coils that can withstand thousands of volts. In this work, we use swept WURST RF pulse echo trains to achieve TRASE imaging in a highly inhomogeneous magnetic field (ΔB0/B0 ∼ 0.33% over the sample). By accurately exciting and refocusing the full bandwidth of spins, the WURST pulses eliminate artifacts caused by the limited bandwidth of the hard pulses used in previous realizations of TRASE imaging. We introduce a correction scheme to remove the unwanted quadratic phase modulation caused by the swept pulses. Also, a phase alternation scheme is employed to mitigate artifacts caused by mixture of

  12. Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields.

    PubMed

    Stockmann, Jason P; Cooley, Clarissa Z; Guerin, Bastien; Rosen, Matthew S; Wald, Lawrence L

    2016-07-01

    Transmit Array Spatial Encoding (TRASE) is a promising new MR encoding method that uses transmit RF (B1(+)) phase gradients over the field-of-view to perform Fourier spatial encoding. Acquisitions use a spin echo train in which the transmit coil phase ramp is modulated to jump from one k-space point to the next. This work extends the capability of TRASE by using swept radiofrequency (RF) pulses and a quadratic phase removal method to enable TRASE where it is arguably most needed: portable imaging systems with inhomogeneous B0 fields. The approach is particularly well-suited for portable MR scanners where (a) inhomogeneous B0 fields are a byproduct of lightweight magnet design, (b) heavy, high power-consumption gradient coil systems are a limitation to siting the system in non-conventional locations and (c) synergy with the use of spin echo trains is required to overcome intra-voxel dephasing (short T2(∗)) in the inhomogeneous field. TRASE does not use a modulation of the B0 field to encode, but it does suffer from secondary effects of the inhomogeneous field. Severe artifacts arise in TRASE images due to off-resonance effects when the RF pulse does not cover the full bandwidth of spin resonances in the imaging FOV. Thus, for highly inhomogeneous B0 fields, the peak RF power needed for high-bandwidth refocusing hard pulses becomes very expensive, in addition to requiring RF coils that can withstand thousands of volts. In this work, we use swept WURST RF pulse echo trains to achieve TRASE imaging in a highly inhomogeneous magnetic field (ΔB0/B0∼0.33% over the sample). By accurately exciting and refocusing the full bandwidth of spins, the WURST pulses eliminate artifacts caused by the limited bandwidth of the hard pulses used in previous realizations of TRASE imaging. We introduce a correction scheme to remove the unwanted quadratic phase modulation caused by the swept pulses. Also, a phase alternation scheme is employed to mitigate artifacts caused by mixture of

  13. Design of RF MEMS based switch matrix for space applications

    NASA Astrophysics Data System (ADS)

    Di Nardo, S.; Farinelli, P.; Kim, T.; Marcelli, R.; Margesin, B.; Paola, E.; Pochesci, D.; Vietzorreck, L.; Vitulli, F.

    2013-07-01

    RF MEMS based switch matrices have several advantages compared to the mechanical or solid-state switch based ones for space applications. They are compact, light and less lossy with a high linearity up to high frequency. In this work, a 12 × 12 switch matrix with RF MEMS and LTCC technologies is presented based on the planar Beneš network. The simulated performance of the 12 × 12 switch matrix is below -12 dB IL (Insertion Loss) up to C band and -15 dB RL (Return Loss) up to Ku band. Moreover, it has a good isolation better than -50 dB. A 4 × 4 switch matrix with the same design process and technologies is fabricated and measured to verify the 12 × 12 switch matrix design process. The measured performance agrees very well to the simulations.

  14. Characterization of quartz-based package for RF MEMS

    NASA Astrophysics Data System (ADS)

    Sordo, G.; Faes, A.; Resta, G.; Iannacci, J.

    2013-05-01

    In the last decade Micro-Electro-Mechanical Systems (MEMS) technology experienced a significant development in various fields of Information and Communication Technology (ICT). In particular MEMS for Radio Frequency (RF) applications have emerged as a remarkable solution in order to fabricate components with outstanding performances. The encapsulation of such devices is a relevant aspect to be addressed in order to enable wide exploitation of RF-MEMS technology in commercial applications. A MEMS package must not only protect fragile mechanical parts but also provide the interface to the next level of the packaging hierarchy in a cost effective technology. Additionally, in RF applications the electromagnetic impact of the package has to be carefully considered. Given such a scenario, the focus of this work is the characterization of a chip capping solution for RF-MEMS devices. Such solution uses a quartz cap having an epoxy-based dry film sealing ring. Relevant issues affecting RF-MEMS devices once packaged, e.g. the mechanical strain induced by the cap and the hermeticity of the sealing ring, are worth investigating. This work focuses on the study of induced strain, as a function of different bonding parameters. Dimensional features of the sealing ring (i.e. the width), and process parameters, like temperature and pressure, have been considered. The package characterization is performed by using basic test vehicles, such as strain gauges, designed to be integrated inside the internal cavity of the package itself. Polysilicon piezoresistors are used as strain gauges, whereas aluminum resistors are used as thermometers to assess the impact of temperature changes on strain measurements. Experimental data are reported including calibration of the sensors as well as environmental measurements with and without cap. In addition measurements of the shear stress of the proposed packaging solution are also reported.

  15. Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications

    SciTech Connect

    Shverdin, M Y; Anderson, S G; Betts, S M; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; Jovanovic, I; Messerly, M; Pruet, J; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-06-08

    The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps at full width of half-maximum (FWHM) and rise and fall times under 1 ps. The expected pulse energy is 50 {micro}J at 261.75 nm and the spot size diameter of the beam at the photocathode is 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. Spatial shaping is achieved by truncating the beam at the 20% energy level with an iris and relay-imaging the resulting beam profile onto the photocathode. The integration of the system, as well as preliminary laser measurements will be presented.

  16. A space-based classification system for RF transients

    SciTech Connect

    Moore, K.R.; Call, D.; Johnson, S.; Payne, T.; Ford, W.; Spencer, K.; Wilkerson, J.F.; Baumgart, C.

    1993-12-01

    The FORTE (Fast On-Orbit Recording of Transient Events) small satellite is scheduled for launch in mid 1995. The mission is to measure and classify VHF (30--300 MHz) electromagnetic pulses, primarily due to lightning, within a high noise environment dominated by continuous wave carriers such as TV and FM stations. The FORTE Event Classifier will use specialized hardware to implement signal processing and neural network algorithms that perform onboard classification of RF transients and carriers. Lightning events will also be characterized with optical data telemetered to the ground. A primary mission science goal is to develop a comprehensive understanding of the correlation between the optical flash and the VHF emissions from lightning. By combining FORTE measurements with ground measurements and/or active transmitters, other science issues can be addressed. Examples include the correlation of global precipitation rates with lightning flash rates and location, the effects of large scale structures within the ionosphere (such as traveling ionospheric disturbances and horizontal gradients in the total electron content) on the propagation of broad bandwidth RF signals, and various areas of lightning physics. Event classification is a key feature of the FORTE mission. Neural networks are promising candidates for this application. The authors describe the proposed FORTE Event Classifier flight system, which consists of a commercially available digital signal processing board and a custom board, and discuss work on signal processing and neural network algorithms.

  17. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    SciTech Connect

    Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  18. Operation of the TFTR Pellet Charge Exchange Diagnostic in the Pulse Counting Mode during H+ RF-minority Heating

    SciTech Connect

    Medley, S.S., PPPL

    1998-05-01

    The Pellet Charge Exchange technique on TFTR has been used primarily to obtain active charge exchange measurements using a high energy (0.5 - 4.0 MeV) neutral particle analyzer (NPA) in conjunction with impurity pellet injection (Li and B) with the scintillator-photomultiplier detector system operated in the current mode. While passive measurements using pulse counting were also obtained using this instrumentation, operation in this mode was very restrictive with pulse counting rates limited to less than {approximately}10 kHz in the absence of any significant neutron and gamma induced background signal. An upgrade to a specialized pulse counting capability which was developed by the Ioffe Institute was implemented which consisted of CsI(Tl) scintillators having features designed to minimize signals induced by background neutron and gamma rays and 16-channel pulse height analysis electronics on each of the eight NPA energy channels. Passive measurements of RF-driven energetic hydrogen minority ions which served to verify operation of the pulse counting mode are reported. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an RF power of 2 MW to 0.35 MeV at 6 MW.

  19. FPGA-based RF spectrum merging and adaptive hopset selection

    NASA Astrophysics Data System (ADS)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  20. Hairpin resonator probes with frequency domain boxcar operation for time resolved density measurements in pulsed RF discharges

    NASA Astrophysics Data System (ADS)

    Peterson, David; Kummerer, Theresa; Coumou, David; Shannon, Steven

    2014-10-01

    In this work, microsecond time resolved electron density measurements in pulsed RF discharges are shown using an automated hairpin resonance probe using relatively low cost electronics, on par with normal Langmuir probe boxcar mode operation. A low cost signal generator is used to produce the applied microwave frequency and the reflected waveform is filtered to remove the RF component. The signal is then heterodyned with a simple frequency mixer to produce a dc signal read by an oscilloscope to determine the electron density. The applied microwave frequency is automatically shifted in small increments in a frequency boxcar routine through a Labview™program to determine the resonant frequency. A simple dc sheath correction is then easily applied since the probe is fully floating, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in a capacitively coupled, parallel plate configuration in a 13.56 MHz, 50--200 W RF discharge pulsed at 500 Hz, 200 W, 50% duty cycle. The gas input ranged from 50--100 mTorr pure Ar or with 5--10% O/He mixtures.

  1. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    SciTech Connect

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.; /SLAC

    2011-09-06

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE{sub 01}-TE{sub 10} mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ({ge} 1 {mu}s) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 {mu}s pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated

  2. Design of a high charge (10-100 nC) and short pulse (2-5 ps) RF photocathode gun for wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Gai, W.; Li, X.; Conde, M.; Power, J.; Schoessow, P.

    1999-07-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed.

  3. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  4. Alternative modeling methods for plasma-based Rf ion sources

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  5. Microwave and RF applications for micro-resonator based frequency combs

    NASA Astrophysics Data System (ADS)

    Nguyen, Thach G.; Shoeiby, Mehrdad; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2016-02-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  6. Repetitive sub-gigawatt rf source based on gyromagnetic nonlinear transmission line.

    PubMed

    Romanchenko, Ilya V; Rostov, Vladislav V; Gubanov, Vladimir P; Stepchenko, Alexey S; Gunin, Alexander V; Kurkan, Ivan K

    2012-07-01

    We demonstrate a high power repetitive rf source using gyromagnetic nonlinear transmission line to produce rf oscillations. Saturated NiZn ferrites act as active nonlinear medium first sharpening the pumping high voltage nanosecond pulse and then radiating at central frequency of about 1 GHz: shock rise time excites gyromagnetic precession in ferrites forming damping rf oscillations. The optimal length of nonlinear transmission line was found to be of about 1 m. SINUS-200 high voltage driver with Tesla transformer incorporated into pulse forming line has been designed and fabricated to produce bursts of 1000 pulses with 200 Hz repetition rate. A band-pass filter and mode-converter have been designed to extract rf pulse from low-frequency component and to form TE(11) mode of circular waveguide with linear polarization. A wide-band horn antenna has been fabricated to form Gaussian distribution of radiation pattern. The peak value of electric field strength of a radiated pulse at the distance of 3.5 m away from antenna is measured to be 160 kV/m. The corresponding rf peak power of 260 MW was achieved. PMID:22852710

  7. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    PubMed Central

    Vappou, J; Luo, J; Okajima, K; Di Tullio, M; Konofagou, E E

    2014-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local Pulse Wave Velocity (PWV). The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7± 16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries. PMID:21904023

  8. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-07-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π-type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm3, which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band.

  9. CD-insensitive PMD monitoring based on RF power measurement.

    PubMed

    Yang, Jing; Yu, Changyuan; Cheng, Linghao; Li, Zhaohui; Lu, Chao; Lau, Alan Pak Tao; Tam, Hwa-yaw; Wai, P K A

    2011-01-17

    We propose and experimentally demonstrate a chromatic dispersion (CD)-insensitive first-order polarization mode dispersion (PMD) monitoring method based on radio-frequency (RF) power measurement. In high-speed (>10-GSym/s) transmission systems, a narrowband fiber Bragg grating (FBG) notch filter filters out the optical components at 10GHz away from the carrier. After square-law detection, the 10-GHz RF tone changes with PMD and is insensitive to CD, which can be used as a PMD monitoring signal. Compared with the monitoring techniques utilizing clock tone, the PMD measurement range is increased from 26.3-ps to 50-ps while the requirement of the bandwidth of photodetector is reduced from 19GHz to 10GHz in 19-Gsym/s systems. It is experimentally shown that this technique is efficient on CD-insensitive first-order PMD monitoring for 38-Gbit/s DQPSK and 57-Gbit/s D8PSK systems. PMID:21263676

  10. Multidimensional excitation pulses based on spatiotemporal encoding concepts.

    PubMed

    Dumez, Jean-Nicolas; Frydman, Lucio

    2013-01-01

    The understanding and control of spin dynamics play a fundamental role in modern NMR imaging, for devising new ways to monitor an object's density as well as for enabling the tailored excitation of spins in space. It has recently been shown that by relying on spatiotemporal encoding (SPEN), new forms of single-scan multidimensional NMR spectroscopy and imaging become feasible. The present study extends those imaging developments, by introducing a new class of multidimensional excitation pulses that relies on SPEN concepts. We focus in particular on a family of "hybrid" 2D radiofrequency (RF) pulses that operate in both direct and reciprocal excitation space, and which can spatially sculpt the spin magnetization in manners that are beyond the reach of sequential 1D pulse shaping. These SPEN-based 2D pulses are compatible with a majority of single- and multi-scan imaging techniques. Like the corresponding SPEN-based hybrid 2D acquisitions, these pulses can benefit from a high robustness against field inhomogeneities and/or offset effects that affect their k-space-based counterparts. These properties are analyzed, and illustrated with numerical simulations and model experiments. PMID:23202845

  11. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    SciTech Connect

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick ()similarreverse arrowto)1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target ()similarreverse arrowto)1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs.

  12. Workgroup Report: Base Stations and Wireless Networks—Radiofrequency (RF) Exposures and Health Consequences

    PubMed Central

    Valberg, Peter A.; van Deventer, T. Emilie; Repacholi, Michael H.

    2007-01-01

    Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves—wireless Morse code, radio, television, and wireless telephony (i.e., construction and operation of telephones or telephonic systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephony and base stations are not likely to adversely affect human health. PMID:17431492

  13. Optimization of drift bias in an UHV based pulsed positron beam system

    SciTech Connect

    Anto, C. Varghese; Rajaraman, R.; Rao, G. Venugopal; Abhaya, S.; Parimala, J.; Amarendra, G.

    2012-06-05

    We report here the design of ultra high vacuum (UHV) compatible pulsed positron beam lifetime system, which combines the principles of a conventional slow positron beam and RF based pulsing scheme. The mechanical design and construction of the UHV system to house the beam has been completed and it has been tested for a vacuum of {approx} 10{sup -10} mbar. The voltages applied to the drift tube as a function of positron energies have been optimized using SIMION.

  14. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    NASA Astrophysics Data System (ADS)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  15. Systematic uncertainties in RF-based measurement of superconducting cavity quality factors

    NASA Astrophysics Data System (ADS)

    Holzbauer, J. P.; Pischalnikov, Yu.; Sergatskov, D. A.; Schappert, W.; Smith, S.

    2016-09-01

    Q0 determinations based on RF power measurements are subject to at least three potentially large systematic effects that have not been previously appreciated. Instrumental factors that can systematically bias RF based measurements of Q0 are quantified and steps that can be taken to improve the determination of Q0 are discussed.

  16. Systematic uncertainties in RF-based measurement of superconducting cavity quality factors

    DOE PAGESBeta

    Holzbauer, J. P.; Pischalnikov, Yu.; Sergatskov, D. A.; Schappert, W.; Smith, S.

    2016-05-10

    Q0 determinations based on RF power measurements are subject to at least three potentially large systematic effects that have not been previously appreciated. Here, instrumental factors that can systematically bias RF based measurements of Q0 are quantified and steps that can be taken to improve the determination of Q0 are discussed.

  17. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms.

    PubMed

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-01

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz. PMID:26628171

  18. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    SciTech Connect

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  19. A RF--linac, FEL based drive beam injector for CLIC

    SciTech Connect

    Barletta, W.A. Department of Physics, UCLA, 405 Hilgard Avenue, Los Angeles, California ); Bonifacio, R. )

    1992-07-01

    We describe a means of producing at train of 40 kA pulses of 3 ps duration as the drive beam for CLIC using an RF--linac driven free electron laser (FEL) buncher. Potential debunching effecs are discussed. Finally we describe a low energy test experiment.

  20. Correction of Excitation Profile in Zero Echo Time (ZTE) Imaging Using Quadratic Phase-Modulated RF Pulse Excitation and Iterative Reconstruction

    PubMed Central

    Li, Cheng; Magland, Jeremy F.; Seifert, Alan C.

    2014-01-01

    Zero-echo Time (ZTE) imaging is a promising technique for magnetic resonance imaging (MRI) of short-T2 tissue nuclei in tissues. A problem inherent to the method currently hindering its translation to the clinic is the presence of a spatial encoding gradient during excitation, which causes the hard pulse to become spatially selective, resulting in blurring and shadow artifacts in the image. While shortening radiofrequency (RF) pulse duration alleviates this problem the resulting elevated RF peak power and specific absorption rate (SAR) in practice impede such a solution. In this work, an approach is described to correct the artifacts by applying quadratic phase-modulated RF excitation and iteratively solving an inverse problem formulated from the signal model of ZTE imaging. A simple pulse sequence is also developed to measure the excitation profile of the RF pulse. Results from simulations, phantom and in vivo studies, demonstrate the effectiveness of the method in correcting image artifacts caused by inhomogeneous excitation. The proposed method may contribute toward establishing ZTE MRI as a routine 3D pulse sequence for imaging protons and other nuclei with quasi solid-state behavior on clinical scanners. PMID:24710164

  1. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  2. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    SciTech Connect

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence.

  3. Space-based RF signal classification using adaptive wavelet features

    SciTech Connect

    Caffrey, M.; Briles, S.

    1995-04-01

    RF signals are dispersed in frequency as they propagate through the ionosphere. For wide-band signals, this results in nonlinearly- chirped-frequency, transient signals in the VHF portion of the spectrum. This ionospheric dispersion provide a means of discriminating wide-band transients from other signals (e.g., continuous-wave carriers, burst communications, chirped-radar signals, etc.). The transient nature of these dispersed signals makes them candidates for wavelet feature selection. Rather than choosing a wavelet ad hoc, we adaptively compute an optimal mother wavelet via a neural network. Gaussian weighted, linear frequency modulate (GLFM) wavelets are linearly combined by the network to generate our application specific mother wavelet, which is optimized for its capacity to select features that discriminate between the dispersed signals and clutter (e.g., multiple continuous-wave carriers), not for its ability to represent the dispersed signal. The resulting mother wavelet is then used to extract features for a neutral network classifier. The performance of the adaptive wavelet classifier is the compared to an FFT based neural network classifier.

  4. Application of a pulsed, RF-driven, multicusp source for low energy plasma immersion ion implantation

    SciTech Connect

    Wengrow, A.B.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Rickard, M.; Williams, M.D.; Tucker, M.

    1996-06-01

    The multicusp ion source can produce large volumes of uniform, quiescent, high density plasmas. A plasma chamber suited for plasma immersion ion implantation (PIII) was readily made. Conventional PIII pulses the bias voltage applied to the substrate which is immersed in a CW mode plasma. Here, a method by which the plasma itself is pulsed was developed. Typically pulse lengths of 500 {mu}s are used and are much shorter than that of the substrate voltage pulse (5-15 ms). This approach, together with low gas pressures and low bias voltages, permits the constant energy implantation of an entire wafer simultaneously without glow discharge. Results show that this process can yield implant currents of up to 2.5 mA/cm{sup 2}; thus very short implant times can be achieved. Uniformity of the ion flux is also discussed. As this method can be scaled to any dimension, it can be made to handle any size wafer.

  5. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    NASA Astrophysics Data System (ADS)

    Joshi, Gopal; Motiwala, Paresh D.; Randale, G. D.; Singh, Pitamber; Agarwal, Vivek; Kumar, Girish

    2015-09-01

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  6. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    NASA Astrophysics Data System (ADS)

    An, ShiZhong; Yin, ZhiGuo; Li, PengZhan; Song, GuoFang; Wu, LongCheng; Guan, FengPing; Xie, HuaiDong; Jia, XianLu; Lu, YinLong; Zhang, TianJue

    2011-12-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H-beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  7. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review

    PubMed Central

    Martín, Ferran; Bonache, Jordi

    2014-01-01

    In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378

  8. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  9. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  10. Experimental research on pulse forming based on high-temperature SMES applied in pulsed power

    NASA Astrophysics Data System (ADS)

    Zhou, Yusheng; Kuang, Jianghua; Tang, Yuejin; Song, Meng; Wei, Bin; Cheng, Shijie; Pan, Yuan

    2009-03-01

    To research the key problems of storage energy and pulse forming in pulsed power, a pulse magnet made of Bi2223/Ag high-temperature superconducting (HTS) tapes applied in pulsed power experiment was developed. After determining electromagnetic characteristics of the magnet, a pulse forming network was designed. HTS magnet was immersed in liquid nitrogen bath, experiments were carried out about discharging pulse current to resistance load based on HTS magnet energy storage (SMES). The results show that pulse current waves were obtained through adjusted circuit construction and magnet parameters by acting delay of switches in the pulse forming network. The technical schemes about pulse forming based on SMES were presented.

  11. Design and optimization for variable rate selective excitation using an analytic RF scaling function

    NASA Astrophysics Data System (ADS)

    Gai, Neville D.; Zur, Yuval

    2007-11-01

    At higher B0 fields, specific absorption rate (SAR) deposition increases. Due to maximum SAR limitation, slice coverage decreases and/or scan time increases. Conventional selective RF pulses are played out in conjunction with a time independent field gradient. Variable rate selective excitation (VERSE) is a technique that modifies the original RF and gradient waveforms such that slice profile is unchanged. The drawback is that the slice profile for off-resonance spins is distorted. A new VERSE algorithm based on modeling the scaled waveforms as a Fermi function is introduced. It ensures that system related constraints of maximum gradient amplitude and slew rate are not exceeded. The algorithm can be used to preserve the original RF pulse duration while minimizing SAR and peak b1 or to minimize the RF pulse duration. The design is general and can be applied to any symmetrical or asymmetrical RF waveform. The algorithm is demonstrated by using it to (a) minimize the SAR of a linear phase RF pulse, (b) minimize SAR of a hyperbolic secant RF pulse, and (c) minimize the duration of a linear phase RF pulse. Images with a T1-FLAIR (T1 FLuid Attenuated Inversion Recovery) sequence using a conventional and VERSE adiabatic inversion RF pulse are presented. Comparison of images and scan parameters for different anatomies and coils shows increased scan coverage and decreased SAR with the VERSE inversion RF pulse, while image quality is preserved.

  12. The TESLA RF System

    NASA Astrophysics Data System (ADS)

    Choroba, S.

    2003-12-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ˜600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

  13. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  14. Programmable RF photonic phase shifters based on FD-OP for optically controlled beamforming

    NASA Astrophysics Data System (ADS)

    Wei, Yongfeng; Huang, Shanguo; Gao, Xinlu; Gao, Chao; Wang, Qian; Gu, Wanyi

    2015-08-01

    Programmable RF photonic phase shifter that can achieve a full 360° phase shift with little RF signal amplitude variation and low phase noise (PN) is presented. It is based on a two-dimensional (2D) Fourier-domain optical processor (FD-OP) which comprises an array liquid crystal on silicon (LCoS) pixels to control the amplitude and phase of the spectral components by programming. It can realize multiple photonic RF phase shifters simultaneously applied in optical controlled phased array antennas. Experimental results show the RF phase shifter can achieve a continuous 0-360° phase shift with low amplitude variation of <2.5 dB and a phase deviation of <2° at 15 GHz.

  15. A photocathode rf gun design for a mm-wave linac-based FEL

    SciTech Connect

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  16. Adaptive Sparse Signal Processing for Discrimination of Satellite-based Radiofrequency (RF) Recordings of Lightning Events

    NASA Astrophysics Data System (ADS)

    Moody, D. I.; Smith, D. A.; Heavner, M.; Hamlin, T.

    2014-12-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite, launched in 1997, provided a rich RF lightning database. Application of modern pattern recognition techniques to this dataset may further lightning research in the scientific community, and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We extend sparse signal processing techniques to radiofrequency (RF) transient signals, and specifically focus on improved signature extraction using sparse representations in data-adaptive dictionaries. We present various processing options and classification results for on-board discharges, and discuss robustness and potential for capability development.

  17. Inter-individual and intra-individual variation of the effects of pulsed RF EMF exposure on the human sleep EEG.

    PubMed

    Lustenberger, Caroline; Murbach, Manuel; Tüshaus, Laura; Wehrle, Flavia; Kuster, Niels; Achermann, Peter; Huber, Reto

    2015-04-01

    Pulse-modulated radiofrequency electromagnetic fields (RF EMF) can alter brain activity during sleep; increases of electroencephalographic (EEG) power in the sleep spindle (13.75-15.25 Hz) and delta-theta (1.25-9 Hz) frequency range have been reported. These field effects show striking inter-individual differences. However, it is still unknown whether individual subjects react in a similar way when repeatedly exposed. Thus, our study aimed to investigate inter-individual variation and intra-individual stability of field effects. To do so, we exposed 20 young male subjects twice for 30 min prior to sleep to the same amplitude modulated 900 MHz (2 Hz pulse, 20 Hz Gaussian low-pass filter and a ratio of peak-to-average of 4) RF EMF (spatial peak absorption of 2 W/kg averaged over 10 g) 2 weeks apart. The topographical analysis of EEG power during all-night non-rapid eye movement sleep revealed: (1) exposure-related increases in delta-theta frequency range in several fronto-central electrodes; and (2) no differences in spindle frequency range. We did not observe reproducible within-subject RF EMF effects on sleep spindle and delta-theta activity in the sleep EEG and it remains unclear whether a biological trait of how the subjects' brains react to RF EMF exists. PMID:25690404

  18. Deposition of thick and adherent Teflon-like coating on industrial scale stainless steel shell using pulsed dc and RF PECVD

    NASA Astrophysics Data System (ADS)

    Satyaprasad, A.; Nema, S. K.; Sinha, N. K.; Raj, Baldev

    2010-04-01

    A unique combination of pulsed dc and radio frequency (RF) discharge deposition was used to deposit thick (˜5 μm) and adherent (2-4 MPa) Teflon-like coatings on a stainless steel (SS) shell of 2 m diameter size, through plasma enhanced chemical vapor deposition (PECVD). The details of deposition on such a big industrial scale component are reported for the first time. In this method, highly adherent thin interface layers were grown on SS shell that was electrically grounded, using pulsed dc discharge, followed by RF discharge deposition to build up the required coating thickness. The fluorocarbon precursor molecules, required for the deposition of Teflon-like coating, are generated indigenously by pyrolyzing the Teflon powder. The deposited coating was studied for its chemical bond state, surface roughness (Ra), morphology, thickness, and adhesive strength. These studies were carried out by using XPS, AFM, SEM, etc. The adhesive strength of the coating was measured by pin-pull test as per ASTM D4541 standard test. The coatings deposited with pulsed dc discharge were observed to have higher adhesive strength when compared with those deposited with RF discharge.

  19. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    SciTech Connect

    Yee, S; Ionascu, D; Wilson, G; Thapa, R

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitation RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.

  20. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    SciTech Connect

    Volfbeyn, P.; Bekefi, G.

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  1. Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species

    NASA Astrophysics Data System (ADS)

    Léveillé, V.; Coulombe, S.

    2005-08-01

    The design of a miniature low-power atmospheric pressure glow discharge torch (APGD-t) and the results of its preliminary electrical and spectroscopic characterization are presented. A capacitively-coupled pulsed RF (13.56 MHz) helium plasma jet is formed in a converging confinement tube and O2 is injected downstream in the plasma afterglow region through a capillary electrode. With 1 SLM He, the APGD-t produced a non-thermal plasma jet of 500 µm-diameter and ap2.5 mm-long at power levels ranging from 1 to 5 W. At ap1 W, the gas temperature and He excitation temperature near the nozzle exit were ap50°C and slightly below 2000 K, respectively. The breakdown voltage in 1 SLM He is approximately 220 Vpk-to-0. Careful electric probe measurements and circuit analysis revealed the strong effect of the voltage probe on the total load impedance. The injection of 10 SCCM O2 through the capillary electrode led to the transport of atomic O further downstream in the plasma jet and to a slight increase of the He excitation temperature without significant effects on the electrical properties and jet length. Alternatively, the addition of an equivalent amount of O2 (1 v/v%) to the plasma-forming gas affected the electrical properties slightly, but led to a drastic contraction of the plasma jet. The atomic oxygen production and transport conditions provided by the APGD-t are promising for precise bio-applications such as the treatment of skin tissues and cells.

  2. Optical exchange spring effect in RF-annealed Fe-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Setoodeh, V.; Hosseini, S. I.; Ghanaatshoar, M.; Shokri, B.

    2013-01-01

    We report the surface exchange spring behavior in Fe-based amorphous ribbons which is detected by the magneto-optical Kerr effect. To realize this effect at the surface of FeSiB, the radio frequency (RF) radiation is used to change the magnetic phase of its outermost atomic surface layers. The RF radiation produced by a capacitively coupled parallel plate plasma reactor creates a nanometric hard magnetic layer on the surface of Fe-based ribbons and leaves the magnetically soft volume without any substantial modification.

  3. Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator

    NASA Astrophysics Data System (ADS)

    Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2014-03-01

    We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.

  4. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE PAGESBeta

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan

    2016-08-01

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  5. RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest

    PubMed Central

    Ismail, Hamid D.; Jones, Ahoi; Kim, Jung H.; Newman, Robert H.; KC, Dukka B.

    2016-01-01

    Protein phosphorylation is one of the most widespread regulatory mechanisms in eukaryotes. Over the past decade, phosphorylation site prediction has emerged as an important problem in the field of bioinformatics. Here, we report a new method, termed Random Forest-based Phosphosite predictor 2.0 (RF-Phos 2.0), to predict phosphorylation sites given only the primary amino acid sequence of a protein as input. RF-Phos 2.0, which uses random forest with sequence and structural features, is able to identify putative sites of phosphorylation across many protein families. In side-by-side comparisons based on 10-fold cross validation and an independent dataset, RF-Phos 2.0 compares favorably to other popular mammalian phosphosite prediction methods, such as PhosphoSVM, GPS2.1, and Musite. PMID:27066500

  6. Nanosecond-range multi-pulses synchronization based on magnetic switch and saturable pulse transformer.

    PubMed

    Liu, Jinliang; Fan, Xuliang; Zhang, Yu

    2012-12-01

    Magnetic switch has been widely used in the field of pulsed power system for its advantages of solid state, high repetition rate, and long lifetime. In this paper, the synchronization of ns-range multi-pulses based on magnetic switch is studied and two kinds of technical methods are proposed. One of which is based on magnetic switches on a communal magnetic core. It was proved that the synchronization accuracy of 3 pulses is about 2 ns. Another proposed method is ns-range multi-pulse synchronization based on saturable pulse transformer and the experimental result showed that the synchronization accuracy of 2 pulses could achieve 2.5 ns. In contrast to other multi-pulse synchronization methods controlled by high-voltage pulse trigger or laser trigger, the synchronization based on magnetic switch and saturable pulse transformer has the advantages of high synchronization accuracy, long lifetime, and exemption from external trigger signals. PMID:23278010

  7. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4μm with pulse duration of 26 μs

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-02-01

    Several studies over the past 20 years have identified that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-µs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase and the pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for TEA lasers and too short for RF-excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the J5-V laser for microvia drilling which can produce laser pulses greater than 100 mJ in energy at 9.4-μm with a pulse duration of 26-µs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate enamel and dentin. The onset of plasma shielding does not occur until the fluence exceeds 100 J/cm2 allowing efficient ablation at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions.

  8. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun

    SciTech Connect

    McGuire, Gary; Martin, Allen; Noonan, John

    2010-10-30

    The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

  9. Selection of high-definition 2D virtual profiles with multiple RF pulse excitations along interleaved echo-planar k-space trajectories.

    PubMed

    Panych, L P; Oshio, K

    1999-02-01

    A method for spatially selective excitation of 2D RF profiles is reported. The method makes use of multiple shots to traverse interleaved echo-planar trajectories in 2D k space during each RF pulse excitation. Results from each of the interleaved excitations are summed, with the net effect being the excitation of a virtual profile. The method allows for the excitation of high-definition 2D profiles with standard gradient hardware. Signal to noise is enhanced by a factor equal to the square root of the number of interleaved excitations, compared with a single-shot excitation. Potential applications for volume-localized spectroscopy, functional MRI, and high-resolution reduced-field-of-view imaging are discussed. PMID:10080266

  10. Ultra-low-voltage CMOS-based current bleeding mixer with high LO-RF isolation.

    PubMed

    Tan, Gim Heng; Sidek, Roslina Mohd; Ramiah, Harikrishnan; Chong, Wei Keat; Lioe, De Xing

    2014-01-01

    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2). PMID:25197694

  11. Investigation of analog/RF performance of staggered heterojunctions based nanowire tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avik; Sarkar, Angsuman

    2015-04-01

    In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.

  12. Multi-walled carbon nanotube-based RF antennas

    NASA Astrophysics Data System (ADS)

    Elwi, Taha A.; Al-Rizzo, Hussain M.; Rucker, Daniel G.; Dervishi, Enkeleda; Li, Zhongrui; Biris, Alexandru S.

    2010-01-01

    A novel application that utilizes conductive patches composed of purified multi-walled carbon nanotubes (MWCNTs) embedded in a sodium cholate composite thin film to create microstrip antennas operating in the microwave frequency regime is proposed. The MWCNTs are suspended in an adhesive solvent to form a conductive ink that is printed on flexible polymer substrates. The DC conductivity of the printed patches was measured by the four probe technique and the complex relative permittivity was measured by an Agilent E5071B probe. The commercial software package, CST Microwave Studio (MWS), was used to simulate the proposed antennas based on the measured constitutive parameters. An excellent agreement of less than 0.2% difference in resonant frequency is shown. Simulated and measured results were also compared against identical microstrip antennas that utilize copper conducting patches. The proposed MWCNT-based antennas demonstrate a 5.6% to 2.2% increase in bandwidth, with respect to their corresponding copper-based prototypes, without significant degradation in gain and/or far-field radiation patterns.

  13. Optical Pulse Compression Based on Stationary Rescaled Pulse Propagation in a Comblike Profiled Fiber

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi; Tobioka, Hideaki; Igarashi, Koji; Namiki, Shu

    2006-07-01

    In this paper, optical pulse compression using a comblike profiled fiber (CPF) is theoretically and experimentally studied, in which highly nonlinear fibers and single-mode fibers are alternately concatenated. Stationary rescaled pulse (SRP), is the main focus, which is a recently discovered nonlinear stationary pulse in CPF. The fundamental characteristics of SRP are investigated, and SRP propagation is applied to the design of the CPF pulse compressor. Using the proposed design method, the specifications of the CPF can easily be controlled, such as the compression ratio per step of the CPF or the pedestal of the output pulse. Two experimental results of pulse compression using the CPF based on the proposed design method are shown: 1) pulse compression with a large compression ratio per step of the CPF and 2) low-pedestal and wideband wavelength-tunable compression. A parametric noise-amplification phenomenon occurring in a compression process for an optical pulse sequence is also numerically analyzed.

  14. A Passive FPAA-Based RF Scatter Meteor Detector

    NASA Astrophysics Data System (ADS)

    Popowicz, A.; Malcher, A.; Bernacki, K.; Fietkiewicz, K.

    2015-02-01

    In the article, we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analog array (FPAA), which is an attractive alternative for typically used detecting equipment—a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network, the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  15. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect

    Kochergin, Vladimir

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  16. Physical design of FEL injector based on the performance-enhanced EC-ITC RF gun

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Ning; Chen, Qu-Shan; Pei, Yuan-Ji; Li, Ji; Qin, Bin

    2014-01-01

    To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start-to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.

  17. RF hyperthermia using conductive nanoparticles

    NASA Astrophysics Data System (ADS)

    Gach, H. Michael; Balachandrasekaran, Arvind; Nair, Tejas

    2010-02-01

    Specific absorption rate (SAR) heating using radiofrequency (RF) waves is affected by the RF frequency and amplitude, and the conductivity of the tissue. Recently, conductive nanoparticles were demonstrated to induce hyperthermia in vitro and in vivo upon irradiation with an external 13.56 MHz RF field. The addition of conductive nanoparticles was assumed to increase the tissue conductivity and SAR. However, no quantitative studies have been performed that characterize the conductivities of biocompatible colloids or tissues containing nanoparticles, and relate the conductivity to SAR. The complex permittivities were measured for colloids containing single-wall carbon nanotubes (SWCNTs) in normal saline with 0.32% w/v Pluronic F108 nonionic surfactant. The carbon concentrations of the colloids ranged from 0 to 88 mM. The permittivities were measured using a dielectric probe and RF network analyzer for RF frequencies from 200 MHz to 3 GHz. The nonionic surfactant was added to the colloids to minimize flocculation of the nanotubes during the RF heating experiments. The results were compared with prior measurements of colloids containing 0.02% Pluronic F108. The dielectric and conductivity of the 0.02% Pluronic colloids rose linearly with carbon concentration but the 0.32% Pluronic colloids varied from linearity. Based on the permittivity results, selected colloid samples were placed inside a Bruker 7T/20 magnetic resonance (MR) imaging (MRI) system and irradiated at 300 MHz using a high duty cycle RF pulse sequence. The temperature changes were measured directly using fiber-optic thermometers and indirectly using MR thermometry and spectroscopy. Temperature changes were consistent with the colloid conductivities.

  18. RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators

    SciTech Connect

    Xiao, Binping; Eremeev, Grigory V.; Reece, Charles E.; Phillips, H. Lawrence; Kelley, Michael J.

    2012-09-01

    In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

  19. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    SciTech Connect

    Blokland, Willem; Armstrong, Gary A

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  20. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Guang; Huang, Tong-Ming; Xu, Jin-Qiang

    2011-09-01

    The Beijing X-ray Energy Recovery Linac (BXERL) test facility is proposed in Institute of High Physics (IHEP). In this proposal, the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current. An injector based on DC gun technology is the first candidate electron source for BXERL. However, the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV. Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility. We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code. In this paper, we present the optimized design of the gun cavity, the gun RF parameters and the set-up of the whole injector system. The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalized emittance 1.0 πmm·mrad, bunch length 0.77 mm, beam energy 5.0 MeV and energy spread 0.60%.

  1. RF-Hydroxysite: a random forest based predictor for hydroxylation sites.

    PubMed

    Ismail, Hamid D; Newman, Robert H; Kc, Dukka B

    2016-07-19

    Protein hydroxylation is an emerging posttranslational modification involved in both normal cellular processes and a growing number of pathological states, including several cancers. Protein hydroxylation is mediated by members of the hydroxylase family of enzymes, which catalyze the conversion of an alkyne group at select lysine or proline residues on their target substrates to a hydroxyl. Traditionally, hydroxylation has been identified using expensive and time-consuming experimental methods, such as tandem mass spectrometry. Therefore, to facilitate identification of putative hydroxylation sites and to complement existing experimental approaches, computational methods designed to predict the hydroxylation sites in protein sequences have recently been developed. Building on these efforts, we have developed a new method, termed RF-hydroxysite, that uses random forest to identify putative hydroxylysine and hydroxyproline residues in proteins using only the primary amino acid sequence as input. RF-Hydroxysite integrates features previously shown to contribute to hydroxylation site prediction with several new features that we found to augment the performance remarkably. These include features that capture physicochemical, structural, sequence-order and evolutionary information from the protein sequences. The features used in the final model were selected based on their contribution to the prediction. Physicochemical information was found to contribute the most to the model. The present study also sheds light on the contribution of evolutionary, sequence order, and protein disordered region information to hydroxylation site prediction. The web server for RF-hydroxysite is available online at . PMID:27292874

  2. Shielding for thermoacoustic tomography with RF excitation

    NASA Astrophysics Data System (ADS)

    Mitchell, M.; Becker, G.; Dey, P.; Generotzky, J.; Patch, S. K.

    2008-02-01

    Radiofrequency (RF) pulses used to generate thermoacoustic computerized tomography (TCT) signal couple directly into the pulser-receiver and oscilloscope, swamping true TCT signal. We use a standard RF enclosure housing both RF amplifier and object being imaged. This is similar to RF shielding of magnetic resonance imaging (MRI) suites and protects electronics outside from stray RF. Unlike MRI, TCT receivers are ultrasound transducers, which must also be shielded from RF. A transducer housing that simultaneously shields RF and permits acoustic transmission was developed specifically for TCT. We compare TCT signals measured with and without RF shielding.

  3. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    PubMed

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body. PMID:26373355

  4. Stable High-Brightness Electron Beam System with a Photocathode RF Gun for Short Pulse X-Ray Generation by Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Sakai, Fumio; Yang, Jinfeng; Yorozu, Masafumi; Okada, Yasuhiro; Yanagida, Tatsuya; Endo, Akira

    2002-03-01

    A high-brightness electron accelerator system with a photocathode RF gun and an all-solid stable laser for the photocathode was installed, and a commissioning test was performed to generate short-pulse X-ray beams by the Thomson scattering method. Electron energy was boosted by a linear accelerator (linac) up to 14 MeV. Energy dispersion of the electron beams was measured to be 0.7% (rms). The normalized emittance of the electron beam was 4 πmm-mrad with a 0.4 nC bunch charge. The electron beam size at the interaction point, where the electron beams and high peak power laser light interacted, was measured to be 100 μm (rms). Good stability in the spatial and temporal domains was also obtained.

  5. Inkjet-printing- and electroless-plating- based fabrication of RF circuit structures on high-frequency substrates

    NASA Astrophysics Data System (ADS)

    Sridhar, A.; Reiding, J.; Adelaar, H.; Achterhoek, F.; van Dijk, D. J.; Akkerman, R.

    2009-08-01

    In this paper, a method to fabricate radio frequency (RF) circuit structures is described. This method involves inkjet printing of a silver nanoparticle-based ink on a functional substrate material to create the seed track (i.e., the seed layer), onto which copper is subsequently deposited by an electroless plating method, to obtain the desired thickness and conductivity of the RF structures. This process combination was validated by fabricating an S-band filter on a high-frequency substrate and comparing the RF performance of this filter with that of a filter fabricated using the conventional lithography-based method. The adhesion of the circuit structures to the substrate was qualitatively ascertained by the scotch tape test method. The performance of the inkjet-printed-electroless-plated filter was comparable to that of the conventional filter, thus proving the suitability of this novel method for practical RF applications.

  6. Bunch stabilization using rf phase modulation in the intense pulse neutron source (IPNS) rapid cycling synchrotron (RCS)

    SciTech Connect

    Dooling, J. C.; Brumwell, F. R.; McMichael, G. E.

    1999-12-03

    Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotron frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}.

  7. Bunch stabilization using rf phase modulation in the Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS).

    SciTech Connect

    Brumwell, F. R.; Dooling, J. C.; McMichael, G. E.

    1999-09-01

    Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotrons frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}.

  8. Etch Properties of Amorphous Carbon Material Using RF Pulsing in the O2/N2/CHF3 Plasma.

    PubMed

    Jeon, Min Hwan; Park, Jin Woo; Yun, Deok Hyun; Kim, Kyong Nam; Yeom, Geun Young

    2015-11-01

    The amorphous carbon layer (ACL), used as the hardmask for the etching of nanoscale semi-conductor materials, was etched using O2/CHF3 in addition to O2/N2 using pulsed dual-frequency capacitively coupled plasmas, and the effects of source power pulsing for different gas combinations on the characteristics of the plasmas and ACL etching were investigated. As the etch mask for ACL, a patterned SiON layer was used. The etch rates of ACL were decreased with the decrease of pulse duty percentage for both O2/N2 and O2/CHF3 due to decrease of the reactive radicals, such as F and O, with decreasing pulse duty percentage. In addition, at the same pulse duty percentage, the etch selectivity of ACL/SiON with O2/CHF3 was also significantly lower than that with O2/N2. However, the etch profiles of ACL with O2/CHF3 was more anisotropic and the etch profiles were further improved with decreasing the pulse duty percentage than those of ACL with O2/N2. The improved anisotropic etch profiles of ACL with decreasing pulse duty percentage for O2/CHF3 were believed to be related to the formation of a more effective passivation layer, such as a thick fluorocarbon layer, on the sidewall of the ACL during the etching with O2/CHF3, compared to the weak C-N passivation layer formed on the sidewall of ACL when using O2/N2. PMID:26726555

  9. T1 ρ MRI contrast in the human brain: Modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse

    NASA Astrophysics Data System (ADS)

    Michaeli, Shalom; Sorce, Dennis J.; Springer, Charles S.; Ugurbil, Kamil; Garwood, Michael

    2006-07-01

    Longitudinal relaxation in the rotating frame (T1ρ) is the dominant mechanism during a train of adiabatic full passage (AFP) RF pulses with no interpulse intervals, placed prior to an excitation pulse. Asymptotic apparent time constants (T1ρ ‧) were measured for human occipital lobe 1H2O at 4 T using brief imaging readouts following such pulse trains. Two members of the hyperbolic secant (HSn) AFP pulse family (n = 1 or 4; i.e., arising from different amplitude- and frequency-modulation functions) were used. These produced two different non-monoexponential signal decays during the pulse trains. Thus, there are differing contrasts in asymptotic T1ρ ‧ maps derived from these data. This behavior is quite different than that of 1H2O signals from an aqueous protein solution of roughly the same macromolecular volume fraction as tissue. The ROI-averaged decays from the two acquisitions can be simultaneously accommodated by a two-site-exchange model for an equilibrium isochronous process whose exchange condition is modulated during the pulse. The model employs a two-spin description of dipolar interaction fluctuations in each site. The intrinsic site R1ρ (≡T1ρ-1) value is sensitive to fluctuations at the effective Larmor frequency (ωeff) in the rotating frame, and this is modulated differently during the two types of AFP pulses. Agreement with the data is quite good for site orientation correlation time constants characteristic of macromolecule-interacting water (site A) and bulk-like water (site B). Since R1ρA is significantly modulated while R1ρB is not, the intrinsic relaxographic shutter-speed for the process (≡|R1ρA - R1ρB|), and thus the exchange condition, is modulated. However, the mean residence time (67 ms) and intrinsic population fraction (0.2) values found for site A are each rather larger than might be expected, suggesting a disproportionate role for the water molecules known to be "buried" within the large and concentrated macromolecules of

  10. A symmetric metamaterial element-based RF biosensor for rapid and label-free detection

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Lee, Jung-Hyun; Jung, Hyo-Il

    2011-10-01

    A symmetric metamaterial element-based RF biosensing scheme is experimentally demonstrated by detecting biomolecular binding between a prostate-specific antigen (PSA) and its antibody. The metamaterial element in a high-impedance microstrip line shows an intrinsic S21 resonance having a Q-factor of 55. The frequency shift with PSA concentration, i.e., 100 ng/ml, 10 ng/ml, and 1 ng/ml, is observed and the changes are Δf ≈ 20 MHz, 10 MHz, and 5 MHz, respectively. The proposed biosensor offers advantages of label-free detection, a simple and direct scheme, and cost-efficient fabrication.

  11. Evaluating the use of a continuous approximation for model-based quantification of pulsed chemical exchange saturation transfer (CEST)

    NASA Astrophysics Data System (ADS)

    Tee, Y. K.; Khrapitchev, A. A.; Sibson, N. R.; Payne, S. J.; Chappell, M. A.

    2012-09-01

    Many potential clinical applications of chemical exchange saturation transfer (CEST) have been studied in recent years. However, due to various limitations such as specific absorption rate guidelines and scanner hardware constraints, most of the proposed applications have yet to be translated into routine diagnostic tools. Currently, pulsed CEST which uses multiple short pulses to perform the saturation is the only viable irradiation scheme for clinical translation. However, performing quantitative model-based analysis on pulsed CEST is time consuming because it is necessary to account for the time dependent amplitude of the saturation pulses. As a result, pulsed CEST is generally treated as continuous CEST by finding its equivalent average field or power. Nevertheless, theoretical analysis and simulations reveal that the resulting magnetization is different when the different irradiation schemes are applied. In this study, the quantification of important model parameters such as the amine proton exchange rate from a pulsed CEST experiment using quantitative model-based analyses were examined. Two model-based approaches were considered - discretized and continuous approximation to the time dependent RF irradiation pulses. The results showed that the discretized method was able to fit the experimental data substantially better than its continuous counterpart, but the smaller fitted error of the former did not translate to significantly better fit for the important model parameters. For quantification of the endogenous CEST effect, such as in amide proton transfer imaging, a model-based approach using the average power equivalent saturation can thus be used in place of the discretized approximation.

  12. Evaluating the use of a continuous approximation for model-based quantification of pulsed chemical exchange saturation transfer (CEST).

    PubMed

    Tee, Y K; Khrapitchev, A A; Sibson, N R; Payne, S J; Chappell, M A

    2012-09-01

    Many potential clinical applications of chemical exchange saturation transfer (CEST) have been studied in recent years. However, due to various limitations such as specific absorption rate guidelines and scanner hardware constraints, most of the proposed applications have yet to be translated into routine diagnostic tools. Currently, pulsed CEST which uses multiple short pulses to perform the saturation is the only viable irradiation scheme for clinical translation. However, performing quantitative model-based analysis on pulsed CEST is time consuming because it is necessary to account for the time dependent amplitude of the saturation pulses. As a result, pulsed CEST is generally treated as continuous CEST by finding its equivalent average field or power. Nevertheless, theoretical analysis and simulations reveal that the resulting magnetization is different when the different irradiation schemes are applied. In this study, the quantification of important model parameters such as the amine proton exchange rate from a pulsed CEST experiment using quantitative model-based analyses were examined. Two model-based approaches were considered - discretized and continuous approximation to the time dependent RF irradiation pulses. The results showed that the discretized method was able to fit the experimental data substantially better than its continuous counterpart, but the smaller fitted error of the former did not translate to significantly better fit for the important model parameters. For quantification of the endogenous CEST effect, such as in amide proton transfer imaging, a model-based approach using the average power equivalent saturation can thus be used in place of the discretized approximation. PMID:22858666

  13. Pulse-forming-line based on-chip short pulse generator.

    PubMed

    Zou, Huan; Wang, Haiyang

    2015-04-01

    A traditional pulse generation circuit based on the pulse-forming-line (PFL) is implemented in a commercial 0.13 μm digital CMOS technology. A meandered on-chip coplanar waveguide is used as the PFL, and CMOS transistor is used as switch in the Cadence Spectre simulation. The circuit sample is fabricated and tested. Pulses of ∼170 ps durations and 120-200 mV amplitudes are obtained when the power supply is tuned from 1.2 V to 2 V. The results show that the traditional PFL based circuit can be implemented in standard CMOS technology for on-chip short pulse generation. Furthermore, the PFL circuits significantly extend the short pulse generation capabilities of CMOS technology. PMID:25933879

  14. Pulse-forming-line based on-chip short pulse generator

    NASA Astrophysics Data System (ADS)

    Zou, Huan; Wang, Haiyang

    2015-04-01

    A traditional pulse generation circuit based on the pulse-forming-line (PFL) is implemented in a commercial 0.13 μm digital CMOS technology. A meandered on-chip coplanar waveguide is used as the PFL, and CMOS transistor is used as switch in the Cadence Spectre simulation. The circuit sample is fabricated and tested. Pulses of ˜170 ps durations and 120-200 mV amplitudes are obtained when the power supply is tuned from 1.2 V to 2 V. The results show that the traditional PFL based circuit can be implemented in standard CMOS technology for on-chip short pulse generation. Furthermore, the PFL circuits significantly extend the short pulse generation capabilities of CMOS technology.

  15. Two-layer wireless distributed sensor/control network based on RF

    NASA Astrophysics Data System (ADS)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  16. Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios.

    PubMed

    Aerts, Sam; Plets, David; Verloock, Leen; Martens, Luc; Joseph, Wout

    2014-12-01

    The indoor coverage of a mobile service can be drastically improved by deployment of an indoor femtocell base station (FBS). However, the impact of its proximity on the total exposure of the human body to radio-frequency (RF) electromagnetic fields (EMFs) is unknown. Using a framework designed for the combination of near-field and far-field exposure, the authors assessed and compared the RF-EMF exposure of a mobile-phone (MP) user that is either connected to an FBS or a conventional macrocell base station while in an office environment. It is found that, in average macrocell coverage and MP use-time conditions and for Universal Mobile Telecommunications System technology, the total exposure can be reduced by a factor of 20-40 by using an FBS, mostly due to the significant decrease in the output power of the MP. In general, the framework presented in this study can be used for any exposure scenario, featuring any number of technologies, base stations and/or access points, users and duration. PMID:24185915

  17. Quantitative description of RF power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging

    PubMed Central

    Wu, Renhua; Longo, Dario Livio; Aime, Silvio; Sun, Phillip Zhe

    2015-01-01

    Chemical exchange saturation transfer (CEST) MRI holds great promise for imaging pH. However, routine CEST measurement varies not only with pH-dependent chemical exchange rate but also with CEST agent concentration, providing pH-weighted information. Conventional ratiometric CEST imaging normalizes the confounding concentration factor by analyzing the relative CEST effect from different exchangeable groups, requiring CEST agents with multiple chemically distinguishable labile proton sites. Recently, an RF power-based ratiometric CEST MRI approach has been developed for concentration-independent pH MRI using CEST agents with a single exchangeable group. To facilitate quantification and optimization of the new ratiometric analysis, we quantitated RF power-based ratiometric CEST ratio (rCESTR) and derived its signal-to-noise and contrast-to-noise ratio. Using creatine as a representative CEST agent containing a single exchangeable site, our study demonstrated that optimized RF power-based ratiometric analysis provides good pH sensitivity. We showed that rCESTR follows a base-catalyzed exchange relationship with pH independent of creatine concentration. The pH accuracy of RF power-based ratiometric MRI was within 0.15–0.20 pH unit. Furthermore, absolute exchange rate can be obtained from the proposed ratiometric analysis. To summarize, RF power-based ratiometric CEST analysis provides concentration-independent pH-sensitive imaging and complements conventional multiple labile proton groups-based ratiometric CEST analysis. PMID:25807919

  18. Raman Based Dispersive Systems for Short Pulse Generation and Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Kalyoncu, Salih Kagan

    Spatiotemporal dispersive systems have been widely utilized for nonlinear optics and optical signal processing applications. This thesis is dedicated to the investigation of dispersive and nonlinear properties of optical fibers, temporal dispersion for real time operation and spatially dispersed pulse shaping systems. In particular, this thesis is focused on Raman based dispersive systems based on such promising techniques as dispersion management, photonic time stretching and space-to-wavelength mapping for synchronous pulse generation and all-optical RF arbitrary waveform generation incorporated with mature MEMS technology. The first part of this thesis discusses a novel technique of using dispersion managed system for synchronous first and second order pulsed Raman lasers that can achieve frequency spacing of up to 1000 cm-1, which are widely utilized for CARS microscopy applications. In particular, I focus on analytical and numerical analysis of pulsed stability derived for Raman lasers by using dispersion-managed telecom fibers and pumping at near 1530 nm telecom wavelengths. I show the evolution of the first and second order Stokes signals at the output for different peak pump power and the net anomalous dispersion combinations. I determine the stability condition for dispersion-managed synchronous Raman lasers up to second order. In the second part of the thesis, the noise performance of the amplified time stretched systems is investigated. Amplified time stretched systems enabling real time applications such as high-speed analog-to-digital converters, RF arbitrary waveform generation and dispersive imaging are performance limited by the noise cumulated in the system. In particular, I analyze the noise performance and hence the effective number of bits (ENOB) performance of time stretch ADCs with distributed and lumped amplifications. I estimate that distributed amplification in time stretch system with >10GHz analog bandwidth exhibit up to 16dB higher SNR

  19. Recombination Parameters for Antimonide-Based Semiconductors using RF Photoreflection Techniques

    SciTech Connect

    R.J. Kumar; J.M. Borrego; P.S. Dutta; R.J. Gutmann; C.A. Wang; R.U. Martinelli; G. Nichols

    2002-10-10

    RF photoreflection measurements and PC-1D simulations have been used to evaluate bulk and surface recombination parameters in antimonide-based materials. PC-1D is used to simulate the photoconductivity response of antimonide-based substrates and doubly-capped epitaxial layers and also to determine how to extract the recombination parameters using experimental results. Excellent agreement has been obtained with a first-order model and test structure simulation when Shockley-Reed-Hall (SRH) recombination is the bulk recombination process. When radiative, Auger and surface recombination are included, the simulation results show good agreement with the model. RF photoreflection measurements and simulations using PC-1D are compatible with a radiative recombination coefficient (B) of approximately 5 x 10{sup -11} cm{sup 3}/s, Auger coefficient (C) {approx} 1.0 x 10{sup -28} cm{sup 6}/s and surface recombination velocity (SRV) {approx} 600 cm/s for 0.50-0.55 eV doubly-capped InGaAsSb material with GaSb capping layers using the experimentally determined active layer doping of 2 x 10{sup 17} cm{sup -3}. Photon recycling, neglected in the analysis and simulations presented, will affect the extracted recombination parameters to some extent.

  20. Physics-based statistical model and simulation method of RF propagation in urban environments

    DOEpatents

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  1. Advanced RF power sources for linacs

    SciTech Connect

    Wilson, P.B.

    1996-10-01

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  2. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  3. On the feasibility of superjunction thick-SOI power LDMOS transistors for RF base station applications

    NASA Astrophysics Data System (ADS)

    Cortes, I.; Roig, J.; Flores, D.; Hidalgo, S.; Rebollo, J.

    2007-02-01

    The feasibility of applying the superjunction (SJ) concept to a thick-SOI LDMOS transistor for base station applications is studied in this paper. An extensive comparison with conventional RF LDMOS structures is performed in terms of breakdown voltage (VBR) versus drift resistance (Rdr) values. Unlike conventional LDMOS structures, the Rdr value in SJ LDMOS structures not only depends on the doping concentration but especially on the characteristics of P and N pillars. The charge compensation due to inter-diffusion between adjacent pillars is responsible for the observed Rdr increase. In order to accomplish an optimum pillar formation with the minimum possible transition between P and N pillars with inherent net doping reduction, high energy multi-implantations and a small thermal budget must be used. Moreover, the distance between P and N pillar implantation windows must be properly set to alleviate the doping inter-diffusion effect. The VBR/Rdr ratio value is a good indicator to evaluate the SJ LDMOS feasibility for RF applications.

  4. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity.

    PubMed

    Zhang, Haiyang; Brunel, Marc; Romanelli, Marco; Vallet, Marc

    2016-04-01

    This paper investigates the radio frequency (RF) up-conversion properties of a frequency-shifting external cavity on a laser beam. We consider an infrared passively Q-switched pulsed laser whose intensity modulation results from the multiple round-trips in the external cavity, which contains a frequency shifter. The output beam undergoes optical second-harmonic generation necessary to reach the green wavelength. We model the pulse train using a rate-equation model to simulate the laser pulses, together with a time-delayed interference calculation taking both the diffraction efficiency and the Gaussian beam propagation into account. The predictions are verified experimentally using a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG whose pulse train makes multiple round-trips in a mode-matched external cavity containing an acousto-optic frequency shifter driven at 85 MHz. Second-harmonic generation is realized in a KTP crystal, yielding RF-modulated pulses at 532 nm with a modulation contrast of almost 100%. RF harmonics up to the 6th order (1.020 GHz) are observed in the green output pulses. Such a RF-modulated green laser may find applications in underwater detection and ranging. PMID:27139644

  5. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    NASA Astrophysics Data System (ADS)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  6. A compact bipolar pulse-forming network-Marx generator based on pulse transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  7. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory. PMID:24985810

  8. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    PubMed

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns. PMID:24289423

  9. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    SciTech Connect

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  10. Active inductor based fully integrated CMOS transmit/ receive switch for 2.4 GHz RF transceiver.

    PubMed

    Bhuiyan, Mohammad A S; Zijie, Yeoh; Yu, Jae S; Reaz, Mamun B I; Kamal, Noorfazila; Chang, Tae G

    2016-05-31

    Modern Radio Frequency (RF) transceivers cannot be imagined without high-performance (Transmit/Receive) T/R switch. Available T/R switches suffer mainly due to the lack of good trade-off among the performance parameters, where high isolation and low insertion loss are very essential. In this study, a T/R switch with high isolation and low insertion loss performance has been designed by using Silterra 0.13µm CMOS process for 2.4GHz ISM band RF transceivers. Transistor aspect ratio optimization, proper gate bias resistance, resistive body floating and active inductor-based parallel resonance techniques have been implemented to achieve better trade-off. The proposed T/R switch exhibits 0.85dB insertion loss and 45.17dB isolation in both transmit and receive modes. Moreover, it shows very competitive values of power handling capability (P1dB) and linearity (IIP3) which are 11.35dBm and 19.60dBm, respectively. Due to avoiding bulky inductor and capacitor, the proposed active inductor-based T/R switch became highly compact occupying only 0.003mm2 of silicon space; which will further trim down the total cost of the transceiver. Therefore, the proposed active inductor-based T/R switch in 0.13µm CMOS process will be highly useful for the electronic industries where low-power, high-performance and compactness of devices are the crucial concerns. PMID:27254443

  11. Arterial stiffness estimation based photoplethysmographic pulse wave analysis

    NASA Astrophysics Data System (ADS)

    Huotari, Matti; Maatta, Kari; Kostamovaara, Juha

    2010-11-01

    Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.

  12. RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping.

    PubMed

    Ezpeleta, Santiago; Claver, José M; Pérez-Solano, Juan J; Martí, José V

    2015-01-01

    Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken. PMID:26516862

  13. IT-based soil quality evaluation for agroecologically smart land-use planning in RF conditions

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan

    2016-04-01

    Activated in the first decades of XXI century global climate, economy and farming changes sharply actualized novel IT-based approaches in soil quality evaluation to address modern agricultural issues with agroecologically smart land-use planning. Despite global projected climate changes will affect a general decline of crop yields (IPCC 2014), RF boreal and subboreal regions will benefit from predicted and already particularly verified temperature warming and increased precipitation (Valentini, Vasenev, 2015) due to essential increasing of growing season length and mild climate conditions favorable for most prospective crops and best available agrotechnologies. However, the essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central European region of Russia which is one of the biggest «food baskets» in RF. In these conditions potentially favorable climate circumstances will increase not only soil fertility and workability features but also their dynamics and spatial variability that determine crucial issues of IT-based soil quality evaluation systems development and agroecologically smart farming planning. Developed and verified within the LAMP project (RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for smart farming agroecological optimization in global climate and farming changes challenges. Information basis for agroecologically smart land-use planning consists of crops and agrotechnologies requirements, regional and local systems of agroecological zoning, local landscape and soil cover patterns, land quality and degradation risk assessments, current and previous farming practices results, agroclimatic predictions and production agroecological models, environmental limitations and planned profitability, fertilizing efficiency DSS ACORD-R. Smart land-use practice refers to sustainable balance

  14. RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping

    PubMed Central

    Ezpeleta, Santiago; Claver, José M.; Pérez-Solano, Juan J.; Martí, José V.

    2015-01-01

    Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken. PMID:26516862

  15. IT-based soil quality evaluation for agroecologically smart land-use planning in RF conditions

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan

    2016-04-01

    Activated in the first decades of XXI century global climate, economy and farming changes sharply actualized novel IT-based approaches in soil quality evaluation to address modern agricultural issues with agroecologically smart land-use planning. Despite global projected climate changes will affect a general decline of crop yields (IPCC 2014), RF boreal and subboreal regions will benefit from predicted and already particularly verified temperature warming and increased precipitation (Valentini, Vasenev, 2015) due to essential increasing of growing season length and mild climate conditions favorable for most prospective crops and best available agrotechnologies. However, the essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central European region of Russia which is one of the biggest «food baskets» in RF. In these conditions potentially favorable climate circumstances will increase not only soil fertility and workability features but also their dynamics and spatial variability that determine crucial issues of IT-based soil quality evaluation systems development and agroecologically smart farming planning. Developed and verified within the LAMP project (RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for smart farming agroecological optimization in global climate and farming changes challenges. Information basis for agroecologically smart land-use planning consists of crops and agrotechnologies requirements, regional and local systems of agroecological zoning, local landscape and soil cover patterns, land quality and degradation risk assessments, current and previous farming practices results, agroclimatic predictions and production agroecological models, environmental limitations and planned profitability, fertilizing efficiency DSS ACORD-R. Smart land-use practice refers to sustainable balance

  16. Pulse

    MedlinePlus

    Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...

  17. Shift-invariant, DWT-based "projection" method for estimation of ultrasound pulse power spectrum.

    PubMed

    Michailovich, Oleg; Adam, Dan

    2002-08-01

    An approach to computing estimates of the ultrasound pulse spectrum from echo-ultrasound RF sequences, measured from biological tissues, is proposed. It is computed by a "projection" algorithm based on the Discrete Wavelet Transform (DWT) using averaging over a range of linear shifts. It is shown that the robust, shift invariant estimate of the ultrasound pulse power spectrum can be obtained by the projection of RF line log spectrum on an appropriately chosen subspace of L2(R) (i.e., the space of square-integrable functions) that is spanned by a redundant collection of compactly supported, scaling functions. This redundant set is formed from the traditional (in Wavelet analysis) orthogonal set of scaling functions and also by all its linear (discrete) shifts. A proof is given that the estimate, so obtained, could be viewed as the average of the orthogonal projections of the RF line log spectrum, computed for all significant linear shifts of the RF line log spectrum in frequency domain. It implies that the estimate is shift-invariant. A computationally efficient scheme is presented for calculating the estimate. Proof is given that the averaged, shift-invariant estimate can be obtained simply by a convolution with a kernel, which can be viewed as the discretized auto-correlation function of the scaling function, appropriate to the particular subspace being considered. It implies that the computational burden is at most O(n log2 n), where n is the problem size, making the estimate quite suitable for real-time processing. Because of the property of the wavelet transform to suppress polynomials of orders lower than the number of the vanishing moments of the wavelet used, the presented approach can be considered as a local polynomial fitting. This locality plays a crucial role in the performance of the algorithm, improving the robustness of the estimation. Moreover, it is shown that the "averaging" nature of the proposed estimation allows using (relatively) poorly

  18. High frequency capacitively coupled RF plasma discharge effects on the order/disorder structure of PAN-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Güngör, Ümmugül E.; Bilikmen, Sinan; Akbar, Demiral

    2014-05-01

    High-resolution confocal Raman microscopy was used to investigate the effects of nitrogen plasma on unsized high strength (HS) PAN-based carbon fiber surfaces. The fibers were treated by a high frequency (40.68 MHz) capacitively coupled single RF-PECVD reactor under different processing conditions (exposure times, RF powers and gas pressures). It was found that the order/disorder structure of the treated carbon fiber changed with different processing conditions. At low pressures, the degree of disordered structure increased with HF-RF power and process time. However, at high pressures, high-order structure () was observed and almost no observable structural effects appeared at long treatment time. Also, the first-order Raman-band peaks (D and G) of the treated carbon fibers shifted. And, FWHM (), intensity () and D-band relative integrated intensity () ratios increased with ordering whereas they decreased with disordering.

  19. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver

    NASA Astrophysics Data System (ADS)

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ˜50 ns and a flat top of ˜100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ˜560 kV, output current amplitude of ˜10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 104 pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  20. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s. PMID:27370479

  1. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  2. Measured performance of the GTA rf systems

    SciTech Connect

    Denney, P.M.; Jachim, S.P.

    1993-06-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  3. Measured performance of the GTA rf systems

    SciTech Connect

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  4. A microwave imaging-based technique to localize an in-body RF source for biomedical applications.

    PubMed

    Chandra, Rohit; Johansson, Anders J; Gustafsson, Mats; Tufvesson, Fredrik

    2015-05-01

    In some biomedical applications such as wireless capsule endoscopy, the localization of an in-body radio-frequency (RF) source is important for the positioning of any abnormality inside the gastrointestinal tract. With knowledge of the location, therapeutic operations can be performed precisely at the position of the abnormality. Electrical properties (relative permittivity and conductivity) of the tissues and their distribution are utilized to estimate the position. This paper presents a method for the localization of an in-body RF source based on microwave imaging. The electrical properties of the tissues and their distribution at 403.5 MHz are found from microwave imaging and the position of an RF source is then estimated based on the image. The method is applied on synthetic noisy data, obtained after the addition of white Gaussian noise to simulated data of a simple circular phantom, and a realistic phantom in a 2-D case. The root-mean-square of the error distance between the actual and the estimated position is found to be within 10 and 4 mm for the circular and the realistic phantom, respectively, showing the capability of the proposed algorithm to work with a good accuracy even in the presence of noise for the localization of the in-body RF source. PMID:25376034

  5. ENHANCING NETWORK SECURITY USING 'LEARNING-FROM-SIGNALS' AND FRACTIONAL FOURIER TRANSFORM BASED RF-DNA FINGERPRINTS

    SciTech Connect

    Buckner, Mark A; Bobrek, Miljko; Farquhar, Ethan; Harmer, Paul K; Temple, Michael A

    2011-01-01

    Wireless Access Points (WAP) remain one of the top 10 network security threats. This research is part of an effort to develop a physical (PHY) layer aware Radio Frequency (RF) air monitoring system with multi-factor authentication to provide a first-line of defense for network security--stopping attackers before they can gain access to critical infrastructure networks through vulnerable WAPs. This paper presents early results on the identification of OFDM-based 802.11a WiFi devices using RF Distinct Native Attribute (RF-DNA) fingerprints produced by the Fractional Fourier Transform (FRFT). These fingerprints are input to a "Learning from Signals" (LFS) classifier which uses hybrid Differential Evolution/Conjugate Gradient (DECG) optimization to determine the optimal features for a low-rank model to be used for future predictions. Results are presented for devices under the most challenging conditions of intra-manufacturer classification, i.e., same-manufacturer, same-model, differing only in serial number. The results of Fractional Fourier Domain (FRFD) RF-DNA fingerprints demonstrate significant improvement over results based on Time Domain (TD), Spectral Domain (SD) and even Wavelet Domain (WD) fingerprints.

  6. Characteristics of Hydrogen Negative Ion Source with FET based RF System

    SciTech Connect

    Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N.; Tsumori, K.; Takeiri, Y.

    2011-09-26

    Characteristics of radio frequency (RF) plasma production were investigated using a FET inverter power supply as a RF generator. High density hydrogen plasma was obtained using an external coil wound a cylindrical ceramic tube (driver region) with RF frequency of lower than 0.5 MHz. When an axial magnetic field around 10 mT was applied to the driver region, an electron density increased drastically and attained to over 10{sup 19} m{sup -3} in the driver region. Effect of the axial magnetic field in driver and expansion region was examined. Lower gas pressure operation below 0.5 Pa was possible with higher RF frequency. H{sup -} density in the expansion region was measured by using laser photo-detachment system. It decreased as the axial magnetic field applied, which was caused by the increase of energetic electron from the driver.

  7. Catheter-based flexible microcoil RF detectors for internal magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, M. M.; Syms, R. R. A.; Young, I. R.; Mathew, B.; Casperz, W.; Taylor-Robinson, S. D.; Wadsworth, C. A.; Gedroyc, W. M. W.

    2009-07-01

    Flexible catheter probes for magnetic resonance imaging (MRI) of the bile duct are demonstrated. The probes consist of a cytology brush modified to accept a resonant RF detector based on a spiral microcoil and hybrid integrated capacitors, and are designed for insertion into the duct via a non-magnetic endoscope during endoscopic retrograde cholangiopancreatography (ERCP). The coil must be narrow enough (<3 mm) to pass through the biopsy channel of the endoscope and sufficiently flexible to turn through 90° to enter the duct. Coils are fabricated as multi-turn electroplated conductors on a flexible base, and two designs formed on SU-8 and polyimide substrates are compared. It is shown that careful control of thermal load is used to obtain useable mechanical properties from SU-8, and that polyimide/SU-8 composites offer improved mechanical reliability. Good electrical performance is demonstrated and sub-millimetre resolution is obtained in 1H MRI experiments at 1.5 T magnetic field strength using test phantoms and in vitro liver tissue.

  8. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    SciTech Connect

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  9. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE PAGESBeta

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a shortmore » RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  10. Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant

    SciTech Connect

    Pickett, Chris A; Younkin, James R; Kovacic, Donald N; Laughter, Mark D; Hines, Jairus B; Boyer, Brian; Martinez, B.

    2008-01-01

    Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF{sub 6}) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF{sub 6}. Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF{sub 6} cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF{sub 6} cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally

  11. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  12. Barrier RF stacking

    SciTech Connect

    Chou, W.; Wildman, D.; Zheng, H.; Takagi, A.; /KEK, Tsukuba

    2004-12-01

    A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver {+-}7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement.

  13. Barrier RF Stacking

    SciTech Connect

    Chou, W.; Wildman, D.; Zheng, H.; Takagi, A.

    2005-06-08

    A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver {+-}7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement.

  14. Barrier RF Stacking

    NASA Astrophysics Data System (ADS)

    Chou, W.; Wildman, D.; Zheng, H.; Takagi, A.

    2005-06-01

    A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver ±7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement.

  15. Evaluating the use of a continuous approximation for model-based quantification of pulsed chemical exchange saturation transfer (CEST)

    PubMed Central

    Tee, Y.K.; Khrapitchev, A.A.; Sibson, N.R.; Payne, S.J.; Chappell, M.A.

    2012-01-01

    Many potential clinical applications of chemical exchange saturation transfer (CEST) have been studied in recent years. However, due to various limitations such as specific absorption rate guidelines and scanner hardware constraints, most of the proposed applications have yet to be translated into routine diagnostic tools. Currently, pulsed CEST which uses multiple short pulses to perform the saturation is the only viable irradiation scheme for clinical translation. However, performing quantitative model-based analysis on pulsed CEST is time consuming because it is necessary to account for the time dependent amplitude of the saturation pulses. As a result, pulsed CEST is generally treated as continuous CEST by finding its equivalent average field or power. Nevertheless, theoretical analysis and simulations reveal that the resulting magnetization is different when the different irradiation schemes are applied. In this study, the quantification of important model parameters such as the amine proton exchange rate from a pulsed CEST experiment using quantitative model-based analyses were examined. Two model-based approaches were considered – discretized and continuous approximation to the time dependent RF irradiation pulses. The results showed that the discretized method was able to fit the experimental data substantially better than its continuous counterpart, but the smaller fitted error of the former did not translate to significantly better fit for the important model parameters. For quantification of the endogenous CEST effect, such as in amide proton transfer imaging, a model-based approach using the average power equivalent saturation can thus be used in place of the discretized approximation. PMID:22858666

  16. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic

  17. Ultrabroadband phased-array radio frequency (RF) receivers based on optical techniques

    NASA Astrophysics Data System (ADS)

    Overmiller, Brock M.; Schuetz, Christopher A.; Schneider, Garrett; Murakowski, Janusz; Prather, Dennis W.

    2014-03-01

    Military operations require the ability to locate and identify electronic emissions in the battlefield environment. However, recent developments in radio detection and ranging (RADAR) and communications technology are making it harder to effectively identify such emissions. Phased array systems aid in discriminating emitters in the scene by virtue of their relatively high-gain beam steering and nulling capabilities. For the purpose of locating emitters, we present an approach realize a broadband receiver based on optical processing techniques applied to the response of detectors in conformal antenna arrays. This approach utilizes photonic techniques that enable us to capture, route, and process the incoming signals. Optical modulators convert the incoming signals up to and exceeding 110 GHz with appreciable conversion efficiency and route these signals via fiber optics to a central processing location. This central processor consists of a closed loop phase control system which compensates for phase fluctuations induced on the fibers due to thermal or acoustic vibrations as well as an optical heterodyne approach for signal conversion down to baseband. Our optical heterodyne approach uses injection-locked paired optical sources to perform heterodyne downconversion/frequency identification of the detected emission. Preliminary geolocation and frequency identification testing of electronic emissions has been performed demonstrating the capabilities of our RF receiver.

  18. IEEE-802.15.4-based low-power body sensor node with RF energy harvester.

    PubMed

    Tran, Thang Viet; Chung, Wan-Young

    2014-01-01

    This paper proposes the design and implementation of a low-voltage and low-power body sensor node based on the IEEE 802.15.4 standard to collect electrocardiography (ECG) and photoplethysmography (PPG) signals. To achieve compact size, low supply voltage, and low power consumption, the proposed platform is integrated into a ZigBee mote, which contains a DC-DC booster, a PPG sensor interface module, and an ECG front-end circuit that has ultra-low current consumption. The input voltage of the proposed node is very low and has a wide range, from 0.65 V to 3.3 V. An RF energy harvester is also designed to charge the battery during the working mode or standby mode of the node. The power consumption of the proposed node reaches 14 mW in working mode to prolong the battery lifetime. The software is supported by the nesC language under the TinyOS environment, which enables the proposed node to be easily configured to function as an individual health monitoring node or a node in a wireless body sensor network (BSN). The proposed node is used to set up a wireless BSN that can simultaneously collect ECG and PPG signals and monitor the results on the personal computer. PMID:25227063

  19. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  20. Fast magneto-optic switch based on nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min

    2011-09-01

    The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.

  1. Pulsed-Current Welding Of Nickel-Based Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Kurgan, C.; Malone, T. W.

    1993-01-01

    Joints as strong (or stronger than) joints made with constant current. Report based on study of pulsed-current versus constant-current gas/tungsten arc welding of butt joints between panels of nickel-based alloy 718. In pulsed-current welding, arc current alternated between high and low value. Enables greater control of freezing and depth of penetration of weld puddle at given heat input. Thicker sections joined. Readily incorporated into automated welding system, with resultant greater uniformity and reproducibility of welds than attained in manual welding.

  2. Eliminating side excitations in PROPELLER-based 2D-selective RF excitations.

    PubMed

    Busch, Martin G; Finsterbusch, Jürgen

    2012-11-01

    Recently, spatially two-dimensional selective radiofrequency excitations based on the PROPELLER trajectory have been presented and were applied to minimize partial volume effects in single-voxel MR spectroscopy. Thereby, residual side excitations appeared due to limitations of the Voronoi diagram that was used to consider the nonconstant sampling density, and trajectory distortions caused by eddy currents varying between the differently rotated blades. In this extension, one of the refocusing radiofrequency pulses of a PRESS-based pulse sequence is applied in the blip direction of each segment to eliminate the side excitations. This corresponds to an infinitely dense sampling of the blade and the required sampling density correction can easily be calculated. Thus, signal contributions from outside the desired region-of-interest are completely avoided. The feasibility of this approach to acquire single-voxel MR spectra of anatomically defined regions-of-interest is demonstrated in the human brain in vivo on a 3T whole-body MR system. PMID:22294489

  3. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging

    PubMed Central

    Huettner, Andrew M.; Mickevicius, Nikolai J.; Ersoz, Ali; Koch, Kevin M.; Muftuler, L. Tugan; Nencka, Andrew S.

    2015-01-01

    A new method for designing radiofrequency (RF) pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS) spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS) acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging. PMID:26517262

  4. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    PubMed

    Huettner, Andrew M; Mickevicius, Nikolai J; Ersoz, Ali; Koch, Kevin M; Muftuler, L Tugan; Nencka, Andrew S

    2015-01-01

    A new method for designing radiofrequency (RF) pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS) spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS) acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging. PMID:26517262

  5. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  6. A design approach for systems based on magnetic pulse compression.

    PubMed

    Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P

    2008-04-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results. PMID:18447549

  7. Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Cadeau, Trevor J.; Krause, Thomas W.

    2009-03-01

    Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.

  8. Pulse-shaping based two-photon FRET stoichiometry

    PubMed Central

    Flynn, Daniel C.; Bhagwat, Amar R.; Brenner, Meredith H.; Núñez, Marcos F.; Mork, Briana E.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2015-01-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor. PMID:25836193

  9. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation.

    PubMed

    Urricelqui, Javier; Zornoza, Ander; Sagues, Mikel; Loayssa, Alayn

    2012-11-19

    We demonstrate a novel dynamic BOTDA sensor based, for the first time to our knowledge, on the use of the Brillouin phase-shift in addition to the conventional Brillouin gain. This provides the advantage of measurements that are largely immune to variations in fiber attenuation or changes in pump pulse power. Furthermore, the optical detection deployed leads to an enhanced precision or measurement time and to the broadening of the measurement range. Proof-of-concept experiments demonstrate 1.66-kHz measurement rate with 1-m resolution over a 160 m sensing fiber length. Moreover, a measurement range of 2560 µε with a precision of 20 µε is successfully proved. PMID:23187549

  10. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically. PMID:24593384

  11. A "Proof-of-Concept" Demonstration of RF-Based Technologies for UF6 Cylinder Tracking at Centrifuge Enrichment Plant

    SciTech Connect

    Pickett, Chris A; Younkin, James R; Kovacic, Donald N; Dixon, E. T.; Martinez, B.

    2007-01-01

    This effort describes how radio-frequency (RF) technology can be integrated into a uranium enrichment facility's nuclear materials accounting and control program to enhance uranium hexafluoride (UF6) cylinder tracking and thus provide benefits to both domestic and international safeguards. Approved industry-standard cylinders are used to handle and store UF6 feed, product, tails, and samples at uranium enrichment plants. In the international arena, the International Atomic Energy Agency (IAEA) relies on time-consuming manual cylinder inventory and tracking techniques to verify operator declarations and to detect potential diversion of UF6. Development of a reliable, automated, and tamper-resistant process for tracking and monitoring UF6 cylinders would greatly reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a "proof-of concept" system that was designed show the feasibility of using RF based technologies to track individual UF6 cylinders throughout their entire life cycle, and thus ensure both increased domestic accountability of materials and a more effective and efficient method for application of IAEA international safeguards at the site level. The proposed system incorporates RF-based identification devices, which provide a mechanism for a reliable, automated, and tamper-resistant tracking network. We explore how securely attached RF tags can be integrated with other safeguards technologies to better detect diversion of cylinders. The tracking system could also provide a foundation for integration of other types of safeguards that would further enhance detection of undeclared activities.

  12. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  13. Block-Based Neural Networks with Pulsed Neuron Model

    NASA Astrophysics Data System (ADS)

    Iguchi, Syota; Koakutsu, Seiichi; Okamoto, Takashi; Hirata, Hironori

    In recent years, the study of hardware implementation of Neural Networks (NN) has been getting more important. In particular, Block-Based Neural Networks (BBNN) which are one of NN have been attracted attention. However, the conventional BBNN are analogue NN (ANN). The digital hardware implementation of ANN is very difficult, because the input and output signals are represented as analogue values. Pulsed Neural Networks (PNN) which adopt a pulsed neuron (PN) model instead of the AN model have been proposed in order to solve this problem. The input and output signals of PNN are represented as a series of pulses, and thus the digital hardware implementation of PNN becomes easy. In this paper, we propose Block-Based Pulsed Neural Networks (BBPNN) introducing the PN model into BBNN in order to faciliate the implementation of NN on digital hardware. We use particle swarm optimization (PSO) for optimization of weights of BBPNN, because PSO can produce a globally optimum solution of nonlinear continuous optimization problems in practicable calculation time by high accuracy. To evaluate the proposed BBPNN, we apply them to XOR problem and autonomous mobile robot control problems. Computational experiments indicate that the proposed BBPNN and the conventional BBNN can produce about the same results.

  14. Optical pulse compression reflectometry based on single-sideband modulator driven by electrical frequency-modulated pulse

    NASA Astrophysics Data System (ADS)

    Zou, Weiwen; Yu, Lei; Yang, Shuo; Chen, Jianping

    2016-05-01

    We propose a novel scheme to generate a linear frequency-modulated optical pulse with high extinction ratio based on an electrical frequency-modulated pulse and optical single-sideband modulator. This scheme is proved to improve the stability and accuracy of optical pulse compression reflectometry (OPCR). In the experiment, a high spatial resolution of 10 cm and a long measurement range of 10.8 km using a laser source with 2-km coherence length are demonstrated.

  15. Pulse based sensor networking using mechanical waves through metal substrates

    NASA Astrophysics Data System (ADS)

    Lorenz, S.; Dong, B.; Huo, Q.; Tomlinson, W. J.; Biswas, S.

    2013-05-01

    This paper presents a novel wireless sensor networking technique using ultrasonic signal as the carrier wave for binary data exchange. Using the properties of lamb wave propagation through metal substrates, the proposed network structure can be used for runtime transport of structural fault information to ultrasound access points. Primary applications of the proposed sensor networking technique will include conveying fault information on an aircraft wing or on a bridge to an ultrasonic access point using ultrasonic wave through the structure itself (i.e. wing or bridge). Once a fault event has been detected, a mechanical pulse is forwarded to the access node using shortest path multi-hop ultrasonic pulse routing. The advantages of mechanical waves over traditional radio transmission using pulses are the following: First, unlike radio frequency, surface acoustic waves are not detectable outside the medium, which increases the inherent security for sensitive environments in respect to tapping. Second, event detection can be represented by the injection of a single mechanical pulse at a specific temporal position, whereas radio messages usually take several bits. The contributions of this paper are: 1) Development of a transceiver for transmitting/receiving ultrasound pulses with a pulse loss rate below 2·10-5 and false positive rate with an upper bound of 2·10-4. 2) A novel one-hop distance estimation based on the properties of lamb wave propagation with an accuracy of above 80%. 3) Implementation of a wireless sensor network using mechanical wave propagation for event detection on a 2024 aluminum alloy commonly used for aircraft skin construction.

  16. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications

    PubMed Central

    Sun, Li; Savory, Joshua J.; Warncke, Kurt

    2014-01-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range. PMID:25076864

  17. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.

    PubMed

    Sun, Li; Savory, Joshua J; Warncke, Kurt

    2013-08-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range. PMID:25076864

  18. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    SciTech Connect

    Wilcox, R.; Byrd, J. M.; Doolittle, L.; Huang, G.; Staples, J. W.

    2010-01-02

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  19. Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Tang, Ming; Shi, Jun; Fu, Songnian; Li, Lihua; Liu, Ying; Cheng, Xueping; Liu, Jian; Shum, Ping

    2015-03-01

    Although the Master Oscillator Power-Amplifier (MOPA) based fiber laser has received much attention for laser marking process due to its large tunabilty of pulse duration (from 10ns to 1ms), repetition rate (100Hz to 500kHz), high peak power and extraordinary heat dissipating capability, the output pulse deformation due to the saturation effect of fiber amplifier is detrimental for many applications. We proposed and demonstrated that, by utilizing Genetic algorithm (GA) based optimization technique, the input pulse profile from the master oscillator (current-driven laser diode) could be conveniently optimized to achieve targeted output pulse shape according to real parameters' constraints. In this work, an Yb-doped high power fiber amplifier is considered and a 200ns square shaped pulse profile is the optimization target. Since the input pulse with longer leading edge and shorter trailing edge can compensate the saturation effect, linear, quadratic and cubic polynomial functions are used to describe the input pulse with limited number of unknowns(<5). Coefficients of the polynomial functions are the optimization objects. With reasonable cost and hardware limitations, the cubic input pulse with 4 coefficients is found to be the best as the output amplified pulse can achieve excellent flatness within the square shape. Considering the bandwidth constraint of practical electronics, we examined high-frequency component cut-off effect of input pulses and found that the optimized cubic input pulses with 300MHz bandwidth is still quite acceptable to satisfy the requirement for the amplified output pulse and it is feasible to establish such a pulse generator in real applications.

  20. DSP-based Mitigation of RF Front-end Non-linearity in Cognitive Wideband Receivers

    NASA Astrophysics Data System (ADS)

    Grimm, Michael; Sharma, Rajesh K.; Hein, Matthias A.; Thomä, Reiner S.

    2012-09-01

    Software defined radios are increasingly used in modern communication systems, especially in cognitive radio. Since this technology has been commercially available, more and more practical deployments are emerging and its challenges and realistic limitations are being revealed. One of the main problems is the RF performance of the front-end over a wide bandwidth. This paper presents an analysis and mitigation of RF impairments in wideband front-ends for software defined radios, focussing on non-linear distortions in the receiver. We discuss the effects of non-linear distortions upon spectrum sensing in cognitive radio and analyse the performance of a typical wideband software-defined receiver. Digital signal processing techniques are used to alleviate non-linear distortions in the baseband signal. A feed-forward mitigation algorithm with an adaptive filter is implemented and applied to real measurement data. The results obtained show that distortions can be suppressed significantly and thus increasing the reliability of spectrum sensing.

  1. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.

  2. Development of a chemical microthruster based on pulsed detonation

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Hsun; Lu, Tsung-Hsun

    2012-10-01

    The development of a microthruster based on gaseous pulsed detonation is presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is first experimentally investigated in a microchannel with 1 mm × 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce the time and distance required for the reaction wave to run up to detonation in a smooth channel. High-speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. The validated concepts are implemented for the development of an integrated pulsed detonation microthruster. The microthruster was fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes were embedded in the ceramic microthruster. The channel and via holes were fabricated using laser cutting techniques. Ion probe measurements showed that the reaction wave propagated at velocities larger than 2000 m s-1 before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 200 Hz.

  3. Gold-based thin multilayers for ohmic contacts in RF-MEMS switches

    NASA Astrophysics Data System (ADS)

    Mulloni, V.; Iannacci, J.; Bartali, R.; Micheli, V.; Colpo, S.; Laidani, N.; Margesin, B.

    2011-06-01

    In RF-MEMS switches many reliability issues are related to the metal contacts in the switching area. The characteristics of this contact influence not only contact resistance and insertion loss, but also the most relevant switch failure mechanisms that are wear of ohmic contact, adhesion and stiction. Gold is widely used for this purpose because of its good conductivity and chemical inertness, but is a soft metal, and the development of hard contact materials with low resistivity is of great interest for RF-MEMS switch reliability. It is possible to increase the contact hardness preserving the convenient gold properties alternating gold layers with thin layers of different metals. The material becomes harder not only by simple alloying but also by the presence of interfaces which act as barriers for mechanical dislocation migration. A detailed study of mechanical, electrical and morphological properties of gold-chromium, gold-platinum and gold-palladium multilayers is presented and discussed. It is found that the annealing treatments are important for tuning hardness values, and a careful choice of the alloying metal is essential when the material is inserted in a real switch fabrication cycle, because hardness improvements can vanish during oxygen plasma treatments usually involved in RF-switches fabrication. Platinum is the only metal tested that is unaffected by oxidation, and also modifies the chromium adhesion layer diffusion on the contact surface.

  4. High Power RF Transmitters for ICRF Applications on EAST

    NASA Astrophysics Data System (ADS)

    Mao, Yuzhou; Yuan, Shuai; Zhao, Yanping; Zhang, Xinjun; Chen, Gen; Kumazawa, R.; Cheng, Yan; Wang, Lei; Ju, Songqing; Deng, Xu; Qin, Chengming; Yang, Lei

    2013-03-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R&D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  5. A High Efficiency, Miniaturized Ka Band Traveling Wave Tube Based on a Novel Finned Ladder RF Circuit Design

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Wilson, J. D.; Vaden, K. R.; Force, D. A.; Freeman, J. C.; Lesny, G. G.; Kory, C. L.; Chevalier, C. T.; Ebihara, B.; Dayton, J. A.; Williams, W. D. (Technical Monitor)

    2001-01-01

    Space communications architectures are being planned to meet the high rate data distribution requirements of future NASA Enterprise missions. These will require the use of traveling wave tube amplifiers (TWTAs) to provide the high frequency, RF (radio frequency) power and efficiency needed for many of the communications links. A program addressing these requirements is currently underway at NASA Glenn Research Center (GRC) for the development of a high efficiency, 20 watt, 32 GHz TWT of reduced size and weight that is based on a novel high gain n circuit design, termed the 'finned ladder'.

  6. RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY

    SciTech Connect

    Pickett, Chris A; Kovacic, Donald N; Morgan, Jim; Younkin, James R; Carrick, Bernie; Ken, Whittle; Johns, R E

    2008-09-01

    Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to

  7. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    PubMed

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period. PMID:27400527

  8. Pulse shaping analysis with LAB-based liquid scintillators

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Ma, K. J.; Jeon, E. J.; Kim, J. Y.; Kim, N. Y.; Kim, Y. D.; Lee, J. Y.

    2012-02-01

    We report on a pulse shaping analysis for alpha-beta discrimination using a linear alkylbenzene (LAB)-based liquid scintillator developed for reactor neutrino experiments. The scintillation properties are measured with an internal alpha source diluted in the same scintillator and an external gamma source. The comparison of the fast and the slow parts in the signal waveforms provide clear separations of alpha and gamma events in the liquid scintillator. The discrimination power is compared between the LAB-based liquid scintillator and other commercially available liquid scintillators. The potential use of this scintillator when loaded with 6Li is discussed with regard to neutron measurements.

  9. RF-CLASS: A Remote-sensing-based Interoperable Web service system for Flood Crop Loss Assessment

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Kang, L.

    2014-12-01

    Flood is one of the worst natural disasters in the world. Flooding often causes significant crop loss over large agricultural areas in the United States. Two USDA agencies, the National Agricultural Statistics Service (NASS) and Risk Management Agency (RMA), make decisions on flood statistics, crop insurance policy, and recovery management by collecting, analyzing, reporting, and utilizing flooded crop acreage and crop loss information. NASS has the mandate to report crop loss after all flood events. RMA manages crop insurance policy and uses crop loss information to guide the creation of the crop insurance policy and the aftermath compensation. Many studies have been conducted in the recent years on monitoring floods and assessing the crop loss due to floods with remote sensing and geographic information technologies. The Remote-sensing-based Flood Crop Loss Assessment Service System (RF-CLASS), being developed with NASA and USDA support, aims to significantly improve the post-flood agricultural decision-making supports in USDA by integrating and advancing the recently developed technologies. RF-CLASS will operationally provide information to support USDA decision making activities on collecting and archiving flood acreage and duration, recording annual crop loss due to flood, assessing the crop insurance rating areas, investigating crop policy compliance, and spot checking of crop loss claims. This presentation will discuss the remote sensing and GIS based methods for deriving the needed information to support the decision making, the RF-CLASS cybersystem architecture, the standards and interoperability arrangements in the system, and the current and planned capabilities of the system.

  10. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846