Science.gov

Sample records for pulse duration measurements

  1. PULSE DURATION LENGTHENER

    DOEpatents

    Aiken, W.R.

    1958-02-01

    This patent pertains to pulse modifying apparatus and, more particularly, describes a device to provide a rise time and time base expander for signal pulses having a very short duration. The basic element of the device is a vacuum tube comprising a charged particie beam, grid control means, an accelerating electrode, a drift tube, and a collector electrode. As the short duration input pulse modulates the particle beam through the grid control means, the voltage between the drift tube and accelerating electrode is caused to vary, whereby the output signal from the collector is a pulse having longer rise time, expanded duration and proportionate characteristics of the original pulse. The invention is particuiarly useful where subsequent pulse circultry does not have the frequency bandwidth to handle the short duration pulse without distorting it.

  2. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra.

    PubMed

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH's data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  3. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    PubMed Central

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  4. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    SciTech Connect

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.; Kaminker, I.; Goldfarb, D.; Walter, E. D.; Song, Y.; Meade, T. J.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.

  5. Effects of pulse duration on magnetostimulation thresholds

    SciTech Connect

    Saritas, Emine U.; Goodwill, Patrick W.; Conolly, Steven M.

    2015-06-15

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  6. Investigation of laser temporal pulse duration on Rayleigh scattering

    SciTech Connect

    Nee, T.A.; Roberts, J.R.

    1982-02-01

    Relative Rayleigh-scattering cross sections from nitrogen have been measured for various pulse durations and wavelengths of incident laser radiation. No pulse-duration dependence has been observed for laser pulses as short as 5 ns, and classical theory is found to be still valid over the pulse-width range (5< or =..delta..t< or =110 ns) of our observations.

  7. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  8. Kicking atoms with finite duration pulses

    NASA Astrophysics Data System (ADS)

    Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.

    2016-05-01

    The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.

  9. Effect of laser pulse duration in picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Dehoux, T.; Perton, M.; Chigarev, N.; Rossignol, C.; Rampnoux, J.-M.; Audoin, B.

    2006-09-01

    An optical grating has been introduced in a picosecond ultrasonics experiment, in order to vary continuously the duration of the laser beam pulse from 0.1to150ps. The evolution of the measured signal has been observed and analyzed through the comparison with a theoretical approach based on a two-temperature model. The latter allows matching the acoustic echoes together with the thermal background and the coincidence peak, for each pulse duration and at any time scale. The broadening of the acoustic echoes and the disappearing of its Brillouin component, along with the diminishing of the thermal coincidence peak, have been demonstrated when increasing the pulse duration. For a constant incident pulse energy, the efficiency of acoustic generation is optimum for the shortest pulses. Nevertheless, for longer pulses designed to obtain thermal conditions below the ablation threshold, acoustic generation could be enhanced.

  10. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-15

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  11. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    NASA Astrophysics Data System (ADS)

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-01

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  12. TDR Using Autocorrelation and Varying-Duration Pulses

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Mullinex, Pam; Huang, PoTien; Santiago, Josephine; Mata, Carlos; Zavala, Carlos; Lane, John

    2008-01-01

    In an alternative to a prior technique of time-domain-reflectometry (TDR) in which very short excitation pulses are used, the pulses have very short rise and fall times and the pulse duration is varied continuously between a minimum and a maximum value. In both the present and prior techniques, the basic idea is to (1) measure the times between the generation of excitation pulses and the reception of reflections of the pulses as indications of the locations of one or more defects along a cable and (2) measure the amplitudes of the reflections as indication of the magnitudes of the defects. In general, an excitation pulse has a duration T. Each leading and trailing edge of an excitation pulse generates a reflection from a defect, so that a unique pair of reflections is associated with each defect. In the present alternative technique, the processing of the measured reflection signal includes computation of the autocorrelation function R(tau) identical with fx(t)x(t-tau)dt where t is time, x(t) is the measured reflection signal at time t, and taus is the correlation interval. The integration is performed over a measurement time interval short enough to enable identification and location of a defect within the corresponding spatial interval along the cable. Typically, where there is a defect, R(tau) exhibits a negative peak having maximum magnitude for tau in the vicinity of T. This peak can be used as a means of identifying a leading-edge/trailing-edge reflection pair. For a given spatial interval, measurements are made and R(tau) computed, as described above, for pulse durations T ranging from the minimum to the maximum value. The advantage of doing this is that the effective signal-to-noise ratio may be significantly increased over that attainable by use of a fixed pulse duration T.

  13. Period and pulse duration with "strobe" lights

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer

    2016-01-01

    Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.

  14. Pulse measurement apparatus and method

    DOEpatents

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  15. Investigation of stone retropulsion as a function of Ho:YAG Laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Lee, Ho; Petersen, Jason; Teichman, J. H.; Welch, A. J.

    2006-02-01

    Stone retropulsion during Ho:YAG (λ = 2.12 μm) laser lithotripsy with various pulse durations (τ p: 250 ~ 495 μsec) was investigated. Depending on pulse energy, optical pulse durations were divided into two regimes: short pulse (250~350 μsec) and long pulse (315~495 μsec). Retropulsion distance was measured as a function of pulse energy from 0.4 J to 1.2 J. Calculus phantoms made from plaster of Paris were ablated with a free running Ho:YAG laser using various optical fibers (200, 400, 600 μm) in water. In order to examine the ablation efficiency of two different pulse durations, a single pulse was applied, and the dynamics of the recoil action of a calculus phantom was monitored using a high-speed camera. The correlation among laser-induced topography, ablation volume, and retropulsion was evaluated. Higher pulse energy and larger fibers resulted in larger ablation volume and retropulsion. At a given pulse energy, optical pulses with different durations yielded comparable ablation volumes. The shorter duration pulses induced more retropulsion than longer pulses did at the same pulse energy. Larger retropulsion with the shorter pulse is thought to be induced by higher temperature at the vapor-solid interface, subsequently resulting in faster plume ejection with higher recoil momentum. The results suggest that a longer pulse could minimize retropulsion of the stone during lithotripsy.

  16. Note: compact helical pulse forming line for the generation of longer duration rectangular pulse.

    PubMed

    Sharma, Surender Kumar; Deb, P; Sharma, Archana; Shukla, R; Prabaharan, T; Adhikary, B; Shyam, A

    2012-06-01

    The helical pulsed forming line (PFL) can generate longer duration rectangular pulse in a smaller length. A compact PFL using helical water line is designed and experimentally investigated. The impedance of the helical PFL is 22 [ohm sign]. The compactness is achieved in terms of reduction in length of the PFL by a factor of 5.5 using helical water PFL as compared to coaxial water PFL of same length. The helical PFL was pulsed charged to 200 kV using a high voltage pulse transformer in 4.5 μs and discharged into the matched 22 Ω resistive load through a self-breakdown pressurized spark gap switch. The rectangular voltage pulse of 100 kV, 260 ns (FWHM) is measured across the load. The effect of reduction in water temperature on the pulse width is also studied experimentally. The increase in pulse width up to 7% more is observed by reducing the temperature of the deionized water to 5 °C. It will further reduce the length of the PFL and make the system small for compact pulsed power drivers. PMID:22755669

  17. Inductively stabilized, long pulse duration transverse discharge apparatus

    DOEpatents

    Sze, Robert C.

    1986-01-01

    An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

  18. Autocorrelation measurements of bursts of picosecond pulses

    NASA Astrophysics Data System (ADS)

    van Oerle, Bart M.; Ernst, Gerard J.

    1996-09-01

    In a master oscillator power amplifier system a powerful train of pulses can be generated. A simple method is described to measure the duration of these pulses. The measurements have been performed both at the fundamental frequency (1053 nm) and at the second harmonic (527 nm). In accordance with theoretical expectations we have observed a narrowing of the pulse owing to frequency doubling.

  19. Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas

    SciTech Connect

    Roy, A. E-mail: aroy@barc.gov.in; Harilal, S. S.; Polek, M. P.; Hassan, S. M.; Hassanein, A.; Endo, A.

    2014-03-15

    We investigated the role of laser pulse duration and intensity on extreme ultraviolet (EUV) generation and ion emission from a laser produced Sn plasma. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm Nd:YAG laser pulses with varying pulse duration (5–20 ns) and intensity. Experimental results performed at CMUXE indicate that the conversion efficiency (CE) of the EUV radiation strongly depend on laser pulse width and intensity, with a maximum CE of ∼2.0% measured for the shortest laser pulse width used (5 ns). Faraday Cup ion analysis of Sn plasma showed that the ion flux kinetic profiles are shifted to higher energy side with the reduction in laser pulse duration and narrower ion kinetic profiles are obtained for the longest pulse width used. However, our initial results showed that at a constant laser energy, the ion flux is more or less constant regardless of the excitation laser pulse width. The enhanced EUV emission obtained at shortest laser pulse duration studied is related to efficient laser-plasma reheating supported by presence of higher energy ions at these pulse durations.

  20. Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration

    PubMed Central

    Blanche, Pierre-Alexandre; Lynn, Brittany; Churin, Dmitriy; Kieu, Khanh; Norwood, Robert A.; Peyghambarian, Nasser

    2016-01-01

    The development of a single mode fiber-based pulsed laser with variable pulse duration, energy, and repetition rate has enabled the characterization of photorefractive polymer (PRP) in a previously inaccessible regime located between millisecond and microsecond single pulse illumination. With the addition of CW and nanosecond pulse lasers, four wave mixing measurements covering 9 orders of magnitudes in pulse duration are reported. Reciprocity failure of the diffraction efficiency according to the pulse duration for a constant energy density is observed and attributed to multiple excitation, transport and trapping events of the charge carriers. However, for pulses shorter than 30 μs, the efficiency reaches a plateau where an increase in energy density no longer affects the efficiency. This plateau is due to the saturation of the charge generation at high peak power given the limited number of sensitizer sites. The same behavior is observed in two different types of devices composed of the same material but with or without a buffer layer covering one electrode, which confirm the origin of these mechanisms. This new type of measurement is especially important to optimize PRP for applications using short pulse duration. PMID:27364998

  1. Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration

    NASA Astrophysics Data System (ADS)

    Blanche, Pierre-Alexandre; Lynn, Brittany; Churin, Dmitriy; Kieu, Khanh; Norwood, Robert A.; Peyghambarian, Nasser

    2016-07-01

    The development of a single mode fiber-based pulsed laser with variable pulse duration, energy, and repetition rate has enabled the characterization of photorefractive polymer (PRP) in a previously inaccessible regime located between millisecond and microsecond single pulse illumination. With the addition of CW and nanosecond pulse lasers, four wave mixing measurements covering 9 orders of magnitudes in pulse duration are reported. Reciprocity failure of the diffraction efficiency according to the pulse duration for a constant energy density is observed and attributed to multiple excitation, transport and trapping events of the charge carriers. However, for pulses shorter than 30 μs, the efficiency reaches a plateau where an increase in energy density no longer affects the efficiency. This plateau is due to the saturation of the charge generation at high peak power given the limited number of sensitizer sites. The same behavior is observed in two different types of devices composed of the same material but with or without a buffer layer covering one electrode, which confirm the origin of these mechanisms. This new type of measurement is especially important to optimize PRP for applications using short pulse duration.

  2. Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration.

    PubMed

    Blanche, Pierre-Alexandre; Lynn, Brittany; Churin, Dmitriy; Kieu, Khanh; Norwood, Robert A; Peyghambarian, Nasser

    2016-01-01

    The development of a single mode fiber-based pulsed laser with variable pulse duration, energy, and repetition rate has enabled the characterization of photorefractive polymer (PRP) in a previously inaccessible regime located between millisecond and microsecond single pulse illumination. With the addition of CW and nanosecond pulse lasers, four wave mixing measurements covering 9 orders of magnitudes in pulse duration are reported. Reciprocity failure of the diffraction efficiency according to the pulse duration for a constant energy density is observed and attributed to multiple excitation, transport and trapping events of the charge carriers. However, for pulses shorter than 30 μs, the efficiency reaches a plateau where an increase in energy density no longer affects the efficiency. This plateau is due to the saturation of the charge generation at high peak power given the limited number of sensitizer sites. The same behavior is observed in two different types of devices composed of the same material but with or without a buffer layer covering one electrode, which confirm the origin of these mechanisms. This new type of measurement is especially important to optimize PRP for applications using short pulse duration. PMID:27364998

  3. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P.; Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K.

    2012-02-01

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 μs duration. The duration of the electron beam has been varied from 30 ns to 2 μs with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  4. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  5. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue

    PubMed Central

    Kesar, Trisha; Chou, Li-Wei; Binder-Macleod, Stuart A.

    2008-01-01

    During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force–time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60 Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force–time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance. PMID:17317219

  6. Vacuum photoelectronic devices for measuring pulsed radiation

    NASA Astrophysics Data System (ADS)

    Berkovskii, A. G.; Veretennikov, A. I.; Kozlov, O. V.

    The design of these devices is discussed, and data are presented on their characteristics. These vacuum photoelectronic devices comprise photocells, photomultipliers, and electrooptical transducers designed for measuring pulsed radiation of nanosecond and subnanosecond duration. The fluctuation characteristics of the devices are examined, and their use in detectors of pulsed luminous and ionizing radiation is considered.

  7. Short-wavelength ablation of solids: pulse duration and wavelength effects

    NASA Astrophysics Data System (ADS)

    Juha, Libor; Bittner, Michal; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Prag, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard H.; Ryc, Leszek; Feldhaus, Josef; Boody, Frederick P.; Fiedorowicz, Henryk; Bartnik, Andrzej; Mikolajczyk, Janusz; Rakowski, Rafal; Kubat, P.; Pina, Ladislav; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J. G.

    2004-11-01

    For conventional wavelength (UV-Vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (l < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes it possible to investigate how the ablation characteristics depend on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser (Colorado State University, Fort Collins), focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with those measured for ultrashort pulses, we can study the influence of pulse duration on XUV ablation efficiency. Ablation efficiencies measured with short pulses at various wavelengths (i.e. 86/46.9/21.2 nm from the above-mentioned lasers and ~ 1 nm from the double stream gas-puff Xe plasma source driven by PALS) show that the wavelength influences the etch rate mainly through the different attenuation lengths.

  8. Short-Duration Simulations from Measurements.

    SciTech Connect

    Mitchell, Dean J.; Enghauser, Michael

    2014-08-01

    A method is presented that ascribes proper statistical variability to simulations that are derived from longer-duration measurements. This method is applicable to simulations of either real-value or integer-value data. An example is presented that demonstrates the applicability of this technique to the synthesis of gamma-ray spectra.

  9. On pulse duration of self-terminating lasers

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.

    2011-02-01

    The problem of the maximum pulse duration τmax of self-terminating lasers is considered. It is shown that the duration depends on the transition probability in the laser channel, on the decay rate of the resonant state in all other channels, and on the excitation rate of the metastable state. As a result, τmax is found to be significantly shorter than previously estimated. The criteria for converting the 'self-terminating' lasing to quasi-cw lasing are determined. It is shown that in the case of nonselective depopulation of the metastable state, for example in capillary lasers or in a fast flow of the active medium gas, it is impossible to obtain continuous lasing. Some concrete examples are considered. It is established that in several studies of barium vapour lasers (λ = 1.5 μm) and nitrogen lasers (λ = 337 nm), collisional lasing is obtained by increasing the relaxation rate of the metastable state in collisions with working particles (barium atoms and nitrogen molecules).

  10. Thermoluminescence measurement technique using millisecond temperature pulses.

    PubMed

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater. PMID:20522565

  11. Simple circuit produces high-speed, fixed duration pulses

    NASA Technical Reports Server (NTRS)

    Garrahan, N. M.

    1965-01-01

    Circuit generates an output pulse of fixed width from a variable width input pulse. The circuit consists of a tunnel diode in parallel with an inductance driven by a constant current generator. It is used for pulsed communication equipment design.

  12. Apparatus and method for optical pulse measurement

    SciTech Connect

    Trebino, R.P.; Tsang, T.; Fittinghoff, D.N.; Sweetser, J.N.; Krumbuegel, M.A.

    1999-12-28

    Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through (i) use of phase-matched transient grating beam geometry to maximize interaction length, and (ii) use of interface-enhanced third-harmonic generation.

  13. Apparatus and method for optical pulse measurement

    DOEpatents

    Trebino, Rick P.; Tsang, Thomas; Fittinghoff, David N.; Sweetser, John N.; Krumbuegel, Marco A.

    1999-12-28

    Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through i) use of phase-matched transient grating beam geometry to maximize interaction length, and ii) use of interface-enhanced third-harmonic generation.

  14. A simple highly stable and temporally synchronizable Nd:glass laser oscillator delivering laser pulses of variable pulse duration from sub-nanosecond to few nanoseconds

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Joshi, R. A.; Patidar, R. K.; Naik, P. A.; Gupta, P. D.

    2007-04-01

    A simple flash lamp pumped Nd:phosphate glass laser oscillator has been designed and set up delivering laser pulses of variable duration from ˜800 ps to 6 ns. It is based on Q-switching and full-wavelength cavity dumping and provides single laser pulse energy of 5 mJ and 11 mJ corresponding to pulse duration of ˜800 ps and 6 ns respectively at an electrical pump energy of 50 J. While the maximum pulse duration is governed by the cavity round trip time, the lower limit is decided by the switching speed of the high voltage pulse to the Pockels cell of the cavity dumper. Output laser pulses have shown enhanced pulse energy stability by dumping the cavity four round trips after the peak buildup. The laser pulses were synchronized with 250 ps positively chirped laser pulse train derived from an independent commercial cw mode locked Nd:fluorophosphate glass laser oscillator. The temporal jitter between these two pulses was measured to be ˜200 ps, limited by the speed of the electronics used.

  15. Multiplexer and time duration measuring circuit

    SciTech Connect

    Gray, Jr., James

    1980-01-01

    A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.

  16. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass

    NASA Astrophysics Data System (ADS)

    Nordin, I. H. W.; Okamoto, Y.; Okada, A.; Jiang, H.; Sakagawa, T.

    2016-04-01

    Micro-welding characteristics of silicon and glass by pulsed lasers are described. In this study, four types of laser beam, which are nanosecond pulsed laser and picosecond pulsed laser of 532 and 1064 nm in wavelength, were used for joining monocrystalline silicon and glass. Influence of wavelength and pulse duration on micro-welding of monocrystalline silicon and glass was experimentally investigated under the same spot diameter, and the molten area of monocrystalline silicon and glass was characterized. Finally, the breaking strength was evaluated for the overlap weld joint with different pulse duration and wavelength. A splash area of molten silicon around the weld bead line was obvious in the nanosecond pulsed laser. On the other hand, there was no remarkable molten splash around the weld bead line in the picosecond pulsed laser. Breaking strength of specimens with 1064 nm wavelength was higher than with 532 nm wavelength in nanosecond laser, whereas breaking strength of laser-irradiated specimen by picosecond pulse duration was higher than that by nanosecond pulse duration. It is concluded that the combination of picosecond pulse duration and infrared wavelength leads to the stable molten area appearance of the weld bead and higher breaking strength in micro-welding of glass and monocrystalline silicon.

  17. Determination of the pulse duration of an x-ray free electron laser using highly resolved single-shot spectra.

    PubMed

    Inubushi, Yuichi; Tono, Kensuke; Togashi, Tadashi; Sato, Takahiro; Hatsui, Takaki; Kameshima, Takashi; Togawa, Kazuaki; Hara, Toru; Tanaka, Takashi; Tanaka, Hitoshi; Ishikawa, Tetsuya; Yabashi, Makina

    2012-10-01

    We determined the pulse duration of x-ray free electron laser light at 10 keV using highly resolved single-shot spectra, combined with an x-ray free electron laser simulation. Spectral profiles, which were measured with a spectrometer composed of an ultraprecisely figured elliptical mirror and an analyzer flat crystal of silicon (555), changed markedly when we varied the compression strength of the electron bunch. The analysis showed that the pulse durations were reduced from 31 to 4.5 fs for the strongest compression condition. The method, which is readily applicable to evaluate shorter pulse durations, provides a firm basis for the development of femtosecond to attosecond sciences in the x-ray region. PMID:23083249

  18. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  19. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  20. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  1. Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients

    NASA Astrophysics Data System (ADS)

    Nathala, Chandra S. R.; Ajami, Ali; Husinsky, Wolfgang; Farooq, Bilal; Kudryashov, Sergey I.; Daskalova, Albena; Bliznakova, Irina; Assion, Andreas

    2016-02-01

    In this paper, the influence of the pulse duration on the ablation threshold and the incubation coefficient was investigated for three different types of materials: metal (copper), semiconductor (silicon) and biopolymer (gelatin). Ablation threshold values and the incubation coefficients have been measured for multiple Ti:sapphire laser pulses (3 to 1000 pulses) and for four different pulse durations (10, 30, 250 and 550 fs). The ablation threshold fluence was determined by extrapolation of curves from squared crater diameter versus fluence plots. For copper and silicon, the experiments were conducted in vacuum and for gelatin in air. For all materials, the ablation threshold fluence increases with the pulse duration. For copper, the threshold increases as τ 0.05, for silicon as τ 0.12 and for gelatin as τ 0.22. By extrapolating the curves of the threshold fluence versus number of pulses, the single-shot threshold fluence was determined for each sample. For 30 fs pulses, the single-shot threshold fluences were found to be 0.79, 0.35, and 0.99 J/cm2 and the incubation coefficients were found to be 0.75, 0.83 and 0.68 for copper, silicon and gelatin, respectively.

  2. The effects of pulse duration on ablation pressure driven by laser radiation

    SciTech Connect

    Zhou, Lei; Li, Xiao-Ya Zhu, Wen-Jun; Wang, Jia-Xiang; Tang, Chang-Jian

    2015-03-28

    The effects of laser pulse duration on the ablation pressure induced by laser radiation are investigated using Al target. Numerical simulation results using one dimensional radiation hydro code for laser intensities from 5×10{sup 12}W/cm{sup 2} to 5×10{sup 13}W/cm{sup 2} and pulse durations from 0.5 ns to 20 ns are presented. These results suggest that the laser intensity scaling law of ablation pressure differs for different pulse durations. And the theoretical analysis shows that the effects of laser pulse duration on ablation pressure are mainly caused by two regimes: the unsteady-state flow and the radiative energy loss to vacuum.

  3. Demonstration of negative signal delay with short-duration transient pulse

    NASA Astrophysics Data System (ADS)

    Ravelo, B.

    2011-07-01

    This paper introduces theoretic and experimental analyses of short-duration pulse propagation through a negative group delay (NGD) circuit. The basic analysis method of this electronic circuit operating in baseband and microwave frequencies is investigated. Then, its electrical fundamental characteristics vis-à-vis transient signals are developed. To validate the theoretic concept, planar hybrid devices with one- and two-stage NGD cells were designed, simulated, fabricated and tested. Transient analyses with ultra-wide band (UWB) pulse signals with different widths are realized. Then, experimental results in good agreement with the theoretical predictions were observed. Consequently, group delay going down under -2.5 ns is evidenced in baseband frequency up to 63 MHz with one-stage NGD cell. In time-domain, a Gaussian pulse in advance of about t0 = -1.5 ns or 20% of its half-height time-width was measured. This corresponds to a negative group velocity of about vg = L/t0 = -0.13c (L is the physical length of the tested device and c is light speed in the vacuum). More significant NGD value over 100-MHz bandwidth is stated with two-stage NGD cells. This results in a Gaussian pulse peak advance of about -5 ns (raising a group velocity of about vg = -0.12c) or 31% of its half-height time-width. Finally, some potential applications based on the NGD function are discussed.

  4. Factors influencing the microwave pulse duration in a klystron-like relativistic backward wave oscillator

    SciTech Connect

    Xiao Renzhen; Zhang Xiaowei; Zhang Ligang; Li Xiaoze; Zhang Lijun

    2012-07-15

    In this paper, we analyze the factors that affect the microwave pulse duration in a klystron-like relativistic backward wave oscillator (RBWO), including the diode voltage, the guiding magnetic field, the electron beam collector, the extraction cavity, and the gap between the electron beam and the slow wave structure (SWS). The results show that the microwave pulse duration increases with the diode voltage until breakdown occurs on the surface of the extraction cavity. The pulse duration at low guiding magnetic field is generally 5-10 ns smaller than that at high magnetic field due to the asymmetric electron emission and the larger energy spread of the electron beam. The electron beam collector can affect the microwave pulse duration significantly because of the anode plasma generated by bombardment of the electron beam on the collector surface. The introduction of the extraction cavity only slightly changes the pulse duration. The decrease of the gap between the electron beam and the SWS can increase the microwave pulse duration greatly.

  5. Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media

    NASA Astrophysics Data System (ADS)

    Riabinina, Daria; Chaker, Mohamed; Margot, Joëlle

    2012-04-01

    The dependence on laser fluence and laser pulse duration of size, size distribution and concentration of gold nanoparticles synthesized by laser ablation in liquid media was investigated. It was demonstrated that increasing laser energy from 1 to 5 mJ/pulse enhances the ablation rate by a factor of 100. The behavior of the ablation rate, hence of the nanoparticle concentration, as a function of pulse duration (varied from 40 fs to 200 ps) was found to strongly differ from that in air, which can be explained by photoionization and important losses of laser energy in the femtosecond regime. The optimal pulse duration for maximum ablation rate in liquid media was found to be equal to 2 ps.

  6. Influence of pulse duration on erbium and holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Ith, Michael; Frenz, Martin; Pratisto, Hans S.; Weber, Heinz P.; Altermatt, Hans J.; Staeubli, Hans U.; Asshauer, Thomas; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.

    1995-01-01

    Erbium and Holmium lasers are ideally suited for cutting and drilling biological tissue. This is due to the fact that their wavelengths (Er:YSGG at 2.79 micrometers and Ho:YAG at 2.12 micrometers ) are strongly absorbed in water which is present in all tissues. Combined with an optical fiber these lasers seem to be optimal instruments for endoscopic and/or minimal invasive applications in surgery. In this study we focused our interest on cutting of human meniscus in the knee where, besides a very limited operation field, the standard arthroscopic treatment is performed in a liquid, highly absorbing environment. The bubble formation process, therefore, has to be well understood because it mainly determines relevant aspects of tissue ablation. The influence of the laser parameters in general and the influence of pulse duration in particular are determined in this paper for two different laser wavelengths. The goal was to determine the optimum laser parameters in view of a high ablation efficiency, a high precision and a minimal destruction of the adjacent tissue. To determine the optimum pulse duration for ablating tissue under water and to obtain a better understanding of the channel formation process, transmission and pressure measurements together with video flash photography were performed. Additionally, we determined experimentally the ratio between initial laser pulse energy and energy available for tissue treatment under water. To prove the results obtained, cuts in human meniscus were performed, sectioned and evaluated. The comparison between the results obtained with the Erbium and Holmium laser revealed a strong influence of the absorption coefficients on the tissue effects, especially on the ablation efficiency and on the zone of thermally and mechanically damaged tissue.

  7. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration

    PubMed Central

    Sadler, James D.; Nathvani, Ricky; Oleśkiewicz, Piotr; Ceurvorst, Luke A.; Ratan, Naren; Kasim, Muhammad F.; Trines, Raoul M. G. M.; Bingham, Robert; Norreys, Peter A.

    2015-01-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration. PMID:26568520

  8. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration

    NASA Astrophysics Data System (ADS)

    Sadler, James D.; Nathvani, Ricky; Oleśkiewicz, Piotr; Ceurvorst, Luke A.; Ratan, Naren; Kasim, Muhammad F.; Trines, Raoul M. G. M.; Bingham, Robert; Norreys, Peter A.

    2015-11-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration.

  9. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration.

    PubMed

    Sadler, James D; Nathvani, Ricky; Oleśkiewicz, Piotr; Ceurvorst, Luke A; Ratan, Naren; Kasim, Muhammad F; Trines, Raoul M G M; Bingham, Robert; Norreys, Peter A

    2015-01-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration. PMID:26568520

  10. Dynamic characterization of short duration stress pulses generated by a magnetic flyer plate in carbon-fiber/epoxy laminates

    SciTech Connect

    Bruck, H.A.; Epstein, J.S.; Perry, K.E. Jr.; Abdallah, M.G.

    1995-11-01

    There is a great deal of interest in characterizing the dynamic mechanical behavior of laminated carbon-fiber/epoxy composites for military and aerospace applications. Current research efforts have been directed at measuring the strength lost because of accumulated damage. Very little work has been done to determine how this damage is accumulated during dynamic mechanical loading. Of particular interest is the effect of short duration (< 1 {micro}s) stress pulses on mechanical behavior such as delamination. In this paper, a magnetic flyer plate apparatus is presented for generating a short duration stress pulse in a unidirectional carbon-fiber/epoxy laminated composite. The stress pulse is characterized using a dynamic moire interferometer.

  11. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; Polhamus, Garrett D.; Roach, William P.; Stolarski, David J.; Schuster, Kurt J.; Stockton, Kevin; Rockwell, Benjamin A.; Chen, Bo; Welch, Ashley J.

    2006-07-01

    With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 µs) at 24-h postexposure are measured to be 99 and 83 Jcm-2 for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 Jcm-2 for a 5-mm-diam top-hat laser pulse.

  12. Ventricular myocyte injury by high-intensity electric field: Effect of pulse duration.

    PubMed

    Prado, Luiza Ns; Goulart, Jair T; Zoccoler, Marcelo; Oliveira, Pedro X

    2016-04-01

    Although high-intensity electric fields (HEF) application is currently the only effective therapy available to terminate ventricular fibrillation, it may cause injury to cardiac cells. In this study we determined the relation between HEF pulse length and cardiomyocyte lethal injury. We obtained lethality curves by survival analysis, which were used to determine the value of HEF necessary to kill 50% of cells (E50) and plotted a strength-duration (SxD) curve for lethality with 10 different durations: 0.1, 0.2, 0.5, 1, 3, 5, 10, 20, 35 and 70 ms. For the same durations we also obtained an SxD curve for excitation and established an indicator for stimulatory safeness (stimulation safety factor - SSF) as the ratio between the SxD curve for lethality and one for excitation. We found that the lower the pulse duration, the higher the HEF intensity required to cell death. Contrary to expectations, the highest SSF value does not correspond to the lowest pulse duration but to the one of 0.5 ms. As defibrillation threshold has been described as duration-dependent, our results imply that the use of shorter stimulus duration - instead of the one typically used in the clinic (10 ms) - might increase defibrillation safeness. PMID:26830130

  13. Role of PTHrP(1-34) Pulse Frequency Versus Pulse Duration to Enhance Mesenchymal Stromal Cell Chondrogenesis.

    PubMed

    Fischer, Jennifer; Ortel, Marlen; Hagmann, Sebastien; Hoeflich, Andreas; Richter, Wiltrud

    2016-12-01

    Generation of phenotypically stable, articular chondrocytes from mesenchymal stromal cells (MSCs) is still an unaccomplished task, with formation of abundant, hyaline extracellular matrix, and avoidance of hypertrophy being prime challenges. We recently demonstrated that parathyroid hormone-related protein (PTHrP) is a promising factor to direct chondrogenesis of MSCs towards an articular phenotype, since intermittent PTHrP application stimulated cartilage matrix production and reduced undesired hypertrophy. We here investigated the role of frequency, pulse duration, total exposure time, and underlying mechanisms in order to unlock the full potential of PTHrP actions. Human MSC subjected to in vitro chondrogenesis for six weeks were exposed to 2.5 nM PTHrP(1-34) pulses from days 7 to 42. Application frequency was increased from three times weekly (3 × 6 h/week) to daily maintaining either the duration of individual pulses (6 h/day) or total exposure time (18 h/week; 2.6 h/day). Daily PTHrP treatment significantly increased extracellular matrix deposition regardless of pulse duration and suppressed alkaline-phosphatase activity by 87%. High total exposure time significantly reduced cell proliferation at day 14. Pulse duration was critically important to significantly reduce IHH expression, but irrelevant for PTHrP-induced suppression of the hypertrophic markers MEF2C and IBSP. COL10A1, RUNX2, and MMP13 expression remained unaltered. Decreased IGFBP-2, -3, and -6 expression suggested modulated IGF-I availability in PTHrP groups, while drop of SOX9 protein levels during the PTHrP-pulse may delay chondroblast formation and hypertrophy. Overall, the significantly optimized timing of PTHrP-pulses demonstrated a vast potential to enhance chondrogenesis of MSC and suppress hypertrophy possibly via superior balancing of IGF- and SOX9-related mechanisms. J. Cell. Physiol. 231: 2673-2681, 2016. © 2016 Wiley Periodicals, Inc. PMID:27548511

  14. Ignition and Growth Modeling of Short Pulse Duration Shock Initiation Experiments on HNS IV

    NASA Astrophysics Data System (ADS)

    Tarver, Craig; Chidester, Steven

    2013-06-01

    Short pulse duration shock initiation experiments on 1.60 g/cm3 density (92% TMD) HNS IV have been reported by Schwarz, Bowden et al., Dudley et al., Goveas et al., Greenaway et al., and others. This flyer threshold velocity for detonation/failure data plus measured unreacted HNS Hugoniot data and detonation cylinder test product expansion data were used as the experimental basis for the development of an Ignition and Growth reactive flow model for the shock initiation of HNS IV. The resulting Ignition and Growth HNS IV model parameters yielded good overall agreement with all of this experimental data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.: Explosive, HNS IV, shock to detonation transition, Ignition and Growth: 82.33.Vx, 82.40.Fp.

  15. Wide Range SET Pulse Measurement

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  16. Dependence of Nd:YAG laser derusting and passivation of iron artifacts on pulse duration

    NASA Astrophysics Data System (ADS)

    Osticioli, Iacopo; Siano, Salvatore

    2013-11-01

    In this work laser derusting and passivation process of iron objects of conservation interest were investigated. In particular, the effects induced by laser irradiation of three lasers with different temporal emission regimes were studied, exhibiting very different behavior. Nd:YAG(1064 nm) laser systems were employed in the experiments: a Q-Switching laser with pulse duration of 8 ns, a Long Q-Switching laser with pulse duration of 120 ns and a Short Free Running pulse duration in a range of 40-120 μs. These lasers are commonly used in conservation. Lasers treatments were applied on iron samples subjected to natural weathering in outdoor conditions for about five years. Moreover some experiments were also performed on metallic parts of an original chandelier from the seventies as well as on a deeply corroded Roman sword. Results obtained reveals that longer pulse duration leads to phase changes on the rust layer and a homogeneous black-grayish coating is formed on the surface (identified as magnetite) after treatment. Whereas, QS laser pulses are capable to induce ablation of the corrosion layer exposing the pure metal underneath. Finally, LQS interaction includes deep ablation with localized micro-melting of the metal surface and partial transformation of the residual mineral areas was observed. The irradiation results were characterized through optical and BS- ESEM along with Raman spectroscopy, which allowed a clear phenomenological differentiation among the three operating regimes and provided information on their optimal exploitation in restoration of iron artifacts.

  17. Duration of Diabetes Predicts Aortic Pulse Wave Velocity and Vascular Events in Alström Syndrome

    PubMed Central

    Smith, Jamie; Carey, Catherine; Barrett, Timothy; Campbell, Fiona; Maffei, Pietro; Marshall, Jan D.; Paisey, Christopher; Steeds, Richard P.; Edwards, Nicola C.; Bunce, Susan; Geberhiwot, Tarekegn

    2015-01-01

    Context: Alström syndrome is characterized by increased risk of cardiovascular disease from childhood. Objective: To explore the association between risk factors for cardiovascular disease, aortic pulse wave velocity, and vascular events in Alström syndrome. Design: Cross-sectional analyses with 5-year follow-up. Setting: The UK NHS nationally commissioned specialist clinics for Alström syndrome. Patients: Thirty-one Alström patients undertook vascular risk assessment, cardiac studies, and aortic pulse wave velocity measurement. Subsequent clinical outcomes were recorded. Interventions: Insulin resistance was treated with lifestyle intervention and metformin, and diabetes with the addition of glitazones, glucagon-like peptide 1 agonists, and/or insulin. Thyroid and T deficiencies were corrected. Dyslipidemia was treated with statins and nicotinic acid derivatives. Cardiomyopathy was treated with standard therapy as required. Main Outcome Measures: The associations of age, gender, and risk factors for cardiovascular disease with aortic pulse wave velocity were assessed and correlated with the effects of reduction in left ventricular function. Vascular events were monitored for 5 years. Results: Aortic pulse wave velocity was positively associated with the duration of diabetes (P = .001) and inversely with left ventricular ejection fraction (P = .036). Five of the cohort with cardiovascular events had higher aortic pulse wave velocity (P = .0247), and all had long duration of diabetes. Conclusions: Duration of diabetes predicted aortic pulse wave velocity in Alström syndrome, which in turn predicted cardiovascular events. This offers hope of secondary prevention because type 2 diabetes can be delayed or reversed by lifestyle interventions. PMID:26066530

  18. Influence of the Nd:YAG Laser Pulse Duration on the Temperature of Primary Enamel

    PubMed Central

    Valério, R. A.; da Cunha, V. S.; Galo, R.; de Lima, F. A.; Bachmann, L.; Corona, S. A. M.; Borsatto, M. C.

    2015-01-01

    The aim of this study is to evaluate the temperature change on specimens of primary enamel irradiated with different pulse duration of Nd:YAG laser. Fifteen sound primary molars were sectioned mesiodistally, resulting in 30 specimens (3.5 × 3.5 × 2.0 mm). Two small holes were made on the dentin surface in which K-type thermocouples were installed to evaluate thermal changes. Specimens were randomly assigned in 3 groups (n = 10): A = EL (extra long pulse, 10.000 μs), B = LP (long pulse, 700 μs), and C = SP (short pulse, 350 μs). Nd:YAG laser (λ = 1.064 μm) was applied at contact mode (10 Hz, 0.8 W, 80 mJ) and energy density of 0.637 mJ/mm2. Analysis of variance (ANOVA) was performed for the statistical analysis (P = 0.46). Nd:YAG laser pulse duration provided no difference on the temperature changes on primary enamel, in which the following means were observed: A = EL (23.15°C ± 7.75), B = LP (27.33°C ± 11.32), and C = SP (26.91°C ± 12.85). It can be concluded that the duration of the laser pulse Nd:YAG increased the temperature of the primary enamel but was not influenced by different pulse durations used in the irradiation. PMID:25874244

  19. Toxicity of two pulsed metal exposures to Daphnia magna: relative effects of pulsed duration-concentration and influence of interpulse period.

    PubMed

    Hoang, Tham C; Gallagher, Jeffrey S; Tomasso, Joseph R; Klaine, Stephen J

    2007-11-01

    Aquatic organisms living in surface waters experience fluctuating contaminant exposures that vary in concentration, duration, and frequency. This study characterized the role of pulsed concentration, pulsed duration, and the interval between pulses on the toxicity of four metals (Cu, Zn, Se, and As) to Daphnia magna. During 21-d toxicity tests, neonatal D. magna were exposed to single or double pulses. Pulsed concentrations and durations ranged from 32 to 6000 microg/L and 8 to 96 h, respectively. Intervals between two pulses ranged from 24 to 288 h. Mortality, growth, and reproduction were characterized for exposures. For single-pulse exposures of Cu and As, metal concentration had a stronger effect on survival of D. magna than did pulsed duration: pulses with 2X concentration and 1Y duration resulted in more mortality than did pulses with 1X concentration and 2Y duration. In contrast, effects of pulsed duration were stronger than metal concentration for Zn. However, the effects of duration and concentration were similar for Se. The relative effects of pulsed concentration and duration found in the present study revealed that the common method using area under the curve (AUC = concentration x duration) may not always accurately estimate environmental risk from metals (e.g., for Cu, Zn, As). In addition, the occurrence of delayed mortality in the present study revealed that using continuous exposure bioassays might underestimate metal toxicity to aquatic biota. For double-pulse exposures, the toxicity of the second pulse was influenced by the first pulse for all four metals. This influence was dependent on the pulsed concentration and duration and the interval between pulses. Further, toxicity caused by the second pulse decreased as the time between the exposures increased. For all four metals, there existed an interval great enough that the toxicity of the two pulses was independent. This would result in less toxicity for multiple exposures than continuous

  20. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    SciTech Connect

    Ding, Y.; Behrens, C.; Coffee, R.; Decker, F. -J.; Emma, P.; Field, C.; Helml, W.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J.

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  1. Simultaneous optimization of power and duration of radio-frequency pulse in PARACEST MRI.

    PubMed

    Rezaeian, Mohammad-Reza; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid

    2016-07-01

    Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. The CEST effect is complex and depends not only on the CEST agent concentration, exchange rates, the characteristic of the magnetization transfer (MT), and the relaxation properties of the tissue, but also varies with the experimental conditions such as radio-frequency (RF) pulse power and duration. The RF pulse is one of the most important factors that promote the CEST effect for biological properties such as pH, temperature and protein content, especially for contrast agents with intermediate to fast exchange rates. The CEST effect is susceptible to the RF duration and power. The present study aims at determining the optimal power and the corresponding optimal duration (that maximize the CEST effect) using an off-resonance scheme through a new definition of the CEST effect. This definition is formulated by solving the Bloch-McConnell equation through the R1ρ method (based on the eigenspace solution) for both of the MT and CEST effects as well as their interactions. The proposed formulations of the optimal RF pulse power and duration are the first formulations in which the MT effect is considered. The extracted optimal RF pulse duration and power are compared with those of the MTR asymmetry model in two- and three-pool systems, using synthetic data that are similar to the muscle tissue. To validate them further, the formulations are compared with the empirical formulation of the CEST effect and other findings of the previous researches. By extending our formulations, the optimal power and the corresponding optimal duration (in the biological systems with many chemical exchange sites) can be determined. PMID:26956610

  2. Precise manipulation on spike train of uneven duration or delay pulses with a time grating system.

    PubMed

    Li, Yue; Wang, Shiwei; Xu, Jianqiu; Tang, Yulong

    2015-11-16

    In this paper, we proposed a time grating system to achieve spike train of uneven duration or delay (STUD) pulses, and theoretically study their features under various modulation conditions. This time grating scheme, which is a temporal analogy of spatial grating, introduces great degree of freedom for controlling the output pulse characteristics (pulse width, repetition rate, pulse shape, etc.) through simply tuning the electronics elements and the programmable phase modulation function. The narrowest pulse width is highly determined by the modulation parameters and the branch number N, and the numerically obtained value is around tens of femtoseconds in the current case. When super-Gaussian pulses are modulated with an optimized and modified trapezoidal function, the pulse rising/falling edge can be greatly compressed to form a clean nearly-square wave (with edges less than 10 fs). STUD pulses generated with this time grating system have high-degree controllability and are very beneficial for suppressing parametric instabilities in laser driven inertial confinement fusion. PMID:26698432

  3. Laser ablation of GaAs in liquid: the role of laser pulse duration

    NASA Astrophysics Data System (ADS)

    De Bonis, Angela; Galasso, Agostino; Santagata, Antonio; Teghil, Roberto

    2016-01-01

    The synthesis of gallium arsenide (GaAs) nanoparticles has attracted wide scientific and technological interest due to the possibility of tuning the GaAs NP (nanoparticle) band gap across the visible spectrum and their consequent use in optoelectronic devices. In recent years, laser ablation in liquid (LAL) has been widely used for the preparation of colloidal solutions of semiconducting and metallic nanoparticles, thanks to its flexibility. With the aim of highlighting the key role played by laser pulse duration on the ablation mechanism and on the properties of the obtained materials, laser ablation of a gallium arsenide target in acetone was performed using laser sources operating in two different temporal regimes: Nd:glass laser (λ   =  527 nm, pulse duration of 250 fs and frequency repetition rate of 10 Hz) and Nd:YAG laser (λ   =  532 nm, pulse duration of 7 ns and frequency repetition rate of 10 Hz). The ablation process was studied following the dynamics of the laser induced shock waves (SWs) and cavitation bubbles (CBs) by fast shadowgraphy, showing that CB dimension and lifetime is related to the laser pulse length. A characterization of the obtained materials by TEM (transmission electron microscopy) and microRaman spectroscopy have shown that quite spherical gallium oxide/GaAs nanoparticles can be obtained by nanosecond laser ablation. On the other hand, pure polycrystalline GaAs nanoparticles can be produced by using an ultrashort laser source.

  4. Parametric amplification and compression to ultrashort pulse duration of resonant linear waves

    NASA Astrophysics Data System (ADS)

    Aguergaray, C.; Andersen, T. V.; Schimpf, D. N.; Schmidt, O.; Rothhardt, J.; Schreiber, T.; Limpert, J.; Cormier, E.; Tünnermann, A.

    2007-04-01

    We report on an optical parametric amplification system which is pumped and seeded by fiber generated laser radiation. Due to its low broadening threshold, high spatial beam quality and high stability, the fiber based broad bandwidth signal generation is a promising alternative to white light generation in bulky glass or sapphire plates. We demonstrate a novel and successful signal engineering implemented in a setup for parametric amplification and subsequent recompression of resonant linear waves resulting from soliton fission in a highly nonlinear photonic crystal fiber. The applied pump source is a high repetition rate ytterbium-doped fiber chirped pulse amplification system. The presented approach results in the generation of ~50 fs pulses at MHz repetition rate. The potential of generating even shorter pulse duration and higher pulse energies will be discussed.

  5. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling. PMID:25803753

  6. Laser stimulation of the auditory system at 1.94 μm and microsecond pulse durations

    NASA Astrophysics Data System (ADS)

    Izzo, Agnella D.; Walsh, Joseph T., Jr.; Ralph, Heather; Webb, Jim; Wells, Jonathon; Bendett, Mark; Richter, Claus-Peter

    2008-02-01

    Light can artificially stimulate nerve activity in vivo. A significant advantage of optical neural stimulation is the potential for higher spatial selectivity when compared with electrical stimulation. An increased spatial selectivity of stimulation could improve significantly the function of neuroprosthetics, such as cochlear implants. Cochlear implants restore a sense of hearing and communication to deaf individuals by directly electrically stimulating the remaining neural cells in the cochlea. However, performance is limited by overlapping electric fields from neighboring electrodes. Here, we report on experiments with a new laser, offering a previously unavailable wavelength, 1.94μm, and pulse durations down to 5μs, to stimulate cochlear neurons. Compound action potentials (CAP) were evoked from the gerbil cochlea with pulse durations as short as 1μs. Data show that water absorption of light is a significant factor in optical stimulation, as evidenced by the required distance between the optical fiber and the neurons during stimulation. CAP threshold measurements indicate that there is an optimal range of pulse durations over which to deposit the laser energy, less than ~100μs. The implications of these data could direct further research and design of an optical cochlear implant.

  7. Speech perception with interaction-compensated simultaneous stimulation and long pulse durations in cochlear implant users.

    PubMed

    Schatzer, Reinhold; Koroleva, Inna; Griessner, Andreas; Levin, Sergey; Kusovkov, Vladislav; Yanov, Yuri; Zierhofer, Clemens

    2015-04-01

    Early multi-channel designs in the history of cochlear implant development were based on a vocoder-type processing of frequency channels and presented bands of compressed analog stimulus waveforms simultaneously on multiple tonotopically arranged electrodes. The realization that the direct summation of electrical fields as a result of simultaneous electrode stimulation exacerbates interactions among the stimulation channels and limits cochlear implant outcome led to the breakthrough in the development of cochlear implants, the continuous interleaved (CIS) sampling coding strategy. By interleaving stimulation pulses across electrodes, CIS activates only a single electrode at each point in time, preventing a direct summation of electrical fields and hence the primary component of channel interactions. In this paper we show that a previously presented approach of simultaneous stimulation with channel interaction compensation (CIC) may also ameliorate the deleterious effects of simultaneous channel interaction on speech perception. In an acute study conducted in eleven experienced MED-EL implant users, configurations involving simultaneous stimulation with CIC and doubled pulse phase durations have been investigated. As pairs of electrodes were activated simultaneously and pulse durations were doubled, carrier rates remained the same. Comparison conditions involved both CIS and fine structure (FS) strategies, either with strictly sequential or paired-simultaneous stimulation. Results showed no statistical difference in the perception of sentences in noise and monosyllables for sequential and paired-simultaneous stimulation with doubled phase durations. This suggests that CIC can largely compensate for the effects of simultaneous channel interaction, for both CIS and FS coding strategies. A simultaneous stimulation paradigm has a number of potential advantages over a traditional sequential interleaved design. The flexibility gained when dropping the requirement of

  8. Miniature pulsed magnet system for synchrotron x-ray measurements

    SciTech Connect

    Linden, Peter J. E. M. van der; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-15

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulses/min was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 {mu}s and 1 ms. The setup was used for nuclear forward scattering measurements on {sup 57}Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  9. The effect of pulse duration on laser-induced damage by 1053-nm light in potassium dihydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Cross, D. A.; Braunstein, M. R.; Carr, C. W.

    2007-01-01

    Laser induced damage in potassium dihydogen phosphate (KDP) has previously been shown to depend significantly on pulse duration for 351-nm Gaussian pulses. In this work we studied the properties of damage initiated by 1053-nm temporally Gaussian pulses with 10ns and 3ns FWHM durations. Our results indicate that the number of damage sites induced by 1053-nm light scales with pulse duration (τ) as τ I/τ II) 0.17 in contrast to the previously reported results for 351-nm light as (τ I/τ II) 0.35. This indicates that damage site formation is significantly less probable at longer wavelengths for a given fluence.

  10. Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles

    PubMed Central

    2015-01-01

    Plasmonic nanobubbles (PNBs) are transient vapor nanobubbles generated in liquid around laser-overheated plasmonic nanoparticles. Unlike plasmonic nanoparticles, PNBs’ properties are still largely unknown due to their highly nonstationary nature. Here we show the influence of the duration of the optical excitation on the energy efficacy and threshold of PNB generation. The combination of picosecond pulsed excitation with the nanoparticle clustering provides the highest energy efficacy and the lowest threshold fluence, around 5 mJ cm–2, of PNB generation. In contrast, long excitation pulses reduce the energy efficacy of PNB generation by several orders of magnitude. Ultimately, the continuous excitation has the minimal energy efficacy, nine orders of magnitude lower than that for the picosecond excitation. Thus, the duration of the optical excitation of plasmonic nanoparticles can have a stronger effect on the PNB generation than the excitation wavelength, nanoparticle size, shape, or other “stationary” properties of plasmonic nanoparticles. PMID:24916057

  11. Combining microwave beams with high peak power and long pulse duration

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Jin Zhenxing; Yang Jianhua

    2010-03-15

    The beam combining results with a metal dichroic plate illuminated by the S/X band gigawatt level high power microwaves are presented. According to the previous experiments, the microwave breakdown problem becomes obvious when the peak power and the pulse duration increase, thus, several methods for enhancing the power handling capacity have been considered, and the metal dichroic plates are redesigned to handle the S/X band high power microwaves. Then the design, fabrication, and testing procedure are discussed in detail. The further experimental results reveal that, operated on the self-built accelerator Spark-04, the radiated powers from the S and X band sources have reached 1.8 GW with pulse durations of about 80 ns, and both beams have been successfully operated on the selected dichroic plate without microwave breakdown.

  12. Rhythm measures and dimensions of durational variation in speech.

    PubMed

    Loukina, Anastassia; Kochanski, Greg; Rosner, Burton; Keane, Elinor; Shih, Chilin

    2011-05-01

    Patterns of durational variation were examined by applying 15 previously published rhythm measures to a large corpus of speech from five languages. In order to achieve consistent segmentation across all languages, an automatic speech recognition system was developed to divide the waveforms into consonantal and vocalic regions. The resulting duration measurements rest strictly on acoustic criteria. Machine classification showed that rhythm measures could separate languages at rates above chance. Within-language variability in rhythm measures, however, was large and comparable to that between languages. Therefore, different languages could not be identified reliably from single paragraphs. In experiments separating pairs of languages, a rhythm measure that was relatively successful at separating one pair often performed very poorly on another pair: there was no broadly successful rhythm measure. Separation of all five languages at once required a combination of three rhythm measures. Many triplets were about equally effective, but the confusion patterns between languages varied with the choice of rhythm measures. PMID:21568427

  13. Strength-duration curve: a measure for assessing sensory deficit in peripheral neuropathy.

    PubMed Central

    Friedli, W G; Meyer, M

    1984-01-01

    By using an isolated constant current stimulator producing true square-wave pulses, sensory strength-duration curves were obtained at various sites by percutaneous electrical stimulation. Strength-duration curves derived from normal groups were compared to those of patients with peripheral neuropathy. Stimulus strength at sensory threshold was shown to be a reproducible measure of sensory deficit, increasing parallel to the degree of axonal failure found by conventional methods. This may be useful as a complementary method in assessing peripheral neuropathy. PMID:6323634

  14. Pulse-duration effect in nonsequential double ionization of Ar atoms

    NASA Astrophysics Data System (ADS)

    Dong, Shansi; Chen, Xiang; Zhang, Jingtao; Ren, Xianghe

    2016-05-01

    Nonsequential double ionization of Ar atoms in intense few-cycle laser pulses is studied by a classical ensemble method. The laser pulses are of trapezoidal shape with one cycle in both ramp on and ramp off. We obtain the cycle-resolved electron dynamics by increasing the optical cycles in the laser pulse one by one. We find that, at the higher laser intensity, the correlated-electron momentum distribution (CMD) in the three-cycle laser pulse exhibits two predominate structures in the first and third quadrants. They are formed by the electron pairs in which the second electron is knocked out by the returning electron in the second cycle. As the pulse duration increases, more electron pairs accumulate in the second and fourth quadrants of the CMDs. In these electron pairs, the second electron is first excited owing to collision with the returning electron and then is ionized by the laser field. By varying the peak intensity, we show the transition of the CMDs from anticorrelation to correlation in three-cycle laser pulses, which disproves that multiple collisions cause the transition.

  15. A rapid change of the Hercules X-1 pulse profile and high-state duration

    NASA Technical Reports Server (NTRS)

    Soong, Yang; Gruber, Duane E.; Rothschild, Richard E.

    1987-01-01

    Her X-1 has been observed in the 13-180 keV energy range by the HEAO 1 A-4 Low-Energy Detectors during selected phases of the 35 d on-off cycle. During a pointing observation in September 1978, the pulse profile was observed to change continuously from its normal shape to an anomalous double-pulsed form. Moreover, at this time the main-on state, normally of the duration 10 d, was seen to terminate after only 7 d. Since such an anomalous pulse profile has also been reported by Truemper et al. in 1986 during a short-on state, three short-on states in the HEAO 1 data were also investigated. One short-on observation had the sensitivity to detect pulsing, and the observed profile also had an anomalous double-pulsed form. Current models for the 35 d cycle of Her X-1 have been examined, and a model with a neutron star undergoing free precession could not explain the sudden change of pulse profile within 20 hr at the end of a main-on state.

  16. High-order harmonic generation from laser plasma produced by pulses of different duration

    SciTech Connect

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.

    2007-08-15

    The high-order harmonic generation was analyzed by interaction of the femtosecond pulses with the laser plasma produced on the surfaces of various targets. The plasma formation was accomplished by the interaction of the prepulse radiation of different pulse duration (160 fs, 1.5 ps, 210 ps, and 20 ns) with the low-Z (lithium, boron, carbon), medium-Z (manganese, zinc, nickel), and high-Z (silver, barium) targets. We showed that plasma formation conditions play a crucial role in harmonic generation and the optimization of this process mostly depends on the energy of prepulse rather than its intensity at the target surface. These studies also demonstrated that the delay between the prepulse and femtosecond pulse is another important parameter, which distinguishes harmonic generation in the cases of the low- and high-Z targets.

  17. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  18. Millisecond measurement of transport during and after an electroporation pulse.

    PubMed Central

    Prausnitz, M R; Corbett, J D; Gimm, J A; Golan, D E; Langer, R; Weaver, J C

    1995-01-01

    Electroporation involves the application of an electric field pulse that creates transient aqueous pathways in lipid bilayer membranes. Transport through these pathways can occur by different mechanisms during and after a pulse. To determine the time scale of transport and the mechanism(s) by which it occurs, efflux of a fluorescent molecule, calcein, across erythrocyte ghost membranes was measured with a fluorescence microscope photometer with millisecond time resolution during and after electroporation pulses several milliseconds in duration. One of four outcomes was typically observed. Ghosts were: (1) partially emptied of calcein, involving efflux primarily after the pulse; (2) completely emptied of calcein, involving efflux primarily after the pulse; (3) completely emptied of calcein, involving efflux both during and after the pulse; or (4) completely emptied of calcein, involving efflux primarily during the pulse. Partial emptying, involving significant efflux during the pulse, was generally not observed. We conclude that under some conditions transport caused by electroporation occurs predominantly by electrophoresis and/or electroosmosis during a pulse, although under other conditions transport occurs in part or almost completely by diffusion within milliseconds to seconds after a pulse. PMID:7612828

  19. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM)

    PubMed Central

    Reshak, Ali Hussain

    2008-01-01

    Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF). Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images. PMID:18710492

  20. System parameters germane to relativistic klystron amplifiers: how the utility of pulse energy depends on pulse duration, the target, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Myers, John M.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) at a variety of carrier wavelengths and pulse durations appear feasible to supply microwave pulses to an array of antennas acting as a beam weapon against targets at or above 100 km in altitude. In order to avoid voltage breakdown in the atmosphere, the array area must be large enough to converge the beam, producing a higher energy flux on target than at intermediate altitudes susceptible to breakdown. The area required depends on the physics of atmospheric ionization and on the pulse duration and the carrier wavelength of the RKA. A quantitative statement of the dependence of array area on relevant parameters is presented. The energy per RKA pulse that is usable without delay lines is determined here as a function of RKA pulse duration and wavelength. Changing the pulse length from 160 ns to 1 microsecond(s) and shortening the wavelength raise the energy usable without delay lines by a factor of 1000.

  1. Laser pulse duration dependence of the low-energy structure in strong field ionization

    NASA Astrophysics Data System (ADS)

    Lai, Yu Hang; Zhang, Kaikai; Blaga, Cosmin; Xu, Junliang; Agostini, Pierre; Dimauro, Louis; Schmidt, Bruno; Légaré, François; The Ohio State University Team; Institut National de la Recherche Scientifique Team

    2015-05-01

    Low-energy structure (LES) in strong field ionization is a spike-like feature appearing in the low energy part (a few eV) of photoelectron spectra along the laser polarization. It has been observed in rare gas atoms and diatomic molecules. In the classical picture, the formation of LES is due to the Coulomb interaction between the ionized electron and its parent ion via the process of multiple forward scattering, which can happen only if the electron is ionized with a small drift momentum. We have studied the LES in rare gas atoms with few-cycle laser pulses centered at 1800nm. We observed that the LES peak shifts to lower energy as the pulse duration decreases from 5 down to 2 optical cycles, which is in qualitative agreement with classical-trajectory Monte Carlo simulations. Classically, the shift could be attributed to the dependence of the ratio between the field amplitude of the central cycle and the adjacent cycle on the pulse duration. Our data support the classical nature of the LES.

  2. Efficient generation of mode-locked pulses in Nd:YVO4 with a pulse duration adjustable between 34 ps and 1 ns.

    PubMed

    Lührmann, Markus; Theobald, Christian; Wallenstein, Richard; L'huillier, Johannes A

    2009-04-13

    We report on the generation of highly stable active continuous mode-locked pulses in diode pumped Nd:YVO(4) with an adjustable pulse duration between 34 ps and 1 ns. With this laser an average output power of up to 7.3 W with an excellent stability and beam quality with a M(2)-value of < 1.1 is obtained. For all pulse durations the pulses were within a factor of 1.15 above the Fourier limit. Due to these characteristics the presented system is an attractive oscillator for OPCPA concepts. PMID:19365440

  3. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    SciTech Connect

    Tamura, Ayaka Matsumoto, Ayumu; Nishi, Naoya; Sakka, Tetsuo; Nakajima, Takashi; Ogata, Yukio H.; Fukami, Kazuhiro

    2015-01-14

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of the optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.

  4. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses)

    NASA Astrophysics Data System (ADS)

    Hüller, Stefan; Afeyan, Bedros

    2013-11-01

    By comparing the impact of established laser smoothing techniques like Random Phase Plates (RPP) and Smoothing by Spectral Dispersion (SSD) to the concept of "Spike Trains of Uneven Duration and Delay" (STUD pulses) on the amplification of parametric instabilities in laser-produced plasmas, we show with the help of numerical simulations, that STUD pulses can drastically reduce instability growth by orders of magnitude. The simulation results, obtained with the code Harmony in a nonuniformly flowing mm-size plasma for the Stimulated Brillouin Scattering (SBS) instability, show that the efficiency of the STUD pulse technique is due to the fact that successive re-amplification in space and time of parametrically excited plasma waves inside laser hot spots is minimized. An overall mean fluctuation level of ion acoustic waves at low amplitude is established because of the frequent change of the speckle pattern in successive spikes. This level stays orders of magnitude below the levels of ion acoustic waves excited in hot spots of RPP and SSD laser beams.

  5. Infrared laser damage thresholds for skin at wavelengths from 0.810 to 1.54 microns for femto-to-microsecond pulse durations

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; Roach, William P.; Stolarski, David J.; Noojin, Gary D.; Kumru, Semih S.; Stockton, Kevin L.; Zohner, Justin J.; Rockwell, Benjamin A.

    2007-02-01

    In this paper we report on our combined measurements of the visible lesion thresholds for porcine skin for wavelengths in the infrared from 810 nm at 44 fs to 1318 nm at pulse durations of 50 ns and 350μs to 1540 nm including pulse durations of 31 ns and 600 μs. We also measure thresholds for various spot sizes from less than 1 mm to 5 mm in diameter. All three wavelengths and five pulse durations are used extensively in research and the military. We compare these minimum visible lesion thresholds with ANSI standards set for maximum permissible exposures in the infrared wavelengths. We have measured non-linear effects at the laser-tissue interface for pulse durations below 1μs and determined that damage at these short pulse durations are usually not thermal effects. Damage at the skin surface may include acoustical effects, laser ablation and/or low-density plasma effects, depending on the wavelength and pulse duration. Also the damage effects may be short-lived and disappear within a few days or may last for much longer time periods including permanent discolorations. For femtosecond pulses at 810 nm, damage was almost instant and at 1 hour had an ED50 of 8.2 mJ of pulse energy. After 24 hours, most of the lesions disappeared and the ED50 increased by almost a factor of 3 to 21.3 mJ. There was a similar trend for the 1.318 μ laser for spot sizes of 2 mm and 5 mm where the ED50 was larger after 24 hours. However, for the 1.54 μ laser with a spot size of 5 mm, the ED50 actually decreased by a small amount; from 6.3 Jcm-2 to 6.1 Jcm-2 after 24 hours. Thresholds also decreased for the 1314 nm laser at 350 μs for spot sizes of 0.7 mm and 1.3 mm diameter after 24 hours. Different results were obtained for the 1540 nm laser at 600 μs pulse durations where the ED50 decreased for spot sizes 1 mm and below, but increased slightly for the 5 mm diameter spot size from 6.4 Jcm-2 to 7.4 Jcm-2

  6. Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength

    PubMed Central

    Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter

    2012-01-01

    Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829

  7. Laser-fired contact formation on metallized and passivated silicon wafers under short pulse durations

    NASA Astrophysics Data System (ADS)

    Raghavan, Ashwin S.

    The objective of this work is to develop a comprehensive understanding of the physical processes governing laser-fired contact (LFC) formation under microsecond pulse durations. Primary emphasis is placed on understanding how processing parameters influence contact morphology, passivation layer quality, alloying of Al and Si, and contact resistance. In addition, the research seeks to develop a quantitative method to accurately predict the contact geometry, thermal cycles, heat and mass transfer phenomena, and the influence of contact pitch distance on substrate temperatures in order to improve the physical understanding of the underlying processes. Finally, the work seeks to predict how geometry for LFCs produced with microsecond pulses will influence fabrication and performance factors, such as the rear side contacting scheme, rear surface series resistance and effective rear surface recombination rates. The characterization of LFC cross-sections reveals that the use of microsecond pulse durations results in the formation of three-dimensional hemispherical or half-ellipsoidal contact geometries. The LFC is heavily alloyed with Al and Si and is composed of a two-phase Al-Si microstructure that grows from the Si wafer during resolidification. As a result of forming a large three-dimensional contact geometry, the total contact resistance is governed by the interfacial contact area between the LFC and the wafer rather than the planar contact area at the original Al-Si interface within an opening in the passivation layer. By forming three-dimensional LFCs, the total contact resistance is significantly reduced in comparison to that predicted for planar contacts. In addition, despite the high energy densities associated with microsecond pulse durations, the passivation layer is well preserved outside of the immediate contact region. Therefore, the use of microsecond pulse durations can be used to improve device performance by leading to lower total contact resistances

  8. Alignment and pulse-duration effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-10-01

    We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.

  9. Effect of pulse duration on resonant heating of laser-irradiated argon and deuterium clusters.

    PubMed

    Gupta, Ayush; Antonsen, T M; Taguchi, T; Palastro, J

    2006-10-01

    We study the effect of pulse duration on the heating of single van der Waals bound argon and deuterium clusters by a strong laser field using a two-dimensional (2D) electrostatic particle-in-cell (PIC) code in the range of laser-cluster parameters such that kinetic as well as hydrodynamic effects are active. Heating is dominated by a collisionless resonant absorption process that involves energetic electrons transiting through the cluster. A size-dependent intensity threshold defines the onset of this resonance [T. Taguchi, Physical Review Letters, 92, 20 (2004)]. It is seen that increasing the laser pulse duration lowers this intensity threshold and the energetic electrons take multiple laser periods to transit the cluster instead of one laser period. Our simulations also show that strong electron heating is accompanied by the generation of a high-energy peak in the ion energy distribution function. We also calculate the yield of thermonuclear fusion neutrons from exploding deuterium clusters using the PIC model with periodic boundary conditions that allows for the interaction of ions from neighboring clusters. PMID:17155183

  10. Dependence of core heating properties on heating pulse duration and intensity

    NASA Astrophysics Data System (ADS)

    Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki

    2009-11-01

    In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.

  11. Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Contag, Christopher H.

    2011-07-01

    Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress/damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress/injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO2 laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.

  12. Thermal measurements of short-duration CO2 laser resurfacing

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Fried, Daniel; Reinisch, Lou; Bell, Thomas; Lyver, Rex

    1997-05-01

    The thermal consequences of a 100 microsecond carbon-dioxide laser used for skin resurfacing were examined with infrared radiometry. Human skin was evaluated in a cosmetic surgery clinic and extirpated rodent skin was measured in a research laboratory. Thermal relaxation following single pulses of in vivo human and ex vivo animal skin were quantitatively similar in the 30 - 1000 msec range. The thermal emission from the area of the irradiated tissue increased monotonically with increasing incident laser fluence. Extremely high peak temperatures during the 100 microsecond pulse are attributed to plume incandescence. Ejecta thermal emission may also contribute to our measurements during the first several msecs. The data are combined into a thermal relaxation model. Given known coefficients, and adjusting tissue absorption to reflect a 50% water content, and thermal conductivity of 2.3 times that of water, the measured (both animal back and human forearm) and calculated values coincide. The high thermal conductance suggests preferential thermal conduction along the protein matrix. The clinical observation of a resurfacing procedure clearly shows thermal overlap and build-up is a result of sequential, adjacent pulses. A decrease of 4 - 6 degrees Celsius in surface temperature at the treatment site that appeared immediately post-Tx and gradually diminished over several days is possibly a sign of dermal convective and/or evaporative cooling.

  13. Successful management of a refractory case of postoperative herniorrhaphy pain with extended duration pulsed radiofrequency

    PubMed Central

    Thapa, D; Ahuja, V; Verma, P; Das, C

    2016-01-01

    Chronic postsurgical pain (CPSP) is a distressful condition following hernia surgery. A 25-year-old, 55 kg male patient presented with severe pain on the right side of the lower abdomen that radiated to the testicle and the inner side of the thigh. Patient was symptomatic since 5 months following inguinal herniorrhaphy surgery. The pain was not relieved with pharmacological and interventional nerve blocks. An ultrasound-guided ilioinguinal-iliohypogastric (II-IH) block with extended duration (42°C, four cycles of 120 s each) pulsed radiofrequency (PRF) and a diagnostic genital branch of genitofemoral nerve (GGFN) block provided pain relief. After 1-month, an extended duration PRF in GGFN resulted in complete resolution of symptoms. During a regular follow-up of 9 months, patient reported an improved quality-of-life. We believe the successful management of CPSP following hernia repair with single extended duration PRF of II-IH and GGFN has not been described in the literature. PMID:26955321

  14. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration.

    PubMed

    Weitz, Andrew C; Nanduri, Devyani; Behrend, Matthew R; Gonzalez-Calle, Alejandra; Greenberg, Robert J; Humayun, Mark S; Chow, Robert H; Weiland, James D

    2015-12-16

    Retinal prosthetic implants are the only approved treatment for retinitis pigmentosa, a disease of the eye that causes blindness through gradual degeneration of photoreceptors. An array of microelectrodes triggered by input from a camera stimulates surviving retinal neurons, with each electrode acting as a pixel. Unintended stimulation of retinal ganglion cell axons causes patients to see large oblong shapes of light, rather than focal spots, making it difficult to perceive forms. To address this problem, we performed calcium imaging in isolated retinas and mapped the patterns of cells activated by different electrical stimulation protocols. We found that pulse durations two orders of magnitude longer than those typically used in existing implants stimulated inner retinal neurons while avoiding activation of ganglion cell axons, thus confining retinal responses to the site of the electrode. Multielectrode stimulation with 25-ms pulses can pattern letters on the retina corresponding to a Snellen acuity of 20/312. We validated our findings in a patient with an implanted epiretinal prosthesis by demonstrating that 25-ms pulses evoke focal spots of light. PMID:26676610

  15. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds.

    PubMed

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-01-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion. PMID:26271602

  16. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-08-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion.

  17. Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses

    SciTech Connect

    Morris, J.R.

    1994-02-01

    Calculations of backscatter emission of meosopheric sodium atoms in a laser guide star that is excited by pulses ranging from 30-ns to 0.9-{mu}s duration are described. The efficient use of such pulses at saturating irradiance values is shown to require {approximately} 3 GHz of spectral broadening to provide access to the full absorption spectrum of the D{sub 2} line. The broadening is provided by frequency modulation. A set of density matrices was used to account for all 24 hyperfine states and inhomogeneous Doppler broadening. At the broadband (3-GHz) saturation irradiance of 4 W/cm{sup 2}, both linearly and circularly polarized laser beams are shown to produce emission rates exceeding 60% of the maximum possible rate-equation rate for the 0.9-{mu}s pulses. As expected, circular polarization produced more backscatter than did linear polarization, but the enhancement never exceeded 1/3 in the calculations that are reported. A brief estimate of state precession in the Earth`s magnetic field suggests that achieving even this enhancement will require that the time scale for optical pumping be held to less than 1 {mu}s, which will require the use of irradiances greater than 0.7 W/cm{sup 2} and spectral coverage of the full 3-GHz hyperfine-plus-Doppler absorption profile, at least until most of the population is pumped out of the F = 1 ground states. 46 refs., 24 figs., 5 tabs.

  18. The effect of pulse duration on laser-induced damage by 1053-nm light in potassium dihydrogen phosphate crystals

    SciTech Connect

    Cross, D A; Braunstein, M R; Carr, C W

    2006-11-27

    Laser induced damage in potassium dihydrogen phosphate (KDP) has previously been shown to depend significantly on pulse duration for 351-nm Gaussian pulses. In this work we studied the properties of damage initiated by 1053-nm temporally Gaussian pulses with 10ns and 3ns FWHM durations. Our results indicate that the number of damage sites induced by 1053-nm light scales with pulse duration ({tau}) as ({tau}{sub 1}/{tau}{sub 2}){sup 0.17} in contrast to the previously reported results for 351-nm light as ({tau}{sub 1}/{tau}{sub 2}){sup 0.35}. This indicates that damage site formation is significantly less probable at longer wavelengths for a given fluence.

  19. Attosecond pulses measured from the attosecond lighthouse

    NASA Astrophysics Data System (ADS)

    Hammond, T. J.; Brown, Graham G.; Kim, Kyung Taec; Villeneuve, D. M.; Corkum, P. B.

    2016-03-01

    The attosecond lighthouse is a method of using ultrafast wavefront rotation with high-harmonic generation to create a series of coherent, spatially separated attosecond pulses. Previously, temporal measurements by photoelectron streaking characterized isolated attosecond pulses created by manipulating the single-atom response. The attosecond lighthouse, in contrast, generates a series of pulses that spatially separate and become isolated by propagation. Here, we show that ultrafast wavefront rotation maintains the single-atom response (in terms of temporal character) of an isolated attosecond pulse over two octaves of bandwidth. Moreover, we exploit the unique property of the attosecond lighthouse—the generation of several isolated pulses—to measure the three most intense pulses. These pulses each have a unique spectrum and spectral phase.

  20. Reliability assessment for pulse wave measurement using artificial pulse generator.

    PubMed

    Chang, Chi-Wei; Wang, Wei-Kung

    2015-04-01

    This study aimed to assess intrinsic reliabilities of devices for pulse wave measurement (PWM). An artificial pulse generator system was constructed to create a periodic pulse wave. The stability of the periodic output was tested by the DP103 pressure transducer. The pulse generator system was then used to evaluate the TD01C system. Test-re-test and inter-device reliability assessments were conducted on the TD01C system. First, 11 harmonic components of the pulse wave were calculated using Fourier series analysis. For each harmonic component, coefficient of variation (CV), intra-class correlation coefficient (ICC) and Bland-Altman plot were used to determine the degree of reliability of the TD01C system. In addition, device exclusion criteria were pre-specified to improve consistency of devices. The artificial pulse generator system was stable to evaluate intrinsic reliabilities of devices for PWM (ICCs > 0.95, p < 0.001). TD01C was reliable for repeated measurements (ICCs of test-re-test reliability > 0.95, p < 0.001; CVs all < 3%). Device exclusion criteria successfully excluded the device with defect; therefore, the criteria reduced inter-device CVs of harmonics and improved consistency of the selected devices for all harmonic components. This study confirmed the feasibility of intrinsic reliability assessment of devices for PWM using an artificial pulse generator system. Moreover, potential novel findings on the assessment combined with device exclusion criteria could be a useful method to select the measuring devices and to evaluate the qualities of them in PWM. PMID:25693606

  1. Exceptions to Hick's law: explorations with a response duration measure.

    PubMed

    Longstreth, L E; el-Zahhar, N; Alcorn, M B

    1985-12-01

    Five experiments used a new response-duration measure in explorations of the conditions necessary for confirmation of Hick's law. Hick's law states that reaction time increases logarithmically with number of choices. Exceptions to the law, venerable as it is, have been reported. They have always included the following conditions: a verbal response; a familiar stimulus with a single dominant name; and a large number of practice trials. These conditions have carried a heavy explanatory burden in accounting for the anamolous results. The present studies use none of these conditions and yet manage to replicate the anamolous result of a very shallow slope across set size, a slope less than one-tenth the usual value. This was accomplished by using a novel task in which the initial component of the response is the same for all stimuli (depression of a single response key) but the termination of the response is different (different durations for each stimulus). Using this task, a slope in the neighborhood of 15 ms per bit of stimulus uncertainty is found, as compared with the usual value of about 150 ms. A number of possible explanations are examined. Among the most important are the possibilities that response overlap is the critical factor (i.e., duration errors overlap); possible stimuli are simply ignored when more than one is involved; and the duration decision is made after the reaction-time interval rather than during it. All three possibilities, as well as some others, are found to be inconsistent with the various experimental outcomes. Instead, a new theory of choice reaction time is presented, which emphasizes the nature of the S-R code that is assumed to represent various reaction-time tasks. This theory leads to a new "law" that is put forward as a replacement for Hick's law. It is RT = a + b(1 - N-1). PMID:2934496

  2. All solid-state mode-locked flashlamp pumped Nd:YAG laser system with selectable pulse duration

    NASA Astrophysics Data System (ADS)

    Kubecek, Vaclav; Diels, Jean-Claude; Stintz, Andreas; Jelinkova, Helena; Dombrovsky, Andrej; Cech, Miroslav

    2005-04-01

    All solid state mode-locked flashlamp pumped Nd:YAG laser system with selectable pulse duration was developed based on the oscillator where a single semiconductor structure containing a multiple-quantum-well was used as a saturable absorber for mode-locking, and energy limiter for passive negative feedback. Single pulse selection from various parts of extended 200 ns long Q-switched pulse train enables the changing of pulse duration before entering into three stages of laser amplifiers. Using of additional acousto-optic mode-locker, stability enhancement of the output pulses was obtained and the amplitude fluctuations were reduced below 5%. The exploitation of the solid state saturable absorber and limiter integrated in the single element improved significantly the long term characteristics of the laser system which can be therefore used for various applications as a satellite laser ranging, spectroscopy, or medicine.

  3. Laser-induced damage measurements with 266-nm pulses

    NASA Astrophysics Data System (ADS)

    Deaton, T. F.; Smith, W. L.

    1980-07-01

    Results of a survey of laser-induced damage thresholds for optical components at 266-nm are reported. The thresholds were measured at two pulse durations; 0.150 ns and 1.0 ns. The 30 samples tested include four commercial dielectric reflectors, three metallic reflectors, two anti-reflection films, a series of eight half-wave oxide and fluoride films, and twelve bare surfaces (fluoride crystals, silica, sapphire, BK-7 glass, cesium dideuterium arsenate and potassium dihydrogen phosphate). The 266-nm pulses were obtained by frequency-quadrupling a Nd:YAG, glass laser. Equivalent plane imagery and calorimetry were used to measure the peak fluence of each of the UV pulses with an accuracy of + or - of 15%; the uncertainty in the threshold determinations is typically + or - 30%.

  4. Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water

    NASA Astrophysics Data System (ADS)

    Lachaine, R.; Boulais, E.; Bourbeau, E.; Meunier, M.

    2013-07-01

    Bubbles generated in water by focusing femtosecond and picosecond laser pulses in the presence of 100 nm gold nanoparticles have been investigated in the fluence range usually used for efficient cell transfection (100-200 mJ/cm2). Since resulting bubbles are at the nanoscale, direct observation using optical microscopy is not possible. An optical in-situ method has been developed to monitor the time-resolved variation in the extinction cross-section of an irradiated nanoparticle solution sample. This method is used to measure the bubbles lifetime and deduce their average diameter. We show that bubbles generated with femtosecond pulses (40-500 fs) last two times longer and are larger in average than those generated with picosecond pulses (0.5-5 ps). Controlling those bubble properties is necessary for optimizing off-resonance plasmonic enhanced ultrafast laser cell transfection.

  5. Effect of Pulse Duration on Polytetrafluoroethylene Shocked above the Crystalline Phase II-Iii Transition

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Gray, G. T.; Rae, P. J.; Trujillo, C. P.; Bourne, N. K.

    2007-12-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II-III transition was seen to cause both an increase in crystallinity from 38% to ˜53% and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  6. Laser processing of glass fiber reinforced thermoplastics with different wavelengths and pulse durations

    NASA Astrophysics Data System (ADS)

    Schilling, N.; Krupop, B.; Klotzbach, U.

    2015-03-01

    In this paper, laser processing of fiber reinforced thermoplastics is investigated with different laser sources. Aim of the study is to determine the process windows in which selective ablation of polymer matrix and homogenous ablation of matrix and fiber occurs. To reach this, laser sources with different wavelengths (10600 nm, 1064 nm and 532 nm) and pulse durations in μs, ns and ps regime are compared on their ablation behavior of natural and black colored glass fiber reinforced polypropylene. Best results were achieved with ns lasers with IR wavelength at black colored material. At this parameter combination a wide process window can be shown where no damage of the reinforcing fibers happens.

  7. Effect of Pulse Duration on Polytetrafluoroethylene Shocked Above the Crystalline Phase II--III Transition

    NASA Astrophysics Data System (ADS)

    Brown, Eric N.; Gray, George T., III; Rae, Philip J.; Trujillo, Carl P.; Bourne, Neil K.

    2007-06-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II--III transition was seen to cause both an increase in crystallinity from 38% to ˜53% (by Differential Scanning Calorimetry, DSC) and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  8. Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration

    NASA Astrophysics Data System (ADS)

    Kamata, M.; Imahoko, T.; Ozono, K.; Obara, M.

    We have developed an automatic pulsewidth-adjustable femtosecond Ti:Sapphire laser system that can generate an output of 50 fs-1 ps in duration, and sub-mJ/pulse at a repetition rate of 1 kpps. The automatic pulse compressor enables one to control the pulsewidth in the range of 50 fs-1 ps by use of a personal computer (PC). The compressor can change the distance in-between and the tilt angle of the grating pairs by use of two stepping motors and two piezo-electric transducer(PZT) driven actuators, respectively. Both are controlled by a PC. Therefore, not only control of the pulsewidth, but also of the optical chirp becomes easy. By use of this femtosecond laser system, we fabricated a waveguide in fused quartz. The numerical aperture is chosen to 0.007 to loosely focus the femtosecond laser. The fabricated waveguides are well controllable by the incident laser pulsewidth. We also demonstrated the ablation processing of hydroxyapatite (Ca10(PO4)6(OH)2), which is a key component of human tooth and human bone for orthopedics and dentistry. With pulsewidth tunable output from 50 fs through 2 ps at 1 kpps, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs-2-ps laser ablation. We also demonstrated the precise ablation processing of human tooth enamel with 2 ps Ti:Sapphire laser.

  9. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit

    SciTech Connect

    Waldecker, Lutz Bertoni, Roman; Ernstorfer, Ralph

    2015-01-28

    We present the design and implementation of a highly compact femtosecond electron diffractometer working at electron energies up to 100 keV. We use a multi-body particle tracing code to simulate electron bunch propagation through the setup and to calculate pulse durations at the sample position. Our simulations show that electron bunches containing few thousands of electrons per bunch are only weakly broadened by space-charge effects and their pulse duration is thus close to the one of a single-electron wavepacket. With our compact setup, we can create electron bunches containing up to 5000 electrons with a pulse duration below 100 fs on the sample. We use the diffractometer to track the energy transfer from photoexcited electrons to the lattice in a thin film of titanium. This process takes place on the timescale of few-hundred femtoseconds and a fully equilibrated state is reached within 1 ps.

  10. Spectral Measurements of Pulse Solar Simulators

    SciTech Connect

    Cannon, T. W.

    1998-11-12

    Spectral measurements of pulse solar simulators are used to quantify the wavelength-dependant characteristics of the light. Because every PV device has a unique spectral response, it is important to know the spectral irradiance and to periodically monitor the spectra for changes. Measurements are made at the National Renewable Energy Laboratory (NREL) using several different techniques including the NREL-developed Pulse Analysis Spectroradiometer System (PASS).

  11. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br{sub 2} down to 13 μs

    SciTech Connect

    Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.

    2015-05-15

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  12. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs

    NASA Astrophysics Data System (ADS)

    Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.

    2015-05-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  13. Exact analysis of particle dynamics in combined field of finite duration laser pulse and static axial magnetic field

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2012-11-15

    Dynamics of a charged particle is studied in the field of a relativistically intense linearly polarized finite duration laser pulse in the presence of a static axial magnetic field. For a finite duration laser pulse whose temporal shape is defined by Gaussian profile, exact analytical expressions are derived for the particle trajectory, momentum, and energy as function of laser phase. From the solutions, it is shown that, unlike for the monochromatic plane wave case, resonant phase locking time between the particle and laser pulse is finite. The net energy transferred to the particle does not increase monotonically but tends to saturate. It is further shown that appropriate tuning of cyclotron frequency of the particle with the characteristic frequency in the pulse spectrum can lead to the generation of accelerated particles with variable energies in MeV-TeV range.

  14. Effects of laser pulse duration and intensity on Coulomb explosion of CO2: Signatures of charge-resonance enhanced ionization

    NASA Astrophysics Data System (ADS)

    Litvinyuk, Igor V.; Bocharova, Irina; Sanderson, Joseph; Kieffer, Jean-Claude; Légaré, François

    2009-11-01

    We studied laser-induced Coulomb explosion of CO2 by full triple-coincidence momentum resolved detection of resulting ion fragments. From the coincidence momentum data we can reconstruct molecular geometry immediately before explosion. We observe the dynamics of Coulomb explosion by comparing reconstructed CO2 geometries for different Ti:Sapphire laser pulse durations (at the same intensity) ranging from few cycles (7 fs) to 200 fs. We conclude that for longer pulse durations (>=100 fs) Coulomb explosion proceeds through the enhanced ionization mechanism taking place at the critical O-O distance of 8 a.u., similarly to well known charge-resonance enhanced ionization (CREI) in H2.

  15. Systematic Effects on Duration Measurements of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Paciesas, William S.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Fishman, Gerald J.; Meegan, Charles A.

    1996-01-01

    The parameters T(sub 90) and T(sub 50) have recently been introduced as a measurement of the duration of gamma-ray bursts. We present here a description of the method of measuring T(sub 90) and T(sub 50) and its application to gamma-ray bursts observed with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO). We use simulated as well as observed time profiles to address some of the possible systematic effects affecting individual T(sub 90) (T(sub 50)) measurements. We show that these systematic effects do not mimic those effects that would result from time dilation if the burst sources are at distances of several Gpc. We discuss the impact of these systematic effects on the T(sub 90) (T(sub 50)) distributions for the gamma-ray bursts observed with BATSE. We distinguish between various types of T(sub 90) (T(sub 50)) distributions, and discuss the ways in which distributions observed with different experiments can vary, even though the measurements for commonly observed bursts may be the same. We then discuss the distributions observed with BATSE and compare them to those observed with other experiments.

  16. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study

    PubMed Central

    Anbarasan, Selvam; Baraneedharan, Ulaganathan; Paul, Solomon FD; Kaur, Harpreet; Rangaswami, Subramoniam; Bhaskar, Emmanuel

    2016-01-01

    Background: Pulsed electromagnetic field (PEMF) is used to treat bone and joint disorders for over 30 years. Recent studies demonstrate a significant effect of PEMF on bone and cartilage proliferation, differentiation, synthesis of extracellular matrix (ECM) and production of growth factors. The aim of this study is to assess if PEMF of low frequency, ultralow field strength and short time exposure have beneficial effects on in-vitro cultured human chondrocytes. Materials and Methods: Primary human chondrocytes cultures were established using articular cartilage obtained from knee joint during joint replacement surgery. Post characterization, the cells were exposed to PEMF at frequencies ranging from 0.1 to 10 Hz and field intensities ranging from 0.65 to 1.95 μT for 60 min/day for 3 consecutive days to analyze the viability, ECM component synthesis, proliferation and morphology related changes post exposure. Association between exposure doses and cellular effects were analyzed with paired't’ test. Results: In-vitro PEMF exposure of 0.1 Hz frequency, 1.95 μT and duration of 60 min/day for 3 consecutive days produced the most favorable response on chondrocytes viability (P < 0.001), ECM component production (P < 0.001) and multiplication. Exposure of identical chondrocyte cultures to PEMFs of 0.65 μT field intensity at 1 Hz frequency resulted in less significant response. Exposure to 1.3 μT PEMFs at 10 Hz frequency does not show any significant effects in different analytical parameters. Conclusions: Short duration PEMF exposure may represent a new therapy for patients with Osteoarthritis (OA). PMID:26955182

  17. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    SciTech Connect

    Tamura, Ayaka Matsumoto, Ayumu; Nishi, Naoya; Sakka, Tetsuo; Fukami, Kazuhiro

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of the short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.

  18. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Hüller, Stefan

    2013-11-01

    An adaptive method of controlling parametric instabilities in laser produced plasmas is proposed. It involves fast temporal modulation of a laser pulse on the fastest instability's amplification time scale, adapting to changing and unknown plasma conditions. These pulses are comprised of on and off sequences having at least one or two orders of magnitude contrast between them. Such laser illumination profiles are called STUD pulses for Spike Trains of Uneven Duration and Delay. The STUD pulse program includes scrambling the speckle patterns spatially in between the laser spikes. The off times allow damping of driven waves. The scrambling of the hot spots allows tens of damping times to elapse before hot spot locations experience recurring high intensity spikes. Damping in the meantime will have healed the scars of past growth. Another unique feature of STUD pulses on crossing beams is that their temporal profiles can be interlaced or staggered, and their interactions thus controlled with an on-off switch and a dimmer.

  19. Laser-induced microjet: wavelength and pulse duration effects on bubble and jet generation for drug injection

    NASA Astrophysics Data System (ADS)

    Jang, Hun-jae; Park, Mi-ae; Sirotkin, Fedir V.; Yoh, Jack J.

    2013-12-01

    The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.

  20. Short Shock Pulse Duration Experiments Plus Ignition and Growth Modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd; Tarver, Craig

    2013-06-01

    Short pulse duration shock initiation experiments were performed on 1.71 g/cm3 Composition B using electrically driven kapton flyer plates. Critical impact velocities for initiation at several flyer plate thicknesses and diameters were determined. For 2 mm diameter flyers, the critical velocities for shock initiation ranged from 4.06 to 4.72 km/s for flyer thicknesses ranging from 127 to 50.8 microns. Since the failure diameter of Composition B is approximately 4 mm, the kapton flyers imparted sufficient energy to overcome the effects of both rear and size rarefaction wave energy loses and cause detonation. The Ignition and Growth reactive flow model parameters for Composition B were modified to include unreacted Hugoniot, detonation reaction zone, and overdriven detonation experimental data and then applied to the kapton flyer data with good results. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.: Explosive, Composition B, shock to detonation transition, Ignition and Growth: 82.33.Vx, 82.40.Fp.

  1. A waveguide high-pass filter system for measuring the spectrum of pulsed terahertz sources

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Goykhman, M. B.; Gromov, A. V.; Palitsin, A. V.; Panin, A. N.; Rodin, Yu. V.; Fil'chenkov, S. E.

    2016-05-01

    We propose a system for measuring spectra of terahertz (THz) pulses, including single pulses, which is based on high-pass filters (HPFs). The system consists of channels for measuring amplitudes of pulses (initial pulses and those transmitted via HPFs with different cutoff frequencies) and an algorithm for processing of the obtained data. The pulse spectrum is restored by using the iteration method or the amplitude-frequency method. The iteration method of spectrum restoration is applicable in the range of THz pulse durations from 10-9 s to 10-7 s. The amplitude-frequency method is applicable to THz pulses with durations exceeding 10-8 s. The system for measuring of THz pulse spectra was simulated by using the characteristics of specially developed waveguide HPFs. The relative simulation error of determining the central frequency by the amplitude-frequency method is equal to 2 · 10-6 for THz pulse durations of 10-5 s and longer.

  2. Pulse energy measurement at the SXR instrument

    DOE PAGESBeta

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; et al

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of datamore » normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.« less

  3. Pulse energy measurement at the SXR instrument

    SciTech Connect

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A.; Tiedtke, Kai

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.

  4. Pulse energy measurement at the SXR instrument

    PubMed Central

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A.; Tiedtke, Kai

    2015-01-01

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given. PMID:25931075

  5. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  6. Pulsed thrust measurements using laser interferometry

    NASA Astrophysics Data System (ADS)

    Cubbin, E. A.; Ziemer, J. K.; Choueiri, E. Y.; Jahn, R. G.

    1997-06-01

    An optical interferometric proximeter system (IPS) for measuring thrust and impulse bit of pulsed electric thrusters was developed. Unlike existing thrust stands, the IPS-based thrust stand offers the advantage of a single system that can yield electromagnetic interference-free, high accuracy (<2% error) thrust measurements within a very wide range of impulses (100 μN s to above 10 N s) covering the impulse range of all known pulsed plasma thrusters. In addition to pulsed thrusters, the IPS is theoretically shown to be capable of measuring steady-state thrust values as low as 20 μN for microthrusters such as the field emission electric propulsion thruster. The IPS-based thrust stand relies on measuring the dynamic response of a swinging arm using a two-sensor laser interferometer with 10 nm position accuracy. The wide application of the thrust stand is demonstrated with thrust measurements of an ablative pulsed plasma thruster and a quasi-steady magnetoplasmadynamic thruster.

  7. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  8. Laser pulse duration dependence of blister formation on back-radiated Ti thin films for BB-LIFT

    NASA Astrophysics Data System (ADS)

    Goodfriend, N. T.; Starinskiy, S. V.; Nerushev, O. A.; Bulgakova, N. M.; Bulgakov, A. V.; Campbell, E. E. B.

    2016-03-01

    The influence of the laser pulse duration on the mechanism of blister formation in the particle transfer technique, blister-based laser-induced forward transfer, was investigated. Pulses from a fs Ti:Sapphire laser (120 fs, 800 nm) and from a ns Nd:YAG laser (7 ns, 532 nm) were used to directly compare blister formation on thin titanium films of ca. 300 nm thickness, deposited on glass. The different blister morphologies were compared and contrasted by using optical microscopy and atomic force microscopy. The results provide evidence for different blister formation mechanisms: for fs pulses the mechanism is predominantly ablation at the metal-glass interface accompanied by confined plasma expansion and deformation of the remaining metal film; for ns pulses it is heating accompanied by thermal expansion of the metal film.

  9. Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Seifert, H. J.; Pfleging, W.

    2016-02-01

    Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.

  10. Millisecond duration pulses for flow-through electro-induced protein extraction from E. coli and associated eradication.

    PubMed

    Coustets, M; Ganeva, V; Galutzov, B; Teissie, J

    2015-06-01

    Pulsed electric fields are used to induce membrane permeabilization on cells. In the case of species with cell wall (yeasts, microalgae), it was previously shown that when the pulse duration was several ms long, this resulted in a cytoplasmic soluble protein slow leakage. In this work, we show that a similar consequence can be obtained with different strains of E. coli. Experimental evidences of a resulting wall alteration are described. Pre-industrial flow process pilots are used. As the membrane electropermeabilization can be irreversible by applying a proper choice of the pulse parameters, this approach is used for bacterial inactivation in flow process. It is observed that sub-millisecond pulse trains are more cost effective than longer ones. PMID:25183448

  11. Pulsed thrust measurements using electromagnetic calibration techniques.

    PubMed

    Tang, Haibin; Shi, Chenbo; Zhang, Xin'ai; Zhang, Zun; Cheng, Jiao

    2011-03-01

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 μN s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 μN s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 μN s with 95% credibility. PMID:21456799

  12. High power laser pulses with voltage controlled durations of 400 - 1000 ps.

    PubMed

    Harth, F; Ulm, T; Lührmann, M; Knappe, R; Klehr, A; Hoffmann, Th; Erbert, G; L'huillier, J A

    2012-03-26

    We report on the generation and amplification of pulses with pulse widths of 400 - 1000 ps at 1064 nm. For pulse generation an ultra-fast semiconductor modulator is used that modulates a cw-beam of a DFB diode laser. The pulse lengths could be adjusted by the use of a voltage control. The pulses were amplified in a solid state Nd:YVO₄ regenerative amplifier to an average power of up to 47.7 W at 100 - 816 kHz. PMID:22453379

  13. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-06-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10{sup 3} compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second.

  14. Source duration of stress and water-pressure induced seismicity derived from experimental analysis of P wave pulse width in granite

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2013-12-01

    Pulse widths of P waves in granite, measured in the laboratory, were analyzed to investigate source durations of rupture processes for water-pressure induced and stress-induced microseismicity. Much evidence suggests that fluids in the subsurface are intimately linked to faulting processes. Studies of seismicity induced by water injection are thus important for understanding the trigger mechanisms of earthquakes as well as for engineering applications such as hydraulic fracturing of rocks at depth for petroleum extraction. Determining the cause of seismic events is very important in seismology and engineering; however, water-pressure induced seismic events are difficult to distinguish from those induced by purely tectonic stress. To investigate this problem, we analyzed the waveforms of acoustic emissions (AEs) produced in the laboratory by both water-pressure induced and stress-induced microseismicity. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of about 70% of fracture strength, to the rock sample under 40 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emissions (AEs) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 17 MPa until macroscopic fracture occurred. We analysed AE waveforms produced by stress-induced AEs which occurred before the water-injection and by water-pressure induced AEs which occurred after the water-injection. Pulse widths were measured from the waveform traces plotted from the digital data. To investigate the source duration of the rupture process, we estimated the pulse width at the source and normalized by event magnitude to obtain a scaled pulse width at the source. After the effects of event size and hypocentral distance were removed from observed pulse widths, the ratio of the scaled source durations of water

  15. Pulse

    MedlinePlus

    Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...

  16. Spectral, kinetic and polarization characteristics of luminescence of acriflavine in polymeric matrix under pulsed excitation with different durations and intensities

    NASA Astrophysics Data System (ADS)

    Kaputskaya, I. A.; Ermilov, E. A.; Tannert, S.; Röder, B.; Gorbatsevich, S. K.

    2006-08-01

    Spectral, kinetic and polarization characteristics of fluorescence and thermally activated delayed fluorescence (TADF) of dye solid solutions have been investigated. It was shown that the increasing of the excitation pulse duration results in rise of TADF decay time, but an increasing of the long pulse excitation intensity results in a faster TADF decay. In the presence of Förster resonance energy transfer (FRET) the fluorescence spectrum is shifting non-monotonically with time when the intensity of the excitation pulse is high. At the time moment when the excitation is switched off the polarization degree of luminescence of the concentrated dye solutions strongly reduces. The energy transfer from the molecules in the S 1 state to the molecules in the T 1 state reduces the depolarization of luminescence caused by FRET. Numerical simulations were made by means of Monte-Carlo integrations and results were compared with experimental data obtained for acriflavine in polyvinyl alcohol films.

  17. III Lead ECG Pulse Measurement Sensor

    NASA Astrophysics Data System (ADS)

    Thangaraju, S. K.; Munisamy, K.

    2015-09-01

    Heart rate sensing is very important. Method of measuring heart pulse by using an electrocardiogram (ECG) technique is described. Electrocardiogram is a measurement of the potential difference (the electrical pulse) generated by a cardiac tissue, mainly the heart. This paper also reports the development of a three lead ECG hardware system that would be the basis of developing a more cost efficient, portable and easy to use ECG machine. Einthoven's Three Lead method [1] is used for ECG signal extraction. Using amplifiers such as the instrumentation amplifier AD620BN and the conventional operational amplifier Ua741 that would be used to amplify the ECG signal extracted develop this system. The signal would then be filtered from noise using Butterworth filter techniques to obtain optimum output. Also a right leg guard was implemented as a safety feature to this system. Simulation was carried out for development of the system using P-spice Program.

  18. Force measurement using strain-gauge balance in a shock tunnel with long test duration.

    PubMed

    Wang, Yunpeng; Liu, Yunfeng; Luo, Changtong; Jiang, Zonglin

    2016-05-01

    Force tests were conducted at the long-duration-test shock tunnel JF12, which has been designed and built in the Institute of Mechanics, Chinese Academy of Sciences. The performance tests demonstrated that this facility is capable of reproducing a flow of dry air at Mach numbers from 5 to 9 at more than 100 ms test duration. Therefore, the traditional internal strain-gauge balance was considered for the force tests use in this large impulse facility. However, when the force tests are conducted in a shock tunnel, the inertial forces lead to low-frequency vibrations of the test model and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be found during a shock tunnel run. The post-processing of the balance signal thus becomes extremely difficult when an averaging method is employed. Therefore, the force measurement encounters many problems in an impulse facility, particularly for large and heavy models. The objective of the present study is to develop pulse-type sting balance by using a strain-gauge sensor that can be applied in the force measurement of 100 ms test time, especially for the force test of the large-scale model. Different structures of the S-series (i.e., sting shaped balances) strain-gauge balance are proposed and designed, and the measuring elements are further optimized to overcome the difficulties encountered during the measurement of aerodynamic force in a shock tunnel. In addition, the force tests were conducted using two large-scale test models in JF12 and the S-series strain-gauge balances show good performance in the force measurements during the 100 ms test time. PMID:27250471

  19. Quantum nondemolition measurement by pulsed oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Ying; Zhao, Kai-Feng

    2016-03-01

    Paramagnetic Faraday rotation is a quantum nondemolition measurement method that can generate spin squeezing and improve the measurement precision of a collective spin component beyond the standard quantum limit. In practice, a constant bias magnetic field is used to drive the spin precessing at sufficiently high frequency in order to lift the signal out of low-frequency technical noises. However, continuous measurement of precessing spins introduces back-action noise (BAN) due to the light-shift effect. Two types of back-action-evading (BAE) measurement of collective spin components have been demonstrated recently: continuous measurement of a two-ensemble system and stroboscopic measurement of a single ensemble. Here we propose another single ensemble BAE measurement by periodically modulating the bias field with π pulses. Our theoretical calculation shows that under experimental settings where pulse-field modulation does not introduce significant decoherences, the proposed method can suppress the BAN and generate spin squeezing faster than the stroboscopic one at the same probe light power. Moreover, if it is combined with synchronous stroboscopic probing, light-shift BAN can be completely eliminated.

  20. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    We present a new approach (demonstrated experimentally and through modeling) to characterize the spectral envelope of a terahertz (THz) pulse in a single shot. The coherent THz pulse is produced by a femtosecond electron bunch and contains information on the bunch duration. The technique, involving a single low-power laser probe pulse, is an extension of the conventional spectral encoding method (limited in time resolution to hundreds of femtoseconds) into a regime only limited in resolution by the laser pulse length (tens of femtoseconds). While only the bunch duration is retrieved (and not the exact charge profile), such a measurement provides a useful and critical parameter for optimization of the electron accelerator.

  1. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  2. Ultrashort Pulse Reflectometry (USPR) Density Profile Measurements on GAMMA-10

    NASA Astrophysics Data System (ADS)

    Domier, C. W.; Roh Luhmann, Y., Jr.; Mase, A.; Kubota, S.

    1999-11-01

    Ultrashort pulse reflectometry (USPR) involves time-of-flight measurements of extremely broadband, high speed chirped signals ( ns sweep times). A multichannel USPR system has been installed on the central cell of the GAMMA-10 mirror machine located at the University of Tsukuba, Japan. Here, the output from a 65 ps FWHM impulse generator is stretched and amplified to form a 10 ns duration, 11-18 GHz chirp signal. A five channel X-mode USPR receiver, with frequency channels at 12, 13, 15, 16 and 17 GHz, measures the double-pass time delay of each reflected subpacket simultaneously with 25 ps time resolution. Density profile and fluctuation data collected on GAMMA-10 will be presented.

  3. An investigation of fatigue phenomenon in the upper limb muscle due to short duration pulses in an FES system

    NASA Astrophysics Data System (ADS)

    Naeem, Jannatul; Wong Azman, Amelia; Khan, Sheroz; Mohd Mustafah, Yasir

    2013-12-01

    Functional Electrical Stimulation (FES) is a method of artificially stimulating muscles or nerves in order to result in contraction or relaxation of muscles. Many studies have shown that FES system has helped patients to live a better lives especially those who are suffering from physical mobility. Unfortunately, one of the main limitations of an FES system besides of its high cost is largely due to muscle fatigue. Muscle fatigue will affect the training duration which could delay patients' recovery rate. In this paper, we analyzed the occurrence of this fatigue phenomenon in terms of stimulator parameters such as amplitude, frequency, pulse width and pulse shape. The objective of this investigation is to identify other key features of the FES system parameters in order to prolong the training duration among patients. The experiment has been done on a healthy person for the duration of one minute and later the muscles response will be observed. Resultant muscle response is recorded as force using force resistive sensor. The experimental results show muscles will get fatigue at a different rate as the frequency increases. The experiment also shows that the duty cycle is reciprocal to the resultant force.

  4. Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range

    SciTech Connect

    Gallais, Laurent; Mangote, Benoit; Zerrad, Myriam; Commandre, Mireille; Melninkaitis, Andrius; Mirauskas, Julius; Jeskevic, Maksim; Sirutkaitis, Valdas

    2011-03-20

    Laser-damage thresholds and morphologies of hafnia single layers exposed under femtosecond, picosecond, and nanosecond single pulses (1030/1064nm) are reported. The samples were made with different deposition parameters in order to study how the damage behavior of the samples evolves with the pulse duration and how it is linked to the deposition process. In the femtosecond to picosecond regime, the scaling law of the laser-induced damage threshold as a function of pulse duration is in good agreement with the models of photo and avalanche ionization based on the rate equation for free electron generation. However, differences in the damage morphologies between samples are shown. No correlation between the nanosecond and femtosecond/picosecond laser-damage resistance of hafnia coatings could be established. We also report evidence of the transition in damage mechanisms for hafnia, from an ablation process linked to intrinsic properties of the material to a defect-induced process, that exists between a few picoseconds and a few tens of picoseconds.

  5. 140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor.

    PubMed

    Kono, Shunsuke; Watanabe, Hideki; Koda, Rintaro; Fuutagawa, Noriyuki; Narui, Hironobu

    2015-12-14

    Blue-violet optical pulses of 140-fs duration and 60-W peak power were obtained from a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compression technique. Wavelength-dependent group velocity dispersion expressed by third-order phase dispersion was applied to the optical pulses using a pulse compressor with a spatial light modulator. The obtained optical pulses had the shortest duration ever obtained for a mode-locked semiconductor laser diode using edge-emitting type devices. PMID:26698968

  6. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  7. Performance of Variable Duration STUD Pulses with Fixed Peal Intensity and their Compliments

    NASA Astrophysics Data System (ADS)

    Hüller, Stefan; Afeyan, Bedros

    2015-11-01

    The simplest approach to STUD pulse implementation, given the requisite bandwidth of the laser is to keep the peak spike intensities fixed while modulating the lasers on and off on a 1-10 ps time scale. To what extent spatial scrambling is required in this case is compared to cases where the peak spike intensity varies with the duty cycle at fixed pulse width, to preserve the energy of the overall laser pulse. We compare RPP/CPP, SSD and STUD pulses at fixed energy with both variable pulse width and fixed peak intensity configurations and vice versa. This allows us to highlight the effects of speckle statistics, memory accumulation and pump depletion in setting gain saturation levels from the ideal democratized, incoherent sums of small growth spurts equally from all regions of the plasma, vs localized and highly nonlinear growth and re-amplification due to the unchanging or much too slowly changing nature of the illumination strategy, such as RPP/CPP or SSD. Work supported by the DOE NNSA-OFES Joint Program on HEDLP.

  8. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  9. Preliminary total dose measurements on LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Reitz, G.

    1992-01-01

    After spending nearly six years in Earth's orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These Free Flyer Biostack experiments are part of the Long Duration Exposure Facility (LDEF). The major objective of the experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The preliminary analysis of the thermoluminescence dosimeters (TLD) yields maximum absorbed dose rates of 2.24 mGy day(exp -1) behind 0.7 g cm(exp -2) shielding and 1.17 mGy day(exp -1) behind 12 g cm(exp -2) shielding. A thermal neutron fluence of 1.7 n cm(exp -2)s(exp -1) is determined from the differences in absorbed dose for different isotopic mixtures of lithium. The results of this experiment on LDEF are especially valuable since LDEF stayed for almost six years in the prospected orbit of the Space Station Freedom.

  10. Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Nagaraju, Ravindra

    2013-07-01

    The goal of this experimental study was to explore the feasibility of acquiring controllable precision through varying pulse duration for lesions generated by cavitation-based histotripsy. Histotripsy uses high-intensity focused ultrasound (HIFU) at low duty factor to create energetic bubble clouds inside tissue to liquefy a region. It uses cavitation-mediated mechanical effects while minimizing heating, and has the advantages of real-time monitoring and lesion fidelity to treatment planning. In our study, histotripsy was applied to three groups of tissue-mimicking agar samples of different stiffnesses (29.4 ± 5.3, 44.8 ± 5.9, and 66.4 ± 7.1 kPa). B-mode imaging was used first to quantify bubble cluster dimensions in both water and agar. Then, a 4.5-mm-wide square (lateral to the focal plane) was scanned in a raster pattern with a step size of 0.75 mm in agar histotripsy experiments to estimate equivalent bubble cluster dimensions based on the histotripsyinduced damage. The 15-s exposure at each treatment location comprised 5000 sine-wave tone bursts at a spatial-peak pulseaverage intensity of 41.1 kW/cm2, with peak compressional and rarefactional pressures of 102 and 17 MPa, respectively. The results showed that bubble cluster width and length increased with pulse duration and decreased with agar stiffness. Therefore, a significant improvement in histotripsy precision could be achieved by reducing the pulse duration. PMID:25004507

  11. Living human face measurements using pulsed holography

    NASA Astrophysics Data System (ADS)

    Bongartz, Jens; Giel, Dominik M.; Hering, Peter

    2000-10-01

    A method to measure precisely the 2D portrait of patients undergoing maxillofacial surgery based on holography is presented. We record holograms of patients with a pulsed Nd:YLF laser system on high resolution photographic glass plates. These images contain the 3D spatial information which, due to the extremely short recording time, is not affected at all by involuntary movements. The reconstructed real image of the hologram is sliced into a series of 2D projections by means of a screen. A first approach to reconstruct the patient's 3D surface information from the captured data set is presented.

  12. Influence of pulse duration, energy, and focusing on laser-assisted water condensation

    SciTech Connect

    Petit, Y.; Henin, S.; Kasparian, J.; Wolf, J. P.; Rohwetter, P.; Stelmaszczyk, K.; Hao, Z. Q.; Nakaema, W. M.; Woeste, L.; Vogel, A.; Pohl, T.; Weber, K.

    2011-01-24

    We investigate the influence of laser parameters on laser-assisted water condensation in the atmosphere. Pulse energy is the most critical parameter. Nanoparticle generation depends linearly on energy beyond the filamentation threshold. Shorter pulses are more efficient than longer ones with saturation at {approx}1.5 ps. Multifilamenting beams appear more efficient than strongly focused ones in triggering the condensation and growth of submicronic particles, while polarization has a negligible influence on the process. The data suggest that the initiation of laser-assisted condensation relies on the photodissociation of the air molecules rather than on their photoionization.

  13. High power fiber MOPA based QCW laser delivering pulses with arbitrary duration on demand at high modulation bandwidth.

    PubMed

    Petkovšek, Rok; Novak, Vid; Agrež, Vid

    2015-12-28

    We report on a concept of a fiber MOPA based quasi-CW laser working at high modulation bandwidths up to 40 MHz capable of producing arbitrary pulse durations at arbitrary repetition rates. An output power of over 100 W was achieved and an on-off contrast of 25 dB. The laser features a dual-channel (dual-wavelength) seed source, a double stage YDF amplifier and a volume-Bragg-grating-based signal de-multiplexer. Minimization of transients was conducted through experiment and model analysis. PMID:26831982

  14. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    SciTech Connect

    Palaniyappan, S.; Johnson, R.; Shimada, T.; Gautier, D. C.; Letzring, S.; Offermann, D. T.; Fernandez, J. C.; Shah, R. C.; Jung, D.; Hegelich, B. M.; Hoerlein, R.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  15. Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel

  16. Systems approach to measuring short-duration acceleration transients

    NASA Astrophysics Data System (ADS)

    Schelby, F.

    It is common for failures to occur when attempting to acquire acceleration structural response measurements during crash, impact, and pyrotechnic testing. The structural response of a mechanical system to severe transient loading is commonly measured by accelerometers which are less than ideal. In particular, their amplitude-frequency response has one or more resonant peaks so that the output of the accelerometer may not be an exact replica of the input if the transient input stimulus contains frequencies near these resonant peaks, signal distortion, over-ranging of signal conditioning electronics, or even failure of the sensing element may occur. These and other problems have spurred the development of a new acceleration-measuring system which incorporates the following features; Transduction Element; Connectors; Mounting; Electronics; and Transducer Resonance.

  17. Systems approach to measuring short-duration acceleration transients

    NASA Astrophysics Data System (ADS)

    Schelby, F.

    A shock measurement system was developed in which the quartz seismic system, two poole active filter and an FET source follower are incorporated in a transducer housing. It is shown that the system will survive + or 100,000g without damage. The PCB can supply different ranges as required. The PCB Model 305M23, can obtain data comparable to those of standard piezoelectric and piezoresistive accelerometers when high frequencies are absent. In the presence of high frequency stimuli, the accelerometer has obtained data without over ranging its data channel and without introducing error signals from excitation of the resonant frequency of its seismic system. It is useful for impact and pyrotechnic measurements. The development effort and test program have enhanced the probability of acquiring successful structural measurements in harsh mechanical loading environments.

  18. Systems approach to measuring short-duration acceleration transients

    SciTech Connect

    Schelby, F.

    1983-01-01

    A shock measurement system has been developed in which the quartz seismic system, two-poole active filter and an FET source follower are incorporated in a transducer housing measuring 5/16'' hex.x 5/8''. Tests have shown that the system will survive +- 100,000g without damage. Although the results reported here are for accelerometers ranged to +- 20,000g, there is no reason to limit the accelerometers to that range and PCB can supply different ranges as required. The PCB Model 305M23, developed to Sandia's specifications, has proved capable of obtaining data comparable to that of standard piezoelectric and piezoresistive accelerometers when high frequencies are absent. In the presence of high frequency stimuli, the accelerometer has obtained data without over-ranging its data channel and without introducing error signals from excitation of the resonant frequency of its seismic system. It should, therefore, be especially useful for impact and pyrotechnic measurements. These shock accelerometers are in the process of being fielded in earth penetrator vehicles; in shale rubblization experiments will soon be available. It appears this joint development effort and test program has greatly enhanced the probability of acquiring successful structural measurements in harsh mechanical loading environments.

  19. APPROPRIATE DURATIONS AND MEASURES FOR 'CERIODAPHNIA' TOXICITY TESTS

    EPA Science Inventory

    The Mount-Norberg test, which employs a measure of the size of three broods over seven days, has been used extensively in toxicity testing. The authors have applied it to estimating sublethal ecosystem effects of complex effluents in the Raisin River drainage (of Michigan) on the...

  20. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  1. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  2. Altered gene expression in cultured microglia in response to simulated blast overpressure: possible role of pulse duration.

    PubMed

    Kane, Michael J; Angoa-Pérez, Mariana; Francescutti, Dina M; Sykes, Catherine E; Briggs, Denise I; Leung, Lai Yee; VandeVord, Pamela J; Kuhn, Donald M

    2012-07-26

    Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to "isolate" the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15 to 45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process. PMID:22698585

  3. Altered Gene Expression in Cultured Microglia in Response to Simulated Blast Overpressure: Possible Role of Pulse Duration

    PubMed Central

    Kane, Michael J.; Angoa-Pérez, Mariana; Francescutti, Dina M.; Sykes, Catherine E.; Briggs, Denise I.; Leung, Lai Yee; VandeVord, Pamela J.; Kuhn, Donald M.

    2012-01-01

    Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to “isolate” the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15–45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process. PMID:22698585

  4. Analysis of Mg spectral features produced by irradiations of laser pulses with different contrast and pulse durations

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Safronova, U. I.; Kantsyrev, V. L.; Faenov, A. Y.; Wiewior, P.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Paudel, Y.

    2014-03-01

    Experiments performed at the Leopard Laser Facility at the Nevada Terawatt Facility of the University of Nevada, Reno have produced K-shell Mg spectra with complex satellite features. K-shell Mg spectra were collected from experiments comprised of three different conditions related to laser pulse and contrast. Two spectrometers were fielded: a survey convex spectrometer with a potassium hydrogen phthalate (KAP) crystal (R ˜ 300) and a high resolution focusing spectrometer with spatial resolution using a spherically bent mica crystal (R ˜ 3000). These spectra included dielectronic satellite (DS) lines that were investigated using the quasi-relativistic many-body perturbation theory (MZ) code for previously identified transitions from autoionizing 2lnl‧ states in He-like Mg and new transitions involving autoionizing 1s3lnl‧ states in Li-like Mg and 1s3l3l‧3l″ in Be-like Mg calculated using the Hartree-Fock-relativistic method (COWAN code). Radiative and non-radiative data are combined to obtain branching ratios, intensities and effective emission rate coefficients of DS lines. Synthetic spectra were matched to experimental data to identify strong satellite structures to the Heβ (7.8507 Å) and Lyα (8.4192 Å) resonance transitions.

  5. Plasma Sensor Measurements in Pulse Detonation Engines

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Marshall, Curtis; Corke, Thomas; Gogineni, Sivaram

    2014-11-01

    Measurements have been conducted in a pulse detonation and rotating detonation engine using a newly developed plasma sensor. This sensor relies on the novel approach of using an ac-driven, weakly-ionized electrical discharge as the main sensing element. The advantages of this approach include a native high bandwidth of 1 MHz without the need for electronic frequency compensation, a dual-mode capability that provides sensitivity to multiple flow parameters, including velocity, pressure, temperature, and gas-species, and a simple and robust design making it very cost effective. The sensor design is installation-compatible with conventional sensors commonly used in gas-turbine research such as the Kulite dynamic pressure sensor while providing much better longevity. Developmental work was performed in high temperature facilities that are relevant to the propulsion and high-speed research community. This includes tests performed in a J85 augmentor at full afterburner and pulse-detonation engines at the University of Cincinnati (UC) at temperatures approaching 2760°C (5000°F).

  6. Sensitivity enhancement in pulse EPR distance measurements.

    PubMed

    Jeschke, G; Bender, A; Paulsen, H; Zimmermann, H; Godt, A

    2004-07-01

    Established pulse EPR approaches to the measurement of small dipole-dipole couplings between electron spins rely on constant-time echo experiments to separate relaxational contributions from dipolar time evolution. This requires a compromise between sensitivity and resolution to be made prior to the measurement, so that optimum data are only obtained if the magnitude of the dipole-dipole coupling is known beforehand to a good approximation. Moreover, the whole dipolar evolution function is measured with relatively low sensitivity. These problems are overcome by a variable-time experiment that achieves suppression of the relaxation contribution by reference deconvolution. Theoretical and experimental results show that this approach leads to significant sensitivity improvements for typical systems and experimental conditions. Further sensitivity improvements or, equivalently, an extension of the accessible distance range can be obtained by matrix deuteration or digital long-pass filtering of the time-domain data. Advantages and limitations of the new variable-time experiment are discussed by comparing it to the established analogous constant-time experiment for measurements of end-to-end distances of 5 and 7.5 nm on rod-like shape-persistent biradicals and for the measurement of a broadly distributed transmembrane distance in a doubly spin-labeled mutant of plant light harvesting complex II. PMID:15183350

  7. Influence of wavelength and pulse duration on single-shot x-ray diffraction patterns from nonspherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Sander, Katharina; Peltz, Christian; Varin, Charles; Scheel, Stefan; Brabec, Thomas; Fennel, Thomas

    2015-10-01

    We introduce a complex scaling discrete dipole approximation (CSDDA) method and study single-shot x-ray diffraction patterns from non-spherical, absorbing nanotargets in the limit of linear response. The convergence of the employed Born series-based iterative solution of the discrete dipole approximation problem via optimal complex mixing turns out to be substantially faster than the original approach with real-valued mixing coefficients, without additional numerical effort per iteration. The CSDDA method is employed to calculate soft x-ray diffraction patterns from large icosahedral silver nanoparticles with diameters up to about 250 {nm}. Our analysis confirms the requirement of relatively long wavelengths to map truly 3D structure information to the experimentally accessible regions of 2D scattering images. On the other hand, we show that short wavelengths are preferable to retain visibility of fine structures such as interference fringes in the scattering patterns when using ultrashort x-ray pulses in the attosecond domain. A simple model is presented to estimate the minimal pulse duration below which the fringe contrast vanishes. Knowledge of the impact of the bandwidth of short pulses on the diffraction images is important to extract information on ultrafast dynamical processes from time-resolved x-ray diffractive imaging experiments on free nanoparticles, in particular at long wavelengths.

  8. Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping.

    PubMed

    Huh, Jeonghyun; Azaña, José

    2015-10-19

    We propose and demonstrate a novel linear-optics method for high-fidelity parabolic pulse generation with durations ranging from the picosecond to the sub-nanosecond range. This method is based on dispersion-induced frequency-to-time mapping combined with spectral shaping in order to overcome constraints of previous linear shaping approaches. Temporal waveform distortions associated with the need to satisfy a far-field condition are eliminated by use of a virtual time-lens process, which is directly implemented in the linear spectral shaping stage. Using this approach, the generated parabolic pulses are able to maintain most energy spectrum available from the input pulse frequency bandwidth, regardless of the target pulse duration, which is not anymore limited by the finest spectral resolution of the optical pulse spectrum shaper. High-quality parabolic pulses, with durations from 25ps to 400ps and output powers exceeding 4dBm before amplification, have been experimentally synthesized from a picosecond mode-locked optical source using a commercial optical pulse shaper with a frequency resolution >10GHz. In particular, we report the synthesis of full-duty cycle parabolic pulses that match up almost exactly with an ideal fitting over the entire pulse period. PMID:26480437

  9. Pulse duration effects on laser-assisted electron transfer cross section for He2+ ions colliding with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Domínguez-Gutiérrez, Francisco Javier; Cabrera-Trujillo, Remigio

    2014-08-01

    We study the effect of the pulse duration for an ultra-fast and intense laser on the fundamental process of electron capture by analyzing the excitation probability into the n = 2 and n = 3 states when He2+ collides with atomic hydrogen in the 0.05-10 keV/amu energy range, a region of interest for diagnostic processes on plasma and fusion power reactors. We solve the time-dependent Schrödinger equation to calculate the electron capture probability by means of a finite-differences, as well as by an electron-nuclear dynamics approach. In particular, we study the effects of 1, 3, 6, and 10 fs laser pulses at FWHM, wavelength of 780 nm and intensity of 3.5 × 1012 W/cm2. We report good agreement for the laser-free state and total electron transfer cross-sections when compared to available theoretical and experimental data. The effect of the laser pulse on the electron capture probability as a function of the impact parameter is such that the charge exchange probability increases considerably in the impact parameter radial region with an increase in the amplitude oscillations and a phase shift on the Stückelberg oscillations. We find an increase on the total electron exchange cross-section for low projectile collision energy when compared to the laser-free case with a minimal effect at high collision energies. We find that the 1 fs laser pulse has a minimal effect, except for very low collision energies. Although in general, the longer the laser pulse, the larger the electron capture probability, at very low collision energies all pulse widths have an effect. For processes in the atto-second region, our findings suggest that to enhance the laser-assisted charge exchange, the best region for short pulses is at very low collision energies. We also find that the s and p state charge exchange cross section are equally affected. We provide a qualitative discussion of these findings.

  10. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  11. Rotational CARS Temperature Measurements in Nanosecond Pulse Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Takashima, Keisuke; Adamovich, Igor; Lempert, Walter

    2009-10-01

    Time-resolved and spatially resolved temperatures in repetitively pulsed nanosecond discharges in air and ethylene-air mixtures have been measured by purely rotational Coherent Anti-Stokes Raman Specroscopy (CARS). The experiments have been done in a capacitively coupled plane-to-plane discharge and in an atmospheric pressure near-surface Dielectric Barrier Discharge (DBD), both powered by repetitive nanosecond duration voltage pulses. Gated ICCD camera images demonstrated that the capacitively coupled discharge plasma remains diffuse and stable, with no sign of arc filaments. Comparison of the experimental results with plasma chemical kinetic modeling calculations shows good agreement. The results demonstrate that the rate of heating in the fuel-air plasma is significantly more rapid compared to the one in the air plasma. Kinetic model analysis shows that this occurs due to exothermic reactions of fuel with radical species generated in the plasma, such as O atoms. The present results provide additional insight into kinetics of hydrocarbon fuel oxidation in low-temperature plasmas and into the mechanism of localized heating of air flows by nanosecond DBD discharges.

  12. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  13. Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-03-01

    The level population and charge state distribution (CSD) of the neon atomic system interacting with x-ray pulses of variant intensities and durations at a central photon energy of 1110 eV are investigated by solving the time-dependent rate equations. The laser beam has a circular spot size with a Gaussian intensity pattern and the time history of the intensity is represented by Gaussian distribution in time. As an example, the CSD as a function of time is given at different distances from the spot center for an x-ray beam of intensity 1.5 × 1017 W/cm2 and duration 75 fs (fs) for a spot size of 1 μm (full width at half maximum). The final CSD after averaging over the space and time is compared with a recent experiment and good agreement is found between the theory and experiment. Then systematic investigations are carried out to study the evolution of CSD with a wide range of intensity from 1.0 × 1015 W/cm2 to 1.0 × 1019 W/cm2 and duration from 30 fs to 100 fs. The results show that at intensities lower than 1.0 × 1015 W/cm2, the CSD shows a typical physical picture of weak x-ray photoionization of the neutral atomic neon. At higher intensity, i.e., larger than 5.0 × 1016 W/cm2, the dominant ionization stages are Ne7+ and Ne8+, while the fractions of ions in the Ne3+-Ne6+ stages are low for all laser durations and intensities.

  14. Effects of Biphasic Current Pulse Frequency, Amplitude, Duration and Interphase Gap on Eye Movement Responses to Prosthetic Electrical Stimulation of the Vestibular Nerve

    PubMed Central

    Davidovics, Natan S.; Fridman, Gene Y.; Chiang, Bryce; Della Santina, Charles C.

    2011-01-01

    An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0–325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28–340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25–175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation. PMID:20813652

  15. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4μm with pulse duration of 26 μs

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-02-01

    Several studies over the past 20 years have identified that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-µs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase and the pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for TEA lasers and too short for RF-excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the J5-V laser for microvia drilling which can produce laser pulses greater than 100 mJ in energy at 9.4-μm with a pulse duration of 26-µs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate enamel and dentin. The onset of plasma shielding does not occur until the fluence exceeds 100 J/cm2 allowing efficient ablation at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions.

  16. Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure

    SciTech Connect

    Bai Xueshi; Ma Qianli; Motto-Ros, Vincent; Yu Jin; Sabourdy, David; Nguyen, Luc; Jalocha, Alain

    2013-01-07

    We studied the behavior of the plasma induced by a nanosecond infrared (1064 nm) laser pulse on a metallic target (Al) during its propagation into argon ambient gas at the atmospheric pressure and especially over the delay interval ranging from several hundred nanoseconds to several microseconds. In such interval, the plasma is particularly interesting as a spectroscopic emission source for laser-induced plasma spectroscopy (LIBS). We show a convoluted effect between laser fluence and pulse duration on the structure and the emission property of the plasma. With a relatively high fluence of about 160 J/cm{sup 2} where a strong plasma shielding effect is observed, a short pulse of about 4 ns duration is shown to be significantly more efficient to excite the optical emission from the ablation vapor than a long pulse of about 25 ns duration. While with a lower fluence of about 65 J/cm{sup 2}, a significantly more efficient excitation is observed with the long pulse. We interpret our observations by considering the post-ablation interaction between the generated plume and the tailing part of the laser pulse. We demonstrate that the ionization of the layer of ambient gas surrounding the ablation vapor plays an important role in plasma shielding. Such ionization is the consequence of laser-supported absorption wave and directly dependent on the laser fluence and the pulse duration. Further observations of the structure of the generated plume in its early stage of expansion support our explanations.

  17. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  18. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  19. A very high sensitivity RF pulse profile measurement system.

    SciTech Connect

    Christodoulou, Christos George; Lai, Jesse B.

    2009-06-01

    A technique for characterizing the pulse profile of a radio-frequency (RF) amplifier over a very wide power range under fast-pulsing conditions is presented. A pulse-modulated transmitter is used to drive a device under test (DUT) with a phase-coded signal that allows for an increased measurement range beyond standard techniques. A measurement receiver that samples points on the output pulse power profile and performs the necessary signal processing and coherent pulse integration, improving the detectability of low-power signals, is described. The measurement technique is applied to two sample amplifiers under fast-pulsing conditions with a pulsewidth of 250 ns at 3-GHz carrier frequency. A full measurement range of greater than 160 dB is achieved, extending the current state of the art in pulse-profiling techniques.

  20. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  1. Lidar sensing of the atmosphere with gigawatt laser pulses of femtosecond duration

    SciTech Connect

    Bukin, O A; Golik, S S; Il'in, A A; Kulchin, Yu N; Lisitsa, V V; Shmirko, K A; Babii, M Yu; Kolesnikov, A V; Kabanov, A M; Matvienko, G G; Oshlakov, V K

    2014-06-30

    We present the results of sensing of the atmosphere in the condition of a transition 'continent – ocean' zone by means of gigawatt femtosecond pulses of the fundamental and second harmonics of a Ti : sapphire laser. In the regime of multi-frequency sensing (supercontinuum from the fundamental harmonic) the emission lines of the first positive system of the nitrogen molecule B{sup 3}Π{sub g} – A{sup 3}Σ{sub u}{sup +} have been recorded, while the sensing using of the second harmonic have revealed the possibility of detecting the lines of Raman scattering of nitrogen (λ = 441 nm). The intensity ratio of the line of Raman scattering of nitrogen and the line of elastic scattering at the wavelength of λ = 400 nm amounts to 5.6 × 10{sup -4}. (extreme light fields and their applications)

  2. Intense-Field Ionization of Monoaromatic Hydrocarbons using Radiation Pulses of Ultrashort Duration: Monohalobenzenes and Azabenzenes

    NASA Astrophysics Data System (ADS)

    Scarborough, T.; Strohaber, J.; Foote, D.; McAcy, C.; Uiterwaal, C. J.

    2014-04-01

    Using 50-fs, 800-nm pulses, we study the intense-field ionization and fragmentation of the monohalobenzenes C6H5-X (X=F, Cl, Br, I) and of the heterocyclics azabenzene C5H5N (pyridine) and the three diazabenzenes C4H4N2 (pyridazine, pyrimidine, and pyrazine). Avoiding focal intensity averaging we find indications of resonance-enhanced MPI. In the monohalobenzenes the propensity for fragmentation increases for increasing Z: fluorobenzene yields predominantly C6H5Fn+, while iodobenzene yields atomic ions with charges up to I8+. We ascribe this to the heavy-atom effect: the large charge of the heavy halogens' nuclei induces ultrafast intersystem crossing to dissociative triplet states.

  3. Long duration measurements of whole-body vibration exposures associated with surface coal mining equipment compared to previous short-duration measurements.

    PubMed

    Burgess-Limerick, Robin; Lynas, Danellie

    2016-01-01

    Previous measurements of whole-body vibration associated with earth-moving equipment at surface coal mines have highlighted the significance of the hazard. Considerable variability in measurement amplitudes, even within the same equipment type operated at the same site, has been noted. However, the measurements have previously been undertaken for relatively short durations. Fifty-nine measurements were collected from a range of earth-moving equipment in operation at a surface coal mine. Measurement durations ranged from 100-460 min (median = 340 min). The results indicate that the measurements previously observed are not an artifact of the relatively short durations and confirm that operators of dozers and off-road haul trucks, in particular, are frequently exposed to vertical whole-body vibration levels which lie within, or above, the Health Guidance Caution Zone defined by ISO2631.1. Further investigations are justified to identify opportunities for reducing operators' exposure to high amplitude vibrations. PMID:26771238

  4. Measuring 8–250 ps short pulses using a high-speed streak camera on kilojoule, petawatt-class laser systems

    SciTech Connect

    Qiao, J.; Jaanimagi, P. A.; Boni, R.; Bromage, J.; Hill, E.

    2013-07-15

    Short-pulse measurements using a streak camera are sensitive to space-charge broadening, which depends on the pulse duration and shape, and on the uniformity of photocathode illumination. An anamorphic-diffuser-based beam-homogenizing system and a space-charge-broadening calibration method were developed to accurately measure short pulses using an optical streak camera. This approach provides a more-uniform streak image and enables one to characterize space-charge-induced pulse-broadening effects.

  5. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  6. Laser Activated Streak Camera for Measurement of Electron Pulses with Femtosecond Resolution

    NASA Astrophysics Data System (ADS)

    Zandi, Omid; Desimone, Alice; Wilkin, Kyle; Yang, Jie; Centurion, Martin

    2015-05-01

    The duration of femtosecond electron pulses used in time-resolved diffraction and microscopy experiments is challenging to measure in-situ. To overcome this problem, we have fabricated a streak camera that uses the time-varying electric field of a discharging parallel plate capacitor. The capacitor is discharged using a laser-activated GaAs photoswitch, resulting in a damped oscillation of the electric field. The delay time between the laser pulse and electron pulse is set so that the front and back halves of the bunch encounter opposite electric fields of the capacitor and are deflected in opposite directions. Thus, the electron bunch appears streaked on the detector with a length proportional to its duration. The temporal resolution of the streak camera is proportional to the maximum value of the electric field and the frequency of the discharge oscillation. The capacitor is charged by high voltage short pulses to achieve a high electric field and prevent breakdown. We have achieved an oscillation frequency in the GHz range by reducing the circuit size and hence its inductance. The camera was used to measure 100 keV electron pulses with up to a million electrons that are compressed transversely by magnetic lenses and longitudinally by an RF cavity. This work was supported mainly by the Air Force Office of Scientific Research, Ultrashort Pulse Laser Matter Interaction program, under grant # FA9550-12-1-0149.

  7. Pulse transit time differential measurement by fiber Bragg grating pulse recorder

    NASA Astrophysics Data System (ADS)

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  8. Formation of an electron beam with a duration shorter than 100 fs during photoemission of electrons by femtosecond laser pulses

    SciTech Connect

    Mironov, B. N.; Aseev, S. A. Minogin, V. G. Chekalin, S. V.

    2008-06-15

    Irradiation of a thin metal target by 38-fs laser pulses at a wavelength of 800 nm is shown to generate a beam of photoelectrons that contains a component whose duration is shorter than 100 fs. The ensemble of photoelectrons is formed by photoemission of a gold film about 10 nm thick sputtered on the base of a prism made of fused silica. The laser beam irradiates a dielectric-metal interface and propagates inside the prism at an angle of 45{sup o} to a normal to the interface. The photoelectron beam is formed by accelerating photoelectrons in a spatially inhomogeneous electrostatic potential. The ultrashort component of the photoelectron beam is found to be formed under the action of a ponderomotive potential. It is shown that the ultrashort electron component can be separated from the remaining part of the photoelectron beam with the help of an inhomogeneous electrostatic field.

  9. Effect of dye laser pulse duration on selective cutaneous vascular injury

    SciTech Connect

    Garden, J.M.; Tan, O.T.; Kerschmann, R.; Boll, J.; Furumoto, H.; Anderson, R.R.; Parrish, J.A.

    1986-11-01

    The pulsed dye laser at 577 nm, a wavelength well absorbed by oxyhemoglobin, causes highly selective thermal injury to cutaneous blood vessels. Confinement of thermal damage to microvessels is, in theory, related to the laser exposure time (pulsewidth) on selective vascular injury. This study investigates the effect of 577 nm dye laser pulsewidth on selective vascular injury. Nine Caucasian, normal volunteers received 577 nm dye laser exposures at pulsewidths of 1.5-350 microseconds to their skin. Clinical purpura threshold exposure doses were determined in each volunteer, and biopsies of threshold and suprathreshold doses were examined in each volunteer. The laser exposure dose required to produce purpura increased as pulsewidth increased in all 9 subjects (p less than 0.001). This finding corresponds to laser pulsewidths equal to or exceeding the thermal relaxation times for dermal blood vessels. Histologically, vessel damage was selectively, but qualitatively, different for short vs long pulsewidths. Pulsewidths shorter than 20 microseconds caused vessel wall fragmentation and hemorrhage, whereas longer pulsewidths caused no significant hemorrhage. The purpura noted clinically appears to be due to a coagulum of intralumenal denatured erythrocytes. At 24 h, there was marked vessel wall necrosis at all pulsewidths. The short pulsewidths may cause erythrocyte vaporization, rapid thermal expansion, and mechanical vessel rupture with hemorrhage. Long pulsewidths appear to cause thermal denaturation with less mechanical vessel damage. The selective, nonhemorrhagic, vascular necrosis caused by the long-pulsewidth dye laser may lead to a more desirable clinical outcome in the therapy of blood vessel disease processes.

  10. Comparison of Echocardiographic Measurements Before and After Short and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Fritsch-Yelle, Janice M.; South, Donna A.; Wood, Margie L.; Bungo, Michael W.

    2000-01-01

    Previous echocardiography studies in astronauts before and after short duration (4 - 17 days) missions have demonstrated a decrease in resting left ventricular (LV) stroke volume (SV), but maintained ejection fraction (EF) and cardiac output. Similar studies before and after long duration (129 - 144 days) spaceflight have been rare and their overall results equivocal. The purpose of this work was to compare the echocardiographic measurements (M-mode, 2-D and Doppler) from short duration (n = 13) and long duration (n = 4) crewmembers. Compared to short duration astronauts, long duration crewmembers had a significantly greater percent decrease in EF (+6+/-0.02 vs.-10.5+/-0.03, p = 0.005) and percent fractional shortening (+7+/-0.03 vs. -11+/-0.07, p = 0.0 15), and an increase in LV end systolic volume (-12+/-0.06 vs. +39+/-0.24, p = 0.011). These data suggest a reduction in cardiac function that relates to mission duration. As the changes in blood pressure and circulating blood volume (9% - 12%) are reported to be similar after short and long duration flights, the drop in EF after longer spaceflights is likely due to a decrease in cardiac function rather than altered blood volume.

  11. Objectively Measured Walking Duration and Sedentary Behaviour and Four-Year Mortality in Older People

    PubMed Central

    Denkinger, Michael Dieter; Rapp, Kilian; Koenig, Wolfgang; Rothenbacher, Dietrich

    2016-01-01

    Background Physical activity is an important component of health. Recommendations based on sensor measurements are sparse in older people. The aim of this study was to analyse the effect of objectively measured walking and sedentary duration on four-year mortality in community-dwelling older people. Methods Between March 2009 and April 2010, physical activity of 1271 participants (≥65 years, 56.4% men) from Southern Germany was measured over one week using a thigh-worn uni-axial accelerometer (activPAL; PAL Technologies, Glasgow, Scotland). Mortality was assessed during a four-year follow-up. Cox-proportional-hazards models were used to estimate the associations between walking (including low to high intensity) and sedentary duration with mortality. Models were adjusted for age and sex, additional epidemiological variables, and selected biomarkers. Results An inverse relationship between walking duration and mortality with a minimum risk for the 3rd quartile (102.2 to128.4 minutes walking daily) was found even after multivariate adjustment with HRs for quartiles 2 to 4 compared to quartile 1 of 0.45 (95%-CI: 0.26; 0.76), 0.18 (95%-CI: 0.08; 0.41), 0.39 (95%-CI: 0.19; 0.78), respectively. For sedentary duration an age- and sex-adjusted increased mortality risk was observed for the 4th quartile (daily sedentary duration ≥1137.2 min.) (HR 2.05, 95%-CI: 1.13; 3.73), which diminished, however, after full adjustment (HR 1.63, 95%-CI: 0.88; 3.02). Furthermore, our results suggest effect modification between walking and sedentary duration, such that in people with low walking duration a high sedentary duration was noted as an independent factor for increased mortality. Conclusions In summary, walking duration was clearly associated with four-year overall mortality in community-dwelling older people. PMID:27082963

  12. Phase control and measurement of ultrashort optical pulses

    SciTech Connect

    Sullivan, A.; White, W.E.; Chu, K.C.; Heritage, J.P.

    1995-02-10

    We have used the Direct Optical Spectral Phase Measurement (DOSPM) technique to characterize the cubic phase tuning ability of our pulse stretcher. We have compared the measured phase to the phase determined from cross-correlation measurements.

  13. Phase measurement of fast light pulse in electromagnetically induced absorption.

    PubMed

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%. PMID:24104135

  14. Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    D’Ostilio, Kevin; Goetz, Stefan M.; Hannah, Ricci; Ciocca, Matteo; Chieffo, Raffaella; Chen, Jui-Cheng A.; Peterchev, Angel V.; Rothwell, John C.

    2016-01-01

    Objective To compare the strength–duration (S–D) time constants of motor cortex structures activated by current pulses oriented posterior–anterior (PA) or anterior–posterior (AP) across the central sulcus. Methods Motor threshold and input–output curve, along with motor evoked potential (MEP) latencies, of first dorsal interosseus were determined at pulse widths of 30, 60, and 120 μs using a controllable pulse parameter (cTMS) device, with the coil oriented PA or AP. These were used to estimate the S–D time constant and we compared with data for responses evoked by cTMS of the ulnar nerve at the elbow. Results The S–D time constant with PA was shorter than for AP stimulation (230.9 ± 97.2 vs. 294.2 ± 90.9 μs; p < 0.001). These values were similar to those calculated after stimulation of ulnar nerve (197 ± 47 μs). MEP latencies to AP, but not PA stimulation were affected by pulse width, showing longer latencies following short duration stimuli. Conclusion PA and AP stimuli appear to activate the axons of neurons with different time constants. Short duration AP pulses are more selective than longer pulses in recruiting longer latency corticospinal output. Significance More selective stimulation of neural elements may be achieved by manipulating pulse width and orientation. PMID:26077634

  15. 47 W, 6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM(00) Nd:YVO(4) oscillator.

    PubMed

    McDonagh, Louis; Wallenstein, Richard; Knappe, Ralf

    2006-11-15

    We report on a cavity-dumped Q-switched TEM(00) Nd:YVO(4) oscillator offering a unique combination of high power, constant short pulse duration, and high repetition rate, suppressing the gain dependence of pulse duration in classical Q-switched oscillators. Its performance is compared with that of the same oscillator operated in a classical Q-switched regime, demonstrating the much higher peak powers achievable with this technique, especially at high repetition rates. Up to 31 W of 532 nm green light was generated by frequency doubling in a noncritical phase matched LBO crystal, corresponding to 70% conversion efficiency. PMID:17072404

  16. Fixation duration surpasses pupil size as a measure of memory load in free viewing

    PubMed Central

    Meghanathan, Radha Nila; van Leeuwen, Cees; Nikolaev, Andrey R.

    2015-01-01

    Oculomotor behavior reveals, not only the acquisition of visual information at fixation, but also the accumulation of information in memory across subsequent fixations. Two candidate measures were considered as indicators of such dynamic visual memory load: fixation duration and pupil size. While recording these measures, we displayed an arrangement of 3, 4 or 5 targets among distractors. Both occurred in various orientations. Participants searched for targets and reported whether in a subsequent display one of them had changed orientation. We determined to what extent fixation duration and pupil size indicate dynamic memory load, as a function of the number of targets fixated during the search. We found that fixation duration reflects the number of targets, both when this number is within and above the limit of working memory capacity. Pupil size reflects the number of targets only when it exceeds the capacity limit. Moreover, the duration of fixations on successive targets but not on distractors increases whereas pupil size does not. The increase in fixation duration with number of targets both within and above working memory capacity suggests that in free viewing fixation duration is sensitive to actual memory load as well as to processing load, whereas pupil size is indicative of processing load only. Two alternative models relating visual attention and working memory are considered relevant to these results. We discuss the results as supportive of a model which involves a temporary buffer in the interaction of attention and working memory. PMID:25653606

  17. Straining GOR tolerance determinations are a measure of G-duration not G-level tolerance.

    PubMed

    Burton, R R

    1999-03-01

    Straining gradual G onset rate (GOR) tolerances are considered by physiologists as a measure of G-level tolerance. Using recently developed G-level and G-duration mathematical models, it was found that straining GOR tolerances may well be a measure of tolerance to G-duration. G-duration tolerance was determined to be limited with the onset of fatigue and not cardiovascular insufficiency. G-level tolerances that were predicted using a mathematical model were higher than determined using straining GOR tolerance measurements of subjects on a centrifuge. Also the G-duration tolerance mathematical model showed that those centrifuge subjects had not expended all of their "energy reserve" during their sustained G exposure most probably because of the onset of fatigue. Even if they were able to use all of their potential energy reserve, their G-duration tolerance would not have allowed them to reach the maximum G-level predicted with the G-level tolerance model. It is therefore concluded that the straining GOR tolerance profile, with G onset rates of 0.1G/s, is not a measure of G-level tolerance, as has been assumed, but is a measure of G-duration tolerance. These findings have significant safety implications world-wide since this straining GOR profile is commonly used as a G-level tolerance fighter-pilot-selection determination; i.e. pilot selection standards for G-level tolerance are not a measure of G-level tolerance. In testing equipment design changes, the proper G tolerance profiles must be used to correctly measure its impact on G tolerance. PMID:11543406

  18. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  19. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  20. Long Duration Exposure Facility (LDEF) attitude measurements of the interplanetary dust experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.; Motley, William R., III

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of LDEF during the first year in orbit. The value of this time resolved data depended on and was enhanced by the proper operation of some basic LDEF systems. Thus, the value of the data is greatly enhanced when the location and orientation of LDEF is known for each time of impact. The location and velocity of LDEF as a function of time can be calculated from the 'two-line elements' published by GSFC during the first year of the LDEF mission. The attitude of LDEF was passively stabilized in a gravity-gradient mode and a magnetically anchored viscous damper was used to dissipate roll, pitch, and yaw motions. Finally, the IDE used a standard LDEF Experiment Power and Data System (EPDS) to collect and store data and also to provide a crystal derived clock pulse (1 count every 13.1072 seconds) for all IDE time measurements. All that remained for the IDE was to provide a system to calibrate the clock, eliminating accumulative errors, and also verify the attitude of LDEF. The IDE used solar cells on six orthogonal faces to observe the LDEF sunrise and provide data about the LDEF attitude. The data was recorded by the EPDS about 10 times per day for the first 345 days of the LDEF mission. This data consist of the number of IDE counts since the last LDEF sunrise and the status of the six solar cells (light or dark) at the time of the last IDE count. The EPDS determined the time that data was recorded and includes, with each record, the master EPDS clock counter (1 count every 1.6384 seconds) that provided the range and resolution for time measurements. The IDE solar cells provided data for an excellent clock calibration, meeting their primary purpose, and the time resolved LDEF attitude measurements that can be gleaned from this data are presented.

  1. Proceedings of Pulsed Magnet Design and Measurement Workshop

    SciTech Connect

    Shaftan, T.; Heese, R.; Ozaki,S.

    2010-01-19

    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

  2. Arterial pulse shape measurement using self-mixing inteferometry

    NASA Astrophysics Data System (ADS)

    Hast, Jukka T.; Myllyla, Risto A.; Sorvoja, Hannu; Miettinen, Jari

    2003-07-01

    This paper investigates the correlation between the shape of the first derivative of a blood pressure pulse and the corresponding Doppler spectrogram, reconstructed from a Doppler signal produced by the movement of the skin above the radial artery in the human wrist. The aim is to study to what extent the arterial pulse shape can be measured using self-mixing interferometry. To obtain a point of reference, a commercial non-invasive blood pressure monitor was first used to measure both blood pressure and pulse shape. Then, a self-mixing interferometer was applied to measure the arterial pulse above the radial artery. Measurements on 10 volunteers yielded a total of 738 pulses for analysis. A cross correlation of 0.84 +/- 0.05 was established between the shape of the first derivative of the pressure pulse and the Doppler spectrogram. Using an empirical constant of 0.7 as a limit for successfully detected pulses produced a detection accuracy of 95.7%. The results show that self-mixing interferometry lends itself to the measurement of the arterial pulse shape, and that the thus obtained shape is in good agreement with that produced by a commercial blood pressure monitor.

  3. Strip Velocity Measurements for Gated X-Ray Imagers Using Short Pulse Lasers

    SciTech Connect

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S. H.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time-resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  4. Optical damage performance measurements of multilayer dielectric gratings for high energy short pulse lasers

    NASA Astrophysics Data System (ADS)

    Alessi, D.; Carr, C. W.; Negres, R. A.; Hackel, R. P.; Stanion, K. A.; Cross, D. A.; Guss, G.; Nissen, J. D.; Luthi, R.; Fair, J. E.; Britten, J. A.; Haefner, C.

    2015-02-01

    We investigate the laser damage resistance of multilayer dielectric (MLD) diffraction gratings used in the pulse compressors for high energy, high peak power laser systems such as the Advanced Radiographic Capability (ARC) Petawatt laser on the National Ignition Facility (NIF). Our study includes measurements of damage threshold and damage density (ρ(Φ)) with picosecond laser pulses at 1053 nm under relevant operational conditions. Initial results indicate that sparse defects present on the optic surface from the manufacturing processes are responsible for damage initiation at laser fluences below the damage threshold indicated by the standard R-on-1 test methods, as is the case for laser damage with nanosecond pulse durations. As such, this study supports the development of damage density measurements for more accurate predictions on the damage performance of large area optics.

  5. Low noise laser system generating 26-fs pulse duration, 30-kW peak power, and tunability from 800- to 1200-nm for ultrafast spectroscopy and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Resan, Bojan; Brunner, Felix; Rohrbacher, Andreas; Ammann, Hubert; Weingarten, Kurt J.

    2012-01-01

    We demonstrate a novel low noise, tunable, high-peak-power, ultrafast laser system based on a SESAM-modelocked, solid-state Yb tungstate laser plus spectral broadening via a microstructured fiber followed by pulse compression. The spectral selection, tuning, and pulse compression are performed with a simple prism compressor. The spectral broadening and fiber parameters are chosen to insure low-noise operation of the tunable output. The long-term stable output pulses are tunable from 800 to 1200 nm, with a peak power up to 30 kW and pulse duration down to 26 fs. This system is attractive for variety of applications including ultrafast spectroscopy, multiphoton (TPE, SHG, THG, CARS) and multimodal microscopy, nanosurgery, nanostructuring, and optical coherence tomography (OCT). Such system is simpler, lower-cost, and much easier to use (fully turn-key) compared to a currently available solutions for near-infrared ultrashort pulses, typically a Ti:sapphire laser-pumped OPO.

  6. High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Liu, Hao; Huang, Yuxiang; Shu, Rong

    2015-12-01

    We report our recent investigation on the conversion efficiency improvement of a PPMgLN-based single pump pass, singly resonant optical parametric oscillator (OPO) pumped by an acousto-optic Q-switched fiber MOPA. The impacts of the pump pulse duration and signal reflectivity on the pump-to-idler conversion efficiency were studied by numerically solving the coupled wave equations in the first place. The results revealed that longer pulse durations were beneficial to higher conversion efficiencies as long as the signal reflectivity of the OPO cavity was optimized accordingly. Experiments were carried out thereafter utilizing the optimal parameters obtained from the simulation. Idler powers of 4.7 and 3.81 W were achieved at 3.4 and 3.8 μm, respectively, under the highest pump power of 28 W with pump pulse duration of 240 ns. The experimental results were in good agreement with the calculated results. According to our simulation, higher conversion efficiency could be expected when such an OPO was pumped by pulses with even longer duration provided that the signal reflectivity of the output coupler was optimized under that pump condition.

  7. Mood Influences the Concordance of Subjective and Objective Measures of Sleep Duration in Older Adults

    PubMed Central

    Baillet, Marion; Cosin, Charlotte; Schweitzer, Pierre; Pérès, Karine; Catheline, Gwenaëlle; Swendsen, Joel; Mayo, Willy

    2016-01-01

    Objective/Background: Sleep plays a central role in maintaining health and cognition. In most epidemiologic studies, sleep is evaluated by self-report questionnaires but several reports suggest that these evaluations might be less accurate than objective measures such as polysomnography or actigraphy. Determinants of the discrepancy between objective and subjective measures remain to be investigated. The aim of this pilot-study was to examine the role of mood states in determining the discrepancy observed between objective and subjective measures of sleep duration in older adults. Patients/Methods: Objective sleep quantity and quality were recorded by actigraphy in a sample of 45 elderly subjects over at least three consecutive nights. Subjective sleep duration and supplementary data, such as mood status and memory, were evaluated using ecological momentary assessment (EMA). Results: A significant discrepancy was observed between EMA and actigraphic measures of sleep duration (p < 0.001). The magnitude of this difference was explained by the patient’s mood status (p = 0.020). No association was found between the magnitude of this discrepancy and age, sex, sleep quality or memory performance. Conclusion: The discrepancy classically observed between objective and subjective measures of sleep duration can be explained by mood status at the time of awakening. These results have potential implications for epidemiologic and clinical studies examining sleep as a risk factor for morbidity or mortality. PMID:27507944

  8. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  9. Spectroscopic measurement of temperatures in pulsed TIG welding arcs

    NASA Astrophysics Data System (ADS)

    Ma, Shuiliang; Gao, Hongming; Zheng, Senmu; Wu, Lin

    2011-10-01

    Time resolved plasma temperatures in a pulsed tungsten-inert-gas (TIG) welding arc have been measured using optical emission spectroscopy. The peak and base pulse-averaged plasma temperatures both decrease with time after the arc ignition, and the plasma temperature decreases during the peak pulse period and increases during the base pulse period when the arc reaches the steady state. The decrease in the plasma temperature is associated with the increase in the cathode surface temperature and the decrease in the arc voltage and vice versa. The importance of the cathode surface temperature on the arc properties has been discussed.

  10. Measurement of the Optical Coherence of a Femtosecond Pulsed Laser by Shearing Interferometry with a Double-Frequency Grating

    NASA Astrophysics Data System (ADS)

    Ming, Hai; Qian, Jiang-yuan; Xie, Jian-ping; A, B. Fedotov; X, Xiao; M, M. T. Loy

    1998-01-01

    Shearing interferometry of an ion-etched holographic double-frequency grating is used to measure the optical coherence of femtosecond pulsed lasers. The experimental results show that the optical coherence of the femtosecond light beam is not only related to the spectral width and size of the light source but is also related to the pulse duration and mode-locked laser state. The results of theoretical analysis and numerical calculation are also given. Application of this research is also discussed.

  11. Electro-optic measurement of terahertz pulse energy distribution

    NASA Astrophysics Data System (ADS)

    Sun, J. H.; Gallacher, J. G.; Brussaard, G. J. H.; Lemos, N.; Issac, R.; Huang, Z. X.; Dias, J. M.; Jaroszynski, D. A.

    2009-11-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz electromagnetic pulse can be determined by directly measuring the absolute electric field amplitude and beam energy density distribution using electro-optic detection. This method has potential use as a routine method of measuring the energy density of terahertz pulses that could be applied to evaluating future high power terahertz sources, terahertz imaging, and spatially and temporarily resolved pump-probe experiments.

  12. Breakdown of a gas on a metallic surface by CO2 laser pulses of 10-1000 microsec duration

    NASA Astrophysics Data System (ADS)

    Kovalev, A. S.; Popov, A. M.; Rakhimov, A. T.; Seleznev, B. V.; Khropov, S. M.

    1985-04-01

    The formation of a plasma on the surface of a metal target under direct exposure to a CO2 laser is studied theoretically. A classical kinetic equation is derived to calculate the critical radiation intensity of several metallic target materials. Experimental measurements of the time to the development of optical breakdown are found to agree with the theoretical results. It is shown that the breakdown discontinuity of the target shifts to the front of the laser pulse if the temperature of the radiation exceeds the critical temperature. No relation was found between the breakdown discontinuity and the boiling point of the metallic target materials.

  13. Direct measurement of transient pulses induced by laser and heavy ion irradiation in deca-nanometer devices.

    SciTech Connect

    Knudson, A. R.; Torres, A.; McMorrow, D.; Ferlet-Cavrois, Veronique; Schwank, James Ralph; Paillet, Philippe; Melinger, J. S.; Tosti, L.; Jahan, C.; Barna, Gabriel; Faynot, O.; Shaneyfelt, Marty Ray; Campbell, A. B.; Gaillardin, M.; Hirose, K.; Vizkelethy, Gyorgy

    2005-07-01

    This paper investigates the transient response of 50-nm gate length fully and partially depleted SOI and bulk devices to pulsed laser and heavy ion microbeam irradiations. The measured transient signals on 50-nm fully depleted devices are very short, and the collected charge is small compared to older 0.25-{micro}m generation SOI and bulk devices. We analyze in detail the influence of the SOI architecture (fully or partially depleted) on the pulse duration and the amount of bipolar amplification. For bulk devices, the doping engineering is shown to have large effects on the duration of the transient signals and on the charge collection efficiency.

  14. Perceptual, durational and tongue displacement measures following articulation therapy for rhotic sound errors.

    PubMed

    Bressmann, Tim; Harper, Susan; Zhylich, Irina; Kulkarni, Gajanan V

    2016-01-01

    Outcomes of articulation therapy for rhotic errors are usually assessed perceptually. However, our understanding of associated changes of tongue movement is limited. This study described perceptual, durational and tongue displacement changes over 10 sessions of articulation therapy for /ɹ/ in six children. Four of the participants also received ultrasound biofeedback of their tongue shape. Speech and tongue movement were recorded pre-therapy, after 5 sessions, in the final session and at a one month follow-up. Perceptually, listeners perceived improvement and classified more productions as /ɹ/ in the final and follow-up assessments. The durations of VɹV syllables at the midway point of the therapy were longer. Cumulative tongue displacement increased in the final session. The average standard deviation was significantly higher in the middle and final assessments. The duration and tongue displacement measures illustrated how articulation therapy affected tongue movement and may be useful for outcomes research about articulation therapy. PMID:26979162

  15. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  16. Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liu, Y.; Jiang, Z.

    2016-01-01

    When the measurement of aerodynamic forces is conducted in a hypersonic shock tunnel, the inertial forces lead to low-frequency vibrations of the model, and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be obtained during a tunnel run. This finding implies restrictions on the model size and mass as the natural frequencies are inversely proportional to the length scale of the model. Therefore, the force measurement still has many problems, particularly for large and heavy models. Different structures of a strain gauge balance (SGB) are proposed and designed, and the measurement element is further optimized to overcome the difficulties encountered during the measurement of aerodynamic forces in a shock tunnel. The motivation for this study is to assess the structural performance of the SGB used in a long-test-duration JF12 hypersonic shock tunnel, which has more than 100 ms of test time. Force tests were conducted for a large-scale cone with a 10° semivertex angle and a length of 0.75 m in the JF12 long-test-duration shock tunnel. The finite element method was used for the analysis of the vibrational characteristics of the Model-Balance-Sting System (MBSS) to ensure a sufficient number of cycles, particularly for the axial force signal during a shock tunnel run. The higher-stiffness SGB used in the test shows good performance, wherein the frequency of the MBSS increases because of the stiff construction of the balance. The experimental results are compared with the data obtained in another wind tunnel and exhibit good agreement at M = 7 and α =5°.

  17. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    SciTech Connect

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration.

  18. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Carstens, Henning; Herrick, Nicholas; Demmler, Stefan; Limpert, Jens; Tünnermann, Andreas

    2011-12-01

    We report on nonlinear pulse compression at very high average power. A high-power fiber chirped pulse amplification system based on a novel large pitch photonic crystal fiber delivers 700 fs pulses with 200 μJ pulse energy at a 1 MHz repetition rate, resulting in 200 W of average power. Subsequent spectral broadening in a xenon-filled hollow-core fiber and pulse compression with chirped mirrors is employed for pulse shortening and peak power enhancement. For the first time, to our knowledge, more than 100 W of average power are transmitted through a noble-gas-filled hollow fiber. After pulse compression of 81 fs, 93 μJ pulses are obtained at a 1 MHz repetition rate. PMID:22139257

  19. Performance of high-convergence, layered DT implosions with extended-duration pulses at the National Ignition Facility.

    PubMed

    Smalyuk, V A; Atherton, L J; Benedetti, L R; Bionta, R; Bleuel, D; Bond, E; Bradley, D K; Caggiano, J; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C J; Clark, D; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Edwards, M J; Frenje, J; Gatu-Johnson, M; Glebov, V Y; Glenn, S; Glenzer, S H; Grim, G; Haan, S W; Hammel, B A; Hartouni, E P; Hatarik, R; Hatchett, S; Hicks, D G; Hsing, W W; Izumi, N; Jones, O S; Key, M H; Khan, S F; Kilkenny, J D; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Le Pape, S; Lindl, J D; Ma, T; MacGowan, B J; Mackinnon, A J; MacPhee, A G; McNaney, J; Meezan, N B; Moody, J D; Moore, A; Moran, M; Moses, E I; Pak, A; Parham, T; Park, H-S; Patel, P K; Petrasso, R; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Springer, P T; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Widmann, K

    2013-11-22

    Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm2. Future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF. PMID:24313493

  20. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    SciTech Connect

    Koshimizu, Masanori Asai, Keisuke; Kurashima, Satoshi; Taguchi, Mitsumasa; Kimura, Atsushi; Iwamatsu, Kazuhiro

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.5–2.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  1. Ultrafast saturation of electronic-resonance-enhanced coherent anti-Stokes Raman scattering and comparison for pulse durations in the nanosecond to femtosecond regime

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2016-02-01

    The saturation threshold of a probe pulse in an ultrafast electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman spectroscopy (CARS) configuration is calculated. We demonstrate that while the underdamping condition is a sufficient condition for saturation of ERE-CARS with the long-pulse excitations, a transient gain must be achieved to saturate the ERE-CARS signal for the ultrafast probe regime. We identify that the area under the probe pulse can be used as a definitive parameter to determine the criterion for a saturation threshold for ultrafast ERE-CARS. From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold of ERE-CARS is compared for a wide range of probe-pulse durations from the 10-ns to the 10-fs regime. The theory explains both qualitatively and quantitatively the saturation thresholds of resonant transitions and also gives a predictive capability for other pulse duration regimes. The presented criterion for the saturation threshold will be useful in establishing the design parameters for ultrafast ERE-CARS.

  2. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    PubMed Central

    Vappou, J; Luo, J; Okajima, K; Di Tullio, M; Konofagou, E E

    2014-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local Pulse Wave Velocity (PWV). The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7± 16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries. PMID:21904023

  3. Influence of the Duration of Thermal Action on the Errors in Determining the Thermophysical Characteristics of Ceramic Materials by a Laser Pulse Method

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kats, M. D.

    2016-06-01

    An analysis of the errors involved in determining the thermophysical characteristics of a special-purpose ceramic material — zirconium carbide — is made. It is shown that the errors of determining the heat capacity and thermal diffusivity of the indicated material under conditions corresponding to the implementation of the laser pulse method vary nonmonotonically depending on the pulse duration. The possibility of attaining minimum values of methodical errors by appropriately selecting the thickness of a sample and of the time of its heating is shown.

  4. A novel measurement scheme for the radial group delay of large-aperture ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Li, Zhaoyang; Li, Wenkai; Lu, Jun; Wang, Cheng; Li, Yanyan; Liu, Yanqi; Lu, Xiaoming; Peng, Yujie; Wang, Ding; Leng, Yuxin; Li, Ruxin

    2016-05-01

    In femtosecond high-peak-power laser system, the radial group delay (RGD) of the pulse front introduced by conventional lens-based beam expanders can significantly decrease the achievable focal intensity, especially when it is larger than the pulse duration. In order to quantitatively analyze and compensate the RGD, a novel measurement scheme based on self-reference and second-order cross-correlation technology is proposed and applied to measure the RGD of the large-aperture ultra-short laser pulses directly. The measured result of the RGD in a 200 TW Ti:sapphire laser system is in good agreement with the theoretical calculation. To our knowledge, it is the first time to realize the direct RGD measurement of large-aperture ultra-short laser pulses.

  5. Measurement of ice accretion using ultrasonic pulse echo techniques

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.

    1987-01-01

    Many figures are given to illustrate the measurement of ice deposition using ultrasonic pulse echo techniques. The basic concept is to measure the thickness of the ice by relating the pulse echo time to the speed of sound. The measurements are made in an icing research tunnel (IRT), where echo patterns are videotaped during icing exposures under a variety of conditions. Typical echo patterns for different types of ice are illustrated. A table summarizing the icing rates measured in the IRT, along with the presence or absence of surface water is also given.

  6. Oh Laser-Induced Fluorescence Measurements in Nanosecond Pulse Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Choi, Inchul; Adamovich, Igor V.; Lempert, Walter R.

    2010-06-01

    We present recent results of laser-induced fluorescence measurements of hydroxyl radical density in repetitively pulsed nanosecond plasmas, created using 10-20 nsec duration, high (up to 20 kV) voltage pulsers, capable of operation at repetition rates as high as 40-50 kHz. OH mole fraction as a function of time with respect to discharge creation is determined, with absolute calibration performed using a Hencken flat flame burner. This paper will focus on a series of low temperature, non-equilibrium kinetics measurements in hydrogen and hydrocarbon-air mixtures, with results compared to predictions of a recently developed plasma chemical oxidation model.

  7. Unraveling the roles of thermal annealing and off-time duration in magnetic properties of pulsed electrodeposited NiCu nanowire arrays

    NASA Astrophysics Data System (ADS)

    Haji jamali, Z.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2015-05-01

    Magnetic alloy nanowires (ANWs) have long been studied owing to both their fundamental aspects and possible applications in magnetic storage media and magnetoresistance devices. Here, we report on the roles of thermal annealing and duration of off-time between pulses (toff) in crystalline characteristics and magnetic properties of arrays of pulsed electrodeposited NiCu ANWs (35 nm in diameter and a length of 1.2 μm), embedded in porous anodic alumina template. Increasing toff enabled us to increase the Cu content thereby fabricating NiCu ANWs with different crystallinity and alloy compositions. Although major hysteresis curve measurements showed no considerable change in magnetic properties before and after annealing, the first-order reversal curve (FORC) analysis provided new insights into the roles of thermal annealing and toff. In other words, FORC diagrams indicated the presence of low and high coercive field regions in annealed Ni-rich ANWs, coinciding with the increase in toff in as-deposited ANWs. The former has a small coercivity with strong demagnetizing magnetostatic interactions from neighboring NWs and may correspond to a soft magnetic phase. The latter has a greater coercivity with weak interactions, corresponding to a hard magnetic phase. On the other hand, for as-deposited and annealed Cu-rich NiCu ANWs, a mixed phase of the soft and hard segments could be found. Furthermore, a transition from the interacting Ni-rich to non-interacting Cu-rich ANWs took place with a magnetic field applied parallel to the NW axis. Thus, these arrays of ANWs with tunable magnetic phases and interactions may have potential applications in the nanoscale devices.

  8. Comparison of sunshine duration measurements from Campbell-Stokes sunshine recorder and CSD1 sensor

    NASA Astrophysics Data System (ADS)

    Urban, Grzegorz; Zając, Ireneusz

    2016-03-01

    Paper presents comparative analysis of sunshine duration measurement results obtained using Campbell-Stokes sunshine recorder (CS) and electronic sensor (CSD1). The comparison is based on data from 2009 to 2010 collected at seven weather stations (Leszno, Wrocław-Strachowice, Legnica, Opole, Zielona Góra, Jelenia Góra, Kłodzko) operated by the Institute of Meteorology and Water Management—National Research Institute (IMWM-NRI) in south-western Poland. Results obtained in Opole and Legnica stations are erroneous. In case of other stations, the relationship between daily total sunshine duration as measured by CS and CSD1 was strong. Coefficients of determination were 0.96-0.97. Mean differences in daily totals of sunshine duration were ±0.3 h. Differences of mean monthly and annual totals were both positive and negative with no pattern of occurrences. Implementation of permanent corrections is not possible. The highest consistency between both measurement devices was found during winter months.

  9. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    PubMed

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source. PMID:26724013

  10. Towards higher stability of resonant absorption measurements in pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  11. Towards higher stability of resonant absorption measurements in pulsed plasmas

    SciTech Connect

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  12. Effects of presentation duration on measures of complexity in affective environmental scenes and representational paintings.

    PubMed

    Marin, Manuela M; Leder, Helmut

    2016-01-01

    Complexity constitutes an integral part of humans' environment and is inherent to information processing. However, little is known about the dynamics of visual complexity perception of affective environmental scenes (IAPS pictures) and artworks, such as affective representational paintings. In three experiments, we studied the time course of visual complexity perception by varying presentation duration and comparing subjective ratings with objective measures of complexity. In Experiment 1, 60 females rated 96 IAPS pictures, presented either for 1, 5, or 25s, for familiarity, complexity, pleasantness and arousal. In Experiment 2, another 60 females rated 96 representational paintings. Mean ratings of complexity and pleasantness changed according to presentation duration in a similar vein in both experiments, suggesting an inverted U-shape. No common pattern of results was observed for arousal and familiarity ratings across the two picture sets. The correlations between subjective and objective measures of complexity increased with longer exposure durations for IAPS pictures, but results were more ambiguous for paintings. Experiment 3 explored the time course of the multidimensionality of visual complexity perception. Another 109 females rated the number of objects, their disorganization and the differentiation between a figure-ground vs. complex scene composition of pictures presented for 1 and 5s. The multidimensionality of visual complexity only clearly emerged in the 5-s condition. In both picture sets, the strength of the correlations with objective measures depended on the type of subdimension of complexity and was less affected by presentation duration than correlations with general complexity in Experiments 1 and 2. These results have clear implications for perceptual and cognitive theories, especially for those of esthetic experiences, in which the dynamical changes of complexity perception need to be integrated. PMID:26595281

  13. Laser-spectroscopic electric field measurements in a ns-pulsed microplasma in nitrogen

    NASA Astrophysics Data System (ADS)

    Boehm, Patrick; Luggenhoelscher, Dirk; Czarnetzki, Uwe; 1123 Research Group Collaboration

    2013-09-01

    In this work for the first time ns-pulsed discharges in nitrogen at near atmospheric pressures are investigated by laser-spectroscopic electric field measurements, ultra-fast optical emission spectroscopy, current and voltage measurements. The discharge is operated with kV-pulses of about 150 ns duration between two parallel plate electrodes with a 1.2 mm gap. The laser technique for electric field measurement is based on a four-wave mixing process similar to Coherent anti-Stokes Raman Scattering (CARS). Here the static electric field acts effectively as the third wave with a zero frequency. The frequency of the generated anti-Stokes wave is in the IR regime and the amplitude is proportional to the electric field strength. By measuring the intensity of the IR- and anti-Stokes-signal it is now possible to determine the static electric field. Due to the short pulse-length of the lasers a temporal resolution in the ns range and a typical sensitivity of 50 - 100 V/mm in pure nitrogen is achieved (p > 50 mbar). Field-measurements are accompanied by emission measurements using a streak-camera with sub-ns resolutions. Further, current and voltage measurements combined with the electric field measurements allow determination of the plasma density. Funding by DFG through FOR 1123.

  14. Determination of Spring Onset and Growing Season Duration using Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Min, Q.; Lin, Bing

    2006-01-01

    An integrated approach to retrieve microwave emissivity difference vegetation index (EDVI) over land regions has been developed from combined multi-platform/multi-sensor satellite measurements, including SSM/I measurements. A possible relationship of the remotely sensed EDVI and the leaf physiology of canopy is exploited at the Harvard Forest site for two growing seasons. This study finds that the EDVI is sensitive to leaf development through vegetation water content of the crown layer of the forest canopy, and has demonstrated that the spring onset and growing season duration can be determined accurately from the time series of satellite estimated EDVI within uncertainties about 3 and 7 days for spring onsets and growing season duration, respectively, compared to in-situ observations. The leaf growing stage may also be quantitatively monitored by a normalized EDVI. Since EDVI retrievals from satellite are generally possible during both daytime and nighttime under non-rain conditions, the EDVI technique studied here may provide higher temporal resolution observations for monitoring the onset of spring and the duration of growing season compared to currently operational satellite methods.

  15. Fade-durations derived from land-mobile-satellite measurements in Australia

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro; Vogel, Wolfhard J.; Goldhirsh, Julius

    1991-01-01

    Transmissions from the Japanese ETS-V geostationary satellite were measured at L band (1.5 GHz) in a vehicle driving on roads of southeastern Australia. The measurements were part of a program designed to characterize propagation effects due to roadside trees and terrain for mobile satellite service. It is shown that the cumulative distributions of fade and nonfade durations follow a lognormal and power law, respectively. At 1 percent probability, fades last 2-8 m, and nonfades 10-100 m, depending on the degree of shadowing. Phase fluctuations are generally small, allowing the channel characteristics to be estimated from levels only.

  16. Balances for the measurement of multiple components of force in flows of a millisecond duration

    NASA Technical Reports Server (NTRS)

    Mee, D. J.; Daniel, W. J.; Tuttle, S. L.; Simmons, J. M.

    1995-01-01

    This paper reports a new balance for the measurement of three components of force - lift, drag and pitching moment - in impulsively starting flows which have a duration of about one millisecond. The basics of the design of the balance are presented and results of tests on a 15 deg semi-angle cone set at incidence in the T4 shock tunnel are compared with predictions. These results indicate that the prototype balance performs well for a 1.9 kg, 220 mm long model. Also presented are results from initial bench tests of another application of the deconvolution force balance to the measurement of thrust produced by a 2D scramjet nozzle.

  17. Low cost laser system generating 26-fs pulse duration, 30-kW peak power, and tunability from 800 to 1200 nm for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Resan, Bojan; Brunner, Felix; Rohrbacher, Andreas; Ammann, Hubert; Weingarten, Kurt J.

    2012-03-01

    We demonstrate a novel low-cost, low-noise, tunable, high-peak-power, ultrafast laser system based on a SESAMmodelocked, solid-state Yb tungstate laser plus spectral broadening via a microstructured fiber followed by pulse compression. The spectral selection, tuning, and pulse compression are performed with a simple prism compressor. The spectral broadening and fiber parameters are chosen to insure low-noise and short pulse operation of the tunable output. The long-term stable output pulses are tunable from 800 to 1200 nm, with a peak power up to 30 kW and pulse duration down to 26 fs. We demonstrate the generation of an output beam with 30 fs pulsewidth and multiple colors in infrared. In particular, we compressed selected spectral slices centered at 960 and 1100 nm suitable for imaging with green fluorescent protein and red dyes. Such a multicolor, 30 fs laser is ideally suited for simultaneous multispectral multiphoton imaging. This system is attractive for variety of applications including multiphoton (TPE, SHG, THG, CARS) and multimodal microscopy, nanosurgery, and optical coherence tomography (OCT). Such system is simpler, lower-cost, and much easier to use (fully turn-key) compared to a currently available solutions for near-infrared ultrashort pulses, typically a Ti:sapphire laser-pumped OPO.

  18. Evaluation of an innovative sensor for measuring global and diffuse irradiance, and sunshine duration

    NASA Astrophysics Data System (ADS)

    Muneer, Tariq; Zhang, Xiaodong; Wood, John

    2002-03-01

    Delta-T Device Limited of Cambridge, UK have developed an integrated device which enables simultaneous measurement of horizontal global and diffuse irradiance as well as sunshine status at any given instance in time. To evaluate the performance of this new device, horizontal global and diffuse irradiance data were simultaneously collected from Delta-T device and Napier University's CIE First Class daylight monitoring station. To enable a cross check a Kipp & Zonen CM11 global irradiance sensor has also been installed in Currie, south-west Edinburgh. Sunshine duration data have been recorded at the Royal Botanical Garden, Edinburgh using their Campbell-Stokes recorder. Hourly data sets were analysed and plotted within the Microsoft Excel environment. Using the common statistical measures, Root Mean Square Difference (RMSD) and Mean Bias Difference (MBD) the accuracy of measurements of Delta-T sensor's horizontal global and diffuse irradiance, and sunshine duration were investigated. The results show a good performance on the part of Delta-T device for the measurement of global and diffuse irradiance. The sunshine measurements were found to have a lack of consistency and accuracy. It is argued herein that the distance between the respective sensors and the poor accuracy of Campbell-Stokes recorder may be contributing factors to this phenomenon.

  19. Measuring ultrashort pulses using frequency-resolved optical gating

    SciTech Connect

    Trebino, R.

    1993-12-01

    The purpose of this program is the development of techniques for the measurement of ultrafast events important in gas-phase combustion chemistry. Specifically, goals of this program include the development of fundamental concepts and spectroscopic techniques that will augment the information currently available with ultrafast laser techniques. Of equal importance is the development of technology for ultrafast spectroscopy. For example, methods for the production and measurement of ultrashort pulses at wavelengths important for these studies is an important goal. Because the specific vibrational motion excited in a molecule depends sensitively on the intensity, I(t), and the phase, {psi}(t), of the ultrashort pulse used to excite the motion, it is critical to measure both of these quantities for an individual pulse. Unfortunately, this has remained an unsolved problem for many years. Fortunately, this year, the authors present a technique that achieves this goal.

  20. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-02-01

    This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder) as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM). These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization-field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization) at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  1. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Larin, K. V.; Li, Jiasong; Vantipalli, S.; Manapuram, R. K.; Aglyamov, S.; Emelianov, S.; Twa, M. D.

    2013-07-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo.

  2. On the use of spot measurements for graphical flow duration curves determination

    NASA Astrophysics Data System (ADS)

    Rianna, Maura; Elena, Ridolfi; Russo, Fabio; Napolitano, Francesco

    2015-04-01

    Flow duration curves (FDCs) determination represents the key to solve issues related to water resources engineering such as water quality management, hydropower systems design, water use planning, flood management and river and reservoirs regime estimation. FDCs graphically depict the amount of water resource corresponding to a specific river cross-section. For instance, in the hydroelectric scheme framework, FDCs permit to design a system that could cope with extreme flows, operate efficiently in the medium range of flows and operate at a low power output in the case of low flows. FDCs are easily determined in river cross-sections provided with hydrological gauging stations. However, in ungauged basins flow duration curves evaluation remains a problem to solve, especially in small basins where calibration data are sparse and refer to larger catchments scales. This work investigates a direct method to estimate FDCs using spot measures. Specifically, a graphical regionalization approach based on the flood index method of FDCs is proposed. The approach combines a regional dimensionless flow duration curve with a direct method to estimate the flood index. This is based on the evaluation of the mean annual flow at a specific site through instantaneous flow measurements. The optimal number of instantaneous measures necessary to minimize the error between observed and simulated curves is found. A jack knife procedure is applied to simulate the ungauged basins situation. The method gives indications about the optimal lag frequency and measurement year period. To test the methodology, analysis are carried out in the Liri-Garigliano basin, located in Central Italy.

  3. Measuring enzyme binding using shaped ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Pearson, B. J.; Tseng, C.-H.; Weinacht, T. C.

    2013-03-01

    We use multiphoton quantum-control spectroscopy to discriminate between enzyme-bound and unbound NADH (reduced nicotinamide adenine dinucleotide) molecules in solution. Shaped ultrafast laser pulses are used to illuminate both forms of NADH, and the ratio of the fluorescence from the bound and unbound molecules for different pulse shapes allows us to measure binding without spectrally resolving the emitted fluorescence or relying on the absolute fluorescence yield. This permits determination of enzyme binding in situations where spectrally resolved measurements and absolute fluorescence yields are difficult to obtain, and makes the approach ideal for multiphoton microscopy with molecular discrimination.

  4. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  5. Rise time measurement for ultrafast X-ray pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  6. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  7. A compact streak camera for 150 fs time resolved measurement of bright pulses in ultrafast electron diffraction.

    PubMed

    Kassier, G H; Haupt, K; Erasmus, N; Rohwer, E G; von Bergmann, H M; Schwoerer, H; Coelho, S M M; Auret, F D

    2010-10-01

    We have developed a compact streak camera suitable for measuring the duration of highly charged subrelativistic femtosecond electron bunches with an energy bandwidth in the order of 0.1%, as frequently used in ultrafast electron diffraction (UED) experiments for the investigation of ultrafast structural dynamics. The device operates in accumulation mode with 50 fs shot-to-shot timing jitter, and at a 30 keV electron energy, the full width at half maximum temporal resolution is 150 fs. Measured durations of pulses from our UED gun agree well with the predictions from the detailed charged particle trajectory simulations. PMID:21034115

  8. Pulse Analysis Spectroradiometer System for Measuring the Spectral Distribution of Flash Solar Simulators: Preprint

    SciTech Connect

    Andreas, A. M.; Myers, D. R.

    2008-07-01

    Flashing artificial light sources are used extensively in photovoltaic module performance testing and plant production lines. There are several means of attempting to measure the spectral distribution of a flash of light; however, many of these approaches generally capture the entire pulse energy. We report here on the design and performance of a system to capture the waveform of flash at individual wavelengths of light. Any period within the flash duration can be selected, over which to integrate the flux intensity at each wavelength. The resulting spectral distribution is compared with the reference spectrum, resulting in a solar simulator classification.

  9. Pulse-to-pulse jitter measurement by photon correlation in high-β lasers

    SciTech Connect

    Lebreton, Armand; Abram, Izo; Belabas, Nadia; Sagnes, Isabelle; Robert-Philip, Isabelle Beveratos, Alexios; Braive, Rémy; Marsili, Francesco; Verma, Varun B.; Nam, Sae Woo; Gerrits, Thomas; Stevens, Martin J.

    2015-01-19

    The turn-on delay jitter in pulsed lasers in which a large fraction (β) of spontaneous emission is channeled into the lasing mode is measured by use of a photon correlation technique. This jitter is found to significantly increase with β, reaching values of the order of the pulse width at threshold. This is due to the increase in the relative value of the discretization noise when the number of photons at threshold becomes small, as is the case in high-β lasers.

  10. Numerical simulations of ultrasimple ultrashortlaser-pulse measurement.

    PubMed

    Liu, Xuan; Trebino, Rick; Smith, Arlee V

    2007-04-16

    We numerically simulate the performance of the ultrasimple frequency-resolved-optical-gating (FROG) technique, GRENOUILLE, for measuring ultrashort laser pulses. While simple in practice, GRENOUILLE has many theoretical subtleties because it involves the second-harmonic generation of relatively tightly focused and broadband pulses. In addition, these processes occur in a thick crystal, in which the phase-matching bandwidth is deliberately made narrow compared to the pulse bandwidth. In these simulations, we include all sum-frequency-generation processes, both collinear and noncollinear. We also include dispersion using the Sellmeier equation for the crystal BBO. Working in the frequency domain, we compute the GRENOUILLE trace for practical-and impractical- examples and show that accurate measurements are easily obtained for properly designed devices. PMID:19532705