Science.gov

Sample records for pulse radiation facility

  1. Radioactive effluent measurements at the Army Pulse Radiation Facility

    SciTech Connect

    Scherpelz, R.I.; Glissmeyer, J.A.

    1994-11-01

    Staff from the Pacific Northwest Laboratory (PNL) performed measurements of the radioactive effluents emitted by the Army Pulse Radiation Facility (APRF). These measurements were performed by collecting the cooling air that passed by the APRF reactor as it operated, passing the air through filters to collect the particulates and iodines, and collecting samples of the air to be analyzed for noble gases. The reactor operated for four test runs, including two pulses and two steady state runs. After each reactor run, the filters were counted using gamma spectrometry to identify the nuclides and to determine the activity of nuclides deposited on the filters. The study provided radionuclide release fraction data that can be used to estimate the airborne emissions resulting from APRF operations. The release fraction for particulate fission products and radioiodines, as derived from these measurements, was found to be 8.9 {times} 10{sup {minus}6} for reactor pulses and 4.3 {times} 10{sup {minus}6} for steady state operation. These values compare to a theoretical value of 1.5 {times} 10{sup {minus}5}.

  2. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    SciTech Connect

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J; Campbell, K; Glenzer, S H; McDonald, J W; Niemann, C; Mackinnon, A J; Schneider, M S; Haynam, C; Hinkel, D; Hammel, B A

    2005-10-17

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums.

  3. PIN diode and neutron spectrum measurements at the Army Pulse Radiation Facility

    SciTech Connect

    Oliver, M.A.

    1994-12-01

    The Army Pulse Radiation Facility (APRF) is a multi-faceted facility operating a Godiva type pulse reactor, housed in a low scatter aluminum silo 30m in diameter and 20m high. The reactor is movable to several locations and heights. Several well characterized exposure environments are available for experiments. When testing silicon devices against a nuclear threat, it is essential to consider the difference between the neutron energy spectrum of the threat environment and that of the test environment. In this paper, neutron spectrum measurements using the foil activation technique have been made in two widely varying environments. One is an extremely high neutron-to-gamma field and the other extremely low. These measurements were used to characterize the fields and to evaluate the use of the DN-156 PIN diode for measuring 1 MeV equivalent neutron fluence in silicon ([Phi]1MeV(Si)). The agreement between the [Phi]1MeV(Si) as measured with diodes and as determined by the spectral measurements was within [+-] 5%. A proton recoil neutron spectrum measurement was also made in the low gamma environment.

  4. Final report of the gamma-ray leakage from the Aberdeen Pulse Radiation Facility (APRF) reactor. Final report

    SciTech Connect

    Heimbach, C.R.

    1995-04-01

    The gamma-ray leakage from the Aberdeen Pulse Radiation Facility (APRF) fast-burst reactor has been measured. A BGO spectrometer was used to measure spectrum, and a Geiger counter was used to measure dose. The two detectors were consistent, but measured about 60 percent more dose than indicated by calculation.

  5. Sources of pulsed radiation

    SciTech Connect

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table.

  6. Analysis of the Fall-1989 two-meter box test bed experiments performed at the Army Pulse Radiation Facility (APRF)

    NASA Astrophysics Data System (ADS)

    Johnson, J. O.; Drischler, J. D.; Barnes, J. M.

    This report summarizes the results of a benchmark analysis of the Monte Carlo Adjoint Shielding Code System (MASH) against a series of experiments performed at the Army Pulse Radiation Facility (APRF) in Aberdeen Proving Ground, Maryland. The series of experiments was performed in the Fall of 1989 and involved experimentalists from APRF; the Defense Research Establishment Ottawa, Canada (DREO); Bubble Technology Industries, Canada, (BTI); and the Establishment Technique Central de l'Armement, France (ETCA). The 'benchmark' analysis of MASH is designed to determine the capability of MASH to reproduce the measured neutron and gamma ray integral and differential (spectral) data. Results of the 'benchmark' analysis are to be used in the recommendations to the North Atlantic Treaty Organization (NATO) Panel 7 Ad Hoc Group of Shielding Experts for replacing the Vehicle Code System (VCS) with MASH as the reference code of choice for armored vehicle nuclear vulnerability calculations.

  7. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  8. SLAC pulsed x-ray facility

    SciTech Connect

    Ipe, N.E.; McCall, R.C.; Baker, E.D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the rf power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminium 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ..mu..s. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the x-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility. 3 refs., 5 figs.

  9. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  10. The Brookhaven Radiation Effects Facility

    NASA Astrophysics Data System (ADS)

    Grand, P.; Snead, C. L.; Ward, T.

    The Neutral Particle Beam Radiation Effects Facility (REF), funded by the SDIO through the Defense Nuclear Agency and the Air Force Weapons Laboratory, has been constructed at Brookhaven National Laboratory. The operation started in October 1986. The REF is capable of delivering pulsed H(-), H(0), and H(+) beams of 100 to 200 MeV energy at up to 30 mA peak current. Pulses can be adjusted from 5-micron to 500-micron length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 sigma), resulting in a maximum dose of about 10 MRad (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives. This paper describes the REF, its capabilities and potential, and the experiments that have been carried out to date or are being planned.

  11. The Stanford Linear Accelerator Center pulsed x-ray facility.

    PubMed

    Ipe, N E; McCall, R C; Baker, E D

    1987-04-01

    The Stanford Linear Accelerator Center (SLAC) operates a high-energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the radio-frequency power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target window. The window consists of Al 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of Au 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 microseconds. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The maximum absorbed dose rate obtained at 6.35 cm below the target window as measured by an ionization chamber is 258 Gy/h. The major part of the x-ray tube is enclosed in a large walk-in cabinet made of 1.9-cm-thick (3/4-inch-thick) plywood and lined with 0.32-cm-thick (1/8-inch-thick) Pb to make a very versatile facility. PMID:3570789

  12. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  13. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  14. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  15. Vacuum photoelectronic devices for measuring pulsed radiation

    NASA Astrophysics Data System (ADS)

    Berkovskii, A. G.; Veretennikov, A. I.; Kozlov, O. V.

    The design of these devices is discussed, and data are presented on their characteristics. These vacuum photoelectronic devices comprise photocells, photomultipliers, and electrooptical transducers designed for measuring pulsed radiation of nanosecond and subnanosecond duration. The fluctuation characteristics of the devices are examined, and their use in detectors of pulsed luminous and ionizing radiation is considered.

  16. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  17. High-power ultrawideband electromagnetic pulse radiation

    NASA Astrophysics Data System (ADS)

    Koshelev, Vladimir I.; Buyanov, Yuri I.; Koval'chuk, Boris M.; Andreev, Yuri A.; Belichenko, Victor P.; Efremov, Anatoly M.; Plisko, Vyacheslav V.; Sukhushin, Konstantin N.; Vizir, Vadim A.; Zorin, Valery B.

    1997-10-01

    Basing on energetic processes studying in the near-field radiator zone, a new concept of antenna synthesizing for ultrawideband electromagnetic pulse radiation has been suggested. The results of experimental investigations of the antennae developed with using of this concept for high-power applications are presented. The antennae have small dimensions, high electrical strength, cardioid pattern with linear polarization of the pulse radiated and they are ideally adapted to be used as a steering antenna array element. A high-voltage nanosecond bipolar pulse generator design to excite antennae is described.

  18. Radiation Facilities for Composite Materials Formation

    NASA Astrophysics Data System (ADS)

    Popov, G. F.; Zalubovsky, I. I.; Avilov, A. M.; Rudychev, V. G.

    1997-05-01

    The radiation facilities on the base of linac for polymer composite materials (PCM) formation was designed. The general technological scheme of PCM production consists in impregnations by synthetic monomers or oligomers of wares made of capillaryporous materials such as wood, qypsum, concrete, ceramic, paper, waste of papermaking, textile and woodworking production which are further treated by relativistic electron or breamsstruhglung beams. The facilities encorporates a linac with scanning electron beams, microwave chamber for drying of materials, a system for vacuum impregnating of materials with synthetic origomers, test bench for irradiations of samples, precise monitoring system for measuring of three-dimentional dose distribution in irradiated samples, and control processing system. The main beam parameters of linac are: electron energy 5--8 MeV; mean beam power up to 5 kW, pulse duration 1--4 mcs; scanning frequency of electromagnetic scanner 1--8 Hz; the irradiation is possible both with electron and with breamsstrahglung beams. The facilities were used for radiation processing investigation and production of new high-strength and corrosian-resistant PCM.

  19. Survivable pulse power space radiator

    DOEpatents

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  20. Survivable pulse power space radiator

    DOEpatents

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  1. Electron trajectories in pulsed radiation fields

    SciTech Connect

    Einwohner, T.; Lippmann, B.A.

    1987-05-01

    The work reported here analyzes the dynamical behavior of an electron, initially at rest, when subjected to a radiation pulse of arbitrary, but integrable, shape. This is done by a general integration procedure that has been programmed in VAXIMA. Upon choosing a specific shape for the pulse, VAXIMA finds both the space-time trajectory and the four-momentum of the electron. These are obtained in analytic or numerical form - or both - at the choice of the user. Several examples of analytical and numerical solutions, for different pulse shapes, are given.

  2. Background radiation from fission pulses

    SciTech Connect

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  3. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  4. Intense terahertz pulses from SPARC_LAB coherent radiation source

    NASA Astrophysics Data System (ADS)

    Giorgianni, F.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Daniele, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Lupi, S.; Mostacci, A.; Petrarca, M.; Pompili, R.; Shpakov, V.; Villa, F.

    2015-05-01

    The linac-based Terahertz source at the SPARC_LAB test facility is able to generate highly intense Terahertz broadband pulses via coherent transition radiation (CTR) from high brightness electron beams. The THz pulse duration is typically down to 100 fs RMS and can be tuned through the electron bunch duration and shaping. The measured stored energy in a single THz pulse has reached 40 μJ, which corresponds to a peak electric field of 1.6 MV/cm at the THz focus. Here we present the main features, in particular spatial and spectral distributions and energy characterizations of the SPARC_LAB THz source, which is very competitive for investigations in Condensed Matter, as well as a valid tool for electron beam longitudinal diagnostics.

  5. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  6. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  7. Recent re-measurement of neutron and gamma-ray spectra 1080 meters from the APRD (Army Pulse Radiation Division) critical facility

    NASA Astrophysics Data System (ADS)

    Robitaille, H. A.; Hoffarth, B. E.

    1984-01-01

    Previously reported measurements of long-range air-transported neutron and gamma-ray spectra from the fast-critical facility at the US Army Aberdeen Proving Ground have been supplemented recently at the 1080-meter position. The results of these determinations are presented herein and compared to several recent calculations from other research establishments. In addition, a summary of all dosimetric measurements obtained in the period 1979-1982 are appended, as are new determinations of APRD soil composition. Integral quantities such as neutron and gamma-ray kermas are very well predicted by the latest calculations, however there still exist significant spectral differences. At short ranges calculated neutron spectra are somewhat softer than experimental measurements, but at the farthest range of 1080 meters agreement is surprisingly good. Gamma-ray spectra remain well-calculated at all ranges.

  8. Numerical Simulations of High Enthalpy Pulse Facilities

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Axisymmetric flows within shock tubes and expansion tubes are simulated including the effects of finite rate chemistry and both laminar and turbulent boundary layers. The simulations demonstrate the usefulness of computational fluid dynamics for characterizing the flows in high enthalpy pulse facilities. The modeling and numerical requirements necessary to simulate these flows accurately are also discussed. Although there is a large body of analysis which explains and quantifies the boundary layer growth between the shock and the interface in a shock tube, there is a need for more detailed solutions. Phenomena such as thermochemical nonequilibrium. or turbulent transition behind the shock are excluded in the assumptions of Mirels' analysis. Additionally there is inadequate capability to predict the influence of the boundary layer on the expanded gas behind the interface. Quantifying the gas in this region is particularly important in expansion tubes because it is the location of the test gas. Unsteady simulations of the viscous flow in shock tubes are computationally expensive because they must follow features such as a shock wave over the length of the facility and simultaneously resolve the small length scales within the boundary layer. As a result, efficient numerical algorithms are required. The numerical approach of the present work is to solve the axisymmetric gas dynamic equations using an finite-volume formulation where the inviscid fluxes are computed with a upwind TVD scheme. Multiple species equations are included in the formulation so that finite-rate chemistry can be modeled. The simulations cluster grid points at the shock and interface and translate this clustered grid with these features to minimize numerical errors. The solutions are advanced at a CFL number of less than one based on the inviscid gas dynamics. To avoid limitations on the time step due to the viscous terms, these terms are treated implicitly. This requires a block tri

  9. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  10. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  11. Generating Microwave Radiation Pulses with MCG

    NASA Astrophysics Data System (ADS)

    Zherlitsyn, A. G.; Kanaev, G. G.; Melnikov, G. V.; Tsvetkov, V. I.; Ushnurtsev, A. E.; Dudin, S. V.; Mintsev, V. B.; Fortov, V. E.

    2004-11-01

    Transformer schemes matching magnetocumulative generators (MCG) with high impedance loads, like vircator, look promising for achieving long pulse duration of 1 μs. An analysis of expected parameters is made here. The necessary MCG and transformer parameters are discussed and the experimental set-up is described. The shots with the MCG simulator were carried out first. At simulator voltage 40 kV and reserved energy 12 kJ, the voltage pulse with amplitude to 600 kV and 320 ns duration is generated on a triode with a virtual cathode. Microwave radiation of 300-400 MW and 200-300 ns duration is generated within a 10 cm wavelength range.

  12. Radiation safety at accelerator facilities NCRP activities

    NASA Astrophysics Data System (ADS)

    Kase, Kenneth R.

    1997-02-01

    The National Council on Radiation Protection and Measurements (NCRP) has issued 13 reports, dating back to 1949, giving guidance and recommendations for radiation protection at accelerator facilities. There are six current reports on the topics of neutron radiation; facility and shielding design; alarms and access control systems; and equipment design, performance, and use. Scientific Committee 46 (SC 46) is currently overseeing the development of two reports that will provide up-to-date guidance for the design of medical accelerator facilities and shielding. SC 46 has also proposed that a report be written to provide guidance for the design and shielding of industrial accelerator and large irradiator facilities. This paper describes the status and contents of these reports.

  13. Architecture and operation of the Z Pulsed Power Facility vacuum system.

    SciTech Connect

    Riddle, Allen Chauncey; Petmecky, Don; Weed, John Woodruff

    2010-11-01

    The Z Pulsed Power Facility at Sandia National Laboratories in Albuquerque, New Mexico, USA is one of the world's premier high energy density physics facilities. The Z Facility derives its name from the z-pinch phenomena which is a type of plasma confinement system that uses the electrical current in the plasma to generate a magnetic field that compresses it. Z refers to the direction of current flow, the z axis in a three dimensional Cartesian coordinate system. The multiterawatt, multimegajoule electrical pulse the Facility produces is 100-400 nanoseconds in time. Research and development programs currently being conducted on the Z Facility include inertial confinement fusion, dynamic material properties, laboratory astrophysics and radiation effects. The Z Facility vacuum system consists of two subsystems, center section and load diagnostics. Dry roughing pumps and cryogenic high vacuum pumps are used to evacuate the 40,000 liter, 200 square meter center section of the facility where the experimental load is located. Pumping times on the order of two hours are required to reduce the pressure from atmospheric to 10{sup -5} Torr. The center section is cycled from atmosphere to high vacuum for each experiment. The facility is capable of conducting one to two experiments per day. Numerous smaller vacuum pumping systems are used to evacuate load diagnostics. The megajoules of energy released during an experiment causes damage to the Facility that presents numerous challenges for reliable operation of the vacuum system.

  14. MBI facility at BESSY II for time-resolved pump-probe techniques with laser and undulator radiation

    NASA Astrophysics Data System (ADS)

    Gatzke, Johannes; Winter, Bernd J.; Quast, T.; Hertel, Ingolf V.

    1998-10-01

    The MBI develops a facility at BESSY II dedicated to pump- probe techniques combining synchrotron and laser radiation. The synchronization of laser and synchrotron pulses will allow time resolved experiments on the picosecond time scale at this. The features of the facility, the optical parameters of the synchrotron beamline, the synchronization technique and pulse stretching considerations will be outlined. Current developments will be reported.

  15. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    SciTech Connect

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  16. Long-pulse magnetic field facility at Zaragoza

    NASA Astrophysics Data System (ADS)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  17. Establishing a NORM based radiation calibration facility.

    PubMed

    Wallace, J

    2016-05-01

    An environmental radiation calibration facility has been constructed by the Radiation and Nuclear Sciences unit of Queensland Health at the Forensic and Scientific Services Coopers Plains campus in Brisbane. This facility consists of five low density concrete pads, spiked with a NORM source, to simulate soil and effectively provide a number of semi-infinite uniformly distributed sources for improved energy response calibrations of radiation equipment used in NORM measurements. The pads have been sealed with an environmental epoxy compound to restrict radon loss and so enhance the quality of secular equilibrium achieved. Monte Carlo models (MCNP),used to establish suitable design parameters and identify appropriate geometric correction factors linking the air kerma measured above these calibration pads to that predicted for an infinite plane using adjusted ICRU53 data, are discussed. Use of these correction factors as well as adjustments for cosmic radiation and the impact of surrounding low levels of NORM in the soil, allows for good agreement between the radiation fields predicted and measured above the pads at both 0.15 m and 1 m. PMID:26921707

  18. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  19. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target. PMID:20517369

  20. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation

    PubMed Central

    Eilenberger, Falk; Kabakova, Irina V.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations. PMID:24060831

  1. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.

    PubMed

    Wang, Li-Gang; Chai, Hai-Shui

    2011-07-18

    Motivated by the recent optical trapping experiments using ultra-short pulsed lasers [Opt. Express 18, 7554 (2010); Appl. Opt. 48, G33 (2009)], in this paper we have re-investigated the trapping effects of the pulsed radiation force (PRF), which is induced by a pulsed Gaussian beam acting on a Rayleigh dielectric sphere. Based on our previous model [Opt. Express 15, 10615 (2007)], we have considered the effects arisen from both the transverse and axial PRFs, which lead to the different behaviors of both velocities and displacements of a Rayleigh particle within a pulse duration. Our analysis shows that, for the small-sized Rayleigh particles, when the pulse has the large pulse duration, it might provide the three-dimensional optical trapping; and when the pulse has the short pulse duration, it only provides the two-dimensional optical trapping with the axial movement along the pulse propagation. When the particle is in the vacuum or in the situation with the very weak Brownian motion, the particle can always be trapped stably due to the particle's cumulative momentum transferred from the pulse, and only in this case the trapping effect is independent of pulse duration. Finally, we have predicted that for the large-sized Rayleigh particles, the pulse beam can only provide the two-dimensional optical trap (optical guiding). Our results provide the important information about the trapping mechanism of pulsed tweezers. PMID:21934801

  2. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    NASA Astrophysics Data System (ADS)

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-01

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm-1. The response time of the TRIR detection setup is ˜40 ns, with a typical sensitivity of ˜100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  3. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    SciTech Connect

    Grills, David C. Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Wishart, James F.; Bernstein, Herbert J.

    2015-04-15

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm{sup −1}. The response time of the TRIR detection setup is ∼40 ns, with a typical sensitivity of ∼100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  4. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGESBeta

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  5. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    SciTech Connect

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  6. Radiation and propagation of short acoustical pulses from underground explosions

    SciTech Connect

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis.

  7. Energy Characteristics of Radiators of Ultrashort Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Usychenko, V. G.; Usychenko, A. S.; Sorokin, L. N.

    2015-07-01

    It is shown that to use the maximum share of the energy of a unipolar ultrashort electric pulse, its duration and shape, as well as the transmitting antenna parameters should, be related to the receiver center frequency and passband in a certain manner. Distortions introduced by the propagation effects to the received-radiation spectrum shape increase with broadening radiation and receiver frequency bands.

  8. Transportation of an electromagnetic pulse to the load in the Angara-5-1 facility

    SciTech Connect

    Aleksandrov, V. V.; Grabovski, E. V.; Gribov, A. N.; Oleinik, G. M.; Samokhin, A. A.; Sasorov, P. V.

    2008-11-15

    One of the main problems in Z-pinch experiments is to transport power and energy from the generator to the load. As the pulse produced in a double forming line propagates to the load along a water-vacuum insulator, its power and energy decrease due to current leakage in the plasma shortening the gap and during the establishment of magnetic self-insulation in regions with a zero magnetic field. Only a fraction of the delivered energy is spent on the load implosion, whereas the rest of the energy goes on creating the magnetic field around the load. In this work, an analysis is made of what is the fraction of the generator energy that reaches the liner, what fraction is radiated, and what are losses of energy and current in different stages of transporting the electromagnetic pulse to the load of the Angara-5-1 facility.

  9. Ejecta experiments at the Pegasus Pulsed Power facility

    SciTech Connect

    Sorenson, D.S.; Carpenter, B.; King, N.S.P.

    1997-08-01

    When a shock wave interacts at the surface of a metal target, target material can be emitted from the surface called ejecta. The mass, size, shape, and velocity of ejecta varies depending on the initial shock conditions, and target material properties. In order to understand this phenomena, diagnostics have been developed and implemented at the Pegasus Pulsed Power facility located at Los Alamos National Laboratory. The facility provides both radial and axial access for making measurements. There exist optical, laser, and x-ray paths for performing measurements on the target assembly located near the center of the machine. The facility can provide many mega amps of current which is transported to a 5.0 cm diameter, 2.0 cm high aluminum cylinder. The current and associated magnetic field set up forces which implode the aluminum cylinder radially inward. As the aluminum cylinder reaches the appropriate velocity it impacts a target cylinder. Due to this impact, a shock wave is set up in the target and eventually interacts at the inner surface of the target cylinder where ejecta are produced. A 1.5 cm diameter collimator cylinder located inside the target cylinder is used to control the number of ejecta particles that arrive at the center region where ejecta measurements are made. Diagnostics have been developed including in-line Fraunhofer holography and visible shadowgraph. Details of these diagnostics are described.

  10. Scramjet mixing establishment times for a pulse facility

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Weidner, Elizabeth H.

    1991-01-01

    A numerical simulation of the temporally developing flow through a generic scramjet combustor duct is presented for stagnation conditions typical of flight at Mach 13 as produced by a shock tunnel pulse facility. The particular focus is to examine the start up transients and to determine the time required for certain flow parameters to become established. The calculations were made with a Navier-Stokes solver SPARK with temporally relaxing inflow conditions derived from operation of the T4 shock tunnel at the University of Queensland in Australia. Calculations at nominal steady inflow conditions were made for comparison. The generic combustor geometry includes the injection of hydrogen fuel from the base of a centrally located strut. In both cases, the flow was assumed laminar and fuel combustion was not included. The establishment process is presented for viscous parameters in the boundary layer and for parameters related to the fuel mixing.

  11. The Short-Pulse X-ray Facility at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Young, Linda; Evans, Paul

    2013-05-01

    The Short-Pulse X-ray (SPX) Facility will extend time-resolved x-ray scattering and spectroscopy to the picosecond time scale while retaining the powerful characteristics of synchrotron radiation, i.e., user-controlled continuous tunability of energy, polarization, and bandwidth combined with exquisite x-ray energy and pulse-length stability over a wide energy range. Experiments at the SPX facility will produce 1-ps stroboscopic snapshots of molecular rotations, molecular excited-state transient structures, stress/strain wave propagation, magnetic domain wall dynamics, phase transitions, and the coupling between electronic, vibrational, and magnetic degrees of freedom in condensed matter systems. Time-resolved studies of transient dynamics will be possible with simultaneous picosecond time resolution and picometer structural precision for a variety of atomic, molecular, supramolecular, nanoscale, and bulk material systems. Pump-probe experiments using high-average-power, sub-picosecond, high-repetition-rate laser systems will make efficient use of the MHz x-ray rates of the SPX. Five end stations for x-ray scattering, diffraction, spectroscopy, imaging, and microscopy can be developed as part of the Advanced Photon Source Upgrade project. The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Dept of Energy Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.

  12. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    NASA Astrophysics Data System (ADS)

    Yoffe, S. R.; Noble, A.; Macleod, A. J.; Jaroszynski, D. A.

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra.

  13. Assessment and Mitigation of Radiation, EMP, Debris & Shrapnel Impacts at Megajoule-Class Laser Facilities

    SciTech Connect

    Eder, D C; Anderson, R W; Bailey, D S; Bell, P; Benson, D J; Bertozzi, A L; Bittle, W; Bradley, D; Brown, C G; Clancy, T J; Chen, H; Chevalier, J M; Combis, P; Dauffy, L; Debonnel, C S; Eckart, M J; Fisher, A C; Geille, A; Glebov, V Y; Holder, J; Jadaud, J P; Jones, O; Kaiser, T B; Kalantar, D; Khater, H; Kimbrough, J; Koniges, A E; Landen, O L; MacGowan, B J; Masters, N D; MacPhee, A; Maddox, B R; Meyers, M; Osher, S; Prasad, R; Raffestin, D; Raimbourg, J; Rekow, V; Sangster, C; Song, P; Stoeckl, C; Stowell, M L; Teran, J M; Throop, A; Tommasini, R; Vierne, J; White, D; Whitman, P

    2009-10-05

    The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debris and shrapnel modelling.

  14. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  15. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  16. Quantization effects in radiation spectroscopy based on digital pulse processing

    SciTech Connect

    Jordanov, V. T.; Jordanova, K. V.

    2011-07-01

    Radiation spectra represent inherently quantization data in the form of stacked channels of equal width. The spectrum is an experimental measurement of the discrete probability density function (PDF) of the detector pulse heights. The quantization granularity of the spectra depends on the total number of channels covering the full range of pulse heights. In analog pulse processing the total number of channels is equal to the total digital values produced by a spectroscopy analog-to-digital converter (ADC). In digital pulse processing each detector pulse is sampled and quantized by a fast ADC producing certain number of quantized numerical values. These digital values are linearly processed to obtain a digital quantity representing the peak of the digitally shaped pulse. Using digital pulse processing it is possible to acquire a spectrum with the total number of channels greater than the number of ADC values. Noise and sample averaging are important in the transformation of ADC quantized data into spectral quantized data. Analysis of this transformation is performed using an area sampling model of quantization. Spectrum differential nonlinearity (DNL) is shown to be related to the quantization at low noise levels and small number of averaged samples. Theoretical analysis and experimental measurements are used to obtain the condition to minimize the DNL due to quantization. (authors)

  17. Radiation-driven hydrodynamics of high- hohlraums on the national ignition facility.

    PubMed

    Dewald, E L; Suter, L J; Landen, O L; Holder, J P; Schein, J; Lee, F D; Campbell, K M; Weber, F A; Pellinen, D G; Schneider, M B; Celeste, J R; McDonald, J W; Foster, J M; Niemann, C; Mackinnon, A J; Glenzer, S H; Young, B K; Haynam, C A; Shaw, M J; Turner, R E; Froula, D; Kauffman, R L; Thomas, B R; Atherton, L J; Bonanno, R E; Dixit, S N; Eder, D C; Holtmeier, G; Kalantar, D H; Koniges, A E; Macgowan, B J; Manes, K R; Munro, D H; Murray, J R; Parham, T G; Piston, K; Van Wonterghem, B M; Wallace, R J; Wegner, P J; Whitman, P K; Hammel, B A; Moses, E I

    2005-11-18

    The first hohlraum experiments on the National Ignition Facility (NIF) using the initial four laser beams tested radiation temperature limits imposed by plasma filling. For a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with an analytical model that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits with full NIF (1.8 MJ), greater, and of longer duration than required for ignition hohlraums. PMID:16384150

  18. Radiation from long pulse train electron beams in space plasmas

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Banks, P. M.

    1985-01-01

    A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.

  19. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    SciTech Connect

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  20. Characterization of a medical X-ray machine for testing the response of electronic dosimeters in pulsed radiation fields

    NASA Astrophysics Data System (ADS)

    Guimarães, Margarete C.; Da Silva, Teógenes A.

    2014-11-01

    Electronic personal dosimeters (EPD) based on solid state detectors have been used for personnel monitoring for radiation protection purpose; their use has been extended to practices with pulsed radiation beams although their performance is not well known. Deficiencies in the EPD response in pulsed radiation fields have been reported; they were not detected before since type tests and calibrations of EPDs were established in terms of continuous X and gamma reference radiations. An ISO working group was formed to elaborate a standard for test conditions and performance requirements of EPDs in pulsed beams; the PTB/Germany implemented a special X-ray facility for generating the reference pulsed radiation beams. In this work, an 800 Plus VMI medical X-ray machine of the Dosimeter Calibration Laboratory of CDTN/CNEN was characterized to verify its feasibility to perform EPD tests. Characterization of the x-ray beam was done in terms of practical peak voltage, half-value layer, mean energy and air kerma rate. Reference dosimeters used for air kerma measurements were verified as far their metrological coherence and a procedure for testing EDPs was established. Electronic personal dosimeters (EPD) have been used for personnel monitoring. EPD use has been extended to pulsed radiation beams. Deficiencies in the EPD response in pulsed beams have been reported. The feasibility of using a medical X-ray machine to perform EPD tests was studied. Reference dosimeters were verified and EPD testing procedure was established.

  1. The NHMFL Pulsed Field Facility at Los Alamos National Lab

    NASA Astrophysics Data System (ADS)

    Mielke, Chuck

    2014-03-01

    National user facilities provide scientists and industrial development companies with access to specialized experimental capabilities to enable development of materials and solve long standing technical problems. Magnetic fields have become an indispensable tool for researchers to better understand and manipulate ground states of electronic materials. As magnetic field intensities are increased the quantum nature of these materials become exponentially more likely to be observed and this is but one of the drivers to go further in high magnetic field generation. At the Los Alamos branch of the National High Magnetic Field Laboratory we have significant efforts in extremely high magnetic field generation and experimentation. In direct opposition with our efforts are the tremendous electro-mechanical forces exerted on our magnets and the electromagnetic interference that couples to the sample under study and the diagnostic equipment. Challenges in magnetic field generation and research will be presented. Various methods of pulsed high magnetic field generation and experimentation capabilities will be reviewed, including our recent ``World Record'' for the highest non-destructive magnetic field. NSF-DMR 1157490.

  2. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  3. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  4. Short Pulse Experimental Capability at the Nike Laser Facility

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Chan, Y.; Gardner, J.; Giuliani, J.; Karasik, M.; Kehne, D.; Mostovych, A.; Obenschain, S.; Velikovich, A.; Schmitt, A.; Serlin, V.; Aglitskiy, Y.; Metzler, N.; Smyth, Z.; Terrell, S.

    2004-11-01

    Recent simulations demonstrated high gain for direct drive pellets compressed by a laser pulse incorporating a short pulse prior to the main pulse. Theoretical work has also shown that a short prepulse can create a tailored density profile that reduces the initial instability growth due to laser imprinting. A new short pulse (0.35-0.75 ns FWHM)is being added to the Nike KrF laser system to facilitate hydrodynamic experiments with short prepulses. This capability has been incorporated into the initial stages of the laser system and the propagation of these pulses through the angularly multiplexed amplifiers is being studied. Measurements of pulse shape and energy will be compared to simulations using the KrF physics code Orestes for the next to last amplifier of the laser system, the 20 cm x 20 cm e-beam pumped laser cell. The effects of amplified spontaneous emission (ASE) upon individual output pulses will be also discussed.

  5. Comparison of fission neutron and pulsed spallation neutron sources for radiation effects experiments on Cu/sub 3/Au

    SciTech Connect

    Kirk, M.A.

    1983-10-01

    Through our recent experimental work on the neutron irradiation effects in Cu/sub 3/Au, we will compare fission and pulsed spallation neutron sources. Neutron characteristics of irradiation facilities at the Intense Pulsed Neutron Source (IPNS) and the CP-5 reactor (now closed down), are briefly described. Defect cascade size distributions from irradiations of Cu/sub 3/Au at both neutron sources illustrated by transmission electron micrographs of disordered zones. Radiation-enhanced diffusion experiments in Cu/sub 3/Au are discussed along with the effect of pulsed neutron irradiations.

  6. Radiation safety training for accelerator facilities

    SciTech Connect

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy`s (DOE`s) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise.

  7. Successful Treatment of Occipital Radiating Headache Using Pulsed Radiofrequency Therapy

    PubMed Central

    Lee, Sun Yeul; Jang, Dae Il; Noh, Chan

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease involving multiple joints. The cervical spine is often affected, and cases involving atlantoaxial joint can lead to instability. Anterior atlantoaxial subluxation in RA patients can lead to posterior neck pain or occipital headache because of compression of the C2 ganglion or nerve. Here, we report the successful treatment of a RA patient with occipital radiating headache using pulsed radiofrequency therapy at the C2 dorsal root ganglion. PMID:26279821

  8. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  9. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  10. Atmospheric radiation measurement program facilities newsletter, September 2002.

    SciTech Connect

    Holdridge, D. J.

    2002-10-02

    This Atmospheric radiation measurement program facilities newsletter covers the following topics: The Raman lidar at the SGP central facility is receiving upgrades to its environmental controls; The instrument tower at Okmulgee State Park is receiving upgrades to prevent Turkey Vultures from roosting on the booms.

  11. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    SciTech Connect

    E. K. Miller, G. S. Macrum, I. J. McKenna, et al.

    2007-12-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  12. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  13. Explosive pulsed power system for new radiation sources.

    SciTech Connect

    Oona, H.; Goforth, J. H.; Idzorek, G. C.; Herrera, D. H.; King, J. C.; Lopez, E. A.; Tasker, D. G.; Torres, D. T.

    2004-01-01

    High explosive pulsed power (HEPP) systems are capable of accessing very high energy densities and can reach conditions that are not possible with capacitor bank systems. The Procyon system was developed and used for experiments over a period of six years, and is exemplary of the capabilities of HEPP systems for state-of-the-art research. In this paper we will summarize some of the more interesting aspects of the work done in the past but will suggest ideas toward applications for future research. One of the main, unique features of HEPP systems is that they integrate easily to a particular physics experiment and the power flow can be optimized for a specific test. Magnetic flux compression generators have been an ideal power source for both high current plasma physics and hydrodynamic experimental loads. These experiments have contributed greatly to the understanding of high temperature and density plasmas and more recently to the understanding of instability growth in thick ({approx}1 mm) imploding metal cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load. The resulting Lorenz force compresses the load to produce hydrodynamic motion and/or high temperature, high density plasma. In the plasma physics experiments, plasma thermalizes on axis and a black body distribution of x-rays is produced. To get better access to the radiation pulse, the load electrode geometry was modified. For example, by shaping the plasma implosion glide planes, a mass depletion region was formed along one electrode at pinch time which generated a very large voltage drop across a 1-2 mm segment of the pinch, and also produced a high energy ion beam on axis. These results were predicted by magneto-hydro-dynamic (MHD) codes and verified with framing camera and x-ray, pinhole, camera pictures. We have not previously published these features but will take another look and propose possible scenarios for studying and generating

  14. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  15. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  16. Computer program for pulsed thermocouples with corrections for radiation effects

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1981-01-01

    A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.

  17. Design and characterisation of a pulsed neutron interrogation facility.

    PubMed

    Favalli, A; Pedersen, B

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and (3)He proportional counter measurements. PMID:17496298

  18. Materials evaluations with the pulsed black liquor burner test facility

    SciTech Connect

    Stein, A.

    1997-08-01

    A pulsed burner was designed to provide sufficient heat to convert a fluidized bed of black Kraft liquor into combustible gas which would be used to produce process steam. The pulsed burner design provides a significant increase in the heat transfer capability and consequently significantly increases the efficiency of the conversion process. High temperature corrosion tests were performed in a fluidized bed of black Kraft liquor using a pulsed burner process to determine the optimum materials for use in a commercial application. The materials tested included three different austenitic stainless steels, Type 446 martensitic stainless steel, a high temperature carbon steel, 153MA, and four nickel base alloys. All materials performed well with no corrosion attributed to the environment created by the decomposition of a black Kraft liquor. This behavior was contrary to what was expected due to the high concentration of H{sub 2}S present in the high temperature, 562 C, atmosphere.

  19. Development of short pulse laser driven micro-hohlraums as a source of EUV radiation

    NASA Astrophysics Data System (ADS)

    Krushelnick, Karl; Batson, Thomas; McKelvey, Andrew; Raymond, Anthony; Thomas, Alec; Yanovsky, Victor; Nees, John; Maksimchuk, Anatoly

    2015-11-01

    Experiments at large scale laser facilities such as NIF allow the radiativ properties of dens, high-temperature matter to be studied at previously unreachable regime, but are limited by cost and system availability. A scaled system using a short laser pulses and delivering energy to much smaller hohlraum could be capable of reaching comparable energy densities by depositing the energy in a much smaller volume before ablation of the wall material closes the cavit. The laser is tightl focused through the cavity and then expands to illuminate the wall. Experiments were performe using the Hercules Ti:Sapphire laser system at Michiga. Targets include cavities machined in bulk material using low laser power, and then shot in situ with a single full power pulse as well as micron scale pre-fabricate target. Spectral characteristics were measured using a soft X-ray spectromete, K-alpha x-ray imaging system and a filtered photo cathode array. Scalings of the radiation temperature were made for variations in the hohlraum cavit, the pulse duration as well as the focusing conditions. Proof of principle time resolved absorption spectroscopy experiments were also performe. These sources may allow opacity and atomic physics measurements with plasma an radiation temperatures comparable to much larger hohlraums, but with much higher repetition rate and in a university scale laboratory. We acknowledge funding from DTRA grant HDTRA1-11-1-0066.

  20. Radiation properties of Turkish light source facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Zafer

    2015-09-01

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01-60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  1. Ocular effects of pulsed neodymium laser radiation: variation of threshold with pulse width. Final report

    SciTech Connect

    Allen, R.G.; Thomas, S.J.; Harrison, R.F.; Zuclich, J.A.; Blankenstein, M.F.

    1985-11-01

    This study of retinal damage thresholds in the rhesus monkey investigated the effects of Nd:YAG laser radiation at four pulsewidths: 4, 30, and 200 nansec, and 10 microsecs. The thresholds causing minimal, ophthalmoscopically visible lesions for the four pulsewidths were 158, 326, 170, and 425 micron j respectively, incident at the eye in single-pulse exposures. The data are interpreted to imply a flat trend for thresholds at pulsewidths examined. This agrees with the maximum permissible exposures set by current safety standards. This finding contrasts with the hypothesis of an anomalous trend of increasing threshold with decreasing pulsewidth suggested for pulsewidths ranging from nanosec-microsecs.

  2. ARTICLES: Thermohydrodynamic models of the interaction of pulse-periodic radiation with matter

    NASA Astrophysics Data System (ADS)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Malyuta, D. D.; Mezhevov, V. S.; Pis'mennyĭ, V. D.

    1987-02-01

    Experimental and theoretical investigations were made of the processes of drilling and deep melting of metals by pulsed and pulse-periodic laser radiation. Direct photography of the surface revealed molten metal splashing due to interaction with single CO2 laser pulses. A proposed thermohydrodynamic model was used to account for the experimental results and to calculate the optimal parameters of pulse-periodic radiation needed for deep melting. The melt splashing processes were simulated numerically.

  3. Radiation-induced insulator discharge pulses in the CRRES Internal Discharge Monitor satellite experiment. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.; Robinson, P. A., Jr.; Holman, E. G.

    1991-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The IDM is flying on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples include G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. The IDM results indicate the rate at which insulator pulses occur. Pulsing began on the seventh orbit. The maximum pulse rate occurred near orbit 600 when over 50 pulses occurred. The average pulse rate is approximately two per orbit, but nearly half of the first 600 orbits experienced no pulses. The pulse rate per unit flux of high energy electrons has not changed dramatically over the first ten months in space. These pulse rates are in agreement with laboratory experience on shorter time scales. Several of the samples have never pulsed. IDM pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on CRRES.

  4. Design concepts for a pulse power test facility to simulate EMP surges in overhead power lines. Part I. Fast pulse

    SciTech Connect

    Ramrus, A.

    1986-02-01

    Objective of the study was to create conceptual designs of high voltage pulsers capable of simulating two types of electromagnetic pulses (EMPs) caused by a high-altitude nuclear burst; the slow rise time magnetohydrodynamic (MHD-EMP) and the fast rise time high-altitude EMP (HEMP). The pulser design was directed towards facilities capable of performing EMP vulnerability testing of components used in the national electric power system.

  5. Scintillator characterization using the LBL Pulsed X-ray Facility

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Weber, M.J.; Blankespoor, S.C.; Ho, M.H.; West, A.C.

    1994-10-01

    The authors have developed a bench-top pulsed x-ray system for measuring scintillation properties of compounds in crystal or powdered form. The source is a light-excited x-ray tube that produces 40 x-ray photons (mean energy 18.5 keV) per steradian in each 100 ps fwhm pulse. The repetition rate is adjustable from 0 to 10{sup 7} pulses per second. The fluorescent emanations from the x-ray excited samples are detected with either a sapphire-windowed microchannel plate photomultiplier tube (spectral range 150--650 nm, transit time jitter 40 ps fwhm) or a quartz windowed GaAs(Cs) photomultiplier tube (spectral range 160--930 nm, transit time jitter 4 ns fwhm). Decay time spectra are acquired using a TDC Havina 40 ps fwhm resolution over a 84 ms dynamic range. A computer controlled monochromator can be inserted into the optical path to measure the emission spectrum or wavelength resolved decay time spectrum. A computer controlled sample changer allows up to 64 samples to be measured without intervention.

  6. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  7. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations

    SciTech Connect

    Zhu, W.; Palastro, J. P.; Antonsen, T. M.

    2013-07-15

    Spectral red-shifting of high power laser pulses propagating through underdense plasma can be a source of ultrashort mid-infrared (MIR) radiation. During propagation, a high power laser pulse drives large amplitude plasma waves, depleting the pulse energy. At the same time, the large amplitude plasma wave provides a dynamic dielectric response that leads to spectral shifting. The loss of laser pulse energy and the approximate conservation of laser pulse action imply that spectral red-shifts accompany the depletion. In this paper, we investigate, through simulation, the parametric dependence of MIR generation on pulse energy, initial pulse duration, and plasma density.

  8. Detection of coincident radiations in a single transducer by pulse shape analysis

    DOEpatents

    Warburton, William K.; Tan, Hui; Hennig, Wolfgang

    2008-03-11

    Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

  9. A guide to design of radiation therapy facilities.

    PubMed

    Galvin, J M; Claytor, N; Cedrone, B; Graff, R L

    1985-01-01

    The design technique outline provides the information needed to develop a layout for a new or renovated radiation therapy department. The department described is a medium-sized facility with two megavoltage linear accelerators and a single simulator. The plans for an expansion to include another linear accelerator and a neutron generator also are presented. PMID:10270908

  10. 31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD SIGN, WOOD RETAINING WALL, TANK COVER, AND DRAIN BOX. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-3. INEL INDEX CODE NUMBER: 075 0701 851 151972. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  11. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  12. Outline of a proposal for a new neutron source: The pulsed neutron research facility

    SciTech Connect

    Brown, B.S.; Carpenter, J.M.; Kustom, R.L.

    1992-04-01

    Accelerator-based, pulsed spallation neutron sources have been performing neutron scattering research for about fifteen years. During this time beam intensities have increased by a factor of 100 and more than 50 spectrometers are now operating on four major sources worldwide. The pulsed sources have proven to be highly effective and complementary to reactor-based sources in that there are important scientific areas for which each type of source has unique capabilities. We describe a proposal for a new pulsed neutron facility based on a Fixed Field Alternating Gradient synchrotron. The specifications for this new machine, which are now only being formulated, are for an accelerator that will produce (100 {divided_by} 200) {mu}A of time-averaged proton current at (500 {divided_by} 1000) MeV, in short pulses at 30 Hz. Appropriate target and moderator systems and an array of scattering instruments will be provided to make the facility a full-blown research installation. The neutron source, named the Pulsed Neutron Research Facility (PNRF), will be as powerful as any pulsed source now operating in the world and will also act as a test bed for the Fixed Field Alternating Gradient Synchrotron concept as a basis for more powerful sources in the future. The peak thermal neutron flux in PNRF will be about 5{center_dot}10{sup 15}n/cm{sup 2}{center_dot}s.

  13. Outline of a proposal for a new neutron source: The pulsed neutron research facility

    SciTech Connect

    Brown, B.S.; Carpenter, J.M.; Kustom, R.L.

    1992-04-01

    Accelerator-based, pulsed spallation neutron sources have been performing neutron scattering research for about fifteen years. During this time beam intensities have increased by a factor of 100 and more than 50 spectrometers are now operating on four major sources worldwide. The pulsed sources have proven to be highly effective and complementary to reactor-based sources in that there are important scientific areas for which each type of source has unique capabilities. We describe a proposal for a new pulsed neutron facility based on a Fixed Field Alternating Gradient synchrotron. The specifications for this new machine, which are now only being formulated, are for an accelerator that will produce (100 {divided by} 200) {mu}A of time-averaged proton current at (500 {divided by} 1000) MeV, in short pulses at 30 Hz. Appropriate target and moderator systems and an array of scattering instruments will be provided to make the facility a full-blown research installation. The neutron source, named the Pulsed Neutron Research Facility (PNRF), will be as powerful as any pulsed source now operating in the world and will also act as a test bed for the Fixed Field Alternating Gradient Synchrotron concept as a basis for more powerful sources in the future. The peak thermal neutron flux in PNRF will be about 5{center dot}10{sup 15}n/cm{sup 2}{center dot}s.

  14. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    PubMed

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration. PMID:26625607

  15. DAFNE-Light INFN-LNF Synchrotron Radiation Facility

    SciTech Connect

    Balerna, A.; Cestelli-Guidi, M.; Cimino, R.; Commisso, M.; Grilli, A.; Pietropaoli, M.; Raco, A.; Sciarra, V.; Tullio, V.; Viviani, G.; De Sio, A.; Gambicorti, L.; Hampai, D.; Pace, E.

    2010-06-23

    DAFNE-Light is the Synchrotron Radiation Facility at the INFN-Frascati National Laboratory (Rome, Italy). Three beamlines are operational, using in parasitic and dedicated mode the intense photon emission of DAFNE, a 0.51 GeV storage ring with a routinely circulating electron current higher than 1 Ampere. Two of these beamlines--the soft x-ray (DXR1) and UV (DXR2)--use one of the DAFNE wiggler magnets as synchrotron radiation source, while the third beamline SINBAD (Synchrotron Infrared Beamline At DAFNE) collects the radiation from a bending magnet. New XUV bending magnet beamlines are nowadays under construction and the low energy one (35-200 eV) will be ready for commissioning by the end of 2009. A presentation of the facility will be given together with some recent scientific results achieved at SINBAD and DXR1 beamlines.

  16. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Meezan, N. B.; Callahan, D. A.; Glenzer, S. H.; Kyrala, G. A.; Dixit, S. N.; Town, R. P. J.; Benedetti, R.; Bradley, D. K.; Bond, E.; Di Nicola, P.; Dewald, E. L.; Doeppner, T.; Glenn, S.; Haynam, C.; Heeter, R. F.; Hinkel, D. E.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Kilkenny, J.; LaFortune, K. N.; Landen, O.; Ma, T.; MacKinnon, A.; Michel, P.; Moody, J. D.; Moran, M.; Parham, T.; Prasad, R. R.; Radousky, H. B.; Ralph, J.; Schneider, M. B.; Simanovskaia, N.; Thomas, C. A.; Weber, S.; Widmann, K.; Widmayer, C.; Williams, E. A.; Van Wontergheman, B.; Edwards, M. J.; Suter, L. J.; Atherton, L. J.; MacGowan, B. J.

    2013-11-01

    Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, "symcaps", which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be "round." In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010)] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  17. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  18. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-09-15

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  19. The Radiation Dose Determination of the Pulsed X-ray Source

    NASA Astrophysics Data System (ADS)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  20. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  1. Certain considerations in aperture synthesis of ultrawideband/short-pulse radiation

    NASA Astrophysics Data System (ADS)

    Heyman, Ehud; Melamed, Timor

    1994-04-01

    We consider certain characteristics of the radiation from collimated, ultrawideband short-pulse aperture distributions. It is shown that an efficient radiation must account for the multifrequency nature of the field. Two alternative schemes for wideband aperture synthesis of an impulse-like radiation pattern are examined. The first, entitled the 'iso-width aperture,' utilizes only temporal shaping of the excitation pulse. In the other, the 'iso-diffracting aperture,' we suggest source shaping in space-time so that all the frequency components in the field have the same collimation distance. The 'iso-diffracting' scheme yields higher directivity and more efficient pulsed radiation. Explicit examples for the pulsed source distribution and for the pulsed radiation patterns are presented, parametrized, and contrasted.

  2. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  3. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    SciTech Connect

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ``Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)``. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work.

  4. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  5. Smoke detector with a radiation source operated in a pulse-like or intermittent mode

    SciTech Connect

    Muggli, J.; Guttinger, H.

    1985-03-19

    A smoke detector contains a pulse-operated radiation source and a radiation receiver arranged externally of the region directly irradiated by the radiation source. The radiation receiver, in the presence of smoke in the radiation region, is impinged by scattered radiation and delivers output pulses. There is provided an evaluation circuit which generates a blocking pulse, and which inputs a resetting signal to a counter device in consequence of the difference of the blocking pulse and output pulse of the radiation receiver. The counter or counting device, in the absence of a resetting signal, is switched further and upon reaching a predetermined counter state triggers an alarm signal. High-frequency electrical disturbances which arise, as long as the radiation source delivers radiation pulses, at most can generate an additional resetting signal for the counter, so that the integrity of the smoke detector against triggering of false alarms is enhanced. If there is connected in parallel to the radiation receiver a NTC-resistor, then there is obtained a smoke detector which responds to a further combustion criterion (temperature).

  6. Radiation shielding for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Ginsburg, Camille; Rakhno, Igor; /Fermilab

    2010-03-01

    The results of radiation shielding studies for the vertical test cryostat VTS1 at Fermilab performed with the codes FISHPACT and MARS15 are presented and discussed. The analysis is focused on operations with two RF cavities in the cryostat. The vertical cavity test facility (VCTF) for superconducting RF cavities in Industrial Building 1 at Fermilab has been in operation since 2007. The facility currently consists of a single vertical test cryostat VTS1. Radiation shielding for VTS1 was designed for operations with single 9-cell 1.3 GHz cavities, and the shielding calculations were performed using a simplified model of field emission as the radiation source. The operations are proposed to be extended in such a way that two RF cavities will be in VTS1 at a time, one above the other, with tests for each cavity performed sequentially. In such a case the radiation emitted during the tests from the lower cavity can, in part, bypass the initially designed shielding which can lead to a higher dose in the building. Space for additional shielding, either internal or external to VTS1, is limited. Therefore, a re-evaluation of the radiation shielding was performed. An essential part of the present analysis is in using realistic models for cavity geometry and spatial, angular and energy distributions of field-emitted electrons inside the cavities. The calculations were performed with the computer codes FISHPACT and MARS15.

  7. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  8. Proton and heavy ion acceleration facilities for space radiation research.

    PubMed

    Miller, Jack

    2003-06-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space. PMID:12959128

  9. POST-SHOT RADIATION ENVIRONMENT FOLLOWING LOW-YIELD SHOTS INSIDE THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Sitaraman, S; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Verbeke, J

    2010-10-29

    A detailed model of the Target Bay (TB) at the National Ignition Facility (NIF) has been developed to estimate the post-shot radiation environment inside the facility. The model includes large number of structures and diagnostic instruments present inside the TB. These structures and instruments are activated by the few nanosecond pulse of neutrons generated during a shot and the resultant gamma dose rates are estimated at various decay times following the shot. The results presented in this paper are based on a low-yield D-T shot of 10{sup 16} neutrons. General environment dose rates drop to below 3 mrem/h within three hours following a shot with higher dose rates observed at contact with some of the components. Dose rate maps of the different TB levels were generated to aid in estimating worker stay-out times following a shot before entry is permitted into the TB.

  10. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    NASA Astrophysics Data System (ADS)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.; Edwards, R. D.; Gales, S.; Girling, M. T.; Hoarty, D. J.; Hopps, N. W.; James, S. F.; Kopec, M. F.; Nolan, J. R.; Ryder, K.

    2006-10-01

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60J on target in a 500fs pulse, around 100TW, at the fundamental laser wavelength of 1.054μm. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibrated radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 1019Wcm-2 and to underwrite the facility radiological safety system.

  11. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  12. Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Wang, Zhen; Wang, Xingtao; Huang, Dazhang

    2016-01-01

    In this paper we describe a new method for the realization of two-color femtosecond radiation pulses in a seeded free-electron laser (FEL). The two-color pulses are obtained from two electron bunches and a chirped seeding laser. Compared to the previous methods based on seeded FELs, our method has the advantages of producing two-color FEL pulses with more flexible tunability both in the pulse durations and separations. Numerical simulations for the Dalian Coherent Light Source confirm that femtosecond XUV pulses with variable pulse durations and time delay can be directly generated from a chirped seed laser at 250 nm by using this technique. We also show the possibility of performing a proof-of-principle experiment of this technique based on the Shanghai Deep-Ultraviolet FEL facility.

  13. Method and apparatus for providing pulse pile-up correction in charge quantizing radiation detection systems

    DOEpatents

    Britton, Jr., Charles L.; Wintenberg, Alan L.

    1993-01-01

    A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.

  14. Design of Power Supplies for the Pulsed High Magnetic Field Facility at HUST

    NASA Astrophysics Data System (ADS)

    Ding, Hongfa; Ding, Tonghai; Jiang, Chengxi; Xu, Yun; Xiao, Houxiu; Li, Liang; Duan, Xianzhong; Pan, Yuan

    2010-04-01

    Two types of pulsed power supply, a modular 12 MJ/25 kV capacitor bank and a 100 MVA flywheel pulsed generator, are under construction for the pulsed high magnetic field facility at the Huazhong University of Science and Technology (HUST) in Wuhan, China. The capacitor bank consists of 11 independent 1 MJ modules with a short circuit current of 40 kA each and 2 independent 0.5 MJ modules for 50 kA each. The bank is used to energize coils for magnetic fields in the 50-80 T range with pulse duration from 15 to 200 ms. The pulsed flywheel-alternator is used to energize a 50 T/100 ms long-pulse magnet via two 12-pulse power converter modules. Each converter module is designed to operate in the 95 to 66 Hz frequency operation range of the generator and can provide a no-load voltage of 4.6 kV and a full-load voltage of 3.4 kV at the rated current of 20 kA. In this paper the design of these two types of power supply is presented.

  15. Operation of an industrial radiation processing facility in Mexico

    NASA Astrophysics Data System (ADS)

    Torres C., Gilberto

    A 10 years old JS-6500 industrial Cobalt 60 irradiator was installed in 1980 at the ININ Nuclear Center in Mexico with 960 kGy. The facility was commissioning in August with some minor changes with respect to the original AECL design, in order to give services to different industries and also to do research in several fields. During that year promotional activities were done to increase interest from industry in the use of radiation processing. In 1981, an interruption due to pool's leakage and its reparation, put the facility out of operation. During the next three years the demand increases but never reach more than 50% if the capacity. In that time, the potential users did not show confidence in the process, even knowing that health authorities approved with no restrictions radiation sterilization. Actually, there are 34 different companies irradiating 48 different products. Even those within the same grouping, require different minimum and maximum radiation doses, so the facility has been operated combining products and valumes. The experiences are presented in this paper. Also, maintenance of the irradiator is discussed and some modifications to the original programme have been done due to the necessity to use local spare parts instead of imported ones.

  16. The Neutral Beam Test Facility and Radiation Effects Facility at Brookhaven National Laboratory

    SciTech Connect

    McKenzie-Wilson, R.B.

    1990-01-01

    As part of the Strategic Defense Initiative (SDI) Brookhaven National Laboratory (BNL) has constructed a Neutral Beam Test Facility (NBTF) and a Radiation Effects Facility (REF). These two facilities use the surplus capacity of the 200-MeV Linac injector for the Alternating Gradient Synchrotron (AGS). The REF can be used to simulate radiation damage effects in space from both natural and man made radiation sources. The H{sup {minus}} beam energy, current and dimensions can be varied over a wide range leading to a broad field of application. The NBTF has been designed to carry out high precision experiments and contains an absolute reference target system for the on-line calibration of measurements carried out in the experimental hall. The H{sup {minus}} beam energy, current and dimensions can also be varied over a wide range but with tradeoffs depending on the required accuracy. Both facilities are fully operational and will be described together with details of the associated experimental programs.

  17. Considerations concerning the use of counting active personal dosimeters in pulsed fields of ionising radiation.

    PubMed

    Ambrosi, Peter; Borowski, Markus; Iwatschenko, Michael

    2010-06-01

    Active personal electronic dosimeters (APDs) exhibit limitations in pulsed radiation fields, which cannot be overcome without the use of new detection technology. As an interim solution, this paper proposes a method by which some conventional dosimeters can be operated in a way such that, based on the basic knowledge about the pulsed radiation field, any dosimetric failure of the dosimeter is signalised by the instrument itself. This method is not applicable to all combinations of APD and pulsed radiation field. The necessary requirements for the APD and for the parameters of the pulsed radiation field are given in the paper. Up to now, all such requirements for APDs have not been tested or verified in a type test. The suitability of the method is verified for the use of one APD used in two clinical pulsed fields. PMID:20083488

  18. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    SciTech Connect

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  19. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  20. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  1. Early test facilities and analytic methods for radiation shielding: Proceedings

    SciTech Connect

    Ingersoll, D.T. ); Ingersoll, J.K. )

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  2. CONTROL OF LASER RADIATION PARAMETERS: Direct amplification of picosecond pulses in neodymium glass with a power density above 100 GW cm-2

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir V.; Kutsenko, A. V.; Matsveiko, A. A.; Mikhailov, Yu A.; Popov, A. I.; Sklizkov, G. V.; Starodub, Aleksandr N.; Chekmarev, Alexander M.

    2003-09-01

    A scheme for amplification of ultrashort laser pulses is studied, which is used in experiments on symmetrisation of ablation pressure with the help of a prepulse upon acceleration of foils by laser radiation of high brightness. The possibility of direct amplification of short pulses before their expansion in order to increase the energy contrast is considered. In experiments performed on the PICO facility, the amplification of a 10-ps pulse with a power density exceeding 100 GW cm-2 is demonstrated with the gain equal to 1.2 and the inversion drop above 30 %.

  3. A new digital pulse power supply in heavy ion research facility in Lanzhou

    NASA Astrophysics Data System (ADS)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  4. Circularly polarized carrier-envelope-phase stable attosecond pulse generation based on coherent undulator radiation.

    PubMed

    Tóth, Gy; Tibai, Z; Nagy-Csiha, Zs; Márton, Zs; Almási, G; Hebling, J

    2015-09-15

    In this Letter, we present a new method for generation of circularly polarized attosecond pulses. According to our calculations, shape-controlled, carrier-envelope-phase stable pulses of several hundred nanojoule energy could be produced by exploitation of the coherent undulator radiation of an electron bunch. Our calculations are based on an existing particle accelerator system (FLASH II in DESY, Germany). We investigated the energy dependence of the attosecond pulses on the energy of electrons and the parameters of the radiator undulator, which generate the electromagnetic radiation. PMID:26371925

  5. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams.

    PubMed

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M; Kong, Wei

    2015-08-01

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2(+) and He4(+), which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)(n)C(+), (He)(n)Cl(+), and (He)(n)CCl(+). Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets. PMID:26329210

  6. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    NASA Astrophysics Data System (ADS)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei

    2015-08-01

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2+ and He4+, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)nC+, (He)nCl+, and (He)nCCl+. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  7. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    SciTech Connect

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  8. Contribution for Iron Vapor and Radiation Distribution Affected by Current Frequency of Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Shimokura, Takuya; Mori, Yusuke; Iwao, Toru; Yumoto, Motoshige

    Pulsed GTA welding has been used for improvement of stability, weld speed, and heat input control. However, the temperature and radiation power of the pulsed arc have not been elucidated. Furthermore, arc contamination by metal vapor changes the arc characteristics, e.g. by increasing radiation power. In this case, the metal vapor in pulsed GTA welding changes the distribution of temperature and radiation power as a function of time. This paper presents the relation between metal vapor and radiation power at different pulse frequencies. We calculate the Fe vapor distribution of the pulsed current. Results show that the Fe vapor is transported at fast arc velocity during the peak current period. During the base current period, the Fe vapor concentration is low and distribution is diffuse. The transition of Fe vapor distribution does not follow the pulsed current; the radiation power density distribution differs for high frequencies and low frequencies. In addition, the Fe vapor and radiation distribution are affected by the pulsed arc current frequency.

  9. Calibration facilities for borehole and surface environmental radiation measurements

    SciTech Connect

    Stromswold, D.C.

    1994-04-01

    Measuring radiation from contaminated soil and buildings is important in the cleanup of land areas and facilities. It provides the means for quantifying the amount of contamination and assessing the success of efforts to restore areas to acceptable conditions for public use. Instruments that measure in situ radiation from natural or radiochemically-contaminated earth formations must be calibrated in appropriate facilities to provide quantitative assessments of concentrations of radionuclides. For instruments that are inserted into boreholes, these calibration facilities are typically special models having holes for probe insertion and having sufficient size to appear radiometrically ``infinite`` in extent. The US Department of Energy (DOE) has such models at Hanford, Washington, and Grand Junction, Colorado. They are concrete cylinders having a central borehole and containing known, enhanced amounts of K, U, and Th for spectral gamma-ray measurements. Additional models contain U for calibrating neutron probes for fissile materials and total-count gamma-ray probes. Models for calibrating neutron probes for moisture measurements in unsaturated formations exist for steel-cased boreholes at Hanford and for uncased boreholes at the DOE`s Nevada Test Site. Large surface pads are available at Grand Junction for portable, vehicle-mounted, or airplane-mounted spectral gamma-ray detectors.

  10. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    SciTech Connect

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  11. Design concepts for a pulse power test facility to simulate EMP surges. Part II. Slow pulses

    SciTech Connect

    Dethlefsen, R.

    1985-10-01

    The work described in this report was sponsored by the Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) through a subcontract with the Power Systems Technology Program at the Oak Ridge National Laboratory (ORNL). The work deals with the effect of high altitude nuclear bursts on electric power systems. In addition to fast voltage transients, slow, quasi-dc currents are also induced into extended power systems with grounded neutral connections. Similar phenomena at lower magnitude are generated by solar induced electromagnetic pulses (EMP). These have caused power outages, related to solar storms, at northern latitudes. The applicable utility experience is reviewed in order to formulate an optimum approach to future testing. From a wide variety of options two pulser designs were selected as most practical, a transformer-rectifier power supply, and a lead acid battery pulser. both can be mounted on a trailer as required for field testing on utility systems. The battery system results in the least cost. Testing on power systems requires that the dc pulser pass high values of alternating current, resulting from neutral imbalance or from potential fault currents. Batteries have a high ability to pass alternating currents. Most other pulser options must be protected by an ac bypass in the form of an expensive capacitor bank. 8D truck batteries can meet the original specification of 1 kA test current. Improved batteries for higher discharge currents are available.

  12. Focal spot measurement in ultra-intense ultra-short pulse laser facility

    NASA Astrophysics Data System (ADS)

    Liu, Lanqin; Peng, Hansheng; Zhou, Kainan; Wang, Xiaodong; Wang, Xiao; Zeng, Xiaoming; Zhu, Qihua; Huang, Xiaojun; Wei, Xiaofeng; Ren, Huan

    2005-06-01

    A peak power of 286-TW Ti:sapphire laser facility referred to as SILEX-I was successfully built at China Academy of Engineering Physics, for a pulse duration of 30 fs in a three-stage Ti:sapphire amplifier chain based on chirped-pulse amplification. The beam have a wavefront distortion of 0.63μm PV and 0.09μm RMS, and the focal spot with an f/2.2 OAP is 5.7μm, to our knowledge, this is the best far field obtained for high-power ultra-short pulse laser systems with no deformable mirror wavefront correction. The peak focused intensity of ~1021W /cm2 were expected.

  13. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    NASA Astrophysics Data System (ADS)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  14. Atmospheric Radiation Measurement Program facilities newsletter, February 2001.

    SciTech Connect

    Holdridge, D. J.

    2001-03-08

    This newsletter consists of the following: (1) ARM Science Team Meeting Scheduled--The 11th Annual ARM Science Team meeting is scheduled for March 19-23, 2001, in Atlanta, Georgia. Members of the science team will exchange research results achieved by using ARM data. The science team is composed of working groups that investigate four topics: instantaneous radiative flux, cloud parameterizations and modeling, cloud properties, and aerosols. The annual meeting brings together the science team's 150 members to discuss issues related to ARM and its research. The members represent universities, government laboratories and research facilities, and independent research companies. (2) Communications to Extended Facilities Upgraded--New communications equipment has been installed at all of the SGP extended facilities. Shelters were installed to house the new equipment used to transfer data from instruments via the Internet to the site data system at the central facility. This upgrade has improved data availability from the extended facilities to 100% and reduced telephone costs greatly. (3) SGP Goes ''Buggy''--Steve Sekelsky, a researcher from the University of Massachusetts, is planning to bring a 95-GHz radar to the SGP central facility for deployment in March-October 2001. The radar will help to identify signals due to insects flying in the air. The ARM millimeter cloud radar, which operates at 35 GHz, is sensitive to such insect interference. Testing will also be performed by using a second 35-GHz radar with a polarized radar beam, which can differentiate signals from insects versus cloud droplets. (4) Winter Fog--Fog can add to hazards already associated with winter weather. Common types of fog formation include advection, radiation, and steam. Advection fog: An advection fog is a dense fog that forms when a warm, moist air mass moves into an area with cooler ground below. For example, fog can form in winter when warmer, water-saturated air from the south (associated

  15. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    NASA Astrophysics Data System (ADS)

    Zou, Shiyang; Song, Peng; Guo, Liang; Pei, Wenbing

    2013-09-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  16. Full circuit calculation for electromagnetic pulse transmission in a high current facility

    NASA Astrophysics Data System (ADS)

    Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun

    2014-11-01

    We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.

  17. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    NASA Astrophysics Data System (ADS)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  18. Low-temperature radiation cracking of heavy oil under continuous and pulse electron irradiation

    NASA Astrophysics Data System (ADS)

    Zaikin, Yuriy A.

    2016-05-01

    The dependence of the chain reaction parameters on the conditions of pulse and continuous electron irradiation is analyzed for the case of low-temperature radiation cracking of heavy oils. The specificity of kinetics and yields of light products after radiation cracking are considered in the cases of continuous and pulse irradiation. Theoretical calculations are compared with experimental data on electron irradiation of heavy oil in different conditions.

  19. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  20. Cryogenic capability for equation-of-state measurements on the Sandia Z pulsed radiation source

    SciTech Connect

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-02-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. The authors are developing a general purpose cryogenic target system for precision radiation driven EOS and shock physics experiments at liquid helium temperatures on the Sandia Z pulsed radiation source. Cryogenic sample cooling in the range of 6--30 K is provided by a liquid helium cryostat and an active temperature control system. The cryogenic target assembly is capable of condensing liquid deuterium samples from the gas phase at about 20 K, as well as cooling solid samples such as beryllium and CH ablators for ICF. The target assembly will also include the capability to use various shock diagnostics, such as VISAR interferometry and fiber-optic-coupled shock breakout diagnostics. They are characterizing the thermal and optical performance of the system components in an off-line cryogenic test facility and have designed an interface to introduce the cryogenic transfer lines, gas lines, and sensor cables into the Z vacuum section. Survivability of high-value cryogenic components in the destructive post-implosion environment of Z is a major issue driving the design of this cryogenic target system.

  1. K{sub α} and bremsstrahlung x-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy

    SciTech Connect

    Jarrott, L. C.; Mariscal, D.; McGuffey, C.; Beg, F. N.; Kemp, A. J.; Divol, L.; Chen, C.; Hey, D.; Maddox, B.; Hawreliak, J.; Park, H.-S.; Remington, B.; MacPhee, A.; Westover, B.; Suggit, M.; Wei, M. S.

    2014-03-15

    Measurements of silver K-shell and bremsstrahlung emission from thin-foil laser targets as a function of laser prepulse energy are presented. The silver targets were chosen as a potential 22 keV backlighter source for the National Ignition Facility Experiments. The targets were irradiated by the Titan laser with an intensity of 8 × 10{sup 17} W/cm{sup 2} with 40 ps pulse length. A secondary nanosecond timescale laser pulse with controlled, variable energy was used to emulate the laser prepulse. Results show a decrease in both K{sub α} and bremsstrahlung yield with increasing artificial prepulse. Radiation hydrodynamic modeling of the prepulse interaction determined that the preplasma and intact target fraction were different in the three prepulse energies investigated. Interaction of the short pulse laser with the resulting preplasma and target was then modeled using a particle-in-cell code PSC which explained the experimental results. The relevance of this work to future Advanced Radiographic Capability laser x-ray backlighter sources is discussed.

  2. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion

    SciTech Connect

    Kim, Kyung Taec; Kim, Chul Min; Umesh, G.; Nam, Chang Hee; Baik, Moon-Gu

    2004-05-01

    A method for obtaining a single sub-50-attosecond pulse using harmonic radiation is proposed. For the generation of broad harmonic radiation during a single half-optical cycle, atoms are driven by a femtosecond laser pulse with intensity above the saturation intensity for optical field ionization and hence experience a large nonadiabatic increase of the laser electric field between optical cycles. Although the chirped structure of the harmonic radiation imposes a limit on the minimum achievable pulse duration, we demonstrate that its positive chirp can be compensated by the negative group delay dispersion of an appropriately selected x-ray filter material, used also for the spectral selection, resulting in a single attosecond pulse with a duration less than 50 as.

  3. On the nature of the sources of hard pulse X-ray radiation

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1978-01-01

    Besides the identified sources of cosmic pulse X-ray radiation with globular clusters NGC 6624, NGC 1851 and MXB 1730-335 several new identifications were made. The source in Norma was probably identified with globular cluster NGC 5927, the source in Aquila with globular cluster NGC 6838 (M71), and the source in Puppis with globular cluster NGC 2298. Gamma pulses discovered by the Vela satellites and X-ray pulses thoroughly measured by the SAS-3, Ariel-5, and ANS satellites are thought to be the same phenomenon. The sources of such a radiation must be some kind of peculiarity at the central part of globular clusters; it is most probably a massive black hole. The sources of hard pulse radiation which cannot be identified with globular clusters are considered to be a new kind of galactic object, invisible globular clusters, which are naked nuclei of globular clusters.

  4. Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.

    PubMed

    Banakh, V A; Smalikho, I N

    2014-09-22

    Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density. PMID:25321700

  5. The effects of pulse duration on ablation pressure driven by laser radiation

    SciTech Connect

    Zhou, Lei; Li, Xiao-Ya Zhu, Wen-Jun; Wang, Jia-Xiang; Tang, Chang-Jian

    2015-03-28

    The effects of laser pulse duration on the ablation pressure induced by laser radiation are investigated using Al target. Numerical simulation results using one dimensional radiation hydro code for laser intensities from 5×10{sup 12}W/cm{sup 2} to 5×10{sup 13}W/cm{sup 2} and pulse durations from 0.5 ns to 20 ns are presented. These results suggest that the laser intensity scaling law of ablation pressure differs for different pulse durations. And the theoretical analysis shows that the effects of laser pulse duration on ablation pressure are mainly caused by two regimes: the unsteady-state flow and the radiative energy loss to vacuum.

  6. Development of a pulsed cable test facility for superconducting ohmic heating coils

    SciTech Connect

    Kim, S.H.; Smith, R.P.; Kustom, R.L.; Praeg, W.F.; Krieger, C.I.

    1980-01-01

    This paper describes a Pulsed Cable Test Facility (PCTF) under development at Argonne National Laboratory (ANL). Its essential part is a pulsed superconducting split coil. The inner and outer diameters of the coil will be 45.1 cm and 88.3 cm, respectively, with an adjustable gap between the two halves of the coil. At a peak current of 11 kA, the coil will store an energy of 3.5 MJ and produce a magnetic field of 6.4 T. Using a 7 MW pulsed (2.9 MW rms) power supply, the PCTF coil will produce field change of 6 T/s. With the addition of a solid state switch to the system, dB/dt values of up to 24 T/s can be obtained. Pancake coils, wound with developmental cables, will be placed in the adjustable gap of the PCTF coil and be tested at up to 50 kA furnished by a separate power supply. The PCTF cryogenic facilities include a non-metallic cryostat and a helium liquefier.

  7. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse

    SciTech Connect

    Li Zhichao; Zheng Jian

    2007-05-15

    When an ultra-intense laser pulse impacts the tip of a wire whose other end is grounded, a strong return current can be driven along the wire because some energetic electrons generated in ultra-intense laser matter interaction can escape from the target and an electric field builds up. The wire then behaves like a current-carrying antenna that can emit electromagnetic radiations. If the duration of the driving pulse is several tens of femtoseconds, the radiation spectrum reaches a maximum at terahertz region, and the radiation power per solid angle could be as high as 10{sup 9} W/rad.

  8. Intense Nanosecond-Pulsed Cavity-Dumped Laser Radiation at 1.04 THz

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas

    2013-03-01

    We report first results of intense far-infrared (FIR) nanosecond-pulsed laser radiation at 1.04 THz from a previously described[2] cavity-dumped, optically-pumped molecular gas laser. The gain medium, methyl fluoride, is pumped by the 9R20 line of a TEA CO2 laser[3] with a pulse energy of 200 mJ. The THz laser pulses contain of 30 kW peak power in 5 nanosecond pulse widths at a pulse repetition rate of 10 Hz. The line width, measured by a scanning metal-mesh FIR Fabry-Perot interferometer, is 100 MHz. The novel THz laser is being used in experiments to resonantly excite coherent ns-pulsed 1.04 THz longitudinal acoustic phonons in silicon doping-superlattices. The research is supported by NASA EPSCoR NNX11AM04A and AFOSR FA9550-12-1-0100 awards.

  9. Progress on developing a PW ultrashort laser facility with ns, ps, and fs outputting pulses

    NASA Astrophysics Data System (ADS)

    Zhu, Qihua; Huang, Xiaojun; Wang, Xiao; Zeng, Xiaoming; Xie, Xudong; Wang, Fang; Wang, Fengrui; Lin, Donghui; Wang, Xiaodong; Zhou, Kainan; Jiang, Dongbin; Deng, Wu; Zuo, Yanlei; Zhang, Ying; Deng, Ying; Wei, Xiaofeng; Zhang, Xiaomin; Fan, Dianyuan

    2008-03-01

    A petawatt laser facility with three beams for fast ignition research and strong-field physics applications has been designed and is being constructed. The first beam (referred as SILEX-I) is a Ti:sapphire femto-second laser which pulse width is 30 fs, and till now, output power has reached to 330 TW. The other two beams are Nd 3+:glass lasers which output energy are larger than 1kJ and pulse width are about 1ps and 1ns respectively. By using the technology of OPA pumped by 800nm femtosecond laser and seeded by super-continuum spectrum white light, the three beams are synchronized with each other without jitter time. By using the seeds from OPA pumped by femtosecond laser, and by using the pre-amplification stage of OPCPA, the signal to noise ratio of the Nd 3+:glass petawatt laser will reach to 10 8. Active methods are taken to control the gain narrowing effect of the Nd 3+:glass amplifiers, giving the option to compress the chirped pulse to ultrashort pulse with width less than 400fs. Tiled multilayer dielectric coating gratings are used for the compressor of the PW beam, which has been successfully demonstrated on a 100J picosecond Nd 3+:glass laser system.

  10. Design and construction of a PW ultrashort laser facility with ns, ps, and fs outputting pulses

    NASA Astrophysics Data System (ADS)

    Zhu, Qihua; Huang, Xiaojun; Wang, Xiao; Zeng, Xiaoming; Xie, Xudong; Wang, Fang; Wang, Fengrui; Lin, Donghui; Jiang, Dongbin; Wang, Xiaodong; Zhou, Kainan; Zuo, Yanlei; Zhang, Ying; Deng, Ying; Wei, Xiaofeng; Fan, Dianyuan

    2007-06-01

    A petawatt laser facility with three beams for fast ignition research and strong-field physics applications has been designed and is being constructed. The first beam (referred as SILEX-I) is a Ti:sapphire femto-second laser which pulse width is 30 fs, and till now, output power has reached to 330 TW. The other two beams are Nd 3+:glass lasers which output energy are larger than 1kJ and pulse width are about 1ps and 1ns respectively. By using the technology of OPA pumped by 800nm femtosecond laser and seeded by super-continuum white light (SWL), the three beams are synchronized with each other without jitter time. Tiled multilayer dielectric coating gratings are used for the compressor of the PW beam.

  11. Observation of coherent undulator radiation from sub-picosecond electron pulses

    SciTech Connect

    Bocek, D.; Hernandez, M.; Kung, P.; Lihn, Hung-chi; Settakorn, C.; Wiedemann, H.

    1995-09-01

    The generation and observation of high power, coherent, far-infrared undulator radiation from sub-picosecond electron bunches at the SUNSHINE facility is reported. Coherent undulator radiation tunable from 50 to 200 microns wavelength is demonstrated. Measurements of the energy (up to 1.7 mJ per 1 microsecs macropulse), frequency spectrum, and spatial distribution of the radiation are reported. Apparent exponential growth of the radiated energy as a function of undulator length is observed.

  12. Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite

    NASA Astrophysics Data System (ADS)

    Reininghaus, M.; Kalupka, C.; Faley, O.; Holtum, T.; Finger, J.; Stampfer, C.

    2014-12-01

    We report on the dependence of a laser radiation induced ablation process of graphite on the applied pulse duration of ultrashort pulsed laser radiation smaller than 4 ps. The emerging so-called non-thermal ablation process of graphite has been confirmed to be capable to physically separate ultrathin graphitic layers from the surface of pristine graphite bulk crystal. This allows the deposition of ablated graphitic flakes on a substrate in the vicinity of the target. The observed ablation threshold determined at different pulse durations shows a modulation, which we ascribe to lattice motions along the c axis that are theoretically predicted to induce the non-thermal ablation process. In a simple approach, the ablation threshold can be described as a function of the energy penetration depth and the absorption of the applied ultrashort pulsed laser radiation. Based on the analysis of the pulse duration dependence of those two determining factors and the assumption of an invariant ablation process, we are able to reproduce the pulse duration dependence of the ablation threshold. Furthermore, the observed pulse duration dependences confirm the assumption of a fast material specific response of graphite target subsequent to optical excitation within the first 2 ps.

  13. The origin of changes in the electronic structure of oriented multi-walled carbon nanotubes under the influence of pulsed ion radiation

    NASA Astrophysics Data System (ADS)

    Bolotov, V. V.; Korusenko, P. M.; Nesov, S. N.; Povoroznyuk, S. N.; Knyazev, E. V.

    2014-10-01

    On the basis of spectra obtained through the X-ray Auger-electron spectroscopy (XAES) of carbon (C KVV) and X-ray photoelectron spectroscopy (XPS) of the carbon valence band using the equipment of the Russian-German beam line of the synchrotron radiation facility BESSY II and a Kratos Axis Ultra DLD analytical system, the influence of pulsed ion radiation on the ratio of sp2/sp3-hybridized orbitals of carbon atoms in layers of oriented multi-walled carbon nanotubes (MWCNTs) is investigated. It is shown that when the MWCNTs are subjected to ten pulses, a substantial increase in the proportion of carbon atoms in the sp3 hybridization state occurs compared with MWCNTs subjected to a single pulse. This increase is associated with the formation of thin (<10 nm) nanotubes and onion-like carbon, inside which masses of nanodiamond structures are observed in some cases.

  14. Methods and devices for generation of broadband pulsed radiation

    DOEpatents

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  15. Central Japan Synchrotron Radiation Research Facility Project-(II)

    SciTech Connect

    Yamamoto, N.; Takashima, Y.; Hosaka, M.; Takami, K.; Morimoto, H.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y.; Katoh, M.; Hori, Y.; Sasaki, S.

    2010-06-23

    A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

  16. Testing and Research Capabilities at the Sandia Fast Pulsed Reactor Facility

    NASA Astrophysics Data System (ADS)

    Berry, Donald T.

    1994-07-01

    A wide variety of space-based system components have been qualified for use through neutron irradiation testing performed at the Sandia Pulsed Reactor (SPR) Facility. The SPR Facility is the operating location for two fast burst reactors, SPR II and SPR III, which have been used to induce neutron and gamma damage in electronic components and other materials for customers in the Department of Energy, Department of Defense, NASA, and the private sector. In addition to the pulse mode of operation, during which peak fluxes of up to 1023 n/m2-s are achieved, the steady state mode allows for the long term irradiation of components and systems in a fast neutron environment at a flux of up to 5×1015 n/m2-s. The SPR reactors are operated in a 9.2 meter diameter exposure cell, or Kiva, suitable for the irradiation of large test articles external to the reactors. Currently, a new upgraded version of SPR III (SPR HIM) is in fabrication; a unique feature of SPR HIM is its 190 mm (usable diameter) central irradiation cavity, the largest of any U.S. fast burst reactor. An improved cooling system permits continuous operation at power levels in excess of 20 kWt. The SPR Facility is also the operating site for a critical assembly which was used to characterize prototypic fuels in arrays appropriate for the Space Nuclear Thermal Propulsion Program. Work continues on use of the facility to design, build, and operate critical assemblies for a diverse customer base.

  17. Formation of ultrashort pulses from quasimonochromatic XUV radiation via infrared-field-controlled forward scattering

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, T. R.; Antonov, V. A.; Kocharovskaya, Olga

    2016-08-01

    We suggest a highly efficient method of ultrashort pulse formation from resonant XUV radiation due to sub-laser-cycle modulation of the excited state of non-hydrogen-like atoms by a nonionizing IR laser field. This modulation results in formation of the Raman-Stokes and anti-Stokes sidebands in coherently forward-scattered radiation, which, in turn, leads to formation of short pulses, when the phases of the sidebands are matched. This method is a generalization of a recently suggested technique [V. A. Antonov et al., Phys. Rev. A 88, 053849 (2013), 10.1103/PhysRevA.88.053849] for a non-hydrogen-like medium. The possibility to form 2-fs XUV pulses in the gas of helium atoms and 990-as XUV pulses in the plasma of Li+ ions with efficiencies over 80% is shown.

  18. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  19. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses.

    PubMed

    Liao, G Q; Li, Y T; Li, C; Su, L N; Zheng, Y; Liu, M; Wang, W M; Hu, Z D; Yan, W C; Dunn, J; Nilsen, J; Hunter, J; Liu, Y; Wang, X; Chen, L M; Ma, J L; Lu, X; Jin, Z; Kodama, R; Sheng, Z M; Zhang, J

    2015-06-26

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100  μJ per steradian in the laser specular direction at an optimal preplasma scale length around 40-50  μm. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas. PMID:26197129

  20. Atmospheric Radiation Measurement Program facilities newsletter, July 2001.

    SciTech Connect

    Holdridge, D. J.

    2001-07-23

    Global Warming and Methane--Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing

  1. Atmospheric radiation measurement program facilities newsletter, July 2002.

    SciTech Connect

    Holdridge, D. J.

    2002-08-12

    ARM Participating in Off-site Intensive Operational Period--The ARM Program is playing a role in the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) intensive operational period (IOP), under way through July in South Florida. The objective of CRYSTAL-FACE is to investigate the physical properties and formation processes of tropical cirrus clouds. The ARM Program has deployed a suite of ground-based instruments in Florida for CRYSTAL-FACE. In addition, the National Aeronautics and Space Administration provides six research aircraft equipped with state-of-the-art instruments to measure characteristics of cirrus clouds and their ability to alter the temperature of the atmosphere. The reliability of climate predictions depends on the accuracy of computer models of climate. Interactions between clouds and solar radiation are a major source of current uncertainty in the models, hindering accurate climate prediction. A goal of CRYSTAL-FACE is to improve on the way clouds are represented in and integrated into the models and thus achieve more reliable climate predictions. CRYSTAL-FACE will be followed in 2004 by CRYSTAL-TWP, to be held at ARM's Tropical Western Pacific (TWP) location on Manus and Nauru Islands. New Storage Building Proposed for Central Facility--Now in the design phase is a new storage building to be erected at the central facility, west of the shipping and receiving trailer. The added storage is needed because shipping needs for the TWP are now being handled by the SGP site. New Seminole Extended Facility Location Approved--The extended facility formerly on the property of the Seminole Industrial Foundation had to be removed from service in April, after the land was sold to a new owner. Both the foundation and the new land owner offered options for new extended facility locations in the area. An Environmental Evaluation Notification Form has now been approved by the USDOE (ARM Program sponsor), as

  2. Generation of Widely Tunable Fourier-Transform Pulsed Terahertz Radiation Using Narrowband Near-Infrared Laser Radiation

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun; Haase, Christa; Merkt, Frédéric

    2009-06-01

    Widely tunable, Fourier-transform-limited pulses of terahertz (THz) radiation have been generated by optical frequency deference using (i) crystals of the highly nonlinear organic salt 4-N,N-dimethylamino-4^'-N^'-methyl stilbazolium tosylate (DAST), (ii) zinc telluride (ZnTe) crystals, and (iii) gallium phosphide (GaP) crystals. Outputs from two narrowband (Δν<1 MHz, λ˜800 nm) cw titanium-doped sapphire (Ti:Sa) ring lasers with a well-controlled frequency difference were shaped into pulses using acousto-optic modulators, coupled into an optical fiber, pulse amplified in Nd:YAG-pumped Ti:Sa crystals and used as optical sources to pump the THz nonlinear crystals. The THz radiation was detected over a broad frequency range and its bandwidth was determined to be ˜10 MHz. Absorption spectra of gas phase molecules including HF and OCS using the THz source will be presented.

  3. Radiated Emission of Breath Monitoring System Based on UWB Pulses in Spacecraft Modules

    NASA Astrophysics Data System (ADS)

    Russo, P.; Mariani Primiani, V.; De Leo, A.; Cerri, G.

    2012-05-01

    The paper describes some EMC aspects related to a UWB radar for monitoring astronauts breathing activity. Compliance to EMC space standards forces some design aspects, in particular the peak voltage and the pulse waveform. Moreover some simulations were carried out to consider realistic operating condition. In the first case the interference towards a victim wifi circuit was analyzed, in the second case the effect of the environment on the radiated pulse was studied.

  4. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    SciTech Connect

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-05-06

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers.

  5. Controlling the Radiation Parameters of a Resonant Medium Excited by a Sequence of Ultrashort Superluminal Pulses

    NASA Astrophysics Data System (ADS)

    Arkhipov, R. M.; Arkhipov, M. V.; Belov, P. A.; Babushkin, I.; Tolmachev, Yu. A.

    2016-03-01

    We investigate the possibility of controlling the radiation parameters of a spatially periodic one-dimensional medium consisting of classical harmonic oscillators by means of a sequence of ultrashort pulses that propagate through the medium with a superluminal velocity. We show that, in the spectrum of the transient process, in addition to the radiation at a resonant frequency of oscillators, new frequencies arise that depend on the period of the spatial distribution of the oscillator density, the excitation velocity, and the angle of observation. We have examined in detail the case of excitation of the medium by a periodic sequence of ultrashort pulses that travel with a superluminal velocity. We show that it is possible to excite oscillations of complex shapes and to control the radiation parameters of the resonant medium by changing the relationship between the pulse repetition rate, the medium resonant frequency, and the new frequency.

  6. Application of DNA comet assay for detection of radiation treatment of grams and pulses.

    PubMed

    Khan, Hasan M; Khan, Ashfaq A; Khan, Sanaullah

    2011-12-01

    Several types of whole pulses (green lentils, red lentils, yellow lentils, chickpeas, green peas, cowpeas and yellow peas) and grams (black grams, red grams and white grams) have been investigated for the identification of radiation treatment using microgel electrophoresis of single cells (DNA comet assay). Pulses and grams were exposed to the radiation doses of 0.5, 1.0 and 5 kGy covering the legalized commercial dose range for protection from insect/pest infestations. All irradiated samples showed comet like stretching of fragmented DNA toward anode, which is expected for irradiated samples. Unirradiated samples showed many intact cells/nuclei in form of round stains or with short faint tails, which is typical for unirradiated food samples. The study shows that DNA comet assay can be used as a rapid, inexpensive and highly effective screening test for the detection of radiation treatment of foods, like pulses and grams. PMID:23572810

  7. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  8. Energy gain of an electron by a laser pulse in the presence of radiation reaction

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2011-10-15

    A well-known no-energy-gain theorem states that an electron cannot gain energy when being overrun by a plane (transverse) laser pulse of finite length. The theorem is based on symmetries which are broken when radiation reaction (RR) is included. It is shown here that an electron, e.g., being initially at rest, will gain a positive velocity component in the laser propagation direction after being overrun by an intense laser pulse (of finite duration and with intensity of order 5x10{sup 22} W/cm{sup 2} or larger). The velocity increment is due to RR effects. The latter are incorporated in the Landau-Lifshitz form. Both linear as well as circular polarization of the laser pulse are considered. It is demonstrated that the velocity gain is proportional to the pulse length and the square of the peak amplitude of the laser pulse. The results of numerical simulations are supported by analytical estimates.

  9. Thermal nuclear pulse simulation at the National Solar Thermal Test Facility

    SciTech Connect

    Cameron, C.P.; Ralph, M.E. ); Ghanbari, C.M. ); Oeding, R.; Shaw, K. )

    1991-01-01

    The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico is being used to simulate the thermal pulse from a nuclear weapon on relatively large surfaces. Pulses varying in length from 2 seconds to 7 seconds have been produced. The desired pulse length varies as a function of the yield of the weapon being simulated. The present experiment capability can accommodate samples as large as 1.2 {times} 1.5 meters. Samples can be flat or three-dimensional. Samples exposed have ranged from fabrics (protective clothing) to an aircraft canopy and cockpit system, complete with a mannequin in a flight suit and helmet. In addition, a windowed wind tunnel has been constructed which permits exposure of flight surface materials to thermal transients with air speed of Mach 0.8. The wind tunnel can accommodate samples up to .48 {times} .76 meters or an array of smaller samples. The maximum flux capability of the NSTTF is about 70 calories/cm{sup 2}-sec. A black-body temperature of about 6000 K is produced by the solar beam and is therefore ideal for simulating the nuclear source. 3 refs., 7 figs.

  10. Development of a 50-T pulsed magnetic field facility by using an 1.5-MJ capacitor bank

    NASA Astrophysics Data System (ADS)

    Shin, Y. H.; Kim, Yongmin

    2015-09-01

    Because DC magnets consume a huge amount of electricity (resistive DC magnet) or liquid helium (superconducting magnet), a capacitor-bank-driven pulsed magnet is known to be a cost-effective way of generating high magnetic fields. This type of pulsed magnet is normally operated at liquid nitrogen temperature and consumes little electric power to generate over 50 tesla (T) during a short transient time of less than 50 millisecond (ms). With modern fast data acquisition systems, almost all kinds of physical quantities, such as photoluminescence, magnetization or resistance can be measured during a short magnetic field pulse. We report a recently home-built capacitor-bankdriven pulsed magnetic field facility, in which a capacitor bank of 1.5-MJ maximum stored energy is utilized to generate pulsed magnetic fields up to 50 T with transient pulse time of 22 ms.

  11. Pulse

    MedlinePlus

    Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...

  12. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-01

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device. PMID:23432259

  13. Innovative uses for conventional radiation detectors via pulse shape analysis

    SciTech Connect

    Beckedahl, D; Blair, J; Friensehner, A; Kammeraad, J E; Schmid, G

    1999-03-03

    In this report we have discussed two applications for digital pulse shape analysis in Ge detectors: Compton suppression and {gamma}-ray imaging. The Compton suppression aspect has been thoroughly studied during the past few years, and a real-time, laboratory-prototype system has been fielded. A summary of results from that set up have been discussed here. The {gamma}-ray imaging aspect, while not yet developed experimentally, looks very promising theoretically as the simulations presented here have shown. Experimental work currently underway at Berkeley (as discussed in section 4.3) should help further guide us towards the proper developmental path.

  14. Radiation field characterization and shielding studies for the ELI Beamlines facility

    NASA Astrophysics Data System (ADS)

    Ferrari, A.; Amato, E.; Margarone, D.; Cowan, T.; Korn, G.

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 109-1010 for the electron beams and 1010-1012 for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the "source terms" in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  15. Inactivation of E. Coli cell viability and DNA Photo-breakage by Pulsed Nitrogen Laser Radiation

    SciTech Connect

    Cheba, Ben Amar; Alzaag, Ali; Tilfah, Nafie A.

    2005-03-17

    The mutagenic and lethal effect of nitrogen laser radiation: 337.1 nm wave length, 1.5 millijoul pulse energy, 10 nanosecond pulse with and pulse repetition rate range from 1 to 50 Pulse/ second was evaluated on E. Coli cells. Results indicated that irradiation of E. coli JMP39 with pulse repetition of 8 , 16 , 32 pulse/sec, for 1, 5 , 10, 25 min respectively led to a significant decrease in cell count proportional to irradiation dose with significant increase in lacmutation frequency accompanied with some mutations in pattern of antibiotic resistance. The effect of nitrogen laser on the genomic content of the strain JMP39 was also studied by irradiating the total DNA with 30 pulse/second for 1 ,5, 15 , 30 min then subjected to both agarose gel electrophoresis and scanning spectrophotometry. The first technique revealed to DNA photo breakage and significant decrease in DNA absorbency was noticed by scanning spectrophotometry. This could be attributed to photo-decomposition resulted from multi-photo-excitation of UV-Laser pulses.

  16. Transient Self-Amplified Cerenkov Radiation with a Short Pulse Electron Beam

    SciTech Connect

    Poole, B R; Blackfield, D T; Camacho, J F

    2009-01-22

    An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady state amplifier configuration as well as operation in the selfamplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady state response, a macro-particle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of soliton-like pulses. Comparisons between the linear theory, macro-particle model, and PIC simulations are

  17. Radiation Safety Aspects for Pulsed Photonuclear Assessment Techniques in Outdoor Operations

    SciTech Connect

    Daren R. Norman; James L. Jones; Brandon W. Blackburn; Allen Fisher; Scott M. Watson; Kevin J. Haskell; Alan W. Hunt; Mark Balzer

    2007-08-01

    As many pulsed photonuclear assessment (PPA) technologies are being developed for contraband detection within cargo container configurations, the radiation safe operation of source linacs for outdoor operations needs to be addressed. Idaho National Laboratory along with Idaho Accelerator Center are conducting field operations with high energy linacs in open outdoor configurations. The relevant information pertaining to the radiation regulations and dosimetry studies for these configurations will be presented for a prototypical 10 MeV PPA nuclear material detection system.

  18. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    SciTech Connect

    McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

    2009-03-18

    This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated

  19. Fast E-field switching of a pulsed surface muon beam: The commissioning of the European muon facility at ISIS

    NASA Astrophysics Data System (ADS)

    Eaton, G. H.; Clarke-Gayther, M. A.; Scott, C. A.; Uden, C. N.; Williams, W. G.

    1994-03-01

    The ISIS pulsed muon facility at RAL has been upgraded by the inclusion of a fast E-field kicker which simultaneously divides and distributes the muon pulses at surface momentum to the three experimental areas at a repetition rate of 50 Hz. This upgraded facility has been successfully commissioned in conjunction with a new μSR spectrometer. It has been shown that this new spectrometer can operate as expected with a figure of merit for μSR experiments similar to that of the original spectrometer, in spite of receiving only half of the relative muon intensity. This twofold increase in experimental capability will be further increased in the near future by the incorporation of experimental equipment in the third beamline. Such a facility will be capable of satisfying a European wide demand for μSR research with pulsed surface muons.

  20. ASSESSMENT OF THE IMMUNE RESPONSIVENESS OF MICE IRRADIATED WITH CONTINUOUS WAVE OR PULSE-MODULATED 425-MHZ RADIO FREQUENCY RADIATION

    EPA Science Inventory

    Groups of female BALB/C mice were irradiated with 425-MHz radio frequency (RF) radiation either continuous wave (CW) or pulse modulated (PM, 1-ms pulse width, 250 pulses/s). Mice were irradiated in a rectangular strip-transmission line at average forward powers of 78, 17.7, or 5 ...

  1. A source of high-power pulses of elliptically polarized ultrawideband radiation.

    PubMed

    Andreev, Yu A; Efremov, A M; Koshelev, V I; Kovalchuk, B M; Petkun, A A; Sukhushin, K N; Zorkaltseva, M Yu

    2014-10-01

    Here, we describe a source of high-power ultrawideband radiation with elliptical polarization. The source consisting of a monopolar pulse generator, a bipolar pulse former, and a helical antenna placed into a radioparent container may be used in tests for electromagnetic compatibility. In the source, the helical antenna with the number of turns N = 4 is excited with a high-voltage bipolar pulse. Preliminary, we examined helical antennas at a low-voltage source aiming to select an optimal N and to estimate a radiation center position and boundary of a far-field zone. Finally, characteristics of the source in the operating mode at a pulse repetition rate of 100 Hz are presented in the paper as well. Energy efficiency of the antenna is 0.75 at the axial ratio equal to 1.3. The effective potential of radiation of the source at the voltage amplitudes of the bipolar pulse generator equal to -175/+200 kV reaches 280 kV. PMID:25362430

  2. Generation of scalable terahertz radiation from cylindrically focused laser pulses in air

    NASA Astrophysics Data System (ADS)

    Kuk, Donghoon; Yoo, Yungjun; Rosenthal, Eric; Jhajj, Nihal; Milchberg, Howard; Kim, Ki-Yong

    We have demonstrated scalable terahertz (THz) generation via cylindrical focusing of two-color laser pulses in air. In this experiment, we have used a terawatt (TW) laser system which can deliver >50 mJ, 800 nm, 50 fs pulses at a 10 Hz repetition rate. A 800 nm pulse passing through a nonlinear crystal (BBO) generates its second harmonic pulse (400 nm). Both pulses pass through a cylindrical lens and are focused together to generate a 2-dimensional plasma sheet in air. This yields two diverging THz lobes, characterized by an uncooled microbolometer. This observed radiation angle and pattern is explained by the optical-Cherenkov radiation theory. The diverging THz radiation is re-focused to yield strong THz field strengths (>20 MV/cm) at the focus. At laser energy of 40 mJ, cylindrical focusing provides THz energy of >30 microjoules, far exceeding the output produced by spherical focusing. This shows that cylindrical focusing can effectively minimize ionization-induced defocusing, previously observed in spherical focusing, and can allow scalable THz generation with relatively high laser energies (>20 mJ). Work supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. 014216-001.

  3. A source of high-power pulses of elliptically polarized ultrawideband radiation

    SciTech Connect

    Andreev, Yu. A. Efremov, A. M.; Koshelev, V. I.; Kovalchuk, B. M.; Petkun, A. A.; Sukhushin, K. N.; Zorkaltseva, M. Yu.

    2014-10-01

    Here, we describe a source of high-power ultrawideband radiation with elliptical polarization. The source consisting of a monopolar pulse generator, a bipolar pulse former, and a helical antenna placed into a radioparent container may be used in tests for electromagnetic compatibility. In the source, the helical antenna with the number of turns N = 4 is excited with a high-voltage bipolar pulse. Preliminary, we examined helical antennas at a low-voltage source aiming to select an optimal N and to estimate a radiation center position and boundary of a far-field zone. Finally, characteristics of the source in the operating mode at a pulse repetition rate of 100 Hz are presented in the paper as well. Energy efficiency of the antenna is 0.75 at the axial ratio equal to 1.3. The effective potential of radiation of the source at the voltage amplitudes of the bipolar pulse generator equal to -175/+200 kV reaches 280 kV.

  4. Atomistic Computational Model of Radiation Damage of Nano-sized Systems in Intense X-ray Pulses

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Jiang, Wei; Lau, Kar Chun; Young, Linda

    2014-05-01

    We present a combined Monte-Carlo/molecular- dynamics (MC/MD) computational model that is suitable for monitoring the physics of intense, femtosecond XFEL pulses interacting with complex systems of various sizes, from nanometers to micrometers, and matters of various compositions. In this model, the occurrences of x-ray absorption, ionization, relaxation and electron-impact processes are treated by a MC method, and the subsequent dynamics of the all the electrons, ions and atoms are tracked using an MD method. Our model extends the previous MC/MD model and provides new capabilities to probe the impacts of transient states on radiation damage dynamics. Recently, we have added LAMMPS as the driver of MD dynamics. This is a critical addition as now our code can run on Mira, a new petascale supercomputer with 786K core processors at the Argonne Leadership Computing Facility. Also, it can treat micron-sized systems with trillions of particles and both homogeneous and heterogeneous composition. Using our model, we examine the ionization dynamics of Argon clusters in an XFEL pulse as a function of particle sizes and pulse parameters, and we compare our results with the experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Di- vision, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  5. Cross modulation method of transformation of the spatial coherence of pulsed laser radiation in a nonlinear medium

    SciTech Connect

    Kitsak, M A; Kitsak, A I

    2008-04-30

    The cross modulation method of transformation of the spatial coherence of low-power pulsed laser radiation in a nonlinear medium is proposed. The method is realised experimentally in a multimode optical fibre. The estimates of the degree of spatial coherence of radiation subjected to the phase cross modulation demonstrated the high efficiency of this radiation decorrelation mechanism. (control of laser radiation parameters)

  6. Porcine dermal lesions produced by 1540-nm laser radiation pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; Johnson, Thomas E.

    2001-07-01

    Completion of recent studies within our group indicates a breed-based difference in dermal response to 1540 nm 0.8 millisecond laser pulses. Laser exposure to Yucatan Mini- Pigs (highly pigmented skin) and Yorkshire pigs (lightly pigmented skin) demonstrate statistical differences between the ED50's of the two breeds. Laser delivery is accomplished using an Er:Glass system producing 1540 nm of light at millisecond exposure times and in the range of 5 to 95 J/cm2. Dermal lesion development was evaluated for acute, 1 hour, and 24-hour post exposure presentation. Our data contradicts the theory that water absorption is the sole mechanism of dermal tissue damage observed from 1540 nm laser exposures, as skin chromophores appear to play a role in lesion development.

  7. Lymphoid tissue during irradiation of tumors with pulsing laser's radiation

    NASA Astrophysics Data System (ADS)

    Moskalik, Konstantin G.

    2002-06-01

    The structure of the regional lymph nodes and the thymus was studied in the experiments upon the mice of the line C57BL with the subcutaneous interwoven melanoma B16 in the periods from one hour to 12 days after the radiation of melanoma with one irradiation impulse of the Nd laser with the energy density of 400 J/cm2. During the first 3 days after the irradiation of tumor with laser radiation the impoverishment of lymph nodes and thymus with lymphocytes takes place because of their intensified migration from these organs to the blood channel. Then one can see the restoration of the lymph nodes and thymus structure. The restoration of lymphopoiesis in the lymph nodes went on in the first place because of the poiesis in the follicles which consist of B-lymphocytes. Consequently, the lymphoid tissue plays a great role in the reorganization of the immunological status of the organism. Reorganization can be seen during the treatment of tumors with laser radiation, and it takes place in the first instance because of the reinforcement of the humoral immunity.

  8. Radially polarized, half-cycle, attosecond pulses from laser wakefields through coherent synchrotronlike radiation.

    PubMed

    Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J

    2014-10-01

    Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications. PMID:25375611

  9. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  10. Time-dependent quasi-one-dimensional simulations of high enthalpy pulse facilities

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.

    1992-01-01

    A numerical methodology is presented for simulating the time-dependent reacting flow inside the entire length of high enthalpy pulse facilities. The methodology is based on a finite-volume TVD scheme for the quasi-1D Euler equations coupled with finite-rate chemistry. A moving mesh and tracking of gas interfaces are used to overcome certain numerical difficulties associated with these types of flows. Simulation results of a helium driven shock tube show that computations can be used to predict the off-tailored behavior of shock tubes and tunnels. Particular attention is given to computations of the flow through the NASA Ames 16-inch combustion driven shock tunnel which show the influence of nonuniformities in the driver section on the reservoir conditions; and the effect of finite secondary diaphragm opening times on the chemical composition of the test flow in the HYPULSE expansion tube.

  11. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  12. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  13. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  14. Photon dosimetry using plastic scintillators in pulsed radiation fields

    SciTech Connect

    David L. Chichester; Brandon W. Blackburn; James T. Johnson; Scott W. Watson

    2007-04-01

    Simulations and experiments have been carried out to explore using a plastic scintillator as a dosimetry probe in the vicinity of a pulsed bremsstrahlung source in the range 4 to 20 MeV. Taking advantage of the tissue-equivalent properties of this detector in conjunction with the use of a fast digital signal processor near real-time dosimetry was shown to be possible. The importance of accounting for a broad energy electron beam in bremsstrahlung production, and photon scattering and build-up, in correctly interpreting dosimetry results at long stand-off distances is highlighted by comparing real world experiments with ideal geometry simulations. Close agreement was found between absorbed energy calculations based upon spectroscopic techniques and calculations based upon signal integration, showing a ratio between 10 MeV absorbed dose to 12 MeV absorbed dose of 0.66 at a distance of 91.4 m from the accelerator. This is compared with an idealized model simulation with a monoenergetic electron beam and without scattering, where the ratio was 0.46.

  15. Radiation drive with a composite laser pulse shape

    SciTech Connect

    Cobble, J. A.; Tubbs, D. L.; Hoffman, N. M.; Swift, D. C.; Tierney, T.

    2004-01-01

    The objective is to develop a 6-ns Hohlraum environment on Omega for Be anisotropy studies. In particular, they are seeking an environment for Be isotropy studies with enough growth times to assess the suitability of Be for NIF ignition capsules. In 20 shots to date, we have: (1) synchronized 2 laser pulse shapes at Omega to obtain a smooth halfraum drive for {approx}6 ns; (2) characterized the drive with Dante ({approx}180 eV peak); (3) obtained high quality VISAR data (using a mirror); (4) measured ejected Be sample velocity; (5) made the first estimates of Au migration to the axis of the vacuum halfraum; and (6) collected the first face-on x-ray images of sinusoidally perturbed Be samples. The immediate objective is to qualify a target for the Be studies. To that end, we hope: (1) to explore alternate foot drives; (2) optimize the radiography; and (3) to field and characterize gas-filled targets within the next 6 months.

  16. Free-electron laser at the TESLA Test Facility at DESY: toward a tunable short-pulsed soft x-ray source

    NASA Astrophysics Data System (ADS)

    Gerth, Christopher

    2001-12-01

    A high peak current, low emittance, short pulse electron beam can produce intense, laser-like radiation in a single pass through a long periodic magnetic structure. The construction of such free-electron lasers (FELs) based on self-amplified spontaneous emission (SASE) has become feasible by recent advances in accelerator technologies. Since SASE FELs do not require any optical components they are promising sources for the generation of intense, sub- picosecond laser pulses which are continuously tunable over a wide wavelength range in the vacuum ultraviolet (VUV) and X-ray region. In the first phase of the VUV-FEL (phase I) at the TESLA Test Facility at DESY, SASE was achieved for the first time in the VUV at wavelengths between 80 and 180 nm. The concept of the VUV FEL at DESY and first experimental results are presented. The second phase of the TESLA Test Facility (phase II), which includes an increase of the electron beam energy to 1 GeV, aims at the construction of a SASE FEL operating in the soft X-ray region. An overview of the current status and the activities toward a soft X-ray FEL user facility is given.

  17. Generation of Intense Narrow-Band Tunable Terahertz Radiation from Highly Bunched Electron Pulse Train

    NASA Astrophysics Data System (ADS)

    Li, Heting; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-07-01

    We present the analysis and start-to-end simulation of an intense narrow-band terahertz (THz) source with a broad tuning range of radiation frequency, using a single-pass free electron laser (FEL) driven by a THz-pulse-train photoinjector. The fundamental radiation frequency, corresponding to the spacing between the electron microbunches, can be easily tuned by varying the spacing time between the laser micropulses. Since the prebunched electron beam is highly bunched at the first several harmonics, with the harmonic generation technique, the radiation frequency range can be further enlarged by several times. The start-to-end simulation results show that this FEL is capable of generating a few tens megawatts power, several tens micro-joules pulse energy, and a few percent bandwidth at the frequencies of 0.5-5 THz. In addition, several practical issues are considered.

  18. Attosecond Gamma-Ray Pulses via Nonlinear Compton Scattering in the Radiation-Dominated Regime

    NASA Astrophysics Data System (ADS)

    Li, Jian-Xing; Hatsagortsyan, Karen Z.; Galow, Benjamin J.; Keitel, Christoph H.

    2015-11-01

    The feasibility of the generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly focused superstrong laser beam in the radiation-dominated regime. The Compton scattering spectra of gamma radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion. The tightly focused laser field structure and the radiation reaction are shown to be responsible for such short gamma-ray bursts, which are independent of the durations of the electron bunch and of the laser pulse. The results are measurable with the laser technology available in the near future.

  19. Atmospheric Radiation Measurement Program facilities newsletter, October 2002.

    SciTech Connect

    Holdridge, D. J.

    2002-11-04

    Aerosol Observing System Upgraded--The Aerosol Observing System (AOS) at the SGP central facility recently received maintenance and was upgraded to improve its performance. The AOS measures the properties of the aerosol particles around it. Several AOS components were removed, repaired, and calibrated to operate within specifications. The system continuously gathers information about the way minute aerosol particles interact with solar radiation. A better understanding of these interactions will help climate change researchers integrate aerosol effects more accurately into global climate computer models. Polar Bears Make Work Dangerous at ARM North Slope of Alaska Site--The late development of seasonal sea ice has increased polar bear sitings at ARM's Barrow site. The bears were recently seen next to the ARM instrument towers at Barrow, making the normal work day a bit more tricky for the technicians who are at the site year-round. Polar bears are not afraid of people and will attack and kill. The bears usually spend most of their time on off-shore ice floes hunting seals. This season, a large storm pushed the floes out to sea while the bears were ashore at Barrow, leaving them to forage for food on land until the sea ice reforms with the onset of colder weather. The hungry bears have made working at the Barrow CART site a dangerous proposition. ARM workers carry shotguns with them at all times for protection. On a recent journey to the site, ARM instrument mentor Michael Ritsche encountered the animals. ''You become much more aware of your surroundings,'' said Ritsche after returning safely to Argonne. Barrow residents protect themselves by shooting warning shells to scare the bears away from developed areas. Hearing the firing in the early mornings and late evenings at Barrow reminded Ritsche that he was in a more dangerous world.

  20. Effect of pulse to pulse variation of divergence, pointing and amplitude of copper vapor laser radiations on their second harmonic and sum frequency conversion

    NASA Astrophysics Data System (ADS)

    Prakash, Om; Mahakud, Ramakanta; Nakhe, Shankar V.; Dixit, Sudhir K.

    2013-09-01

    This paper presents the effect of single pulse stability of divergence angle, beam pointing angle and amplitude of green and yellow radiation pulses of an unstable resonator copper vapor laser (CVL) oscillator in the sum frequency (SF) mixing and second harmonic (SH). The conversion efficiency of sum frequency generation was lower compared to second harmonic processes despite larger fundamental power being used in sum frequency experiments. However the net UV power obtained at the sum frequency was higher than both of the second harmonic UV frequencies. Lower sum frequency generation (SFG) conversion efficiency compared to second harmonic generation (SHG) of individual CVL radiation is attributed to difference in single pulse stability of beam pointing, divergence and amplitude fluctuation of both CVL radiations in addition to commonly known fact of spatio-temporal mis-match. At the same fundamental input power, higher SH conversion efficiency of yellow compared to green is attributed to its better single pulse stability of beam pointing and divergence.

  1. Atmospheric radiation measurement program facilities newsletter, April 2001.

    SciTech Connect

    Holdridge, D. J.

    2001-05-03

    ) Validation Campaign--Researchers from Lawrence Berkeley National Laboratory in California will be deploying instruments at the CART site in May. Portable micrometeorology towers will be used to measure fluxes of carbon dioxide, water, and heat between the surface and the atmosphere. The exchange of these constituents varies with regional climate, soil type, and surface vegetation. Greater knowledge will improve the accuracy of computer models (and hence predictions) of the exchanges. Measurements made with the portable instruments will be compared with measurements being collected by instruments at the central facility. AWS Campaign--The State University of New York at Albany will deploy an oxygen A-band and water vapor band spectrometer (AWS) at the CART site on May 20-June 30, 2001. Measurements made by the AWS will be used to determine absorption of radiation by water vapor within clouds, a quantity important to understanding the behavior of solar radiation as it passes through clouds.

  2. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Kassianov, E. I.; Barnard, J.; Flynn, C.; Ackerman, T. P.

    2009-07-01

    The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility (AMF) was deployed to Niamey, Niger, during 2006. Niamey, which is located in sub-Saharan Africa, is affected by both dust and biomass burning emissions. Column aerosol optical properties were derived from multifilter rotating shadowband radiometer, measurements and the vertical distribution of aerosol extinction was derived from a micropulse lidar during the two observed dry seasons (January-April and October-December). Mean aerosol optical depth (AOD) and single scattering albedo (SSA) at 500 nm during January-April were 0.53 ± 0.4 and 0.94 ± 0.05, while during October-December mean AOD and SSA were 0.33 ± 0.25 and 0.99 ± 0.01. Aerosol extinction profiles peaked near 500 m during the January-April period and near 100 m during the October-December period. Broadband shortwave surface fluxes and heating rate profiles were calculated using retrieved aerosol properties. Comparisons for noncloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the aerosol optical properties, with mean differences between calculated and observed fluxes of less than 5 W m-2 and RMS differences less than 25 W m-2. Sensitivity tests showed that the observed fluxes could be matched with variations of <10% in the inputs to the radiative transfer model. The calculated 24-h averaged SW instantaneous surface aerosol radiative forcing (ARF) was -21.1 ± 14.3 W m-2 and was estimated to account for 80% of the total radiative forcing at the surface. The ARF was larger during January-April (-28.5 ± 13.5 W m-2) than October-December (-11.9 ± 8.9 W m-2).

  3. Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility

    SciTech Connect

    Sanami, T.; Hagiwara, M.; Iwase, H.; Iwamoto, Y.; Sakamoto, Y.; Nakashima, H.; Arakawa, H.; Shigyo, N.; Leveling, A.F.; Boehnlein, D.J.; Vaziri, K.; /Fermilab

    2008-02-01

    The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energy range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target

  4. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans; Frenz, Martin; Ith, Michael; Altermatt, Hans J.; Jansen, E. Duco; Weber, Heinz P.

    1996-07-01

    Because of the high absorption of near-infrared laser radiation in biological tissue, erbium lasers and holmium lasers emitting at 3 and 2 mu m, respectively, have been proven to have optimal qualities for cutting or welding and coagulating tissue. To combine the advantages of both wavelengths, we realized a multiwavelength laser system by simultaneously guiding erbium and holmium laser radiation by means of a single zirconium fluoride (ZrF4) fiber. Laser-induced channel formation in water and poly(acrylamide) gel was investigated by the use of a time-resolved flash-photography setup, while pressure transients were recorded simultaneously with a needle hydrophone. The shapes and depths of vapor channels produced in water and in a submerged gel after single erbium and after combination erbium-holmium radiation delivered by means of a 400- mu m ZrF4 fiber were measured. Transmission measurements were performed to determine the amount of pulse energy available for tissue ablation. The effects of laser wavelength and the delay time between pulses of different wavelengths on the photomechanical and photothermal responses of meniscal tissue were evaluated in vitro by the use of histology. It was observed that the use of a short (200- mu s, 100-mJ) holmium laser pulse as a prepulse to generate a vapor bubble through which the ablating erbium laser pulse can be transmitted (delay time, 100 mu s) increases the cutting depth in meniscus from 450 to 1120 mu m as compared with the depth following a single erbium pulse. The results indicate that a combination of erbium and holmium laser radiation precisely and efficiently cuts tissue under water with 20-50- mu m collateral tissue damage. wave, cavitation, channel formation, infrared-fiber-delivery system, tissue damage, cartilage.

  5. Team Update on North American Proton Facilities for Radiation Testing

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; Wert, Jerry; Foster, Charles

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  6. Development of a facility for probing the structural dynamics of materials with femtosecond X-ray pulses

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Fateev, A. A.; Feldhaus, J.; Floettmann, K.; Tschentscher, T.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-08-01

    We propose to use Thomson backscattering of far-infrared (FIR) pulses (100-300 μm wavelength range) by a 500 MeV electron beam to generate femtosecond X-rays at the TESLA Test Facility (TTF) at DESY. Using the parameters of the photocathode rf gun and the magnetic bunch compressors of the TESLA Test Facility (TTF), it is shown that electron pulses of 100-fs (FWHM) duration can be generated. Passing the short electron bunches through an undulator (after the conversion point) can provide a FIR high-power source with laser-like characteristics. On the basis of the TTF parameters we expect to produce X-ray pulses with 100-fs duration, an average brilliance of nearly 1013photons s-1 mrad-2 mm-2 per 0.1% BW at a photon energy 50 keV. The total number of Thomson backscattered photons, produced by a single passage of the electron bunch through the mirror focus, can exceed 107 photons/pulse. We also describe the basic ideas for an upgrade to shorter X-ray pulse duration. It is demonstrated that the TTF has the capability of reaching the 1012photons s-1 mrad-2 mm-2 per 0.1% BW brilliance at a ten femtosecond scale pulse duration.

  7. Electrical delay line multiplexing for pulsed mode radiation detectors

    PubMed Central

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-01-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ~ 243 ps FWHM to ~272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is exible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors. PMID:25768002

  8. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  9. Electrical delay line multiplexing for pulsed mode radiation detectors.

    PubMed

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors. PMID:25768002

  10. Radiation shielding issues for superconducting RF cavity test facility at Fermilab

    SciTech Connect

    Rakhno, I.; /Fermilab

    2006-11-01

    The results of Monte Carlo radiation shielding study performed with the MARS15 code for the final design of the vertical test cryostat facility to be installed in the Industrial Building 1 at Fermilab are presented and discussed.

  11. Temporal-space transforming pulse-shaping system with knife edge apparatus in Shenguang II upgrade facility

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Chen, Shaohe; Ge, Xiaping; Xu, Shizhong; Fan, Dianyuan

    2005-12-01

    The temporal pulse shaping was realized by using temporal-space transforming pulse-shaping system with the own-designed "Knife edge" apparatus, for the first time to our best knowledge, in a large energy laser facility with the output energy of 454.37J. A quasi-square laser pulse with the pulse width of 1.16ns, the rising time of 337ps, the falling time of 360ps, and the temporal filling factor of 81.2% was obtained. It is quite satisfied with the requirement of physical experiment. In addition, the further improvements of our system have been suggested in order to enhance the stability and the flexibility as well as the restoring ability of the temporal-space transforming process.

  12. Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Alley, C. O.; Rayner, J. D.; Steggerda, C. A.; Mullendore, J. V.; Small, L.; Wagner, S.

    1983-01-01

    A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock.

  13. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  14. Time-resolved resonance Raman spectroscopy of radiation-chemical processes. [Pulsed irradiation

    SciTech Connect

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures.

  15. Tunable, high peak power terahertz radiation from optical rectification of a short modulated laser pulse.

    PubMed

    Gordon, Daniel F; Ting, Antonio; Alexeev, Ilya; Fischer, Richard; Sprangle, Phillip; Kapetenakos, Christos A; Zigler, Arie

    2006-07-24

    A new way of generating high peak power terahertz radiation using ultra-short pulse lasers is demonstrated. The optical pulse from a titanium:sapphire laser system is stretched and modulated using a spatial filtering technique to produce a several picosecond long pulse modulated at the terahertz frequency. A collinear type II phase matched interaction is realized via angle tuning in a gallium selenide crystal. Peak powers of at least 1.5 kW are produced in a 5 mm thick crystal, and tunability is demonstrated between 0.7 and 2.0 THz. Simulations predict that 150 kW of peak power can be produced in a 5 mm thick crystal. The technique also allows for control of the terahertz bandwidth. PMID:19516863

  16. Coherent propagation of a short polarised radiation pulse in a one-dimensional resonance Bragg grating

    SciTech Connect

    Maimistov, Andrei I; Polikarpov, V V

    2006-09-30

    The propagation of an optical ultrashort pulse in a resonance Bragg grating is considered taking into account the polarisation of electromagnetic radiation. It is assumed that the grating is formed by thin films containing two-level atoms with the triply degenerate upper energy level. The system of equations is derived for the envelopes of electromagnetic pulses counterpropagating in such a grating. In the long-wavelength (continual) approximation, the system of equations generalising the known system for scalar waves is obtained. The solutions corresponding to elliptically (in particular, linearly and circularly) polarised stationary pulses are found. An arbitrary degree of ellipticity is possible only in a medium with a preliminary prepared stage of resonance atoms. (nonlinear optical phenomena)

  17. A real-time kinetic study of luciferase inactivation by pulsed ionizing radiation

    SciTech Connect

    Bell, D.H.; Gould, J.M.; Patterson, L.K.

    1982-06-01

    The real-time kinetics of radiation-induced inactivation of the luminescent firefly luciferase-luciferin system were investigated. A single, microsecond pulse from a Van de Graaff accelerator delivered to the system is sufficient to decrease the luminescence by over 60%. This decrease exhibits exponential behavior and has a half-time of 46 +/- 6 msec. In both steady-state and pulsed studies, the dose dependence of the inactivation is independent of the dose rate. Likewise, the decay kinetics are independent of the dose per pulse. These studies suggest that the enzyme is altered in a way that inteferes with the initial steps of catalysis without affecting the subsequent steps which lead to light emission.

  18. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field.

    PubMed

    Glyavin, M Yu; Luchinin, A G; Golubiatnikov, G Yu

    2008-01-11

    To cover a so-called terahertz gap in available sources of coherent electromagnetic radiation, the gyrotron with a pulsed solenoid producing up to a 40 T magnetic field has been designed, manufactured, and tested. At a 38.5 T magnetic field, the gyrotron generated coherent radiation at 1.022 THz frequency in 50 musec pulses. The microwave power and energy per pulse were about 1.5 kW and 75 mJ, respectively. Details of the gyrotron design, manufacturing, operation and measurements of output radiation are given. PMID:18232780

  19. Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field

    SciTech Connect

    Glyavin, M. Yu.; Luchinin, A. G.; Golubiatnikov, G. Yu.

    2008-01-11

    To cover a so-called terahertz gap in available sources of coherent electromagnetic radiation, the gyrotron with a pulsed solenoid producing up to a 40 T magnetic field has been designed, manufactured, and tested. At a 38.5 T magnetic field, the gyrotron generated coherent radiation at 1.022 THz frequency in 50 {mu}sec pulses. The microwave power and energy per pulse were about 1.5 kW and 75 mJ, respectively. Details of the gyrotron design, manufacturing, operation and measurements of output radiation are given.

  20. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    SciTech Connect

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  1. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  2. ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals

    NASA Astrophysics Data System (ADS)

    Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.

    1985-01-01

    It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.

  3. Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    SciTech Connect

    Annenkov, V I; Garanin, Sergey G; Eroshenko, V A; Zhidkov, N V; Zubkov, A V; Kalipanov, S V; Kalmykov, N A; Kovalenko, V P; Krotov, V A; Lapin, S G; Martynenko, S P; Pankratov, V I; Faizullin, V S; Khrustalev, V A; Khudikov, N M; Chebotar, V S

    2009-08-31

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being {approx}0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse. (lasers)

  4. Electronic response of graphene to an ultrashort intense terahertz radiation pulse

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenichi L.

    2013-05-01

    We have recently reported a study (Ishikawa 2010 Phys. Rev. B 82 201402) on a nonlinear optical response of graphene to a normally incident terahertz radiation pulse within the massless Dirac fermion (MDF) picture, where we have derived physically transparent graphene Bloch equations (GBE). Here we extend it to the tight-binding (TB) model and oblique incidence. The derived equations indicate that interband transitions are governed by the temporal variation of the spinor phase along the electron path in the momentum space and predominantly take place when the electron passes near the Dirac point. At normal incidence, the equations for electron dynamics within the TB model can be cast into the same form of GBE as for the MDF model. At oblique incidence, the equations automatically incorporate photon drag and satisfy the continuity equation for electron density. Single-electron dynamics strongly depend on the model and pulse parameters, but the rapid variations are averaged out after momentum-space integration. Direct current remaining after the pulse is generated in graphene irradiated by an intense monocycle terahertz pulse, even if it is linearly polarized and normally incident. The generated current depends on the carrier-envelope phase, pulse intensity and Fermi energy in a complex manner.

  5. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  6. Computer and laboratory modeling of radiation-acoustic detector for charged particles pulse beams and plasma parameters measuring

    SciTech Connect

    Kresnin, Yu.A.; Stervoedov, N.G.

    1996-12-31

    Model investigations and laboratory tests of detectors for charged particles pulse beams and plasma parameters measuring are presented. Detector represents combination of classic Faraday cup with electrical way of signal getting and radiation-acoustic meter of pulse beams parameters. Radiation-acoustic meter consists of two parts--thin detector, transparent for beams of high energy particles, and thick detector with full absorption. Ultrasonic oscillations, which arise during interaction of charged particles pulse beams or plasma with detector material, are transformed by piezoelectric detector into electric signals, whose amplitude-frequency and time characteristics functionally depended on beams parameters. All the signals come into microcontroller device Intel MSC51. This device produces calculations of following beam parameters: average energy, pulse charge, pulse currents, density, beam size and pulse time. Calculated characteristics of meter well coincide with experimental measurements, carried out at accelerators in particles energy range from 1 to 100 Mev.

  7. Influence of the Vertical Emittance on the Calculability of the Synchrotron Ultraviolet Radiation Facility

    PubMed Central

    Arp, U.

    2002-01-01

    A method to include the influence of the vertical electron beam emittance onto the calculability of synchrotron radiation is introduced. It accounts for the finite vertical size and angular spread of the electron beam through a convolution procedure. The resulting angular spread of synchrotron radiation can differ significantly from the ideal Schwinger result, depending on the conditions. For the Synchrotron Ultraviolet Radiation Facility detailed results on the influence of the electron emittance for total power and polarization calculations are presented.

  8. Dependence of diode sensitivity on the pulse rate of delivered radiation

    SciTech Connect

    Jursinic, Paul A.

    2013-02-15

    Purpose: It has been reported that diode sensitivity decreases by as much as 2% when the average dose rate set at the accelerator console was decreased from 600 to 40 MU/min. No explanation was given for this effect in earlier publications. This work is a detailed investigation of this phenomenon: the change of diode sensitivity versus the rate of delivery of dose pulses in the milliseconds and seconds range. Methods: X-ray beams used in this work had nominal energies of 6 and 15 MV and were generated by linear accelerators. The average dose rate was varied from 25 to 600 MU/min, which corresponded to time between microsecond-long dose pulses of 60-2.7 ms, respectively. The dose-per-pulse, dpp, was changed by positioning the detector at different source-to-detector distance. A variety of diodes fabricated by a number of manufacturers were tested in this work. Also, diodes in three different MapCHECKs (Sun Nuclear, Melbourne, FL) were tested. Results: For all diodes tested, the diode sensitivity decreases as the average dose rate is decreased, which corresponds to an increase in the pulse period, the time between radiation pulses. A sensitivity decrease as large as 5% is observed for a 60-ms pulse period. The diode sensitivity versus the pulse period is modeled by an empirical exponential function. This function has a fitting parameter, t{sub eff}, defined as the effective lifetime. The values of t{sub eff} were found to be 1.0-14 s, among the various diodes. For all diodes tested, t{sub eff} decreases as the dpp decreases and is greater for 15 MV than for 6 MV x rays. The decrease in diode sensitivity after 20 s without radiation can be reversed by as few as 60 radiation pulses. Conclusions: A decrease in diode sensitivity occurs with a decrease in the average dose rate, which corresponds to an increase in the pulse period of radiation. The sensitivity decrease is modeled by an empirical exponential function that decreases with an effective lifetime, t{sub eff}, of

  9. Implementation of ultrafast X-ray diffraction at the 1W2B wiggler beamline of Beijing Synchrotron Radiation Facility.

    PubMed

    Sun, Da Rui; Xu, Guang Lei; Zhang, Bing Bing; Du, Xue Yan; Wang, Hao; Li, Qiu Ju; Zhou, Yang Fan; Li, Zhen Jie; Zhang, Yan; He, Jun; Yue, Jun Hui; Lei, Ge; Tao, Ye

    2016-05-01

    The implementation of a laser pump/X-ray probe scheme for performing picosecond-resolution X-ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top-up mode, a pixel array X-ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ∼2.5 × 10(6) photons pulse(-1) at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X-ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X-ray spot. Transient photo-induced strain in BiFeO3 film was observed at a ∼150 ps time resolution for demonstration. PMID:27140165

  10. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  11. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  12. School Facilities and Electric and Magnetic Field Radiation.

    ERIC Educational Resources Information Center

    Carr, Richard L.

    1990-01-01

    The possibility that electric and magnetic field radiation poses a health hazard should be recognized during the planning and designing of a school. A preconstruction assessment of possible exposure should be evaluated before the start of construction. (MLF)

  13. Generation of nonlinear currents and low-frequency radiation upon interaction of a laser pulse with a metal

    SciTech Connect

    Bezhanov, S G; Uryupin, S A

    2013-11-30

    Nonlinear currents slowly varying in time are found in the skin layer of a metal irradiated by short laser pulses. The low-frequency field generated by the nonlinear currents in metal and vacuum is studied. The spectral composition, energy and shape of the low-frequency radiation pulse are described. (nonlinear optical phenomena)

  14. Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Batishche, Sergei A.

    1995-05-01

    It is shown that infra-red ((lambda) equals 1064 nm) long pulse (approximately 100 microsecond(s) ) radiation of YAG:Nd laser, operating in free generation regime, effectively fragments gallstones, urinary calculus and kidney stones. The features of the mechanism of this process are investigated. Laser lithotripsy is nowadays a method widely used for fragmentation of gallstones, urinary calculus and kidney stones. Flashlamp pumped dye lasers of microsecond duration are most often used for such purposes. Nevertheless, there are some reports on lithotripsies with nanosecond duration laser pulses (for example, Q-switched YAG:Nd laser). The mechanism of the laser fragmentation of such stones was supposed to be the next. The laser powerful radiation, delivered through the optical fiber, is absorbed by the material of the stone. As a result of such highly localized energy absorption, dense plasma is formed, which expands. Such plasma and vapor, liquid confined, forms a cavitation bubble. This bubble grows, reaches its most dimension and then collapses on itself in some hundreds of micro seconds. Shock waves generated during the growth and the collapse of these bubbles are the origin of fragmentation of the stone. It is necessary to say that there are rather confined data on the hundreds microsecond laser pulse fragmentation especially what concerns the usage of infra-red (IR) YAG:Nd lasers with long laser pulses. Clearing this problem would result in better understanding of the fragmentation mechanism and it could favor development of simple and more reliable laser systems for lithotripsy. In this work we report about investigation of features of an effective fragmentation of gallstones, urinary calculus and kidney stones under exposure of IR ((lambda) equals 1064 nm) radiation of repetitive YAG:Nd laser working in free generation regime.

  15. Numerical analysis of radiation dynamics in a combined hohlraum in the X-ray opacity experiments on the 'Iskra-5' laser facility

    SciTech Connect

    Bondarenko, S V; Novikova, E A; Dolgoleva, G V

    2014-03-28

    We report the results of numerical analysis of radiation dynamics (laser absorption and X-ray generation) by using SNDLIRA code in a combined box used in the X-ray opacity measurements on the 'Iskra-5' facility (laser radiation wavelength, λ = 0.66 μm; laser pulse duration, τ{sub 0.5} ≈ 0.6 ns; and energy, 900 J). Combined boxes used in these experiments comprised three sections: two illuminators delivering laser radiation and a central diagnostic section with a test sample. We have proposed a scheme for step-by-step calculation of the heating dynamics of the sample under study in a three-section hohlraum. Two designs of a combined box, which differ in the ways the laser radiation is injected, are discussed. It is shown that the axial injection of the beams results in intense secondary laser irradiation of the illuminator edge which leads to its partial disruption and penetration of laser radiation into the central diagnostic section. In this case the sample under study is exposed to additional uncontrolled action of scattered laser radiation. Such an undesirable action may be avoided by using the lateral injection of the beams through four holes on the lateral side of the illuminators. For the latter case we have calculated the heating dynamics for the sample and found an optimal time delay for an X-ray probe pulse. (interaction of laser radiation with matter. laser plasma)

  16. Atmospheric Radiation Measurement Program facilities newsletter, July 2000.

    SciTech Connect

    Sisterson, D. L.; Holdridge, D. J., ed.

    2000-08-03

    For improved safety in and around the ARM SGP CART site, the ARM Program recently purchased and installed an aircraft detection radar system at the central facility near Lamont, Oklahoma. The new system will enhance safety measures already in place at the central facility. The SGP CART site, especially the central facility, houses several instruments employing laser technology. These instruments are designed to be eye-safe and are not a hazard to personnel at the site or pilots of low-flying aircraft over the site. However, some of the specialized equipment brought to the central facility by visiting scientists during scheduled intensive observation periods (IOPs) might use higher-power laser beams that point skyward to make measurements of clouds or aerosols in the atmosphere. If these beams were to strike the eye of a person in an aircraft flying above the instrument, damage to the person's eyesight could result. During IOPs, CART site personnel have obtained Federal Aviation Administration (FAA) approval to temporarily close the airspace directly over the central facility and keep aircraft from flying into the path of the instrument's laser beam. Information about the blocked airspace is easily transmitted to commercial aircraft, but that does not guarantee that the airspace remains completely plane-free. For this reason, during IOPs in which non-eye-safe lasers were in use in the past, ARM technicians watched for low-flying aircraft in and around the airspace over the central facility. If the technicians spotted such an aircraft, they would manually trigger a safety shutter to block the laser beam's path skyward until the plane had cleared the area.

  17. Nanosecond-pulsed dielectric barrier discharges in Kr/Cl2 for production of ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Gregório, J.; Aubert, X.; Hagelaar, G. J. M.; Puech, V.; Pitchford, L. C.

    2014-02-01

    In this paper, we present a study of nanosecond-pulsed, coaxial dielectric barrier discharges for generation of UV radiation in Kr/Cl2 mixtures with total pressures of 25 and 50 mbar. This study is based on an ensemble of experimental and modeling results and aims to identify the dominant physical mechanisms leading to the production of KrCl* (B state). The emission band of KrCl* is peaked at 222 nm, which is in the wavelength range of interest for applications in microbial decontamination. We find that for the same energy per pulse deposited in the discharge, more UV radiation is emitted at higher pressures where relatively more of the energy deposited in the gas goes into heating the electrons, with less going to heating the ions in the sheath. The Cl2 partial pressure significantly affects the KrCl* time-averaged, spatial profiles, leading to different optimal conditions for average and for peak UV power densities. Model results show that the highest KrCl* number density occurs near the walls and is associated with the development of cathode sheaths during the voltage pulse.

  18. Atmospheric Radiation Measurement Program facilities newsletter, April 2000

    SciTech Connect

    Sisterson, D. L.

    2000-05-05

    This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

  19. Pegasus II experiments and plans for the Atlas pulsed power facility

    SciTech Connect

    Shlachter, J.S.; Adams, P.J.; Atchison, W.L.

    1997-09-01

    Atlas will be a high-energy (36 MJ stored), high-power ({approximately} 10 TW) pulsed power driver for high energy-density experiments, with an emphasis on hydrodynamics. Scheduled for completion in late 1999, Atlas is designed to produce currents in the 40-50 MA range with a quarter-cycle time of 4-5 {mu}s. It will drive implosions of heavy liners (typically 50 g) with implosion velocities exceeding 20 mm/{mu}s. Under these conditions very high pressures and magnetic fields are produced. Shock pressures in the 50 Mbar range and pressures exceeding 10 Mbar in an adiabatic compression will be possible. By performing flux compression of a seed field, axial magnetic fields in the 2000 T range may be achieved. A variety of concepts have been identified for the first experimental campaigns on Atlas. These experiments include Rayleigh-Taylor instability studies, convergent (e.g., Bell-Plesset type) instability studies, material strength experiments at very high strain and strain rate, hydrodynamic flows in 3-dimensional geometries, equation of state measurements along the hugoniot and adiabats, transport and shock propagation in dense strongly-coupled plasmas, and atomic and condensed matter studies employing ultra-high magnetic fields. Experimental configurations, associated physics issues, and diagnostic strategies are all under investigation as the design of the Atlas facility proceeds. Near-term proof-of-principle experiments employing the smaller Pegasus II capacitor bank have been identified, and several of these experiments have not been performed. This paper discusses a number of recent Pegasus II experiments and identifies several areas of research presently planned on Atlas.

  20. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  1. Single-cycle Terahertz Pulses with >0.2 V/A Field Amplitudes via Coherent Transition Radiation

    SciTech Connect

    Daranciang, Dan; Goodfellow, John; Fuchs, Matthias; Wen, Haidan; Ghimire, Shambhu; Reis, David A.; Loos, Henrik; Fisher, Alan S.; Lindenberg, Aaron M.; /Stanford U. Materials Sci. Dept. /SIMES, Stanford /SLAC, PULSE

    2012-02-15

    We demonstrate terahertz pulses with field amplitudes exceeding 0.2 V/{angstrom} generated by coherent transition radiation. Femtosecond, relativistic electron bunches generated at the Linac Coherent Light Source are passed through a beryllium foil, and the emitted radiation is characterized as a function of the bunch duration and charge. Broadband pulses centered at a frequency of 10 THz with energies of 140 {mu}J are measured. These far-below-bandgap pulses drive a nonlinear optical response in a silicon photodiode, with which we perform nonlinear autocorrelations that yield information regarding the terahertz temporal profile. Simulations of the spatiotemporal profile agree well with experimental results.

  2. A comparative radiation study at ALBA synchrotron facility between Monte Carlo modeling and radiation monitors dosimetry measurements

    NASA Astrophysics Data System (ADS)

    Devienne, A.; Aymerich, N.; García-Fusté, M. J.; Queralt, X.

    2015-11-01

    ALBA is the Spanish synchrotron facility formed with a 3 GeV electron synchrotron accelerator generating bright beams of synchrotron radiation, located in Cerdanyola del Vallès (Spain). The aim of this work is to study the origin of the radiation produced inside and outside the optical hutch of BOREAS beamline, an experimental station dedicated to study the resonant absorption and scattering of the photons. The objective is to characterize the radiation at the beamline, evaluating in particular the solid bremsstrahlung component of the radiation. The results are obtained after comparing radiation monitors detectors data with Monte Carlo modeling (FLUKA), giving the characteristics of the shielding required to consider the outside of the hutch as a public zone.

  3. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    SciTech Connect

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  4. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  5. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  6. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  7. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  8. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  9. Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system

    SciTech Connect

    Browning, D.; Crane, J. K.; Dane, C. B.; Hackel; Henesian, M.; Hopps, N. W.; Martinez, M. D.; Moran, B.; Penko, F.; Rothenberg, J. E.; Wilcox, R. B.

    1998-07-31

    We describe the Optical Pulse Generation (OPG) testbed, which is the integration of the MOR and Preamplifier Development Laboratories. We use this OPG testbed to develop and demonstrate the overall capabilites of the NIF laser system front end. We will present the measured energy and power output, temporal and spatial pulse shaping capability, FM bandwidth and dispersion for beam smoothing, and measurements of the pulse-to-pulse power variation of the OPG system and compare these results with the required system performance specifications. We will discuss the models that are used to predict the system performance and how the OPG output requirements flowdown to the subordinate subsystems within the OPG system.

  10. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.