Science.gov

Sample records for pulse-wave velocity measurement

  1. Arterial compliance probe for local blood pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Arterial compliance and vessel wall dynamics are significant in vascular diagnosis. We present the design of arterial compliance probes for measurement of local pulse wave velocity (PWV). Two designs of compliance probe are discussed, viz (a) a magnetic plethysmograph (MPG) based probe, and (b) a photoplethysmograph (PPG) based probe. The ability of the local PWV probes to consistently capture carotid blood pulse waves is verified by in-vivo trials on few volunteers. The probes could reliably perform repeatable measurements of local PWV from carotid artery along small artery sections less than 20 mm. Further, correlation between the measured values of local PWV using probes and various measures of blood pressure (BP) was also investigated. The study indicates that such arterial compliance probes have strong potential in cuff less BP monitoring. PMID:26737589

  2. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement

    PubMed Central

    Li, Yanlu; Segers, Patrick; Dirckx, Joris; Baets, Roel

    2013-01-01

    Pulse wave velocity (PWV) is an important marker for cardiovascular risk. The Laser Doppler vibrometry has been suggested as a potential technique to measure the local carotid PWV by measuring the transit time of the pulse wave between two locations along the common carotid artery (CCA) from skin surface vibrations. However, the present LDV setups are still bulky and difficult to handle. We present in this paper a more compact LDV system integrated on a CMOS-compatible silicon-on-insulator substrate. In this system, a chip with two homodyne LDVs is utilized to simultaneously measure the pulse wave at two different locations along the CCA. Measurement results show that the dual-LDV chip can successfully conduct the PWV measurement. PMID:23847745

  3. Noninvasive Method for Measuring Local Pulse Wave Velocity by Dual Pulse Wave Doppler: In Vitro and In Vivo Studies

    PubMed Central

    Wang, Zhen; Yang, Yong; Yuan, Li-jun; Liu, Jie; Duan, Yun-you; Cao, Tie-sheng

    2015-01-01

    Objectives To evaluate the validity and reproducibility of a noninvasive dual pulse wave Doppler (DPWD) method, which involves simultaneous recording of flow velocity of two independent sample volumes with a measurable distance, for measuring the local arterial pulse wave velocity (PWV) through in vitro and in vivo studies. Methods The DPWD mode of Hitachi HI Vision Preirus ultrasound system with a 5–13MHz transducer was used. An in vitro model was designed to compare the PWV of a homogeneous rubber tubing with the local PWV of its middle part measured by DPWD method. In the in vivo study, local PWV of 45 hypertensive patients (25 male, 49.8±3.1 years) and 45 matched healthy subjects (25 male, 49.3±3.0 years) were investigated at the left common carotid artery (LCCA) by DPWD method. Results In the in vitro study, the local PWV measured by DPWP method and the PWV of the homogeneous rubber tubing did not show statistical difference (5.16 ± 0.28 m/s vs 5.03 ± 0.15 m/s, p = 0.075). The coefficient of variation (CV) of the intra- and inter- measurements for local PWV were 3.46% and 4.96%, for the PWV of the homogeneous rubber tubing were 0.99% and 1.98%. In the in vivo study, a significantly higher local PWV of LCCA was found in the hypertensive patients as compared to that in healthy subjects (6.29±1.04m/s vs. 5.31±0.72m/s, P = 0.019). The CV of the intra- and inter- measurements in hypertensive patients were 2.22% and 3.94%, in healthy subjects were 2.07% and 4.14%. Conclusions This study demonstrated the feasibility of the noninvasive DPWD method to determine the local PWV, which was accurate and reproducible not only in vitro but also in vivo studies. This noninvasive echocardiographic method may be illuminating to clinical use. PMID:25786124

  4. Influence of timing algorithm on brachialankle pulse wave velocity measurement.

    PubMed

    Sun, Xin; Li, Ke; Ren, Hongwei; Li, Peng; Wang, Xinpei; Liu, Changchun

    2014-01-01

    The baPWV measurement is a non-invasive and convenient technique in an assessment of arterial stiffness. Despite its widespread application, the influence of different timing algorithms is still unclear. The present study was conducted to investigate the influence of six timing algorithms (MIN, MAX, D1, D2, MDP and INS) on the baPWV measurement and to evaluate the performance of them. Forty-five CAD patients and fifty-five healthy subjects were recruited in this study. A PVR acquisition apparatus was built up for baPWV measurement. The baPWV and other related parameters were calculated separately by the six timing algorithms. The influence and performance of the six algorithms was analyzed. The six timing algorithms generate significantly different baPWV values (left: F=29.036, P<0.001; right: F=40.076, P<0.001). In terms of reproducibility, the MAX has significantly higher CV value (≥ 18.6%) than the other methods, while the INS has the lowest CV value (≤ 2.7%). On the performance of classification, the INS produces the highest AUC values (left: 0.854; right: 0.872). The MIN and D2 also have a passable performance (AUC > 0.8). The choice of timing algorithm affects baPWV values and the quality of measurement. The INS method is recommended for baPWV measurement. PMID:24211905

  5. Non-contact measurement of pulse wave velocity using RGB cameras

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  6. Pulse wave velocity 24-hour monitoring with one-site measurements by oscillometry

    PubMed Central

    Posokhov, Igor N

    2013-01-01

    This review describes issues for the estimation of pulse wave velocity (PWV) under ambulatory conditions using oscillometric systems. The difference between the principles of measuring the PWV by the standard method and by oscillometry is shown, and information on device validation studies is summarized. It was concluded that currently oscillometry is a method that is very convenient to use in the 24-hour monitoring of the PWV, is relatively accurate, and is reasonably comfortable for the patient. Several indices with the same principles as those in the analysis of blood pressure in ambulatory monitoring of blood pressure, namely the assessment of load, variability, and circadian rhythm, are proposed. PMID:23549868

  7. On the Design of Passive Resonant Circuits to Measure Local Pulse Wave Velocity in a Stent.

    PubMed

    Schächtele, Jonathan

    2016-06-01

    In-stent restenosis is a frequent complication after stent implantation. This article investigates the design of a passive sensor system to be integrated into a stent for the detection of an in-stent restenosis by measuring the local pulse wave velocity (PWV). The proposed system uses two resonant circuits consisting of a capacitive pressure sensor and a coil as transponders. The pressure sensors are located at the proximal and distal end of the stent. An alternating external magnetic field with a constant frequency is applied such that the resonance frequencies of the transponders cross the excitation frequency when the pulse wave passes. The time delay between the resonances at the transponders can be captured to obtain the PWV. A model for the measurement system and a correlation between transponder design parameters and minimal resolvable time delay are derived. This correlation is based on the criterion that the 3 dB bandwidth of the transponder resonances may not overlap in the measurement time interval. This correlation can be used to design and analyze a transponder system for the proposed measurement system. In an experiment, in which the pressure sensors have been emulated by varactor diodes, it could be shown that the model is valid and that the criterion is suitable. Finally, the relevant design parameters of the transponders have been identified and their limitations investigated. PMID:26800547

  8. Repeatability of non-invasive measurement of intracerebral pulse wave velocity using transcranial Doppler.

    PubMed

    Gladdish, Sarah; Manawadu, Dulka; Banya, Winston; Cameron, James; Bulpitt, Christopher J; Rajkumar, Chakravarthi

    2005-05-01

    In the present study, the repeatability of three techniques for measuring peripheral PWV (pulse wave velocity) has been studied. A transcranial Doppler provided a wave reading from the middle cerebral artery. Using the transit time between the R-wave of an ECG and the 'foot' of this wave we were able to calculate a PWV (PWV-brain). An ear clip transducer provided a pressure wave reading (PWV-ear). A third pressure reading came from a Finapres transducer on the left middle finger (PWV-finger). The PWV was calculated as distance between two points/transit time of the pulse wave. Eleven volunteers had three sets of readings averaged for each technique taken in two separate sessions. There was good agreement between observers for the mean PWV values, and good agreement for mean results in different sessions. The RC%s (repeatability coefficient percentages) for between-observer repeatability in each session were good and approximately equivalent for PWV-finger (5-7%) and PWV-brain (5-7%). The repeatability of the PWV-ear measurement was less satisfactory (8-18%). The RC% for the same observer between sessions was less good, being 11% for the PWV-finger, 16-17% for PWV-brain and 11-19% for PWV-ear. The RC%s for the inter-session inter-observer measurements were between 10.7-12.1% for the PWV-finger, 14.7-19.5% for PWV-brain and 8.3-15% for PWV-ear. The transit time RC%s were lower in most measurements. The between-observer repeatability of all measures was satisfactory. Owing to the less good repeatability on different occasions, the use of PWV-brain and PWV-ear will depend on the magnitude of differences to be expected. PMID:15656782

  9. A simplified measurement of pulse wave velocity is not inferior to standard measurement in young adults and children.

    PubMed

    Edgell, Heather; Stickland, Michael K; MacLean, Joanna E

    2016-06-01

    The standard measurement of pulse wave velocity (PWV) is restricted by the need for simultaneous tonometry measurements requiring two technicians and expensive equipment, limiting this technique to well-resourced settings. In this preliminary study, we compared a simplified method of pulse wave detection from the finger and toe to pulse wave detection from the carotid and radial arteries using applanation tonometry in children and young adults. We hypothesized that the simplified method of PWV measurement would strongly correlate with the standard measurement in different age groups and oxygen conditions. Participants included (a) boys and girls aged 8-12 years and (b) men and women aged 18-40 years. Participants rested supine while carotid and radial artery pulse waves were measured using applanation tonometry and finger and toe pulse waves were simultaneously collected using a Finometer Midi and a piezo-electric pulse transducer, respectively. These measurements were repeated under hypoxic conditions. Finger-toe PWV measurements were strongly correlated to carotid-radial PWV in adults (R=0.58; P=0.011), but not in children (R=0.056; P=0.610). Finger-toe PWV was sensitive enough to show increases in PWV with age (P<0.0001) and hypoxia in children (P<0.0001) and adults (P=0.003). These results indicate that the simplified measurement of finger-toe PWV strongly correlates with the standard measurement of carotid-radial PWV in adults, but not in children. However, finger-toe PWV can be used in either population to determine changes with hypoxia. PMID:26905286

  10. Measurements of Wall Shear Stress and Aortic Pulse Wave Velocity in Swine with Familial Hypercholesterolemia

    PubMed Central

    Wentland, Andrew L.; Wieben, Oliver; Shanmuganayagam, Dhanansayan; Krueger, Christian G.; Meudt, Jennifer J.; Consigny, Daniel; Rivera, Leonardo; McBride, Patrick E.; Reed, Jess D.; Grist, Thomas M.

    2014-01-01

    PURPOSE To assess measurements of pulse wave velocity (PWV) and wall shear stress (WSS) in a swine model of atherosclerosis. MATERIALS AND METHODS Nine familial hypercholesterolemic (FH) swine with angioplasty balloon catheter-induced atherosclerotic lesions to the abdominal aorta (injured group) and ten uninjured FH swine were evaluated with a 4D phase contrast (PC) MRI acquisition, as well as with radial and Cartesian 2D PC acquisitions, on a 3T MR scanner. PWV values were computed from the 2D and 4D PC techniques, compared between the injured and uninjured swine, and were validated against reference standard pressure probe-based PWV measurements. WSS values were also computed from the 4D PC MRI technique and compared between injured and uninjured groups. RESULTS PWV values were significantly greater in the injured than in the uninjured groups with the 4D PC MRI technique (p=0.03) and pressure probes (p=0.02). No significant differences were found in PWV between groups using the 2D PC techniques (p=0.75–0.83). No significant differences were found for WSS values between the injured and uninjured groups. CONCLUSION The 4D PC MRI technique provides a promising means of evaluating PWV and WSS in a swine model of atherosclerosis, providing a potential platform for developing the technique for the early detection of atherosclerosis. PMID:24964097

  11. Pulse Wave Velocity and Cardiac Output vs. Heart Rate in Patients with an Implanted Pacemaker Based on Electric Impedance Method Measurement

    NASA Astrophysics Data System (ADS)

    Soukup, Ladislav; Vondra, Vlastimil; Viščor, Ivo; Jurák, Pavel; Halámek, Josef

    2013-04-01

    The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.

  12. Measurement of internal diameter changes and pulse wave velocity in fetal descending aorta using the ultrasonic phased-tracking method in normal and growth-restricted fetuses.

    PubMed

    Miyashita, Susumu; Murotsuki, Jun; Muromoto, Jin; Ozawa, Katsusuke; Yaegashi, Nobuo; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-05-01

    Phased tracking (PT) is an ultrasound-based technique that enables precise measurement of a target velocity. The aims of this study were to use PT to evaluate arterial pulse waveform, pulse wave velocity and fetal pulse pressure in normal and growth-restricted fetuses. One hundred fetuses with normal development and 15 fetuses with growth restriction were analyzed. Ultrasonic raw radiofrequency signals were captured from a direction perpendicular to the vascular axis at the fetal diaphragmatic level for the difference in internal dimensions (DID), or simultaneously from different directions for the pulse wave velocity. Pulsatile movement of the proximal and distal intima of the vessels was analyzed using PT. The fetal DID exhibited no significant changes in growth-restricted fetuses. Pulse wave velocity (3.8 ± 0.32 m/s vs. 2.2 ± 0.069 m/s, p < 0.001) and estimated pulse pressure (6.9 ± 0.90 kPa vs. 2.5 ± 0.18 kPa, p < 0.001) were significantly elevated in growth-restricted fetuses. Assessment of DID and pulse wave velocity of the descending aorta using PT is a feasible, non-invasive approach to evaluation of fetal hemodynamics. PMID:25727918

  13. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses.

    PubMed

    Davies, Justine Ina; Struthers, Allan D

    2003-03-01

    The study of the pulse using the technique of applanation tonometry is undergoing a resurgence with the development of new computerized equipment. We aim here to present a critical review of the uses, potential uses, strengths and weaknesses of the technique of applanation tonometry for the assessment of augmentation index and pulse wave velocity. We will review the technique of applanation tonometry, the physiological factors affecting pulse wave velocity and pulse wave analysis, the changes in pulse wave velocity and pulse wave analysis with pharmacological interventions, and the use of the technique of applanation tonometry as a prognostic tool. We conclude that, although the technique of applanation tonometry initially seems promising, several pertinent issues need to be addressed before it can be used reliably as a clinical or research tool. Importantly, use of the technique of applanation tonometry to derive the central waveform from non-invasively acquired peripheral data needs to be validated prospectively. PMID:12640232

  14. Brachial-Ankle Pulse Wave Velocity: Myths, Misconceptions, and Realities

    PubMed Central

    Sugawara, Jun; Tanaka, Hirofumi

    2015-01-01

    A variety of techniques to evaluate central arterial stiffness have been developed and introduced. None of these techniques, however, have been implemented widely in regular clinical settings, except for brachial-ankle pulse wave velocity (baPWV). The most prominent procedural advantage of baPWV is its ease of use, since it only requires the wrapping of blood pressure cuffs on the 4 extremities. There is mounting evidence indicating the ability of baPWV to predict the risk of future cardiovascular events and total mortality. Additionally, the guidelines for the management of hypertension in Japan recommended the measurement of baPWV be included in the assessment of subclinical target organ damage. However, baPWV has not been fully accepted worldwide due to perceived theoretical and methodological issues. In this review, we address the most frequently mentioned questions and concerns regarding baPWV to shed some light on this simple and easy arterial stiffness measurement. PMID:26587459

  15. Temporal pattern of pulse wave velocity during brachial hyperemia reactivity

    NASA Astrophysics Data System (ADS)

    Graf, S.; Valero, M. J.; Craiem, D.; Torrado, J.; Farro, I.; Zócalo, Y.; Valls, G.; Bía, D.; Armentano, R. L.

    2011-09-01

    Endothelial function can be assessed non-invasively with ultrasound, analyzing the change of brachial diameter in response to transient forearm ischemia. We propose a new technique based in the same principle, but analyzing a continuous recording of carotid-radial pulse wave velocity (PWV) instead of diameter. PWV was measured on 10 healthy subjects of 22±2 years before and after 5 minutes forearm occlusion. After 59 ± 31 seconds of cuff release PWV decreased 21 ± 9% compared to baseline, reestablishing the same after 533 ± 65 seconds. There were no significant changes observed in blood pressure. When repeating the study one hour later in 5 subjects, we obtained a coefficient of repeatability of 4.8%. In conclusion, through analysis of beat to beat carotid-radial PWV it was possible to characterize the temporal profiles and analyze the acute changes in response to a reactive hyperemia. The results show that the technique has a high sensitivity and repeatability.

  16. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI.

    PubMed

    Markl, Michael; Wallis, Wolf; Brendecke, Stefanie; Simon, Jan; Frydrychowicz, Alex; Harloff, Andreas

    2010-06-01

    The aim of this study was to determine the value of flow-sensitive four-dimensional MRI for the assessment of pulse wave velocity as a measure of vessel compliance in the thoracic aorta. Findings in 12 young healthy volunteers were compared with those in 25 stroke patients with aortic atherosclerosis and an age-matched normal control group (n = 9). Results from pulse wave velocity calculations incorporated velocity data from the entire aorta and were compared to those of standard methods based on flow waveforms at only two specific anatomic landmarks. Global aortic pulse wave velocity was higher in patients with atherosclerosis (7.03 +/- 0.24 m/sec) compared to age-matched controls (6.40 +/- 0.32 m/sec). Both were significantly (P < 0.001) increased compared to younger volunteers (4.39 +/- 0.32 m/sec). Global aortic pulse wave velocity in young volunteers was in good agreement with previously reported MRI studies and catheter measurements. Estimation of measurement inaccuracies and error propagation analysis demonstrated only minor uncertainties in measured flow waveforms and moderate relative errors below 16% for aortic compliance in all 46 subjects. These results demonstrate the feasibility of pulse wave velocity calculation based on four-dimensional MRI data by exploiting its full volumetric coverage, which may also be an advantage over standard two-dimensional techniques in the often-distorted route of the aorta in patients with atherosclerosis. PMID:20512861

  17. A pilot study comparison of a new method for aortic pulse wave velocity measurements using transthoracic bioimpedance and thigh cuff oscillometry with the standard tonometric method.

    PubMed

    Brinkmann, Julia; Jordan, Jens; Tank, Jens

    2015-04-01

    Aortic pulse wave velocity (aPWV) can be measured with different methodologies, including applanation tonometry. These pilot study findings suggest that impedance cardiography combined with thigh oscillometry provides comparable results. Intra- and inter-observer variability was tested by two observers in two subjects. We instrumented 41 patients and 12 healthy normotensive controls for impedance cardiography and consecutive applanation tonometry and compared methods using the Bland-Altman method. Observer variability for the impedance-thigh cuff method (range, 3.61%-7.77%) was comparable with the tonometric method (range, 2.93%-7.37%). Comparison of the two methods based on the Bland-Altman plot revealed a good agreement between methods. The bias between impedance and tonometric measurements was -0.28 ± 0.37 m/s. Both measurements were significantly correlated (r(2) = 0.94; P < .0001; slope = 1.038).Impedance cardiography combined with thigh oscillometry is an easy to use approach which, in addition to providing hemodynamic information, yields aPWV measurements comparable to applanation tonometry. Following full validation according to current guidelines, the methodology could prove useful in cardiovascular risk stratification. PMID:25816714

  18. Human Pulse Wave Measurement by MEMS Electret Condenser Microphone

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi

    A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.

  19. Weight Loss, Dietary Intake and Pulse Wave Velocity.

    PubMed

    Petersen, Kristina; Blanch, Natalie; Keogh, Jennifer; Clifton, Peter

    2015-09-01

    We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials. PMID:26587462

  20. Weight Loss, Dietary Intake and Pulse Wave Velocity

    PubMed Central

    Petersen, Kristina; Blanch, Natalie; Keogh, Jennifer; Clifton, Peter

    2015-01-01

    We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials. PMID:26587462

  1. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-03-01

    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  2. Estimation of local pulse wave velocity using arterial diameter waveforms: Experimental validation in sheep

    NASA Astrophysics Data System (ADS)

    Graf, S.; Craiem, D.; Barra, J. G.; Armentano, R. L.

    2011-12-01

    Increased arterial stiffness is associated with an increased risk of cardiovascular events. Estimation of arterial stiffness using local pulse wave velocity (PWV) promises to be very useful for noninvasive diagnosis of arteriosclerosis. In this work we estimated in an instrumented sheep, the local aortic pulse wave velocity using two sonomicrometry diameter sensors (separated 7.5 cm) according to the transit time method (PWVTT) with a sampling rate of 4 KHz. We simultaneously measured aortic pressure in order to determine from pressure-diameter loops (PWVPDLoop), the "true" local aortic pulse wave velocity. A pneumatic cuff occluder was implanted in the aorta in order to compare both methods under a wide range of pressure levels. Mean pressure values ranged from 47 to 101 mmHg and mean proximal diameter values from 12.5. to 15.2 mm. There were no significant differences between PWVTT and PWVPDLoop values (451±43 vs. 447±48 cm/s, p = ns, paired t-test). Both methods correlated significantly (R = 0.81, p<0.05). The mean difference between both methods was only -4±29 cm/s, whereas the range of the limits of agreement (mean ± 2 standard deviation) was -61 to +53 cm/s, showing no trend. In conclusion, the diameter waveforms transit time method was found to allow an accurate and precise estimation of the local aortic PWV.

  3. Duration of Diabetes Predicts Aortic Pulse Wave Velocity and Vascular Events in Alström Syndrome

    PubMed Central

    Smith, Jamie; Carey, Catherine; Barrett, Timothy; Campbell, Fiona; Maffei, Pietro; Marshall, Jan D.; Paisey, Christopher; Steeds, Richard P.; Edwards, Nicola C.; Bunce, Susan; Geberhiwot, Tarekegn

    2015-01-01

    Context: Alström syndrome is characterized by increased risk of cardiovascular disease from childhood. Objective: To explore the association between risk factors for cardiovascular disease, aortic pulse wave velocity, and vascular events in Alström syndrome. Design: Cross-sectional analyses with 5-year follow-up. Setting: The UK NHS nationally commissioned specialist clinics for Alström syndrome. Patients: Thirty-one Alström patients undertook vascular risk assessment, cardiac studies, and aortic pulse wave velocity measurement. Subsequent clinical outcomes were recorded. Interventions: Insulin resistance was treated with lifestyle intervention and metformin, and diabetes with the addition of glitazones, glucagon-like peptide 1 agonists, and/or insulin. Thyroid and T deficiencies were corrected. Dyslipidemia was treated with statins and nicotinic acid derivatives. Cardiomyopathy was treated with standard therapy as required. Main Outcome Measures: The associations of age, gender, and risk factors for cardiovascular disease with aortic pulse wave velocity were assessed and correlated with the effects of reduction in left ventricular function. Vascular events were monitored for 5 years. Results: Aortic pulse wave velocity was positively associated with the duration of diabetes (P = .001) and inversely with left ventricular ejection fraction (P = .036). Five of the cohort with cardiovascular events had higher aortic pulse wave velocity (P = .0247), and all had long duration of diabetes. Conclusions: Duration of diabetes predicted aortic pulse wave velocity in Alström syndrome, which in turn predicted cardiovascular events. This offers hope of secondary prevention because type 2 diabetes can be delayed or reversed by lifestyle interventions. PMID:26066530

  4. A method for localized computation of Pulse Wave Velocity in carotid structure.

    PubMed

    Patil, Ravindra B; Krishnamoorthy, P; Sethuraman, Shriram

    2015-08-01

    Pulse Wave Velocity (PWV) promises to be a useful clinical marker for noninvasive diagnosis of atherosclerosis. This work demonstrates the ability to perform localized carotid PWV measurements from the distention waveform derived from the Radio Frequency (RF) ultrasound signal using a carotid phantom setup. The proposed system consists of low cost custom-built ultrasound probe and algorithms for envelope detection, arterial wall identification, echo tracking, distension waveform computation and PWV estimation. The method is proposed on a phantom data acquired using custom-built prototype non-imaging probe. The proposed approach is non-image based and can be seamlessly integrated into existing clinical ultrasound scanners. PMID:26736653

  5. Heart-Carotid Pulse Wave Velocity a Useful Index of Atherosclerosis in Chinese Hypertensive Patients.

    PubMed

    Li, Chunyue; Xiong, Huahua; Pirbhulal, Sandeep; Wu, Dan; Li, Zhenzhou; Huang, Wenhua; Zhang, Heye; Wu, Wanqing

    2015-12-01

    This study was designed to investigate the relationship between heart-carotid pulse wave velocity (hcPWV) and carotid intima-media thickness (CIMT) in hypertensive patients, and also to examine the effect of pre-ejection period (PEP) on it. Doppler ultrasound device was used to measure CIMT in left common carotid artery. Hypertensive patients were divided into normal (n = 36, CIMT ≤0.8 mm) and thickened (n = 31, CIMT > 0.8 mm) group. Electrocardiogram R-wave-based carotid pulse wave velocity (rcPWV) and aortic valve-carotid pulse wave velocity (acPWV) were calculated as the ratio of the travel length to the pulse transit time with or without PEP, respectively. CIMT has significant relations with rcPWV (r = 0.611, P < 0.0001) and acPWV (r = 0.384, P = 0.033) in thickened group. Moreover, CIMT showed stronger correlation with rcPWV than with acPWV in thickened group. Furthermore, both acPWV and rcPWV were determinant factors of CIMT in thickened group, independent of clinical confounders including age, gender, smoking behavior, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total cholesterol, high-density lipoprotein cholesterol, antihypertensive medication, and plaque occurrence. However, similar results were not found in normal group. Since CIMT has been considered as an index of atherosclerosis, our results suggested that both rcPWV and acPWV could be useful indexes of atherosclerosis in thickened CIMT hypertensive patients. Additionally, if hcPWV is computed with heart-carotid pulse transit time, including PEP could improve the accuracy of atherosclerosis assessment in hypertensive patients. PMID:26705228

  6. Ethnic Differences in and Childhood Influences on Early Adult Pulse Wave Velocity

    PubMed Central

    Silva, Maria J.; Molaodi, Oarabile R.; Enayat, Zinat E.; Cassidy, Aidan; Karamanos, Alexis; Read, Ursula M.; Faconti, Luca; Dall, Philippa; Stansfield, Ben; Harding, Seeromanie

    2016-01-01

    Early determinants of aortic stiffness as pulse wave velocity are poorly understood. We tested how factors measured twice previously in childhood in a multiethnic cohort study, particularly body mass, blood pressure, and objectively assessed physical activity affected aortic stiffness in young adults. Of 6643 London children, aged 11 to 13 years, from 51 schools in samples stratified by 6 ethnic groups with different cardiovascular risk, 4785 (72%) were seen again at aged 14 to 16 years. In 2013, 666 (97% of invited) took part in a young adult (21–23 years) pilot follow-up. With psychosocial and anthropometric measures, aortic stiffness and blood pressure were recorded via an upper arm calibrated Arteriograph device. In a subsample (n=334), physical activity was measured >5 days via the ActivPal. Unadjusted pulse wave velocities in black Caribbean and white UK young men were similar (mean±SD 7.9±0.3 versus 7.6±0.4 m/s) and lower in other groups at similar systolic pressures (120 mm Hg) and body mass (24.6 kg/m2). In fully adjusted regression models, independent of pressure effects, black Caribbean (higher body mass/waists), black African, and Indian young women had lower stiffness (by 0.5–0.8; 95% confidence interval, 0.1–1.1 m/s) than did white British women (6.9±0.2 m/s). Values were separately increased by age, pressure, powerful impacts from waist/height, time spent sedentary, and a reported racism effect (+0.3 m/s). Time walking at >100 steps/min was associated with reduced stiffness (P<0.01). Effects of childhood waist/hip were detected. By young adulthood, increased waist/height ratios, lower physical activity, blood pressure, and psychosocial variables (eg, perceived racism) independently increase arterial stiffness, effects likely to increase with age. PMID:27141061

  7. A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound.

    PubMed

    Brands, P J; Willigers, J M; Ledoux, L A; Reneman, R S; Hoeks, A P

    1998-11-01

    Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young's modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young's modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility. PMID:10385955

  8. Association of brachial-ankle pulse wave velocity with cardiovascular risk factors in systemic lupus erythematosus.

    PubMed

    Tso, T K; Huang, W N; Huang, H Y; Chang, C K

    2005-01-01

    Systemic lupus erythematosus (SLE) is associated with premature atherosclerosis. Increasing arterial stiffness is closely associated with atherosclerotic cardiovascular diseases, and pulse wave velocity (PWV) is considered to be an indicator of arterial stiffness. The objective of this study was to identify the relationship between brachial-ankle pulse wave velocity (baPWV) and cardiovascular risk factors in patients with SLE. Age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBS), plasma lipid profile, plasma homocysteine, thiobarbituric acid reactive substances (TBARS), baPWV, ankle-brachial index (ABI), and SLE-related factors were determined in a total of 83 SLE patients (12 males and 71 females). All SLE patients were further classified into two subgroups according to baPWV value (baPWV < 1400 cm/s, n=37 versus baPWV > 1400 cm/s, n=46). The mean baPWV value of studied SLE patients was 1520 +/- 381 cm/s. Age, BMI, SBP, DBP, FBS, TBARS and homocysteine levels were significantly higher in SLE patients with baPWV value > 1400cm/s than in SLE patients with baPWV value < 1400cm/s. In addition, baPWV correlated significantly with age, SBP, DBP, FBS and homocysteine. Moreover, stepwise multiple regression analysis showed that age and SBP were independently associated with baPWV. The results of this study indicate a possible link between vascular stiffness measured by baPWV and cardiovascular risk factors in patients with SLE. PMID:16335579

  9. Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity In Silico

    PubMed Central

    Shahmirzadi, Danial; Konofagou, Elisa E.

    2012-01-01

    Monitoring of the regional stiffening of the arterial wall may prove important in the diagnosis of various vascular pathologies. The pulse wave velocity (PWV) along the aortic wall has been shown to be dependent on the wall stiffness and has played a fundamental role in a range of diagnostic methods. Conventional clinical methods involve a global examination of the pulse traveling between two remote sites, e.g. femoral and carotid arteries, to provide an average PWV estimate. However, the majority of vascular diseases entail regional vascular changes and therefore may not be detected by a global PWV estimate. In this paper, a fluid-structure interaction study of straight-geometry aortas was carried out to examine the effects of regional stiffness changes on PWV. Five homogeneous aortas with increasing wall stiffness as well as two aortas with soft and hard inclusions were considered. In each case, spatio-temporal maps of the wall motion were used to analyze the regional pulse wave propagation. On the homogeneous aortas, increasing PWVs were found to increase with the wall moduli (R2 = 0.9988), indicating the reliability of the model to accurately represent the wave propagation. On the inhomogeneous aortas, formation of reflected and standing waves was observed at the site of the hard and soft inclusions, respectively. Neither the hard nor the soft inclusion had a significant effect on the velocity of the traveling pulse beyond the inclusion site, which supported the hypothesis that a global measurement of the average PWV could fail to detect regional abnormalities. PMID:24235978

  10. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube.

    PubMed

    Stojadinović, Bojana; Tenne, Tamar; Zikich, Dragoslav; Rajković, Nemanja; Milošević, Nebojša; Lazović, Biljana; Žikić, Dejan

    2015-11-26

    The velocity by which the disturbance travels through the medium is the wave velocity. Pulse wave velocity is one of the main parameters in hemodynamics. The study of wave propagation through the fluid-fill elastic tube is of great importance for the proper biophysical understanding of the nature of blood flow through of cardiovascular system. The effect of viscosity on the pulse wave velocity is generally ignored. In this paper we present the results of experimental measurements of pulse wave velocity (PWV) of compression and expansion waves in elastic tube. The solutions with different density and viscosity were used in the experiment. Biophysical model of the circulatory flow is designed to perform measurements. Experimental results show that the PWV of the expansion waves is higher than the compression waves during the same experimental conditions. It was found that the change in viscosity causes a change of PWV for both waves. We found a relationship between PWV, fluid density and viscosity. PMID:26454712

  11. Reliability assessment for pulse wave measurement using artificial pulse generator.

    PubMed

    Chang, Chi-Wei; Wang, Wei-Kung

    2015-04-01

    This study aimed to assess intrinsic reliabilities of devices for pulse wave measurement (PWM). An artificial pulse generator system was constructed to create a periodic pulse wave. The stability of the periodic output was tested by the DP103 pressure transducer. The pulse generator system was then used to evaluate the TD01C system. Test-re-test and inter-device reliability assessments were conducted on the TD01C system. First, 11 harmonic components of the pulse wave were calculated using Fourier series analysis. For each harmonic component, coefficient of variation (CV), intra-class correlation coefficient (ICC) and Bland-Altman plot were used to determine the degree of reliability of the TD01C system. In addition, device exclusion criteria were pre-specified to improve consistency of devices. The artificial pulse generator system was stable to evaluate intrinsic reliabilities of devices for PWM (ICCs > 0.95, p < 0.001). TD01C was reliable for repeated measurements (ICCs of test-re-test reliability > 0.95, p < 0.001; CVs all < 3%). Device exclusion criteria successfully excluded the device with defect; therefore, the criteria reduced inter-device CVs of harmonics and improved consistency of the selected devices for all harmonic components. This study confirmed the feasibility of intrinsic reliability assessment of devices for PWM using an artificial pulse generator system. Moreover, potential novel findings on the assessment combined with device exclusion criteria could be a useful method to select the measuring devices and to evaluate the qualities of them in PWM. PMID:25693606

  12. An experimental-computational study of catheter induced alterations in pulse wave velocity in anesthetized mice

    PubMed Central

    Cuomo, Federica; Ferruzzi, Jacopo; Humphrey, Jay D.; Figueroa, C. Alberto

    2015-01-01

    Computational methods for solving problems of fluid dynamics and fluid-solid-interactions have advanced to the point that they enable reliable estimates of many hemodynamic quantities, including those important for studying vascular mechanobiology or designing medical devices. In this paper, we use a customized version of the open source code SimVascular to develop a computational model of central artery hemodynamics in anesthetized mice that is informed with experimental data on regional geometries, blood flows and pressures, and biaxial wall properties. After validating a baseline model against available data, we then use the model to investigate the effects of commercially available catheters on the very parameters that they are designed to measure, namely, murine blood pressure and (pressure) pulse wave velocity (PWV). We found that a combination of two small profile catheters designed to measure pressure simultaneously in the ascending aorta and femoral artery increased the PWV due to an overall increase in pressure within the arterial system. Conversely, a larger profile dual-sensor pressure catheter inserted through a carotid artery into the descending thoracic aorta decreased the PWV due to an overall decrease in pressure. In both cases, similar reductions in cardiac output were observed due to increased peripheral vascular resistance. As might be expected, therefore, invasive transducers can alter the very quantities that are designed to measure, yet advanced computational models offer a unique method to evaluate or augment such measurements. PMID:25698526

  13. Assessment of aortic pulse wave velocity by ultrasound: a feasibility study in mice

    NASA Astrophysics Data System (ADS)

    Faita, Francesco; Di Lascio, Nicole; Stea, Francesco; Kusmic, Claudia; Sicari, Rosa

    2014-03-01

    Pulse wave velocity (PWV) is considered a surrogate marker of arterial stiffness and could be useful for characterizing cardiovascular disease progression even in mouse models. Aim of this study was to develop an image process algorithm for assessing arterial PWV in mice using ultrasound (US) images only and test it on the evaluation of age-associated differences in abdominal aorta PWV (aaPWV). US scans were obtained from six adult (7 months) and six old (19 months) wild type male mice (strain C57BL6) under gaseous anaesthesia. For each mouse, diameter and flow velocity instantaneous values were achieved from abdominal aorta B-mode and PW-Doppler images; all measurements were obtained using edge detection and contour tracking techniques. Single-beat mean diameter and velocity were calculated and time-aligned, providing the lnD-V loop. aaPWV values were obtained from the slope of the linear part of the loop (the early systolic phase), while relative distension (relD) measurements were calculated from the mean diameter signal. aaPWV values for young mice (3.5±0.52 m/s) were lower than those obtained for older ones (5.12±0.98 m/s) while relD measurements were higher in young (25%±7%) compared with older animals evaluations (15%±3%). All measurements were significantly different between the two groups (P<0.01 both). In conclusion, the proposed image processing technique well discriminate between age groups. Since it provides PWV assessment just from US images, it could represent a simply and useful system for vascular stiffness evaluation at any arterial site in the mouse, even in preclinical small animal models.

  14. Metabolomic study of carotid–femoral pulse-wave velocity in women

    PubMed Central

    Menni, Cristina; Mangino, Massimo; Cecelja, Marina; Psatha, Maria; Brosnan, Mary J.; Trimmer, Jeff; Mohney, Robert P.; Chowienczyk, Phil; Padmanabhan, Sandosh; Spector, Tim D.; Valdes, Ana M.

    2015-01-01

    Objective: Carotid–femoral pulse-wave velocity (PWV) is a measure of aortic stiffness that is strongly associated with increased risk of cardiovascular morbidity and mortality. The aim of the current study was to identify the molecular markers and the pathways involved in differences in PWV in women, in order to further understand the regulation of arterial stiffening. Methods: A total of 280 known metabolites were measured in 1797 female twins (age range: 18–84 years) not on any antihypertensive medication. Metabolites associated with PWV (after adjustment for age, BMI, metabolite batch, and family relatedness) were entered into a backward linear regression. Transcriptomic analyses were further performed on the top compounds identified. Results: Twelve metabolites were associated with PWV (P < 1.8 × 10−4). One of the most strongly associated metabolites was uridine, which was not associated with blood pressure (BP) and traditional risk factors but correlated significantly with the gene-expression levels of the purinergic receptor P2RY2 (Beta = −0.010, SE = 0.003, P = 0.007), suggesting that it may play a role in regulating endothelial nitric oxide synthase phosphorylation. On the other hand, phenylacetylglutamine was strongly associated with both PWV and BP. Conclusion: Circulating levels of uridine, phenylacetylglutamine, and serine appear strongly correlated with PWV in women. PMID:25490711

  15. Pulse wave velocity correlates with aortic atherosclerosis assessed with transesophageal echocardiography.

    PubMed

    Szmigielski, C; Styczyński, G; Sobczyńska, M; Milewska, A; Placha, G; Kuch-Wocial, A

    2016-02-01

    Aortic pulse wave velocity (PWV) is a noninvasive vascular parameter that is related to cardiovascular risk. We studied the relationship between aortic PWV and aortic atherosclerosis assessed with transesophageal echocardiography (TEE). The patients referred for TEE before electrical cardioversion of atrial fibrillation were included in the study. Maximal intima-media thickness (IMT) including maximal atherosclerotic plaque thickness of the descending thoracic aorta was measured on TEE images. PWV was measured in those patients who had the sinus rhythm restored. Univariable linear regression was used to test associations between the parameters studied. Variables identified by linear regression, as significantly related to PWV, were further analyzed by multivariable linear regression models. We studied 99 patients (57 men, 42 women, mean age 70.4±11.5 years). With univariable regression, we found that PWV was significantly related to IMT (P<0.0001), age (P<0.0001) and pulse pressure (PP, P=0.005). There was no significant relationship between PWV and systolic, diastolic and mean blood pressures, as well as heart rate. The multivariable regression analysis, with all the variables significant in the univariable analysis in the model, showed that only IMT remained significantly related to PWV (P<0.0001, β=0.31), whereas age (P=0.18) and PP (P=0.16) were not. In conclusion, PWV is related to aortic atherosclerosis assessed with TEE independent of age and blood pressure. PMID:25903165

  16. Lifetime risk factors and arterial pulse wave velocity in adulthood: the cardiovascular risk in young Finns study.

    PubMed

    Aatola, Heikki; Hutri-Kähönen, Nina; Juonala, Markus; Viikari, Jorma S A; Hulkkonen, Janne; Laitinen, Tomi; Taittonen, Leena; Lehtimäki, Terho; Raitakari, Olli T; Kähönen, Mika

    2010-03-01

    Limited and partly controversial data are available regarding the relationship of arterial pulse wave velocity and childhood cardiovascular risk factors. We studied how risk factors identified in childhood and adulthood predict pulse wave velocity assessed in adulthood. The study cohort consisted of 1691 white adults aged 30 to 45 years who had risk factor data available since childhood. Pulse wave velocity was assessed noninvasively by whole-body impedance cardiography. The number of conventional childhood and adulthood risk factors (extreme quintiles for low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, body mass index, and smoking) was directly associated with pulse wave velocity in adulthood (P=0.005 and P<0.0001, respectively). In multivariable regression analysis, independent predictors of pulse wave velocity were sex (P<0.0001), age (P<0.0001), childhood systolic blood pressure (P=0.002) and glucose (P=0.02), and adulthood systolic blood pressure (P<0.0001), insulin (P=0.0009), and triglycerides (P=0.003). Reduction in the number of risk factors (P<0.0001) and a favorable change in obesity status (P=0.0002) from childhood to adulthood were associated with lower pulse wave velocity in adulthood. Conventional risk factors in childhood and adulthood predict pulse wave velocity in adulthood. Favorable changes in risk factor and obesity status from childhood to adulthood are associated with lower pulse wave velocity in adulthood. These results support efforts for a reduction of conventional risk factors both in childhood and adulthood in the primary prevention of atherosclerosis. PMID:20083727

  17. Reference Values of Pulse Wave Velocity in Healthy People from an Urban and Rural Argentinean Population

    PubMed Central

    Díaz, Alejandro; Galli, Cintia; Tringler, Matías; Ramírez, Agustín; Cabrera Fischer, Edmundo Ignacio

    2014-01-01

    In medical practice the reference values of arterial stiffness came from multicenter registries obtained in Asia, USA, Australia and Europe. Pulse wave velocity (PWV) is the gold standard method for arterial stiffness quantification; however, in South America, there are few population-based studies. In this research PWV was measured in healthy asymptomatic and normotensive subjects without history of hypertension in first-degree relatives. Normal PWV and the 95% confidence intervals values were obtained in 780 subjects (39.8 ± 18.5 years) divided into 7 age groups (10–98 years). The mean PWV found was 6.84 m/s ± 1.65. PWV increases linearly with aging with a high degree of correlation (r2 = 0.61; P < 0.05) with low dispersion in younger subjects. PWV progressively increases 6–8% with each decade of life; this tendency is more pronounced after 50 years. A significant increase of PWV over 50 years was demonstrated. This is the first population-based study from urban and rural people of Argentina that provides normal values of the PWV in healthy, normotensive subjects without family history of hypertension. Moreover, the age dependence of PWV values was confirmed. PMID:25215227

  18. Investigating the effect of glucose on aortic pulse wave velocity using pancreatic clamping methodology.

    PubMed

    Puzantian, Houry; Teff, Karen; Townsend, Raymond R

    2015-05-01

    Aortic stiffness, determined by carotid-femoral pulse wave velocity (cfPWV), independently predicts cardiovascular outcomes. Recent studies suggest that glucose levels influence arterial stiffness indices. It is not clear, however, whether glucose affects cfPWV independently of glucoregulatory hormones. The aim of this study was to utilize a pancreatic clamping approach to determine whether plasma glucose independently predicts cfPWV. Healthy participants (N = 10) underwent pancreatic clamping to control glucose at varying concentrations using a 20% dextrose infusion while suppressing endogenous glucagon, insulin, and growth hormone by octreotide and replacing the hormones intravenously to achieve basal concentrations. Tonometric cfPWV, blood pressure, heart rate, plasma glucose, glucagon, insulin, growth hormone, and vasoactive biomarkers were measured. Plasma glucose levels of 150 mg/dl at 1 hr and 200 mg/dl at 2 hr postbaseline were achieved. There were no significant changes in cfPWV (5.8 m/s at 0 hr, 5.9 m/s at 1 hr, and 5.9 m/s at 2 hr) with increased glucose levels. There were small increases in insulin secretion. A definitive role for glucose in cfPWV modulation was not determined; there is a potential role for insulin as a cfPWV modulator. Continued efforts in clarifying the independent roles of glucose and insulin can elucidate novel vessel-related targets for cardiovascular disease prevention and management in patients with impaired glucose tolerance and diabetes. PMID:25802385

  19. Carotid-radial pulse wave velocity responses following hyperemia in patients with congestive heart failure.

    PubMed

    Liu, Yang; Beck, Andrew; Olaniyi, Olawale; Singh, Sahib B; Shehaj, Fiona; Mann, Ravi-Inder; Hassan, Syed R; Kamran, Haroon; Salciccioli, Louis; Carter, John; Lazar, Jason M

    2014-10-01

    Carotid-radial pulse wave velocity (PWV) normally decreases following hyperemia and is an indicator of vasodilator reserve. This response is impaired in patients with congestive heart failure (CHF). To identify specific factors related to an impaired response, we studied 50 patients (60 ± 14 years, 67% male) with chronic CHF. Baseline PWV was measured using applanation tonometry and repeated 1 minute after release of upper arm occlusion for 5 minutes. Percentage changes (Δ) of PWV were normally distributed and mean ΔPWV was -2.2 ± 15.3%. On univariate analyses, ΔPWV correlated with New York Heart Association class, mean arterial pressure, log brain natriuretic peptide (BNP) levels, and baseline PWV, but not with left ventricular ejection fraction. Multivariate linear regression analysis demonstrated log BNP levels, mean arterial pressure, and baseline PWV (all P < .05) as independent predictors of ΔPWV. Hyperemia increased PWV in 42% of patients. On logistic regression, higher BNP levels and lower baseline PWV were independent predictors of a PWV increase. Higher BNP levels and lower baseline PWV are independent predictors of an abnormal hyperemic PWV response in patients with CHF. Higher BNP levels may reflect abnormal vasodilator reserve. Forty-two percent of heart failure patients showed an increase in PWV following hyperemia, which may reflect more severe arterial vasodilator impairment. PMID:25418489

  20. Relationship between brachial-ankle pulse wave velocity and metabolic syndrome components in a Chinese population

    PubMed Central

    Zhou, Fang; Zhang, Haifeng; Yao, Wenming; Mei, Hongbin; Xu, Dongjie; Sheng, Yanhui; Yang, Rong; Kong, Xiangqing; Wang, Liansheng; Zou, Jiangang; Yang, Zhijian; Li, Xinli

    2014-01-01

    Abstract The purpose of this study was to assess the relationship between arterial stiffness, as measured by brachial-ankle pulse wave velocity (baPWV), and the presence of the metabolic syndrome (MS) in a Chinese population. A total of 4,445 subjects were enrolled. The prevalence of MS in our study population was 21.7%, 17.2% and 25.6% for the general population, males and females, respectively. With adjustments for age, gender, cigarette smoking, heart rate, total cholesterol, low-density lipoprotein (LDL) cholesterol, and the use of anti-hypertensive drug, the stepwise regression analysis showed that baPWV had a significant relationship with components of MS, including systolic blood pressure (P < 0.001), diastolic blood pressure (P < 0.001), glucose (P < 0.001), high-density lipoprotein (HDL) cholesterol (P  =  0.04), and triglycerides (P < 0.001), but no relationship with waist circumference (P  =  0.25). With an increase in the number of the MS components, baPWV increased significantly both in women and men. This study indicated that the MS is indeed a risk factor for arterial stiffness. Monitoring of baPWV in patients with MS may help in identifying persons at high risk for cardiovascular disease. PMID:25050109

  1. Brachial-Ankle Pulse Wave Velocity: Background, Method, and Clinical Evidence

    PubMed Central

    Munakata, Masanori

    2016-01-01

    Background The populations of many developed countries are becoming progressively older. In aged societies, assessment of total vascular risk is critically important, because old age is usually associated with multiple risks. In this regard, pulse wave velocity (PWV) could be a global cardiovascular marker, since it increases with advancing age, high blood pressure, hyperglycaemia, and other traditional risks, summating cardiovascular risks. Carotid-femoral PWV has been widely applied in Western countries and has been used as a gold-standard PWV measure. However, this measure has never been implemented by general practitioners in Japan, possibly because of methodological difficulties. The life expectancy of Japanese people is now the highest in the world, and the establishment of an adequate total vascular risk measure is an urgent need. Against this background, brachial-ankle PWV was developed at the beginning of this century. Summary Measurement of this parameter is easy, and its reproducibility is good. Moreover, the generality of the methodology is guaranteed. Brachial-ankle PWV has been reported to consistently increase with most traditional cardiovascular risk factors except dyslipidaemia. A meta-analysis of cohort studies including various levels of risk has shown that a 1 m/s increase in brachial-ankle PWV is associated with a 12% increase in the risk of cardiovascular events. Moreover, simultaneous evaluation of the ankle-brachial index could allow further risk stratification of high-risk individuals, who are common in aged societies. This unique feature is indispensable for the management of aged populations, who usually are exposed to multiple risks and have polyvascular diseases. This evidence, however, is chiefly derived from East Asian countries. The collection of data from Caucasian populations, therefore, remains a task for the future. Key Message Brachial-ankle PWV has the potential to become a measure of arterial stiffness worldwide. PMID:27195241

  2. Carotid Intima-Media Thickness and Pulse Wave Velocity After Recovery From Kawasaki Disease

    PubMed Central

    Lee, Soo Jin; Ahn, Hye Mi; You, Jung Hyun

    2009-01-01

    Background and Objectives Kawasaki disease (KD) is an acute inflammatory process affecting the arterial walls that results in panvasculitis. Recent studies have shown that even after resolution of the disease, endothelial dysfunction persists and may progress to atherosclerosis. The pulse wave velocity (PWV) and the ankle-brachial index (ABI) are simple and non-invasive methods for evaluating the degree of atherosclerosis, and are known as the predictors of cardiovascular disease in adults. Carotid intima-media thickness (cIMT) is also known as a predictor of cardiovascular disease. We conducted this study to determine the change in arterial stiffness by measuring the PWV, ABI, and cIMT in children who have recovered from KD. Subjects and Methods Twenty-five patients with KD and coronary aneurysm were recruited. They all recovered from KD and were normal for more than 8 years. Fifty-five healthy children were evaluated as the control group. Their height, weight, body mass index, and blood pressure (systolic, diastolic, and the mean) were measured. The PWV, ABI, ejection time (ET), and pre-ejection period (PEP) were measured by ultrasonography. The cIMT was measured by ultrasonography. Results The left brachial ankle PWV was significantly higher in the KD group (1020.6±146.5 cm/sec) than the control group (984.0±96.5 cm/sec). The ABI did not differ between the two groups. There was no difference in PEP/ET and cIMT. Conclusion The PWV in children who recovered from KD was higher than the control group. Long-term follow up is necessary in children after recovery from KD even if there is no abnormality in echocardiography. PMID:19949610

  3. Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease

    PubMed Central

    Graham, Michael R; Evans, Peter; Davies, Bruce; Baker, Julien S

    2008-01-01

    Blood pressure (BP) measurements provide information regarding risk factors associated with cardiovascular disease, but only in a specific artery. Arterial stiffness (AS) can be determined by measurement of arterial pulse wave velocity (APWV). Separate from any role as a surrogate marker, AS is an important determinant of pulse pressure, left ventricular function and coronary artery perfusion pressure. Proximal elastic arteries and peripheral muscular arteries respond differently to aging and to medication. Endogenous human growth hormone (hGH), secreted by the anterior pituitary, peaks during early adulthood, declining at 14% per decade. Levels of insulin-like growth factor-I (IGF-I) are at their peak during late adolescence and decline throughout adulthood, mirror imaging GH. Arterial endothelial dysfunction, an accepted cause of increased APWV in GH deficiency (GHD) is reversed by recombinant human (rh) GH therapy, favorably influencing the risk for atherogenesis. APWV is a noninvasive method for measuring atherosclerotic and hypertensive vascular changes increases with age and atherosclerosis leading to increased systolic blood pressure and increased left ventricular hypertrophy. Aerobic exercise training increases arterial compliance and reduces systolic blood pressure. Whole body arterial compliance is lowered in strength-trained individuals. Homocysteine and C-reactive protein are two inflammatory markers directly linked with arterial endothelial dysfunction. Reviews of GH in the somatopause have not been favorable and side effects of treatment have marred its use except in classical GHD. Is it possible that we should be assessing the combined effects of therapy with rhGH and rhIGF-I? Only multiple intervention studies will provide the answer. PMID:19337549

  4. Brachial-ankle pulse wave velocity as a predictor of mortality in elderly Chinese.

    PubMed

    Sheng, Chang-Sheng; Li, Yan; Li, Li-Hua; Huang, Qi-Fang; Zeng, Wei-Fang; Kang, Yuan-Yuan; Zhang, Lu; Liu, Ming; Wei, Fang-Fei; Li, Ge-Le; Song, Jie; Wang, Shuai; Wang, Ji-Guang

    2014-11-01

    Pulse wave velocity (PWV) is a measure of arterial stiffness and predicts cardiovascular events and mortality in the general population and various patient populations. In the present study, we investigated the predictive value of brachial-ankle PWV for mortality in an elderly Chinese population. Our study subjects were older (≥60 years) persons living in a suburban town of Shanghai. We measured brachial-ankle PWV using an automated cuff device at baseline and collected vital information till June 30, 2013, during follow-up. The 3876 participants (1713 [44.2%] men; mean [±SD] age, 68.1±7.3 years) included 2292 (59.1%) hypertensive patients. PWV was on average 17.8 (±4.0) m/s and was significantly (P<0.0001) associated with age (r=0.48) and in unadjusted analysis with all-cause (n=316), cardiovascular (n=148), stroke (n=46), and noncardiovascular mortality (n=168) during a median follow-up of 5.9 years. In further adjusted analysis, we studied the risk of mortality according to the decile distributions of PWV. Only the subjects in the top decile (23.3-39.3 m/s) had a significantly (P≤0.003) higher risk of all-cause mortality (hazard ratio relative to the whole study population, 1.56; 95% confidence interval, 1.16-2.08), especially in hypertensive patients (hazard ratio, 1.86; 95% confidence interval, 1.31-2.64; P=0.02 for the interaction between PWV and hypertension). Similar trends were observed for cardiovascular, stroke, and noncardiovascular mortality, although statistical significance was not reached (P≥0.08). In conclusion, brachial-ankle PWV predicts mortality in elderly Chinese on the conditions of markedly increased PWV and hypertension. PMID:25259749

  5. Platelet to Lymphocyte Percentage Ratio Is Associated With Brachial-Ankle Pulse Wave Velocity in Hemodialysis.

    PubMed

    Chen, Szu-Chia; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Mai, Hsiu-Chin; Su, Ho-Ming; Chang, Jer-Ming; Chen, Hung-Chun

    2016-02-01

    Increased arterial stiffness in patients receiving hemodialysis (HD) is highly prevalent and is associated with cardiovascular morbidity and mortality. In HD, inflammation is one of the major causes of increased arterial stiffness. Activation of platelets and decreased lymphocyte percentage (LYMPH%) may exhibit inflammation. The aim of this study is to examine the relationship between platelet to LYMPH% ratio and arterial stiffness in HD patients.A total of 220 patients receiving HD were enrolled in this study. The brachial-ankle pulse wave velocity (baPWV) was measured using an ankle-brachial index form device. Multivariate linear regression analysis was performed to investigate the relations of the platelet to LYMPH% ratio and baPWV. The value of the platelet to LYMPH% ratio was 59.2 ± 33.3 (10 cells/L/%). After multivariate stepwise analysis, diabetes (β: 163.973, P = 0.02), high systolic blood pressure (per 1 mm Hg, β: 9.010, P < 0.001), high platelet to LYMPH% ratio (per 10 cells/L/%, β: 3.334, P < 0.01), and low albumin (per 0.1 mg/dL, β: -55.912, P < 0.001) were independently associated with an increased baPWV. Furthermore, high white blood cells (per 10 cells/L, β: 3.941, P < 0.001), high neutrophil percentage (per 1%, β: 1.144, P < 0.001), and high CRP (per 1 mg/L, β: 9.161, P = 0.03) were independently associated with an increased platelet to LYMPH% ratio.An increased platelet to LYMPH% ratio is associated with an increased baPWV in HD patients. An easy and inexpensive laboratory measure of platelet to LYMPH% ratio may provide an important information regarding arterial stiffness in patients with HD. PMID:26871812

  6. Platelet to Lymphocyte Percentage Ratio Is Associated With Brachial–Ankle Pulse Wave Velocity in Hemodialysis

    PubMed Central

    Chen, Szu-Chia; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Mai, Hsiu-Chin; Su, Ho-Ming; Chang, Jer-Ming; Chen, Hung-Chun

    2016-01-01

    Abstract Increased arterial stiffness in patients receiving hemodialysis (HD) is highly prevalent and is associated with cardiovascular morbidity and mortality. In HD, inflammation is one of the major causes of increased arterial stiffness. Activation of platelets and decreased lymphocyte percentage (LYMPH%) may exhibit inflammation. The aim of this study is to examine the relationship between platelet to LYMPH% ratio and arterial stiffness in HD patients. A total of 220 patients receiving HD were enrolled in this study. The brachial–ankle pulse wave velocity (baPWV) was measured using an ankle–brachial index form device. Multivariate linear regression analysis was performed to investigate the relations of the platelet to LYMPH% ratio and baPWV. The value of the platelet to LYMPH% ratio was 59.2 ± 33.3 (109 cells/L/%). After multivariate stepwise analysis, diabetes (β: 163.973, P = 0.02), high systolic blood pressure (per 1 mm Hg, β: 9.010, P < 0.001), high platelet to LYMPH% ratio (per 109 cells/L/%, β: 3.334, P < 0.01), and low albumin (per 0.1 mg/dL, β: −55.912, P < 0.001) were independently associated with an increased baPWV. Furthermore, high white blood cells (per 109 cells/L, β: 3.941, P < 0.001), high neutrophil percentage (per 1%, β: 1.144, P < 0.001), and high CRP (per 1 mg/L, β: 9.161, P = 0.03) were independently associated with an increased platelet to LYMPH% ratio. An increased platelet to LYMPH% ratio is associated with an increased baPWV in HD patients. An easy and inexpensive laboratory measure of platelet to LYMPH% ratio may provide an important information regarding arterial stiffness in patients with HD. PMID:26871812

  7. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers

    PubMed Central

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m2, had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab® device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens® algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for “24-hour”, “awake”, and “asleep” periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects. PMID:24812515

  8. Aging Index using Photoplethysmography for a Healthcare Device: Comparison with Brachial-Ankle Pulse Wave Velocity

    PubMed Central

    Hong, Kyung Soon; Park, Kyu Tae

    2015-01-01

    Objectives Recent studies have emphasized the potential information embedded in peripheral fingertip photoplethysmogram (PPG) signals for the assessment of arterial wall stiffening during aging. For the discrimination of arterial stiffness with age, the brachial-ankle pulse wave velocity (baPWV) has been widely used in clinical applications. The second derivative of the PPG (acceleration photoplethysmogram [APG]) has been reported to correlate with the presence of atherosclerotic disorders. In this study, we investigated the association among age, the baPWV, and the APG and found a new aging index reflecting arterial stiffness for a healthcare device. Methods The APG and the baPWV were simultaneously applied to assess the accuracy of the APG in measuring arterial stiffness in association with age. A preamplifier and motion artifact removal algorithm were newly developed to obtain a high quality PPG signal. In total, 168 subjects with a mean ± SD age of 58.1 ± 12.6 years were followed for two months to obtain a set of complete data using baPWV and APG analysis. Results The baPWV and the B ratio of the APG indices were correlated significantly with age (r = 0.6685, p < 0.0001 and r = -0.4025, p < 0.0001, respectively). A regression analysis revealed that the c and d peaks were independent of age (r = -0.3553, p < 0.0001 and r = -0.3191, p < 0.0001, respectively). Conclusions We determined the B ratio, which represents an improved aging index and suggest that the APG may provide qualitatively similar information for arterial stiffness. PMID:25705555

  9. Assessment of local pulse wave velocity in arteries using 2D distension waveforms.

    PubMed

    Meinders, J M; Kornet, L; Brands, P J; Hoeks, A P

    2001-10-01

    The reciprocal of the arterial pulse wave velocity contains crucial information about the mechanical characteristics of the arterial wall but is difficult to assess noninvasively in vivo. In this paper, a new method to assess local pulse wave velocity (PWV) is presented. To this end, multiple adjacent distension waveforms are determined simultaneously along a short arterial segment, using a single 2D-vessel wall tracking system with a high frame rate (651 Hz). Each B-mode image consists of 16 echo lines spanning a total width of 15.86 mm. Dedicated software has been developed to extract the end-diastolic diameter from the B-mode image and the distension waveforms from the underlying radiofrequency (rf) information for each echo-line. The PWV is obtained by determining the ratio of the temporal and spatial gradient of adjacent distension velocity waveforms. The proposed method is verified in a phantom and in the common carotid artery (CCA) of humans. Phantom experiments show a high concordance between the PWV obtained from 2D distension velocity waveforms (4.21 +/- 0.02 m/s) and the PWV determined using two pressure catheters (4.26 +/- 0.02 m/s). Assuming linear spatial gradients, the PWV can also be obtained in vivo for CCA and averages to 5.5 +/- 1.5 m/s (intersubject variation, n = 23), which compares well to values found in literature. Furthermore, intrasubject PWV compares well with those calculated using the Bramwell-Hill equation. It can be concluded that the PWV can be obtained from the spatial and temporal gradient if the spatial gradient is linear over the observed length of the artery, i.e. the artery should be homogenous in diameter and distension and the influence of reflections must be small. PMID:12051275

  10. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    PubMed Central

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in cph do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in cph cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), Rtot, Ctot, and cph to mimic the reported changes in these parameters from age 30 to 70. Then, cph was theoretically maintained constant, while Ctot, Rtot, and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, Ctot, Rtot, and CO were theoretically maintained constant, and cph was increased. The predicted increase in PP was negligible. We found that increases in cph have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in Ctot. PMID:22561301

  11. Hyperemia-Related Changes in Arterial Stiffness: Comparison between Pulse Wave Velocity and Stiffness Index in the Vascular Reactivity Assessment

    PubMed Central

    Torrado, Juan; Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Armentano, Ricardo L.

    2012-01-01

    Carotid-to-radial pulse wave velocity (PWVcr) has been proposed to evaluate endothelial function. However, the measurement of PWVcr is not without limitations. A new simple approach could have wide application. Stiffness index (SI) is obtained by analysis of the peripheral pulse wave and gives reproducible information about stiffness of large arteries. This study assessed the effects of hyperemia on SI and compared it with PWVcr in 14 healthy subjects. Both were measured at rest and during 8 minutes after ischemia. SI temporal course was determined. At 1 minute, SI and PWVcr decreased (5.58 ± 0.24 to 5.34 ± 0.23 m/s, P < 0.05; 7.8 ± 1.0 to 7.2 ± 0.9 m/s; P < 0.05, resp.). SI was positively related to PWVcr in baseline (r = 0.62 , P < 0.05), at 1 minute (r = 0.79, P < 0.05), and during the whole experimental session (r = 0.52, P < 0.05). Conclusion. Hyperemia significantly decreases SI in healthy subjects. SI was related to PWVcr and could be used to facilitate the evaluation of hyperemia-related changes in arterial stiffness. PMID:22919496

  12. Hyperemia-Related Changes in Arterial Stiffness: Comparison between Pulse Wave Velocity and Stiffness Index in the Vascular Reactivity Assessment.

    PubMed

    Torrado, Juan; Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Armentano, Ricardo L

    2012-01-01

    Carotid-to-radial pulse wave velocity (PWV(cr)) has been proposed to evaluate endothelial function. However, the measurement of PWV(cr) is not without limitations. A new simple approach could have wide application. Stiffness index (SI) is obtained by analysis of the peripheral pulse wave and gives reproducible information about stiffness of large arteries. This study assessed the effects of hyperemia on SI and compared it with PWV(cr) in 14 healthy subjects. Both were measured at rest and during 8 minutes after ischemia. SI temporal course was determined. At 1 minute, SI and PWV(cr) decreased (5.58 ± 0.24 to 5.34 ± 0.23 m/s, P < 0.05; 7.8 ± 1.0 to 7.2 ± 0.9 m/s; P < 0.05, resp.). SI was positively related to PWV(cr) in baseline (r = 0.62 , P < 0.05), at 1 minute (r = 0.79, P < 0.05), and during the whole experimental session (r = 0.52, P < 0.05). Conclusion. Hyperemia significantly decreases SI in healthy subjects. SI was related to PWV(cr) and could be used to facilitate the evaluation of hyperemia-related changes in arterial stiffness. PMID:22919496

  13. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age.

    PubMed

    Mohiuddin, Mohammad W; Rihani, Ryan J; Laine, Glen A; Quick, Christopher M

    2012-07-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (C(tot)) and increases in total peripheral resistance (R(tot)) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (c(ph)) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in c(ph) do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in c(ph) cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), R(tot), C(tot), and c(ph) to mimic the reported changes in these parameters from age 30 to 70. Then, c(ph) was theoretically maintained constant, while C(tot), R(tot), and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, C(tot), R(tot), and CO were theoretically maintained constant, and c(ph) was increased. The predicted increase in PP was negligible. We found that increases in c(ph) have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in C(tot). PMID:22561301

  14. Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic.

    PubMed

    Wu, Hsien-Tsai; Hsu, Po-Chun; Lin, Cheng-Feng; Wang, Hou-Jun; Sun, Cheuk-Kwan; Liu, An-Bang; Lo, Men-Tzung; Tang, Chieh-Ju

    2011-10-01

    This study proposed a dynamic pulse wave velocity (PWV)-based biomedical parameter in assessing the degree of atherosclerosis for the aged and diabetic populations. Totally, 91 subjects were recruited from a single medical institution between July 2009 and October 2010. The subjects were divided into four groups: young healthy adults (Group 1, n = 22), healthy upper middle-aged adults (Group 2, n = 28), type 2 diabetics with satisfactory blood sugar control (Group 3, n = 21), and unsatisfactory blood sugar control (Group 4, n = 20). A self-developed six-channel electrocardiography (ECG)-PWV-based equipment was used to acquire 1000 successive recordings of PWV(foot) values within 30 min. The data, thus, obtained were analyzed with multiscale entropy (MSE). Large-scale MSE index (MEI(LS)) was chosen as the assessment parameter. Not only did MEI(LS) successfully differentiate between subjects in Groups 1 and 2, but it also showed a significant difference between Groups 3 and 4. Compared with the conventional parameter of PWV(foot) and MEI on R-R interval [i.e., MEI(RRI)] in evaluating the degree of atherosclerotic change, the dynamic parameter, MEI(LS) (PWV), could better reflect the impact of age and blood sugar control on the progression of atherosclerosis. PMID:21693413

  15. Pulse Wave Velocity at Early Adulthood: Breastfeeding and Nutrition during Pregnancy and Childhood

    PubMed Central

    Gigante, Denise Petrucci; de Barros, Fernando Celso Lopes Fernandes

    2016-01-01

    Background Pulse wave velocity (PWV) is an early marker of arterial stiffness. Low birthweight, infant feeding and childhood nutrition have been associated with cardiovascular disease in adulthood. In this study, we evaluated the association of PWV at 30 years of age with birth condition and childhood nutrition, among participants of the 1982 Pelotas birth cohort. Methods In 1982, the hospital births in Pelotas, southern Brazil, were identified just after delivery. Those liveborn infants whose family lived in the urban area of the city were examined and have been prospectively followed. At 30 years of age, we tried to follow the whole cohort and PWV was assessed in 1576 participants. Results Relative weight gain from 2 to 4 years was positively associated with PWV. Regarding nutritional status in childhood, PWV was higher among those whose weight-for-age z-score at 4 years was >1 standard deviation above the mean. On the other hand, height gain, birthweight and duration of breastfeeding were not associated with PWV. Conclusion Relative weight gain after 2 years of age is associated with increased PWV, while birthweight and growth in the first two years of life were not associated. These results suggest that the relative increase of weight later in childhood is associated with higher cardiovascular risk. PMID:27073916

  16. Pulse wave velocity and age- and gender-dependent aortic wall hardening in fowl

    PubMed Central

    Ruiz-Feria, Ciro A.; Yang, Yimu; Thomason, Donald B.; White, Jarred; Su, Guibin; Nishimura, Hiroko

    2009-01-01

    Before sexual maturation, chickens (Gallus gallus) show high blood pressure (BP) and neointimal plaques in the lower abdominal aortae (AbA). We investigated age/sex-related changes in pulse wave velocity (PWV), elastin, collagen, and protein levels in AbA, and cardiac morphology to determine whether PWV increases during incremental increases in BP of maturing fowl, while arterial stiffness becomes dominant with aging. PWV (m/s) was significantly greater in male chicks (6-7 wk, 9.3 ± 0.8; females, 6.1 ± 0.5) and remained high in cockerels (13 wk), young (27-28 wk), and adults (44-66 wk). PWV increased in prepubertal pullets (10.0 ± 0.9), dropped significantly in young hens, and remained low in adults. In contrast, medial thickness, protein levels, and collagen levels increased, while elastin/collagen ratios decreased, with maturation/aging. Males had heavier ventricular mass and thicker ventricular walls than females at all ages; left ventricular thickness decreased with maturation/aging. Thus, sustained high BP may have caused progressive medial hypertrophy, increased aortic rigidity, and enlarged hearts with left ventricular dilation. PWV of AbA was already greater in male chicks at an age when both sexes have similar collagen levels and low protein levels, suggesting that a factor other than structural stiffness may be an important determinant of PWV. PMID:19689927

  17. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    PubMed Central

    Vappou, J; Luo, J; Okajima, K; Di Tullio, M; Konofagou, E E

    2014-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local Pulse Wave Velocity (PWV). The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7± 16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94

  18. Relationship between global pulse wave velocity and diastolic dysfunction in postmenopausal women

    PubMed Central

    Palmiero, Pasquale; Maiello, Maria; Daly, David D; Zito, Annapaola; Ciccone, Marco Matteo; Nanda, Navin C

    2014-01-01

    Objective: Global aortic pulse wave velocity (PWVg) is a simple, accurate, and noninvasive method to determine large artery stiffness. The goal of our study was to investigate the relationship between PWVg, LV mass, and diastolic function in postmenopausal women. Patients and method: We screened 321 consecutive women with echocardiographic examination to determine PWVg. LV diastolic dysfunction (LVDD) and LV hypertrophy (LVH) were diagnosed according to ASE (American Society Echocardiography) Guidelines. Results: The mean age of the 321 women studied was 59.9 years of age with 20 percent of the women menstruate and 80 percent post-menopausal. Amongst the post-menopausal women, 168 patients had LVDD (66.7%), 127 had mild diastolic dysfunction, 40 had moderate diastolic dysfunction, and 1had severe diastolic dysfunction. In these post-menopausal patients with diastolic dysfunction, 89.3% had an increased PWVg while 10.7% had a normal PWVg which was highly statistically significant (p < 0.001). The patients with a normal PWVg all had mild diastolic dysfunction. Increased left atrial volume indexed for body surface area was present in only 19 women, 12 of whom had LVDD and 14 increased PWVg, but statistical analysis was not performed due to the low number of women affected. There was no statistically significant difference in age between postmenopausal women with and without increased PWVg. Conclusion: In our population of postmenopausal women, we observed a strong relationship between LVDD and LVH with PWVg. Our study supports the usefulness of assessment of aortic stiffness as a marker of cardiovascular disease. PMID:25664082

  19. The use of pulse wave velocity in predicting pre-eclampsia in high-risk women.

    PubMed

    Katsipi, Irene; Stylianou, Kostas; Petrakis, Ioannis; Passam, Andrew; Vardaki, Eleftheria; Parthenakis, Fragkiskos; Makrygiannakis, Antonios; Daphnis, Eugene; Kyriazis, John

    2014-08-01

    In this study, we evaluated the diagnostic utility of pulse wave velocity (PWV) alone or in combination with other diagnostic markers in predicting pre-eclampsia (PE) in high-risk women. Pregnant women at high risk for PE were recruited between 22 and 26 weeks of gestation and were assessed for (a) PWV, (b) serum levels of the placental soluble fms-like tyrosine kinase 1 (sFlt-1) protein and uric acid and (c) 24-h urinary protein and calcium excretion. Sensitivities and specificities were derived from receiver operating characteristic curves. Of 118 women recruited, 11 and 10 women developed early-onset PE (<34 weeks) and late-onset PE (≥34 weeks), respectively. Of the five diagnostic markers tested, PWV showed the highest detection rate for all cases (21) of PE (81%) and for early-onset PE (82%) at a fixed 10% false-positive rate (FPR), and when combined with sFlt-1, these figures increased to 90% and 92%, respectively. Despite the reduced ability of PWV to predict late-onset PE (detection rate 20%), the combination of PWV with sFlt-1 achieved a detection rate of 50% at a fixed 10% FPR. A suggested cutoff value of 9 m/s for PWV resulted in optimal sensitivity (91%) and specificity (86%) for predicting early-onset PE. This study is the first to show that PWV may be a potentially promising predictor of early-onset PE in women at high risk for PE. The combination of PWV with sFlt-1 may further improve the screening efficacy for predicting PE. PMID:24621469

  20. a New Approach of Dynamic Blood Pressure Measurement Based on the Time Domain Analysis of the Pulse Wave

    NASA Astrophysics Data System (ADS)

    Zimei, Su; Wei, Xu; Hui, Yu; Fei, Du; Jicun, Wang; Kexin, Xu

    2009-08-01

    In this study the pulse wave characteristics were used as a new approach to measure the human blood pressure. Based the principle of pulse wave and theory of the elastic vascular, the authors analyzed the characteristic of the pulse waveforms and revealed the characteristics points which could be used to represent the blood pressure. In this investigation the relevant mathematical feature was used to identify the relationship between the blood pressure and pulse wave parameters in a more accurate way. It also provided an experimental basis to carry out continuing non-invasive blood pressure monitoring using the pulse wave method.

  1. Effect of Different Phases of Menstrual Cycle on Reflection Index, Stiffness index and Pulse wave velocity in Healthy subjects

    PubMed Central

    TA, Sandhya

    2014-01-01

    Introduction: Arterial compliance will result in stabilizing the fluctuations in arterial pressure and blood flow. So arterial stiffness can be a good indicator for monitoring the cardiovascular system. Arterial stiffness can be measured using indices like reflection index (RI), stiffness index (SI) and Brachial Finger Pulse Wave Velocity (BFPWV). Objectives: Aim of our study was to evaluate the changes in RI, SI and BFPWV during different phases of the menstrual cycle and to correlate RI with SI in healthy female subjects between the age group of 18-30 years from Bangalore, India. Materials and Methods: Basal recordings of RI and SI were determined by Photo Pulse Plethysmography (PPG) picked up from the fingertip using BIOPAC system and BFPWV was obtained using Doppler. Recordings were obtained at three different time points during the menstrual cycle. Analysis was done using repeated measures ANOVA with Bonferroni correction. Result: There was a significant decrease in above parameters p <0.05 during the mid-cycle. Correlation between RI and SI was also significant p<0.05. Conclusion: These findings suggests that the menstrual cycle affects the arterial stiffness and one of the factor is oestrogen. Hence, women are less prone to the incidence of cardiovascular diseases before menopause. Screening for arterial stiffness in a general population, using these indices is valid, economical and reliable. PMID:25386420

  2. Better Management of Cardiovascular Diseases by Pulse Wave Velocity: Combining Clinical Practice with Clinical Research using Evidence-Based Medicine

    PubMed Central

    Khoshdel, Ali R.; Carney, Shane L.; Nair, Balakrishnan R.; Gillies, Alastair

    2007-01-01

    Arterial stiffness measured by pulse wave velocity (PWV) is an accepted strong, independent predictor of cardiovascular events and mortality. However, lack of a reliable reference range has limited its use in clinical practice. In this evidence-based review, we applied published data to develop a PWV risk stratification model and demonstrated its impact on the management of common clinical scenarios. After reviewing 97 studies where PWV was measured, 5 end-stage renal disease patients, 5 hypertensives, 2 diabetics, and 2 elderly studies were selected. Pooling the data by the “fixed-effect model” demonstrated that the mortality and cardiovascular event risk ratio for one level increment in PWV was 2.41 (1.81–3.20) or 1.69 (1.35–2.11), respectively. There was a significant difference in PWV between survived and deceased groups, both in the low and high risk populations. Furthermore, risk comparison demonstrated that 1 standard deviation increment in PWV is equivalent to 10 years of aging, or 1.5 to 2 times the risk of a 10 mmHg increase in systolic blood pressure. Evidence shows that PWV can be beneficially used in clinical practice for cardiovascular risk stratification. Furthermore, the above risk estimates could be incorporated into currently used cardiac risk scores to improve their predictive power and facilitate the clinical application of PWV. PMID:17456834

  3. [Pulse wave velocity and urinary albumin excretion in hypertensive patients treated with perindopril].

    PubMed

    Toblli, Jorge E; Bellido, Claudio A; Iavícoli, Oscar R; Costa, Marta; Forcada, Pedro; Piñeiro, Daniel J; Lerman, Jorge

    2002-01-01

    Systolic and diastolic blood pressures and urinary albumin excretion (UAE) have been recognized as predictors for cardiovascular risk. Furthermore, arterial compliance (AC) disorders assessed by increased aortic pulse wave velocity (PWV) are closely related to changes in blood pressure and strongly correlated with cardiovascular mortality and presence or extent of atherosclerosis. Our purpose in the present study was to determine a relationship between AC using PWV and UAE in a group of non-smoking patients with essential hypertension, and the level of interaction of ACE inhibition on these two variables. A total of 70 non-smoking never treated hypertensive patients (33 men and 37 women), aged 50 +/- 7 years (range 35-69), have been enrolled in this study. All of them underwent PWV by a computerized device (Complior) and UAE determination by radial immunodiffusion method, on baseline and after six months of treatment with perindopril (4.6 +/- 1.4 mg/day). We have found a significant decrease of systolic blood pressure (160.2 +/- 10.6 vs. 131.9 +/- 7.1 mmHg, p < 0.01), diastolic blood pressure (100.6 +/- 5 vs. 81.6 +/- 4.8 mmHg, p < 0.01), PWV (13.4 +/- 1 vs. 9.1 +/- 0.9 m/sec, p < 0.01), and UAE (42.2 +/- 19.3 vs. 11.1 +/- 3.6 mg/day, p < 0.01) at the end of the sixth month when they were compared to baseline values. Furthermore, renal function was also improved by the treatment at the end of the study as illustrated by creatinine clearance (87.5 + 22.5 vs. 102.1 + 23.5 ml/min, p < 0.01). Moreover, a high positive correlation between UAE and PWV at the beginning of the study (r = 0.81; p < 0.01) and after six months of treatment (r = 0.66; p < 0.01) was observed. In addition, PWV vs. UAE, differences between sixth month and baseline have shown a high correlation (r = 0.67; p < 0.01) and using a multiple regression test we found that PWV (t ratio 5.76; p < 0.001) was the most important and significant independent variable that correlates with UAE. These results

  4. Effect of Aerobic versus Resistance Exercise on Pulse Wave Velocity, Intima Media Thickness and Left Ventricular Mass in Obese Adolescents.

    PubMed

    Horner, Katy; Kuk, Jennifer L; Barinas-Mitchell, Emma; Drant, Stacey; DeGroff, Curt; Lee, SoJung

    2015-11-01

    A cardiovascular comorbidity in obese adolescents is increased aortic pulse wave velocity (aPWV), carotid intima-media thickness (cIMT) and left ventricular mass (LVM). We investigated in obese adolescents 1) the risk factors associated with aPWV, cIMT and LVM, and 2) the effects of aerobic (AE) versus resistance (RE) exercise alone (without calorie restriction) on aPWV, cIMT, LVM index (LVMI) and cardiometabolic risk factors. Eighty-one obese adolescents (12-18 yrs, BMI ≥95th percentile) were randomized to 3 months of AE (n = 30), RE (n = 27) or a control group (n = 24). Outcome measures included aPWV, cIMT, LVMI, body composition, cardiorespiratory fitness (CRF), blood pressure (BP) and lipids. At baseline, the strongest correlates of aPWV were body weight (r = .31) and diastolic BP (r = .28); of cIMT were body weight (r=0.26) and CRF (r=-0.25); and of LVMI was CRF (r=0.32) after adjusting for sex and race (p < .05 for all). Despite significant reductions in total fat and improvements in CRF in the AE and RE groups, aPWV, cIMT, LVMI, BP, lipids and body weight did not change as compared with controls (p > .05 for all). Interventions of longer duration or together with weight loss may be required to improve these early biomarkers of CVD in obese adolescents. PMID:26181766

  5. The effect of workplace smoking bans on heart rate variability and pulse wave velocity of non-smoking hospitality workers

    PubMed Central

    Rajkumar, Sarah; Schmidt-Trucksäss, Arno; Wellenius, Gregory A.; Bauer, Georg F.; Huynh, Cong Khanh; Moeller, Alexander; Röösli, Martin

    2014-01-01

    Objectives To investigate the effect of a change in second hand smoke (SHS) exposure on heart rate variability (HRV) and pulse wave velocity (PWV), this study utilized a quasi-experimental setting when a smoking ban was introduced. Methods HRV, a quantitative marker of autonomic activity of the nervous system, and PWV, a marker of arterial stiffness, were measured in 55 non-smoking hospitality workers before and 3 to 12 months after a smoking ban and compared to a control group that did not experience an exposure change. SHS exposure was determined with a nicotine specific badge and expressed as inhaled cigarette equivalents per day (CE/d). Results PWV and HRV parameters significantly changed in a dose dependent manner in the intervention group compared to the control group. A one CE/d decrease was associated with a 2.3% (95% CI: 0.2, 4.4; p=0.031) higher root mean square of successive differences (RMSSD), a 5.7 % (95% CI: 0.9, 10.2; p=0.02) higher high frequency component and a 0.72% (95 % CI: 0.40–1.05; p<0.001) lower PWV. Conclusions PWV and HRV significantly improved after introducing smoke-free workplaces indicating a decreased cardiovascular risk. PMID:24504155

  6. A simplified method for quantifying the subject-specific relationship between blood pressure and carotid-femoral pulse wave velocity.

    PubMed

    Butlin, Mark; Hathway, Peta J; Kouchaki, Zahra; Peebles, Karen; Avolio, Alberto P

    2015-08-01

    Devices that estimate blood pressure from arterial pulse wave velocity (PWV) potentially provide continuous, ambulatory blood pressure monitoring. Accurate blood pressure estimation requires reliable quantification of the relationship between blood pressure and PWV. Regression to population normal values or, when using limb artery PWV, changing hydrostatic blood pressure within the limb provides a calibration index. Population lookup tables require accurate anthropometric correlates, assuming no individual variation. Only devices that measure PWV in the limb can use limb position changes. This study proposes a method for developing a calibration curve independent of lookup tables and useful for large artery PWV measurement, such as carotid-femoral PWV (PWVcf). PWVcf was measured in 27 normal subjects (15 female, 36±19 years) in both the supine and standing position. The change in systemic pressure was measured and hydrostatic pressure change calculated from estimated vessel path length height, measured using body surface distances. Brachial diastolic blood pressure increased for all subjects from supine to standing (supine 70±8 mmHg, standing 83±8 mmHg, p<;0.001) with an additional hydrostatic change across the carotid-femoral path length of 19±2 mmHg (p<;0.001). PWVcf also increased in all subjects (supine 5.2±1.3 m/s, standing 7.3±2.2 m/s, p<;0.001). The subject-specific calibration index (ΔDP/ΔPWVcf) varied amongst the cohort (20±8 mmHg/m/s), was correlated with age (-0.57, p=0.002) and seated aortic systolic pressure (-0.38, p=0.048) and was always greater than zero. Thus, this study describes a simple but novel method of measuring an individualized calibration index using blood pressure and PWV measurements in the supine and standing position. PMID:26737588

  7. BRACHIAL-ANKLE PULSE WAVE VELOCITY IS ASSOCIATED WITH CORONARY CALCIFICATION AMONG 1,131 HEALTHY MIDDLE-AGED MEN

    PubMed Central

    Vishnu, Abhishek; Choo, Jina; Wilcox, Bradley; Hisamatsu, Takashi; Barinas-Mitchell, Emma J M; Fujiyoshi, Akira; Mackey, Rachel H; Kadota, Aya; Ahuja, Vasudha; Kadowaki, Takashi; Edmundowicz, Daniel; Miura, Katsuyuki; Rodriguez, Beatriz L; Kuller, Lewis H; Shin, Chol; Masaki, Kamal; Ueshima, Hirotsugu; Sekikawa, Akira

    2015-01-01

    Background Brachial-ankle pulse wave velocity (baPWV) is a simple and reproducible measure of arterial stiffness and is extensively used to assess cardiovascular disease (CVD) risk in eastern Asia. We examined whether baPWV is associated with coronary atherosclerosis in an international study of healthy middle-aged men. Methods A population-based sample of 1,131 men aged 40–49 years was recruited– 257 Whites and 75 Blacks in Pittsburgh, US, 228 Japanese-Americans in Honolulu, US, 292 Japanese in Otsu, Japan, and 279 Koreans in Ansan, Korea. baPWV was measured with an automated waveform analyzer (VP2000, Omron) and atherosclerosis was examined as coronary artery calcification (CAC) by computed-tomography (GE-Imatron EBT scanner). Association of the presence of CAC (defined as ≥10 Agatston unit) was examined with continuous measure as well as with increasing quartiles of baPWV. Results As compared to the lowest quartile of baPWV, the multivariable-adjusted odds ratio (95% confidence-interval [CI]) for presence of CAC in the combined sample was 1.70 (0.98, 2.94) for 2nd quartile, 1.88 (1.08, 3.28) for 3rd quartile, and 2.16 (1.19, 3.94) for 4th quartile (p-trend = 0.01). The odds for CAC increased by 19% per 100 cm/s increase (p<0.01), or by 36% per standard-deviation increase (p<0.01) in baPWV. Similar effect-sizes were observed in individual races, and were significant among Whites, Blacks and Koreans. Conclusion baPWV is cross-sectionally associated with CAC among healthy middle-aged men. The association was significant in Whites and Blacks in the US, and among Koreans. Longitudinal studies are needed to determine its CVD predictive ability. PMID:25885874

  8. Association of brachial-ankle pulse wave velocity with atherosclerosis and presence of coronary artery disease in older patients

    PubMed Central

    Chung, Chang-Min; Tseng, Yu-Hsiang; Lin, Yu-Sheng; Hsu, Jen-Te; Wang, Po-Chang

    2015-01-01

    Objective Brachial-ankle pulse wave velocity (baPWV) is a simple and reproducible measure of arterial stiffness and is extensively used to assess risk of cardiovascular disease in Asia. We examined whether baPWV was associated with coronary atherosclerosis and presence and extent of coronary artery disease (CAD) in older patients with chest pain. Methods This cross-sectional study enrolled 370 consecutive patients >65 years old who underwent baPWV measurement and elective coronary angiogram for suspected CAD at a single cardiovascular center, between June 2013 and July 2014. Results In addition to diabetes mellitus and body mass index, baPWV was one of the statistically meaningful predictors of significant CAD (diameter of stenosis >50%) in a multivariate analysis. When the extent of CAD was classified as nonsignificant or significant CAD (ie, one-, two-, and three-vessel disease), there was a significant difference in baPWV between the significant and nonsignificant CAD groups, but not between the three significant CAD groups. Multivariate linear regression analyses showed that the number of diseased vessels and baPWV were both significantly associated with the SYNTAX (SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery) score. The cutoff value of baPWV at 1,874 cm/s had a sensitivity of 60.1%, specificity of 70.8%, and area under receiver operating characteristic curve of 0.639 in predicting CAD. Conclusion Arterial stiffness determined by baPWV was associated independently with CAD severity, as assessed by angiography and the SYNTAX score in older patients with chest pain. As a result, increased arterial stiffness assessed by baPWV is associated with the severity and presence of CAD in older patients. PMID:26316732

  9. Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity

    PubMed Central

    Mangino, Massimo; Cecelja, Marina; Menni, Cristina; Tsai, Pei-Chien; Yuan, Wei; Small, Kerrin; Bell, Jordana; Mitchell, Gary F.; Chowienczyk, Phillip; Spector, Tim D.

    2016-01-01

    Background: Carotid-femoral pulse wave velocity (PWV) is an important measure of arterial stiffness, which is an independent predictor of cardiovascular morbidity and mortality. In this study, we used an integrated genetic, epigenetic and transcriptomics approach to uncover novel molecular mechanisms contributing to PWV. Methods and results: We measured PWV in 1505 healthy twins of European descendent. A genomewide association analysis was performed using standardized residual of the inverse of PWV. We identified one single-nucleotide polymorphism (rs7164338) in the calcium and integrin-binding protein-2 (CIB2) gene on chromosome 15q25.1 associated with PWV [β = −0.359, standard error (SE) = 0.07, P = 4.8 × 10–8]. The same variant was also associated with increased CIB2 expression in leucocytes (β = 0.034, SE = 0.008, P = 4.95 × 10–5) and skin (β = 0.072, SE = 0.01, P = 2.35 × 10–9) and with hypomethylation of the gene promoter (β = −0.899, SE = 0.098, P = 3.63 × 10–20). Conclusion: Our data indicate that reduced methylation of the CIB2 promoter in individuals carrying rs7164338 may lead to increased CIB2 expression. Given that CIB2 is thought to regulate intracellular calcium levels, an increase in protein levels may prevent the accumulation of serum calcium and phosphate, ultimately slowing down the process of vascular calcification. This study shows the power of integrating multiple omics to discover novel cardiovascular mechanisms. PMID:26378684

  10. Predictive factors for increased aortic pulse wave velocity in renal transplant recipients and its relation to graft outcome.

    PubMed

    Ayub, Muazam; Ullah, Kifayat; Masroor, Imtiaz; Butt, Ghias Uddin

    2015-11-01

    To evaluate aortic stiffness in renal transplant patients and to determine the correlation of renal insufficiency and estimated glomerular filtration rate (eGFR) with aortic pulse wave velocity (APWV), we studied 96 renal transplant patients followed-up at our center. We measured the APWV using transcutaneous Doppler flow recordings and the foot-to-foot method, and calculated the eGFR using the Modification of Diet in Renal Disease equation. The study included 81 (84.4%) males and 15 (15.6%) females. The mean age of the patients was 37.84 ± 10.10 years. The mean duration of transplant was 47.90 ± 34.40 months. The eGFR of the patients ranged from 1 to 120 mL/min, with a mean GFR of 72.6 ± 23.2 mL/min. Sixty-seven (69.8%) patients had eGFR > 60 mL/min and hence had stages 1 and 2 chronic kidney disease (CKD), 27 (28.1%) patients had eGFR 30-60 mL/min and hence had stage 3 CKD and two (2.1%) patients had eGFR <30 mL/min and hence had stages 4 and 5 CKD. The APWV of the patients ranged from 4 to 14.2 m/s, with a mean of 7.49 ± 2.47 m/s. A significant inverse correlation was found between the APWV and eGFR (Pearson correlation coefficient, -0.427, P = 0.00). The mean APWV was significantly higher among patients with higher CKD stage, P = 0.004. We conclude that the APWV is related to the renal graft dysfunction as measured by eGFR. The poorer the renal function, the higher was the APWV. Determination of the APWV may be helpful in predicting the outcome in renal transplant recipients. PMID:26586049

  11. Association of Brachial-Ankle Pulse Wave Velocity and Cardiomegaly With Aortic Arch Calcification in Patients on Hemodialysis

    PubMed Central

    Shin, Ming-Chen Paul; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Chen, Jui-Hsin; Chen, Szu-Chia; Chang, Jer-Ming; Chen, Hung-Chun

    2016-01-01

    Abstract Aortic arch calcification (AoAC) is associated with cardiovascular and all-cause mortality in end-stage renal disease population. AoAC can be simply estimated with an AoAC score using plain chest radiography. The objective of this study is to evaluate the association of AoAC with brachial-ankle pulse wave velocity (baPWV) and cardiomegaly in patients who have undergoing hemodialysis (HD). We retrospectively determined AoAC and cardiothoracic ratio (CTR) by chest x-ray in 220 HD patients who underwent the measurement of baPWV. The values of baPWV were measured by an ankle-brachial index-form device. Multiple stepwise logistic regression analysis was used to identify the factors associated with AoAC score >4. Compared patients with AoAC score ≦4, patients with AoAC score >4 had older age, higher prevalence of diabetes and cerebrovascular disease, lower diastolic blood pressure, higher baPWV, higher CTR, higher prevalence of CTR ≧50%, lower total cholesterol, and lower creatinine level. After the multivariate stepwise logistic analysis, old age, cerebrovascular disease, high baPWV (per 100 cm/s, odds ratio [OR] 1.065, 95% confidence interval [CI] 1.003–1.129, P = 0.038), CTR (per 1%, OR 1.116, 95% CI 1.046–1.191, P = 0.001), and low total cholesterol level were independently associated with AoAC score >4. Our study demonstrated AoAC severity was associated with high baPWV and high CTR in patients with HD. Therefore, we suggest that evaluating AoAC on plain chest radiography may be a simple and inexpensive method for detecting arterial stiffness in HD patients. PMID:27175684

  12. Association of Brachial-Ankle Pulse Wave Velocity and Cardiomegaly With Aortic Arch Calcification in Patients on Hemodialysis.

    PubMed

    Shin, Ming-Chen Paul; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Chen, Jui-Hsin; Chen, Szu-Chia; Chang, Jer-Ming; Chen, Hung-Chun

    2016-05-01

    Aortic arch calcification (AoAC) is associated with cardiovascular and all-cause mortality in end-stage renal disease population. AoAC can be simply estimated with an AoAC score using plain chest radiography. The objective of this study is to evaluate the association of AoAC with brachial-ankle pulse wave velocity (baPWV) and cardiomegaly in patients who have undergoing hemodialysis (HD).We retrospectively determined AoAC and cardiothoracic ratio (CTR) by chest x-ray in 220 HD patients who underwent the measurement of baPWV. The values of baPWV were measured by an ankle-brachial index-form device. Multiple stepwise logistic regression analysis was used to identify the factors associated with AoAC score >4.Compared patients with AoAC score ≦4, patients with AoAC score >4 had older age, higher prevalence of diabetes and cerebrovascular disease, lower diastolic blood pressure, higher baPWV, higher CTR, higher prevalence of CTR ≧50%, lower total cholesterol, and lower creatinine level. After the multivariate stepwise logistic analysis, old age, cerebrovascular disease, high baPWV (per 100 cm/s, odds ratio [OR] 1.065, 95% confidence interval [CI] 1.003-1.129, P = 0.038), CTR (per 1%, OR 1.116, 95% CI 1.046-1.191, P = 0.001), and low total cholesterol level were independently associated with AoAC score >4.Our study demonstrated AoAC severity was associated with high baPWV and high CTR in patients with HD. Therefore, we suggest that evaluating AoAC on plain chest radiography may be a simple and inexpensive method for detecting arterial stiffness in HD patients. PMID:27175684

  13. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement.

    PubMed

    Lass, J; Meigas, K; Karai, D; Kattai, R; Kaik, J; Rossmann, M

    2004-01-01

    This paper gives an overview of a research, which is focused on the development of the convenient device for continuous non-invasive monitoring of arterial blood pressure. The blood pressure estimation method is based on a presumption that there is a singular relationship between the pulse wave propagation time in arterial system and blood pressure. The parameter used in this study is pulse wave transit time (PWTT). The measurement of PWTT involves the registration of two time markers, one of which is based on ECG R peak detection and another on the detection of pulse wave in peripheral arteries. The reliability of beat to beat systolic blood pressure calculation during physical exercise was the main focus for the current paper. Sixty-one subjects (healthy and hypertensive) were studied with the bicycle exercise test. As a result of current study it is shown that with the correct personal calibration it is possible to estimate the beat to beat systolic arterial blood pressure during the exercise with comparable accuracy to conventional noninvasive methods. PMID:17272172

  14. Identifying Coronary Artery Disease in Asymptomatic Middle-Aged Sportsmen: The Additional Value of Pulse Wave Velocity

    PubMed Central

    Braber, Thijs L.; Prakken, Niek H. J.; Mosterd, Arend; Mali, Willem P. Th. M.; Doevendans, Pieter A. F. M.; Bots, Michiel L.; Velthuis, Birgitta K.

    2015-01-01

    Background Cardiovascular screening may benefit middle-aged sportsmen, as coronary artery disease (CAD) is the main cause of exercise-related sudden cardiac death. Arterial stiffness, as measured by pulse wave velocity (PWV), may help identify sportsmen with subclinical CAD. We examined the additional value of PWV measurements to traditional CAD risk factors for identifying CAD. Methods From the Measuring Athlete’s Risk of Cardiovascular events (MARC) cohort of asymptomatic, middle-aged sportsmen who underwent low-dose Cardiac CT (CCT) after routine sports medical examination (SME), 193 consecutive sportsmen (aged 55±6.6 years) were included with additional PWV measurements before CCT. Sensitivity, specificity and predictive values of PWV values (>8.3 and >7.5m/s) assessed by Arteriograph were used to identify CAD (coronary artery calcium scoring ≥100 Agatston Units or coronary CT angiography luminal stenosis ≥50%) and to assess the additional diagnostic value of PWV to established cardiovascular risk factors. Results Forty-seven sportsmen (24%) had CAD on CCT. They were older (58.9 vs. 53.8 years, p<0.001), had more hypertension (17 vs. 4%, p=0.003), higher cholesterol levels (5.7 vs. 5.4mmol/l) p=0.048), and more often were (ever) smokers (55 vs. 34%, p=0.008). Mean PWV was higher in those with CAD (8.9 vs. 8.0 m/s, p=0.017). For PWV >8.3m/s respectively >7.5m/s sensitivity to detect CAD on CT was 43% and 74%, specificity 69% and 45%, positive predictive value 31% and 30%, and negative predictive value 79% and 84%. Adding PWV to traditional risk factor models did not change the area under the curve (from 0.78 (95% CI = 0.709-0.848)) to AUC 0.78 (95% CI 0.710-0.848, p = 0.99)) for prediction of CAD on CCT. Conclusions Limited additional value was found for PWV on top of established risk factors to identify CAD. PWV might still have a role to identify CAD in middle-aged sportsmen if risk factors such as cholesterol are unknown. PMID:26147752

  15. Quantification of the Interrelationship between Brachial-Ankle and Carotid-Femoral Pulse Wave Velocity in a Workplace Population

    PubMed Central

    Cheng, Yi-Bang; Li, Yan; Sheng, Chang-Sheng; Huang, Qi-Fang; Wang, Ji-Guang

    2016-01-01

    Background Brachial-ankle pulse wave velocity (PWV) is increasingly used for the measurement of arterial stiffness. In the present study, we quantified the interrelationship between brachial-ankle and carotid-femoral PWV in a workplace population, and investigated the associations with cardiovascular risk factors and carotid intima-media thickness (IMT). Methods Brachial-ankle and carotid-femoral PWV were measured using the Omron-Colin VP1000 and SphygmoCor devices, respectively. We investigated the interrelationship by the Pearson's correlation analysis and Bland-Altman plot, and performed sensitivity and specificity analyses. Results The 954 participants (mean ± standard deviation age 42.6 ± 14.2 years) included 630 (66.0%) men and 203 (21.3%) hypertensive patients. Brachial-ankle (13.4 ± 2.7 m/s) and carotid-femoral PWV (7.3 ± 1.6 m/s) were significantly correlated in all subjects (r = 0.75) as well as in men (r = 0.72) and women (r = 0.80) separately. For arterial stiffness defined as a carotid-femoral PWV of 10 m/s or higher, the sensitivity and specificity of brachial-ankle PWV of 16.7 m/s or higher were 72 and 94%, respectively. The area under the receiver operating characteristic curve was 0.953. In multiple stepwise regression, brachial-ankle and carotid-femoral PWV were significantly (p < 0.001) associated with age (partial r = 0.33 and 0.34, respectively) and systolic blood pressure (partial r = 0.71 and 0.66, respectively). In addition, brachial-ankle and carotid-femoral PWV were significantly (p < 0.001) associated with carotid IMT (r = 0.57 and 0.55, respectively) in unadjusted analysis, but not in analysis adjusted for cardiovascular risk factors (p ≥ 0.08). Conclusions Brachial-ankle and carotid-femoral PWV were closely correlated, and had similar determinants. Brachial-ankle PWV can behave as an ease-of-use alternative measure of arterial stiffness for assessing cardiovascular risk. PMID:27195246

  16. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube

    PubMed Central

    Painter, Page R

    2008-01-01

    Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is

  17. Effects on carotid-femoral pulse wave velocity 24 h post exercise in young healthy adults.

    PubMed

    Perdomo, Sophy J; Moody, Anne M; McCoy, Stephanie M; Barinas-Mitchell, Emma; Jakicic, John M; Gibbs, Bethany Barone

    2016-06-01

    Arterial stiffness, often measured by carotid-femoral pulse wave velocity (cfPWV), is a subclinical marker of cardiovascular disease that is known to be reduced by exercise training. Exercise is also known to have acute vascular effects, yet it is unclear whether exercise 24 h before cfPWV testing influences this outcome. Thirty healthy, young adults completed a supervised, 30-min bout of moderate-to-vigorous intensity treadmill running. cfPWV, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured both before (after 48 h of abstaining from exercise) and 24 h after (with no additional exercise) the exercise session. From pre-exercise to 24 h post exercise, cfPWV decreased from 6.05±0.82 to 5.84±0.87 m s(-1) (P=0.02), SBP from 119.7±13.8 to 116.8±11.4 mm Hg (P=0.03) and DBP from 65.1±5.7 to 63.2±5.4 mm Hg (P=0.02), with no significant changes in HR. cfPWV was positively correlated with SBP pre-exercise (r=0.54, P<0.01) and post exercise (r=0.53, P<0.01). Changes in blood pressure explained 4-5% of the variability in cfPWV change; adjustments slightly attenuated the 24-h effects of exercise on cfPWV. Some evidence of gender differences was observed with higher cfPWV in males across assessments (P<0.05) and statistically significant reductions in cfPWV in males (-0.36±0.54 m s(-1) (P=0.02)) but not in females (-0.07±0.31 m s(-1) (P=0.41)). In conclusion, cfPWV decreased 24 h after an exercise bout, suggesting that exercise completed in the past 24 h should be considered before cfPWV testing. PMID:26763854

  18. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study

    PubMed Central

    2011-01-01

    Background Arterial stiffness is considered as an independent predictor of cardiovascular mortality, and is increasingly used in clinical practice. This study aimed at evaluating the consistency of the automated estimation of regional and local aortic stiffness indices from cardiovascular magnetic resonance (CMR) data. Results Forty-six healthy subjects underwent carotid-femoral pulse wave velocity measurements (CF_PWV) by applanation tonometry and CMR with steady-state free-precession and phase contrast acquisitions at the level of the aortic arch. These data were used for the automated evaluation of the aortic arch pulse wave velocity (Arch_PWV), and the ascending aorta distensibility (AA_Distc, AA_Distb), which were estimated from ascending aorta strain (AA_Strain) combined with either carotid or brachial pulse pressure. The local ascending aorta pulse wave velocity AA_PWVc and AA_PWVb were estimated respectively from these carotid and brachial derived distensibility indices according to the Bramwell-Hill theoretical model, and were compared with the Arch_PWV. In addition, a reproducibility analysis of AA_PWV measurement and its comparison with the standard CF_PWV was performed. Characterization according to the Bramwell-Hill equation resulted in good correlations between Arch_PWV and both local distensibility indices AA_Distc (r = 0.71, p < 0.001) and AA_Distb (r = 0.60, p < 0.001); and between Arch_PWV and both theoretical local indices AA_PWVc (r = 0.78, p < 0.001) and AA_PWVb (r = 0.78, p < 0.001). Furthermore, the Arch_PWV was well related to CF_PWV (r = 0.69, p < 0.001) and its estimation was highly reproducible (inter-operator variability: 7.1%). Conclusions The present work confirmed the consistency and robustness of the regional index Arch_PWV and the local indices AA_Distc and AA_Distb according to the theoretical model, as well as to the well established measurement of CF_PWV, demonstrating the relevance of the regional and local CMR indices. PMID

  19. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.

    PubMed

    Lillie, Jeffrey S; Liberson, Alexander S; Mix, Doran; Schwarz, Karl Q; Chandra, Ankur; Phillips, Daniel B; Day, Steven W; Borkholder, David A

    2015-03-01

    Pressure wave velocity (PWV) is commonly used as a clinical marker of vascular elasticity. Recent studies have increased clinical interest in also analyzing the impact of heart rate, blood pressure, and left ventricular ejection time on PWV. In this article we focus on the development of a theoretical one-dimensional model and validation via direct measurement of the impact of ejection time and peak pressure on PWV using an in vitro hemodynamic simulator. A simple nonlinear traveling wave model was developed for a compliant thin-walled elastic tube filled with an incompressible fluid. This model accounts for the convective fluid phenomena, elastic vessel deformation, radial motion, and inertia of the wall. An exact analytical solution for PWV is presented which incorporates peak pressure, ejection time, ejection volume, and modulus of elasticity. To assess arterial compliance, the solution is introduced in an alternative form, explicitly determining compliance of the wall as a function of the other variables. The model predicts PWV in good agreement with the measured values with a maximum difference of 3.0%. The results indicate an inverse quadratic relationship ([Formula: see text]) between ejection time and PWV, with ejection time dominating the PWV shifts (12%) over those observed with changes in peak pressure (2%). Our modeling and validation results both explain and support the emerging evidence that, both in clinical practice and clinical research, cardiac systolic function related variables should be regularly taken into account when interpreting arterial function indices, namely PWV. PMID:26577102

  20. Ethnic Differences in and Childhood Influences on Early Adult Pulse Wave Velocity: The Determinants of Adolescent, Now Young Adult, Social Wellbeing, and Health Longitudinal Study.

    PubMed

    Cruickshank, J Kennedy; Silva, Maria J; Molaodi, Oarabile R; Enayat, Zinat E; Cassidy, Aidan; Karamanos, Alexis; Read, Ursula M; Faconti, Luca; Dall, Philippa; Stansfield, Ben; Harding, Seeromanie

    2016-06-01

    Early determinants of aortic stiffness as pulse wave velocity are poorly understood. We tested how factors measured twice previously in childhood in a multiethnic cohort study, particularly body mass, blood pressure, and objectively assessed physical activity affected aortic stiffness in young adults. Of 6643 London children, aged 11 to 13 years, from 51 schools in samples stratified by 6 ethnic groups with different cardiovascular risk, 4785 (72%) were seen again at aged 14 to 16 years. In 2013, 666 (97% of invited) took part in a young adult (21-23 years) pilot follow-up. With psychosocial and anthropometric measures, aortic stiffness and blood pressure were recorded via an upper arm calibrated Arteriograph device. In a subsample (n=334), physical activity was measured >5 days via the ActivPal. Unadjusted pulse wave velocities in black Caribbean and white UK young men were similar (mean±SD 7.9±0.3 versus 7.6±0.4 m/s) and lower in other groups at similar systolic pressures (120 mm Hg) and body mass (24.6 kg/m(2)). In fully adjusted regression models, independent of pressure effects, black Caribbean (higher body mass/waists), black African, and Indian young women had lower stiffness (by 0.5-0.8; 95% confidence interval, 0.1-1.1 m/s) than did white British women (6.9±0.2 m/s). Values were separately increased by age, pressure, powerful impacts from waist/height, time spent sedentary, and a reported racism effect (+0.3 m/s). Time walking at >100 steps/min was associated with reduced stiffness (P<0.01). Effects of childhood waist/hip were detected. By young adulthood, increased waist/height ratios, lower physical activity, blood pressure, and psychosocial variables (eg, perceived racism) independently increase arterial stiffness, effects likely to increase with age. PMID:27141061

  1. High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms.

    PubMed

    Li, Fubing; He, Qiong; Huang, Chengwu; Liu, Ke; Shao, Jinhua; Luo, Jianwen

    2016-04-01

    Pulse wave imaging (PWI) is an ultrasound-based method to visualize the propagation of pulse wave and to quantitatively estimate regional pulse wave velocity (PWV) of the arteries within the imaging field of view (FOV). To guarantee the reliability of PWV measurement, high frame rate imaging is required, which can be achieved by reducing the line density of ultrasound imaging or transmitting plane wave at the expense of spatial resolution and/or signal-to-noise ratio (SNR). In this study, a composite, full-view imaging method using motion matching was proposed with both high temporal and spatial resolution. Ultrasound radiofrequency (RF) data of 4 sub-sectors, each with 34 beams, including a common beam, were acquired successively to achieve a frame rate of ∼507 Hz at an imaging depth of 35 mm. The acceleration profiles of the vessel wall estimated from the common beam were used to reconstruct the full-view (38-mm width, 128-beam) image sequence. The feasibility of mapping local PWV variation along the artery using PWI technique was preliminarily validated on both homogeneous and inhomogeneous polyvinyl alcohol (PVA) cryogel vessel phantoms. Regional PWVs for the three homogeneous phantoms measured by the proposed method were in accordance with the sparse imaging method (38-mm width, 32-beam) and plane wave imaging method. Local PWV was estimated using the above-mentioned three methods on 3 inhomogeneous phantoms, and good agreement was obtained in both the softer (1.91±0.24 m/s, 1.97±0.27 m/s and 1.78±0.28 m/s) and the stiffer region (4.17±0.46 m/s, 3.99±0.53 m/s and 4.27±0.49 m/s) of the phantoms. In addition to the improved spatial resolution, higher precision of local PWV estimation in low SNR circumstances was also obtained by the proposed method as compared with the sparse imaging method. The proposed method might be helpful in disease detections through mapping the local PWV of the vascular wall. PMID:26773791

  2. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness

    PubMed Central

    Chowienczyk, Phil; Alastruey, Jordi

    2015-01-01

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. PMID:26055792

  3. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. PMID:22293750

  4. Aortic pulse wave velocity and reflecting distance estimation from peripheral waveforms in humans: detection of age- and exercise training-related differences.

    PubMed

    Pierce, Gary L; Casey, Darren P; Fiedorowicz, Jess G; Seals, Douglas R; Curry, Timothy B; Barnes, Jill N; Wilson, DeMaris R; Stauss, Harald M

    2013-07-01

    We hypothesized that demographic/anthropometric parameters can be used to estimate effective reflecting distance (EfRD), required to derive aortic pulse wave velocity (APWV), a prognostic marker of cardiovascular risk, from peripheral waveforms and that such estimates can discriminate differences in APWV and EfRD with aging and habitual endurance exercise in healthy adults. Ascending aortic pressure waveforms were derived from peripheral waveforms (brachial artery pressure, n = 25; and finger volume pulse, n = 15) via a transfer function and then used to determine the time delay between forward- and backward-traveling waves (Δtf-b). True EfRDs were computed as directly measured carotid-femoral pulse wave velocity (CFPWV) × 1/2Δtf-b and then used in regression analysis to establish an equation for EfRD based on demographic/anthropometric data (EfRD = 0.173·age + 0.661·BMI + 34.548 cm, where BMI is body mass index). We found good agreement between true and estimated APWV (Pearson's R² = 0.43; intraclass correlation = 0.64; both P < 0.05) and EfRD (R² = 0.24; intraclass correlation = 0.40; both P < 0.05). In young sedentary (22 ± 2 years, n = 6), older sedentary (62 ± 1 years, n = 24), and older endurance-trained (61 ± 2 years, n = 14) subjects, EfRD (from demographic/anthropometric parameters), APWV, and 1/2Δtf-b (from brachial artery pressure waveforms) were 52.0 ± 0.5, 61.8 ± 0.4, and 60.6 ± 0.5 cm; 6.4 ± 0.3, 9.6 ± 0.2, and 8.1 ± 0.2 m/s; and 82 ± 3, 65 ± 1 and 76 ± 2 ms (all P < 0.05), respectively. Our results demonstrate that APWV derived from peripheral waveforms using age and BMI to estimate EfRD correlates with CFPWV in healthy adults. This method can reliably detect the distal shift of the reflecting site with age and the increase in APWV with sedentary aging that is attenuated with habitual endurance exercise. PMID:23624628

  5. Clinical usefulness of ankle brachial index and brachial-ankle pulse wave velocity in patients with ischemic stroke

    PubMed Central

    Lee, Hyung-Suk; Lee, Hye Lim; Han, Ho-seong; Yeo, Minju; Kim, Ji Seon; Lee, Sung-Hyun; Lee, Sang-Soo; Shin, Dong-Ick

    2016-01-01

    Abstract Ankle brachial index (ABI) and brachial-ankle pulse wave velocity (baPWV) are widely used noninvasive modalities to evaluate atherosclerosis. Recently, evidence has increased supporting the use of ABI and baPWV as markers of cerebrovascular disease. This study sought to examine the relationship between ABI and baPWV with ischemic stroke. This study also aimed to determine which pathogenic mechanism, large artery disease (LAD) or small vessel disease (SVD), is related to ABI or baPWV. Retrospectively, 121 patients with ischemic stroke and 38 subjects with no obvious ischemic stroke history were recruited. First, ABI and baPWV were compared between the groups. Then, within the stroke group, the relevance of ABI and baPWV with regard to SVD and LAD, which were classified by brain magnetic resonance image (MRI) and magnetic resonance angiography (MRA) or computed tomography angiography (CTA) findings, was assessed. The baPWV was higher in the stroke group than non-stroke group (1,944.18±416.6 cm/s vs. 1,749.76±669.6 cm/s, P<0.01). Regarding LAD, we found that mean ABI value was lower in the group with extracranial large artery stenosis (P<0.01), and there was an inverse linear correlation between ABI and the grade of extracranial large artery stenosis (P<0.01). For SVD, there was a significant correlation between SVD and baPWV (2,057.6±456.57 cm/s in the SVD (+) group vs. 1,491±271.62 cm/s in the SVD (-) group; P<0.01). However, the grade of abnormalities detected in SVD did not correlate linearly with baPWV. These findings show that baPWV is a reliable surrogate marker of ischemic stroke. Furthermore, baPWV and ABI can be used to indicate the presence of small vessel disease and large arterial disease, respectively. PMID:27533937

  6. Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients

    PubMed Central

    Park, Keun-Young; Kim, Byung-Joon; Hwang, Won-Min; Kim, Dong-Ho

    2016-01-01

    Background Most type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients. Methods For 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV), body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment. Results After 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007). Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively), while interestingly, muscle mass did not decrease (P=0.289). In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively). Conclusion Effects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio. PMID:26676329

  7. As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout.

    PubMed

    Tausche, A-K; Christoph, M; Forkmann, M; Richter, U; Kopprasch, S; Bielitz, C; Aringer, M; Wunderlich, C

    2014-01-01

    We prospectively evaluated whether an effective 12-month uric acid-lowering therapy (ULT) with the available xanthine oxidase (XO) inhibitors allopurinol and febuxostat in patients with chronic tophaceous gout has an impact on oxidative stress and/or vascular function. Patients with chronic tophaceous gout who did not receive active ULT were included. After clinical evaluation, serum uric acid levels (SUA) and markers of oxidative stress were measured, and carotid-femoral pulse wave velocity (cfPWV) was assessed. Patients were then treated with allopurinol (n = 9) or with febuxostat (n = 8) to target a SUA level ≤ 360 μmol/L. After 1 year treatment, the SUA levels, markers of oxidative stress and the cfPWV were measured again. Baseline characteristics of both groups showed no significant differences except a higher prevalence of moderate impairment of renal function (estimated glomerular filtration rate <60 ml/min) in the febuxostat group. Uric acid lowering with either inhibitors of XO resulted in almost equally effective reduction in SUA levels. The both treatment groups did not differ in their baseline cfPWV (allopurinol group: 14.1 ± 3.4 m/s, febuxostat group: 13.7 ± 2.7 m/s, p = 0.80). However, after 1 year of therapy, we observed a significant cfPWV increase in the allopurinol group (16.8 ± 4.3 m/s, p = 0.001 as compared to baseline), but not in the febuxostat patients (13.3 ± 2.3 m/s, p = 0.55). Both febuxostat and allopurinol effectively lower SUA levels in patients with severe gout. However, we observed that febuxostat also appeared to be beneficial in preventing further arterial stiffening. Since cardiovascular events are an important issue in treating patients with gout, this unexpected finding may have important implications and should be further investigated in randomized controlled trials. PMID:24026528

  8. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    PubMed Central

    2010-01-01

    Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke) in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home) blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The medication used for

  9. Association between airflow limitation severity and arterial stiffness as determined by the brachial-ankle pulse wave velocity: a cross-sectional study.

    PubMed

    Oda, Masako; Omori, Hisamitsu; Onoue, Ayumi; Cui, Xiaoyi; Lu, Xi; Yada, Hironori; Hisada, Aya; Miyazaki, Wataru; Higashi, Noritaka; Ogata, Yasuhiro; Katoh, Takahiko

    2015-01-01

    Objective Chronic obstructive pulmonary disease (COPD) is often associated with concomitant systemic manifestations and comorbidities, such as cardiovascular disease. There are limited data regarding airflow limitation (AL) and atherosclerosis in Japanese patients, and the potential association between AL and arterial stiffness has not yet been investigated in Japanese patients. Therefore, the purpose of this study was to investigate the association between AL severity and arterial stiffness using the brachial-ankle pulse wave velocity (baPWV). Methods This cross-sectional study included 1,356 subjects aged 40-79 years without clinical cardiovascular diseases who underwent a comprehensive health screening that included spirometry, the baPWV measurement, and blood sampling during medical check-ups in 2009 at the Japanese Red Cross Kumamoto Health Care Center. AL was defined in accordance with the Global Initiative for COPD criteria (forced expiratory volume in one second / forced vital capacity of < 0.7). A cut-off baPWV value of >1,400 cm/s was used for risk prediction and screening. Results The average baPWV (SD) results were 1,578.0 (317.9), 1,647.3 (374.4), and 1,747.3 (320.1) cm/s in the patients with a normal pulmonary function, mild AL, and moderate-to-severe AL, respectively (p< 0.001). Using logistic regression models adjusted for the age, body mass index, smoking status, hypersensitive C-reactive protein levels, hypertension, hyperglycemia, and dyslipidemia, an increased baPWV (>1,400 cm/s) was significantly associated with moderate-to-severe AL compared with a normal pulmonary function (odds ratio=2.76; 95% confidence intervals, 1.37-5.55; p=0.004). Conclusion Our results indicated an association between AL and increased arterial stiffness. Arterial stiffness may therefore worsen with an increase in the severity of AL. PMID:26466690

  10. Fluid overload, pulse wave velocity, and ratio of brachial pre-ejection period to ejection time in diabetic and non-diabetic chronic kidney disease.

    PubMed

    Tsai, Yi-Chun; Chiu, Yi-Wen; Kuo, Hung-Tien; Chen, Szu-Chia; Hwang, Shang-Jyh; Chen, Tzu-Hui; Kuo, Mei-Chuan; Chen, Hung-Chun

    2014-01-01

    Fluid overload is one of the characteristics in chronic kidney disease (CKD). Changes in extracellular fluid volume are associated with progression of diabetic nephropathy. Not only diabetes but also fluid overload is associated with cardiovascular risk factors The aim of the study was to assess the interaction between fluid overload, diabetes, and cardiovascular risk factors, including arterial stiffness and left ventricular function in 480 patients with stages 4-5 CKD. Fluid status was determined by bioimpedance spectroscopy method, Body Composition Monitor. Brachial-ankle pulse wave velocity (baPWV), as a good parameter of arterial stiffness, and brachial pre-ejection period (bPEP)/brachial ejection time (bET), correlated with impaired left ventricular function were measured by ankle-brachial index (ABI)-form device. Of all patients, 207 (43.9%) were diabetic and 240 (50%) had fluid overload. For non-diabetic CKD, fluid overload was associated with being female (β = -2.87, P = 0.003), heart disease (β = 2.69, P = 0.04), high baPWV (β = 0.27, P = 0.04), low hemoglobin (β = -1.10, P < 0.001), and low serum albumin (β = -5.21, P < 0.001) in multivariate analysis. For diabetic CKD, fluid overload was associated with diuretics use (β = 3.69, P = 0.003), high mean arterial pressure (β = 0.14, P = 0.01), low bPEP/ET (β = -0.19, P = 0.03), low hemoglobin (β = -1.55, P = 0.001), and low serum albumin (β = -9.46, P < 0.001). In conclusion, baPWV is associated with fluid overload in non-diabetic CKD and bPEP/bET is associated with fluid overload in diabetic CKD. Early and accurate assessment of these associated cardiovascular risk factors may improve the effects of entire care in late CKD. PMID:25386836

  11. Association of long-term blood pressure variability and brachial-ankle pulse wave velocity: a retrospective study from the APAC cohort

    PubMed Central

    Wang, Yang; Yang, Yuling; Wang, Anxin; An, Shasha; Li, Zhifang; Zhang, Wenyan; Liu, Xuemei; Ruan, Chunyu; Liu, Xiaoxue; Guo, Xiuhua; Zhao, Xingquan; Wu, Shouling

    2016-01-01

    We investigated associations between long-term blood pressure variability (BPV) and brachial-ankle pulse wave velocity (baPWV). Within the Asymptomatic Polyvascular Abnormalities Community (APAC) study, we retrospectively collected long-term BPV and baPWV measures. Long-term BPV was calculated using the mean and standard deviation of systolic blood pressure (SBP) across 4 years based on annual values of SBP. In total, 3,994 subjects (2,284 men) were eligible for inclusion in this study. We stratified the study population into four SBP quartiles. Left and right baPWV was higher in participants with long-term SBPV in the fourth quartile compared with the first quartile (left: 1,725 ± 488 vs. 1,461 ± 340 [p < 0.001]; right: 1,722 ± 471 vs. 1,455 ± 341 [p < 0.001], respectively). We obtained the same result for total baPWV (fourth vs. first quartile: 1,772 ± 429 vs. 1,492 ± 350 [p < 0.001]). Furthermore, there was a trend for gradually increased baPWV (≥1,400 cm/s) with increased SBPV (p < 0.001). After multivariable adjustment, baPWV was positively correlated with long-term BPV (p < 0.001). In conclusion, long-term BPV is significantly associated with arterial stiffness as assessed by baPWV. PMID:26892486

  12. An Open Label Parallel Group Study to Assess the Effects of Amlodipine and Cilnidipine on Pulse Wave Velocity and Augmentation Pressures in Mild to Moderate Essential Hypertensive Patients

    PubMed Central

    Rajashekar, Sujith Tumkur; Buchineni, Madhavulu; Meriga, Rajesh Kumar; Reddy, Chirra Bhakthavasthala; Kumar, Kolla Praveen

    2015-01-01

    Introduction Hypertension is a major cardiovascular risk factor, which affects both large and small arteries. Because of the associated morbidity and mortality and the cost to society, it is an important public health challenge. Population based studies have reported that large artery stiffness is an important determinant of cardiovascular events and mortality in general population and in patients with hypertension. This study was designed to compare the effects of 8 weeks blood pressure control using Amlodepine and cilnidipine on haemodynamic parameters and vascular indices in mild to moderate hypertensive patients. Materials and Methods A total of 60 patients were enrolled in the study. Thirty patients were randomly allocated to either Amlodipine 5 mg OD or Cilnidipine 10 mg OD for duration of eight weeks. Blood Pressure (BP), Heart Rate (HR), carotid-femoral Pulse Wave Velocity (cf PWV), Augmentation Index (AIx) and Aortic augmentation pressure (AoAP) were measured at baseline and at the end of eight weeks. Results The mean change in the central artery stiffness from baseline to week-8 in the Amlodipine group as compared to Cilnidipine group cf PWV -139.3±27.7 vs. -234.1±74.8 cm/s p=<0.0001, AoAP -3.8±1.5 vs. -5.6±3.3 mm of Hg p=0.008 and AIx -6.8±2.4 vs. -10.8±4.4 %, p=<0.0001 respectively. Conclusion This study showed that the L/N-type calcium channel antagonist Cilnidipine has a similar antihypertensive action to Amlodipine, but is superior in improving the arterial stiffness. PMID:26676157

  13. Independent and Joint Effect of Brachial-Ankle Pulse Wave Velocity and Blood Pressure Control on Incident Stroke in Hypertensive Adults.

    PubMed

    Song, Yun; Xu, Benjamin; Xu, Richard; Tung, Renee; Frank, Eric; Tromble, Wayne; Fu, Tong; Zhang, Weiyi; Yu, Tao; Zhang, Chunyan; Fan, Fangfang; Zhang, Yan; Li, Jianping; Bao, Huihui; Cheng, Xiaoshu; Qin, Xianhui; Tang, Genfu; Chen, Yundai; Yang, Tianlun; Sun, Ningling; Li, Xiaoying; Zhao, Lianyou; Hou, Fan Fan; Ge, Junbo; Dong, Qiang; Wang, Binyan; Xu, Xiping; Huo, Yong

    2016-07-01

    Pulse wave velocity (PWV) has been shown to influence the effects of antihypertensive drugs in the prevention of cardiovascular diseases. Data are limited on whether PWV is an independent predictor of stroke above and beyond hypertension control. This longitudinal analysis examined the independent and joint effect of brachial-ankle PWV (baPWV) with hypertension control on the risk of first stroke. This report included 3310 hypertensive adults, a subset of the China Stroke Primary Prevention Trial (CSPPT) with baseline measurements for baPWV. During a median follow-up of 4.5 years, 111 participants developed first stroke. The risk of stroke was higher among participants with baPWV in the highest quartile than among those in the lower quartiles (6.3% versus 2.4%; hazard ratio, 1.66; 95% confidence interval, 1.06-2.60). Similarly, the participants with inadequate hypertension control had a higher risk of stroke than those with adequate control (5.1% versus 1.8%; hazard ratio, 2.32; 95% confidence interval, 1.49-3.61). When baPWV and hypertension control were examined jointly, participants in the highest baPWV quartile and with inadequate hypertension control had the highest risk of stroke compared with their counterparts (7.5% versus 1.3%; hazard ratio, 3.57; 95% confidence interval, 1.88-6.77). There was a significant and independent effect of high baPWV on stroke as shown among participants with adequate hypertension control (4.2% versus 1.3%; hazard ratio, 2.29, 95% confidence interval, 1.09-4.81). In summary, among hypertensive patients, baPWV and hypertension control were found to independently and jointly affect the risk of first stroke. Participants with high baPWV and inadequate hypertension control had the highest risk of stroke compared with other groups. PMID:27217412

  14. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    PubMed

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  15. Brachial-to-ankle pulse wave velocity as an independent prognostic factor for ovulatory response to clomiphene citrate in women with polycystic ovary syndrome

    PubMed Central

    2014-01-01

    Background Polycystic ovary syndrome (PCOS) has a risk for cardiovascular disease. Increased arterial stiffness has been observed in women with PCOS. The purpose of the present study was to investigate whether the brachial-to-ankle pulse wave velocity (baPWV) is a prognostic factor for ovulatory response to clomiphene citrate (CC) in women with PCOS. Methods This study was a retrospective cohort study of 62 women with PCOS conducted from January 2009 to December 2012 at the university hospital, Yamagata, Japan. We analyzed 62 infertile PCOS patients who received CC. Ovulation was induced by 100 mg CC for 5 days. CC non-responder was defined as failure to ovulate for at least 2 consecutive CC-treatment cycles. The endocrine, metabolic, and cardiovascular parameters between CC responder (38 patients) and non-responder (24 patients) groups were analyzed. Results In univariate analysis, waist-to-hip ratio, level of free testosterone, percentages of patients with dyslipidemia, impaired glucose tolerance, and diabetes mellitus, blood glucose and insulin levels at 60 min and 120 min, the area under the curve of glucose and insulin after 75-g oral glucose intolerance test, and baPWV were significantly higher in CC non-responders compared with responders. In multivariate logistic regression analysis, both waist-to-hip ratio (odds ratio, 1.77; 95% confidence interval, 2.2–14.1; P = 0.04) and baPWV (odds ratio, 1.71; 95% confidence interval, 1.1–2.8; P = 0.03) were independent predictors of ovulation induction by CC in PCOS patients. The predictive values of waist-to-hip ratio and baPWV for the CC resistance in PCOS patients were determined by the receiver operating characteristic curves. The area under the curves for waist-to-hip ratio and baPWV were 0.76 and 0.77, respectively. Setting the threshold at 0.83 for waist-to-hip ratio offered the best compromise between specificity (0.65) and sensitivity (0.84), while the setting the threshold at 1,182 cm/s for

  16. Laser speckle contrast imaging: age-related changes in microvascular blood flow and correlation with pulse-wave velocity in healthy subjects

    NASA Astrophysics Data System (ADS)

    Khalil, Adil; Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-05-01

    In the cardiovascular system, the macrocirculation and microcirculation-two subsystems-can be affected by aging. Laser speckle contrast imaging (LSCI) is an emerging noninvasive optical technique that allows the monitoring of microvascular function and can help, using specific data processing, to understand the relationship between the subsystems. Using LSCI, the goals of this study are: (i) to assess the aging effect over microvascular parameters (perfusion and moving blood cells velocity, MBCV) and macrocirculation parameters (pulse-wave velocity, PWV) and (ii) to study the relationship between these parameters. In 16 healthy subjects (20 to 62 years old), perfusion and MBCV computed from LSCI are studied in three physiological states: rest, vascular occlusion, and post-occlusive reactive hyperaemia (PORH). MBCV is computed from a model of velocity distribution. During PORH, the experimental results show a relationship between perfusion and age (R2=0.67) and between MBCV and age (R2=0.72), as well as between PWV and age at rest (R2=0.91). A relationship is also found between perfusion and MBCV for all physiological states (R2=0.98). Relationships between microcirculation and macrocirculation (perfusion-PWV or MBCV-PWV) are found only during PORH with R2=0.76 and R2=0.77, respectively. This approach may prove useful for investigating dysregulation in blood flow.

  17. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients.

    PubMed

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-06-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance. PMID:20410558

  18. Relationship between sum of the four limbs' pulse pressure and brachial-ankle pulse wave velocity and atherosclerosis risk factors in Chinese adults.

    PubMed

    Zheng, Yansong; Li, Zongbin; Shu, Hua; Liu, Minyan; Chen, Zhilai; Huang, Jianhua

    2015-01-01

    The aim of the present study was to analyze the relationship between the sum of the four limbs' pulse pressure (Sum-PP) and brachial-ankle pulse wave velocity (baPWV) and atherosclerosis risk factors and evaluate the feasibility of Sum-PP in diagnosing atherosclerosis systemically. For the purpose, a cross-sectional study was conducted on the basis of medical information of 20748 adults who had a health examination in our hospital. Both Sum-PP and baPWV exhibited significant variations among different human populations grouped by gender, smoking, drinking, and age. Interestingly, Sum-PP had similar varying tendency with baPWV in different populations. And further study in different populations showed that Sum-PP was significantly positively related to baPWV. We also investigated the relationship between Sum-PP, baPWV, and cardiovascular risk factors, respectively. We found that both Sum-PP and baPWV had significant positive correlation with atherosclerosis risk factors while both of them were negatively related to HDL-c. In addition, there was a significant close correlation between Sum-PP and baPWV in the whole population (r = 0.4616, P < 0.0001). Thus, Sum-PP is closely related to baPWV and is of important value for clinical diagnosis of atherosclerosis. PMID:25695080

  19. Pulse wave velocity as marker of preclinical arterial disease: reference levels in a uruguayan population considering wave detection algorithms, path lengths, aging, and blood pressure.

    PubMed

    Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L

    2012-01-01

    Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the "reference population"; the group of subjects with optimal/normal blood pressures levels at study time represented the "normal population." Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551

  20. Pulse Wave Velocity as Marker of Preclinical Arterial Disease: Reference Levels in a Uruguayan Population Considering Wave Detection Algorithms, Path Lengths, Aging, and Blood Pressure

    PubMed Central

    Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L.

    2012-01-01

    Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551

  1. Is There an Association Between Carotid-Femoral Pulse Wave Velocity and Coronary Heart Disease in Patients with Coronary Artery Disease: A Pilot Study

    PubMed Central

    Katsiki, Niki; Kollari, Erietta; Dardas, Sotirios; Dardas, Petros; Haidich, Anna-Bettina; Athyros, Vasilios G.; Karagiannis, Asterios

    2016-01-01

    Arterial stiffness has been shown to predict cardiovascular morbidity and mortality. Carotid-femoral pulse wave velocity (cfPWV) is regarded the gold standard marker of arterial stiffness. In previous studies, cfPWV was associated with the presence of coronary heart disease (CHD). However, with regard to CHD severity as assessed by the Syntax Score, only brachial-ankle PWV was reported to correlate with Syntax Score; no data exist for cfPWV. In this pilot study, we evaluated the possible associations between cfPWV, CHD and Syntax Score in 62 consecutive pa-tients (49 males; mean age: 64±12years) with chest pain undergoing scheduled coronary angiography. cfPWV was signifi-cantly higher in CHD patients than in non-CHD individuals (10 vs. 8.4 m/s; p = 0.003). No significant association was found between cfPWV and CHD severity as assessed by Syntax Score. A cut-off point of 12.3 m/s was considered as diagnostic for abnormally increased cfPWV (specificity: 97%; sensitivity: 12%; positive likelihood ratio: 3.558). Further research is needed to establish the relationship between cfPWV and Syntax Score. PMID:27347222

  2. Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study.

    PubMed

    Crilly, Mike; Coch, Christoph; Bruce, Margaret; Clark, Hazel; Williams, David

    2007-08-01

    Pulse wave analysis (PWA) using applanation tonometry is a non-invasive technique for assessing cardiovascular function. It produces three important indices: ejection duration index (ED%), augmentation index adjusted for heart rate (AIX@75), and subendocardial viability ratio (SEVR%). The aim of this study was to assess within- and between-observer repeatability of these measurements. After resting supine for 15 minutes, 20 ambulant patients (16 male) in sinus rhythm underwent four PWA measurements on a single occasion. Two nurses (A & B) independently and alternately undertook PWA measurements using the same equipment (Omron HEM-757; SphygmoCor with Millar hand-held tonometer) blind to the other nurse's PWA measurements. Within- and between-observer differences were analysed using the Bland-Altman ;limits of agreement' approach (mean difference +/- 2 standard deviations, 2SD). Mean age was 56 (blood pressure, BP 136/79; pulse rate 64). BP/PWA measurements remained stable during assessment. Based on the average of two PWA measurements the mean +/- 2SD between-observer difference in ED% was 0.3 +/- 2.0; AIX@75 1.0 +/- 3.9; and SEVR% 1.7 +/- 14.2. Based on a single PWA measurement the between-observer difference was ED% 0.3 +/- 3.3; AIX@75 1.7 +/- 6.9; and SEVR% 0.6 +/- 22.6. Within-observer differences for nurse-A were ED% 0.0 +/- 5.4; AIX@75 1.5 +/- 7.0; and SEVR% 1.7 +/- 39.0 (nurse-B: 0.1 +/- 3.8; 0.1 +/- 8.0; and 0.6 +/- 23.3, respectively). PWA demonstrates high levels of repeatability even when used by relatively inexperienced staff and has the potential to be included in the routine cardiovascular assessment of ambulant patients. PMID:17848475

  3. Arterial blood pressure measurement and pulse wave analysis--their role in enhancing cardiovascular assessment.

    PubMed

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. PMID:19940350

  4. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  5. Dust particle velocity measurement

    NASA Technical Reports Server (NTRS)

    Thielman, L. O.

    1976-01-01

    A laser Doppler velocimeter was used to measure the velocity distributions for particles entering a vacuum chamber from the atmosphere through calibrated leaks. The relative number of particles per velocity interval was obtained for particulates of three size distributions and two densities passing through six different leak geometries. The velocity range 15 to 320 meters per second was investigated. Peak particle velocities were found to occur in the 15 to 150 meters per second range depending upon type of particle and leak geometry. A small fraction of the particles were found to have velocities in the 150 to 320 meters per second range.

  6. Arterial pulse wave pressure transducer

    NASA Technical Reports Server (NTRS)

    Kim, C.; Gorelick, D.; Chen, W. (Inventor)

    1974-01-01

    An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls.

  7. Common Genetic Variation in the 3-BCL11B Gene Desert Is Associated With Carotid-Femoral Pulse Wave Velocity and Excess Cardiovascular Disease Risk The AortaGen Consortium

    PubMed Central

    Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Isaacs, Aaron; Smith, Albert V.; Yasmin; Rietzschel, Ernst R.; Tanaka, Toshiko; Liu, Yongmei; Parsa, Afshin; Najjar, Samer S.; O’Shaughnessy, Kevin M.; Sigurdsson, Sigurdur; De Buyzere, Marc L.; Larson, Martin G.; Sie, Mark P.S.; Andrews, Jeanette S.; Post, Wendy S.; Mattace-Raso, Francesco U.S.; McEniery, Carmel M.; Eiriksdottir, Gudny; Segers, Patrick; Vasan, Ramachandran S.; van Rijn, Marie Josee E.; Howard, Timothy D.; McArdle, Patrick F.; Dehghan, Abbas; Jewell, Elizabeth; Newhouse, Stephen J.; Bekaert, Sofie; Hamburg, Naomi M.; Newman, Anne B.; Hofman, Albert; Scuteri, Angelo; De Bacquer, Dirk; Ikram, Mohammad Arfan; Psaty, Bruce; Fuchsberger, Christian; Olden, Matthias; Wain, Louise V.; Elliott, Paul; Smith, Nicholas L.; Felix, Janine F.; Erdmann, Jeanette; Vita, Joseph A.; Sutton-Tyrrell, Kim; Sijbrands, Eric J.G.; Sanna, Serena; Launer, Lenore J.; De Meyer, Tim; Johnson, Andrew D.; Schut, Anna F.C.; Herrington, David M.; Rivadeneira, Fernando; Uda, Manuela; Wilkinson, Ian B.; Aspelund, Thor; Gillebert, Thierry C.; Van Bortel, Luc; Benjamin, Emelia J.; Oostra, Ben A.; Ding, Jingzhong; Gibson, Quince; Uitterlinden, André G.; Abecasis, Gonçalo R.; Cockcroft, John R.; Gudnason, Vilmundur; De Backer, Guy G.; Ferrucci, Luigi; Harris, Tamara B.; Shuldiner, Alan R.; van Duijn, Cornelia M.; Levy, Daniel; Lakatta, Edward G.; Witteman, Jacqueline C.M.

    2012-01-01

    Background Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20,634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5,306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency = 0.42, beta=−0.075±0.012 SD/allele, P = 2.8 x 10−10; replication beta=−0.086±0.020 SD/allele, P = 1.4 x 10−6). Combined results for rs7152623 from 11 cohorts gave beta=−0.076±0.010 SD/allele, P=3.1x10−15. The association persisted when adjusted for mean arterial pressure (beta=−0.060±0.009 SD/allele, P = 1.0 x 10−11). Results were consistent in younger (<55 years, 6 cohorts, N=13,914, beta=−0.081±0.014 SD/allele, P = 2.3 x 10−9) and older (9 cohorts, N=12,026, beta=−0.061±0.014 SD/allele, P=9.4x10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08, P=0.0013) and heart failure (HR=1.10, CI=1.03 to 1.16, P=0.004). Conclusions Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor one or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events. PMID:22068335

  8. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Ronny X.; Luo, Jianwen; Balaram, Sandhya K.; Chaudhry, Farooq A.; Shahmirzadi, Danial; Konofagou, Elisa E.

    2013-07-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s-1, respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p < 0.001) compared to those of the other two groups. Also, the average r2 in the AAA subjects was significantly lower (p < 0.001) than that in the normal and hypertensive subjects. These preliminary results suggest that the regional PWV and the pulse wave propagation uniformity (r2) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms

  9. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  10. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements

    PubMed Central

    Alastruey, Jordi; Khir, Ashraf W.; Matthys, Koen S.; Segers, Patrick; Sherwin, Spencer J.; Verdonck, Pascal R.; Parker, Kim H.; Peiró, Joaquim

    2011-01-01

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476–3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10−6) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. PMID:21724188

  11. [Research on a non-invasive pulse wave detection and analysis system].

    PubMed

    Li, Ting; Yu, Gang

    2008-10-01

    A novel non-invasive pulse wave detection and analysis system has been developed, including the software and the hardware. Bi-channel signals can be acquired, stored and shown on the screen dynamically at the same time. Pulse wave can be reshown and printed after pulse wave analysis and pulse wave velocity analysis. This system embraces a computer which is designed for fast data saving, analyzing and processing, and a portable data sampling machine which is based on a singlechip. Experimental results have shown that the system is stable and easy to use, and the parameters are calculated accurately. PMID:19024446

  12. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  13. Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomized double-blind clinical trial.

    PubMed

    Cicero, Arrigo F G; Rosticci, Martina; Gerocarni, Beatrice; Bacchelli, Stefano; Veronesi, Maddalena; Strocchi, Enrico; Borghi, Claudio

    2011-09-01

    Contrasting data partially support a certain antihypertensive efficacy of lactotripeptides (LTPs) derived from enzymatic treatment of casein hydrolysate. Our aim was to evaluate this effect on a large number of hemodynamic parameters. We conducted a prospective double-blind randomized clinical trial, which included 52 patients affected by high-normal blood pressure (BP) or first-degree hypertension. We investigated the effect of a 6-week treatment with the LTPs isoleucine-proline-proline and valine-proline-proline at 3 mg per day, assumed to be functional food, on office BP, 24-h ambulatory BP monitoring (ABPM) values, stress-induced BP increase and cardiac output-related parameters. In the LTP-treated subjects, we observed a significant reduction in office systolic BP (SBP; -5±8 mm Hg, P=0.013) and a significant improvement in pulse wave velocity (PWV; -0.66±0.81 m s(-1), P=0.001; an instrumental biomarker of vascular rigidity). No effect on 24-h ABPM parameters and BP reaction to stress was observed from treatment with the combined LTPs. LTPs, but not placebo, were associated with a mild but significant change in the stroke volume (SV), SV index (markers of cardiac flow), the acceleration index (ACI) and velocity index (VI) (markers of cardiac contractility). No effect was observed on parameters related to fluid dynamics or vascular resistance. LTPs positively influenced the office SBP, PWV, SV, SV index, ACI and VI in patients with high-normal BP or first-degree hypertension. PMID:21753776

  14. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  15. Arterial stiffness estimation based photoplethysmographic pulse wave analysis

    NASA Astrophysics Data System (ADS)

    Huotari, Matti; Maatta, Kari; Kostamovaara, Juha

    2010-11-01

    Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.

  16. Measurement of surface velocity fields

    NASA Technical Reports Server (NTRS)

    Mann, J. A., Jr.

    1979-01-01

    A new technique for measuring surface velocity fields is briefly described. It determines the surface velocity vector as a function of location and time by the analysis of thermal fluctuations of the surface profile in a small domain around the point of interest. The apparatus now being constructed will be used in a series of experiments involving flow fields established by temperature gradients imposed along a surface.

  17. Instrument remotely measures wind velocities

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Mccleese, D. J.; Seaman, C. H.; Shumate, M. S.

    1980-01-01

    Doppler-shift spectrometer makes remote satellite measurements of atmospheric wind velocity and temperature at specified altitudes. As in correlation spectrometer, spectrum of gas in reference cell and spectrum of same gas in atmosphere are correlated both in emission and absorption.

  18. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  19. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  20. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain.

    PubMed

    Jeon, Soo Hyung; Kim, Kyu Kon; Lee, In Seon; Lee, Yong Tae; Kim, Gyeong Cheol; Chi, Gyoo Yong; Cho, Hye Sook; Kang, Hee Jung; Kim, Jong Won

    2016-01-01

    Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n = 329) or a control group with little or no menstrual pain (n = 212). Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI) (p = 0.050) but significantly lower values for pulse wave energy (p = 0.021) and time to first peak from baseline (T1) (p = 0.035) in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance. PMID:27579304

  1. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain

    PubMed Central

    Jeon, Soo Hyung; Kim, Kyu Kon; Lee, In Seon; Lee, Yong Tae; Kim, Gyeong Cheol; Chi, Gyoo Yong; Cho, Hye Sook; Kang, Hee Jung

    2016-01-01

    Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n = 329) or a control group with little or no menstrual pain (n = 212). Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI) (p = 0.050) but significantly lower values for pulse wave energy (p = 0.021) and time to first peak from baseline (T1) (p = 0.035) in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance. PMID:27579304

  2. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.

  3. Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos

    PubMed Central

    Shi, Liang; Goenezen, Sevan; Haller, Stephen; Hinds, Monica T.; Thornburg, Kent L.

    2013-01-01

    Hemodynamic conditions play a critical role in embryonic cardiovascular development, and altered blood flow leads to congenital heart defects. Chicken embryos are frequently used as models of cardiac development, with abnormal blood flow achieved through surgical interventions such as outflow tract (OFT) banding, in which a suture is tightened around the heart OFT to restrict blood flow. Banding in embryos increases blood pressure and alters blood flow dynamics, leading to cardiac malformations similar to those seen in human congenital heart disease. In studying these hemodynamic changes, synchronization of data to the cardiac cycle is challenging, and alterations in the timing of cardiovascular events after interventions are frequently lost. To overcome this difficulty, we used ECG signals from chicken embryos (Hamburger-Hamilton stage 18, ∼3 days of incubation) to synchronize blood pressure measurements and optical coherence tomography images. Our results revealed that, after 2 h of banding, blood pressure and pulse wave propagation strongly depend on band tightness. In particular, while pulse transit time in the heart OFT of control embryos is ∼10% of the cardiac cycle, after banding (35% to 50% band tightness) it becomes negligible, indicating a faster OFT pulse wave velocity. Pulse wave propagation in the circulation is likewise affected; however, pulse transit time between the ventricle and dorsal aorta (at the level of the heart) is unchanged, suggesting an overall preservation of cardiovascular function. Changes in cardiac pressure wave propagation are likely contributing to the extent of cardiac malformations observed in banded hearts. PMID:23709601

  4. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections

    PubMed Central

    Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D

    2014-01-01

    We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888

  5. [Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave].

    PubMed

    Miao, Changyun; Mu, Dianwei; Zhang, Cheng; Miao, Chunjiao; Li, Hongqiang

    2015-10-01

    In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTT(PCG)). We experimentally verified the detection of blood pressure based on PWTT(PCG) and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTT(PCG). The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy. PMID:26964321

  6. Inexpensive Time-of-Flight Velocity Measurements.

    ERIC Educational Resources Information Center

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  7. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  8. Measuring Ultrasonic Shear-Wave Velocity

    NASA Technical Reports Server (NTRS)

    Nummelin, J.

    1983-01-01

    New technique improves accuracy of measurements of ultrasonic shearwave velocity. Technique eliminates need to measure incident sound angle. Technique contains groove in which steel sphere is placed. Sphere act as reference point for measuring path lengths and propagation times. Velocity measurements are within 1 percent of published data.

  9. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Philip H.; SDO HMI Team

    2016-05-01

    The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) measures sets of filtergrams which are converted into velocity and magnetic field maps each 45-seconds with its front camera and each 12 minutes with its side camera. In addition to solar phototspheric motions the velocity measurements include a direct component from the line-of-sight component of the SDO orbit. Since the magnetic field is computed as the difference between the velocity measured in left and right circular polarization the orbit velocity is canceled only if the celocity is properly calibrated. When the orbit component of the velocity is subtracted for each pixel the remaining "solar" velocity shows a residual signal which is equal to about 2% of the c. +- 3000 m/s orbit velocity in a nearly linear relationship. This implies an error in our knowledge of some of the details of as-built filter components. The model instrument transmission profile is required for calibration of all HMI level 1.5 “observable” quantities. This systematic error is very likely the source of 12- and 24-hour variations in most HMI data products. Over the years since launch a substantial effort has been dedicated to understanding the origin of this problem. While the instrument as presently calibrated (Couvidat et al. 2012 and 2016) meets all of the “Level-1” mission requirements it fails to meet the stated goal of 10 m/s accuracy for velocity data products and some not stated but generally assumed goals for other products. For the velocity measurements this has not been a significant problem since the prime HMI goals of obtaining data for helioseismology are not affected by this systematic error. However the orbit signal leaking into the magnetograms and vector magnetograms degrades the ability to accomplish some of the mission science goals at the expected levels of accuracy. This poster presents the current state of understanding of the source of this systematic error and

  10. Pulse Wave Propagation in the Arterial Tree

    NASA Astrophysics Data System (ADS)

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  11. Low-Velocity Measurement in Water

    NASA Astrophysics Data System (ADS)

    Ellis, Christopher; Stefan, Heinz G.

    1986-09-01

    Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.

  12. Achromatic Emission Velocity Measurements in Luminous Flows

    NASA Technical Reports Server (NTRS)

    Schneider, S. J.; Fulghum, S. F.; Rostler, P. S.

    1997-01-01

    A new velocity measurement instrument for luminous flows was developed by Science Research Laboratory for NASA. The SIEVE (Segmented Image Emission VElocimeter) instrument uses broadband light emitted by the flow for the velocity measurement. This differs from other velocimetry techniques in that it does not depend on laser illumination and/or light scattering from particles in the flow. The SIEVE is a passive, non-intrusive diagnostic. By moving and adjusting the imaging optics, the SIEVE can provide three-dimensional mapping of a flow field and determine turbulence scale size. A SIEVE instrument was demonstrated on an illuminated rotating disk to evaluate instrument response and noise and on an oxy-acetylene torch to measure flame velocities. The luminous flow in rocket combustors and plumes is an ideal subject for the SIEVE velocity measurement technique.

  13. Superhilac real-time velocity measurements

    SciTech Connect

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor.

  14. Spall velocity measurements from laboratory impact craters

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1986-01-01

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  15. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  16. Measurements of Shaped Charge Jet Velocity

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2013-06-01

    Penetration depth is an important requirement in oil/gas well perforating jobs. The depth determines how far the wellbore can directly communicate with reservoir fluids. Deep perforation charges are widely used in oilfield industry and most of those are powder metal liner charge for no carrot-like slug left as solid liner does. Comprehensive measurements for the powder metal liner shaped charge jet characteristics, namely, the jet density and velocity, are needed to predict the shaped charge performance and to plan the perforating job. This paper focuses on an experimental work of jet velocity measurements. A medium size of powder metal liner charges (27 grams HMX) is used in the tests. The powder jet shoots through a stack of limestone blocks with shorting switch set in between. Half inch air-gap between two blocks is design to provide space for jet traveling in air to record free fly velocity, meanwhile the jet penetration velocity in the limestone is measured. Aluminum foil switches are used to record the jet Time of Arrival (TOA). The charged switch shorted by the metal jet when it arrives. The shorting signal is recorded. The two velocities can be used to estimate the jet penetration effectiveness. A series of TOA tests show that jet velocity along its length linearly decreases from jet tip to tail until the stagnation points referring to which jet material moves in opposite direction.

  17. Accuracy of velocities from repeated GPS measurements

    NASA Astrophysics Data System (ADS)

    Akarsu, V.; Sanli, D. U.; Arslan, E.

    2015-04-01

    Today repeated GPS measurements are still in use, because we cannot always employ GPS permanent stations due to a variety of limitations. One area of study that uses velocities/deformation rates from repeated GPS measurements is the monitoring of crustal motion. This paper discusses the quality of the velocities derived using repeated GPS measurements for the aim of monitoring crustal motion. From a global network of International GNSS Service (IGS) stations, we processed GPS measurements repeated monthly and annually spanning nearly 15 years and estimated GPS velocities for GPS baseline components latitude, longitude and ellipsoidal height. We used web-based GIPSY for the processing. Assuming true deformation rates can only be determined from the solutions of 24 h observation sessions, we evaluated the accuracy of the deformation rates from 8 and 12 h sessions. We used statistical hypothesis testing to assess the velocities derived from short observation sessions. In addition, as an alternative control method we checked the accuracy of GPS solutions from short observation sessions against those of 24 h sessions referring to statistical criteria that measure the accuracy of regression models. Results indicate that the velocities of the vertical component are completely affected when repeated GPS measurements are used. The results also reveal that only about 30% of the 8 h solutions and about 40% of 12 h solutions for the horizontal coordinates are acceptable for velocity estimation. The situation is much worse for the vertical component in which none of the solutions from campaign measurements are acceptable for obtaining reliable deformation rates.

  18. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  19. Antarctica: Measuring glacier velocity from satellite images

    USGS Publications Warehouse

    Lucchitta, B.K.; Ferguson, H.M.

    1986-01-01

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  20. Measuring flying object velocity with CCD sensors

    NASA Astrophysics Data System (ADS)

    Ricny, Vaclav; Mikulec, Jiri

    1994-06-01

    An autonomous optoelectronic method of measuring the flying objects track velocity vector (TVV) using digital signal two-line CCD sensors has been developed and simulated at the Department of Radioelectronics at the Faculty of Electrical Engineering of the Technical University of Brno, Czech Republic. The principle of the method, the computer simulation of measuring device operations, the application of statistic estimates for the precision of values measured, and the presentation of the results achieved are described.

  1. Wave Measurements Using GPS Velocity Signals

    PubMed Central

    Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen

    2011-01-01

    This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves. PMID:22346618

  2. LABORATORY MEASUREMENT OF SULFUR DIOXIDE DEPOSITION VELOCITIES

    EPA Science Inventory

    Measurements of sulfur dioxide deposition velocities have been carried out in the laboratory with the use of a cylindrical flow reaction. Analysis of data from these experiments was performed with models that specifically account for diffusive transport in the system. Consequentl...

  3. Acoustic Measurement of Potato Cannon Velocity

    ERIC Educational Resources Information Center

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  4. In vitro and in vivo validation of time domain velocity and flow measurement technique.

    PubMed

    Maulik, D; Kadado, T; Downing, G; Phillips, C

    1995-12-01

    This study was undertaken to validate the time domain processing method for measuring (1) the peak velocity in comparison to pulsed-wave spectral Doppler findings in an in vitro system; (2) the volumetric flow in comparison to the actual flow measured by a graduated cylinder in an in vitro circulation; and (3) the volumetric flow in comparison to a transit time flowmeter in a permanently instrumented neonatal lamb model. A prototype implementation of time domain processing in a commercial ultrasound device was used. For velocimetry, both time domain processing and Doppler methods showed low variance, low intrarater variability (0.03 and 0.09%, respectively), high reliability coefficients (97% and 96%, respectively), and a significant correlation (r = 0.96; P < 0.001). For in vitro flow quantification, time domain processing and graduated cylinder methods showed low variance, low intrarater variability (0.09 and 0.01%, respectively), high reliability coefficients (99.60% and 99.96%, respectively), and a significant correlation (r = 0.98, P < 0.001). For in vivo flow quantification, time domain processing and transit time flowmeter showed a significant correlation (r = 0.96; P < 0.001). Within the limits of the in vitro and in vivo experimental conditions, this study proves the validity of the time domain processing sonographic technique for measuring peak flow velocity and volumetric flow. PMID:8583530

  5. Vertical Velocity Measurements in Warm Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Kollias, P.

    2013-12-01

    Measurements of vertical air motion in warm boundary layer clouds are key for quantitatively describing cloud-scale turbulence and for improving our understanding of cloud and drizzle microphysical processes. Recently, a new technique that produces seamless measurements of vertical air velocity in the cloud and sub-cloud layers for both drizzling and non-drizzling stratocumulus clouds has been developed. The technique combines radar Doppler spectra-based retrievals of vertical air motion in cloud and light drizzle conditions with a novel neural network analysis during heavily drizzling periods. Observations from Doppler lidars are used to characterize sub-cloud velocities and to evaluate the performance of the technique near the cloud base. The technique is applied to several cases of stratiform clouds observed by the ARM Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign in Cape Cod. The observations clearly illustrate coupling of the sub-cloud and cloud layer turbulent structures.

  6. Planar velocity measurements in compressible mixing layers

    NASA Astrophysics Data System (ADS)

    Urban, William David

    1999-10-01

    The efficiency of high-Mach number airbreathing propulsion devices is critically dependent upon the mixing of gases in turbulent shear flows. However, compressibility is known to suppress the growth rates of these mixing layers, posing a problem of both practical and scientific interest. In the present study, particle image velocimetry (PIV) is used to obtain planar, two- component velocity fields for Planar gaseous shear layers at convective Mach numbers Mc of 0.25, 0.63, and 0.76. The experiments are performed in a large-scale blowdown wind tunnel, with high-speed freestream Mach numbers up to 2.25 and shear-layer Reynolds numbers up to 106 . The instantaneous data are analyzed to produce maps of derived quantities such as vorticity, and ensemble averaged to provide turbulence statistics. Specific issues relating to the application of PIV to supersonic flows are addressed. In addition to the fluid- velocity measurements, we present double-pulsed scalar visualizations, permitting inference of the convective velocity of the large-scale structures, and examine the interaction of a weak wave with the mixing layer. The principal change associated with compressibility is seen to be the development of multiple high-gradient regions in the instantaneous velocity field, disrupting the spanwise-coherent `roller' structure usually associated with incompressible layers. As a result, the vorticity peaks reside in multiple thin sheets, segregated in the transverse direction. This suggests a decrease in cross-stream communication and a disconnection of the entrainment processes at the two interfaces. In the compressible case, steep-gradient regions in the instantaneous velocity field often correspond closely with the local sonic line, suggesting a sensitivity to lab-frame disturbances; this could in turn explain the effectiveness of sub-boundary layer mixing enhancement strategies in this flow. Large- ensemble statistics bear out the observation from previous single

  7. Ultrasound velocities for axial eye length measurement.

    PubMed

    Hoffer, K J

    1994-09-01

    Since 1974, I have used individual sound velocities for each eye condition encountered for axial length measurement. The calculation results in 1,555 M/sec for the average phakic eye. A slower speed of 1,549 M/sec was found for an extremely long (30 mm) eye and a higher speed of 1,561 M/sec was noted for an extremely short (20 mm) eye. This inversely proportional velocity change can best be adjusted for by measuring the phakic eye at 1,532 M/sec and correcting the result by dividing the square of the measured axial length (AL1,532)2 by the difference of the measured axial length (AL1,532) minus 0.35 mm. A velocity of 1,534 M/sec was found for all aphakic eyes regardless of their length, and correction is clinically significant. The velocity of an eye containing a poly(methyl methacrylate) intraocular lens is not different from an average phakic eye but it does magnify the effect of axial length change. I recommend measuring the pseudophakic eye at 1,532 M/sec and adding to the result (AL1,532), + 0.04 + 44% of the IOL thickness. The speed for an eye with a silicone IOL was found to be 1,476 M/sec (or AL1,532 + 0.04 - 56% of IOL thickness) and for glass, 1,549 M/sec (or AL1,532 + 0.04 + 75% of IOL thickness). A speed of 1,139 M/sec was found for a phakic eye with silicone oil filling most of the vitreous cavity and 1,052 M/sec for an aphakic eye filled with oil. For varying volumes of oil, each eye should be calculated individually. The speed was 534 M/sec for phakic eyes filled with gas. Eyes containing a silicone IOL or oil or gas will create clinically significant errors (3 to 10 diopters) if the sound velocity is not corrected. PMID:7996413

  8. Is there a pulse wave encephalopathy component to multiple sclerosis?

    PubMed

    Juurlink, Bernhard H J

    2015-01-01

    The dominant hypothesis in multiple sclerosis is that it is an autoimmune disease; however, there is considerable evidence that the immune attack on myelin may be secondary to a cytodegenerative event. Furthermore, the immune modulating therapies longest in clinical use, although modulating the frequency and severity of exacerbation, do not affect long-term progression towards disability. Clearly alternative perspectives on the etiology of multiple sclerosis are warranted. In this paper I outline the commonalities between idiopathic normal pressure hydrocephalus and multiple sclerosis. These include decreased intracranial compliance as evidenced by increased cerebrospinal fluid volume and velocity of cerebrospinal fluid flow through the cerebral aqueduct; increased ventricular volume; periventricular demyelination lesions; increase in size of Virchow-Robin spaces; presence of Hakim's triad comprised of locomotory disabilities, cognitive problems and bladder control problems. Furthermore, multiple sclerosis is associated with decreased arterial compliance. These are all suggestive that there is a pulse wave encephalopathy component to multiple sclerosis. There are enough resemblances between normal pressure hydrocephalus and multiple sclerosis to warrant further investigation. Whether decreases in intracranial compliance is a consequence of multiple sclerosis or is a causal factor is unknown. Effective therapies can only be developed when the etiology of the disease is understood. PMID:25760216

  9. Measurement of neutrino masses from relative velocities.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek; Yu, Yu

    2014-09-26

    We present a new technique to measure neutrino masses using their flow field relative to dark matter. Present day streaming motions of neutrinos relative to dark matter and baryons are several hundred km/s, comparable with their thermal velocity dispersion. This results in a unique dipole anisotropic distortion of the matter-neutrino cross power spectrum, which is observable through the dipole distortion in the cross correlation of different galaxy populations. Such a dipole vanishes if not for this relative velocity and so it is a clean signature for neutrino mass. We estimate the size of this effect and find that current and future galaxy surveys may be sensitive to these signature distortions. PMID:25302878

  10. Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed.

    PubMed

    Alastruey, Jordi

    2011-03-15

    A local estimation of pulse wave speed c, an important predictor of cardiovascular events, can be obtained at arterial locations where simultaneous measurements of blood pressure (P) and velocity (U), arterial diameter (D) and U, flow rate (Q) and cross-sectional area (A), or P and D are available, using the PU-loop, sum-of-squares (∑(2)), lnDU-loop, QA-loop or new D(2)P-loop methods. Here, these methods were applied to estimate c from numerically generated P, U, D, Q and A waveforms using a visco-elastic one-dimensional model of the 55 larger human systemic arteries in normal conditions. Theoretical c were calculated from the parameters of the model. Estimates of c given by the loop methods were closer to theoretical values and more uniform within each arterial segment than those obtained using the ∑(2). The smaller differences between estimates and theoretical values were obtained using the D(2)P-loop method, with root-mean-square errors (RMSE) smaller than 0.18 ms(-1), followed by averaging the two c given by the PU- and lnDU-loops (RMSE <2.99 ms(-1)). In general, the errors of the PU-, lnDU- and QA-loops decreased at locations where visco-elastic effects were small and nearby junctions were well-matched for forward-travelling waves. The ∑(2) performed better at proximal locations. PMID:21211799

  11. Laser Doppler Velocimeter particle velocity measurement system

    SciTech Connect

    Wilson, W.W.; Srikantaiah, D.V.; Philip, T.; George, A.

    1993-10-01

    This report gives a detailed description of the operation of the Laser Doppler Velocimeter (LDV) system maintained by DIAL at MSU. LDV is used for the measurement of flow velocities and turbulence levels in various fluid flow settings. Ills report details the operation and maintenance of the LDV system and provides a first-time user with pertinent information regarding the system`s setup for a particular application. Particular attention has been given to the use of the Doppler signal analyzer (DSA) and the burst spectrum analyzer (BSA) signal processors and data analysis.

  12. Radionuclide counting technique for measuring wind velocity

    SciTech Connect

    Singh, J.J.; Khandelwal, G.S.

    1981-12-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  13. Velocity measurement of the interplanetary hydrogen

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic

    2011-10-01

    We are proposing to use HST/STIS over a single orbit to make Lyman-alpha observations of the interplanetary hydrogen during the March-April period of this year {2012}. This special request is driven by a recent reanalysis of HST data {Vincent et al. 2011, published after the last call for proposals}.The heliospheric interface results from the interaction of the solar wind and the interstellar medium {ISM}. Within the heliosphere, the interplanetary hydrogen {IPH} flows at an average speed of about 23 km/sec, carrying the signature of the ISM and the heliospheric interface. The IPH has been observed for decades through the backscattering of solar Lyman-alpha photons and solar cycle 23 provided the first partial temporal map of the IPH velocity. It is now well established that the IPH velocity depends on solar activity. Moreover some analyses suggested that it may be also affected by the obliquity of the interstellar magnetic field, yielding a change of 1-2 km/sec.However a combination of the uncertainty of some measurements {e.g. GHRS} and the clustering of others near points on the cycle make it difficult to identify an unambiguous trend. Only one limited set is able to show a cycle dependence, but these represent an annual average and do not match the existing models. The best approach to address these issues is a new set of yearly spectroscopic measurements for at least a half solar cycle. Since we are currently just leaving a solar maximum, it is essential to start immediately in order to have an adequate baseline for temporal measurements.

  14. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  15. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  16. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  17. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  18. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  19. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  20. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  1. Sonar pulse wave form optimization in cluttered environments.

    PubMed

    Weichman, Peter B

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity. PMID:17025776

  2. Sonar pulse wave form optimization in cluttered environments

    NASA Astrophysics Data System (ADS)

    Weichman, Peter B.

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity.

  3. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  4. Field comparison of the point velocity probe with other groundwater velocity measurement methods

    NASA Astrophysics Data System (ADS)

    Labaky, W.; Devlin, J. F.; Gillham, R. W.

    2009-04-01

    Field testing of a new tool for measuring groundwater velocities at the centimeter scale, the point velocity probe (PVP), was undertaken at Canadian Forces Base, Borden, Ontario, Canada. The measurements were performed in a sheet pile-bounded alleyway in which bulk flow rate and direction could be controlled. PVP velocities were compared with those estimated from bulk flow, a Geoflo® instrument, borehole dilution, colloidal borescope measurements, and a forced gradient tracer test. In addition, the velocity profiles were compared with vertical variations in hydraulic conductivity (K) measured by permeameter testing of core samples and in situ high-resolution slug tests. There was qualitative agreement between the trends in velocity and K among all the various methods. The PVP and Geoflo® meter tests returned average velocity magnitudes of 30.2 ± 7.7 to 34.7 ± 13.1 cm/d (depending on prior knowledge of flow direction in PVP tests) and 36.5 ± 10.6, respectively, which were near the estimated bulk velocity (20 cm/d). The other direct velocity measurement techniques yielded velocity estimates 5 to 12 times the bulk velocity. Best results with the PVP instrument were obtained by jetting the instrument into place, though this method may have introduced a slight positive bias to the measured velocities. The individual estimates of point velocity direction varied, but the average of the point velocity directions agreed quite well with the expected bulk flow direction. It was concluded that the PVP method is a viable technique for use in the field, where high-resolution velocity data are required.

  5. Compressional velocity measurements for a highly fractured lunar anorthosite

    NASA Technical Reports Server (NTRS)

    Sondergeld, C. H.; Granryd, L. A.; Spetzler, H. A.

    1979-01-01

    The compressional wave (V sub p) velocities in three mutually perpendicular directions have been measured in lunar sample 60025,174, lunar anorthosite. V sub p measurements were made at ambient temperature and pressure and a new technique was developed to measure the velocities because of the tremendous acoustic wave attenuation of the lunar sample. The measured velocities were all less than 1 km/sec and displayed up to a 21% departure from the mean value of the three directions. The velocities agree with seismic wave velocities determined for the lunar surface at the collection site.

  6. Determination of Testicular Blood Flow in Camelids Using Vascular Casting and Color Pulsed-Wave Doppler Ultrasonography

    PubMed Central

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography. PMID:21941690

  7. A fast algorithm for the simulation of arterial pulse waves

    NASA Astrophysics Data System (ADS)

    Du, Tao; Hu, Dan; Cai, David

    2016-06-01

    One-dimensional models have been widely used in studies of the propagation of blood pulse waves in large arterial trees. Under a periodic driving of the heartbeat, traditional numerical methods, such as the Lax-Wendroff method, are employed to obtain asymptotic periodic solutions at large times. However, these methods are severely constrained by the CFL condition due to large pulse wave speed. In this work, we develop a new numerical algorithm to overcome this constraint. First, we reformulate the model system of pulse wave propagation using a set of Riemann variables and derive a new form of boundary conditions at the inlet, the outlets, and the bifurcation points of the arterial tree. The new form of the boundary conditions enables us to design a convergent iterative method to enforce the boundary conditions. Then, after exchanging the spatial and temporal coordinates of the model system, we apply the Lax-Wendroff method in the exchanged coordinate system, which turns the large pulse wave speed from a liability to a benefit, to solve the wave equation in each artery of the model arterial system. Our numerical studies show that our new algorithm is stable and can perform ∼15 times faster than the traditional implementation of the Lax-Wendroff method under the requirement that the relative numerical error of blood pressure be smaller than one percent, which is much smaller than the modeling error.

  8. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  9. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  10. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  11. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness

    PubMed Central

    Li, Han; Lin, Kexin; Shahmirzadi, Danial

    2016-01-01

    This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid–solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. PMID:27478394

  12. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness.

    PubMed

    Li, Han; Lin, Kexin; Shahmirzadi, Danial

    2016-01-01

    This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid-solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. PMID:27478394

  13. Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Zheng, Yi; Jing, Yipeng

    2015-02-01

    Cosmology based on large scale peculiar velocity prefers volume weighted velocity statistics. However, measuring the volume weighted velocity statistics from inhomogeneously distributed galaxies (simulation particles/halos) suffers from an inevitable and significant sampling artifact. We study this sampling artifact in the velocity power spectrum measured by the nearest particle velocity assignment method by Zheng et al., [Phys. Rev. D 88, 103510 (2013).]. We derive the analytical expression of leading and higher order terms. We find that the sampling artifact suppresses the z =0 E -mode velocity power spectrum by ˜10 % at k =0.1 h /Mpc , for samples with number density 10-3 (Mpc /h )-3 . This suppression becomes larger for larger k and for sparser samples. We argue that this source of systematic errors in peculiar velocity cosmology, albeit severe, can be self-calibrated in the framework of our theoretical modelling. We also work out the sampling artifact in the density-velocity cross power spectrum measurement. A more robust evaluation of related statistics through simulations will be presented in a companion paper by Zheng et al., [Sampling artifact in volume weighted velocity measurement. II. Detection in simulations and comparison with theoretical modelling, arXiv:1409.6809.]. We also argue that similar sampling artifact exists in other velocity assignment methods and hence must be carefully corrected to avoid systematic bias in peculiar velocity cosmology.

  14. A matter of measurement: rotation velocities and the velocity function of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.; Shankar, Francesco

    2016-02-01

    The velocity function derived from large-scale surveys can be compared with the predictions of Λ cold dark matter (ΛCDM) cosmology, by matching the measured rotation velocities Vrot of galaxies to the maximum circular velocity of dark matter (DM) haloes Vmax. For Vrot < 50 kms-1, a major discrepancy arises between the observed and ΛCDM velocity functions. However, the manner in which different observational measures of Vrot are associated with Vmax is not straightforward in dwarf galaxies. We instead relate galaxies to DM haloes using the empirical baryon-mass to halo-mass relation, and show that different observational measures of Vrot result in very different velocity functions. We show how the W50 velocity function, i.e. using the H I profile linewidth at 50 per cent of peak H I flux to measure Vrot, can be reconciled with a ΛCDM cosmology. Our semi-empirical methodology allows us to determine the region of rotation curves that are probed by H I measurements (R_{H I}), and shows that the Vrot of dwarfs are generally measured at a fraction of Rmax, explaining their tendency to have rising rotation curves. We provide fitting formulae for relating R_{H I} and Reff (the effective radius) to the virial radius of DM haloes. To continue to use velocity functions as a probe of ΛCDM cosmology, it is necessary to be precise about how the different measures of rotation velocity are probing the mass of the DM haloes, dropping the assumption that any measure of rotational velocity can be equally used as a proxy for Vmax.

  15. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-11-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.

  16. On the measurement of vertical velocity by MST radar

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    An overview is presented of the measurement of atmospheric vertical motion utilizing the MST radar technique. Vertical motion in the atmosphere is briefly discussed as a function of scale. Vertical velocity measurement by MST radars is then considered from within the context of the expected magnitudes to be observed. Examples are drawn from published vertical velocity observations.

  17. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    PubMed Central

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  18. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  19. A new instrumentation for particle velocity and velocity related measurements under water

    NASA Astrophysics Data System (ADS)

    Zhu, Weijia

    This dissertation investigates the capability of a new instrument for small particle velocity measurement and velocity related signal analysis in an underwater environment. This research started from the laser beam quality test, which was performed in air. It was conducted mainly by means of an optical fiber sensor combined with a computer controlled stepping motor as well as two other methods, edge detection and needle-tip scattering. The stepping motor offers a constant velocity to the fiber sensor, so that the beam separation can be accurately measured by using the constant velocity value and the transit time determined by the cross correlation function of two digital signals. Meanwhile, information of the beam intensity profile, the parallelism of the two beams and the in-air beam widths can also be obtained in the test. By using the calibrated beam separation of the ribbon pair in the beam quality test, particle velocity measurements are carried out based on the relation between velocity, displacement and time in a 500-liter open water tank. The time delay for a particle crossing over the two ribbons in sequence is obtained by computing the cross correlation of the two signals. In fact, the time delay is actually a statistical mean value of many particles that cross over the ribbons in a short time. So is the measured velocity. The third part of this research is the practical study on pulse shape analysis based on the data sets of the velocity measurement. Several computer programs are developed to explore the pulse height distribution in a data set, to study the pulse degeneration, the relationship between the pulse width and the velocity, and the in-water beam width information. Some important reference materials are displayed in the appendices such as the fundamentals of the cross correlation and auto correlation, three main MATLAB programs developed for this research, the theoretical analysis of particle diffraction.

  20. Assessments of Arterial Stiffness and Endothelial Function Using Pulse Wave Analysis

    PubMed Central

    Stoner, Lee; Young, Joanna M.; Fryer, Simon

    2012-01-01

    Conventionally, the assessments of endothelial function and arterial stiffness require different sets of equipment, making the inclusion of both tests impractical for clinical and epidemiological studies. Pulse wave analysis (PWA) provides useful information regarding the mechanical properties of the arterial tree and can also be used to assess endothelial function. PWA is a simple, valid, reliable, and inexpensive technique, offering great clinical and epidemiological potential. The current paper will outline how to measure arterial stiffness and endothelial function using this technique and include discussion of validity and reliability. PMID:22666595

  1. Unseeded Scalar Velocity Measurements for Propulsion Flows

    NASA Technical Reports Server (NTRS)

    Pitz, Robert W.; Wehrmeyer, Joseph A.; Seasholtz, Richard G. (Technical Monitor)

    2000-01-01

    Unseeded molecular tagging methods based on single-photon processes that produce long tag lines (>50 mm) have been recently developed and demonstrated by the Combustion Laser Diagnostics Group (Mechanical Engineering Department) at Vanderbilt University [1,2]. In Ozone Tagging Velocimetry (OTV) a line of ozone (O3) is produced by a single photon from a pulsed narrowband argon fluoride (ArF) excimer laser operating at - 193 nm. After a known time delay, t, the position of the displaced (convected in the flow field) O3 tag line is revealed by photodissociation of O3 and subsequent fluorescence of O2, caused by a pulsed laser sheet from a krypton fluoride (KrF) excimer laser operating at - 248 nm. Intensified CCD camera images of the fluorescence are taken from the initial and final tag line locations thus providing unobtrusive means of establishing a velocity profile in the interrogated flow field. The O3 lines are "written" and subsequently "read" by the following reactions:

  2. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  3. Influence of speckle effect on doppler velocity measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  4. Radioisotope measurement of the velocity of tracheal mucus.

    PubMed

    Russo, K J; Palmer, D W; Beste, D J; Carl, G A; Belson, T P; Pelc, L R; Toohill, R J

    1985-04-01

    A radioisotope scanning technique for measuring the velocity of tracheal mucus has been developed utilizing a canine model. A solution of stannous phytate labeled with 99mTc is introduced percutaneously into the lower trachea and the upward movement of the leading edge of the radioactivity is followed by repeat scanning at 2-minute intervals using a modified rectilinear scanner, thus allowing calculation of the velocity of the mucus. It is believed that this technique may be of value in studying the effect of experimentally induced tracheal injuries on mucus velocity. Possible applications of the technique for the study of the velocity of mucus in the human trachea are discussed. PMID:3921912

  5. Measurement of sound velocity profiles in fluids for process monitoring

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Kühnicke, E.; Lenz, M.; Bock, M.

    2012-12-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  6. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  7. A Distinguishing Arterial Pulse Waves Approach by Using Image Processing and Feature Extraction Technique.

    PubMed

    Chen, Hsing-Chung; Kuo, Shyi-Shiun; Sun, Shen-Ching; Chang, Chia-Hui

    2016-10-01

    Traditional Chinese Medicine (TCM) is based on five main types of diagnoses methods consisting of inspection, auscultation, olfaction, inquiry, and palpation. The most important one is palpation also called pulse diagnosis which is to measure wrist artery pulse by doctor's fingers for detecting patient's health state. In this paper, it is carried out by using a specialized pulse measuring instrument to classify one's pulse type. The measured pulse waves (MPWs) were segmented into the arterial pulse wave curve (APWC) by image proposing method. The slopes and periods among four specific points on the APWC were taken to be the pulse features. Three algorithms are proposed in this paper, which could extract these features from the APWCs and compared their differences between each of them to the average feature matrix, individually. These results show that the method proposed in this study is superior and more accurate than the previous studies. The proposed method could significantly save doctors a large amount of time, increase accuracy and decrease data volume. PMID:27562483

  8. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  9. [Intracranial volume reserve assessment based on ICP pulse wave analysis].

    PubMed

    Berdyga, J; Czernicki, Z; Jurkiewicz, J

    1994-01-01

    ICP waves were analysed in the situation of expanding intracranial mass. The aim of the study was to determine how big the intracranial added volume has to be in order to produce significant changes of harmonic disturbances index (HFC) of ICP pulse waves. The diagnostic value of HFC and other parameters was compared. The following other parameters were studied: intracranial pressure (ICP), CSF outflow resistance (R), volume pressure response (VPR) and visual evoked potentials (VEP). It was found that ICP wave analysis very clearly reflects the intracranial volume-pressure relation changes. PMID:8028705

  10. Input impedance of brass instruments from velocity measurement

    NASA Astrophysics Data System (ADS)

    Ludwigsen, Daniel O.

    2005-09-01

    A velocity sensor known as the Microflown measures particle velocity from a difference in temperature between two MEMS-scale wires. With a small precision microphone in a package the size of a matchstick, simultaneous measurement of particle velocity and pressure can be accomplished in a tiny space such as the mouthpiece of a brass instrument. Traditional measurements of input impedance rely on a constant flow provided by a capillary tube or feedback loop control of the driver. This velocity sensor eliminates these technical requirements. The apparatus and calibration procedures will be described, and results of measurements of several instruments will be presented. In an easily used device, this approach could benefit instrument designers, makers, and repair technicians.

  11. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  12. 33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT WES IN 1932 BY CARL E. BENTZEL. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  13. Non-intrusive measurements of bubble size and velocity

    NASA Astrophysics Data System (ADS)

    Tassin, A. L.; Nikitopoulos, D. E.

    1995-06-01

    A non-intrusive measuring technique based on video-imaging has been developed for the measurement of bubble size, velocity and frequency. Measurements carried out with this method have been compared to those obtained by an optimized phase-Doppler system in standard configuration, for a wide range of bubble sizes produced from single injectors in a quiescent environment. The two measuring techniques have yielded velocities and frequencies that are in very good agreement while the size of spherical bubbles was consistently measured by both methods. The phase-Doppler system was also used to size oblate-spheroidal bubbles moving with their equatorial plane parallel to the scattering plane, yielding measurements reasonably close to the average radius of curvature of the bubbles in the neighborhood of the equatorial plane, as calculated from the video-imaging data. Both methods were used for detailed velocity measurements of the bubble-stream in the neighborhood of the injector tip. The observed bubble-velocity variation with the distance from the injector tip does not always display the usual increasing trend leading into the terminal velocity. When injection conditions are near the transition from discrete to jet injection mode and the bubbles are small, the latter decelerate into a terminal velocity due to direct interaction of successive bubbles at the injector tip. The measured terminal velocities of bubble-chains for a variety of bubble sizes and injection frequencies, are successfully predicted by using a far-field wake approximation to account for the drafting effect which is responsible for bubble-chain velocities higher than those of single bubbles.

  14. Continuous measurements of in-bore projectile velocity

    SciTech Connect

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.; Hickman, R.

    1988-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed. 12 refs., 7 figs.

  15. Continuous measurements of in-bore projectile velocity

    SciTech Connect

    Asay, J.R.; Konrad, C.H.; Hall, C.A. ); Shahinpoor, M. . Dept. of Mechanical Engineering); Hickman, R. )

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed.

  16. Measurement of multidimensional ion velocity distributions by optical tomography

    NASA Astrophysics Data System (ADS)

    Koslover, R.; McWilliams, R.

    1986-10-01

    The development of a new diagnostic capable of measuring plasma ion distributions as a function of all three velocity-space coordinates is reported. The diagnostic makes use of laser-induced fluorescence (LIF) and computer-assisted image reconstruction techniques. LIF yields high-resolution, nonperturbing measurements of one-dimensional distributions that are integrated in two directions through three-dimensional velocity space. Computer tomography allows for the unambiguous determinations of the complete ion velocity distribution. In addition to a description of the diagnostic, examples of recovered distributions obtained from experiments are given, and the effects of the major steps in the data processing are discussed.

  17. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    SciTech Connect

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  18. In-situ application of Ultrasonic Pulse Velocity measurements to determine the degree of zeolitic alteration of ignimbrites

    NASA Astrophysics Data System (ADS)

    Evren Çubukçu, H.; Yurdakul, Yasin; Erkut, Volkan; Akkaş, Efe; Akın, Lütfiye; Ulusoy, İnan; Şen, Erdal

    2016-04-01

    -wave velocities are positively correlated with the degree of zeolitization, where the highest velocities correspond to the intensely zeolitized ignimbrites. In-situ application of UPV measurements in the field can be utilized for revealing the spatial variation in zeolitization and for locating the probable sources responsible for hydrothermal alteration. Keywords: ultrasonic pulse wave, in-situ, ignimbrite, hydrothermal alteration, zeolitization

  19. Particle size and velocity measurement in flames by laser anemometer

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.; Ungut, A.; Yule, A. J.

    1979-01-01

    Simultaneous droplet size and velocity measurements by a particle counting Laser Doppler Anemometer (LDA) in kerosene fuel sprays under burning and non-burning conditions are presented. Particle sizes are derived from pulse height analysis of the mean LDA signals and velocities are simultaneously determined by measuring Doppler shift frequencies. The measurements show that droplet velocity is a function of droplet diameter for burning and non-burning conditions, and spatially averaged size distributions are derived from velocity data. A comparison of results obtained under burning and non-burning conditions show changes in size distribution due to preferential vaporization of small droplets, acceleration due to thermal expansion of gases, and corresponding changes in droplet momentum.

  20. The High Resolution Measurement of P and S Velocity

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Azuma, H.

    2013-12-01

    Seismic explorations, which give seismic velocity, such as seismic refraction method and the down hole - PS logging, are generally applied to the large - scale area. Typically, at these seismic explorations, the receivers spacing ranges from 1.0m to 20.0m and resolution which means a minimal area required to determine seismic velocity is 10 to 50m depending of the receivers spacing. On the other hand, recently, seismic exploration to the smaller area has been applied with increasing frequency. For the large-scale constructions which require severe safety, such as the power station, dam, tunnels, bridges, the rock physical properties in wide area of several hundred meter square, are necessary in order to assess the safety when those are built and an earthquake comes. However, field tests which give the physical properties are almost applied to the area of around 1 m square. In this case, the issue exists whether or not the small field test area is representative of the whole rock property in the site. For this issue, seismic explorations to the small area are adopted for the purpose of the comparison between seismic velocity in the field test area and in the whole site area. It is generally recognized that the accuracy of seismic velocity decrease with decreasing seismic measurement length and number of receivers. To achieve high accuracy with the seismic exploration to the smaller area, we should adjust the spacing closer between the receivers compared to the spacing used by the existing method, and increase the number of receivers. And also, by doing this, we can increase the resolution of velocity results. At first, before the investigation, we calculated the errors of velocity caused by picking error of the arrival time from slope of a straight line using the linear least squares method, based on the Theory of Errors. This method shows that we should use the high frequency seismic wave in order to achieve the increasing the accuracy with the short seismic

  1. Velocity field measurement of a round jet using quantitative schlieren.

    PubMed

    Iffa, Emishaw D; Aziz, A Rashid A; Malik, Aamir S

    2011-02-10

    This paper utilizes the background oriented schlieren (BOS) technique to measure the velocity field of a variable density round jet. The density field of the jet is computed based on the light deflection created during the passage of light through the understudy jet. The deflection vector estimation was carried out using phase-based optical flow algorithms. The density field is further exploited to extract the axial and radial velocity vectors with the aid of continuity and energy equations. The experiment is conducted at six different jet-exit temperature values. Additional turbulence parameters, such as velocity variance and power spectral density of the vector field, are also computed. Finally, the measured velocity parameters are compared with the hot wire anemometer measurements and their correlation is displayed. PMID:21343981

  2. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure. PMID:27076222

  3. A proposed method for wind velocity measurement from space

    NASA Technical Reports Server (NTRS)

    Censor, D.; Levine, D. M.

    1980-01-01

    An investigation was made of the feasibility of making wind velocity measurements from space by monitoring the apparent change in the refractive index of the atmosphere induced by motion of the air. The physical principle is the same as that resulting in the phase changes measured in the Fizeau experiment. It is proposed that this phase change could be measured using a three cornered arrangement of satellite borne source and reflectors, around which two laser beams propagate in opposite directions. It is shown that even though the velocity of the satellites is much larger than the wind velocity, factors such as change in satellite position and Doppler shifts can be taken into account in a reasonable manner and the Fizeau phase measured. This phase measurement yields an average wind velocity along the ray path through the atmosphere. The method requires neither high accuracy for satellite position or velocity, nor precise knowledge of the refractive index or its gradient in the atmosphere. However, the method intrinsically yields wind velocity integrated along the ray path; hence to obtain higher spatial resolution, inversion techniques are required.

  4. Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels

    USGS Publications Warehouse

    Laenen, Antonius; Curtis, R.E., Jr.

    1989-01-01

    Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)

  5. Measuring the equatorial plasma bubble drift velocities over Morroco

    NASA Astrophysics Data System (ADS)

    Lagheryeb, Amine; Benkhaldoun, Zouhair; Makela, Jonathan J.; Harding, Brian; Kaab, Mohamed; Lazrek, Mohamed; Fisher, Daniel J.; Duly, Timothy M.; Bounhir, Aziza; Daassou, Ahmed

    2015-08-01

    In this work, we present a method to measure the drift velocities of equatorial plasma bubbles (EPBs) in the low latitude ionosphere. To calculate the EPB drift velocity, we use 630.0-nm airglow images collected by the Portable Ionospheric Camera and Small Scale Observatory (PICASSO) system deployed at the Oukkaimden observatory in Morocco. To extract the drift velocity, the individual images were processed by first spatially registering the images using the star field. After this, the stars were removed from the images using a point suppression methodology, the images were projected into geographic coordinates assuming an airglow emission altitude of 250 km. Once the images were projected into geographic coordinates, the intensities of the airglow along a line of constant geomagnetic latitude (31°) are used to detect the presence of an EPB, which shows up as a depletion in airglow intensity. To calculate the EPB drift velocity, we divide the spatial lag between depletions found in two images (found by the application of correlation analysis) by the time difference between these two images. With multiple images, we will have several velocity values and consequently we can draw the EPB drift velocity curve. Future analysis will compare the estimates of the plasma drift velocity with the thermospheric neutral wind velocity estimated by a collocated Fabry-Perot interferometer (FPI) at the observatory.

  6. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  7. Continuous subsurface velocity measurement with coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Baoshan; Zhu, Ping; Chen, Yong; Niu, Fenglin; Wang, Bin

    2008-12-01

    A 1-month field experiment was conducted near Kunming in Yunnan Province, China, to continuously monitor subsurface velocity variations along different baselines. The experiment site is located 10 km west to the seismically very active Xiaojiang fault zone. An electric hammer was used as a source to generate highly repeatable seismic waves, which were recorded by 5 short-period seismometers deployed at ˜10 m to 1.2 km away from the source. Velocity variation was estimated by using coda wave interferometry technique. The technique measures changes in differential time between the coda and the first arrival, which is in principal insensitive to timing errors. We obtained a fractional velocity perturbation (δv/v) of 10-3 to 10-2 with a precision of 10-4. The measured velocity variation is consistent among different components and stations and appears to well correlate with deep water level. The velocity variation is featured by a long-term linear trend and well-developed daily cycles. The latter is interpreted as the velocity response to the barometric pressure. A multivariate linear regression analysis of the data indicates that the velocity change exhibits a negative correlation with barometric pressure, with a stress sensitivity of 10-6/Pa at the experimental site.

  8. Burning velocity measurements of nitrogen-containing compounds.

    PubMed

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity. PMID:18207640

  9. Velocity and rotation measurements in acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters.

  10. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, G.; Horton, K.A.; Elias, T.; Garbeil, H.; Mouginis-Mark, P. J.; Sutton, A.J.; Harris, A.J.L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Ki??lauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s-1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements. ?? Springer-Verlag 2006.

  11. Easy-to-use blood velocity measurement instruments

    NASA Astrophysics Data System (ADS)

    Vilkomerson, David H. R.; Chilipka, Thomas

    2003-05-01

    This paper describes a new kind of clinical instrument designed to allow non-specialists to quantitatively measure blood velocity. The instrument's design utilizes vector continuous-wave (CW) Doppler. Vector CW Doppler insonates a volume with simultaneous multiple-angle beams that define a measurement region; within that region, the velocity vector of the blood can be measured independently of the probe orientation. By eliminating the need for simultaneous imaging and the specially trained technician required for the complicated instrument needed for such imaging, easy and inexpensive blood velocity measurements becomes possible. A prototype for a CW vector Doppler instrument has been used to measure blood velocity in several clinically important arteries: the radial and ulnar in the arm, the femoral in the leg, and the carotid in the neck. We report here on its first clinical use -- monitoring the flow in dialysis access grafts to prevent graft thrombosis. These early clinical results show accuracy and rapid learning of proper instrument use. The design approach presented shows much promise in creating instruments that will provide simple and low-cost-of-use procedures for measurement of blood velocity.

  12. Interferometry on diffuse surfaces in high-velocity measurements

    NASA Astrophysics Data System (ADS)

    Pronin, A.; Gupta, V.

    1993-08-01

    An interferometer is presented which is capable of measuring the free-surface velocities and displacements of both specular and diffuse surfaces. The setup utilizes a previously used principle of producing a virtual image of one mirror at the same distance from the photodiode as the second mirror of the interferometer, albeit with considerable simplification. It is shown that use of a He-Ne laser of only 5-mW power can produce high contrast displacement fringes from surfaces of materials with nonuniform microstructure, including composites. Substrates of carbon-carbon composites and polycrystalline alumina with nonuniform microstructure on the scale of 5-10 μm, and with peak velocities up to 150 m/s were considered. An experimental strategy which allows one to covert the optical setup to either a velocity or a displacement interferometer is also discussed. It is further shown that use of a fast photodiode and a high-speed digitizer with a 5-ps rise time provides a time resolution of 0.2 ns for recording the displacement fringes, and allows measuring free surface velocities up to 800 m/s. This is demonstrated by measuring such transient surface velocities with rise times of 1 ns on a specular Si surface. In all the experiments reported here, the surface velocities were produced by the reflection of a stress wave, which in turn was generated on the back surface of the substrate, using a Nd:YAG laser pulse.

  13. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  14. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  15. Overall elemental dry deposition velocities measured around Lake Michigan

    NASA Astrophysics Data System (ADS)

    Yi, Seung-Muk; Shahin, Usama; Sivadechathep, Jakkris; Sofuoglu, Sait C.; Holsen, Thomas M.

    Overall dry deposition velocities of several elements were determined by dividing measured fluxes by measured airborne concentrations in different particle size ranges. The dry deposition measurements were made with a smooth surrogate surface on an automated dry deposition sampler (Eagle II) and the ambient particle concentrations were measured with a dichotomous sampler. These long-term measurements were made in Chicago, IL, South Haven, MI, and Sleeping Bear Dunes, MI, from December 1993 through October 1995 as part of the Lake Michigan Mass Balance Study. In general, the dry deposition fluxes of elements were highly correlated with coarse particle concentrations, slightly less well correlated with total particle concentrations, and least well correlated with fine particle concentrations. The calculated overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 12 cm s -1 for Mg in Chicago to 0.2 cm s -1 for some primarily anthropogenic metals at the more remote sites. The velocities calculated using total particle concentrations were slightly lower. The crustal elements (Mg, Al, and Mn) had higher deposition velocities than anthropogenic elements (V, Cr, Cu, Zn, Mo, Ba and Pb). For crustal elements, overall dry deposition velocities were higher in Chicago than at the other sites.

  16. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong

    2016-06-01

    There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.

  17. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  18. Using embedded fibers to measure explosive detonation velocities

    SciTech Connect

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  19. Low-cost tape system measures velocity of acceleration

    NASA Technical Reports Server (NTRS)

    Hartenstein, R.

    1964-01-01

    By affixing perforated magnetic recording tape to the falling end of a body, acceleration and velocity were measured. The measurement was made by allowing the tape to pass between a light source and a photoelectric sensor. Data was obtained from a readout device.

  20. Estimating Radar Velocity using Direction of Arrival Measurements

    SciTech Connect

    Doerry, Armin Walter; Horndt, Volker; Bickel, Douglas Lloyd; Naething, Richard M.

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  1. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  2. Laboratory Measurements of Velocity and Attenuation in Sediments

    SciTech Connect

    Zimmer, M A; Berge, P A; Bonner, B P; Prasad, M

    2004-06-08

    Laboratory measurements are required to establish relationships between the physical properties of unconsolidated sediments and P- and S-wave propagation through them. Previous work has either focused on measurements of compressional wave properties at depths greater than 500 m for oil industry applications or on measurements of dynamic shear properties at pressures corresponding to depths of less than 50 m for geotechnical applications. Therefore, the effects of lithology, fluid saturation, and compaction on impedance and P- and S-wave velocities of shallow soils are largely unknown. We describe two state-of-the-art laboratory experiments. One setup allows us to measure ultrasonic P-wave velocities at very low pressures in unconsolidated sediments (up to 0.1 MPa). The other experiment allows P- and S-wave velocity measurements at low to medium pressures (up to 20 MPa). We summarize the main velocity and attenuation results on sands and sand - clay mixtures under partially saturated and fully saturated conditions in two ranges of pressures (0 - 0.1 MPa and 0.1 - 20 MPa) representative of the top few meters and the top 1 km, respectively. Under hydrostatic pressures of 0.1 to 20 MPa, our measurements demonstrate a P- and S-wave velocity-dependence in dry sands around a fourth root (0.23 -0.26) with the pressure dependence for S-waves being slightly lower. The P- velocity-dependence in wet sands lies around 0.4. The Vp-Vs and the Qp-Qs ratios together can be useful tools to distinguish between different lithologies and between pressure and saturation effects. These experimental velocities at the frequency of measurement (200 kHz) are slightly higher that Gassmann's static result. For low pressures under uniaxial stress, Vp and Vs were a few hundred meters per second with velocities showing a strong dependence on packing, clay content, and microstructure. We provide a typical shallow soil scenario in a clean sand environment and reconstruct the velocity profile of

  3. Simulated O VI Doppler dimming measurements of coronal outflow velocities

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Gardner, L. D.; Kohl, John L.

    1992-01-01

    The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.

  4. Absolute blood velocity measured with a modified fundus camera

    NASA Astrophysics Data System (ADS)

    Duncan, Donald D.; Lemaillet, Paul; Ibrahim, Mohamed; Nguyen, Quan Dong; Hiller, Matthias; Ramella-Roman, Jessica

    2010-09-01

    We present a new method for the quantitative estimation of blood flow velocity, based on the use of the Radon transform. The specific application is for measurement of blood flow velocity in the retina. Our modified fundus camera uses illumination from a green LED and captures imagery with a high-speed CCD camera. The basic theory is presented, and typical results are shown for an in vitro flow model using blood in a capillary tube. Subsequently, representative results are shown for representative fundus imagery. This approach provides absolute velocity and flow direction along the vessel centerline or any lateral displacement therefrom. We also provide an error analysis allowing estimation of confidence intervals for the estimated velocity.

  5. Measurement of Lagrangian velocity in fully developed turbulence.

    PubMed

    Mordant, N; Metz, P; Michel, O; Pinton, J F

    2001-11-19

    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particle at a turbulent Reynolds number R(lambda) = 740, with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form E(L)(omega) = u(2)(rms)T(L)/[1+(T(L)omega)(2)], in agreement with a Kolmogorov-like scaling in the inertial range. The probability density functions of the velocity time increments display an intermittency which is more pronounced than that of the corresponding Eulerian spatial increments. PMID:11736341

  6. Combined measurements of velocity and concentration in experimental turbidity currents

    NASA Astrophysics Data System (ADS)

    Felix, M.; Sturton, S.; Peakall, J.

    2005-08-01

    Three different sets of experimental turbidity currents were run in which velocity and concentration were measured simultaneously, for several different heights above the bed. One set with cohesive sediment had an initial volumetric concentration of 16% kaolinite, and the other two sets with non-cohesive sediment had concentrations of 28% and 4% silica flour. Velocity was measured at 104-122 Hz using an Ultrasonic Doppler Velocimetry Profiler and concentration was measured at 10 Hz using an Ultrasonic High Concentration Meter. The similarity of changes in velocity and concentration at the same measurement heights are described and it is shown that the similarity depends on flow concentration and position in the flow. The measurements are analysed using cross-correlations and wavelet analysis. Velocity measurements are compared with analytical solutions for flow around a semisphere and flow around a half body. Measurements and analyses indicate that turbulence is diminished by stratification, decoupling of regions where turbulence is generated and by reduction of vertical flow in the turbidity currents.

  7. Near bottom velocity measurements in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Cheng, Ralph T.

    1996-01-01

    The ability to accurately measure long-term time-series of tidal currents in bays and estuaries is critical in estuarine hydrodynamic studies. Accurate measurements of tidal currents near the air-water interface and in the bottom boundary layer remain difficult in spite of the significant advances in technology for measuring tidal currents which have been achieved in recent years. One of the objectives of this study is to demonstrate that turbulent mean velocity distribution within the bottom boundary layer can be determined accurately by using a broad-band acoustic Doppler current profiler (BB-ADCP). A suite of instruments, including two BB-ADCPs and four electromagnetic (EM) current meters was deployed in San Francisco Bay, California in an investigation of resuspension and transport of sediment during March 1995. The velocity measurements obtained in the bottom boundary layer by BB-ADCP were highly coherent (r2>0.94) with the velocity measurements obtained by EM current meters. During early March 1995, both BB-ADCPs and EM current meters recorded a very unusual flow event. Agreement among independent measurements by these instruments in describing such an atypical hydrodynamic occurrence further validates the velocity measurements obtained by BB-ADCP in the bottom boundary layer.

  8. Upscaling Point Velocity Measurements to Characterize a Glacial Outwash Aquifer.

    PubMed

    Schillig, P C; Devlin, J F; Rudolph, D

    2016-05-01

    Small-scale point velocity probe (PVP)-derived velocities were compared to conventional large-scale velocity estimates from Darcy calculations and tracer tests, and the possibility of upscaling PVP data to match the other velocity estimates was evaluated. Hydraulic conductivity was estimated from grain-size data derived from cores, and single-well response testing or slug tests of onsite wells. Horizontal hydraulic gradients were calculated using 3-point estimators from all of the wells within an extensive monitoring network, as well as by representing the water table as a single best fit plane through the entire network. Velocities determined from PVP testing were generally consistent in magnitude with those from depth specific data collected from multilevel monitoring locations in the tracer test, and similar in horizontal flow direction to the average hydraulic gradient. However, scaling up velocity estimates based on PVP measurements for comparison with site-wide Darcy-based velocities revealed issues that challenge the use of Darcy calculations as a generally applicable standard for comparison. The Darcy calculations were shown to underestimate the groundwater velocities determined both by the PVPs and large-scale tracer testing, in a depth-specific sense and as a site-wide average. Some of this discrepancy is attributable to the selective placement of the PVPs in the aquifer. Nevertheless, this result has important implications for the design of in situ treatment systems. It is concluded that Darcy estimations of velocity should be supplemented with independent assessments for these kinds of applications. PMID:26221762

  9. Measurement of angular velocity in the perception of rotation.

    PubMed

    Barraza, José F; Grzywacz, Norberto M

    2002-09-01

    Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius. PMID:12367744

  10. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  11. Measurements of Laser Imprinting Using 2-D Velocity Interferometry

    NASA Astrophysics Data System (ADS)

    Boehly, T. R.; Fiksel, G.; Hu, S. X.; Goncharov, V. N.; Sangster, T. C.; Celliers, P. M.

    2014-10-01

    Evaluating laser imprinting and its effect on target performance is critical to direct-drive inertial confinement fusion research. Using high-resolution velocity interferometry, we measure modulations in the velocity of shock waves produced by the 351-nm beams on OMEGA. These modulations result from nonuniformities in the drive laser beams. We use these measurements to evaluate the effect on imprinting of multibeam irradiation and metal layers on both plastic and cryogenic deuterium targets driven with 100-ps pulses. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Velocity measurements by laser resonance fluorescence. [single atom diffusional motion

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Fairbank, W. M., Jr.

    1980-01-01

    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.

  13. Optic-microwave mixing velocimeter for superhigh velocity measurement.

    PubMed

    Weng, Jidong; Wang, Xiang; Tao, Tianjiong; Liu, Cangli; Tan, Hua

    2011-12-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment. PMID:22225206

  14. Optic-microwave mixing velocimeter for superhigh velocity measurement

    NASA Astrophysics Data System (ADS)

    Weng, Jidong; Wang, Xiang; Tao, Tianjiong; Liu, Cangli; Tan, Hua

    2011-12-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  15. Optic-microwave mixing velocimeter for superhigh velocity measurement

    SciTech Connect

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-12-15

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  16. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Liot, O.; Seychelles, F.; Zonta, F.; Chibbaro, S.; Coudarchet, T.; Gasteuil, Y.; Pinton, J.-F.; Salort, J.; Chillà, F.

    2016-05-01

    We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and temperature frequency spectra is shown and discussed. In particular, we observe that temperature spectra exhibit an anomalous f^2.5 frequency scaling, likely representing the ubiquitous passive and active scalar behavior of temperature

  17. Directional velocity analyzer for measuring electron distribution functions in plasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Gekelman, W.; Wild, N.; Urrutia, J. M.; Whelan, D.

    1983-01-01

    A directional velocity analyzer has been developed for measuring electron distribution functions in plasmas. It contains a collimating aperture which selects particles from a narrow cone in velocity space and a retarding potential analyzer. The distribution function f(v, theta, phi) is obtained from a large number of analyzer traces taken at different angles theta, phi. In addition, the small analyzer can be moved in space and the measurements are time resolved so as to obtain the complete phase space information f(v,r,t). The large data flow of this seven-variable function is processed with a high-speed digital data-acquisition system. The new electron velocity analyzer is applicable over a wide parameter range in electron energies and densities. Various cases of anisotropic distributions such as beams, shells, tails, and drifts have been successfully investigated.

  18. Measurements of ejection velocities in collisional disruption of ice spheres

    NASA Astrophysics Data System (ADS)

    Arakawa, Masahiko; Higa, Michiya

    1996-09-01

    Impact experiments are performed on ice spheres to measure the velocity field of ejected ice fragments and the conditions under which the fragments would reaccumulate during accretion in the outer solar system are considered. A single-stage light gas gun set in a cold room at -18°C and an image-converter camera running at 2 × 10 5-1 × 10 4 frames per second with a xenon flash lamp are used for observing the collisional phenomena. Spherical projectiles of ice ( mp = 1.5 g) collide head-on with spherical targets ( Mt = 1.5, 12, 172 g) at 150-690 m s -1. The ejection velocity is observed to vary with the initial position and ranges from 3 to 1/10 of the impact velocity ( Vi). The ejection velocity of fragments at the rear side of the target ( Ve) varies with distance from the impact point according to a power law relation, V e = V a( 1/D) -n, where Va is the antipodal velocity, l and D are the distance and the target diameter, and n = 1.5-2.0. Va depends on the specific energy ( Q) at a constant mass ratio ( m p/M t = 0.13 ) and the empirical dependence is written as Va = 0.35 × Q0.52. The ejection velocity of fine fragments formed by the jetting process near the impact point is determined to be 1.7-2.9 times as large as the impact velocity irrespective of the target size and the impact velocity.

  19. Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2001-01-01

    A new technique for measuring dynamic gas velocity and temperature is described. The technique is based on molecular Rayleigh scattering of laser light, so no seeding of the flow is necessary. The Rayleigh scattered light is filtered with a fixed cavity, planar mirror Fabry-Perot interferometer. A minimum number of photodetectors were used in order to allow the high data acquisition rate needed for dynamic measurements. One photomultiplier tube (PMT) was used to measure the total Rayleigh scattering, which is proportional to the gas density. Two additional PMTs were used to detect light that passes through two apertures in a mask located in the interferometer fringe plane. An uncertainty analysis was used to select the optimum aperture parameters and to predict the measurement uncertainty due to photon shot-noise. Results of an experiment to measure the velocity of a subsonic free jet are presented.

  20. Nerve conduction velocity measurements: improved accuracy using superimposed response waves.

    PubMed

    Halar, E M; Venkatesh, B

    1976-10-01

    A new procedure of serial motor nerve conduction velocity (NCV) measurements with the use of "superimposed response waves" technique (or double stimulus technique) was performed on 29 normal subjects. Six peripheral nerves were tested once a week for four to six weeks. A total of 760 NCV measurements were thus obtained to try to assess the magnitude of error in serial NCV testings. With the double stimulus technique employed, a significant reduction in variations of serial NCV measurements was found. The overall standard deviation of four to six consecutive NCV measurements in the 34 subjects was 1.3 meters per second with a coefficient of variation of 2.4%. These findings obtained with the double stimulus technique have proven to be approximately three times more accurate than results obtained by investigators who studied nerve conduction velocity measurement variation with single stimulus standard NCV testing techniques. PMID:184754

  1. Particle velocity measurements in HVOF and APS systems

    SciTech Connect

    Knight, R.; Smith, R.W.; Xiao, Z.; Hoffman, T.T.

    1994-12-31

    Production of reliable, repeatable coatings requires precise control of the process used to deposit them. Significant advances have recently been made in controlling the inputs to thermal spray processes, however, much work remains to be done to control process outputs and to correlate these with coatings characteristics. Thermal spray processes comprise the heating/melting, acceleration, impact, rapid solidification and incremental build-up of a large number of individual particles. Particle velocity is a key process parameter in determining coating properties such as density/porosity, bond strength and residual stress. Laser Stroboscopy and optical image analysis techniques have been used to image particles traveling in high velocity oxy-fuel (HVOF) and air plasma spray (APS) jets. Results indicate that these techniques can be used to measure particle velocity, trajectory and velocity distribution(s) in thermal spray jets. mean particle velocities of {approximately}400 m/s and {approximately}100 m/s have been measured for HVOF and APS respectively.

  2. Intraglottal velocity and pressure measurements in a hemilarynx model

    PubMed Central

    Oren, Liran; Gutmark, Ephraim; Khosla, Sid

    2015-01-01

    Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model. PMID:25698025

  3. Intraglottal velocity and pressure measurements in a hemilarynx model.

    PubMed

    Oren, Liran; Gutmark, Ephraim; Khosla, Sid

    2015-02-01

    Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model. PMID:25698025

  4. Adaptive interferometric velocity measurements using a laser guide star

    NASA Astrophysics Data System (ADS)

    Czarske, J.; Radner, H.; Büttner, L.

    2015-07-01

    We have harnessed the power of programmable photonics devices for an interferometric measurement technique. Laser interferometers are widely used for flow velocity measurements, since they offer high temporal and spatial resolutions. However, often optical wavefront distortions deteriorate the measurement properties. In principle, adaptive optics enables the correction of these disturbances. One challenge is to generate a suitable reference signal for the closed loop operation of the adaptive optics. An adaptive Mach Zehnder interferometer is presented to measure through a dynamic liquid-gas phase boundary, which can lead to a misalignment of the interfering laser beams. In order to generate the reference signal for the closed loop control, the Fresnel reflex of the phase boundary is used as Laser Guide Star (LGS) for the first time to the best of the authors' knowledge. The concept is related to the generation of artificial stars in astronomy, where the light transmitted by the atmosphere is evaluated. However, the adaptive interferometric flow velocity measurements at real world experiments require a different concept, since only the reflected light can be evaluated. The used LGS allows to measure the wavefront distortions induced by the dynamic phase boundary. Two biaxial electromagnetically driven steering mirrors are employed to correct the wavefront distortions. This opens up the possibility for accurate flow measurements through a dynamic phase boundary using only one optical access. Our work represents a paradigm shift in interferometric velocity measurement techniques from using static to dynamic optical elements.

  5. Electrical instrument measures position and velocity of shock waves

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Humphry, D. E.

    1971-01-01

    Instrument employs a sensor consisting of twin-electrode probe mounted in shock tube wall, with small dc voltage impressed across electrodes. Power supply, amplifier, and gate pulse generator complete the system. Instrument provides data for construction of wave diagrams, as well as measurement of shock velocity.

  6. Evaluation of mean velocity and turbulence measurements with ADCPs

    USGS Publications Warehouse

    Nystrom, E.A.; Rehmann, C.R.; Oberg, K.A.

    2007-01-01

    To test the ability of acoustic Doppler current profilers (ADCPs) to measure turbulence, profiles measured with two pulse-to-pulse coherent ADCPs in a laboratory flume were compared to profiles measured with an acoustic Doppler velocimeter, and time series measured in the acoustic beam of the ADCPs were examined. A four-beam ADCP was used at a downstream station, while a three-beam ADCP was used at a downstream station and an upstream station. At the downstream station, where the turbulence intensity was low, both ADCPs reproduced the mean velocity profile well away from the flume boundaries; errors near the boundaries were due to transducer ringing, flow disturbance, and sidelobe interference. At the upstream station, where the turbulence intensity was higher, errors in the mean velocity were large. The four-beam ADCP measured the Reynolds stress profile accurately away from the bottom boundary, and these measurements can be used to estimate shear velocity. Estimates of Reynolds stress with a three-beam ADCP and turbulent kinetic energy with both ADCPs cannot be computed without further assumptions, and they are affected by flow inhomogeneity. Neither ADCP measured integral time scales to within 60%. ?? 2007 ASCE.

  7. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    NASA Astrophysics Data System (ADS)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  8. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  9. Velocity measurements around a freely swimming fish using PIV

    NASA Astrophysics Data System (ADS)

    Kamran Siddiqui, M. H.

    2007-01-01

    Two-dimensional velocity fields around a freely swimming goldfish in a vertical plane have been measured using the particle image velocimetry (PIV) technique. A novel scheme has been developed to detect the fish body in each PIV image. The scheme is capable of detecting the bodies of fish and other aquatic animals with multicolour skin and different patterns. In this scheme, the body portions brighter and darker than the background are extracted separately and then combined together to construct the entire body. The velocity fields show that the fins and tail produce jets. Vortices are also observed in the wake region.

  10. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    SciTech Connect

    W.M. Solomon; K.H. Burrell; P. Gohil; R.J. Groebner; L.R. Baylor

    2004-07-16

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations.