Science.gov

Sample records for pulsed laser deposited

  1. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  2. Feedback control of pulsed laser deposition processes

    NASA Astrophysics Data System (ADS)

    Laube, S. J. P.; Stark, E. F.

    1993-10-01

    Implementation of closed loop feedback on PLD (pulsed laser deposition) requires actuators and sensors. Improvements in quality and reproducibility of material depositions are achieved by actuating the process towards desired operating regions. Empirical relationships are experimentally determined for describing the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder.

  3. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  4. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  5. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  6. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  7. Pulsed laser deposition of pseudowollastonite coatings.

    PubMed

    Fernández-Pradas, J M; Serra, P; Morenza, J L; De Aza, P N

    2002-05-01

    Pseudowollastonite (alpha-CaSiO3) is a bioactive ceramic material that induces direct bone growth. A process to obtain pseudowollastonite coatings that may be applied to implants is described and evaluated in this work. The coatings were first deposited on titanium alloy by laser ablation with a pulsed Nd:YAG laser tripled in frequency. After deposition, they were submitted to a soft laser treatment with a continuous wave Nd:YAG infrared laser. Coatings were characterised by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy before and after the laser treatment. As-deposited coatings are composed of pseudowollastonite and amorphous material. They have a porous structure of gathered grains and poor cohesion. After the laser treatment the coatings crystallinity and cohesion are improved. The laser treatment also makes the coatings dense and well adhered to the substrate. Therefore, this two-step process has been demonstrated as a valuable method to coat titanium implants with pseudowollastonite. PMID:11996047

  8. Ferroelectric thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Dinu, Raluca; Vrejoiu, I.; Verardi, P.; Craciun, F.; Dinescu, Maria

    2001-06-01

    Influence of substrate and electrode on the properties of PbZr0.53Ti0.47O3 (PZT) thin films grown by pulsed laser deposition technique (1060 nm wavelength Nd:YAG laser light, 10 ns pulse duration, 10 Hz repetition rate, 0.35 J/pulse, 25 J/cm2 laser fluence, deposition rate about 1 angstrom/pulse) was studied. The substrate temperatures were in the range 380 degree(s)C-400 degree(s)C. Oriented crystalline PZT layers with 1-3 micrometers thickness were deposited on glass substrates plated with Au/Pt/NiCr electrodes, from a PZT commercial target in oxygen reactive atmosphere. The deposited PZT films with perovskite structure were preferentially oriented along the (111) direction as revealed from XRD spectra. Piezoelectric d33 coefficients up to 30 pC/N were obtained on as deposited films. Ferroelectric hysteresis loops at 100 Hz revealed a remanent polarization of 15 (mu) C/cm2 and a coercive field of 100 kV/cm. A comparison with properties of PZT films deposited using a KrF laser and with SrBi2Ta2O9 (SBT) films is reported.

  9. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  10. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  11. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543

  12. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  13. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  14. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents. PMID:20128746

  15. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  16. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  17. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  18. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  19. Pulsed laser ablation and deposition of niobium carbide

    NASA Astrophysics Data System (ADS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  20. Self-directed control of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stark, E. F.; Laube, S. J. P.

    1993-10-01

    Implementation of self-directed control of pulsed laser deposition (PLD) requires actuators, sensors, and a materials and processing knowledge base. Improvements in quality and reproducibility of material deposits are achieved by driving the process toward desired operating regions. Empirical relationships are determined experimentally to describe the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder and effectively produce consistent coatings with desired properties.

  1. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    SciTech Connect

    Sun, Xinxing Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  2. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    PubMed

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review. PMID:22747717

  3. Pulsed laser deposition of anatase thin films on textile substrates

    NASA Astrophysics Data System (ADS)

    Krämer, André; Kunz, Clemens; Gräf, Stephan; Müller, Frank A.

    2015-10-01

    Pulsed laser deposition (PLD) is a highly versatile tool to prepare functional thin film coatings. In our study we utilised a Q-switched CO2 laser with a pulse duration τ ≈ 300 ns, a laser wavelength λ = 10.59 μm, a repetition frequency frep = 800 Hz and a peak power Ppeak = 15 kW to deposit crystalline anatase thin films on carbon fibre fabrics. For this purpose, preparatory experiments were performed on silicon substrates to optimise the anatase deposition conditions including the influence of different substrate temperatures and oxygen partial pressures. Processing parameters were then transferred to deposit anatase on carbon fibres. Scanning electron microscopy, X-ray diffraction analyses, Raman spectroscopy and tactile profilometry were used to characterise the samples and to reveal the formation of phase pure anatase without the occurrence of a secondary rutile phase. Methanol conversion test were used to prove the photocatalytic activity of the coated carbon fibres.

  4. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    SciTech Connect

    Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  5. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  6. Resonant infrared pulsed laser deposition of cyclic olefin copolymer films

    SciTech Connect

    Singaravelu, Senthil R.; Klopf, John M.; Schriver, Kenneth E.; Park, HyeKyoung; Kelley, Michael J.; Haglund, Jr., Richard F.

    2013-08-01

    Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C–H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C–H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.

  7. Resonant infrared pulsed laser deposition of cyclic olefin copolymer films

    NASA Astrophysics Data System (ADS)

    Singaravelu, S.; Klopf, J. M.; Schriver, K. E.; Park, H. K.; Kelley, M. J.; Haglund, R. F.

    2014-03-01

    Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C-H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C-H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.

  8. Pulsed laser deposition of niobium nitride thin films

    SciTech Connect

    Farha, Ashraf Hassan Elsayed-Ali, Hani E.; Ufuktepe, Yüksel; Myneni, Ganapati

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  9. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  10. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  11. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Brendel', V. M.; Bukin, V. V.; Garnov, Sergei V.; Bagdasarov, V. Kh; Denisov, N. N.; Garanin, Sergey G.; Terekhin, V. A.; Trutnev, Yurii A.

    2012-12-01

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation.

  12. History and current status of commercial pulsed laser deposition equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm2 up to 10 m2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R&D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications.

  13. Pulsed laser deposition and characterization of cellulase thin films

    NASA Astrophysics Data System (ADS)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  14. Formation of ultrasmooth thin silver films by pulsed laser deposition

    SciTech Connect

    Kuznetsov, I. A.; Garaeva, M. Ya.; Mamichev, D. A. Grishchenko, Yu. V.; Zanaveskin, M. L.

    2013-09-15

    Ultrasmooth thin silver films have been formed on a quartz substrate with a buffer yttrium oxide layer by pulsed laser deposition. The dependence of the surface morphology of the film on the gas (N{sub 2}) pressure in the working chamber and laser pulse energy is investigated. It is found that the conditions of film growth are optimal at a gas pressure of 10{sup -2} Torr and lowest pulse energy. The silver films formed under these conditions on a quartz substrate with an initial surface roughness of 0.3 nm had a surface roughness of 0.36 nm. These films can be used as a basis for various optoelectronics and nanoplasmonics elements.

  15. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  16. Pulsed laser deposition and characterization of ZnO nanopores

    NASA Astrophysics Data System (ADS)

    Ghosh, Poulami; Sharma, Ashwini K.

    2016-04-01

    We report on the deposition and characterization of ZnO nanopore structures by pulsed laser deposition technique at a fixed substrate temperature and at different deposition times on a silicon (100) substrate. X-ray diffraction shows that ZnO nanopore structures are highly oriented along c-axis. Morphological analysis of the nanostructures studied by FESEM and AFM confirms the pores nature of the structures. The morphological evolution of the nanostructures as a function of deposition time is discussed on the basis of Stranski-Krastanov growth model. Optical properties of the nanostructures studied by photoluminescence spectra indicate that the observed transitions are from near band edge as well as from defect-related states.

  17. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-06-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3C 2, as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  18. Infrared Pulsed Laser Deposition: Applications in Photonics and Biomedical Technologies

    NASA Astrophysics Data System (ADS)

    Haglund, Richard

    2006-04-01

    Resonant infrared pulsed-laser deposition (RIR-PLD) shows significant promise for synthesizing thin films of small organic molecules, thermoplastic and thermosetting polymers and biopolymers, without compromising structure or functionality. This contrasts with most attempts at UV-PLD of organic materials, which have often been accompanied by severe photochemical or photothermal degradation of the ablated material. Representative recent successes in RIR-PLD include deposition of: polymers for light emission and hole transport; functionalized polymers and nanoparticles for chemical and biological sensing; and biocompatible polymers suitable for coating medical devices or drug-delivery vehicles. Plume imaging and various other optical- and mass-spectroscopy experiments appear to confirm that polymers or organic molecules ablated by resonant infrared laser irradiation experience a high spatial and temporal density of vibrational excitation, but tend to remain in the electronic ground state. The mechanism of RIR-PLD is observed to depend on the anharmonicity of the mid-infrared absorption modes, their finite relaxation time, mode-specific nonlinear absorption, and rapid changes in polymer viscosity as a function of temperature. Many of the RIR-PLD experiments to date were carried out using a tunable, mid-infrared, picosecond free-electron laser. However, if RIR-PLD is to become a practical tool for making organic thin films, it will be necessary to develop more conventional lasers that can achieve a similar combination of high pulse intensity, low pulse energy, high pulse-repetition frequency and moderate average power. In conclusion, the prospects for developing precisely such table-top RIR-PLD systems will be discussed.

  19. Drastic deviations from stoichiometry transfer during pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Dittrich, Arne; Eberl, Christian; Schlenkrich, Susanne; Schlenkrich, Felix; Döring, Florian; Krebs, Hans-Ulrich

    2016-04-01

    In common, one of the most characteristic properties of pulsed laser deposition is the stoichiometry transfer between target and substrate, which has been used heavily for many complex systems. In this paper we show that it is yet possible to obtain drastic deviations from stoichiometry transfer in a binary system by just varying the fluence during laser deposition. In the W-Cu system, the W concentration of films grown from a composite W60Cu40 target (60 wt% W) was indeed continuously changed over an unprecedented large range of 0-70 wt% W. Close to the deposition threshold, pure Cu films are formed due to the much higher vapor pressure of Cu. At higher laser fluences, more and more W-rich W-Cu alloy samples are obtained, since ion implantation and intermixing processes occur. These alloys can reach W contents even higher than that of the target because of enhanced resputtering and reflection of the lighter Cu atoms at the film surface. Stoichiometric films with 60 wt% of W are only obtained at laser fluences around 2.7 J/cm2, when the strong Cu evaporation from the target and reflection and resputtering effects of Cu at the film surface are in balance.

  20. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kecskeméti, G.; Klini, A.; Bor, Zs.

    2007-07-01

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, λ = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm 2, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 × 10 -3 Pa, and in the case of tooth and Teflon the substrates were heated at 250 °C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  1. Soft X-Ray Optics by Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  2. Thermochromic VO2 on Zinnwaldite Mica by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mathevula, L.; Ngom, B. D.; Kotsedi, L.; Sechogela, P.; Doyle, T. B.; Ghouti, M.; Maaza, M.

    2014-09-01

    VO2 thin films have been deposited by pulsed laser deposition on Zinnwaldite Mica substrates. The crystal structure, chemical composition, morphology were determined and the semiconductor/metal transition (SMT) properties of the deposited films were investigated. Without any post annealing, the films exhibit a textured nature with a VO2 (0 1 1) preferred crystallographic orientation and an elevated thermal variation of the electric resistance ratio RS/RM through the SMT at T ≈ 68 °C of the order of 104 and a narrow ∼7 °C hysteresis. In addition, the growth of the VO2 crystallites seem to be governed likely by a Volmer-Weber or Stranski-Krastanov mechanisms and certainly not a Frank-van Der Merwe process.

  3. Defects in zinc oxide grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ling, Francis C. C.; Wang, Zilan; Ping Ho, Lok; Younas, M.; Anwand, W.; Wagner, A.; Su, S. C.; Shan, C. X.

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4-2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  4. Pulsed laser deposition of ITO thin films and their characteristics

    SciTech Connect

    Zuev, D. A. Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-03-15

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 Multiplication-Sign 10{sup -4} {Omega} cm has been achieved in the ITO films with content of Sn 5 at %.

  5. Soft x ray optics by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1994-01-01

    A series of molybdenum thin film depositions by PLD (Pulsed Laser Deposition) have been carried out, seeking appropriate conditions for multilayer fabrication. Green (532 nm) and UV (355 nm) light pulses, in a wide range of fluences, were used. Relatively large fluences (in comparison with Si) are required to cause evaporation of molybdenum. The optical penetration depths and reflectivities for Mo at these two wavelengths are comparable, which means that results should be, and do appear to be similar for equal fluences. For all fluences above threshold used, a large number of incandescent particles is ejected by the target (either a standard Mo sputtering target or a Mo sheet were tried), together with the plasma plume. Most of these particles are clearly seen to bounce off the substrate. The films were observed with light microscopy using Nomarski and darkfield techniques. There is no evidence of large debris. Smooth films plus micron-sized droplets are usually seen. The concentration of these droplets embedded in the film appears not to vary strongly with the laser fluence employed. Additional characterization with SEM and XRD is under way.

  6. Infrared antireflection DLC films by femtosecond pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Shuyun; Guo, Yanlong; Wang, Xiaobing; Cheng, Yong; Wang, Huisheng; Liu, Xu

    2009-05-01

    Diamond-like Carbon(DLC) films are deposited by Ti:Sapphire femtosecond pulsed laser(800nm, 120fs-2ps, 3.3W, 1-1000Hz) at room temperature. The substrate is n-type Si(100), and the target is 99.999%-purity graphite. After a great lot of experiments, optimal technical parameters, which are 1000Hz repetition frequency, 120fs pulse-width, 5cm-distance between target and underlay and 1014W/cm2 power-density, were used to deposite 443nm thick DLC film. Raman spectrum measurement shows a broad peak with a center at 1550 cm-1 for all films, similar to those of typical diamond-like carbon films prepared using other methods. And sp3-bond content reaches 67% analyzed by XPS. There is no nick on the film when scraped 105 times by a RS-5600 friction test machine under the pressure of 9.8N. The infrared transmittance increases along with the oxygen pressure when between 0.03 Pa and 2 Pa. The result shows that oxygen is effective in etching sp2-bond content. The extreme infrared transmittance of Si slice deposited DLC film on single surface is higher than 64% at 3-5μm, superior to 53% when being uncoated.

  7. State-of-the-art Pb photocathodes deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Perrone, A.

    2014-05-01

    In this article we present and discuss the current status of thin film Pb photocathodes deposited by pulsed laser deposition (PLD) with different laser parameters, such as laser fluence, wavelength or pulse duration. The PLD technique appears very efficient for the fabrication of pure Pb photocathodes, providing good adherence and respectable quantum efficiency. The films deposited on the picosecond and subpicosecond regimes are practically free of big droplets and fragments, whereas in the nanosecond regime their presence cannot be neglected. All the films present a granular structure and polycrystalline character with preferential orientation along the (111) crystalline planes, irrespective of the laser pulse duration or wavelength. The main results obtained from the photoemission performance of Pb thin films deposited by PLD demonstrate their chemical stability under vacuum conditions and respectable quantum efficiency with a maximum of 7.3×10-5 for films deposited on the subpicosecond regime. The photoemission properties confirm that Pb thin films deposited by PLD are a notable alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns.

  8. Hardening of smooth pulsed laser deposited PMMA films by heating

    NASA Astrophysics Data System (ADS)

    Fuchs, Britta; Schlenkrich, Felix; Seyffarth, Susanne; Meschede, Andreas; Rotzoll, Robert; Vana, Philipp; Großmann, Peter; Mann, Klaus; Krebs, Hans-Ulrich

    2010-03-01

    Smooth poly(methyl methacrylate) (PMMA) films without any droplets were pulsed laser deposited at a wavelength of 248 nm and a laser fluence of 125 mJ/cm2. After deposition at room temperature, the films possess low universal hardness of only 3 N/mm2. Thermal treatments up to 200°C, either during deposition or afterwards, lead to film hardening up to values of 200 N/mm2. Using a combination of complementary methods, two main mechanisms could be made responsible for this temperature induced hardening effect well above the glass transition temperature of 102°C. The first process is induced by the evaporation of chain fragments and low molecular mass material, which are present in the film due to the ablation process, leading to an increase of the average molecular mass and thus to hardening. The second mechanism can be seen in partial cross-linking of the polymer film as soon as chain scission occurs at higher temperatures and the mobility and reactivity of the polymer material is high enough.

  9. Nanostructuring and texturing of pulsed laser deposited hydroxyapatite thin films

    NASA Astrophysics Data System (ADS)

    Kim, Hyunbin; Catledge, Shane; Vohra, Yogesh; Camata, Renato; Lacefield, William

    2003-03-01

    Hydroxyapatite (HA) [Ca_10(PO_4)_6(OH)_2] is commonly deposited onto orthopedic and dental metallic implants to speed up bone formation around devices, allowing earlier stabilization in a patient. Pulsed laser deposition (PLD) is a suitable means of placing thin HA films on these implants because of its control over stoichiometry, crystallinity, and nanostructure. These characteristics determine the mechanical properties of the films that must be optimized to improve the performance of load-bearing implants and other devices that undergo bone insertion. We have used PLD to produce nanostructured and preferentially oriented HA films and evaluated their mechanical properties. Pure, highly crystalline HA films on Ti-6Al-4V substrates were obtained using a KrF excimer laser (248nm) with energy density of 4-8 J/cm^2 and deposition temperature of 500-700^rcC. Scanning electron and atomic force microscopies reveal that our careful manipulation of energy density and substrate temperature has led to films made up of HA grains in the nanometer scale. Broadening of x-ray diffraction peaks as a function of deposition temperature suggests it may be possible to control the film nanostructure to a great extent. X-ray diffraction also shows that as the laser energy density is increased in the 4-8 J/cm^2 range, the hexagonal HA films become preferentially oriented along the c-axis perpendicular to the substrate. Texture, nanostructure, and phase make-up all significantly influence the mechanical properties. We will discuss how each of these factors affects hardness and Young's modulus of the HA films as measured by nanoindentation.

  10. Resonant Infrared Pulsed-Laser Deposition of Polymers Using a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Bellmont, Ron; Bubb, Daniel; Haglund, Richard; Schriver, Ken

    2004-11-01

    Thin films of polyethylene glycol and polystyrene have been produced using resonant infrared pulsed-laser deposition (RIR-PLD). The laser used for the experiments was a tunable, high pulse-repetition rate free-electron laser operating in the mid-IR (2.9 - 3.5 im). Transfer of polymers with molecular weights up to 13,000 was accomplished at resonant vibrational frequencies without concomitant fragmentation or other photochemical degradation, in contrast to PLD techniques using ultraviolet lasers. Potential applications for this technique include drug delivery coatings and chemical and biological sensor construction.

  11. Recent progress in pulsed laser deposition of iron based superconductors

    NASA Astrophysics Data System (ADS)

    Haindl, Silvia; Molatta, Sebastian; Hiramatsu, Hidenori; Hosono, Hideo

    2016-09-01

    Pulsed laser deposition (PLD) is the most commonly used deposition technique for Fe-based superconductor thin films today. The number of grown compounds using PLD is still quite limited to so-called 11 compounds (FeTe x S y , FeSe1‑x Te x ) and 122 compounds (primarily Co- and P-substituted BaFe2As2). Especially in the growth of Fe-chalcogenides, PLD is challenged by the strong volatility of the elements and their non-negligible vapour pressure. In addition, in situ PLD of the high-temperature superconducting F-doped iron oxypnictides seemed to be feasible only under reactive deposition and stayed disregarded for some time. Here, we summarise the progress that was recently made in the growth of Fe-based superconducting thin films towards an improved control of thin film stoichiometry and the in situ growth of F-doped iron oxypnictides. The presented new ideas deviate from the standard approach of an adjustment of target composition. We first focus on the growth of FeSe1‑x Te x films, where the introduction of a buffer layer of same composition decreased surface roughness and allowed epitaxial film growth at reduced deposition temperatures with enhanced reproducibility. Second, we illustrate how F-doping in iron oxypnictide thin films can be obtained during in situ PLD using a diffusive reaction between substrate and the growing film.

  12. Magnetotransport in Pulsed Laser Deposited Manganese Doped Lead Sulfide Films

    NASA Astrophysics Data System (ADS)

    Rimal, Gaurab; Sapkota, Keshab; Maksymov, Artur; Spinu, Leonard; Wang, Wenyong; Tang, Jinke

    Diluted magnetic semiconductors (DMS) have been proposed as promising candidates for spintronic applications. Most research in this field has been confined to III-V and II-VI semiconductor system. There are reports on IV-VI semiconductors, however reports on lead sulfide (PbS) based DMS is limited. We study the transport, magnetic and structural properties of manganese doped lead sulfide (Mn:PbS) films produced by pulsed laser deposition (PLD). The films are found to show hopping transport at low tempeature. Low temperature magnetoresistance (MR) studies show that the sign of MR can be changed by application of gate voltage. The magnetic properties of the films were also studied which showed ferromagnetic behavior at room temperature.

  13. Thin nanocrystalline zirconia films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Dikovska, A. Og; Atanasova, G. B.; Avdeev, G. V.; Strijkova, V. Y.

    2016-03-01

    In the present work, thin zirconia films were prepared by pulsed laser deposition at different substrate temperatures and oxygen partial pressures. The substrate temperature was varied from 400 °C to 600 °C, and the oxygen pressure, from 0.01 to 0.05 mbar. The effect was investigated of the substrate temperature and oxygen pressure on the formation of m-zirconia and t-zirconia phases.The formation of a cubic phase of ZrO2 by using targets doped with 3 and 8 mol % content Y2O3 was also investigated. The variation in the optical properties was studied and discussed in relation with the zirconia films' microstructure.

  14. Epitaxial Electronic Oxides on Semiconductors Using Pulsed-Laser Deposition

    SciTech Connect

    Norton, D.P.; Budai, J.D.; Chisholm, M.F.

    1999-12-01

    We describe the growth and properties of epitaxial (OO1) CeO{sub 2} on a (001) Ge surface using a hydrogen-assisted pulsed-laser deposition method. Hydrogen gas is introduced during film growth to eliminate the presence of the GeOs from the semiconductor surface during the initial nucleation of the metal oxide film. The hydrogen partial pressure and substrate temperature are selected to be sufficiently high such that the germanium native oxides are thermodynamically unstable. The Gibbs free energy of CeO{sub 2} is larger in magnitude than that of the Ge native oxides, making it more favorable for the metal oxide to reside at the interface in comparison to the native Ge oxides. By satisfying these criteria. the metal oxide/semiconductor interface is shown to be atomically abrupt with no native oxide present. Preliminary structural and electrical properties are reported.

  15. Heteroepitaxial Growth of NSMO on Silicon by Pulsed Laser Deposition

    SciTech Connect

    Kolagani, R; Friedrich, S

    2008-06-25

    The following is the optimized pulsed laser deposition (PLD) procedure by which we prepared the final samples that were sent to LLNL. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where the abbreviations are explained in the following table. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the manuscript [Yong et al., 2008] attached to this report.

  16. Pulsed laser deposition of amorphous carbon/silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Matenoglou, G.; Evangelakis, G. A.; Kosmidis, C.; Foulias, S.; Papadimitriou, D.; Patsalas, P.

    2007-07-01

    Metal/amorphous carbon (a-C:M) composite films are emerging as a category of very important engineering materials for surface protection. We implement pulsed laser deposition (PLD) to grow pure a-C and a-C:Ag nanocomposites. Our PLD process is assisted by a static electric field. We investigate the structural features of the a-C:Ag nanocomposites and the bonding configuration of the a-C matrix with respect to the electric field and the composition of the PLD target. For this study we use Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and X-ray diffraction (XRD). We show that the Ag mean grain size and the sp 2 content of the a-C matrix are increasing with increasing Ag content in the films.

  17. Pulsed laser deposition of nanostructured indium-tin-oxide film

    NASA Astrophysics Data System (ADS)

    Yong, Thian Kok; Nee, Chen Hon; Yap, Seong Shan; Siew, Wee Ong; Sáfran, György; Yap, Yoke Kin; Tou, Teck Yong

    2010-08-01

    Effects of O2, N2, Ar and He on the formation of micro- and nanostructured indium tin oxide (ITO) thin films were investigated in pulsed Nd:YAG laser deposition on glass substrate. For O2 and Ar, ITO resistivity of <= 4 × 10-4 Ωcm and optical transmittance of > 90% were obtained with substrate temperature of 250 °C. For N2 and He, low ITO resisitivity could be obtained but with poor optical transmittance. SEM images show nano-structured ITO thin films for all gases, where dense, larger and highly oriented, microcrystalline structures were obtained for deposition in O2 and He, as revealed from the XRD lines. EDX results indicated the inclusion of Ar and N2 at the expense of reduced tin (Sn) content. When the ITO films were applied for fabrication of organic light emitting devices (OLED), only those deposited in Ar and O2 produced comparable performance to single-layer OLED fabricated on the commercial ITO.

  18. Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering

    SciTech Connect

    Rubin, M.; Wen, S.J.; Richardson, T.; Kerr, J.; Rottkay, K. von; Slack, J.

    1996-09-01

    Thin films of lithium nickel oxide were deposited by sputtering and pulsed laser deposition (PLD) from targets of pressed LiNiO{sub 2} powder. The composition and structure of these films were analyzed using a variety of techniques, such as nuclear-reaction analysis, Rutherford backscattering spectrometry (RBS), x-ray diffraction, infrared spectroscopy, and atomic force microscopy. Crystalline structure, surface morphology and chemical composition of Li{sub x}Ni{sub 1{minus}x}O thin films depend strongly on deposition oxygen pressure, temperature as well as substrate-target distance. The films produced at temperatures lower than 600 C spontaneously absorb CO{sub 2} and H{sub 2}O at their surface once they are exposed to the air. The films deposited at 600 C proved to be stable in air over a long period. Even at room temperature the PLD films are denser and more stable than sputtered films. RBS determined the composition of the best films to be Li{sub 0.5}Ni{sub 0.5}O deposited by PLD at 60 mTorr O{sub 2} pressure. Electrochemical tests show that the films exhibit excellent reversibility in the range 1.0 V to 3.4 V versus lithium. Electrochemical formatting which is used to develop electrochromism in other films is not needed for the stoichiometric films. The optical transmission range is almost 70% at 550 nm for 150-nm thick films. Devices made from these films were analyzed using novel reference electrodes and by disassembly after cycling.

  19. Properties of pulsed laser deposited fluorinated hydroxyapatite films on titanium

    SciTech Connect

    Rau, J.V.; Smirnov, V.V.; Laureti, S.; Generosi, A.; Varvaro, G.; Fosca, M.; Ferro, D.; Cesaro, S. Nunziante; Albertini, V. Rossi; Barinov, S.M.

    2010-09-15

    Fluorinated hydroxyapatite coated titanium was investigated for application as implant coating for bone substitute materials in orthopaedics and dentistry. Pulsed laser deposition technique was used for films preparation. Fluorinated hydroxyapatite target composition, Ca{sub 10}(PO{sub 4}){sub 6}F{sub 1.37}(OH){sub 0.63}, was maintained at 2 J/cm{sup 2} of laser fluence and 500-600 {sup o}C of the substrate temperature. Prepared films had a compact microstructure, composed of spherical micrometric-size aggregates. The average surface roughness resulted to be of 3 nm for the film grown at 500 {sup o}C and of 10 nm for that grown at 600 {sup o}C, showing that the temperature increase did not favour the growth of a more fine granulated surface. The films were polycrystalline with no preferential growth orientation. The films grown at 500-600 {sup o}C were about 8 {mu}m thick and possessed a hardness of 12-13 GPa. Lower or higher substrate temperature provides the possibility to obtain coatings with different fine texture and roughness, thus tayloring them for various applications.

  20. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Duta, L.; Oktar, F. N.; Stan, G. E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I. N.

    2013-01-01

    We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical-chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  1. Pulsed laser deposition of polymer-metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Schlenkrich, Felix; Seyffarth, Susanne; Fuchs, Britta; Krebs, Hans-Ulrich

    2011-04-01

    Different polymer-metal nanocomposites, metal clusters on a polymer surface and for the first time also polymer/metal multilayers, were pulsed laser deposited at a wavelength of 248 nm. Poly(methyl methacrylate) (PMMA) and Bisphenol A dimeth-acrylate (BisDMA), which strongly differ in their hardness of 3 and 180 N/mm 2, respectively, were taken as polymer components. Metals Ag and Cu were chosen because of their different reactivity to polymers. When depositing Ag on PMMA, spherical clusters are formed due to high diffusion and total coalescence. For Cu, much smaller grains with partially elongated shapes occur because of lower diffusivity and incomplete coalescence. Compared to the results on the soft PMMA, the clusters formed on the harder BisDMA are much larger due to higher diffusivity on this underlayer. In PMMA/Cu multilayers, wavy layered structures and buckling is observed due to relaxation of compressive stress in the Cu layers. Smooth Cu layers with higher thicknesses can only be obtained, when the hardness of the polymer is sufficiently high, as in the case of BisDMA/Cu multilayers.

  2. Understanding the deposition mechanism of pulsed laser deposited B-C films using dual-targets

    SciTech Connect

    Zhang, Song; He, Zhiqiang; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng; Ji, Xiaoli; Lu, Wenzhong

    2014-04-21

    Boron carbide thin films with stoichiometry (boron-carbon atomic ratio) range of 0.1 ∼ 8.9 were fabricated via pulsed laser deposition by using boron-carbon dual-targets. However, this experimental data on stoichiometry were smaller than the computer simulation values. The discrepancy was investigated by studies on composition and microstructure of the thin films and targets by scanning electron microscopy, excitation laser Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the boron liquid droplets were formed by phase explosion after laser irradiation on boron sector. Part of the boron droplets would be lost via ejection in the direction of laser beam, which is tilted 45° to the surface of substrate.

  3. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    NASA Astrophysics Data System (ADS)

    Akkan, C. K.; May, A.; Hammadeh, M.; Abdul-Khaliq, H.; Aktas, O. C.

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  4. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  5. Vitroceramic interface deposited on titanium substrate by pulsed laser deposition method.

    PubMed

    Voicu, Georgeta; Miu, Dana; Dogaru, Ionut; Jinga, Sorin Ion; Busuioc, Cristina

    2016-08-30

    Pulsed laser deposition (PLD) method was used to obtain biovitroceramic thin film coatings on titanium substrates. The composition of the targets was selected from SiO2-CaO-P2O5-(CaF2) systems and the corresponding masses were prepared using the sol-gel method. The depositions were performed in oxygen atmosphere (100mTorr), while the substrates were heated at 400°C. The PLD deposited films were analysed through different experimental techniques: X-ray diffraction, scanning (SEM, EDX) and transmission (HRTEM, SAED) electron microscopy and infra-red spectroscopy coupled with optical microscopy. They were also biologically tested by in vitro cell culture and the contact angle was determined. The bioevaluation results indicate a high biocompatibilty of the obtained materials, demonstrating their potential use for biomedical applications. PMID:26546909

  6. Pulsed laser deposition of oxide films by multi-kilowatt CO 2 lasers

    NASA Astrophysics Data System (ADS)

    Schultrich, B.; Lenk, A.; Witke, Th.; Borchardt, G.; Fritze, H.

    1997-02-01

    For realizing a high rate pulsed laser deposition (PLD) a pulsed 6 kW-CO2 laser conventionally used for laser machining was adapted by a suitable beam forming system. It allows intensities between 107 and 108 W/cm2 at a minimum pulse length of 100 μs. The targets consist of various compositions in the Al2O3-SiO2 system including the mullite phase. The deposition has been carried out in high vacuum. Even the average power of 200 W of the available 6 kW mostly used in these experiments due to the small sizes of the specially prepared targets yields mean deposition rates up to 100 nm/s. In-situ measurement of mass loss and momentum transfer on the target reveals that most of the material is ablated as microparticle, not as vapour. This corresponds with the cobblestone appearance of the films. Notwithstanding their rather coarse topography, they are dense without any kind of open porosity. This was also proved by mass loss investigations in oxidation experiments and by diffusion of 18O isotopes in combination with SNMS determination of the concentration profiles.

  7. Pulsed-Laser Deposition of Electronic Oxides: Superconductor and Semiconductor Applications

    SciTech Connect

    Norton, D.P.; Park, C.; Lee, Y.E.; Budai, J.D.; Chisholm, M.F.; Verebelyi, D.T.; Christen, D.K.; Kroeger, D.M.

    2000-01-24

    Over the past decade, pulsed-laser deposition (PLD) has proven to be one of the most versatile and effective methods for obtaining high-quality electronic oxide thin-film materials. Much of this success can be attributed to its initial use in depositing high temperature superconducting materials. However, pulsed-laser deposition is now a leading research tool in the development of various electronic oxide thin-film technologies, In this paper, recent progress in the deposition of oxide materials on dissimilar materials for both superconductor and semiconductor applications is discussed. Recent developments in the synthesis of superconducting wires via epitaxial growth of superconducting oxides on biaxially textured metal tapes is described. In addition, efforts to integrate high-k dielectric oxides on semiconductor surfaces using pulsed-laser deposition are highlighted.

  8. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.

    SciTech Connect

    Vikram, S.

    1999-01-20

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

  9. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Kecskemeti, G.; Smausz, T.; Kresz, N.; Tóth, Zs.; Hopp, B.; Chrisey, D.; Berkesi, O.

    2006-11-01

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ( λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm -2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm -2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ( λ ˜ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  10. Method for controlling energy density for reliable pulsed laser deposition of thin films

    SciTech Connect

    Dowden, P. C. E-mail: qxjia@lanl.gov; Bi, Z.; Jia, Q. X. E-mail: qxjia@lanl.gov

    2014-02-15

    We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple “lens-focus.” To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a “constant voltage” mode to eliminate changes in the lasers’ beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

  11. Direct deposition of YBCO on polished Ag substrates by pulsed laser deposition.

    SciTech Connect

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Maroni, V. A.; Miller, D. J.; Balachandran, U.

    2002-09-15

    YBCO thin films were directly deposited on mechanically polished nontextured silver (Ag) substrates at elevated temperature by pulsed laser deposition with various inclination angles of 35, 55, and 72. Strong fiber texture, with the c-axis parallel to the substrate normal was detected by X-ray diffraction pole figure analysis. Atomic force microscopy and scanning electron microscopy images revealed that a few a-axis-oriented grains were dispersed on the top surface of the YBCO films. Transmission electron microscopy revealed dense amorphous layer at the interface between the YBCO film and the Ag substrate. Energy dispersive spectrum analysis indicates that the YBCO film deposited on the Ag substrate is slightly Cu-deficient. A YBCO film deposited at 755 C and an inclination angle of 55 exhibited {Tc} = 90 K. Transport critical current density measured by the four-probe method at 77 K in self-field was 2.7 x 10{sup 5}A/cm2. This work demonstrated a simple and inexpensive method to fabricate YBCO-coated conductors with high critical current density.

  12. Laser-induced metal plasmas for pulsed laser deposition of metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Wagenaars, Erik; Colgan, James; Rajendiran, Sudha; Rossall, Andrew

    2015-09-01

    Metal and metal-oxide thin films, e.g. ZnO, MgO, Al2O3 and TiO2, are widely used in e.g. microelectronics, catalysts, photonics and displays. Pulsed Laser Deposition (PLD) is a plasma-based thin-film deposition technique that is highly versatile and fast, however it suffers from limitations in control of film quality due to a lack of fundamental understanding of the underlying physical processes. We present experimental and modelling studies of the initial phases of PLD: laser ablation and plume expansion. A 2D hydrodynamic code, POLLUX, is used to model the laser-solid interaction of a Zn ablation with a Nd:YAG laser. In this early phase of PLD, the plasma plume has temperatures of about 10 eV, is highly ionized, and travels with a velocity of about 10-100 km/sec away from the target. Subsequently, the plasma enters the plume expansion phase in which the plasma cools down and collision chemistry changes the composition of the plume. Time-integrated optical emission spectroscopy shows that Zn I and Zn II emission lines dominate the visible range of the light emission. Comparison with the Los Alamos plasma kinetics code ATOMIC shows an average temperature around 1 eV, indicating a significant drop in plasma temperature during the expansion phase. We acknowledge support from the UK Engineering and Physical Sciences Research Council (EPSRC), Grant EP/K018388/1.

  13. Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orlianges, J.-C.; Leroy, J.; Crunteanu, A.; Mayet, R.; Carles, P.; Champeaux, C.

    2012-09-01

    Nanostructured vanadium dioxide is one of the most interesting and studied member of the vanadates family performing a reversible transition from an insulating state to a metallic state associated with a structural transition when heated above a temperature of 68 °C. On the other hand, noble metal nanoparticles (NPs) support localized surface plasmon resonance which causes selective absorption bands in the visible and near-IR regions. The purpose of this letter is to study structural, optical, and electrical properties of vanadium dioxide thin films containing gold nanoparticles synthetized using pulsed laser deposition process. Thus, we have performed x-ray diffraction, optical transmission, and four point probe electrical measurements to investigate the nanocomposite properties versus its temperature. Interestingly, we have observed switching behavior for VO2 film containing gold NPs with a resistivity contrast of four orders of magnitude and a decrease of its transition temperature.

  14. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    SciTech Connect

    Gayathri, S.; Sridharan, M. E-mail: m.sridharan@ece.sastra.edu; Kumar, N.; Krishnan, R. E-mail: m.sridharan@ece.sastra.edu; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.

    2013-12-15

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp{sup 2} bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp{sup 3} domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp{sup 2} fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm{sup 2}. The super low friction mechanism is explained by low sliding resistance of a-C/sp{sup 2} and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm{sup 2} is related to widening of the intergrain distance caused by transformation from sp{sup 2} to sp{sup 3} hybridized structure.

  15. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  16. Laser crystallisation during pulsed laser deposition of barium titanate thin films at low temperatures

    NASA Astrophysics Data System (ADS)

    Gottmann, J.; Vosseler, B.; Kreutz, E. W.

    2002-09-01

    Using a high dielectric material as substitute for SiO xN y in dielectric film capacitors of dynamic memories (DRAM) allows a significantly higher integration density and a reduction of the die size, even with planar capacitors. BaTiO 3 is such a material. A dielectric constant of ɛr>1000 has been achieved in thin films, made by pulsed laser deposition (PLD). For applications in microelectronic memories it is necessary to produce crystalline, defect-free and oriented BaTiO 3 thin films at substrate temperatures, TS<450 °C. Sintered targets of BaTiO 3 are ablated by KrF excimer laser radiation. The processing gas atmosphere consists of O 2 at pressures of 0.1-50 Pa. The substrate is resitively heated to 360-440 °C and annealed after or during PLD on Pt/Ti/Si multilayer substrates using KrF excimer laser radiation with fluences up to 120 mJ/cm 2. The temperature distribution in the BaTiO 3/Pt/Ti/Si multilayers during laser annealing is dynamically modelled and related to the resulting crystal quality and the dielectric properties of the films. With PLD a minimum substrate temperature of 500 °C is necessary to deposit crystalline BaTiO 3 films. Using in situ laser crystallisation crystalline BaTiO 3 films can be deposited at substrate temperatures of TS=360-440 °C showing a dielectric constant of up to ɛr=1200. The ferroelectric and dielectric properties of the films are determined by C- V and P- V impedance measurements and correlated to the chemical and structural properties, as determined by X-ray photoemission spectroscopy, X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy.

  17. Composition variations in pulsed-laser-deposited Y-Ba-Cu-O thin films as a function of deposition parameters

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Jones, B. B.; Hunt, B. D.; Barner, J. B.; Vasquez, R. P.; Bajuk, L. J.

    1992-01-01

    The composition of pulsed-ultraviolet-laser-deposited Y-Ba-Cu-O films was examined as a function of position across the substrate, laser fluence, laser spot size, substrate temperature, target conditioning, oxygen pressure and target-substrate distance. Laser fluence, laser spot size, and substrate temperature were found to have little effect on composition within the range investigated. Ablation from a fresh target surface results in films enriched in copper and barium, both of which decrease in concentration until a steady state condition is achieved. Oxygen pressure and target-substrate distance have a significant effect on film composition. In vacuum, copper and barium are slightly concentrated at the center of deposition. With the introduction of an oxygen background pressure, scattering results in copper and barium depletion in the deposition center, an effect which increases with increasing target-substrate distance. A balancing of these two effects results in stoichiometric deposition.

  18. Zinc oxide epitaxial thin film deposited over carbon on various substrate by pulsed laser deposition technique.

    PubMed

    Manikandan, E; Moodley, M K; Sinha Ray, S; Panigrahi, B K; Krishnan, R; Padhy, N; Nair, K G M; Tyagi, A K

    2010-09-01

    Zinc Oxide (ZnO) is a promising candidate material for optical and electronic devices due to its direct wide band gap (3.37 eV) and high exciton binding energy (60 meV). For applications in various fields such as light emitting diode (LED) and laser diodes, growth of p-type ZnO is a prerequisite. ZnO is an intrinsically n-type semiconductor. In this paper we report on the synthesis of Zinc Oxide-Carbon (ZnO:C) thin films using pulsed laser deposition technique (PLD). The deposition parameters were optimized to obtain high quality epitaxial ZnO films over a carbon layer. The structural and optical properties were studied by glazing index X-ray diffraction (GIXRD), photoluminescence (PL), optical absorption (OA), and Raman spectroscopy. Rutherford backscattering spectroscopy (RBS), scanning electron microscopy with energy dispersive spectroscopy (SEMEDS) and atomic force microscopy (AFM) were employed to determine the composition and surface morphology of these thin films. The GIXRD pattern of the synthesized films exhibited hexagonal wurtzite crystal structure with a preferred (002) orientation. PL spectroscopy results showed that the emission intensity was maximum at -380 nm at a deposition temperature of 573 K. In the Raman spectra, the E2 phonon frequency around at 438 cm(-1) is a characteristic peak of the wurtzite lattice and could be seen in all samples. Furthermore, the optical direct band gap of ZnO films was found to be in the visible region. The growth of the epitaxial layer is discussed in the light of carbon atoms from the buffer layer. Our work demonstrates that the carbon is a novel dopant in the group of doped ZnO semiconductor materials. The introduction of carbon impurities enhanced the visible emission of red-green luminescence. It is concluded that the carbon impurities promote the zinc related native defect in ZnO. PMID:21133080

  19. Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition

    NASA Astrophysics Data System (ADS)

    Tamba, T.; Pham, H. S.; Shoda, T.; Iwakawa, A.; Sasoh, A.

    2015-09-01

    Modulation of shock foot oscillation due to energy deposition by repetitive laser pulses in shock wave-boundary layer interaction over an axisymmetric nose-cylinder-flare model in Mach 1.92 flow was experimentally studied. From a series of 256 schlieren images, density oscillation spectra at each pixel were obtained. When laser pulses of approximately 7 mJ were deposited with a repetition frequency, fe, of 30 kHz or lower, the flare shock oscillation had a peak spectrum equivalent to the value of fe. However, with fe of 40 kHz-60 kHz, it experienced frequency modulation down to lower than 20 kHz.

  20. Characterization of calcium phosphate coatings doped with Mg, deposited by pulsed laser deposition technique using ArF excimer laser.

    PubMed

    Mróz, W; Jedyński, M; Prokopiuk, A; Slósarczyk, A; Paszkiewicz, Z

    2009-01-01

    Calcium phosphate layers were deposited on Ti6Al4V substrates with TiN buffer layers by use of pulsed laser deposition method. With this technique three pressed pellets consisted of tricalcium phosphate (TCP, Ca(3)(PO(4))(2)), hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)) and hydroxyapatite-doped with magnesium (HA with 4% of Mg and trace amount of (Ca,Mg)(3)(PO(4))(2)) were ablated using ArF excimer laser (lambda=193 nm). The using of different targets enabled to determine the influence of target composition on the nature of deposited layers. The obtained deposits were characterized by means of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction method (XRD). The obtained Fourier spectras revealed differences in terms of intensity of spectral bands of different layers. The analysis from XRD showed that Mg-doped HA layer has crystalline structure and TCP and HA layers composition is characterized by amorphous nature. PMID:18407507

  1. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    NASA Astrophysics Data System (ADS)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  2. Role of deposition time on the properties of ZnO:Tb(3+) thin films prepared by pulsed laser deposition.

    PubMed

    Kumar, Vinod; Ntwaeaborwa, O M; Coetsee, E; Swart, H C

    2016-07-15

    Terbium (Tb(3+)) doped zinc oxide (ZnO:Tb(3+)) thin films were grown on silicon (100) substrates by the pulsed laser deposition technique at different deposition times that varied from 15 to 55min. The effects of deposition time on the structural and optical properties of the ZnO:Tb(3+) films were investigated by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy. As expected, the thickness of the ZnO:Tb(3+) film has increased with an increase in the deposition time. The photoluminescence intensity of the band to band emission has also increased with deposition time, while the deep level defect emission has decreased. The blue emission was observed from all the ZnO:Tb(3+) thin films deposited at the different deposition times excited by 325nm He-Cd laser, while a green emission was observed when excited by 228nm. PMID:27124806

  3. Pyramidal growth of ceria nanostructures by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bârcă, E. S.; Filipescu, M.; Luculescu, C.; Birjega, R.; Ion, V.; Dumitru, M.; Nistor, L. C.; Stanciu, G.; Abrudeanu, M.; Munteanu, C.; Dinescu, M.

    2016-02-01

    We report in this paper on the deposition and characterization of CeO2 nanostructured thin films with hierarchical morphology. Micro-sized ceria powder (CeO2, 99.9% purity) was pressed to obtain a ceramic target. An ArF laser working at 193 nm irradiated the target in controlled oxygen gas flow at constant pressure (0.1 mbar). Silicon wafers used as substrates for thin films were heated at different temperatures, up to 773 K. The influence of substrate temperature on the structure and surface morphology of ceria thin films was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and scanning electron microscopy (SEM). The refractive indices and information about roughness and thickness were revealed by spectroellipsometry. Crystalline cubic ceria thin films exhibiting a hierarchical structure that combines columnar and dendritic growth were obtained at temperatures above 473 K. For the samples obtained at 773 K, columns ending in pyramidal formations with sharp edges and sizes of hundreds of nanometers were observed, indicating a high crystallinity of the layer. XRD analysis reveals a consistent increase of the X-ray coherence length/crystallite size along the [111] direction with increasing temperature. Using a semi-empirical formula, Raman crystallites sizes were calculated and it was found that size increases with the temperature increasing. The spectroellipsometry investigations evidenced the increasing of refractive index with the substrate temperature increase. High surface roughness and pyramidal structures were noticed from the atomic force microscopy images for layers deposited at substrate temperature above 473 K.

  4. Pulsed laser deposition of polytetrafluoroethylene-gold composite layers

    NASA Astrophysics Data System (ADS)

    Kecskeméti, Gabriella; Smausz, Tomi; Berta, Zsófia; Hopp, Béla; Szabó, Gábor

    2014-11-01

    PTFE-metal composites are promising candidates for use as sensor materials. In present study PTFE-Au composite layers were deposited by alternated ablation of pressed Teflon pellets and gold plates with focused beam of an ArF excimer laser at 6 J/cm2 fluence, while keeping the substrate at 150 °C temperature. The morphology and chemical composition of the ~3-4 μm average thickness layers was studied by electron microscopy and energy dispersive X-ray spectroscopy. The layers were mainly formed of PTFE gains and clusters which are covered by a conductive Au film. For testing the applicability of such layers as sensing electrodes, composite layers were prepared on one of the two neighbouring electrode of a printed circuit board. Cholesterol and glucose solutions were prepared using 0.1M NaOH solvent containing 10% Triton X-100 surfactant. The electrodes were immersed in the solutions and voltage between the electrodes was measured while a constant current was drawn through the sample. The influence of the analyte concentration on the power spectral density of the voltage fluctuation was studied.

  5. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Melaibari, Ammar A.; Molian, Pal

    2012-11-01

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered "brick-bridge-mortar" nacre of AlMgB14 (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB14. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB14/Ti system revealed that the brick is to be 250 nm thick, 9 μm lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  6. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    SciTech Connect

    Melaibari, Ammar A.; Molian, Pal

    2012-11-15

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered 'brick-bridge-mortar' nacre of AlMgB{sub 14} (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB{sub 14}. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB{sub 14}/Ti system revealed that the brick is to be 250 nm thick, 9 {mu}m lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  7. Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Chaker, M.; Haddad, E.; Kruzelecky, R. V.; Nikanpour, D.

    2004-05-01

    The parameters of reactive pulsed laser deposition were successfully optimized for fabrication of vanadium dioxide thin films. It is observed that the O2 concentration in Ar gas and the total deposition pressure are critical in stabilizing the single VO2 phase. Thermochromic VO2 and V1-xWxO2 (x=0.014) thin films were synthesized on various substrates (silicon, quartz, and sapphire) at 5% of O2/Ar ratio gas and total pressure of 90 mTorr. The structural properties of the deposited films were analyzed by x-ray diffraction, while their semiconductor-to-metal phase transitions were studied by electrical resistivity using the four-point technique and infrared transmittance from room temperature up to 100 °C. The observed transition temperature was about 36 °C for W-doped VO2 compared to 68 °C for VO2 films. This transition temperature was then lowered by about 22.85 °C per 1 at. % of W added. The temperature coefficient of resistance was about 1.78%/°C for VO2 and about 1.90%/°C for W-doped VO2. Using the pump-probe experiment, the application of these thermochromic films as optical switches was demonstrated at the wavelength of 1.55 μm. The transmission switching was about 25 dB for VO2 and 28 dB for W-doped VO2. In addition, application of VO2 on optical fiber components was demonstrated by direct VO2 coating on the end faces of cleaved single mode optical fibers and optical fiber connectors. .

  8. Wettability of oxide thin films prepared by pulsed laser deposition: New insights

    NASA Astrophysics Data System (ADS)

    Prakash, Saurav

    The objective of the thesis is to investigate the wettability of good quality oxide thin films prepared by pulsed laser deposition (PLD). In this work, many shortfalls in the water contact angle measurement of thin films of oxides, responsible for the wide scatter in the values reported in literature, have been addressed. (Abstract shortened by UMI.).

  9. Chromium Carbide Thin Films Synthesized by Pulsed Nd:YAG Laser Deposition

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Terajima, Ryou; Emura, Masanari

    1999-06-01

    Chromium carbide thin films are synthesized on Si(100)substrates by a pulsed Nd:YAG laser deposition method at differentsubstrate temperatures. Glancing-angle X-ray diffraction shows that acrystalline chromium carbide film can be prepared at the substratetemperature of 700°C. Grain size of the films, examined witha field-emission secondary electron microscope, increases withincreasing substrate temperature.

  10. Improved passivation of the ZnO/Si interface by pulsed laser deposition

    SciTech Connect

    Gluba, M. A.; Nickel, N. H.; Rappich, J.; Hinrichs, K.

    2013-01-28

    Zinc oxide thin-films were grown on crystalline silicon employing magnetron sputtering and pulsed laser deposition. Bulk and interface properties were investigated using scanning electron microscopy, Raman backscattering, photoluminescence, and infrared spectroscopic ellipsometry. Sputter deposited ZnO samples reveal a large degree of disorder and an interface defect density of Almost-Equal-To 10{sup 12} cm{sup -2}. A significant improvement of the structural quality is observed in samples grown by pulsed laser deposition. The bulk defect density is further reduced, when introducing monatomic oxygen during deposition. Simultaneously, the defect density at the ZnO/Si interface decreases by about a factor of five. Implications for devices containing ZnO/Si interfaces are discussed.

  11. Silica Nanowire Growth on Photonic Crystal Fiber by Pulsed Femtosecond Laser Deposition

    NASA Astrophysics Data System (ADS)

    Langellier, Nicholas; Li, Chih-Hao; Furesz, Gabor; Glenday, Alex; Phillips, David; Zhang, Huiliang; Noah Chang, Guoqing; Kaertner, Franz; Szentgyorgyi, Andrew; Walsworth, Ronald

    2012-06-01

    We present a new method of nanowire fabrication using pulsed laser deposition. An 800 mW 1 GHz femtosecond Ti:Sapphire laser is guided into a polarization-maintaining photonic crystal fiber (PCF). The PCF, with a core tapered to 1.7 micron diameter, converts femtosecond laser pulses centered at 800 nm into green light with a spectrum down to 500 nm. The PCF is enclosed in a cylindrical tube with glass windows, sealed in a class 100 clean room with silicone-based RTV adhesive. The high power of each laser pulse in a silica-rich environment leads to growth of a silica nanowire at the output end of the PCF. SEM analysis shows that the nanowire is 720 nm in diameter and grows at a rate of about 0.6 um/s. Details of nanowire performance along with potential applications will be presented.

  12. PULSED LASER DEPOSITION OF MAGNETIC MULTILAYERS FOR THE GRANT ENTITLED LASER PROCESSING OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect

    Monica Sorescu

    2003-10-11

    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  13. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  14. Electrical and optical characterization of multilayered thin film based on pulsed laser deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Marotta, V.; Orlando, S.; Parisi, G. P.; Giardini, A.; Perna, G.; Santoro, A. M.; Capozzi, V.

    2000-12-01

    Thin films of semiconducting oxides such as In2O3, SnO2, and multilayers of these two compounds have been deposited by reactive pulsed laser ablation, with the aim to produce toxic gas sensors. Deposition of these thin films has been carried out by a frequency doubled Nd-YAG laser (λ=532 nm) on silicon (1 0 0) substrates. A comparison, among indium oxide, tin oxide, and multilayers of indium and tin oxides, has been performed. The influence of physical parameters such as substrate temperature, laser fluence and oxygen pressure in the deposition chamber has been investigated. The deposited films have been characterized by X-ray diffraction (XRD), optical and electric resistance measurements.

  15. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Dai, Jun; Huang, Zedong; Meng, Tao

    2016-06-01

    The pulsed laser deposited Ni-based superalloy coating was fabricated with successive 12 layers using single tracks. The microstructure of the deposited coating was observed by scanning electron microscopy (SEM). The grain growth and the grain boundary misorientation were investigated by electron backscatter diffraction (EBSD), the precipitation phase was determined by transmission electron microscope (TEM). The results showed that the dendrites were the most common microstructure in the coating, and the dendritic growth orientation was paralleled to the direction of the laser deposition. The dendrite got coarser and its space was increased with increasing laser deposited layers. Most grains grew along the preferential grain orientation <001> and formed anisotropy with grain boundaries misorientation angle about 2° in the pulsed laser deposited coating. The grain size along the texture orientation was 3-10 times larger than that in the transverse orientation. The cross section microhardness of the coating ranged between 240-280 HV, and decreased along the depositional direction due to the reasons of the variation of eutectic morphology, grain size distribution, grain misorientation and a small amounts of strengthening phase precipitation.

  16. Pulsed Laser Deposition of Photoresponsive Two-Dimensional GaSe Nanosheet Networks

    SciTech Connect

    Mahjouri-Samani, Masoud; Gresback, Ryan G; Tian, Mengkun; Puretzky, Alexander A; Rouleau, Christopher M; Eres, Gyula; Ivanov, Ilia N; Xiao, Kai; McGuire, Michael A; Duscher, Gerd; Geohegan, David B

    2014-01-01

    Here we explore pulsed laser deposition (PLD), a well known and versatile synthesis method principally used for epitaxial oxide thin film growth, for the synthesis of functional metal chalcogenide (GaSe) nanosheet networks by stoichiometric transfer of laser vaporized material from bulk GaSe targets in Ar background gas. Uniform coverage of interconnected, crystalline, few-layer, photoresponsive GaSe nanosheets in both in-plane and out-of-plane orientations were achieved under different ablation plume conditions over ~1.5 cm2 areas. Plume propagation was characterized by in situ ICCD-imaging. High (1 Torr) Ar background gas pressures were found to be crucial for the stoichiometric growth of GaSe nanosheet networks. Individual 1-3 layer GaSe triangular nanosheets of ~ 200 nm domain size were formed within 30 laser pulses, coalescing to form nanosheet networks in as few as 100 laser pulses. The thickness of the deposited networks increased linearly with pulse number, adding layers in a two-dimensional (2D) growth mode while maintaining a surface roughness of 2 GaSe layers for increasing overall thickness. Field effect transistors using these interconnected crystalline GaSe networks showed p-type semiconducting characteristics with mobilities reaching as high as 0.1 cm2V-1s-1. Spectrally-resolved photoresponsivities and external quantum efficiencies ranged from 0.4 AW-1 and 100% at 700 nm, to 1.4 AW-1 and 600 % at 240 nm, respectively. Pulsed laser deposition under these conditions appears to provide a versatile and rapid approach to stoichiometrically transfer and deposit photoresponsive networks of 2D nanosheets with digital thickness control and substrate-scale uniformity for a variety of applications.

  17. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  18. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  19. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect

    Britson, Jason Curtis

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  20. Tunable stoichiometry of SiOx-BaTiOy-BOz fabricated by multitarget pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Jones, John G.; Goldstein, Jonathan T.; Smith, Steven R.; Landis, Gerald R.; Grazulis, Lawrence; Sun, Lirong; Murphy, Neil R.; Kozlowski, Gregory; Jakubiak, Rachel; Stutz, Charles E.

    2015-01-01

    Oxide materials of desired stoichiometry are challenging to make in small quantities. Nanostructured thin films of multiple oxide materials were obtained by using pulsed laser deposition and multiple independent targets consisting of Si, BaTiO3, and B. Programmable stoichiometry of nanostructured thin films was achieved by synchronizing a 248-nm krypton fluoride excimer laser at an energy of 300 mJ/pulse, a galvanometer mirror system, and the three independent target materials with a background pressure of oxygen. Island growth occurred on a per pulse basis; some 500 pulses are required to deposit 1 nm of material. The number of pulses on each target was programmed with a high degree of precision. Trends in material properties were systematically identified by varying the stoichiometry of multiple nanostructured thin films and comparing the resulting properties measured using in situ spectroscopic ellipsometry, capacitance measurements including relative permittivity and loss, and energy dispersive spectroscopy (EDS). Films were deposited ˜150 to 907 nm thickness, and in situ ellipsometry data were modeled to calculate thickness n and k. A representative atomic force microscopy measurement was also collected. EDS, ellipsometry, and capacitance measurements were all performed on each of the samples, with one sample having a calculated permittivity greater than 20,000 at 1 kHz.

  1. Photoemission Studies of Metallic Photocathodes Prepared by Pulsed Laser Ablation Deposition Technique

    SciTech Connect

    Fasano, V.; Lorusso, A.; Perrone, A.; De Rosa, H.; Cultrera, L.

    2010-11-10

    We present the results of our investigation on metallic films as suitable photocathodes for the production of intense electron beams in RF photoinjector guns. Pulsed laser ablation deposition technique was used for growing Mg and Y thin films onto Si and Cu substrates in high vacuum and at room temperature.Different diagnostic methods were used to characterize the thin films deposited on Si with the aim to optimize the deposition process. Photoelectron performances were investigated on samples deposited on Cu substrate in an ultra high vacuum photodiode chamber at 10{sup -7} Pa. Relatively high quantum efficiencies have been obtained for the deposited films, comparable to those of corresponding bulks. Samples could stay for several months in humid open air before being tested in a photodiode cell. The deposition process and the role of the photocathode surface contamination and its influence on the photoelectron performances are presented and discussed.

  2. Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.

    2004-10-01

    AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.

  3. Fabricating functionally graded films with designed gradient profiles using pulsed laser deposition

    SciTech Connect

    Won, Yoo Jai; Ki, Hyungson

    2013-05-07

    A novel picosecond-laser pulsed laser deposition method has been developed for fabricating functionally graded films with pre-designed gradient profiles. Theoretically, the developed method is capable of precisely fabricating films with any thicknesses and any gradient profiles by controlling the laser beam powers for the two different targets based on the film composition profiles. As an implementation example, we have successfully constructed functionally graded diamond-like carbon films with six different gradient profiles: linear, quadratic, cubic, square root, cubic root, and sinusoidal. Energy dispersive X-ray spectroscopy is employed for investigating the chemical composition along the thickness of the film, and the deposition profile and thickness errors are found to be less than 3% and 1.04%, respectively. To the best of the authors' knowledge, this is the first method for fabricating films with designed gradient profiles and has huge potential in many areas of coatings and films, including multifunctional optical films. We believe that this method is not only limited to the example considered in this study, but also can be applied to all material combinations as long as they can be deposited using the pulsed laser deposition technique.

  4. Characterization of Environmental Stability of Pulsed Laser Deposited Oxide Ceramic Coatings

    SciTech Connect

    ADAMS, THADM

    2004-03-02

    A systematic investigation of candidate hydrogen permeation materials applied to a substrate using Pulsed Laser Deposition has been performed. The investigation focused on application of leading permeation-resistant materials types (oxide, carbides, and metals) on a stainless steel substrate. and evaluation of the stability of the applied coatings. Type 304L stainless steel substrates were coated with aluminum oxide, chromium oxide, and aluminum. Characterization of the coating-substrate system adhesion was performed using scratch adhesion testing and microindentation. Coating stability and environmental susceptibility were evaluated for two conditions-air at 350 degrees Celsius and Ar-H2 at 350 degrees Celsius for up to 100 hours. Results from this study have shown the pulsed laser deposition process to be an extremely versatile technology that is capable of producing a sound coating/substrate system for a wide variety of coating materials.

  5. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect

    Peter Pronko

    2004-12-13

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  6. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  7. Enhanced localized superconductivity in Sr2RuO4 thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cao, J.; Massarotti, D.; Vickers, M. E.; Kursumovic, A.; Di Bernardo, A.; Robinson, J. W. A.; Tafuri, F.; MacManus-Driscoll, J. L.; Blamire, M. G.

    2016-09-01

    Superconducting c-axis-oriented Sr2RuO4 thin film has been fabricated using pulsed laser deposition. Although the superconductivity is localized, the onset critical temperature is enhanced over the bulk value. X-ray microstructural analysis of Sr2RuO4 superconducting and non-superconducting thin films suggests the existence of the localized stacking faults and an overall c-axis lattice expansion which may account for the locally enhanced superconductivity.

  8. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  9. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  10. thin films by an hybrid deposition configuration: pulsed laser deposition and thermal evaporation

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Solís-Casados, D. A.; Perez-Alvarez, J.; Romero, S.; Morales-Mendez, J. G.; Haro-Poniatowski, E.

    2014-10-01

    The aim of this work was to report the application of an hybrid deposition configuration to deposit Titanium dioxide (TiO2) thin films modified with different amounts of bismuth (Bi:TiO2). The samples were synthesized combining a TiO2 laser ablation plasma with a flux of vapor of bismuth produced by thermal evaporation. By varying the deposition rate of Bi it was possible to control the amount of Bi incorporated in the film and consequently the film properties. A detailed compositional, structural, and optical characterization by XPS, RBS, Raman spectroscopy, and UV-Vis spectrometry techniques is discussed. Photocatalytic response of the deposited thin films was studied through the degradation of a malachite green solution.

  11. Cubic AlN thin film formation on quartz substrate by pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Biju, Zheng; Wen, Hu

    2016-06-01

    Cubic AlN thin films were obtained on quartz substrate by pulse laser deposition in a nitrogen reactive atmosphere. A Nd-YAG laser with a wavelength of 1064 nm was used as the laser source. In order to study the influence of the process parameters on the deposited AlN film, the experiments were performed at various technique parameters of laser energy density from 70 to 260 J/cm2, substrate temperature from room temperature to 800 °C and nitrogen pressure from 0.1 to 50 Pa. X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy were applied to characterize the structure and surface morphology of the deposited AlN films. It was found that the structure of AlN films deposited in a vacuum is rocksalt under the condition of substrate temperature 600-800 °C, nitrogen pressure 10-0.1 Pa and a moderate laser energy density (190 J/cm2). The high quality AlN film exhibited good optical property. Project supported by the Yunnan Provincial Natural of Science Foundation of China (No. KKSY201251089).

  12. Characterization Of Fe{sub 1-x}Co{sub x}Si Thin Films Deposited Via Pulsed Laser Deposition

    SciTech Connect

    Manyala, N.; Ngom, Balla; Kana-Kana, J. B.; Bucher, Remy; Maaza, M.; Di Tusa, J. F.

    2008-09-23

    We report on the structural and morphological characterization of B20 cubic structure Fe{sub 1-x}Co{sub x}Si thin films grown by pulsed laser deposition for the concentration range 0{<=}x{<=}0.3 deposited on Si (111) substrate. The x-ray diffraction, Rutherford back scattering (RBS), Scanning Electron microscopy (SEM) and Atomic force microscopy (AFM) of the films show that all the films are single phase B20 cubic structure with concentrations close to expected values, very smooth and dense with surface roughness less than 0.8 nm.

  13. Phase-selective vanadium dioxide (VO{sub 2}) nanostructured thin films by pulsed laser deposition

    SciTech Connect

    Masina, B. N. E-mail: slafane@cdta.dz; Lafane, S. E-mail: slafane@cdta.dz; Abdelli-Messaci, S.; Kerdja, T.; Wu, L.; Akande, A. A.; Mwakikunga, B.

    2015-10-28

    Thin films of monoclinic nanostructured vanadium dioxide are notoriously difficult to produce in a selective manner. To date, post-annealing, after pulsed laser deposition (PLD), has been used to revert the crystal phase or to remove impurities, and non-glass substrates have been employed, thus reducing the efficacy of the transparency switching. Here, we overcome these limitations in PLD by optimizing a laser-ablation and deposition process through optical imaging of the laser-induced plasma. We report high quality monoclinic rutile-type vanadium dioxide (VO{sub 2}) (M1) nanoparticles without post-annealing, and on a glass substrate. Our samples demonstrate a reversible metal-to-insulator transition at ∼43 °C, without any doping, paving the way to switchable transparency in optical materials at room temperature.

  14. Phase-selective vanadium dioxide (VO2) nanostructured thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masina, B. N.; Lafane, S.; Wu, L.; Akande, A. A.; Mwakikunga, B.; Abdelli-Messaci, S.; Kerdja, T.; Forbes, A.

    2015-10-01

    Thin films of monoclinic nanostructured vanadium dioxide are notoriously difficult to produce in a selective manner. To date, post-annealing, after pulsed laser deposition (PLD), has been used to revert the crystal phase or to remove impurities, and non-glass substrates have been employed, thus reducing the efficacy of the transparency switching. Here, we overcome these limitations in PLD by optimizing a laser-ablation and deposition process through optical imaging of the laser-induced plasma. We report high quality monoclinic rutile-type vanadium dioxide (VO2) (M1) nanoparticles without post-annealing, and on a glass substrate. Our samples demonstrate a reversible metal-to-insulator transition at ˜43 °C, without any doping, paving the way to switchable transparency in optical materials at room temperature.

  15. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    SciTech Connect

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  16. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGESBeta

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  17. X-ray absorption study of pulsed laser deposited boron nitride films

    SciTech Connect

    Chaiken, A.; Terminello, L.J.; Wong, J.; Doll, G.L.; Sato, T.

    1994-02-02

    B and N K-edge x-ray absorption spectroscopy measurements have been performed on three BN thin films grown on Si substrates using ion- assisted pulsed laser deposition. Comparison of the films` spectra to those of several single-phase BN powder standards shows that the films consist primarily of sp{sup 2} bonds. Other features in the films`s spectra suggest the presence of secondary phases, possibly cubic or rhombohedral BN. Films grown at higher deposition rates and higher ion-beam voltages are found to be more disordered, in agreement with previous work.

  18. Preparation and characterization of YBCO coating on metallic RABiT substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gonal, M. R.; Prajapat, C. L.; Igalwar, P. S.; Maji, B. C.; Singh, M. R.; Krishnan, M.

    2016-05-01

    Superconducting YBCO films are coated on metallic Rolling Assisted Bi-axially Textured Substrates (RABiTS) Ni-5wt % W (NiW) (002) substrate using pulsed laser deposition (PLD) system. Targets of YBa2Cu3O7-δ (YBCO) and buffer layers of Ceria and 8 mole % Yttria Stabilized Zirconia (YSZ) of high density are synthesized. At each stage of deposition coatings are characterized by XRD. Transport studies show superconducting nature of YBCO only when two successive buffer layers of YSZ and CeO2 are used.

  19. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition. PMID:22105226

  20. Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Novotny, M.; Bulir, J.; Bensalah-Ledoux, A.; Guy, S.; Fitl, P.; Vrnata, M.; Lancok, J.; Moine, B.

    2014-10-01

    ZnPc thin films were prepared by pulsed laser deposition (KrF laser, λ = 248 nm, τ = 5 ns, f = 50 Hz) on suprasil substrates in vacuum. Optical properties in UV-Vis spectral region were analyzed as functions of laser fluence from 40 to 100 mJ/cm2 by spectrophotometric and spectral ellipsometry measurements. The spectral ellipsometry data were treated using a three-layer model (substrate, film, roughness). The best results of data fitting were obtained when Q band was characterized by two Lorentz oscillators, while two Gaussian oscillators were used for B and C band fitting. We derived the band gap using Tauc plot considering ZnPc a direct band gap semiconductor. The band gap values were found decreasing from 3.13 to 3.09 eV with increasing laser fluence, which might be related with formation of trapping sites at higher fluence.

  1. Effects of Laser Wavelength and Fluence in Pulsed Laser Deposition of Ge Films

    SciTech Connect

    Yap, Seong Shan; Reenaas, Turid Worren; Siew, Wee Ong; Tou, Teck Yong; Ladam, Cecile

    2011-03-30

    Nanosecond lasers with ultra-violet, visible and infrared wavelengths: KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) were used to ablate polycrystalline Ge target and deposit Ge films in vacuum (<10-6 Torr). Time-integrated optical emission spectra were obtained for laser fluence from 0.5-10 J/cm{sup 2}. Neutrals and ionized Ge species in the plasma plume were detected by optical emission spectroscopy. Ge neutrals dominated the plasma plume at low laser fluence while Ge{sup +} ions above some threshold fluence. The deposited amorphous thin-film samples consisted of particulates of size from nano to micron. The relation of the film properties and plume species at different laser fluence and wavelengths were discussed.

  2. Detection of defects in laser powder deposition (LPD) components by pulsed laser transient thermography

    NASA Astrophysics Data System (ADS)

    Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John

    2013-05-01

    Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.

  3. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.

    2012-09-01

    Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.

  4. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  5. Synthesis and characterization of boron antimonide films by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhunia, R.; Hussain, S.; Bhar, R.; Chakraborty, B. R.; Pal, A. K.

    2015-10-01

    Boron antimonide films (BSb) were successfully deposited by pulsed laser deposition technique on glass, fused silica and silicon substrates by using a target prepared by admixing boron and antimony powders in appropriate proportions. Nd-YAG laser was used to ablate the target. Films deposited at substrate temperatures of 673 K and above showed zinc blende structure. Grain growth in the films was observed in films deposited at higher temperatures. Films deposited on Si(1 0 0) substrates at higher deposition temperatures indicated lower residual strain. SIMS studies indicated very uniform distribution of B and Sb in the whole bulk of the films. XPS spectra indicated characteristic peaks at ∼34.87 eV for Sb4d, ∼188.1 eV for B1s, ∼765.5 eV for Sb3p3/2, ∼539 eV for Sb3d3/2 and ∼812.8 eV for Sb3p1/2. Raman peaks for BSb were located at ∼64 cm-1, 152 cm-1, 595 cm-1 and 821 cm-1.

  6. Substrate dependent structural and magnetic properties of pulsed laser deposited Fe3O4 thin films.

    PubMed

    Goyal, Rajendra N; Kaur, Davinder; Pandey, Ashish K

    2010-12-01

    Nanocrystalline iron oxide thin films have been deposited on various substrates such as quartz, MgO(100), and Si(100) by pulsed laser deposition technique using excimer KrF laser (248 nm). The orientations, crystallite size and lattice parameters were studied using X-ray diffraction. The XRD results show that the films deposited on MgO and Si substrates are highly oriented and show only (400) and (311) reflections respectively. On the other hand, the orientation of the films deposited on quarts substrate changed from (311) to (400) with an increase in the substrate temperature from 400 degrees C to 600 degrees C, indicating thereby that the film growth direction is highly affected with nature of substrate and substrate temperature. The surface morphology of the deposited films was studied using Atomic Force Microscopy (AFM) and spherical ball like regular features of nanometer size grains were obtained. The magnetic properties were studied by Superconducting Quantum Interference Device (SQUID) magnetometer in the magnetic field +/- 6 Tesla. The magnetic field dependent magnetization (M-H) curves of all the Fe3O4 thin films measured at 5 K and 300 K show the ferrimagnetic nature. The electrochemical sensing of dopamine studied for these films shows that the film deposited on MgO substrate can be used as a sensing electrode. PMID:21121292

  7. Combinatorial pulsed laser deposition of Fe/MgO granular multilayers

    NASA Astrophysics Data System (ADS)

    García-García, A.; Pardo, J. A.; Navarro, E.; Štrichovanec, P.; Vovk, A.; Morellón, L.; Algarabel, P. A.; Ibarra, M. R.

    2012-06-01

    Combinatorial pulsed laser deposition (PLD) makes use of the angular spread of laser-ablated material to prepare thin films with lateral compositional gradient. In this paper we have used combinatorial PLD to grow discontinuous Fe/MgO multilayers by alternate ablation from two separate Fe and MgO targets. Films of composition [Fe( t Fe)/MgO( t MgO)]15 were deposited on glass substrates. The thickness of Fe and MgO were varied in the vicinity of critical values determined in previous studies to maximize the tunneling magnetoresistance (TMR) in the current-in-plane configuration. Optimized multilayers show a substantial improvement of both TMR and field sensitivity at room temperature.

  8. ZnSe and ZnO film growth by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Han, S. W.; White, H. W.; Miceli, P. F.; Chandrasekhar, H. R.

    1998-05-01

    ZnSe and ZnO films have been deposited on (001) GaAs substrates under different pressures by pulsed-laser deposition (PLD) with a 193 nm laser beam. The ambient pressures were changed from 8×10 -6 to 5×10 -2 Torr with high-purity argon gas for ZnSe and oxygen gas for ZnO. X-ray diffraction (XRD) measurement was performed on these samples. The FWHM's of X-ray theta-rocking curves for the (004) peaks of ZnSe films were less than 0.5°. X-ray data show that high-quality ZnO films can be also synthesized by PLD.

  9. Test-Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system

    NASA Astrophysics Data System (ADS)

    Hawlová, P.; Verger, F.; Nazabal, V.; Boidin, R.; Němec, P.

    2015-03-01

    Amorphous thin films from Ge-As-Te system were prepared by pulsed laser deposition to study their intrinsic photostability, morphology, chemical composition, structure and optical properties. Photostability of fabricated layers was studied by spectroscopic ellipsometry within as-deposited as well as relaxed (annealed) layers. For irradiation, laser sources operating at three wavelengths in band gap region of the studied materials were employed. The results show that lowest values of photorefraction accompanied with lowest changes of band gap values were exhibited by Ge20As20Te60 thin films, which are therefore considered as the layers with highest photostability in relaxed state. The structure of the films is discussed based on Raman scattering spectroscopy data.

  10. Test-photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system.

    PubMed

    Hawlová, P; Verger, F; Nazabal, V; Boidin, R; Němec, P

    2015-01-01

    Amorphous thin films from Ge-As-Te system were prepared by pulsed laser deposition to study their intrinsic photostability, morphology, chemical composition, structure and optical properties. Photostability of fabricated layers was studied by spectroscopic ellipsometry within as-deposited as well as relaxed (annealed) layers. For irradiation, laser sources operating at three wavelengths in band gap region of the studied materials were employed. The results show that lowest values of photorefraction accompanied with lowest changes of band gap values were exhibited by Ge20As20Te60 thin films, which are therefore considered as the layers with highest photostability in relaxed state. The structure of the films is discussed based on Raman scattering spectroscopy data. PMID:25797340

  11. Test-Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system

    PubMed Central

    Hawlová, P.; Verger, F.; Nazabal, V.; Boidin, R.; Němec, P.

    2015-01-01

    Amorphous thin films from Ge-As-Te system were prepared by pulsed laser deposition to study their intrinsic photostability, morphology, chemical composition, structure and optical properties. Photostability of fabricated layers was studied by spectroscopic ellipsometry within as-deposited as well as relaxed (annealed) layers. For irradiation, laser sources operating at three wavelengths in band gap region of the studied materials were employed. The results show that lowest values of photorefraction accompanied with lowest changes of band gap values were exhibited by Ge20As20Te60 thin films, which are therefore considered as the layers with highest photostability in relaxed state. The structure of the films is discussed based on Raman scattering spectroscopy data. PMID:25797340

  12. Superlattice CoCrPt/Ru/CoFe structure fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hu, X. F.; Liang, Q.; Li, H. Q.; He, X. X.; Wang, Xiaoru; Zhang, W.

    2006-04-01

    The synthetic antiferromagnets (SAF) have been used in spin-valve sensor in data storage industry [1]. We report a new hard/Ru/soft sandwich structure (SHBL) fabricated by pulsed lased deposition to replace current single layer structure for information recording application. SHBL consists of two magnetic layers separated by thin nonmagnetic layers, typically with Ru layers of 0.7-1.2 nm, through which antiferromagnetic coupling is induced. Varying the relative thickness of the magnetic layers, the spacer layers, and the type of magnetic materials can alter magnetic properties of CoCrPt/Ru/CoFe superlattice. The coercivity Hc and grain size of magnetic layer is also dependent on the laser fluence. High laser fluence results in both small grain size and high Hc. The observed phenomena are related to high quenching and deposition rates during PLD at high fluence, resulting in more pronounced phase segregation.

  13. Development of a high magnetic field assisted pulsed laser deposition system

    NASA Astrophysics Data System (ADS)

    Zhang, Kejun; Dai, Jianming; Wu, Wenbin; Zhang, Peng; Zuo, Xuzhong; Zhou, Shu; Zhu, Xuebin; Sheng, Zhigao; Liang, Changhao; Sun, Yuping

    2015-09-01

    A high magnetic field assisted pulsed laser deposition (HMF-PLD) system has been developed to in situ grow thin films in a high magnetic field up to 10 T. In this system, a specially designed PLD cylindrical vacuum chamber is horizontally located in the bore configuration of a superconducting magnet with a bore diameter of 200 mm. To adjust the focused pulsed laser into the target in such a narrow PLD vacuum chamber, an ingeniously built-in laser leading-in chamber is employed, including a laser mirror with a reflection angle of 65° and a damage threshold up to 3.4 J/cm2. A laser alignment system consisting of a built-in video-unit leading-in chamber and a low-energy alignment laser is applied to monitor and align the pulsed laser propagation in the PLD vacuum chamber. We have grown La0.7Sr0.3MnO3 (LSMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] substrates by HMF-PLD. The results show that the nanostructures of the LSMO films can be tuned from an epitaxially continuous film structure without field to a vertically aligned nanorod structure with an applied high magnetic field above 5 T, and the dimension size of the nanorods can be tuned by the strength of the magnetic field. The associated magnetic anisotropy is found to be highly dependent on the nanorod structures. We show how the HMF-PLD provides an effective route toward tuning the nanostructures and the physical properties of functional thin films, giving it an important role in development of nanodevices and their application.

  14. Development of a high magnetic field assisted pulsed laser deposition system.

    PubMed

    Zhang, Kejun; Dai, Jianming; Wu, Wenbin; Zhang, Peng; Zuo, Xuzhong; Zhou, Shu; Zhu, Xuebin; Sheng, Zhigao; Liang, Changhao; Sun, Yuping

    2015-09-01

    A high magnetic field assisted pulsed laser deposition (HMF-PLD) system has been developed to in situ grow thin films in a high magnetic field up to 10 T. In this system, a specially designed PLD cylindrical vacuum chamber is horizontally located in the bore configuration of a superconducting magnet with a bore diameter of 200 mm. To adjust the focused pulsed laser into the target in such a narrow PLD vacuum chamber, an ingeniously built-in laser leading-in chamber is employed, including a laser mirror with a reflection angle of 65° and a damage threshold up to 3.4 J/cm(2). A laser alignment system consisting of a built-in video-unit leading-in chamber and a low-energy alignment laser is applied to monitor and align the pulsed laser propagation in the PLD vacuum chamber. We have grown La0.7Sr0.3MnO3 (LSMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] substrates by HMF-PLD. The results show that the nanostructures of the LSMO films can be tuned from an epitaxially continuous film structure without field to a vertically aligned nanorod structure with an applied high magnetic field above 5 T, and the dimension size of the nanorods can be tuned by the strength of the magnetic field. The associated magnetic anisotropy is found to be highly dependent on the nanorod structures. We show how the HMF-PLD provides an effective route toward tuning the nanostructures and the physical properties of functional thin films, giving it an important role in development of nanodevices and their application. PMID:26429478

  15. Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Drukteinis, Saulius E.

    Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were

  16. Optoelectronic Characterization of Ta-Doped ZnO Thin Films by Pulsed Laser Deposition.

    PubMed

    Koo, Horng-Show; Peng, Jo-Chi; Chen, Mi; Chin, Hung-I; Chen, Jaw-Yeh; Wu, Maw-Kuen

    2015-11-01

    Transparent conductive oxide of Ta-doped ZnO (TZO) film with doping amount of 3.0 wt% have been deposited on glass substrates (Corning Eagle XG) at substrate temperatures of 100 to 500 degrees C by the pulsed laser deposition (PLD) technique. The effect of substrate temperature on the structural, optical and electronic characteristics of Ta-doped ZnO (TZO) films with 3.0 wt% dopant of tantalum oxide (Ta2O5) was measured and demonstrated in terms of X-ray diffraction (XRD), ultraviolet-visible spectrometer (UV-Vis), four-probe and Hall-effect measurements. X-ray diffraction pattern shows that TZO films grow in hexagonal crystal structure of wurtzite phase with a preferred orientation of the crystallites along (002) direction and exhibits better physical characteristics of optical transmittance, electrical conductivity, carrier concentration and mobility for the application of window layer in the optoelectronic devices of solar cells, OLEDs and LEDs. The lowest electrical resistivity (ρ) and the highest carrier concentration of the as-deposited film deposited at 300 degrees C are measured as 2.6 x 10(-3) Ω-cm and 3.87 x 10(-20) cm(-3), respectively. The highest optical transmittance of the as-deposited film deposited at 500 degrees C is shown to be 93%, compared with another films deposited below 300 degrees C. It is found that electrical and optical properties of the as-deposited TZO film are greatly dependent on substrate temperature during laser ablation deposition. PMID:26726672

  17. Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    SciTech Connect

    Groenen, Rik; Smit, Jasper; Orsel, Kasper; Vailionis, Arturas; Bastiaens, Bert; Huijben, Mark; Boller, Klaus; Rijnders, Guus; Koster, Gertjan

    2015-07-01

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO{sub 3} thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO{sub 3} stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10{sup −2} mbars and 10{sup −1} mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial) pressure, the growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.

  18. Osteoblast behavior on various ultra short pulsed laser deposited surface coatings.

    PubMed

    Qu, Chengjuan; Myllymaa, Sami; Prittinen, Juha; Koistinen, Arto P; Lappalainen, Reijo; Lammi, Mikko J

    2013-04-01

    Ultra short pulsed laser deposition technique was utilized to create amorphous diamond, alumina and carbon nitride, and two different titania coatings on silicon wafers, thus producing five different surface deposited films with variable physico-chemical properties. The surface characterizations, including the roughness, the contact angle and the zeta potential measurements were performed before we tested the growth properties of human osteoblast-like Saos-2 cells on these surfaces (three separate experiments). The average roughness and hydrophobicity were the highest on titania-deposited surfaces, while carbon nitride was the most hydrophilic one. Osteoblasts on all surfaces showed a flattened, spread-out morphology, although on amorphous diamond the cell shape appeared more elongated than on the other surfaces. On rough titania, the area covered by the osteoblasts was smaller than on the other ones. Cell proliferation assay did not show any statistically significant differences. PMID:23827623

  19. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  20. Nd-doped YVO{sub 4} waveguide films prepared by pulsed laser deposition

    SciTech Connect

    Li Hongxia Wu Xin; Song Renguo

    2008-08-15

    Nd:YVO{sub 4} thin films have been grown on silica glass substrates by using pulsed laser deposition technique. X-ray diffraction results show that the as-deposited Nd:YVO{sub 4} film is basically oriented polycrystalline and strong (200) peak was revealed. X-ray photoelectron spectroscopy measurements show that valence state of elements of prepared films is consistent with that of bulk target material. Prism coupling technique measurement shows that both TE and TM mode reveal sharp drops at some angular positions, indicating favorable light confinements within the Nd:YVO{sub 4} waveguide layer. The surface morphology of the deposited Nd:YVO{sub 4} films was also observed by using atomic force microscopy.

  1. The growth of nanostructured Cu2ZnSnS4 films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Che Sulaiman, Nurul Suhada; Nee, Chen Hon; Yap, Seong Ling; Lee, Yen Sian; Tou, Teck Yong; Yap, Seong Shan

    2015-11-01

    In this work, we investigated on the growth of Cu2ZnSnS4 films by using pulsed Nd:YAG laser (355 nm) ablation of a quaternary Cu2ZnSnS4 target. Depositions were performed at laser fluence from 0.5 to 4 J cm-2. The films were grown at substrate temperature from 27 °C to 300 °C onto glass and silicon substrates. The dependence of the film morphology, composition, and optical properties are studied and discussed with respect to laser fluence and substrate temperature. Composition analysis from energy dispersive X-ray spectral results show that CZTS films with composition near stoichiometric were obtained at an optimized fluence at 2 J cm-2 by 355 nm laser where the absorption coefficient is >104 cm-1, and optical band gap from a Tauc plot was ∼1.9 eV. At high fluence, Cu and Sn rich droplets were detected which affect the overall quality of the films. The presence of the droplets was associated to the high degree of preferential and subsurface melting on the target during high fluence laser ablation. Crystallinity and optical band gap (1.5 eV) were improved when deposition was performed at substrate temperature of 100 °C.

  2. Pulsed-laser deposition of particulate-free TiC coatings for tribological applications

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Adams, P. M.

    Hybrid bearings comprising ceramic or ceramic-coated steel balls and steel raceways can provide good fatigue life and resistance to wear. One of the coating materials that has received serious consideration in hybrid systems is titanium carbide (TiC). At present, the commercially available process for the deposition of TiC involves the heating of steel substrates to fairly high temperatures (>900 °C). The high-temperature process involves considerable costs and complexities that are associated with the post-deposition heat treatment and repolishing of the coated steels for bearing applications. Pulsed-laser deposition (PLD) is ideally suited to deposit TiC coatings on bearing steels at room temperature. However, it is well known that codeposition of particulates has been one of the most challenging problems of PLD. This is especially of concern when dealing with hard coatings for tribological applications. Here we describe a novel and extremely simple method of depositing high-quality, particulate-free TiC coatings on bearing steel surfaces that uses PLD. The method relies on a new non-line-of-sight deposition that uses a permanent magnet and prevents particulates from arriving at the substrate. The surface roughness of TiC films deposited on steels by way of this technique has an extremely low root mean square value of 1.6 nm. The TiC films have been extensively characterized for their morphology, chemical composition, and mechanical properties with scanning electron and atomic force microscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nanoindentation. Time-resolved emission has been used for the in situ characterization of the laser-ablated TiC plume and has resulted in the identification of various plume species as a function of laser parameters. The spectroscopic results are correlated to film growth and to our modified PLD method.

  3. Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer.

    PubMed

    Rajesh, P; Muraleedharan, C V; Komath, Manoj; Varma, Harikrishna

    2011-03-01

    Pulsed laser deposition (PLD) has been used to deposit hydroxyapatite (HA) ceramic over titanium substrate with an interlayer of titania. PLD has been identified as a potential candidate for bioceramic coatings over metallic substrates to be used as orthopedic and dental implants because of better process control and preservation of phase identity of the coating component. However, direct deposition of hydroxyapatite on titanium at elevated temperature results in the formation of natural oxide layer along with some perovskites like calcium titanate at the interface. This leads to easy debonding of ceramic layer from the metal and thereby affecting the adhesion strength. In the present study, adherent and stable HA coating over Ti6Al4V was achieved with the help of an interlayer of titania. The interlayer was made to a submicron level and HA was deposited consecutively to a thickness of around one micron by exposing to laser ablation at a substrate temperature of 400°C. The deposited phase was identified to be phase pure HA by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma spectrometry. The mechanical behavior of coating evaluated by scratch test indicates that the adhesion strength of HA coating was improved with the presence of titania interlayer. PMID:21234791

  4. Real-time measurement of temperature variation during nanosecond pulsed-laser-induced contamination deposition.

    PubMed

    Kokkinos, Dimitrios; Gailly, Patrick; Georges, Marc P; Tzeremes, Georgios; Rochus, Pierre; Fleury-Frenette, Karl

    2015-12-20

    In this paper, a study of heat generation during UV laser-induced contamination (LIC) and potentially resulting subsequent thermal damage are presented. This becomes increasingly interesting when optics with delicate coatings are involved. During LIC, radiation can interact with outgassing molecules, both in the gas phase and at the surface, thus triggering chemical and photo-fixation reactions. This is a major hazard, in particular for laser units operating under vacuum conditions such as in space applications. The intense photon flux not only affects the contaminant deposition rate but also alters their chemical structure, which can increase their absorption coefficient. Over cumulative irradiation shots, these molecules formed deposits that increasingly absorb photons and produce heat as a by-product of de-excitation, eventually leading to thermal damage. One could better assess the risk of the latter with the knowledge of temperature during the contamination process. For this purpose, a thermoreflectance technique is used here to estimate the temperature variation from pulse to pulse during contamination deposition through the analysis of a temperature-dependent surface reflectance signal. PMID:26837020

  5. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    NASA Astrophysics Data System (ADS)

    Duta, L.; Stan, G. E.; Stroescu, H.; Gartner, M.; Anastasescu, M.; Fogarassy, Zs.; Mihailescu, N.; Szekeres, A.; Bakalova, S.; Mihailescu, I. N.

    2016-06-01

    We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN "seed" layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4-2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0-5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  6. Behavior of pulsed laser deposited hydroxyapatite thin films under simulated biological conditions

    NASA Astrophysics Data System (ADS)

    Grigorescu, S.; Sima, F.; Axente, E.; Feugeas, F.; Mihailescu, I. N.

    2007-03-01

    In the present paper, a study concerning the in-vitro behaviour of Hydroxyapatite films obtained by Pulsed Laser Deposition technique on titanium under different conditions was performed. The structures were immersed in Hank's Solution for 21 days in accurately controlled environment conditions. Both film and immersion solution changes were analyzed by means of XRD, SEM, EDX and X-Ray fluorescence respectively. The obtained results point to an excellent behaviour of the obtained films as bioactive structures, recommending this type of covering for further analysis in view of its use in orthopedic and dental implantology.

  7. Growth of epitaxial bismuth and gallium substituted lutetium iron garnet films by pulsed laser deposition

    SciTech Connect

    Leitenmeier, Stephan; Heinrich, Andreas; Lindner, Joerg K. N.; Stritzker, Bernd

    2006-04-15

    Epitaxial bismuth and gallium substituted lutetium iron garnet thin films have been grown on (100) oriented gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12} substrates by pulsed laser deposition. The films have been studied using x-ray diffraction, high resolution x-ray diffraction, Rutherford backscattering spectroscopy, transmission electron microscopy, and electron diffraction. We obtained smooth films with thicknesses between 0.3 and 1.0 {mu}m showing good crystalline quality and epitaxial growth.

  8. Pulsed laser deposition and investigation of antimony-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Puzikov, A. S.; Lyanguzov, N. V.; Kaidashev, E. M.

    2014-10-01

    We have investigated the influence of oxygen partial pressure, temperature of synthesis and annealing conditions on nanocsrystallineSb-doped thin films, grown by pulsed laser deposition. It is shown that the minimum resistivity (~8·10-3Ω·cm) and the maximum carriers density (~ 2·1019 cm-3) corresponds to the pressure range 5·10-3-7·10-3 mbar, to the temperature 550 ° C and in situ annealing at 700 °C.Also we show the features of the crystal lattice's dynamics, which are found in the Raman research.

  9. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G. I.; Giapintzakis, J.

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10-3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  10. Third order nonlinearity in pulsed laser deposited LiNbO3 thin films

    NASA Astrophysics Data System (ADS)

    Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal; Raju, K. C. James

    2016-05-01

    Lithium niobate (LiNbO3) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.

  11. Fabrication of multiferroic GdMnO3 thin film by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Negi, Puneet; Agrawal, H. M.; Srivastava, R. C.; Asokan, K.

    2012-06-01

    Here, we report the fabrication of GdMnO3 multiferroic thin film on SrTiO3 (110) substrate by pulsed laser deposition (PLD) technique. The target sample was synthesized using modified solgel route. The thickness of the film observed by Talystep profilometer, is about 200 nm. X-ray diffraction and Raman spectroscopic techniques were used to investigate the structure of the target as well as of the film. The surface topography of the film was investigated by atomic force microscopy.

  12. George E. Pake Prize Lecture: Pulsed Laser Deposition and the Oxide Electronics Revolution

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2012-02-01

    The discovery of the Pulsed Laser Deposition (PLD) Process at Bellcore was followed by a stream of advances in the epitaxial growth of oxides and a variety of heterostructures and interfaces. Today Oxide Electronics is a fascinating field with a great deal of new Science and potential for applications. Following a discussion of these events, my talk will focus on the adventure involved in creating a new company, Neocera, and, at the same time, pushing ahead in the evolving field of oxide electronics. There, electron spin, pairing, and alignment to create superconductivity and magnetism have opened up new frontiers for research and materials development.

  13. Combinatorial pulsed laser deposition of doped yttrium iron garnet films on yttrium aluminium garnet

    SciTech Connect

    Sposito, A. Eason, R. W.; Gregory, S. A.; Groot, P. A. J. de

    2014-02-07

    We investigate the crystalline growth of yttrium iron garnet (YIG) films doped with bismuth (Bi) and cerium (Ce) by combinatorial pulsed laser deposition, co-ablating a YIG target and either a Bi{sub 2}O{sub 3} or a CeO{sub 2} target, for applications in microwave and optical communications. Substrate temperature is critical for crystalline growth of YIG with simultaneous inclusion of Bi in the garnet lattice, whereas Ce is not incorporated in the garnet structure, but forms a separate CeO{sub 2} phase.

  14. Structure and optical properties of TiO2 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Białous, Anna; Gazda, Maria; Śliwiński, Gerard

    2013-03-01

    Thin TiO2 films prepared by pulsed laser deposition (PLD) in the O2 gas ambient using the bulk metal Ti or pressed TiO2 powder targets were characterized using spectroscopic methods. Films were deposited on SiO2 (001) and SiO2 glass substrates heated up to 300 °C. The deposition process was investigated at laser fluencies from the range of 1 - 3 J/cm2 and at oxygen pressure of 0.1 - 3.2 Pa. The μ-Raman and X-ray diffraction (XRD) spectra of the TiO2 films revealed consistently both the anatase and rutile crystalline phases and a strong dependence of the phase content ratio on target material and deposition conditions. The range of crystallite size determined from XRD bandwidths was between (2-30) nm and (6-14) nm for anatase and rutile, respectively. The film thickness values between 0.74 and 1.65 μm depending on the deposition time were obtained from the transmittance and ellipsometric measurements. Values of the band gap of 3.5-4.1 eV derived from absorption spectra were higher than that of 3.2 eV corresponding to anatase and this difference was ascribed to the relatively small size of the anatase crystallites and presence of rutile, too. The SEM images of films produced under similar conditions from Ti and TiO2 targets revealed porous structures. The highest anatase content was observed for films deposited by ablation of the TiO2 target at moderate laser fluencies below 2 J/cm2 and at oxygen pressure around 1.9 Pa.

  15. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Roberts, Nicholas A.; Plank, Harald; Rack, Philip D.

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC5 composite at the laser wavelength, and the pulse-width dependence is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.

  16. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    DOE PAGESBeta

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Roberts, Nicholas A.; Plank, Harald; Rack, Philip D.

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC5 composite at the laser wavelength, and the pulse-width dependence is attributedmore » to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less

  17. Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Kekkonen, Ville; Chaudhuri, Saumyadip; Clarke, Fergus; Kaisto, Juho; Liimatainen, Jari; Pandian, Santhosh Kumar; Piirto, Jarkko; Siltanen, Mikael; Zolotukhin, Aleksey

    2016-03-01

    Recent results of properties and performance of {WO}_3 gas sensing layers produced by industrial picosecond pulsed laser deposition process developed by Picodeon Ltd Oy are presented in this paper. {WO}_3 layers with controllable porosity and nanostructure were successfully deposited on commercial sensor platforms, and basic measurements to characterize their performance as gas sensors gave promising results.

  18. Enhancement of thickness uniformity of thin films grown by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1995-01-01

    A peculiarity of the pulsed laser deposition technique of thin-film growth which limits its applicability is the very rapid drop of resulting film thickness as a function of distance from the deposition axis. This is due to the narrow forward peaking of the emission plume characteristic of the laser ablation process. The plume is usually modeled by a cos(sup n) theta function with n greater, and in some cases, much higher, than 1. Based on this behavior, a method is presented to substantially enhance coverage uniformity in substrate zones of the order of the target-substrate distance h, and to within a specified thickness tolerance. Essentially, target irradiation is caused to form an annular emission source instead of the usual spot. By calculating the resulting thickness profiles, an optimum radius s is found for the annular source, corresponding to a given power in the emission characteristic and a given value of h. The radius of this annulus scales with h. Calculated numerical results for optimal s/h ratios corresponding to a wide range of values for n are provided for the case of +/- 1% tolerance in deviation from the thickness at deposition axis. Manners of producing annular illumination of the target by means of conic optics are presented for the case of a laser beam with radially symmetric profile. The region of uniform coverage at the substrate can be further augmented by extension of the method to multiple concentric annular sources. By using a conic optic of novel design, it is shown also how a single-laser beam can be focused onto a target in the required manner. Applicability of the method would be limited in practice by the available laser power. On the other hand, the effective emitting area can be large, which favors extremely high growth rates, and since growth can occur uniformly over the whole substrate for each laser pulse, single-shot depositions with substantial thicknesses are possible. In addition, the simultaneity of growth over the

  19. Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics

    NASA Astrophysics Data System (ADS)

    Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.

    Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.

  20. Epitaxial composition-graded perovskite films grown by a dual-beam pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Autret-Lambert, Cécile; Sauvage, Thierry; Courtois, Blandine; Wolfman, Jérôme; Gervais, François

    2013-10-01

    We prepared SrTiO3 (STO) to Ba0.6Sr0.4TiO3 (BST06) out-of-plane composition-graded films on STO (100) substrates by means of a dual-beam dual-target pulsed laser deposition technique. In the deposition system, a sliding mirror divides one KrF excimer laser beam into two, realizing the dual-beam of controlled intensity ratio. X-ray diffraction reciprocal space mapping has revealed that the graded films deposited under oxygen pressure at or lower than 1×10-3 mbar were coherently strained with the same in-plane lattice parameter as the substrate. Their composition gradient along the growth direction was confirmed by Rutherford backscattering analysis to be uniform. We deposited BST06 top layers of various thickness on epitaxial composition-graded (ECG) buffer layers and examined their coherency and crystallinity. In comparison with the cases of STO homoepitaxial buffer layers, ECG buffer layers achieved better crystallinity of top BST06 layers, suggesting that the crystallinity of a heteroepitaxially-grown film is affected not only by the in-plane lattice matching but also by the out-of-plane lattice continuity with the substrate. ECG films that bridge compositions of substrate and top layer materials can be useful buffer layers for epitaxial growth of lattice-mismatched oxide films.

  1. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    NASA Astrophysics Data System (ADS)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio; Chater, Richard J.; Cañamares, Maria Vega; Marco, José F.; Castillejo, Marta

    2015-02-01

    Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  2. Optical Response in Amorphous GaAs Thin Films Prepared by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Kiwa, Toshihiko; Kawashima, Ichiro; Nashima, Shigeki; Hangyo, Masanori; Tonouchi, Masayoshi

    2000-11-01

    Femtosecond optical response in GaAs thin films has been studied. We prepared GaAs thin films on MgO substrates and on YBa2Cu3O7-δ (YBCO) thin films using pulsed laser deposition (PLD) at temperatures below 250^\\circC@. A photocarrier lifetime of less than 1 ps is measured for the prepared GaAs thin films using femtosecond time-domain reflectivity change measurements. Pulsed electromagnetic wave [terahertz (THz) radiaiton] containing a frequency component of up to 1 THz is emitted from fabricated photoconductive switches using the prepared thin films. We also evaluated the THz radiation properties emitted from the photoswitches on the YBCO thin films.

  3. High quality ZnS/Au/ZnS transparent conductive tri-layer films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Caifeng; Li, Qingshan; Wang, Jisuo; Zhang, Lichun; Zhao, Fengzhou; Dong, Fangying

    2016-07-01

    ZnS/Au/ZnS tri-layer films were deposited on quartz glass substrates by pulsed laser deposition. The influence of Au layer thickness on optical and electrical properties of the tri-layer ZnS/Au/ZnS was studied. X-ray diffractometer (XRD) and scanning electron microscope were employed to characterize the crystalline structure and surface morphology of the tri-layer films. Hall measurements, ultraviolet and visible spectrophotometer, four-point probe were used to explore the optoelectronic properties of the ZnS/Au/ZnS. The increase of Au layer thickness resulted in the decreased resistivity, the increased carrier concentration, and the declined transmittance in the visible light region.

  4. Thermochromic properties of Sn, W co-doped VO2 nanostructured thin film deposited by pulsed laser deposition.

    PubMed

    Hur, M G; Masaki, T; Yoon, D H

    2014-12-01

    Tin (Sn) and tungsten (W) co-doped vanadium dioxide (VO2) nanostructured thin films with 50-nm thickness were deposited by pulsed laser deposition (PLD) to reduce the transition temperature and improve the IR transmittance. The crystal structure of the nanostructured thin films and the presence of elements were evaluated by XRD and XPS analysis. The transition temperature (T(c)) of 1 at% Sn-1 at% W co-doped VO2 nanostructured thin film was decreased to about 22 degrees C (from 70.3 to 48.5 degrees C) compared with the undoped VO2 nanostructured thin film. The transmittance width in the IR range of the co-doped nanostructured thin film decreased from 37.5% to 27% compared with the undoped VO2 nanostructured thin film. Also, the width of hysteresis was narrowed by Sn doping. PMID:25970986

  5. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    NASA Astrophysics Data System (ADS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R. D.

    2013-01-01

    Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  6. Pulsed laser deposition of bioactive glass films in ammonia and disilane atmospheres

    NASA Astrophysics Data System (ADS)

    Borrajo, J. P.; González, P.; Liste, S.; Serra, J.; Chiussi, S.; León, B.; Pérez-Amor, M.

    2005-07-01

    The effect of two reactive gases on the properties of bioactive glass thin films produced by pulsed laser deposition (PLD) was studied. The ablation of a bioactive silica-based glass was carried out by an ArF excimer laser ( λ = 193 nm, Φ = 4.2 J cm -2, τ = 25 ns, f = 10 Hz) at various pressures of Si 2H 6/Ar and NH 3/Ar reactive mixtures. The bonding configuration and chemical environment of the resulting coatings were followed by Fourier transform infrared spectroscopy (FT-IR). The composition and bond arrangement of bioactive glass films were tuned by varying the chamber atmosphere. The results show how to adjust film characteristics for osteointegration of implants.

  7. Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition

    SciTech Connect

    Hart, Judy N.; May, Paul W.; Allan, Neil L.; Hallam, Keith R.; Claeyssens, Frederik; Fuge, Gareth M.; Ruda, Michelle; Heard, Peter J.

    2013-02-15

    We have recently undertaken comprehensive computational studies predicting possible crystal structures of the as yet unknown phosphorus carbide as a function of composition. In this work, we report the synthesis of amorphous phosphorus-carbon films by pulsed laser deposition. The local bonding environments of carbon and phosphorus in the synthesised materials have been analysed by x-ray photoelectron spectroscopy; we have found strong evidence for the formation of direct P-C bonding and hence phosphorus carbide. There is a good agreement between the bonding environments found in this phosphorus carbide material and those predicted in the computational work. In particular, the local bonding environments are consistent with those found in the {beta}-InS-like structures that we predict to be low in energy for phosphorus:carbon ratios between 0.25 and 1. Highlights: Black-Right-Pointing-Pointer We have synthesised amorphous phosphorus-carbon films by pulsed laser deposition. Black-Right-Pointing-Pointer X-ray photoelectron spectroscopy results indicate formation of direct P-C bonds and hence phosphorus carbide. Black-Right-Pointing-Pointer Local bonding environments are consistent with those in predicted structures.

  8. Pulse Laser Deposition Fabricating Gold Nanoclusters on a Glassy Carbon Surface for Nonenzymatic Glucose Sensing.

    PubMed

    Shu, Honghui; Chang, Gang; Wang, Zhiqiang; Li, Pai; Zhang, Yuting; He, Yunbin

    2015-01-01

    A One-step technique for depositing gold nanoclusters (GNCs) onto the surface of a glassy carbon (GC) plate was developed by using pulse laser deposition (PLD) with appropriate process parameters. The method is simple and clean without using any templates, surfactants, or stabilizers. The experimental factors (pulse laser number and the pressure of inert gas (Ar)) that affect the morphology and structure of GNCs, and thus affect the electrocatalytic oxidation performance towards glucose were systematically investigated by means of transmission electron microscopy (TEM) and electrochemical methods (cyclic voltammograms (CV) and chronoamperometry methods). The GC electrode modified by GNCs exhibited a rapid response time (about 2 s), a broad linear range (0.1 to 20 mM), and good stability. The sensitivity was estimated to be 31.18 μA cm(-2) mM(-1) (vs. geometric area), which is higher than that of the Au bulk electrode. It has a good resistance to the common interfering species, such as ascorbic acid (AA), uric acid (UA) and 4-acetaminophen (AP). Therefore, this work has demonstrated a simple and effective sensing platform for the nonenzymatic detection of glucose, and can be used as a new material for a novel non-enzymatic glucose sensor. PMID:26165282

  9. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  10. Investigation on two magnon scattering processes in pulsed laser deposited epitaxial nickel zinc ferrite thin film

    NASA Astrophysics Data System (ADS)

    Roy, Debangsu; Sakshath, S.; Singh, Geetanjali; Joshi, Rajeev; Bhat, S. V.; Kumar, P. S. Anil

    2015-04-01

    Ferromagnetic resonance (FMR) measurements are employed to evaluate the presence of the two magnon scattering contribution in the magnetic relaxation processes of the epitaxial nickel zinc ferrite thin films deposited using pulsed laser deposition (PLD) on the (0 0 1) MgAl2O4 substrate. Furthermore, the reciprocal space mapping reveals the presence of microstructural defects which acts as an origin for the two magnon scattering process in this thin film. The relevance of this scattering process is further discussed for understanding the higher FMR linewidth in the in-plane configuration compared to the out-of-plane configuration. FMR measurements also reveal the presence of competing uniaxial and cubic anisotropy in the studied films.

  11. Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition

    PubMed Central

    Yan, Binggong; Liu, Jichang; Song, Bohang; Xiao, Pengfei; Lu, Li

    2013-01-01

    Li-rich layer-structured cathode thin films are prepared by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical testing in half battery cells are used to characterize crystal structure, surface morphology, chemical valence states and electrochemical performance of these thin films, respectively. It is observed that partial layer to spinel transformation takes place during post annealing, and the layered structure further gradually transforms to spinel during electrochemical cycling based on the analysis of dQ/dV. Electrochemical measurement shows that the thin film electrode deposited at 350 mTorr and post-annealed at 800°C possesses the best performance. PMID:24276678

  12. Pulsed laser deposition of silicon substituted hydroxyapatite coatings from synthetical and biological sources

    NASA Astrophysics Data System (ADS)

    Solla, E. L.; González, P.; Serra, J.; Chiussi, S.; León, B.; López, J. García

    2007-12-01

    Silicon substituted hydroxyapatite (Si-HA) is a new material with an enhanced bioactibity and it can be produced by chemical synthesis. Nevertheless, the coating of metallic substrates with a bioactive material is a common method nowadays to improve its integration with the receptor bone. Si-HA films were deposited by pulsed laser deposition (PLD), using targets composed of mixtures of HA with different Si containing sources such as SiO 2 and diatomaceous earth. The Si-HA films were characterized in terms of structure and chemical composition by spectroscopic techniques (FTIR, XPS), and several ion beam techniques (RBS, PIXE). The analysis revealed that the Si is successfully incorporated into the HA structure, as well as traces of other elements such as Na, Fe or K.

  13. Nanoforest Nb2O5 Photoanodes for Dye-Sensitized Solar Cells by Pulsed Laser Deposition

    SciTech Connect

    Ghosh, Rudresh; Brennaman, Kyle M.; Uher, Tim; Ok, Myoung-Ryul; Samulski, Edward T.; McNeil, L. E.; Meyer, Thomas J.; Lopez, Rene

    2011-10-26

    Vertically aligned bundles of Nb₂O₅ nanocrystals were fabricated by pulsed laser deposition (PLD) and tested as a photoanode material in dye-sensitized solar cells (DSSC). They were characterized using scanning and transmission electron microscopies, optical absorption spectroscopy (UV–vis), and incident-photon-to-current efficiency (IPCE) experiments. The background gas composition and the thickness of the films were varied to determine the influence of those parameters in the photoanode behavior. An optimal background pressure of oxygen during deposition was found to produce a photoanode structure that both achieves high dye loading and enhanced photoelectrochemical performance. For optimal structures, IPCE values up to 40% and APCE values around 90% were obtained with the N₃ dye and I₃{sup –}/I{sup –} couple in acetonitrile with open circuit voltage of 0.71 V and 2.41% power conversion efficiency.

  14. Inverted fractal analysis of TiOx thin layers grown by inverse pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Égerházi, L.; Smausz, T.; Bari, F.

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed fD = 1.83 ± 0.01 for TiOx layers grown at 5-50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of fD not only confirms the fractal structure of TiOx IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  15. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E. (Inventor)

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  16. Pulsed-laser-deposited coatings for stiction and wear reduction in MEMS devices

    NASA Astrophysics Data System (ADS)

    Pelt, Jamey S.; Ramsey, M. E.; Magana, R., Jr.; Poindexter, E., Jr.; de Boer, Maarten P.; LaVan, David A.; Dugger, Michael T.; Smith, James H.; Durbin, Steven M.

    1999-08-01

    A wide variety of thin layer coatings have been reported for inhibiting the occurrence of post-release stiction in MEMS. Hydrophobic coatings such as self-assembled monolayers perform this function very well, but have a limited lifetime due to eventual generation of wear-induced damage. On the other hand, metallic oxides with superior wear resistance are hydrophilic in character, making them prone to stiction in humid environments. This paper describes the investigation of several dielectric materials as potential candidates for hydrophobic coatings with good wear resistant properties. Films were grown using a combination of vacuum deposition techniques, including enhanced variations of pulsed laser deposition. Contact angle and hardness measurements were performed on flat single crystal wafers for evaluation of film properties, and initial trials on a lateral friction test structure developed at Sandia National Laboratories were performed.

  17. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  18. Optical characteristics of pulsed laser deposited Ge-Sb-Te thin films studied by spectroscopic ellipsometry

    SciTech Connect

    Nemec, P.; Prikryl, J.; Frumar, M.; Nazabal, V.

    2011-04-01

    Pulsed laser deposition technique was used for the fabrication of (GeTe){sub 1-x}(Sb{sub 2}Te{sub 3}){sub x} (x = 0, 0.33, 0.50, 0.66, and 1) amorphous thin films. Scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (rocksaltlike) layers. In order to extract optical functions of the films, the Cody-Lorentz model was applied for the analysis of ellipsometric data. Fitted sets of Cody-Lorentz model parameters are discussed in relation with chemical composition and the structure of the layers. The GeTe component content was found to be responsible for the huge optical functions and thickness changes upon amorphous-to-fcc phase transition.

  19. Mechanical properties of pulsed laser deposited nanocrystalline SiC films

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Socol, G.; Cristea, D. V.; Stoicanescu, M.; Olah, N.; Balazs, K.; Stefan, N.; Lambers, E.; Craciun, V.

    2015-05-01

    The mechanical properties of nanocrystalline SiC thin films grown on (100) Si at a substrate temperature of 1000 °C under a CH4 atmosphere using the pulsed laser deposition (PLD) technique were investigated. Nanoindentation results showed that films exhibited hardness values around 36 GPa and Young modulus values around 250 GPa. Scratch tests found that films were adherent to the substrate, with critical load values similar to those recorded for other hard coatings deposited on significantly softer Si substrates. Wear tests performed at a temperature of 900 °C showed that films exhibited friction coefficients and wear rates very similar to those measured at room temperature, due to the presence of C-C bonds as evidenced by X-ray photoelectron spectroscopy investigations. These results recommend such coatings for demanding high temperature applications such as nuclear fuel encapsulation.

  20. Structural, optical, and electrical properties of pulsed laser deposition CIGSS thin films

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Bin; Kang, Y. Zhen-Feng; Fan, Yue; Xiao, Ling-ling; Bo, Qing-Rui; Ding, Tie-Zhu

    2015-12-01

    High-quality CuIn0.75Ga0.25(Se0.75S0.25)2 (CIGSS) thin films were synthesized on the soda-lime glass (SLG) substrates by pulsed laser deposition. The structural and optical properties of CIGSS thin films were studied by experiments and theoretical calculations. XRD result reveals that the films are of chalcopyrite structure. The experiments and theory show that CIGSS is a semiconductor with a direct band gap. The direct band gap energy of the deposited CIGSS thin films are in the solar energy range. The band structure and density of states of the CIGSS crystals were studied by the first principles density functional theory. The experimental data and theoretical data have demonstrated good agreement.

  1. Compositional and structural properties of pulsed laser-deposited ZnS:Cr films

    NASA Astrophysics Data System (ADS)

    Nematollahi, Mohammadreza; Yang, Xiaodong; Seim, Eivind; Vullum, Per Erik; Holmestad, Randi; Gibson, Ursula J.; Reenaas, Turid W.

    2016-02-01

    We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0-5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.

  2. Studies on Pulsed Laser Deposited YbBa_2Cu_3O_7-x Thin Films

    NASA Astrophysics Data System (ADS)

    Srinivas, S.; Ramachandra Rao, M. S.; Pinto, R.; Bhatnagar, Anil K.

    1998-03-01

    We have deposited high quality YbBa_2Cu_3O_7-x thin films on LaAlO_3<100> substrates using pulsed laser deposition(PLD) method. Films are characterized by XRD, Resistivity, SQUID measurements and surface morphology using Atomic Force Microscopy. We have noticed spiral like growth in a film by AFM. The critical T_co around 88 K and critical current density at zero field is 2x10^6 A/cm^2 at 77 K and SQUID measurement calculations have shown critical current densities as high as 10^7 A/cm^2 at 77K. ( One of the Authors would like to thank UGC-CSIR for financial assistance and is grateful to CSIR for the research support)

  3. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  4. Nanoindentation study of niobium nitride thin films on niobium fabricated by reactive pulsed laser deposition

    SciTech Connect

    Mamun, Md Abdullah Al; Farha, Ashraf Hassan; Ufuktepe, Yüksel; Elsayed-Ali, Hani E.; Elmustafa, Abdelmageed A.

    2015-03-01

    Nanomechanical and structural properties of NbNx films deposited on single crystal Nb using pulsed laser deposition for different substrate temperature were previously investigated as a function of film/substrate crystal structure (Mamun et al. (2012) [30]). In this study we focus on the effect of laser fluences and background nitrogen pressure on the nanomechanical and structural properties of NbNx films. The crystal structure and surface morphology of the thin films were tested by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Using nanoindentation, the investigation of the nanomechanical properties revealed that the hardness of the NbNx films was directly influenced by the laser fluence for low background nitrogen pressure, whereas the nanomechanical hardness showed no apparent correlation with laser fluence at high background nitrogen pressure. The NbNx film hardness measured at 30% film thickness increased from 14.0 ± 1.3 to 18.9 ± 2.4 GPa when the laser fluence was increased from 15 to 25 J/cm2 at 10.7 Pa N2 pressure. X-ray diffraction showed NbNx films with peaks that correspond to δ-NbN cubic and β-Nb2N hexagonal phases in addition to the δ'-NbN hexagonal phase. Finally, increasing the laser fluence resulted in NbNx films with larger grain sizes.

  5. Ion implantation induced phase transformation and enhanced crystallinity of as deposited copper oxide thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bind, Umesh Chandra; Dutta, Raj Kumar; Sekhon, Gurpreet Kaur; Yadav, Kanhaiya Lal; Krishna, J. B. M.; Menon, Ranjini; Nabhiraj, P. Y.

    2015-08-01

    Copper oxide thin film of about 260-280 nm thickness was deposited using pulsed laser deposition (PLD) on glass substrate at 350 °C and post depositional sample treatment was performed by ion implantation with 50 keV N5+ ion beam with varying particle fluence. Amorphous copper oxide thin film deposited at 80 mTorr partial pressure of oxygen was transformed to cubic Cu2O phase (20.2 nm) when implanted at 1 × 1016 particles/cm2. While mixed Cu2O and CuO phases in the thin film deposited at 100 mTorr oxygen pressure was transformed to single phase of Cu2O (23.5 nm), with enhanced crystallinity when implanted with 2.5 × 1015 particles/cm2. The phase transformation and improved crystallinity is attributed to thermal effect owing to stopping of incident ion beam. Implantation with higher particle fluence led to transformation to CuO phase with reduced crystallite sized and the increased electrical conductivity.

  6. Multi-beam pulsed laser deposition: new method of making nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Wilson, Simeon; Blackwell, Ashely; Taylor, Keylantra; Sarkisov, Sergey; Patel, Darayas; Mele, Paolo; Koplitz, Brent

    2015-08-01

    Huge number of new photonic devices, including light emitters, chemical sensors, and energy harvesters, etc. can be made of the nanocomposite coatings produced by the new multi-beam pulsed laser deposition (MB-PLD) process. We provide a short review of the conventional single-beam PLD method and explain why it is poorly suitable for making nanocomposite coatings. Then we describe the new MB-PLD process and system, particularly the multiple-beam matrix assisted pulsed laser evaporation (MB-MAPLE) version with laser beam scanning and plume direction control. The latter one is particularly designed to make organic (polymer) - inorganic functionalized nanocomposite coatings. Polymer film serves as a host for inorganic nanoparticles that add a specific functionality to the film. We analyze the properties of such coatings using the examples of poly(methyl methacrylate) (PMMA) films impregnated with the nanoparticles of rare-earth (RE) upconversion phosphors. They demonstrated the preservation of microcrystalline structure and bright upconversion emission in visible region of the phosphor nanoparticles after they were transferred in the polymer matrix during the MB-MAPLE process. The proposed technology has thus proven to serve its purpose: to make functionalized polymer nanocomposite coatings for a various potential applications.

  7. Note: large area deposition of Rh single and Rh/W/Cu multilayer thin films on stainless steel substrate by pulsed laser deposition technique.

    PubMed

    Mostako, A T T; Khare, Alika

    2014-04-01

    Mirror like thin films of single layer Rh and multilayer Rh/W/Cu are deposited on highly polished 50 mm diameter stainless steel substrate by Pulsed Laser Deposition (PLD) technique for first mirror application in fusion reactors. For this, the conventional PLD technique has been modified by incorporating substrate rastering stage for large area deposition via PLD. Process optimization to achieve uniformity of deposition as estimated from fringe visibility and thickness is also discussed. PMID:24784679

  8. Note: Large area deposition of Rh single and Rh/W/Cu multilayer thin films on stainless steel substrate by pulsed laser deposition technique

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika

    2014-04-15

    Mirror like thin films of single layer Rh and multilayer Rh/W/Cu are deposited on highly polished 50 mm diameter stainless steel substrate by Pulsed Laser Deposition (PLD) technique for first mirror application in fusion reactors. For this, the conventional PLD technique has been modified by incorporating substrate rastering stage for large area deposition via PLD. Process optimization to achieve uniformity of deposition as estimated from fringe visibility and thickness is also discussed.

  9. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Makimura, Yoshinari; Rougier, Aline; Tarascon, Jean-Marie

    2006-04-01

    Iron fluoride thin films were successfully grown by Pulsed Laser Deposition (PLD), and their physico-chemical properties and electrochemical behaviours were examined by adjusting the deposition conditions, such as the target nature (FeF 2 or FeF 3), the substrate temperature ( Ts ≤ 600 °C), the gas pressure (under vacuum or in oxygen atmosphere) and the repetition rates (2 and 10 Hz). Irrespective of the FeF 2 or FeF 3 target nature, iron fluoride thin films, deposited at 600 °C under vacuum, showed X-ray diffraction (XRD) patterns corresponding to the FeF 2 phase. On the other hand, iron fluoride thin films deposited at room temperature (RT) from FeF 2 target were amorphous, whereas the thin films deposited from FeF 3 target consisted of a two-phase mixture of FeF 3 and FeF 2 showing sharp and broad diffraction peaks by XRD, respectively. Their electrochemical behaviour in rechargeable lithium cells was investigated in the 0.05-3.60 V voltage window. Despite a large irreversible capacity on the first discharge, good cycling life was observed up to 30 cycles. Finally, their electrochemical properties were compared to the ones of iron oxide thin films.

  10. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  11. Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters

    PubMed Central

    Shah, Kamran; Haq, Izhar Ul; Shah, Shaukat Ali; Khan, Farid Ullah; Khan, Sikander

    2014-01-01

    Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process. PMID:24592190

  12. Growth of monocrystalline Cu(1 1 1) films on MgO(1 1 1) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Aweke, F.; Antoni, F.; Hulik, J.; Morvan, G.; Speisser, C.; Veis, P.; Le Normand, F.

    2015-05-01

    Copper (Cu) films with a minimal thickness of 300 nm were grown on MgO(1 1 1) substrates in high vacuum by pulsed laser deposition (PLD) at various temperatures to achieve a single crystal Cu film with flat terraces without grain boundaries. We investigated the effect of the substrate temperature, the pulse repetition rate, the deposition time and the laser fluence. A temperature threshold is observed above which the growth mode is changed from a uniform flat mode to a three dimensional mode. A combined process involving a germination step at moderate temperature followed by a growth step at higher temperature yields a 450 nm almost continuous film.

  13. Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science.

    PubMed

    Keller, David A; Ginsburg, Adam; Barad, Hannah-Noa; Shimanovich, Klimentiy; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Takeuchi, Ichiro; Aviv, Hagit; Tischler, Yaakov R; Anderson, Assaf Y; Zaban, Arie

    2015-04-13

    Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed. In this study, a possible way to take advantage of the large scale deposition inhomogeneity is demonstrated, choosing an iron oxide PLD-deposited library with continuous compositional spread (CCS) as a model system. An Fe₂O₃-Nb₂O₅ library was fabricated using PLD, without any mask between the targets and the substrate. The library was measured using high-throughput scanners for electrical, structural, and optical properties. A decrease in electrical resistivity that is several orders of magnitude lower than pure α-Fe₂O₃ was achieved at ∼20% Nb-O (measured at 47 and 267 °C) but only at points that are distanced from the center of the PLD plasma plume. Using hierarchical clustering analysis, we show that the PLD inhomogeneity can be used as an additional degree of freedom, helping, in this case, to achieve iron oxide with much lower resistivity. PMID:25798538

  14. Pulsed laser deposition of YBCO thin films on IBAD-YSZ substrates

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Venkataraman, K.; Balachandran, U.

    2003-01-01

    High-quality YBa2Cu3O7-x (YBCO) films were fabricated on yttria-stabilized zirconia (YSZ)-buffered Hastelloy C276 substrates by pulsed laser deposition. YSZ was grown by ion-beam-assisted deposition. A thin (approx10 nm) CeO2 layer was deposited before the deposition of YBCO. The crystalline structure and biaxial texture of the YBCO film and the buffer layer were examined by x-ray diffraction 2theta-scan, phi-scan and pole-figure analysis. Epitaxial growth of the YBCO film on the buffer layer was observed. Full width at half maximum (FWHM) value of 7.4° was measured from the phi-scan of YBCO(103). Raman spectroscopy showed compositional uniformity and phase integrity in the YBCO films. Surface morphologies of the YBCO films were examined by scanning electron microscopy. Comparative studies indicated that the CeO2 buffer layer significantly improves the structural alignment and superconducting properties of YBCO films. Tc = 90 K, with sharp transition, and transport Jc = 2.2 × 106 A cm-2 at 77 K in zero-external field were obtained on the 0.5 mum thick YBCO films. The dependence of Jc on the FWHM of the YBCO(103) phi-scan indicated that high Jc is associated with low FWHM.

  15. Growth of nanolaminate structure of tetragonal zirconia by pulsed laser deposition

    PubMed Central

    2013-01-01

    Alumina/zirconia (Al2O3/ZrO2) multilayer thin films were deposited on Si (100) substrates at an optimized oxygen partial pressure of 3 Pa at room temperature by pulsed laser deposition. The Al2O3/ZrO2 multilayers of 10:10, 5:10, 5:5, and 4:4 nm with 40 bilayers were deposited alternately in order to stabilize a high-temperature phase of zirconia at room temperature. All these films were characterized by X-ray diffraction (XRD), cross-sectional transmission electron microscopy (XTEM), and atomic force microscopy. The XRD studies of all the multilayer films showed only a tetragonal structure of zirconia and amorphous alumina. The high-temperature XRD studies of a typical 5:5-nm film indicated the formation of tetragonal zirconia at room temperature and high thermal stability. It was found that the critical layer thickness of zirconia is ≤10 nm, below which tetragonal zirconia is formed at room temperature. The XTEM studies on the as-deposited (Al2O3/ZrO2) 5:10-nm multilayer film showed distinct formation of multilayers with sharp interface and consists of mainly tetragonal phase and amorphous alumina, whereas the annealed film (5:10 nm) showed the inter-diffusion of layers at the interface. PMID:23413942

  16. Growth process of nanosized aluminum thin films by pulsed laser deposition for fluorescence enhancement.

    PubMed

    Abdellaoui, N; Pillonnet, A; Berndt, J; Boulmer-Leborgne, C; Kovacevic, E; Moine, B; Penuelas, J; Pereira, A

    2015-03-20

    Pulsed laser deposition was used to deposit aluminum thin films of various thicknesses (tAl) ranging from 5 to 40 nm and to investigate their growth process when they are deposited onto SiO2 and Y2O3. Atomic force microscopy and x-ray reflectivity measurements show that the structure of the Al films are related to the wettability properties of the underlaying layer. Onto SiO2, ultra-smooth layers of aluminum are obtained, due to a perfect wetting of SiO2 by Al. In contrast when deposited onto Y2O3, percolated Al layers are observed with apparent pore size decreasing from 200 to 82 nm as t(Al) is increased from 5 to 40 nm, respectively. This particular morphology is related to partial dewetting of Al on Y2O3. These two different growth mechanisms of aluminum depend therefore on the surface properties of SiO2 and Y2O3. The plasmon resonance of such Al nanostructures in the UV region was then analyzed by studying the coupling between Eu(3+) rare earth emitters and Al. PMID:25712708

  17. Atomically-Smooth MgO films grown on Epitaxial Graphene by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Stuart, Sean; Sandin, Andreas; Rowe, Jack; Dougherty, Dan; Ulrich, Marc

    2013-03-01

    The growth of high quality insulating films on graphene is a crucial materials science task for graphene electronic and spintronic applications. It has been demonstrated that direct spin injection from a magnetic electrode to graphene is possible using MgO tunnel barriers of sufficient quality. We have used pulsed laser deposition (PLD) to grow thin magnesium oxide films directly on epitaxial graphene on SiC(0001). We observe very smooth film morphologies (typical rms roughness of ~ 0.4 nm) that are nearly independent of film thickness and conform to the substrate surface which had ~ 0.2 nm rms roughness. Surface roughness of 0.04 nm have been recorded for ~ 1nm films with no pinholes seen by AFM. XPS and XRD data show non crystalline, hydroxylated MgO films with uniform coverage. This work shows that PLD is a good technique to produce graphene-oxide interfaces without pre-deposition of an adhesion layer or graphene functionalization. The details and kinetics of the deposition process will be described with comparisons being made to other dielectric-on-graphene deposition approaches. Funded by ARO Staff Research Contract # W911NF.

  18. Application of pulsed-uv laser Raman spectroscopy to chemical vapor deposition

    SciTech Connect

    Hargis, P.J. Jr.

    1981-01-01

    Raman detection limits obtained with a KrF laser excitation source were comparable to those obtained by laser-induced fluorescence and photofragment emission spectroscopy under chemical vapor deposition conditions.

  19. Effect of oxidation dynamics on the film characteristics of Ce:YIG thin films deposited by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshiki; Okada, Tatsuo; Maeda, Mitsuo; Higuchi, Sadao; Ueda, Kiyotaka

    2006-02-01

    Thin films with different compositions of Ce-substituted yttrium iron garnet (Ce:YIG (Y 2CeFe 5O 12)), Ga-doped Ce:YIG (Ce:Ga:YIG (Y 2CeFe 4.25Ga 0.75O 12)), and Gd-doped Ce:YIG (Ce:Gd:YIG (Y 1.6CeGd 0.4Fe 5O 12)) were deposited on gadolinium gallium garnet (GGG (Gd 3Ga 5O 12)) substrates in O 2 or Ar background gas by pulsed-laser deposition (PLD) technique. Crystalline films were obtained at a lower O 2 gas pressure of 20 mTorr or at higher Ar gas pressures of more than 100 mTorr. In addition, the behavior of YO molecules was visualized by two-dimensional laser-induced fluorescence (2D-LIF), in order to investigate the oxidation dynamics in the ablation plume. The oxidation dynamics and the crystallinity had close correlation.

  20. Growth of III-V nitrides and buffer layer investigation by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Fang

    1999-11-01

    III-V nitrides have been investigated intensively due to the enormous interest in optoelectronic device applications in the green, blue, violet, and near-ultraviolet regions. Advances in III-V nitride materials for short wavelength light sources will lead to both a revolution in optical disk storage, as higher densities can be achieved with short wavelengths, and a major impact on imaging and graphic technology as high quality red, green, and blue light-emitting diodes (LED) and lasers become available. High quality GaN films have mostly been prepared by metal-organic vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE) and vapor phase epitaxy (VPE). Compared to these techniques, pulsed laser deposition (PLD) is a relatively new growth technique used widely for the growth of oxide thin films. However, several advantages of PLD make it worthy of study as a method of growing nitrides. The congruent ablation achieved with short UV-laser pulses allows deposition of a multicomponent material by employing a single target and the ability for depositing a wide variety of materials. This advantage makes PLD very suitable for growing multilayer structures sequentially in the same chamber and investigating the effect of buffer layers. Moreover, the strong nonequilibrium growth conditions of PLD may lead to different nucleation and growth processes. In this work, GaN and (Al,Ga)N films have been epitaxially grown on (0001) sapphire substrate by PLD, which has been successfully applied to controlling the lattice constant and band gap of (Al,Ga)N. Room-temperature photoluminescence of PLD-GaN exhibits a strong band edge emission at 3.4eV. The threading dislocations of GaN are predominantly screw dislocations with Burgers vector of <0001> while edge dislocations with Burgers vector of 1/3<11-20> are the dominant ones in GaN grown by MBE, MOCVD and VPE. This variation observed in defect characteristics may come from the difference in nucleation and growth kinetics between PLD

  1. Pulsed-Laser Deposited Amorphous Diamond and Related Materials: Synthesis, Characterization, and Field Emission Properties

    SciTech Connect

    Baylor, L.R.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I.; Puretzky, A.A.

    1999-01-23

    Amorphous carbon films with variable sp{sup 3} content were produced by ArF (193nm) pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C{sup +} ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry measurements reveal that tetrahedral amorphous carbon (ta-C) films with the most diamond-like properties are obtained at the C ion kinetic energy of {approximately}90 eV. Film properties are uniform within a 12-15{degree} angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only {approximately} 1 {angstrom} over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of {approximately}50 V/{micro}m was required to draw current of {approximately}1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.

  2. Pulsed Laser Deposition of Thin YBCO Films on Faceted YSZ Single Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Snigirev, O.; Chukharkin, M.; Porokhov, N.; Rusanov, S. Y.; Kashin, V. V.; Tsvetkov, V. B.; Kalabukhov, A.; Winkler, D.

    2014-05-01

    Flexible rods of single crystals of 9% Y2O3-stabilized ZrO2 (YSZ) were used as substrates for deposition of high-critical temperature superconducting (HTS) thin films. YSZ fibers were prepared by mini-pedestal method with laser heating and had average diameter of 300 micrometers and 30 mm length. X-ray diffraction analysis demonstrated high crystalline quality of obtained fibers and also indicated the presence of 15° deviation of the fiber axis from the [001] YSZ direction. Thin YBa2Cu3O7-x films were grown by pulsed laser deposition on YSZ rods using CeO2 buffer layer. Films have shown high critical temperature of 90 K with sharp superconducting transition. Critical current density was estimated to about 3×104 A/cm2 at 80 K. Temperature dependence of critical current density suggests granular structure of films with grain size about several microns. Our results demonstrate feasibility of flexible YSZ fibers coated by HTS thin films for practical use.

  3. Pr–Fe–B+α-Fe nanocomposite film magnets prepared by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Yamashita, Akihiro; Nakano, Masaki; Oshima, Shuichi; Yanai, Takeshi; Fukunaga, Hirotoshi

    2016-07-01

    An increase in the remanence of an isotropic film magnet is indispensable to improve the properties of miniaturized devices. We, therefore, tried to prepare Pr–Fe–B/α-Fe multilayered nanocomposite thick-film magnets by a pulsed laser deposition (PLD) method. Namely, a rotated target composed of a Pr x Fe14B (x = 2.2 or 2.4) target together with an α-Fe segment was ablated. We also took account of a small spot size of the laser beam in order to suppress the emission of droplets (large particles) from each target. An optimization on the area of the α-Fe segment in each Pr x Fe14B target was carried out, and the remanence of an annealed film reached approximately 1.1 T. Moreover, a transmission electron microscopy (TEM) observation of the above-mentioned sample revealed that the microstructure varied from a multilayered structure (as-deposited) to a dispersed one through the annealing process. Resultantly, the annealed film had a dispersed nanocomposite structure with good exchange coupling.

  4. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  5. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    SciTech Connect

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques.

  6. Red photoluminescence in praseodymium-doped titanate perovskite films epitaxially grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Takashima, Hiroshi; Ueda, Kazushige; Itoh, Mitsuru

    2006-12-01

    Intense red photoluminescence (PL) under ultraviolet (UV) excitation was observed in epitaxially grown Pr-doped Ca0.6Sr0.4TiO3 perovskite films. The films were grown on SrTiO3 (100) substrates by pulsed laser deposition, and their epitaxial growth was confirmed by x-ray diffraction and reflected high-energy electron diffraction. The observed sharp PL peak centered at 610nm was assigned to the transition of Pr3+ ions from the D21 state to the H43 state. The PL intensity was markedly enhanced by postannealing treatments at 1000°C, above the film-growth temperature of 600 or 800°C. Because the excitation and absorption spectra are similar to each other, it was suggested that the UV energy absorbed by the host lattice was transferred to the Pr ions, resulting in the red luminescence.

  7. Electrochemical and electrochromic properties of niobium oxide thin films fabricated by pulsed laser deposition

    SciTech Connect

    Fu, Z.W.; Kong, J.J.; Qin, Q.Z.

    1999-10-01

    Niobium oxide thin films have been successfully fabricated on the indium-tin oxide coated glasses by pulsed laser deposition in an O{sub 3}/O{sub 2} gas mixture. Films are characterized by X-ray diffraction and Raman spectrometry. Electrochemical and electrochromic properties of Nb{sub 2}O{sub 5} films are examined by cyclic voltammogram and potential step coupled with an in situ charge-coupled device spectrophotometer. The unique characteristics of absorption spectra of Nb{sub 2}O{sub 5} films are observed for the first time, and the optical absorption from the trapped electrons in the surface states plays an important role in the electrochromic phenomenon.

  8. Photoresponse in thin films of WO{sub 3} grown by pulsed laser deposition

    SciTech Connect

    Roy Moulik, Samik; Samanta, Sudeshna; Ghosh, Barnali

    2014-06-09

    We report, the photoresponse behaviour of Tungsten trioxide (WO{sub 3}) films of different surface morphology, grown by using pulsed laser deposition (PLD). The Growth parameters for PLD were changed for two substrates SiO{sub 2}/Si (SO) and SrTiO{sub 3} (STO), such a way which, result nanocrystalline film on SO and needle like structured film on STO. The photoresponse is greatly modified in these two films because of two different surface morphologies. The nanocrystalline film (film on SO) shows distinct photocurrent (PC) ON/OFF states when light was turned on/off, the enhancement of PC is ∼27%. Whereas, the film with needle like structure (film on STO) exhibits significantly enhanced persistent photocurrent even in light off condition, in this case, the enhancement of PC ∼ 50% at room temperature at lowest wavelength (λ = 360 nm) at a nominal bias voltage of 0.1 V.

  9. Proton Transport and Microstructure Properties in Superlattice Thin Films Fabricated by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Kuwata, Naoaki; Sata, Noriko; Tsurui, Takao; Yugami, Hiroo

    2005-12-01

    Superlattice thin films of the perovskite-type oxide proton conductor SrZr0.95Y0.05O3/SrTiO3 was fabricated by pulsed laser deposition. Their structural and proton transport properties were reported. X-ray diffraction analysis and selected area electron diffraction revealed that the thin films were epitaxially grown on MgO(001) substrate. High-density edge dislocations and a columnar structure were observed in the films by high-resolution electron microscopy. The in-plane electrical conductivity of the thin films was determined by impedance spectroscopy. The contribution of proton transport to the total conductivity of the films was confirmed by H2O/D2O exchange measurement. The conductivity of superlattice films was increased by introducing heterointerfaces. The high activation energy (Ea=1.0 eV) was explained by the grain-boundary effect of the columnar structure in the films.

  10. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2016-05-01

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10-3 V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×1018 cm3, while the Hall mobility of the IGZO thin film was 16 cm2 V-1S-1.

  11. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  12. Preparation of strontium hexaferrite film by pulsed laser deposition with in situ heating and post annealing

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-09-01

    Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50-80 nm.

  13. Magnetic properties of strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-08-01

    The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50-700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.

  14. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    SciTech Connect

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  15. Pulsed laser deposition of high-quality thin films of the insulating ferromagnet EuS

    SciTech Connect

    Yang, Qi I.; Zhao, Jinfeng; Risbud, Subhash H.; Zhang, Li; Dolev, Merav; Fried, Alexander D.; Marshall, Ann F.; Kapitulnik, Aharon

    2014-02-24

    High-quality thin films of the ferromagnetic insulator europium(II) sulfide (EuS) were fabricated by pulsed laser deposition on Al{sub 2}O{sub 3} (0001) and Si (100) substrates. A single orientation was obtained with the [100] planes parallel to the substrates, with atomic-scale smoothness indicates a near-ideal surface topography. The films exhibit uniform ferromagnetism below 15.9 K, with a substantial component of the magnetization perpendicular to the plane of the films. Optimization of the growth condition also yielded truly insulating films with immeasurably large resistance. This combination of magnetic and electric properties opens the gate for future devices that require a true ferromagnetic insulator.

  16. Mechanical and electrical properties of epitaxial Si nanowires grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Obi, D.; Nechache, R.; Harnagea, C.; Rosei, F.

    2012-11-01

    We report on the elastic and piezoresistive properties of individual epitaxial Si-NWs grown on n-doped Si(111) by pulsed laser deposition. Using scanning probe microscopy, we obtained a Young’s modulus between 82 and 900 GPa for the nanowires, unaffected by the nanowire shape. A relative resistivity change is observed in the prestrained (curved) Si-NWs, which we attribute to a large piezoresistance coefficient in the NW along its axis. Assuming that for the bent NWs the effect of longitudinal stress on resistivity is compensated, the piezoresistance coefficient originating in the shear strain alone, we found a piezoresistance gauge factor (GF) of 600, which is close to the values reported in literature for Si-NWs.

  17. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Yangang; Yao, Yangyi; Zhang, Xiaohang; Hsu, Wei-Lun; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Dagenais, Mario; Takeuchi, Ichiro

    2016-01-01

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  18. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  19. Plasma-Enhanced Pulsed Laser Deposition of Wide Bandgap Nitrides for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Triplett, G. E., Jr.; Durbin, S. M.

    2004-01-01

    The need for a reliable, inexpensive technology for small-scale space power applications where photovoltaic or chemical battery approaches are not feasible has prompted renewed interest in radioisotope-based energy conversion devices. Although a number of devices have been developed using a variety of semiconductors, the single most limiting factor remains the overall lifetime of the radioisotope battery. Recent advances in growth techniques for ultra-wide bandgap III-nitride semiconductors provide the means to explore a new group of materials with the promise of significant radiation resistance. Additional benefits resulting from the use of ultra-wide bandgap materials include a reduction in leakage current and higher operating voltage without a loss of energy transfer efficiency. This paper describes the development of a novel plasma-enhanced pulsed laser deposition system for the growth of cubic boron nitride semiconducting thin films, which will be used to construct pn junction devices for alphavoltaic applications.

  20. Highly crystalline MoS{sub 2} thin films grown by pulsed laser deposition

    SciTech Connect

    Serrao, Claudy R.; You, Long; Gadgil, Sushant; Hu, Chenming; Salahuddin, Sayeef; Diamond, Anthony M.; Hsu, Shang-Lin; Clarkson, James; Carraro, Carlo; Maboudian, Roya

    2015-02-02

    Highly crystalline thin films of MoS{sub 2} were prepared over large area by pulsed laser deposition down to a single monolayer on Al{sub 2}O{sub 3} (0001), GaN (0001), and SiC-6H (0001) substrates. X-ray diffraction and selected area electron diffraction studies show that the films are quasi-epitaxial with good out-of-plane texture. In addition, the thin films were observed to be highly crystalline with rocking curve full width half maxima of 0.01°, smooth with a RMS roughness of 0.27 nm, and uniform in thickness based on Raman spectroscopy. From transport measurements, the as-grown films were found to be p-type.

  1. Fabrication of p-type Li-doped ZnO films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Ye, Zhizhen; Zhang, Yinzhu; Zeng, Yujia; Zhu, Liping; Zhao, Binghui

    2006-11-01

    p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li 2CO 3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O 2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm 2 V -1 s -1 and hole concentration of 1.37 × 10 18 cm -3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.

  2. Structural analysis of infinite layer superlattices grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Del Vecchio, A.; Tapfer, L.; Aruta, C.; Balestrino, G.; Petrocelli, G.

    1996-07-01

    In this work we investigate the structural properties of SrCuO2/CaCuO2 infinite layer superlattices by high-resolution x-ray diffraction and x-ray specular reflectivity measurements. The infinite layer superlattices are grown by pulsed laser deposition on slightly misoriented (001) SrTiO3 substrates. We demonstrate that good quality superlattices with few monolayers thick constituent SrCuO2 and CaCuO2 layers can be grown having an interface roughness of less than 3-4 Å. A strain analysis of the epitaxial film shows that the SrCuO2 layers are completely relaxed with respect to the substrate. However, the CaCuO2 layers are elastically strained with respect to the SrCuO2 layer. The Poisson ratio of the CaCuO2 is estimated to be 0.40±0.08.

  3. Mechanical and electrical properties of epitaxial Si nanowires grown by pulsed laser deposition.

    PubMed

    Obi, D; Nechache, R; Harnagea, C; Rosei, F

    2012-11-01

    We report on the elastic and piezoresistive properties of individual epitaxial Si-NWs grown on n-doped Si(111) by pulsed laser deposition. Using scanning probe microscopy, we obtained a Young's modulus between 82 and 900 GPa for the nanowires, unaffected by the nanowire shape. A relative resistivity change is observed in the prestrained (curved) Si-NWs, which we attribute to a large piezoresistance coefficient in the NW along its axis. Assuming that for the bent NWs the effect of longitudinal stress on resistivity is compensated, the piezoresistance coefficient originating in the shear strain alone, we found a piezoresistance gauge factor (GF) of 600, which is close to the values reported in literature for Si-NWs. PMID:23033061

  4. Hydroxyapatite thin films synthesized by Pulsed Laser Deposition onto titanium mesh implants for cranioplasty applications

    NASA Astrophysics Data System (ADS)

    Duta, L.; Stan, G. E.; Popescu, A. C.; Socol, G.; Miroiu, F. M.; Mihailescu, I. N.; Ianculescu, A.; Poeata, I.; Chiriac, A.

    2013-06-01

    We report on the synthesis of advanced nanostructured hydroxyapatite thin films onto 3D titanium (Ti) mesh substrates by Pulsed Laser Deposition method. Morphological and structural investigations as well as pull-out tests proved the stoichiometric transfer of crystalline hydroxyapatite (HA) films along with their good adherence. In vivo tests were performed on 12 patients (six with simple Ti mesh, six with Ti mesh biofunctionalized with HA). The tomodensitometry analysis of the cranial control scans evidenced the process of osseogenesis. For four patients with implanted HA/Ti mesh structures, the modification of the value obtained on Hounsfield scale was observed at the level of implant, proving the progress of osseointegration. We conclude that the structures exhibit excellent bonding strength and functionality, and are suitable for neurosurgical applications.

  5. Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yanagida, Takeshi; Nagashima, Kazuki; Tanaka, Hidekazu; Kawai, Tomoji

    2008-07-01

    The size controllability of oxide nanowires formed via vapor-liquid-solid (VLS) mechanism is desired for the oxide nanowire-based device applications. However, the complex nature of oxide nanowire VLS growth has held back such size controllability. Here we demonstrate the critical size effect of a Au catalyst on MgO nanowire VLS growth by pulsed laser deposition. The presence of a critical catalyst size was found. Above such critical size, an oxide nanowire VLS growth is no longer feasible. Interestingly, such critical size increased with increasing growth temperature. The mechanism of the critical phenomenon is interpreted in terms of the catalyst size dependence on the amount of adatoms diffused from surroundings into the catalyst.

  6. Epitaxial growth of Ge-Sb-Te films on KCl by high deposition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Thelander, E.; Gerlach, J. W.; Ross, U.; Frost, F.; Rauschenbach, B.

    2014-06-01

    Pulsed laser deposition was employed to deposit epitaxial Ge2Sb2Te5-layers (GST) on (100) oriented KCl-substrates. XRD-measurements show a process temperature window for epitaxial growth of the cubic phase between 200 and 300 °C. Below 250 °C (111) oriented GST dominates the growth process and above 250 °C the (100) orientation is the dominating one. Pole figure measurements confirm these results and additionally reveal that the (111) orientation consists of 4 domains with 90° azimuthal separation with an initial 15° rotation with the substrate lattice, i.e., [2-1-1]GST || [100]KCl. The (100) orientation grows cube-on-cube with KCl. A systematic variation of the deposition rate showed that it is possible to obtain epitaxial films in the range between 2.5 and 250 nm/min with no significant deterioration of crystal quality. A smooth topography of (111) oriented films was found, whereas the (100) dominated films in general show higher surface roughness as evidenced from atomic force microscopy investigations.

  7. Formation and properties of novel artificially-layered cuprate superconductors using pulsed-laser deposition

    SciTech Connect

    Norton, D.P.; Chakoumakos, B.C.; Budai, J.D.

    1996-03-01

    Pulsed-laser deposition and epitaxial stabilization have been effectively used to engineer artificially-layered thin-film materials. Novel cuprate compounds have been synthesized using the constraint of epitaxy to stabilize (Ca,Sr)CuO{sub 2}/(Ba,Ca,Sr)CuO{sub 2} superconducting superlattices in the infinite layer structure. Superlattice chemical modulation can be observed from the x-ray diffraction patterns for structures with SrCuO{sub 2} and (Ca, Sr)CuO{sub 2} layers as thin as a single unit cell ({approximately}3. 4 {angstrom}). X-ray diffraction intensity oscillations, due to the finite thickness of the film, indicate that (Ca,Sr)CuO{sub 2} films grown by pulsed-laser deposition are extremely flat with a thickness variation of only {approximately}20 {angstrom} over a length scale of several thousand angstroms. This enables the unit-cell control of (Ca, Sr)CuO{sub 2} film growth in an oxygen pressure regime in which in situ surface analysis using electron diffraction is not possible. With the incorporation of BaCuO{sub 2} layers, superlattice structures have been synthesized which superconduct at temperatures as high as 70 K. Dc transport measurements indicate that (Ca, Sr)CuO{sub 2}/BaCuO{sub 2} superlattices are two dimensional superconductors with the superconducting transition primarily associated with the BaCuO{sub 2} layers. Superconductivity is observed only for structures with BaCuO{sub 2} layers at least two unit cells thick with {Tc} decreasing as the (Ca,Sr)CuO{sub 2} layer thickness increases. Normalized resistance in the superconducting region collapse to the Ginzburg-Landau Coulomb gas universal resistance curve consistent with the two-dimensional vortex fluctuation model.

  8. Si-doped carbon nanostructured films by pulsed laser deposition from a liquid target

    NASA Astrophysics Data System (ADS)

    Csákó, T.; Berkesi, O.; Kovács, I.; Radnóczi, G.; Szörényi, T.

    2009-10-01

    Ablation of a silicone oil, Dow Corning's DC-705 with laser pulses of sub-ps duration in high vacuum is a novel approach to fabrication of Si-doped carbon nanocomposite films. Gently focused, temporally clean 700 fs pulses @ 248 nm of a hybrid dye/excimer laser system produce power densities of the order of 10 11-10 12 W cm -2 on the target surface. The evolution of the chemical structure of film material is followed by comparing Fourier Transformed Infrared and X-ray Photoelectron spectra of films deposited at temperatures between room temperature and 250 °C. Despite the low thermal budget technique, in the spectrum of films deposited at room temperature the fingerprint of the silicone oil can clearly be identified. With increasing substrate temperature the contribution of the features characteristic of the oil gradually diminishes, but does not completely disappear even at 250 °C. This result is intriguing since the chance of oil droplets to survive in their original liquid form on the hot surface should be minimal. The results of the X-ray Photoelectron Spectroscopy suggest that the chemical structure of the film material resembles that of the oil. Both reflection mode optical microscopy and low magnification Scanning Electron Microscopy reveal that the films are inhomogeneous: areas of lateral dimensions ranging from a few to tens of micrometers, characterized by different contrasts can be identified. On the other hand, surface mapping by Scanning Electron and Atomic Force Microscopy unambiguously proves that all films possess a solid surface consisting of nanoparticles of less than 100 nm dimension, without the presence of any drop of oil. Possible explanations of the puzzling results can be that the films are polymers consisting mainly of the molecules of the target material, or composites of solid C:Si nanoparticles and oil residues.

  9. Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition

    PubMed Central

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S.

    2013-01-01

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4. PMID:23486076

  10. Angular Distribution of Tungsten Material and Ion Flux during Nanosecond Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Dogar, A. H.; Qayyum, A.; Abbasi, S. A.

    2016-01-01

    Tungsten thin films were prepared by pulsed laser deposition (PLD) technique on glass substrates placed at the angles of 0∘ to 70∘ with respect to the target surface normal. Rutherford backscattering Spectrometry (RBS) analysis of the films indicated that about 90% of tungsten material flux is distributed in a cone of 40∘ solid angle while about 54% of it lies even in a narrower cone of 10∘ solid angle. Significant diffusion of tungsten in glass substrate has been observed in the films deposited at smaller angles with respect to target surface normal. Time-of-flight (TOF) measurements performed using Langmuir probe indicated that the most probable ion energy decreases from about 600 to 91eV for variation of θ from 0∘ to 70∘. In general ion energy spread is quite large at all angles investigated here. The enhanced tungsten diffusion in glass substrate observed at smaller angles is most probably due to the higher ion energy and ion assisted recoil implantation of already deposited tungsten.

  11. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    PubMed Central

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  12. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    PubMed Central

    Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben

    2015-01-01

    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1−xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1−xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1−xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1−xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1−xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C–320 °C) on MgO using PLD. This offers a broad scope of various applications. PMID:26548645

  13. Mechanical properties of high strength aluminum alloys formed by pulsed laser deposition

    SciTech Connect

    Knapp, J.A.; Follstaedt, D.M.

    1995-12-31

    Very high-strength alloys of A1(O) have been formed using a pulsed laser deposition (PLD) system to deposit from alternating targets of A1 and A1{sub 2}O{sub 3}. Ion beam analysis and transmission electron microscopy show that the deposited material is uniform in composition with up to 33 at. % O and has a highly refined microstructure consisting of a fine, uniform dispersion of {approximately}1 nm diameter {gamma}-A1{sub 2}O{sub 3} precipitates. Ultra-low-load indentation testing combined with finite-element modeling is used to determine the mechanical properties of the layers. Yield stresses as high as 5.1 GPa have been measured in these materials, greatly exceeding the strengths of aerospace Al alloys (-0.5 GPa) and even high strength steels. The key to the properties of these materials is the dispersion of small, hard precipitates spaced only a few Burgers vectors apart; dislocations are apparently unable to cut through and must bow around them.

  14. Optimisation study of the synthesis of vanadium oxide nanostructures using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masina, B. N.; Lafane, S.; Wu, L.; Abdelli-Messaci, S.; Kerdja, T.; Forbes, A.

    2014-02-01

    Fast imaging plasma plume study have been carried out on vanadium-oxygen plasma generated using 248 nm, 25 ns pulses from an excimer KrF laser under oxygen atmosphere. The plume expansion dynamics of an ablated VO2 target was investigated using a fast-imaging technique. The free expansion, splitting, sharpening and stopping of the plume were observed during these oxygen pressures, 0.01, 0.05, 0.10 and 0.20 mbar. The influence of the plume dynamics study on the properties of the obtained vanadium oxide thin films were examined using X-Ray Diffraction method. A vanadium dioxide phases were deposited at 0.05 mbar oxygen pressure for target-substrate distance of 40 mm and 50 mm. Mixed phases of vanadium oxide were deposited at 0.01, 0.10 and 0.20 mbar oxygen pressure for target-substrate distance of 40 mm. Transition temperatures of around 60.9oC have been measured from sample deposited at 0.05 mbar oxygen pressure for target-substrate distance of 50 mm. We observe mixed nanostructures for thin film prepared at 0.05 mbar for target-substrate distance of 40 mm, while the thin film prepared at 0.05 mbar for target-substrate of 50 mm shows an uniform nanostructure film.

  15. Mobility enhancement in graphene transistors on low temperature pulsed laser deposited boron nitride

    SciTech Connect

    Uddin, Md Ahsan E-mail: gkoley@clemson.edu; Koley, Goutam E-mail: gkoley@clemson.edu; Glavin, Nicholas; Singh, Amol; Naguy, Rachel; Jespersen, Michael; Voevodin, Andrey

    2015-11-16

    Low temperature pulsed laser deposited (PLD) ultrathin boron nitride (BN) on SiO{sub 2} was investigated as a dielectric for graphene electronics, and a significant enhancement in electrical transport properties of graphene/PLD BN compared to graphene/SiO{sub 2} has been observed. Graphene synthesized by chemical vapor deposition and transferred on PLD deposited and annealed BN exhibited up to three times higher field effect mobility compared to graphene on the SiO{sub 2} substrate. Graphene field effect transistor devices fabricated on 5 nm BN/SiO{sub 2} (300 nm) yielded maximum hole and electron mobility of 4980 and 4200 cm{sup 2}/V s, respectively. In addition, significant improvement in carrier homogeneity and reduction in extrinsic doping in graphene on BN has been observed. An average Dirac point of 3.5 V and residual carrier concentration of 7.65 × 10{sup 11 }cm{sup −2} was observed for graphene transferred on 5 nm BN at ambient condition. The overall performance improvement on PLD BN can be attributed to dielectric screening of charged impurities, similar crystal structure and phonon modes, and reduced substrate induced doping.

  16. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films.

    PubMed

    Bouška, M; Pechev, S; Simon, Q; Boidin, R; Nazabal, V; Gutwirth, J; Baudet, E; Němec, P

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  17. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-05-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers.

  18. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium.

    PubMed

    Vishwakarma, Vinita; Josephine, J; George, R P; Krishnan, R; Dash, S; Kamruddin, M; Kalavathi, S; Manoharan, N; Tyagi, A K; Dayal, R K

    2009-11-01

    Biofouling, especially microfouling, is a major concern with the use of titanium (Ti) in the marine environment as a condenser material in cooling water systems. Earlier, copper-nickel (Cu/Ni) alloys were extensively used in marine environments due to their high corrosion and biofouling resistance. However, the choice of condenser material for the new fast breeder reactor in Kalpakkam is Ti to avoid steam side corrosion problems, which may pose a threat to steam generator parts having sodium as the secondary coolant. This study evaluates the surface modification of Ti using nano films of copper (Cu) and nickel (Ni) to utilize the antibacterial property of copper ions in reducing microfouling. The surface modification of Ti was carried out by the deposition of a Cu/Ni bilayer and (Cu/Ni)(10) multilayer films using a pulsed laser deposition technique. Various surface characterization studies revealed that the deposited Cu/Ni films were thin and nanocrystalline in nature. The antibacterial properties were evaluated using total viable count and epifluorescence microscopic techniques. The results showed an apparent decrease in bacterial attachment on multilayered and bilayered Cu/Ni thin films on Ti surfaces. Comparative studies between the two types of films showed a bigger reduction in numbers of microorganisms on the multilayers. PMID:20183129

  19. Super growth of vertically aligned carbon nanotubes on pulsed laser deposited catalytic thin films

    NASA Astrophysics Data System (ADS)

    Fejes, D.; Pápa, Z.; Kecsenovity, E.; Réti, B.; Toth, Z.; Hernadi, K.

    2015-03-01

    Efficient and reproducible growth of vertically aligned carbon nanotube (CNT) forests by catalytic chemical vapor deposition (CVD) requires precise setting of the properties of the catalyst thin films and CVD conditions. In this work, super growth of vertically aligned CNTs onto Al2O3 support and Fe-Co catalyst layer system is presented. The layers were grown by pulsed laser deposition (PLD) onto silicon wafer pieces. Their thickness and optical properties were controlled by spectroscopic ellipsometry. The effect of heat treatment at 750 °C in nitrogen and in hydrogen of these PLD layers was compared. High-resolution electron microscopic images showed that treatment of catalyst layers in H2 resulted in finer and denser catalytic particles. As a result, well-aligned, dense and few-walled CNT forests with 1-1.5 mm height were deposited by water-vapor-assisted CVD on the hydrogen-treated films, while without hydrogen treatment defected CNT structures were grown. According to these observations, Raman spectroscopy showed a higher degree of crystallinity in case of CNT-s, where reduction by hydrogen influenced the oxidation state of the metallic catalytic particles in a beneficial way.

  20. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I. N.

    2004-04-01

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N 2. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 °C. The initially amorphous PLD thin films were annealed at 550 °C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were ˜1 μm and ˜350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  1. Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Da-Ming, Chen; Yuan-Xun, Li; Li-Kun, Han; Chao, Long; Huai-Wu, Zhang

    2016-06-01

    Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910 °C and oxygen pressure is 300 mTorr (1 Torr = 1.3332 × 102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (M r/M s) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs = 104 T), and the anisotropy field is 16.5 kOe (1 Oe = 79.5775 A·m‑1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices. Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).

  2. Pulsed laser deposited cobalt-doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Wang, Li; Su, Xue-qiong; Lu, Yi; Chen, Jiang-bo

    2013-09-01

    To realize the room-temperature ferromagnetism (RTFM) in diluted magnetic semiconductors (DMS), we prepared a series of Cobalt-doped ZnO thin films using pulsed laser deposition (PLD) at deposition temperatures 500°C under oxygen pressure from 2.5×10-4 Pa to 15 Pa. To elucidate the physical origin of RTFM, Co 2p spectra of cobalt-doped ZnO thin films was measured by X-ray photoelectron spectroscopy (XPS). The magnetic properties of films were measured by an alternating gradient magnetometer (AGM), and the electrical properties were detected by a Hall Effect instrument using the Van der Pauw method. XPS analysis shows that the Co2+ exists and Co clusters and elemental content change greatly in samples under various deposition oxygen pressures. Not only the valence state and elemental content but also the electrical and magnetic properties were changed. In the case of oxygen pressure 10 Pa, an improvement of saturation magnetic moment about one order of magnitude over other oxygen pressure experiments, and the film exhibits ferromagnetism with a curie temperature above room temperature. It was found that the value of carrier concentration in the Co-doped ZnO film under oxygen pressure 10Pa increases about one order of magnitude than the values of other samples under different oxygen pressure. Combining XPS with AGM measurements, we found that the ferromagnetic signals in cobalt-doped ZnO thin film deposited at 500 °C under oxygen pressure 10 Pa only appear with the detectable Co2+ spectra from incompletely oxidized Co metal or Co cluster. So oxygen pressure 10 Pa can be thought the best condition to obtain room-temperature dilute magnetic semiconductor about cobalt-doped ZnO thin films.

  3. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Hu, X. F.; Li, H. Q.; He, X. X.; Wang, Xiaoru; Zhang, W.

    2006-04-01

    We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity ( Hc) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, Hc, and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced Hc and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence.

  4. Characterization of strontium barium niobate optical thin film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, H.; Li, S.; Fernandez, F. E.; Jia, W.; Liu, G.

    1999-12-01

    Optical quality thin films of strontium barium niobate SrxBa1-xNb2O6 either undoped or Eu3+-doped has been successfully grown on fused quartz substrates using pulsed laser deposition (PLD) technique. The optical properties were characterized in either time domain or in frequency domain. Undoped SBN thin films show a broad-band emission at UV, extending to the visible, which attributes to the exciton luminescence of the SBN host in the film. High-resolution nonlinear optical response in the picosecond region, as well as the third-order susceptibility were characterized by degenerate four-wave-mixing (DFWM) measurements. A considerable enhancement, by 2 orders of magnitude, of the third order nonlinear susceptibility χ(3) in transverse alignment was observed with respect to the bulk values. Eu3+-doped SBN films show a significant change in optical properties with annealing process. The fine structure of 5D0 to 7F multiplet emission was well resolved in the annealed sample. In a hole-burning experiment, a hole of width 100 MHz with depth as high as 30% was burnt using laser pumping at 5774 Å. It is suggested that Eu3+ ions may substitute Nb, occupying 6-fold sites.

  5. Characterization of strontium barium niobate optical thin film grown by pulsed laser deposition

    SciTech Connect

    Liu, H.; Fernandez, F. E.; Jia, W.; Li, S.; Liu, G.

    1999-12-02

    Optical quality thin films of strontium barium niobate Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} either undoped or Eu{sup 3+}-doped has been successfully grown on fused quartz substrates using pulsed laser deposition (PLD) technique. The optical properties were characterized in either time domain or in frequency domain. Undoped SBN thin films show a broad-band emission at UV, extending to the visible, which attributes to the exciton luminescence of the SBN host in the film. High-resolution nonlinear optical response in the picosecond region, as well as the third-order susceptibility were characterized by degenerate four-wave-mixing (DFWM) measurements. A considerable enhancement, by 2 orders of magnitude, of the third order nonlinear susceptibility {chi}{sup (3)} in transverse alignment was observed with respect to the bulk values. Eu{sup 3+}-doped SBN films show a significant change in optical properties with annealing process. The fine structure of {sup 5}D{sub 0} to {sup 7}F multiplet emission was well resolved in the annealed sample. In a hole-burning experiment, a hole of width 100 MHz with depth as high as 30% was burnt using laser pumping at 5774 A. It is suggested that Eu{sup 3+} ions may substitute Nb, occupying 6-fold sites.

  6. Growth of EuO films on Si using Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Jain, Vivek S.; Rimal, Gaurab; Tang, Jinke

    Epitaxial monolayers of europium monoxide (EuO) deposited on silicon (Si) wafers are suited for spintronic applications such as adding spin filter tunneling and spin current to Si technology, and for probing phenomena like Anomalous Hall effect and Topological Hall effect. However, the innate chemical reactivity of europium (Eu) and Si prevents a direct synthesis of EuO by pulsed laser deposition technique, without significant contamination of the EuO/Si interface and degradation of the EuO thin film. Silicon oxides (SiO2-δ) on the surface of Si substrates, partial pressure of oxygen (O2) gas and water vapors in the vacuum chamber act as contaminants. Techniques like standard wet etching process, thermal annealing, and decomposition of SiO2-δ by the bombardment of metal ions, and their effectiveness is studied using the X-Ray diffraction (XRD) system. Our goal is one-process in situ integration of spin-functional magnetic oxides seamless on Si wafers. Also the mechanism for the ferromagnetic order in oxygen-deficient europium monoxide (EuO1-x) at temperatures higher than 69K (the Curie temperature of stoichiometric EuO) remains controversial. We have investigated the magnetization of EuO1-x thin films prepared via PLD as a function of (emu) vs (K) Wyoming EPSCoR.

  7. Room-temperature IR detection using pulsed laser deposited vanadium oxide bolometer

    NASA Astrophysics Data System (ADS)

    Rajendra Kumar, R. T.; Karunagaran, B.; Mangalaraj, D.; Narayandass, Sa. K.; Manoravi, P.; Joseph, M.; Gopal, Vishnu

    2003-10-01

    We report the design, fabrication and performance of the 5 x 2 pixel uncooled microbolometer array. The test microbolometer utilizes pulsed laser deposited vanadium oxide film at room temperature as the IR sensitive layer. The microbolometer was fabricated without air-gap thermal isolation structure and the pixel area of about 200 x 800 μm2. The observed change in bolometer resistance with respect to temperature (dR/dT) as high as 9.3 x 103 Ω/°C and temperature coefficient of resistance (TCR) of about 5%/°C at room temperature, implies an excellent bolometric response. The room temperature deposition of the IR sensing layer facilitates their integration with the existing complementary metal-oxide-semiconductor (CMOS) technology for better signal processing. IR response of the device was evaluated in the spectral region 8 - 15 μm. The preliminary IR characterization revealed that the test microbolometer exhibits responsivity (Rv) and detectivity (D*) approximately as 36 V/W and 6 x 105 cm2Hz1/2/W at chopper frequency of 10 Hz for 50 μA bias current. Provided with the air-gap thermal isolation structure, the microbolometer will exhibit responsivity (Rv) over 1.2 x 104 V/W, which compares well with the reported values.

  8. Transmission of reactive pulsed laser deposited VO2 films in the THz domain

    NASA Astrophysics Data System (ADS)

    Émond, Nicolas; Hendaoui, Ali; Ibrahim, Akram; Al-Naib, Ibraheem; Ozaki, Tsuneyuki; Chaker, Mohamed

    2016-08-01

    This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO2) films in the terahertz (THz) frequency range, namely the transition temperature TIMT, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO2 monoclinic structure with an enhancement of (011) preferential orientation when varying the O2 pressure (PO2) during the deposition process from 2 to 25 mTorr. THz transmission measurements as a function of temperature reveal that VO2 films obtained at low PO2 exhibit low TIMT, large ΔA, and narrow ΔH. Increasing PO2 results in VO2 films with higher TIMT, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO2 IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

  9. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciTech Connect

    Lo, Fang-Yuh Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Liu, Hsiang-Lin; Chern, Ming-Yau

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  10. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  11. Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Hongjian; Chen, Wenyuan; Shan, Yu; Wang, Wenzhen; Zhang, Zhenyu; Jia, Junhong

    2015-12-01

    The nanostructured titanium nitride (TiN) films were fabricated by pulsed laser deposition (PLD) technique at different substrate temperatures under residual vacuum, and the influence of substrate temperatures on the microstructure, mechanical and tribological properties of TiN films was investigated and discussed. The results shown that the consistent stoichiometric TiN films were obtained and the grain size increased from 10.5 to 38.7 nm with the increasing of substrate temperature. The hardness of films decreased with the substrate temperatures increasing, the highest hardness reached to 30.6 GPa at the substrate temperature of 25 °C, and the critical load increased first and decreased at 500 °C, the highest critical load was 23.8 N at the substrate temperature of 300 °C. The film deposited at the substrate temperature of 25 °C registered the lowest friction coefficient of 0.088 and wear rate of 7.8 × 10-7 mm3/(N m). The excellent tribological performance of the films was attributed to the small grain size, high hardness and smooth surface of the film.

  12. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  13. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGESBeta

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  14. Pulsed laser-deposited VO2 thin films on Pt layers

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Zaghrioui, Mustapha; Ta Phuoc, Vinh; Roger, Sylvain; Autret-Lambert, Cécile; Okimura, Kunio

    2013-03-01

    VO2 films were deposited on Pt (111)/TiO2/SiO2/Si (001) substrates by means of a pulsed laser deposition technique. An x-ray diffraction peak at 2θ = 39.9° was deconvoluted into two pseudo-Voigt profiles of Pt (111) and VOx-originated components. The VOx diffraction peak was more obvious in a VOx/Pt (111)/Al2O3 (0001) sample, having a narrower width compared with a VO2/Al2O3 (0001) sample. Temperature-controlled Raman spectroscopy for the VOx/Pt/TiO2/SiO2/Si sample has revealed the monoclinic VO2 phase at low temperature and the structural phase transition at about 72 °C in a heating process. The electronic conductive nature at the high temperature phase was confirmed by near normal incidence infrared reflectivity measurements. Out-of-plane current-voltage characteristics showed an electric field-induced resistance switching at a voltage as low as 0.2 V for a 50 nm-thick film. A survey of present and previous results suggests an experimental law that the transition voltage of VO2 is proportional to the square root of the electrodes distance.

  15. Growth of calcium phosphate thin films by in situ assisted ultraviolet pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Craciun, V.; Iliescu, M.; Mihailescu, I. N.; Pelletier, H.; Mille, P.; Werckmann, J.

    2003-03-01

    Calcium phosphate (CaP) thin films including hydroxyapatite were intensively studied in order to optimize the technology of the bone prostheses manufacturing. A drawback in the CaP films processing is the poor mechanical characteristics, especially hardness, tensile strength and adherence to the metallic substrate. We report a new method for the growth of high quality CaP films with substantial improvement of the mechanical properties: pulsed laser deposition (PLD) assisted by in situ ultraviolet (UV) radiation emitted by a low pressure Hg lamp. The depositions were made on Si and Ti-5Al-2.5Fe alloys in very low ambient oxygen at pressures of 10 -2 to 10 -1 Pa with the substrates maintained at 500-600 °C temperature. The films were analyzed by electron microscopy, white light confocal microscopy (WLCM), grazing incidence X-ray diffraction and Berkovich nanoindentation. The films were crystalline and exhibited remarkable mechanical characteristics with values of hardness and Young modulus of 6-8 and 150-170 GPa, respectively, which are uncommonly high for the CaP ceramics. The UV lamp radiation enhanced the gas reactivity and atoms mobility during processing, while the tensile strength between the film's grains and the bonding strength at the CaP film-substrate interface were increased.

  16. Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multi-beam pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sloyan, Katherine A.; May-Smith, Timothy C.; Zervas, Michalis N.; Eason, Robert W.

    2012-08-01

    Crystalline Bragg reflectors are of interest for high power, high temperature, and integrated applications. We demonstrate the automated growth of such structures by shuttered multi-beam pulsed laser deposition. Geometries include 145 layer stacks exhibiting >99.5% reflection and π phase-shifted designs. A crystalline grating strength-apodized sample was grown by mixing plumes to obtain layers with custom refractive indices. Peak reflection wavelength was tuneable with incident position, samples withstood temperatures of ˜750 °C, and film and substrate have been shown to withstand incident pulsed laser fluences of up to ˜33 J cm-2.

  17. A simple solution to the problem of effective utilisation of the target material for pulsed laser deposition of thin films

    SciTech Connect

    Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A; Pilosyan, S Kh; Grasiuk, A Z

    2013-12-31

    The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuO were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)

  18. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  19. Carbon nanotube growth from metallic nanoparticles deposited by pulsed-laser deposition on different substrates

    NASA Astrophysics Data System (ADS)

    Gaillard, Mireille; Boulmer-Leborgne, Chantal; Semmar, Nadjib; Millon, Éric; Petit, Agnès

    2012-09-01

    Carbon nanotubes carpets were grown by RF plasma enhanced chemical vapor deposition on various substrates coated by Fe and Ni transition metals that act as catalyst. C2H2 gas was used for the carbon source. The results show that carbon nanotubes CNT can be grown on Si3N4/Si and SiO2/Si substrates only with an Fe catalyst. They are typically formed by multi-walled graphene layers, and can be obtained for a temperature as low as 550 °C. Nanotubes grown on TiN/SiO2/Si substrate from Fe or Ni catalysts present bamboo-like nanostructures and are obtained for particular experimental conditions. This study demonstrates substrate-to-catalyst effect on the CNT growth and their microstructures indicating that the adhesion force of nanoparticles on substrates is a main parameter. Catalyst particles are spherical and several tens of nm in diameter (weak adhesion strength) when deposited onto SiO2/Si or Si3N4/Si, the tip growth mode of nanotube is favored. On TiN/SiO2/Si substrate, particles are larger (large adhesion strength) and CNT growth is no more in tip mode, bamboo-like structures are obtained. When an Fe-Ni catalyst multilayer has been deposited onto the different substrates, carbon nanotube microstructures show multi-walled graphene parallel layers on Si3N4/Si and SiO2/Si insulating substrates, and bamboo-like microstructures on TiN/SiO2/Si conductor substrate.

  20. One-step Synthesis of Few-layer WS2 by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Loh, Tamie A. J.; Chua, Daniel H. C.; Wee, Andrew T. S.

    2015-12-01

    Atomically thin tungsten disulfide (WS2) has attracted much attention in recent years due its indirect-to-direct band gap transition, band gap tunability, and giant spin splitting. However, the fabrication of atomically thin WS2 remains largely underdeveloped in comparison to its structural analogue MoS2. Here we report the direct fabrication of highly crystalline few-layer WS2 on silver substrates by pulse laser deposition at the relatively low temperature of 450 °C. The growth takes places by conventional epitaxy, through the in-situ formation of nearly lattice-matching Ag2S on the silver surface. Intriguingly, it was observed that the resulting film was composed of not only the usual semiconducting 2H-WS2 structure but also the less common metallic 1T-WS2. Modifications of the synthesis parameters allow for control over the crystalline quality, film thickness and crystal phase composition of the resulting WS2 film.

  1. Phase control of Mn-based spinel films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; Bedzyk, Michael J.; Fenter, Paul

    2016-07-01

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn2O4 and fully charged cathode Mn2O4. The tetragonal MgMn2O4 (MMO) phase is obtained on MgAl2O4 substrates, while the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn2O4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn2O4, for x = 0, 1). This capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.

  2. Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bajpai, Shubhra; Gupta, Ankur; Pradhan, Siddhartha Kumar; Mandal, Tapendu; Balani, Kantesh

    2014-10-01

    Hydroxyapatite (HA) is a widely used bioceramic known for its chemical similarity with that of bone and teeth (Ca/P ratio of 1.67). But, owing to its extreme brittleness, α-Al2O3 is reinforced with HA and processed as a coating via pulsed laser deposition (PLD). Reinforcement of α-Al2O3 (50 wt.%) in HA via PLD on 316L steel substrate has shown modulus increase by 4% and hardness increase by 78%, and an improved adhesion strength of 14.2 N (improvement by 118%). Micro-scratching has shown an increase in the coefficient-of-friction from 0.05 (pure HA) to 0.17 (with 50 wt.% Al2O3) with enhancement in the crack propagation resistance (CPR) up to 4.5 times. Strong adherence of PLD HA-Al2O3 coatings (~4.5 times than that of HA coating) is attributed to efficient release of stored tensile strain energy (~17 × 10-3 J/m2) in HA-Al2O3 composites, making it a potential damage-tolerant bone-replacement surface coating.

  3. Plasma interactions determine the composition in pulsed laser deposited thin films

    SciTech Connect

    Chen, Jikun; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas; Döbeli, Max

    2014-09-15

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La{sub 0.6}Sr{sub 0.4}MnO{sub 3}, we demonstrate for as grown La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} films that a congruent transfer of metallic species is achieved in two pressure windows: ∼10{sup −3} mbar and ∼2 × 10{sup −1} mbar. In the intermediate pressure range, La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  4. Pulsed-laser deposition of superconducting LiTi2O4 ultrathin films

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Yokoyama, Kosuke; Niwa, Mifuyu; Ohtomo, Akira

    2015-06-01

    We report epitaxial growth, structural characterizations and thickness-dependent superconducting properties of LiTi2O4 films grown on (111) MgAl2O4 substrates by using pulsed-laser deposition. The variations of growth temperature (Tg) and excess Li composition of target materials were found to be crucial for improving the crystallinity, as verified by X-ray diffraction rocking curve and the in-plane domain configuration. The crystallinity of the desired LiTi2O4 phase improved with increasing Tg, whereas the inclusion of Li-deficient phases became more significant due to high sublimation rate of Li species. The use of the excess Li targets allowed us to elevate Tg up to 750 °C (Li/Ti=1.0) with keeping high crystallinity and phase purity. For films grown under the best condition, the superconducting transition was observed near 12 K even when thickness was as thin as 9 nm.

  5. One-step Synthesis of Few-layer WS2 by Pulsed Laser Deposition.

    PubMed

    Loh, Tamie A J; Chua, Daniel H C; Wee, Andrew T S

    2015-01-01

    Atomically thin tungsten disulfide (WS2) has attracted much attention in recent years due its indirect-to-direct band gap transition, band gap tunability, and giant spin splitting. However, the fabrication of atomically thin WS2 remains largely underdeveloped in comparison to its structural analogue MoS2. Here we report the direct fabrication of highly crystalline few-layer WS2 on silver substrates by pulse laser deposition at the relatively low temperature of 450 °C. The growth takes places by conventional epitaxy, through the in-situ formation of nearly lattice-matching Ag2S on the silver surface. Intriguingly, it was observed that the resulting film was composed of not only the usual semiconducting 2H-WS2 structure but also the less common metallic 1T-WS2. Modifications of the synthesis parameters allow for control over the crystalline quality, film thickness and crystal phase composition of the resulting WS2 film. PMID:26657172

  6. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    SciTech Connect

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhou, Shizhong; Lin, Zhiting; Li, Guoqiang

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is a direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.

  7. Properties of phosphorus-doped zinc oxide films grown by pulsed laser deposition

    SciTech Connect

    Li Yuanjie; Liu Zilong; Ren Jiangbo

    2011-05-15

    Electrical and chemical bonding properties of P-doped ZnO thin films grown by pulsed laser deposition on sapphire substrates were systematically characterized utilizing the Hall effect and x-ray photoelectron spectroscopy (XPS) measurements. Oxygen growth pressure and postannealing processing play a great role in the properties of these films. Increasing oxygen growth pressure from 5 to 20 Pa enhanced the resistivity of P-doped ZnO films by three orders of magnitude. P-doped ZnO films grown at 700 deg. C under 20 Pa O{sub 2} exhibited p-type conductivity with hole concentration of 5x10{sup 17} cm{sup -3} and hole mobility of 0.3 cm{sup 2}/V s. Rapid thermal annealing processing decreased the electron density in the P-doped ZnO films. XPS binding energies of P 2s and 2p peaks showed formation of P-O bonds which increased with oxygen pressure in the films. This indicates formation of defect complexes of P dopants occupying zinc sites P{sub Zn} and zinc vacancies V{sub Zn} in the P-doped ZnO films.

  8. One-step Synthesis of Few-layer WS2 by Pulsed Laser Deposition

    PubMed Central

    Loh, Tamie A. J.; Chua, Daniel H. C.; Wee, Andrew T. S.

    2015-01-01

    Atomically thin tungsten disulfide (WS2) has attracted much attention in recent years due its indirect-to-direct band gap transition, band gap tunability, and giant spin splitting. However, the fabrication of atomically thin WS2 remains largely underdeveloped in comparison to its structural analogue MoS2. Here we report the direct fabrication of highly crystalline few-layer WS2 on silver substrates by pulse laser deposition at the relatively low temperature of 450 °C. The growth takes places by conventional epitaxy, through the in-situ formation of nearly lattice-matching Ag2S on the silver surface. Intriguingly, it was observed that the resulting film was composed of not only the usual semiconducting 2H-WS2 structure but also the less common metallic 1T-WS2. Modifications of the synthesis parameters allow for control over the crystalline quality, film thickness and crystal phase composition of the resulting WS2 film. PMID:26657172

  9. Tailoring Multilayered BiVO4 Photoanodes by Pulsed Laser Deposition for Water Splitting.

    PubMed

    Murcia-López, Sebastián; Fàbrega, Cristian; Monllor-Satoca, Damián; Hernández-Alonso, María D; Penelas-Pérez, Germán; Morata, Alex; Morante, Juan R; Andreu, Teresa

    2016-02-17

    Pulsed laser deposition (PLD) is proposed as promising technique for the fabrication of multilayered BiVO4-based photoanodes. For this purpose, bare BiVO4 films and two heterojunctions, BiVO4/SnO2 and BiVO4/WO3/SnO2, have been prepared using consecutive ablation of assorted targets in a single batch. The ease, high versatility and usefulness of this technique in engineering the internal configuration of the photoanode with stoichiometric target-to-substrate transfer are demonstrated. The obtained photocurrent densities are among the highest reported values for undoped BiVO4 without oxygen evolution catalysts (OEC). A detailed analysis of the influence of SnO2 and WO3 layers on the charge transport properties because of the changes at the internal FTO/semiconductor interface is performed through transient photocurrent measurements (TPC), showing that the BiVO4/WO3/SnO2 heterostructure attains a significant decrease in the internal losses and reaches high photocurrent values. This study is expected to open the door to the fabrication of other systems based on ternary (or even more complex) metal oxides as photoanodes for water splitting, which is a promising alternative for obtaining materials able to fulfill the different requierements in the development of more efficient systems for this process. PMID:26804929

  10. Electrical characterization of Si doped AlN films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Simeonov, Simeon; Bakalova, Silvia; Szekeres, Anna; Minkov, Ivaylo; Socol, Gabriel; Ristoscu, Carmen; Mihailescu, Ion

    2015-04-01

    The electrical properties of thin AlN films doped with Si (AlN:Si) have been investigated. The films were synthesized on Si substrates at 800 °C by pulsed laser deposition in low-pressure nitrogen ambient. The AlN:Si films exhibit non-ohmic I-V characteristics and the current through these films is controlled by space charge limited current. The C-V dependence of metal-insulator-silicon (MIS) structures with AlN:Si films exhibits an excess capacitance around zero bias voltage. This excess capacitance indicates the presence of deep acceptor levels situated at the boundaries of adjacent grains in the AlN:Si films. The Si donor density in the AlN:Si films, estimated from the 1 MHz C-V characteristics, is of the order of 1018 cm-3. The impedance measurements of these AlN:Si structures at different test voltage frequencies reveal that the charge transport mechanism is dominated by either thermally-activated hopping or electron tunneling from occupied to nearest unoccupied deep levels.

  11. Pulsed laser deposition of rare-earth-doped glasses: a step toward lightwave circuits

    NASA Astrophysics Data System (ADS)

    Morea, R.; Fernandez, J.; Balda, R.; Gonzalo, J.

    2016-02-01

    Pulsed Laser Deposition (PLD) is used to produce Er-doped lead-niobium germanate (PbO-Nb2O5-GeO2) and fluorotellurite (TeO2-ZnO-ZnF2) thin film glasses. Films having high refractive index, low absorption and large transmission are obtained in a narrow processing window that depends on the actual PLD configuration (O2 pressure ˜a few Pa, Laser energy density ˜2-3 J cm-2 for the results presented in this work). However, Er-doped thin film glasses synthetized at room temperature using these experimental parameters show poor photoluminescence (PL) performance due to non-radiative decay channels, such as a large OH- concentration. Thermal annealing allows improving PL intensity and lifetime (τPL), the latter becoming close to that of the parent Er-doped bulk glass. In addition, the use of alternate PLD from host glass and rare-earth targets allows the synthesis of nanostructured thin film glasses with a controlled rare-earth concentration and in-depth distribution, as it is illustrated for Er-doped PbO-Nb2O5-GeO2 film glasses. In this case, PL intensity at 1.53 μm increases with the spacing between Er-doped layers to reach a maximum for a separation between Er-doped layers >= 5 nm, while τPL is close to the bulk value independently of the spacing. Finally, the comparison of these results with those obtained for films grown by standard PLD from Er-doped glass targets suggests that nanostructuration allows reducing rare-earth clustering and concentration quenching effects.

  12. Study of Doped ZnO Films Synthesized by Combining Vapor Gases and Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.

    2000-01-01

    The properties and structure of the ZnO material are similar to those of the GaN. Since an excitonic binding energy of ZnO is about 60 meV, it has strong potential for excitonic lasing at the room temperature. This makes synthesizing ZnO films for applications attractive. However, there are several hurdles in fabricating electro-optical devices from ZnO. One of those is in growing doped p-type ZnO films. Although techniques have been developed for the doping of both p-type and n-type ZnO, this remains an area that can be improved. In this presentation, we will report the experimental results of using both thermal vapor and pulsed laser deposition to grow doped ZnO films. The films are deposited on (0001) sapphire, (001) Si and quartz substrates by ablating a ZnO target. The group III and V elements are introduced into the growth chamber using inner gases. Films are characterized by x-ray diffraction, scanning probe microscopy, energy dispersive spectroscopy, Auger electron spectroscopy, and electrical measurements. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. Film surface morphology reveals an island growth pattern, but the size and density of these islands vary with the composition of the reactive gases. The electrical resistivity also changes with the doped elements. The relationship between the doping elements, gas composition, and film properties will be discussed.

  13. Nucleation and growth of cubic boron nitride films produced by ion-assisted pulsed laser deposition

    SciTech Connect

    Friedmann, T.A.; Medlin, D.L.; Mirkarimi, P.B.; McCarty, K.F.; Klaus, E.J.; Boehme, D.R.; Johnsen, H.A.; Mills, M.J.; Ottesen, D.K.

    1993-12-31

    We are studying the boron nitride system using a pulsed excimer laser to ablate from hexagonal BN (cBN) targets to form cubic BN (cBN) films. We are depositing BN films on heated (25--800C) Si (100) surfaces and are using a broad-beam ion source operated with Ar and N{sub 2} source gases to produce BN films with a high percentage of sp{sup 3}-bonded cBN. In order to optimize growth and nucleation of cBN films, parametric studies of the growth parameters have been performed. The best films to date show >85% sp{sup 3}-bonded BN as determined from Fourier-transform infrared (FTIR) reflection spectroscopy. High resolution transmission electron microscopy (TEM) and selected area electron diffraction confirm the presence of cBN in these samples. The films are polycrystalline and show grain sizes up to 30--40 mn. We find from both the FTIR and TEM analyses that the cBN content in these films evolves with growth time. Initially, the films are deposited as hBN and the cBN nucleates on this hBN underlayer. Importantly, the position of the cBN IR phonon also changes with growth time. Initially this mode appears near 1130 cm{sup {minus}1} and the position decreases with growth time to a constant value of 1085 cm{sup {minus}1}. Since in bulk cBN this IR mode appears at 1065 cm{sup {minus}1}, a large compressive stress induced by the ion bombardment is suggested. In addition, we report on the variation in cBN percentage with temperature.

  14. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    NASA Astrophysics Data System (ADS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  15. Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; de Pablos-Martin, Araceli; Patzig, Christian; Stölzel, Marko; Brachwitz, Kerstin; Hochmuth, Holger; Grundmann, Marius; Höche, Thomas

    2014-01-01

    Fresnoite Ba2TiSi2O8 (BTS) thin films were grown and crystallized in situ using pulsed laser deposition (PLD) with CO2 laser direct heating of the a-plane sapphire (1 1 0) substrates up to 1250 °C. Starting with 775 °C growth temperature, (0 0 1)- and (1 1 0)-textured BTS and BaTiO3 phases, respectively, could be assigned in the films, and the typical fern-like BTS crystallization patterns appear. For higher process temperatures of 1100 to 1250 °C, atomically smooth, terraced surface of the films was found, accompanied by crystalline high-temperature phases of Ba-Ti-Si oxides. HAADF micrographs taken in both scanning transmission electron microscopy and energy-dispersive x-ray spectrometry mode show details of morphology and elemental distribution inside the films and at the interface. To balance the inherent Si deficiency of the BTS films, growth from glassy BTS × 2 SiO2 and BTS × 2.5 SiO2 targets was considered as well. The latter targets are ideal for PLD since the employed glasses possess 100% of the theoretical density and are homogeneous at the atomic scale.

  16. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    de la Figuera, Juan; Quesada, Adrián; Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta; Prieto, Pilar; Muñoz-Martín, Ángel; Aballe, Lucía; Marco, José F.

    2015-12-01

    We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO3 by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  17. Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition

    SciTech Connect

    Murugesan, S.; Kuppusami, P.; Mohandas, E.

    2010-01-15

    Rietveld powder X-ray diffraction analysis of the rutile films of titanium oxide prepared by pulsed laser deposition was carried out. The crystallite size increased with increase of substrate temperature, while the strain showed a reverse trend. The films synthesized at temperature {>=}573 K showed that the crystal structure was almost close to that of bulk rutile structure. The influence of the substrate temperature on the lattice parameters and oxygen coordinates were also studied in the present work.

  18. The study on the effect of erbium on diamond-like carbon deposited by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Foong, Y. M.; Hsieh, J.; Li, X.; Chua, D. H. C.

    2009-09-01

    Diamond-like carbon (DLC) films doped with a small fraction of erbium (0.5-2.0 at. %, at 0.5 at. % interval) were prepared by using a 248 nm KrF pulsed laser deposition technique. The effects of erbium on the surface morphology, microstructure, chemical binding states, tribological property, and the adhesion strength of DLC films were investigated. Atomic force microscopy showed that the surface roughness of the films increased with the increasing of erbium fraction, but generally the nanocomposite films were smooth with rms below 1 nm. Raman analysis showed broad peaks centered at 1550 cm-1 on all the samples. The deconvoluted Raman spectra on DLC doped with different fractions of erbium showed that the ID/IG ratio increased with increasing erbium content, and the comparative percent of sp3 is between 50% and 58% for erbium fraction between 0.5 and 2.0 at. %. High resolution x-ray photoelectron spectroscopy confirmed that the C 1s peaks had slightly shifted away from 285.2 (diamond) to 284.5 eV (graphite). The deconvolution of the spectra further confirmed the influence of erbium to the sp3 contents and revealed the presence of SiC with the increasing of Er fraction. Microscratch tester results showed that the adhesion strength (critical load) of the films improved with the presence of SiC bonding at the interface. This hinted that the presence of the heavier erbium may force the impinging carbon ions to react more with the interface to form silicon carbide bonds, thus enhancing the adhesion strength. Although the presence of erbium increased the surface roughness of the films, the coefficients of friction of the erbium doped DLC films were still closely resembled to pure DLC, i.e., 0.11-0.12 compared to 0.10 for pure DLC.

  19. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    SciTech Connect

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  20. Pulsed-laser deposition of ZnO and related compound thin films for optoelectronics

    NASA Astrophysics Data System (ADS)

    Millon, Eric; Perrière, Jacques; Tricot, Sylvain; Boulmer-Leborgne, Chantal

    2008-05-01

    ZnO is a wide and direct band-gap material (3.37 eV at room temperature) making this compound very suitable for UV photodetector applications as well as for UV and blue light emitting devices. As an electronic conductor, ZnO may be used as transparent and conducting electrodes for flat panel displays and solar cells. ZnO doped with various atoms can also lead to new or enhanced functional properties. For example, doping with Al, Ga, In, Si or H allows decreasing its resistivity to below 10-4 Ω.cm, while keeping the high optical transparency. Rare-earth doped ZnO thin films have been studied for optics and optoelectronics such as visible or infrared emitting devices, planar optical waveguide amplifiers. Ferromagnetic semiconductors can be obtained by doping ZnO with transition metal atoms (Mn, Co, Ni...) that could be used as spin injectors in spintronics. These new and exciting properties of pure and doped ZnO request the use of thin films or multilayer structures. ZnO thin film growth by pulsed-laser deposition (PLD) with or without any dopants or alloyed atoms has been intensively studied. In this paper, we will review the aspects of ZnO thin films grown by PLD, in order to prepare dense, stoichiometric and crystalline epitaxied ZnO layers or to form nanocrystalline films. Then, the optical and electrical properties will be discussed with a special emphasis on the growth conditions in relation to the physical properties for applications in p-n junctions, light emission devices, spintronics and bandgap tuning.

  1. Investigation of NbNx thin films and nanoparticles grown by pulsed laser deposition and thermal diffusion

    NASA Astrophysics Data System (ADS)

    Hassan Farha, Ashraf

    Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG laser (lambda = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, different nitrogen background pressures and deposition temperatures. The effect of changing PLD parameters for films done by PLD was studied. The seen observations establish guidelines for adjusting the laser parameters to achieve the desired morphology and phase of the grown NbNx films. When the fabrication parameters are fixed, except for laser fluence, surface roughness, deposition rate, nitrogen content, and grain size increases with increasing laser fluence. Increasing nitrogen background pressure leads to change in the phase structure of the NbNx films from mixed -Nb 2N and cubic delta-NbN phases to single hexagonal beta- Nb 2N. A change in substrate temperature led to a pronounced change in the preferred orientation of the crystal structure, the phase transformation, surface roughness, and composition of the films. The structural, electronic, and nanomechanical properties of niobium nitride PLD deposited at different nitrogen pressures (26.7-66.7 Pa) on Si(100) were investigated. The NbNx, films exhibited a cubic delta-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The highly-textured delta-NbN films have a Tc up to 15.07 K. The film was deposited at a nitrogen background pressure of 66.7 Pa exhibited improved superconducting properties and showed higher hardness values as compared to films deposited at lower nitrogen pressures. NbN nanoclusters that were deposited on carbon coated Cu-grids using PLD at laser fluence of 8 J/cm2 were observed. Niobium nitride is prepared by heating of Nb sample in a reactive nitrogen atmosphere (133 Pa

  2. Investigation of variation of energy of laser beam on structural, electrical and optical properties of pulsed laser deposited CuO thin films

    SciTech Connect

    Dahiya, V. Kumar, A.; Kaur, G.; Mitra, A.

    2014-04-24

    In this paper, copper oxide (CuO) thin films have been deposited successfully by pulsed laser deposition technique using copper metal as target material. Thin films have been prepared under different energy of laser pulses ranging from 100mJ/pulse to 250 mJ/pulse. These films have been characterized for their structural, electrical and optical properties by using X-Ray Diffractometer (XRD), Four probe method and UV spectroscopy. Morphological and structural studies show that there is increase in crystallite size with the increase in energy of laser beam. Thus resulting in improved crystallinity and degree of orientation of the CuO thin films. Optoelectrical properties show direct relation between conductivity and energy of laser beam. Optical analysis of CuO thin films prepared under different energy of laser beam shows good agreement with structural analysis. The prepared CuO thin films show high absorbance in the UV and visible range and thus are suitable candidate for thin films solar cell application.

  3. Pulsed-laser-deposited TiO2 nanocrystalline films supporting Au nanoparticles for visible-light-operating plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yoshida, Takehito; Watanabe, Tei; Kikuchi, Fumito; Tabuchi, Takeru; Umezu, Ikurou; Haraguchi, Masanobu

    2016-05-01

    We have synthesized pulsed-laser-deposited (PLD) TiO2 nanocrystalline films supporting Au nanoparticles. Au films were deposited on the PLD TiO2 nanocrystalline films with the mass thickness of 4 nm. The as-deposited Au films had island structures. After furnace annealing at 300 °C for 180 min in air, the as-deposited island-structured Au films were balled with the mean diameter of 19 nm on the PLD TiO2 nanocrystalline films. We confirmed that the balled Au nanoparticles had the localized surface plasmonic resonance absorption band in the range of 510-600 nm. Photocatalytic activities of the Au-supporting TiO2 nanocrystalline films were evaluated by a methylene blue decomposition method. We clarified that the Au-supporting TiO2 nanocrystalline films demonstrated visible-light-driven photocatalytic activities, under the filtered (490-500 nm) Xe arc lamp irradiation.

  4. High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target.

    PubMed

    Shen, Kun-Ching; Wang, Tzu-Yu; Wuu, Dong-Sing; Horng, Ray-Hua

    2012-07-01

    High indium compositions InGaN films were grown on sapphires using low temperature pulse laser deposition (PLD) with a dual-compositing target. This target was used to overcome the obstacle in the InGaN growth by PLD due to the difficulty of target preparation, and provided a co-deposition reaction, where InGaN grains generated from the indium and GaN vapors deposit on sapphire surface and then act as nucleation seeds to promote further InGaN growth. The effects of co-deposition on growth mechanisms, surface morphology, and electrical properties of films were thoroughly investigated and the results clearly show promise for the development of high indium InGaN films using PLD technique with dual-compositing targets. PMID:22772213

  5. Pulsed laser deposited MnCo2O4 protective layer on SS430 for solid oxide fuel cell application

    NASA Astrophysics Data System (ADS)

    Gaur, Anshu; Mohiddon, Md. Ahamad; Prasad, Muvva D.

    2016-05-01

    The growth and oxidation study of pulsed laser deposited MnCo2O4 protective layer on SS430 substrate for solid oxide fuel cell application is demonstrated. MnCo2O4 has been achieved in three different ways including, deposition at higher substrate temperature (700°C), and deposition at room temperature on pre-oxidized and untreated SS430 substrate followed by annealing at 700°C for 2 hrs. X-ray diffraction and Raman spectroscopy has been applied to demonstrate the kind of phases developed in each case. These three samples were subjected to heat treatment at 750°C for 5 hr. The extent of undesired Fe2O3 phase formation in the post deposition heat treated samples is discussed based on Raman spectroscopic results.

  6. Deposition of potassium oxygen on silicon surfaces by pulsed laser ablation of potassium superoxide: Study of work function changes

    NASA Astrophysics Data System (ADS)

    Choo, Cheow-Keong; Suzawa, Daisuke; Tanaka, Katsumi

    2006-04-01

    Potassium-oxygen species were deposited on pure, Si nanoparticles coated and H-terminated Si nanoparticles coated p-Si(1 0 0) surfaces by pulsed laser ablation of potassium superoxide (KO 2) target. The deposition properties, composition and the work function changes of the deposited species were investigated in situ using an X-ray photoelectron spectroscopy (XPS) and a Kelvin probe measurement. The deposited species were assigned to K 2O 2 and KO 2, and they can be selectively deposited by controlling the laser fluence: i.e., at 200 mJ/cm 2 and at those more than 300 mJ/cm 2, respectively. Experimental results showed that the work function decreased drastically with depositing of KO x ( x = 1 or 2), and the minimum work function values observed were 1.0 eV and 0.7 eV for pure p-Si(1 0 0) and Si nanoparticles coated substrates, respectively. The study demonstrates the formation of the surface species with minimum work function can be identified by XPS.

  7. Moderation of near-field pressure over a supersonic flight model using laser-pulse energy deposition

    NASA Astrophysics Data System (ADS)

    Furukawa, D.; Aoki, Y.; Iwakawa, A.; Sasoh, A.

    2016-05-01

    The impact of a thermal bubble produced by energy deposition on the near-field pressure over a Mach 1.7 free-flight model was experimentally investigated using an aeroballistic range. A laser pulse from a transversely excited atmospheric (TEA) CO2 laser was sent into a test chamber with 68 kPa ambient pressure, focused 10 mm below the flight path of a conically nosed cylinder with a diameter of 10 mm. The pressure history, which was measured 150 mm below the flight path along the acoustic ray past the bubble, exhibited precursory pressure rise and round-off peak pressure, thereby demonstrating the proof-of-concept of sonic boom alleviation using energy deposition.

  8. Optical emission spectroscopy and time-of-flight investigations of plasmas generated from AlN targets in cases of pulsed laser deposition with sub-ps and ns ultraviolet laser pulses

    NASA Astrophysics Data System (ADS)

    Ristoscu, Carmen; Mihailescu, Ion N.; Velegrakis, Michalis; Massaouti, Maria; Klini, Argyro; Fotakis, Costas

    2003-02-01

    We performed a comparative study of the plasma generated from AlN targets under sub-ps vs ns UV (λ=248 nm) excimer laser pulses. Optical emission and time-of-flight spectra recorded in cases of samples irradiated with ns laser pulses showed the presence of Al lines, which became prevalent after the first laser pulse was incident on the target. These observations are congruent with the metallization of AlN targets inside each crater under multipulse ns laser action at laser fluences above the ablation threshold, observed by visual inspection and optical microscopy. Metallization was not observed when working with sub-ps laser pulses. Moreover, our studies confirmed the predominant presence of AlN positive molecular ions in the plasma generated in front of AlN targets submitted to sub-ps multipulse laser irradiation. The optical emission data are in good agreement with time-of-flight mass analysis. We emphasize that all investigations support the experimental evidence reported by György et al. [E. György et al., J. Appl. Phys. 90, 456 (2001)], according to which thin films obtained by pulsed laser deposition with ns laser pulses contain a significant amount of metallic Al, while only AlN is detected in films obtained with sub-ps laser pulses. Measurements of the velocity and kinetic energy distributions of AlN+ indicate that in the case of ns-laser ablation the ions are emitted with thermal energy, while in the case of sub-ps-laser ablation a bimodal distribution exists and has thermal (1 eV) and hyperthermal (10 eV) energy components. This points to different plasma formation mechanisms for the two cases.

  9. Amorphous to crystalline phase transition in pulsed laser deposited silicon carbide

    NASA Astrophysics Data System (ADS)

    Tabbal, M.; Said, A.; Hannoun, E.; Christidis, T.

    2007-06-01

    SiC thin films were grown on Si (1 0 0) substrates by excimer laser ablation of a SiC target in vacuum. The effect of deposition temperature (up to 950 °C), post-deposition annealing and laser energy on the nanostructure, bonding and crystalline properties of the films was studied, in order to elucidate their transition from an amorphous to a crystalline phase. Infra-red spectroscopy shows that growth at temperatures greater than 600 °C produces layers with increasingly uniform environment of the Si-C bonds, while the appearance of large crystallites is detected, by X-ray diffraction, at 800 °C. Electron paramagnetic resonance confirms the presence of clustered paramagnetic centers within the sp 2 carbon domains. Increasing deposition temperature leads to a decrease of the spin density and to a temperature-dependent component of the EPR linewidth induced by spin hopping. For films grown below 650 °C, post-deposition annealing at 1100 °C reduces the spin density as a result of a more uniform Si-C nanostructure, though large scale crystallization is not observed. For greater deposition temperatures, annealing leads to little changes in the bonding properties, but suppresses the temperature dependent component of the EPR linewidth. These findings are explained by a relaxation of the stress in the layers, through the annealing of the bond angle disorder that inhibits spin hopping processes.

  10. Pulsed laser deposited metal oxide thin films mediated controlled adsorption of proteins

    NASA Astrophysics Data System (ADS)

    Kim, Se Jin

    Several metal oxide thin films were grown on Si substrate by pulsed laser deposition for controlling adsorption of proteins. No intentional heating of substrate and introduction of oxygen gas during growth were employed. Additionally, fibrinogen, bovine serum albumin (BSA), and lysozyme were used as model protein in this study. The film properties such as cyratllinity, surface roughness, surface electrical charge and chemistry were investigated by many techniques in order to obtain the relationship with protein adsorption. Firstly, as grown Ta2O5 and ZnO thin film were used to study the effects of surface charge on the behaviors of BSA and lysozyme adsorption. The protein thickness results by ellipsometry showed that negatively charged Ta2O5 had a stronger affinity to positively charged lysozyme, while positively charged ZnO had a stronger affinity to negatively charged BSA. The results confirmed electrostatic interaction due to surface charge is one of main factors for determining adsorption of proteins. Furthermore, annealing studies were performed by heat treatment of as grown Ta2O5 and ZnO at 800°C in air ambience. Annealed Ta2O5 thin film had almost wetting property (from 10.02° to less than 1˜2°) and the change of cystallinity (from amorphous to cyrsalline) while annealed ZnO thin film had a reduced contact angle (from 75.65° to 39.41°) and remained to crystalline structure. The fibrinogen thickness on annealed Ta2O5 film was increased compared with as grown sample, while heat treated ZnO film showed much reduction of fibrinogen adsorption. Binary Ta-Zn oxide thin films (TZ) were grown by preparing PLD target composed of 50 wt% Ta2O5 and 50 wt% ZnO. This binary film had IEP pH 7.1 indicating nearly neutral charge in pH 7.4 PBS solution, and hydrophilic property. Ellipsometrical results showed that TZ film had the lowest fibrinogen, BSA and lysozyme thickness after 120 min adsorption compared with Ta2O5 and ZnO. Other samples, bilayer oxide films in

  11. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C.

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6-50 GW/cm2) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology.

  12. Calcium phosphate thin films synthesized by pulsed laser deposition: Physico-chemical characterization and in vitro cell response

    NASA Astrophysics Data System (ADS)

    Mihailescu, I. N.; Torricelli, P.; Bigi, A.; Mayer, I.; Iliescu, M.; Werckmann, J.; Socol, G.; Miroiu, F.; Cuisinier, F.; Elkaim, R.; Hildebrand, G.

    2005-07-01

    We review the progress made by us using pulsed laser deposition (PLD) of two bioactive calcium phosphates: octacalcium phosphate (OCP) and Mn doped carbonated hydroxyapatite (Mn-CHA). Coatings of these materials well suited for biomimetic medical prostheses and pivots were synthesized on titanium substrates with a pulsed KrF* UV laser source. The best deposition conditions for Mn-CHA thin films were 13 Pa O 2, 400 °C with post heat treatment of 6 h in air enriched with water vapours. The coatings are stoichiometric and crystalline. For OCP, deposition at 150 °C in 50 Pa water vapor atmosphere, post treated by 6 h annealing in hot flux of water vapours, resulted in stoichiometric, but poorly-crystallized films. Degradation tests show different behavior for the OCP and Mn-CHA coatings. In vitro cell growth shows excellent adherence and biocompatibility of osteoblasts and fibroblasts in both OCP and Mn-CHA coatings. Human osteoblasts display normal proliferation and viability, and good differentiation behaviour.

  13. Pulsed laser-deposited MoS₂ thin films on W and Si: field emission and photoresponse studies.

    PubMed

    Late, Dattatray J; Shaikh, Parvez A; Khare, Ruchita; Kashid, Ranjit V; Chaudhary, Minakshi; More, Mahendra A; Ogale, Satishchandra B

    2014-09-24

    We report field electron emission investigations on pulsed laser-deposited molybdenum disulfide (MoS2) thin films on W-tip and Si substrates. In both cases, under the chosen growth conditions, the dry process of pulsed laser deposition (PLD) is seen to render a dense nanostructured morphology of MoS2, which is important for local electric field enhancement in field emission application. In the case of the MoS2 film on silicon (Si), the turn-on field required to draw an emission current density of 10 μA/cm(2) is found to be 2.8 V/μm. Interestingly, the MoS2 film on a tungsten (W) tip emitter delivers a large emission current density of ∼30 mA/cm(2) at a relatively lower applied voltage of ∼3.8 kV. Thus, the PLD-MoS2 can be utilized for various field emission-based applications. We also report our results of photodiode-like behavior in (n- and p- type) Si/PLD-MoS2 heterostructures. Finally we show that MoS2 films deposited on flexible kapton substrate show a good photoresponse and recovery. Our investigations thus hold great promise for the development of PLD MoS2 films in application domains such as field emitters and heterostructures for novel nanoelectronic devices. PMID:25141299

  14. Development of lead-free piezoelectric thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Abazari Torghabeh, Maryam

    As a high performance piezoelectric material widely used in sensors, actuators and other electronic devices, lead zirconate titanate (PZT) ceramics have been the center of attention for many years. However, the toxicity of these materials and their exposure to the environment during processing steps, such as calcination, sintering, machining as well as problems in recycling and disposal have been major concerns regarding their usage all around the globe for the past couple of decades. Consequently, utilizing lead-based materials for many commercial applications have been recently restricted in Europe and Asia and measures are being taken in United States as well. Therefore, there is an urgent need for lead-free piezoelectrics whose properties are comparable to those of well-known PZT materials. Recently, the discovery of ultra-high piezoelectric activity in the ternary lead-free KNaNbO3-LiTaO 3-LiSbO3 (KNN-LT-LS) and (Bi,Na)TiO3-(Bi,K)TiO 3-BaTiO3 (BNT-BKT-BT) systems have given hope for alternatives to PZT. Furthermore, the demand for new generation of environment-friendly functional devices, utilizing piezoelectric materials, inspired a new surge in lead-free piezoelectric thin film research. In this study, an attempt has been made to explore the development of lead-free piezoelectric thin films by Pulsed Laser Deposition (PLD) on SrTiO 3 substrate. While the growth and development process of KNN-LT-LS thin films was the primary goal of this thesis, a preliminary effort was also made to fabricate and characterize BNT-BKT-BT thin films. In a comprehensive and systematic process optimization study in conjunction with X-ray diffractometry, the phase evolution, stoichiometry, and growth orientation of the films are monitored as a function of deposition conditions including temperature and ambient oxygen partial pressure. Processing parameters such as substrate temperature and pressure are shown to be highly dominant in determining the phase and composition of the

  15. Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Othonos, A.; Giapintzakis, J.

    2013-08-01

    Carbon nanostructured materials were obtained by high-repetition rate pulsed laser ablation of a graphite target using a train of 10-ps duration pulses at 1064 nm in different pressures of high-purity Ar gas. It is demonstrated that their microstructure and optical properties vary as a function of the argon pressure. High-resolution transmission electron microscopy revealed the existence of onion-like carbon nanostructures embedded in a matrix of amorphous carbon nanofoam for samples prepared at 300 Pa. In comparison samples prepared at 30 Pa show evidence of both onion-like and turbostratic carbon coexisting in a matrix of amorphous carbon nanofoam whereas samples prepared in vacuum are continuous films of amorphous carbon. Transient transmission spectroscopy measurements suggested that free carrier absorption is the dominant effect following photo-excitation for probing wavelengths in the range of 550-1000 nm and its magnitude varies among the materials investigated due to their different microstructures.

  16. Evolution of morphology and structure of Pb thin films grown by pulsed laser deposition at different substrate temperatures

    SciTech Connect

    Lorusso, Antonella Maiolo, Berlinda; Perrone, Alessio; Gontad, Francisco; Maruccio, Giuseppe; Tasco, Vittorianna

    2014-03-15

    Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.

  17. Near single crystal-level dielectric loss and nonlinearity in pulsed laser deposited SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Li, Hong-Cheng; Si, Weidong; West, Alexander D.; Xi, X. X.

    1998-07-01

    We present low-frequency dielectric loss and nonlinearity measurements in SrTiO3 thin films grown by pulsed laser deposition on SrRuO3 electrode layers. A low loss tangent in the order of 10-4, close to the level found in SrTiO3 single crystals, was observed. Combined with a large tunability, this resulted in a figure of merit for frequency and phase agile materials that can rival that observed in single crystals. The result is potentially significant for tunable microwave device applications, and it points to stress and interface effects as the possible causes for higher dielectric losses in thin films.

  18. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    SciTech Connect

    Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, M. N.; Khan, M. A.; Alshareef, H. N.

    2013-11-04

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  19. Low Temperature, Self-nucleated Growth of Indium Tin Oxide Nanostructures by Pulsed Laser Deposition in Argon

    SciTech Connect

    Tan, S. S.; Lee, W. K.; Kee, Y. Y.; Wong, H. Y.; Tou, T. Y.

    2011-03-30

    Indium tin oxide (ITO) nanostructures were successfully deposited on glass substrate by pulsed laser ablation in argon gas at 250 deg. C. Microstructural changes were observed in the argon gas pressure between 30 to 50 mTorr. The as-grown, nanostructured ITO exhibit In{sub 2}O{sub 3} bixbyite structure orientated at <111> direction. At the initial stage of growth, there was a large number of nucleation sites detected which eventually evolved into needle-like branches. The presence of spheres at the tip of these branches indicates that these nanostructured ITO were likely governed by vapor-liquid-solid (VLS) growth mechanism.

  20. Dynamic mechanism of the velocity splitting of ablated particles produced by pulsed-laser deposition in an inert gas

    NASA Astrophysics Data System (ADS)

    Ding, X. C.; Wang, Y. L.; Chu, L. Z.; Deng, Z. C.; Liang, W. H.; Galalaldeen, I. I. A.; Fu, G. S.

    2011-12-01

    The transport dynamics of ablated particles produced by pulsed-laser deposition in an inert gas is investigated via the Monte Carlo simulation method. The splitting mechanism of ablated particles is discussed by tracking every ablated particle with their forces, velocities and locations. The force analysis demonstrates that whether the splitting appears or not is decided by the releasing way of the driving force acting on the ablated particles. The "average" drag force, which is related to the mass and radius of the ambient gas, determines the releasing way of the driving force. Our simulated results are approximately in agreement with the previous experimental data.

  1. Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Joseph, M.; Tabata, H.; Kawai, T.

    1999-04-01

    Thin films of Li-doped ZnO of different compositions (Zn1-xLix)O, x=0.1, 0.17, and 0.3 have been prepared on Si(100) substrates, with no buffer layer, by the pulsed laser deposition method. Ferroelectric behavior with a memory window of 1.2 V has been observed in capacitance-voltage measurements. The peak maximum in the capacitance-temperature curve suggests that the ferroelectric phase transition occurs around 340 K.

  2. Polycrystalline SrFe12O19 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Garcia, Tupac; de Posada, E.; Jimenez, Ernesto; Sanchez Ll., J. L.; Diaz Castanon, S.; Bartolo-Perez, Pascual; Cauich, W.; Oliva, I.; Pena, J. L.; Ceh, O.

    1999-07-01

    Polycrystalline SrFe12O19 thin films were deposited on Si (100) substrates by PLD using a Nd-YAG laser ((lambda) equals 1064 nm). During the deposition process substrates were kept at room temperature. As-deposited films were annealed in air at temperatures between 600 degree(s)C and 840 degree(s)C. Samples were characterized by AES, ESCA, SEM, AFM, x-ray diffraction and VSM. It is presented the relevance of the preparation of the target surface on the film quality. Some differences in the chemical composition of as-deposited films, compared with the target and the annealed films, were observed. The x-ray diffraction spectra show a textured as- deposited films. Samples annealed at 600 degree(s)C, and below, showed a very weak magnetic response. In contrast annealing in the temperature range 700 degree(s)C - 840 degree(s)C led to the formation of a nanocrystalline particle system (average particle size 150 - 350 nm) which behave as a single domain in the thermally demagnetized state. The obtained coercivities (5750 - 6850 Oe) are among the highest values reported for films, powders and sintered samples.

  3. Humidity sensors applicative characteristics of granularized and porous Bi2O3 thin films prepared by oxygen plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tudorache, Florin; Petrila, Iulian; Condurache-Bota, Simona; Constantinescu, Catalin; Praisler, Mirela

    2015-01-01

    Pulsed laser ablation of pure bismuth targets in a plasma discharge followed by thermal treatment as preparation method for humidity high-sensitive bismuth trioxide thin films deposited onto Si/Pt substrates were analyzed. Several thin films were deposited at different substrate temperatures during the pulsed laser deposition namely between 300 °C and 600 °C. Near to the electrical investigation, the structure and the morphology of the films as keys features for water adsorption are thoroughly investigated and correlated with their sensitivity as humidity sensors. Thus, it has been found that strong granularized Bi2O3 thin films obtained through oxygen plasma-assisted pulsed laser deposition onto Si/Pt substrate at 500 °C provide the most interesting humidity sensing characteristics.

  4. Plume propagation and Pt film growth during shadow-masked pulsed laser deposition in a buffer Ar gas

    NASA Astrophysics Data System (ADS)

    Fominski, V. Yu.; Grigoriev, S. N.; Gnedovets, A. G.; Romanov, R. I.; Volosova, M. A.

    2015-01-01

    Shadow-masked pulsed laser deposition (SMPLD) enables the preparation of films that contain none of the droplets that are normally formed in laser irradiation of the target. The platinum (Pt) film produced by SMPLD was studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and Rutherford backscattering spectroscopy (RBS) of helium ions. The film thickness distribution across the substrate surface took the shape of a simple crater, and the film thickness on the crated "bottom" (center of the shadow area) was approximately 5 times less than that on the "mound" (edge of the shadow area). Monte Carlo collision (MCC) modeling of the laser plume movement during SMPLD was performed to clarify the role of the mask in the formation of the Pt films. The dynamics of the Pt atoms in the laser plume was studied using the vacuum deposition method through a narrow slit onto a rapidly displaced substrate, augmented by RBS measurements of the deposited film thickness along the substrate movement direction. The ionic flux was specifically measured using an ion probe. MCC simulation allowed the changes in the basic parameters of the deposited atom stream to be evaluated with the use of a mask. Comparison of the experimental and calculated distribution of the Pt film indicated that the best correlation was observed using the interpenetration model of the plume and buffer gas (argon, Ar) accompanied by elastic collisions of Pt atoms with the Ar atoms using the variable hard sphere model. Atomic flux models were utilized to imitate the growth of individual Pt crystals using the kinetic Monte Carlo method. In the SMPLD case, the root mean square roughness of the model crystal surface increased by ∼10% and the concentration of vacancies increased by ∼4% compared with the model crystal obtained by pulsed laser deposition (PLD). The surface topography of the experimental Pt films was defined by the nanocrystal nature of their structure. The use of a mask

  5. C{sub 2} and CN dynamics and pulsed laser deposition of CN{sub x} films

    SciTech Connect

    Kushwaha, Archana; Mohanta, Antaryami; Thareja, Raj K.

    2009-02-15

    The time-resolved optical emission studies of laser ablated carbon plasma in nitrogen ambient are carried out to understand the dynamic of formation of C{sub 2} and CN for depositing quality thin films. An optimum formation of C{sub 2} is observed at 3 mm from the target surface and 350 ns after the initiation of plasma. However, CN is formed at comparatively larger distance, 4 mm, and larger delay (850 ns). The expanding plasma plume splits/bifurcates into slow and fast moving two distinct components, with the faster components further splitting up at later times (>350 ns) into two components. The estimated plume front velocity from plume imaging in the nitrogen ambient of 1.2 mbars at a delay of 100 ns is 3.8x10{sup 6} cm/s, consistent with spectroscopic measurement {approx}3.0x10{sup 6} cm/s. The CN{sub x} thin films deposited by pulsed laser deposition technique are characterized by x-ray diffraction, atomic force microscopy, and Raman spectroscopy. The high I{sub D}/I{sub G} ratio and peak position shift of G band to lower values in the films deposited for longer time indicates the high incorporation of nitrogen and increasing CN concentration within the film.

  6. Growth of centimeter-scale atomically thin MoS{sub 2} films by pulsed laser deposition

    SciTech Connect

    Siegel, Gene; Venkata Subbaiah, Y. P.; Prestgard, Megan C.; Tiwari, Ashutosh

    2015-05-01

    We are reporting the growth of single layer and few-layer MoS{sub 2} films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS{sub 2} target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10{sup −6} Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS{sub 2} target by 50 laser pulses (energy density: 1.5 J/cm{sup 2}) was found to result in the formation of a monolayer of MoS{sub 2} as shown by AFM results. In the Raman spectrum, A{sub 1g} and E{sup 1}{sub 2g} peaks were observed at 404.6 cm{sup −1} and 384.5 cm{sup −1} with a spacing of 20.1 cm{sup −1}, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS{sub 2} exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS{sub 2} films were prepared. It was found that as the number of monolayers (n) in the MoS{sub 2} films increases, the spacing between the A{sub 1g} and E{sup 1}{sub 2g} Raman peaks (Δf) increases following an empirical relation, Δf=26.45−(15.42)/(1+1.44 n{sup 0.9}) cm{sup −1}.

  7. Investigation of the nonlocal nonlinear optical response of copper nanostructured thin films prepared by pulsed laser deposition

    SciTech Connect

    Farmanfarmaei, B; RashidianVaziri, M R; Hajiesmaeilbaigi, F

    2014-11-30

    Nanostructured copper thin films have been prepared using the pulsed laser deposition method. Optical absorption spectra of these films exhibit plasmonic absorption peaks around 619 nm, which suggests the formation of copper nanoparticles on their surfaces. Scanning electron micrographs of the films confirm the nanoparticle formation on the films surfaces. After laser beam passing through the thin films, the observed diffraction rings on a far-field screen have been recorded. Despite the smallness of the maximal axial phase shifts of the films, which have been obtained using the nonlocal z-scan theory, a series of low-intensity rings can be observed on the far field screen for some specific positions of the thin films from the focal point. It is shown that the best approach to determining the sign and magnitude of the nonlinear refractive index of thin samples is the application of the conventional closeaperture z-scan method. (nanostructures)

  8. Characterization of Vapour Plume Species and Deposition Residues Resulting from Pulsed Laser Ablation of a Graphite/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Roybal, R. E.; Miglionico, C. J.; Stein, C.; Murr, L. E.; Lincoln, K. A.

    1995-01-01

    A modified time-of-flight mass spectrometer fitted with a special collection stage for carbon-coated transmission electron microscope specimen grids is used to monitor laser-pulse ablation products from graphite/epoxy composite targets. Scanning electron microscopy observations show ablation damage to consist of matrix pyrolysis, fibre fracture and spallation of fragments which include elemental hydrogen, carbon epoxide and acetylene groups. Transmission electron microscope examination of specimen grids showed a variety of crystals and polycrystalline hexagonal graphites having a wide range of shapes including spheres and faceted polyhedra and platelets, textured flake structures, microrosettes. These observations lend some credibility to a model for laser-shock and pyrolysis effects which create molecular plume fragments and deposition fragments of hexagonal graphite.

  9. Pulsed-laser deposition of inclined ZnO, of GaPO4 and of novel composite thin films

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Peruzzi, M.; Vrejoiu, I.; Matei, D. G.; Dinescu, M.; Bäuerle, D.

    2005-07-01

    Pulsed-laser deposition of different novel thin film materials is reported. Pure ZnO, Al-doped and Li-doped ZnO thin films and double-layers with inclined crystal orientation and very strong texture were achieved. The inclined ZnO heterostructures consisted of pure and doped layers of strongly different electrical resistivity. Polycrystalline GaPO4 thin films were grown by F2-laser ablation of ceramic GaPO4. Layers of a novel composite material were produced from BaTiO3/polytetrafluoroethylene mixed targets. The composite films revealed a giant dielectric permittivity, ɛr’≤ 15000, and a strong dependence of permittivity on the thickness of the layers.

  10. Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra

    NASA Astrophysics Data System (ADS)

    Hu, Z. G.; Li, W. W.; Wu, J. D.; Sun, J.; Shu, Q. W.; Zhong, X. X.; Zhu, Z. Q.; Chu, J. H.

    2008-11-01

    Optical response of rutile TiO2 films grown under different laser energy by pulsed laser deposition has been investigated by Raman scattering and spectral transmittance. Dielectric functions in the photon energy range of 1.24-6.5 eV have been extracted by fitting the experimental data with the Adachi's model [S. Adachi, Phys. Rev. B 35, 7454 (1987)]. The refractive index dispersion in the transparent region is mainly ascribed to the higher A1-A2 electronic transitions for the rutile TiO2 films. Owing to slightly different crystalline structures and film densities, the optical band gap linearly increases with increasing packing density. The phenomena were confirmed by different theoretical evaluation methods.

  11. Pulse laser deposition of epitaxial TiO2 thin films for high-performance ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Zhang, Zifeng; Wong, Lai Mun; Zhang, Zhiwei; Wu, Zhengyun; Wang, Shijie; Chi, Dongzhi; Hong, Rongdun; Yang, Weifeng

    2015-11-01

    The authors report on high quality TiO2 epilayers grown on lattice-matched LaAlO3 substrates by pulsed laser deposition. A prototype of metal-semiconductor-metal ultraviolet (UV) photodetector based on TiO2 was fabricated by employing Au as the Schottky contact metal. The UV-visible transmittance spectrum of the TiO2 epilayer and the spectral response of the photodetector reveal that the deposited anatase TiO2 thin film exhibits excellent visible-blind UV characteristics with an optical bandgap of 3.25 eV. In addition, the fabricated photodetector exhibits a high UV-to-visible rejection ratio (R270 nm/R400 nm) of 105 while displaying a low dark current of 0.25 pA under 5 V bias and a high responsivity of 0.21 A/W, suggesting a potential application in UV photodetection.

  12. Epitaxial growth of one-dimensional Ca3Co2O6 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Moubah, R.; Bouaine, A.; Ulhaq-Bouillet, C.; Schmerber, G.; Versini, G.; Barre, S.; Loison, J. L.; Drillon, M.; Colis, S.; Dinia, A.

    2007-10-01

    We report on the growth and structural properties of Ca3Co2O6 thin films deposited by pulsed laser ablation on SrTiO3 substrates heated at 700°C. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy observations reveal that Ca3Co2O6 grows in a three-dimensional (3D) mode with a surface roughness of about 1.5nm rms. X-ray diffraction and cross-section transmission electron microscopy characterizations show that the deposited films are epitaxial without secondary phases and with a preferential growth orientation perpendicular to the (220) plane. Temperature dependent magnetization measurements reveal that the ferrimagnetic-ferromagnetic transition in the Ca3Co2O6 film is shifted toward higher temperatures with respect to the bulk cobaltite.

  13. Electronic transport in highly conducting Si-doped ZnO thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir L.; Vai, Alex T.; Al-Mamouri, Malek; Stuart Abell, J.; Pepper, Michael; Edwards, Peter P.

    2015-12-01

    Highly conducting (ρ = 3.9 × 10-4 Ωcm) and transparent (83%) polycrystalline Si-doped ZnO (SiZO) thin films have been deposited onto borosilicate glass substrates by pulsed laser deposition from (ZnO)1-x(SiO2)x (0 ≤ x ≤ 0.05) ceramic targets prepared using a sol-gel technique. Along with their structural, chemical, and optical properties, the electronic transport within these SiZO samples has been investigated as a function of silicon doping level and temperature. Measurements made between 80 and 350 K reveal an almost temperature-independent carrier concentration consistent with degenerate metallic conduction in all of these samples. The temperature-dependent Hall mobility has been modeled by considering the varying contribution of grain boundary and electron-phonon scattering in samples with different nominal silicon concentrations.

  14. Annealing effects on the structural and electrical properties of pulsed laser deposited BaPbO3 thin films

    NASA Astrophysics Data System (ADS)

    Satish, B.; Jayaraj, M. K.

    2014-01-01

    Conductive pervoskite BaPbO3 (BPO) films as potential electrodes for ferroelectric / tuneable applications were prepared by pulsed laser deposition technique at 600°C and at 0.1 mbar oxygen partial pressure on fused silica substrates. The structural and electrical properties of the films showed a dependence on annealing temperatures and the high oxygen ambient. XRD and standard four probe method with Hall setup were employed to investigate the dependence of growth conditions on crystal structure, resistivity and the carrier concentration on annealing the BPO thin films. The surface topography was analysed by AFM. The unannealed as deposited films showed the least resistivity of 1.6 × 10-2 ohm cm and a bandgap of 4.1eV.

  15. Effect of oxygen content on piezoresistivity of indium tin oxide thin films prepared by pulsed laser deposition

    SciTech Connect

    Fang, H.; Miller, T.; Rogers, B.R.; Magruder, R.H. III; Weller, R.A.

    2005-04-15

    The piezoresistivity of thin films of indium tin oxide prepared by pulsed laser deposition has been measured as a function of the O-to-(In+Sn) atom ratio. The oxygen-to-metal atom ratio was determined through Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy analyses. Gauge factors, defined as the fractional change of the film resistance to the applied strain, increase with the film's oxygen content. The deposition under 50 mTorr oxygen pressure resulted in the film with the largest oxygen-to-metal atom ratio, 1.92, and a gauge factor of -14.5. A model based on hopping conduction is proposed. Results from this model are consistent with the sign and magnitude of the observed gauge factors.

  16. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  17. Nondestructive Encapsulation of CdSe/CdS Quantum Dots in an Inorganic Matrix by Pulsed Laser Deposition.

    PubMed

    Aubret, Antoine; Houel, Julien; Pereira, Antonio; Baronnier, Justine; Lhuillier, Emmanuel; Dubertret, Benoit; Dujardin, Christophe; Kulzer, Florian; Pillonnet, Anne

    2016-08-31

    We report the successful encapsulation of colloidal quantum dots in an inorganic matrix by pulsed laser deposition. Our technique is nondestructive and thus permits the incorporation of CdSe/CdS core/shell colloidal quantum dots in an amorphous yttrium oxide matrix (Y2O3) under full preservation of the advantageous optical properties of the nanocrystals. We find that controlling the kinetic energy of the matrix precursors by means of the oxygen pressure in the deposition chamber facilitates the survival of the encapsulated species, whose well-conserved optical properties such as emission intensity, luminescence spectrum, fluorescence lifetime, and efficiency as single-photon emitters we document in detail. Our method can be extended to different types of nanoemitters (e.g., nanorods, dots-in-rods, nanoplatelets) as well as to other matrices (oxides, semiconductors, metals), opening up new vistas for the realization of fully inorganic multilayered active devices based on colloidal nano-objects. PMID:27503143

  18. Rapid deposition of biaxially-textured CeO 2 buffer layers on polycrystalline nickel alloy for superconducting tapes by ion assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Xiong, Xuming; Winkler, Dag

    2000-07-01

    The long deposition time of sharply textured buffer layer was the main obstacle for the ion beam assisted deposition (IBAD) process to go to large scale fabrication of superconducting tapes. This paper shows that this obstacle can be overcome. (002)-oriented, sharply-textured CeO 2 buffer layers with (111) phi-scan full width of half maximum (FWHM) of 10° were deposited by ion beam assisted pulsed laser deposition (PLD) on polycrystalline Hastelloy C in 10 min. The deposition rate was about 3 nm/s. CeO 2 film surface was smooth and free of cracks compared with film by inclined substrate deposition (ISD). The IBAD was carried out at small ion-to-atom ratio values, which resulted in CeO 2 (200) plane aligned along the incident plane of the ion beam. The Jc of Y 1Ba 2Cu 3O 7- δ (YBCO) film deposited on the buffer layer was 7.3×10 5 A/cm 2.

  19. In situ Pulsed Laser Deposition of C-Axis Oriented MgB2 Films and Their Characterization

    NASA Technical Reports Server (NTRS)

    Shinde, Sanjay; Lakew, Brook; Ogale, S. B.; Kulkarni, V. N.; Kale, S. N.; Venkatesan, T.

    2004-01-01

    The recent discovery of an intermetallic superconductor MgB2 has renewed interest in the area of superconductivity not only because of fundamental understanding of superconductivity but also due to its potential applicability in devices such as thermal detectors. Considerable amount of research has been devoted to obtain MgB2 films by an all in situ growth technique. We have grown MgB2 thin films by an all in situ pulsed laser deposition process from pure B and Mg targets. Ultrathin layers of B and Mg were deposited in a multilayer configuration. Hundreds of such Mg-B bilayers with a capping Mg layer on the top were deposited on sapphire substrate. These depositions were done in high vacuum (approx. 10(exp -7) Torr) and at room temperature. After deposition, such a configuration was annealed at high temperature for a short time in a forming gas (4% H2 in Ar). The best films, obtained by this procedure, showed superconducting transition temperature approx. 30 K. These films have been characterized by x-ray diffraction, Rutherford Backscattering Spectrometry, AC susceptibility-, resistivity- (with and without magnetic field) and 1/f noise-measurements. The physical properties of these films will be presented and discussed.

  20. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Fang, Xu; Mak, C. L.; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-01

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  1021 cm‑3 with the lowest corresponding resistivity of 2.41  ×  10‑4 Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range.

  1. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region.

    PubMed

    Fang, Xu; Mak, C L; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-01

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  10(21) cm(-3) with the lowest corresponding resistivity of 2.41  ×  10(-4) Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range. PMID:27054885

  2. Ferromagnetic semiconductor InMnAs layers grown by pulsed laser deposition on GaAs

    NASA Astrophysics Data System (ADS)

    Danilov, Yu A.; Kudrin, A. V.; Vikhrova, O. V.; Zvonkov, B. N.; Drozdov, Yu N.; Sapozhnikov, M. V.; Nicolodi, S.; Zhiteytsev, E. R.; Santos, N. M.; Carmo, M. C.; Sobolev, N. A.

    2009-02-01

    InMnAs layers were grown in a quartz reactor by YAG : Nd pulsed laser ablation of solid targets (InAs and Mn) in hydrogen and arsine flow. The crystal quality and the phase composition were analysed by x-ray diffraction. The electrical properties were derived from the Hall effect measurements. The InMnAs magneto-optical and magnetic properties were studied by means of the Kerr effect, alternating gradient field magnetometry and ferromagnetic (FM) resonance measurements. The dependence of the electrical and magnetic properties of the layers on the Mn content was investigated. The InMnAs layers exhibit FM properties at temperatures at least up to 300 K.

  3. Pulsed laser deposition of ferroelectric thin films in conjunction with superconducting oxides

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Sengupta, L. C.; Demaree, J. D.; Kosik, W.

    1994-12-01

    The possibility of combining ferroelectrics and superconductors has been of interest for use in memory storage devices. Additionally, superconductors offer crystal structures compatible to the epitaxial growth of the ferroelectric, Ba(0.6)Sr(0.4)TiO3 (BSTO), which is cubic at this stoichiometry. BSTO has a lattice constant of 3.94 A as compared to the superconducting Pr(2 - x)Ce(x)CuO4 tetragonal single crystal which also has a lattice constant of a = 3.94 A. (minor variations with Cerium content). In this study, ferroelectric thin films of BSTO were deposited on single crystals of Pr2CuO4 and Pr(2 - x)Ce(x)CuO4. The optical constants of the substrates, single crystals of Pr2CuO4 and Pr(2 - x)Ce(x)CuO4, were determined using Variable Angle Spectroscopic Ellipsometry (VASE) and the composition and crystal structure were examined using Rutherford Backscattering Spectrometry (RBS) with ion beam channeling. The substrate/film interfaces and the compositional variation in the films were also studied with RBS and with SEM/EDS. Glancing angle x-ray diffraction was used to verify the epitaxial nature of the films. The effect of the deposition parameters (laser repetition rate, oxygen backfill pressure, and deposition geometry) on the quality of the films was experimented with previously and only the optimized parameters were used.

  4. Stoichiometry of LaAlO3 films grown on SrTiO3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Golalikhani, M.; Lei, Q. Y.; Chen, G.; Spanier, J. E.; Ghassemi, H.; Johnson, C. L.; Taheri, M. L.; Xi, X. X.

    2013-07-01

    We have studied the stoichiometry of epitaxial LaAlO3 thin films on SrTiO3 substrate grown by pulsed laser deposition as a function of laser energy density and oxygen pressure during the film growth. Both x-ray diffraction (θ-2θ scan and reciprocal space mapping) and transmission electron microscopy (geometric phase analysis) revealed a change of lattice constant in the film with the distance from the substrate. Combined with composition analysis using x-ray fluorescence we found that the nominal unit-cell volume expanded when the LaAlO3 film was La-rich, but remained near the bulk value when the film was La-poor or stoichiometric. La excess was found in all the films deposited in oxygen pressures lower than 10-2 Torr. We conclude that the discussion of LaAlO3/SrTiO3 interfacial properties should include the effects of cation off-stoichiometry in the LaAlO3 films when the deposition is conducted under low oxygen pressures.

  5. Industrially scaled pulsed laser deposition based coating techniques for the realization of hemocompatible surfaces for blood contact applications

    NASA Astrophysics Data System (ADS)

    Lackner, Juergen M.; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Czarnowska, Elzbieta; Bruckert, Franz

    2008-05-01

    Non-thrombogenic blood contacting surfaces and appropriate blood flow characteristics are essential for clinical application. State-of-the-art coatings are based on heparin and struggle with the problem of bleeding. Thus, there is increasing demand for developing new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low due to the applied substrate materials of low temperature resistance (mostly polymers). Under these circumstances, adequate film structure and high adhesion can be reached by the Pulsed Laser Deposition at room temperature (RT-PLD), which was developed to an industrial-scaled process at Laser Center Leoben. This process was applied to deposit Ti, TiN, TiCN and diamond-like carbon (DLC) on polyurethane, titanium and silicon substrates to study the biological interactions to blood cells and the kinetic mechanism of eukaryote cell attachment. Besides high biological acceptance, distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents.

  6. Pulsed laser deposition of La1-xSrxMnO3: thin-film properties and spintronic applications

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayani; van Dijken, Sebastiaan

    2014-01-01

    Materials engineering on the nanoscale by precise control of growth parameters can lead to many unusual and fascinating physical properties. The development of pulsed laser deposition (PLD) 25 years ago has enabled atomistic control of thin films and interfaces and as such it has contributed significantly to advances in fundamental material science. One application area is the research field of spintronics, which requires optimized nanomaterials for the generation and transport of spin-polarized carriers. The mixed-valence manganite La1-xSrxMnO3 (LSMO) is an interesting material for spintronics due to its intrinsic magnetoresistance properties, electric-field tunable metal-insulator transitions, and half-metallic band structure. Studies on LSMO thin-film growth by PLD show that the deposition temperature, oxygen pressure, laser fluence, strain due to substrate-film lattice mismatch and post-deposition annealing conditions significantly influence the magnetic and electrical transport properties of LSMO. For spintronic structures, robust ferromagnetic exchange interactions and metallic conductivity are desirable properties. In this paper, we review the physics of LSMO thin films and the important role that PLD played in advancing the field of LSMO-based spintronics. Some specific application areas including magnetic tunnel junctions, multiferroic tunnel junctions and organic spintronic devices are highlighted, and the advantages, drawbacks and opportunities of PLD-grown LSMO for next-generation spintronic devices are discussed.

  7. Mechanical properties improvement of pulsed laser-deposited hydroxyapatite thin films by high energy ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Pelletier, H.; Müller, D.; Broll, N.; Mille, P.; Ristoscu, C.; Mihailescu, I. N.

    2002-01-01

    Major problems in the hydroxyapatite (HA), Ca 5(PO 4) 3OH, thin films processing still keep the poor mechanical properties and the lack in density. We present a study on the feasibility of high energy ion-beam implantation technique to densify HA bioceramic films. Crystalline HA films were grown by pulsed laser deposition (PLD) method using an excimer KrF ∗ laser ( λ=248 nm, τ FWHM≥20 ns). The films were deposited on Ti-5Al-2.5Fe alloys substrates previously coated with a ceramic TiN buffer layer. After deposition the films were implanted with Ar + ions at high energy. Optical microscopy (OM), white light confocal microscopy (WLCM), grazing incidence X-ray diffraction (GIXRD) and Berkovich nanoindentation in normal and scratch options have been applied for the characterization of the obtained structures. We put into evidence an enhancement of the mechanical characteristics after implantation, while GIXRD measurements confirm that the crystalline structure of HA phase is preserved. The improvement in mechanical properties is an effect of a densification after ion treatment as a result of pores elimination and grains regrowth.

  8. Optimized pulsed laser deposition by wavelength and static electric field control: The case of tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Patsalas, P.; Kaziannis, S.; Kosmidis, C.; Papadimitriou, D.; Abadias, G.; Evangelakis, G. A.

    2007-06-01

    We report on the application of a static (dc) electric field in the plume region during the pulsed Nd doped yttrium aluminum garnet laser deposition (PLD) of tetrahedral amorphous carbon (ta-C) films in vacuum ambient (pressure=10-4-10-3Pa), where the working pressure is exclusively due to ablation vapor. This approach is strikingly different from the plasma- or ion-beam-assisted PLD because the mean free path at this pressure is by far longer than the target to substrate distance. Thus, the electric field interacts with individual ionized species invoking ion acceleration and gas-phase reactions among different ionized species. These phenomena are clearly dependent on the laser wavelength (first, second, or third harmonic, λ =1064, 532, and 355nm, respectively) used for the ablation. We found that the application of the electric field causes surface smoothing (the roughness decreases from about 1to0.4nm) and faster deposition rate (from about 2to7nm/min) for the second and third harmonics. In addition, the phenomena are less intense in the case of the first harmonic due to the low concentration of ionized species in the plume. In addition, in the case of PLD using λ =532nm, the electric field improves the film's density (from 2.60to2.95g/cm3). The correlations found are discussed in terms of the ablated species and the deposition mechanisms of the ta-C.

  9. Optical and microwave properties of CaBi4Ti4O15 ferroelectric thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Emani, Sivanagi Reddy; Joseph, Andrews; Raju, K. C. James

    2016-05-01

    Transparent CaBi4Ti4O15 (CBTi) ferroelectric thin films are deposited by pulsed laser deposition method. The structural, optical and microwave dielectric properties were investigated. CBTi thin films had polycrystalline bismuth-layered perovskite structure and exhibited excellent optical properties. The X-ray analysis of the thin film demonstrates the phase formation and crystallinity. The optical transmission studies show that film is transparent in VIS-NIR region with a direct band gap of 3.53 EV. Morphological studies provide surface roughness as 3 mm. Dielectric constant and loss factors were 48 and 0.060 respectively, at 10GHz. These results suggest that CBTi thin films are promising multifunctional materials for applications in optoelectronic and microwave devices.

  10. Coating of meso-porous metallic membranes with oriented channel-likefine pores by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mukherji, D.; Lackner, J.; Wanderka, N.; Kardjilov, N.; Näth, O.; Jäger, S.; Schmitz, F.; Rösler, J.

    2008-02-01

    There is increasing demand to functionalize meso- and nanoporous materials by coating and make the porous substrate biocompatible or environmentally friendly. However, coating on a meso-porous substrate poses great challenges, especially if the pore aspect ratio is high. We adopted the pulsed laser deposition (PLD) method to coat Ni3Al-based meso-porous membranes, which were fabricated from a single-crystal Ni-based superalloy by a unique selective phase dissolution technique. These membranes were about 250 µm thick and had channel-like pores (~200 nm wide) with very high aspect ratio. Two different coating materials, i.e. diamond-like carbon (DLC) and titanium, were used to coat these membranes. High energy C or Ti ions, produced in the plasma plume by the PLD process, penetrated the channel-like pores and deposited coatings on the pore walls deep inside the membrane. The thickness and the quality of coatings on the pore walls were examined using the dual-beam system. The coating thickness, of the order of 50 nm, was adherent to the pore walls and was quite uniform at different depths. The carbon and the Ti deposition behaved quite similarly. The preliminary experiments showed that the PLD is an adequate method for coating fine open cavities of complex geometry. Simulations based on stopping and the range of ions in matter (SRIM) calculations helped in understanding the deposition processes on pore walls at great depths.

  11. Mechanical and tribological characterization of tetrahedral diamond-like carbon deposited by femtosecond pulsed laser deposition on pre-treated orthopaedic biomaterials

    NASA Astrophysics Data System (ADS)

    Loir, A.-S.; Garrelie, F.; Donnet, C.; Subtil, J.-L.; Belin, M.; Forest, B.; Rogemond, F.; Laporte, P.

    2005-07-01

    Femtosecond pulsed laser deposition (PLD) has been performed using a mode-locked Ti:sapphire laser including an amplification stage (150 fs, 800 nm, 1 kHz) to deposit tetrahedral-amorphous carbon films (ta-C) on AISI 316L stainless steel and ultra high molecular weight polyethylene, in perspective to extend the wear resistance of materials used in hip joints. Ta-C films have been elaborated in high vacuum conditions at room temperature. The diamond-like coated silicon substrates exhibit high wear resistance (in the 10 -8-10 -9 mm 3 (N m) -1 range) with moderate hardness (in the 20-30 GPa range), which may be favorable for the accommodation motion between contacting surfaces in a hip joint. In situ sputter cleaning of the orthopaedic substrates in argon plasma prior to carbon deposition has been investigated, leading to the enhancement of the adhesion of the films onto the stainless steel substrates. The adhesion properties of films deposited in various conditions on metallic substrates have been studied by tensile tests. The tribological behavior of the coatings deposited on cleaned substrates have been widely investigated in a pin-on-flat configuration in ambient air and Ringer solution. Finally, a DLC thin film with an homogeneous thickness has been deposited on hemispherical surface of 22.2 mm in diameter of a stainless steel femoral head of a hip prosthesis, whose wear behavior will be quantified using a hip joint simulator during one million of cycles (corresponding to the human activity during one year).

  12. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  13. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  14. Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces

    SciTech Connect

    Carr, C W; Cross, D; Feit, M D; Bude, J D

    2008-10-24

    Laser-induced damage initiation in silica has been shown to follow a power-law behavior with respect to pulse-length. Models based on thermal diffusion physics can successfully predict this scaling and the effect of pulse shape for pulses between about 3ns and 10ns. In this work we use sophisticated new measurement techniques and novel pulse shape experiments to test the limits of this scaling. We show that simple pulse length scaling fails for pulses below about 3ns. Furthermore, double pulse initiation experiments suggest that energy absorbed by the first pulse is lost on time scales much shorter than would be predicted for thermal diffusion. This time scale for energy loss can be strongly modulated by maintaining a small but non-zero intensity between the pulses. By producing damage with various pulse shapes and pulse trains it is demonstrated that the properties of any hypothetical thermal absorber become highly constrained.

  15. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  16. Local Structure and Electrical Performance of Pulsed Laser Deposited CdTe/CdS Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Arya; Lesinski, Darren; Cerqueira, Luis; Sahiner, Mehmet; Sahiner-Amscl Team

    2015-03-01

    The photovoltaic thin films of CdS/CdTe were prepared by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass. The local structural variations in the thin films around Cd atom upon variations in the thin film growth parameters were investigated by X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS) and x-ray diffraction. X-ray absorption spectroscopy measurements were performed at the National Synchrotron Light Source of Brookhaven National Laboratory. The effect of the thicknesses of the CdS and CdTe layers, laser energy and the substrate temperature on the local crystal structure and coordination around the Cd atoms were investigated through quantitative multiple scattering analysis and modeling of the x-ray absorption spectroscopy data. The induced local structural modifications upon varying synthesis conditions are correlated with the electrical performance of these photovoltaic thin-films. The quantitative multiple scattering analyses and modeling of X-ray absorption spectroscopy data revealed the local environment around the Cd atoms are highly sensitive to thin film deposition parameters and the variations of the Cd local structure influences interface quality consequently, affect the electrical performance of these photovoltaic thin films. This work is supported by NSF Award #:DMI-0420952 and Research Corporation Award #:CC6405 and New Jersey Space Grant Consortium.

  17. Thin-film growth of (110) rutile TiO2 on (100) Ge substrate by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshihisa; Nagata, Takahiro; Yamashita, Yoshiyuki; Nabatame, Toshihide; Ogura, Atsushi; Chikyow, Toyohiro

    2016-06-01

    The deposition conditions of (100) rutile TiO2 grown on p-type (100) Ge substrates by pulsed laser deposition (PLD) were optimized to improve the electrical properties of the TiO2/Ge structure. Increasing the substrate temperature (T sub) enhanced the grain growth, the surface roughness of the film, and Ge diffusion into the TiO2 layer. The growth rate, which was controlled by the laser density in PLD (L d), affected the Ge diffusion. L d of 0.35 J/cm2 (0.37 nm/min) enhanced the Ge diffusion and improved the crystallinity and surface roughness at a temperature of 450 °C, at which GeO x undergoes decomposition and desorption. However, the Ge diffusion into TiO2 degraded the electrical properties. By using the optimized conditions (L d = 0.7 J/cm2 and T sub = 420 °C) with postannealing, the TiO2/Ge structure showed an improvement in the leakage current of 3 orders of magnitude and the capacitance–voltage property characteristics indicated the formation of a p–n junction.

  18. Development of microstructure in Cr and Cr/CoCrPt films made by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Shima, M.; Ross, C. A.

    2003-01-01

    Cr films and Cr/CoCrPt bilayer films have been grown using ion-beam-assisted pulsed laser deposition (PLD). High mobility conditions such as a substrate temperature above 350 °C, a low deposition rate, and a high laser energy promote the formation of a {100} bcc crystallographic preferred orientation in the Cr layer, while a {110}-oriented film is formed under other conditions. The {100} orientation can be formed at lower temperatures if the film is bombarded by energetic Ar ions during growth. CoCrPt grows with the hcp-{112¯0} orientation on bcc-Cr {100} underlayers, which is the same epitaxial relationship that occurs in sputtered Cr/Co-alloy films used in hard disk recording media. PLD CoCrPt films also have magnetic properties broadly similar to those of sputtered films. The PLD film microstructure development is interpreted in terms of the preferential nucleation of {100}-oriented Cr crystals during the early stages of film growth.

  19. Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.; Salim, Mohammad; Kaur, Davinder

    2016-04-01

    Zinc titanate (ZnTiO3) ceramics were prepared by conventional solid state reaction method using ZnO and TiO2 in a molar ratio of 1:1 with optimized parameters. It was found that the sample sintered at 800 °C for 12 h exhibit single hexagonal phase of ZnTiO3. ZnTiO3 thin film have been deposited on ITO coated glass substrate using pulsed laser deposition (PLD) technique employing a KrF laser source (λ = 248 nm). In present work, the effect of substrate temperature, which leads to transformation of hexagonal phase to cubic phase, has been studied. The XRD pattern revealed that pure hexagonal phase of ZnTiO3 appear upto 400 °C and more increment in substrate temperature leads to transformation of hexagonal phase to cubic phase. We have observed the blue shift in absorption edge at lower temperature. When the substrate temperature increases from 300 to 400 °C the band gap decreases due to strong hexagonal phase, but more increment in substrate temperature increases the band gap causes by change of phase from hexagonal to cubic. The dielectric constant of ZnTiO3 thin film increases as the substrate temperature increases due to the enhancement in crystallinity and improved morphology.

  20. Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    SciTech Connect

    Tite, T.; Donnet, C.; Loir, A.-S.; Reynaud, S.; Michalon, J.-Y.; Vocanson, F.; Garrelie, F.

    2014-01-27

    We have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated.

  1. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.

    2014-05-01

    Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm2V-1s-1, a subthreshold swing of 0.29 V/decade and an on/off current ratio of 109.

  2. Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition

    SciTech Connect

    Jacimovic, J; Gaal, R; Magrez, Arnaud; Forro, Laszlo; Regmi, Murari; Eres, Gyula

    2013-01-01

    The temperature dependent resistivity and thermo-electric power of Cr-N codoped TiO2 were compared with that of single element N and Cr doped and undoped TiO2 using epitaxial anatase thin films grown by pulsed laser deposition on (100) LaAlO3 substrates. The resistivity plots and especially the thermoelectric power data confirm that codoping is not a simple sum of single element doping. However, the negative sign of the Seebeck coefficient indicates electron dominated transport independent of doping. The narrowing distinction among the effects of different doping methods combined with increasing resistivity of the films with improving crystalline quality of TiO2 suggest that structural defects play a critical role in the doping process.

  3. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    SciTech Connect

    Onbasli, M. C. Kim, D. H.; Ross, C. A.; Kehlberger, A.; Jakob, G.; Kläui, M.; Chumak, A. V.; Hillebrands, B.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation of the origins of novel magnetic phenomena and magnetization dynamics.

  4. Pulsed laser deposition of epitaxial BeO thin films on sapphire and SrTiO{sub 3}

    SciTech Connect

    Peltier, Thomas; Takahashi, Ryota; Lippmaa, Mikk

    2014-06-09

    Epitaxial beryllia thin films were grown by pulsed laser deposition on Al{sub 2}O{sub 3}(001) and SrTiO{sub 3}(111) substrates. Nearly relaxed epitaxial films were obtained on both substrates at growth temperatures of up to about 600 °C. Crystalline films with expanded lattice parameters were obtained even at room temperature. The maximum growth temperature was limited by a loss of beryllium from the film surface. The volatility of beryllium appeared to be caused by the slow oxidation kinetics at the film surface and the re-sputtering effect of high-energy Be and BeO species in the ablation plume. Time-of-flight plume composition analysis suggested that the target surface became Be metal rich at low oxygen pressures, reducing the growth rate of beryllia films.

  5. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    SciTech Connect

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David; Chen, Song; Song, Xueyan; Ferrari, Piero; Cabrera, Alejandro L.

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  6. Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Tite, T.; Donnet, C.; Loir, A.-S.; Reynaud, S.; Michalon, J.-Y.; Vocanson, F.; Garrelie, F.

    2014-01-01

    We have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated.

  7. Conducting Si-doped γ-Ga2O3 epitaxial films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Matsuyama, Keitaro; Yoshimatsu, Kohei; Ohtomo, Akira

    2015-07-01

    We report structural, electrical, and optical properties of Si-doped γ-Ga2O3 films epitaxially grown on (100) MgAl2O4 substrate by pulsed-laser deposition. The γ-Ga2O3:Si films of a metastable spinel phase had neither secondary phase nor rotation domain. A highly doped film exhibited n-type conductivity with a carrier concentration of 1.8×1019 cm-3 and a Hall mobility of 1.6 cm2 V-1 s-1 at 300 K. Donor activation energy was estimated to be less than 7 meV from nearly temperature-independent transport properties down to 77 K. The successful impurity doping indicates that γ-Ga2O3 can be used as an n-type wide-band-gap semiconductor.

  8. Controlled tuning of thin film deposition of IrO2 on Si using pulsed laser ablation technique

    NASA Astrophysics Data System (ADS)

    Koshy, Abraham M.; Bhat, Shwetha G.; Kumar, P. S. Anil

    2016-05-01

    We have successfully grown a stable phase of polycrystalline IrO2 on Si (100) substrate. We have found that the phase of IrO2 can be controllably tuned to obtain either Ir or IrO2 using pulsed laser ablation technique. O2 conditions during the deposition influences the phase directly and drastically whereas annealing conditions do not show any variation in the phase of thin film. X-ray diffraction and X-ray photoemission experiments confirm both Ir and IrO2 can be successively grown on Si using IrO2 target. Also, the morphology is found to be influenced by the O2 conditions.

  9. Structure, optical and magnetic properties of Bi1-xEuxFeO3 films fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Deng, Hongmei; Zhu, Liping; Zhang, Kezhi; Meng, Xiankuan; Cao, Huiyi; Yang, Pingxiong; Chu, Junhao

    2014-10-01

    Multiferroic Bi1-xEuxFeO3 (BEFOx, x = 0, 0.03, 0.05, 0.07, 0.10) films were grown on (1 0 0) SrTiO3 substrates by pulsed laser deposition. X-ray diffraction analysis indicates the strong (h 0 0) peaks, and no impurity phases are observed. Atomic force microscopy shows the root mean square roughness of the films is less than 0.87 nm, which indicates the BEFOx films are smooth and uniform. Transmittance spectra demonstrate that the optical band gap of the BEFOx films decreases with increasing Eu content. The saturation magnetization Ms of the BEFOx films is significantly enhanced with increasing Eu content, which provides potential applications in magnetoelectric memory devices and data storage media.

  10. Design and development of an ultra-compact drum-shaped chamber for combinatorial pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Katayama, M.; Itaka, K.; Matsumoto, Y.; Koinuma, H.

    2006-01-01

    We have designed a compact combinatorial pulsed laser deposition (PLD) chamber as a building block of a desktop laboratory for advanced materials research. Development of small-size systems for the growth and characterization of films would greatly help in interconnecting a variety of analytical tools for rapid screening of advanced materials. This PLD chamber has four special features: (1) a drum-shaped growth chamber, (2) a waterwheel-like combinatorial masking system, (3) a multi-target system having one feedthrough, and (4) a small reflection high-energy electron diffraction (RHEED) system. The performance of this system is demonstrated by the RHEED intensity oscillation during homoepitaxial growth of SrTiO 3 as well as by simultaneous fabrication of a ternary phase diagram of rare earth-doped Y 2O 3 phosphors.

  11. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  12. Effect of Cumulative Nanosecond Laser Pulses on the Plasma Emission Intensity and Surface Morphology of Pt- and Ag-Ion Deposited Silicon

    NASA Astrophysics Data System (ADS)

    Khurram, Siraj; Muhammad Zakria, Butt; Muhammad, Khaleeq-Urrahman; Muhammad Shahid, Rafique; Saima, Rafique; Fakhar-Un-Nisa

    2012-04-01

    In this work, the laser induced plasma plume characteristics and surface morphology of Pt- and Ag-ion deposited silicon were studied. The deposited silicon was exposed to cumulative laser pulses. The plasma plume images produced by each laser shot were captured through a computer controlled image capturing system and analyzed with image-J software. The integrated optical emission intensity of both samples showed an increasing trend with increasing pulses. Ag-ion deposited silicon showed higher optical emission intensity as compared to Pt-ion deposited silicon, suggesting that more damage occurred to the silicon by Ag ions, which was confirmed by SRIM/TRIM simulations. The surface morphologies of both samples were examined by optical microscope showing thermal, exfoliational and hydrodynamical sputtering processes along with the re-deposition of the material, debris and heat affected zones' formation. The crater of Pt-ion deposited silicon was deeper but had less lateral damage than Ag- ion deposited silicon. The novel results clearly indicated that the ion deposited silicon surface produced incubation centers, which led to more absorption of incident light resulting into a higher emission intensity from the plasma plume and deeper crater formation as compared to pure silicon. The approach can be effectively utilized in the laser induced breakdown spectroscopy technique, which endures poor limits of detection.

  13. Structural and electrical properties of different vanadium oxide phases in thin film form synthesized using pulsed laser deposition

    SciTech Connect

    Majid, S. S. Rahman, F.; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.

    2015-06-24

    We present here the structural and electrical properties of the thin films of V{sub 2}O{sub 3} (Vanadium sesquioxide) and V{sub 5}O{sub 9}. Both these oxide phases, V{sub 2}O{sub 3} and V{sub 5}O{sub 9}, have beenachieved on (001) orientedSi substrate using the V{sub 2}O{sub 5} target by optimizing the deposition parameters using pulsed laser deposition technique (PLD).Deposited films were characterized by X-ray diffraction(XRD)and four probe temperature dependent resistivity measurements. XRD studies reveal the V{sub 2}O{sub 3} and V{sub 5}O{sub 9} phases and the amount of strain present in both these films. The temperature dependency of electrical resistivity confirmed the characteristic metal-insulator transitions (MIT) for both the films, V{sub 2}O{sub 3} and V{sub 5}O{sub 9}.

  14. Spectroscopic characterization of TiC x films produced by pulsed laser deposition in CH 4 environments

    NASA Astrophysics Data System (ADS)

    Soto, G.

    2004-05-01

    Titanium carbide (TiC x) thin films were grown on (1 0 0)-Si substrates by a pulsed laser deposition (PLD) method using a Ti target in methane gas. The films are characterized in situ by Auger (AES), electron energy loss (EELS) and X-ray photoelectron spectroscopies (XPS). It was found that the reaction between the ablated Ti species and CH 4 in the plasma plume influenced the C:Ti ratio. XPS numerical fitting for the C 1s transition revealed three Gaussians components. The main component, binding energy of 282.8 eV, is assigned to C making bonds with Ti, like in stoichiometric TiC. The second component, binding energy of 284.9 eV, is assigned to CC bonds. A third component is found for films deposited at pressures higher than 25 mTorr at 286.5 eV. A post-deposition thermal treatment demonstrates that the TiC and CC peaks are very stable, whereas, the third peak tends to decrease for temperatures higher than 200 °C. It is assumed that this last component is due to carbonyl complexes remnant in films. Finally, it can be concluded that the titanium carbide films processed by PLD is a chemically inhomogeneous material; mostly composed of sub-stoichiometric TiC and particulates of segregated carbon.

  15. Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ishii, Akihiro; Nakamura, Yoko; Oikawa, Itaru; Kamegawa, Atsunori; Takamura, Hitoshi

    2015-08-01

    Single-phase rutile-type TiO2 thin films with a high refractive index (n) and a low extinction coefficient (k) prepared on glass are expected to improve the performance of anti-reflection coatings. In this study, TiO2 thin films were prepared by the pulsed laser deposition (PLD) method at temperatures ranging from room temperature to 600 °C under an oxygen partial pressure of 1-9 Pa or a 10-5 Pa vacuum, and their crystal structure, microstructure and optical properties were investigated. A single-phase rutile-type TiO2 thin film was successfully prepared on a glass substrate by depositing at room temperature in a vacuum followed by post-annealing at 450 °C in air. A nanocrystalline oxygen-deficient phase in the as-deposited films plays an important role in the formation of the single rutile phase during post-annealing. The single-phase rutile-type TiO2 thin films showed excellent optical properties, with n = 3.14 and k < 0.05 at λ = 400 nm.

  16. Epitaxial growth of non-polar m-plane ZnO thin films by pulsed laser deposition

    SciTech Connect

    Li, Yang; Zhang, Yinzhu; He, Haiping; Ye, Zhizhen; Jiang, Jie; Lu, Jianguo; Huang, Jingyun

    2012-09-15

    Highlights: ► Unique m-plane ZnO films were deposited on m-plane sapphire substrate by PLD. ► The epitaxial relationship between the film and the substrate was studied. ► The surface morphology showed stripes due to in-plane anisotropy. ► PL spectra showed strong NBE emission and weak deep level emission. -- Abstract: Non-polar ZnO thin films were deposited on m-plane sapphire substrates by pulsed laser deposition at various temperatures from 300 to 700 °C. The effects of growth temperature on surface morphology, structural, electrical, and optical properties of the films were investigated. All the films exhibited unique m-plane orientation indicated by X-ray diffraction and transmission electron microscopy. Based on the scanning electron microscopy and atomic force microscopy, the obtained films had smooth and highly anisotropic surface, and the root mean square roughness was less than 10 nm above 500 °C. The maximum electron mobility was ∼18 cm{sup 2}/V s, with resistivity of ∼0.26 Ω cm for the film grown at 700 °C. Room temperature photoluminescence of the m-plane films was also investigated.

  17. Auger electron spectroscopy study and depth profile analyses of the CaS:Eu2+ pulsed laser deposited thin luminescent films

    NASA Astrophysics Data System (ADS)

    Nyenge, R. L.; Swart, H. C.; Ntwaeaborwa, O. M.

    2016-06-01

    This paper presents the results of a study of the chemical composition, depth profile analyses of pulsed laser deposited CaS:Eu2+ thin films grown at different substrate temperatures. Using Auger electron spectroscopy, we have shown that the thin film grown in an argon atmosphere shows sulfur deficiency as the substrate temperature is increased from 200 to 650 °C.

  18. Fabrication and characterization of CuxSi1-x films on Si (111) and Si (100) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Wu, Jun; He, Zhiqiang; Xie, Jun; Lu, Jingqi; Tu, Rong; Zhang, Lianmeng; Shi, Ji

    2016-05-01

    The CuxSi1-x thin films have been successfully fabricated by pulsed laser deposition (PLD). The influences of laser energy fluency (I0) and deposition temperature (Td) on the phase structure were investigated. The results show that Cu deposited on Si (001) at I0 = 0.5-2.0 J/cm2, and η"-Cu3Si formed on Si (111) at I0 = 1.0-2.0 J/cm2. The films were consisted of Cu, η'-Cu3Si, ɛ-Cu15Si4 and δ-Cu0.83Si0.17 at Td = 100-500 °C on Si (001). The films were the single phase of η-Cu3Si at Td = 700 °C. In the case of Si (111), the phase structures transformed from Cu to Cu + η'-Cu3Si to η'-Cu3Si to η'-Cu3Si + η-Cu3Si with the increasing of Td. Rectangular grains were formed on Si (001), whereas triangular grains on Si (111). Cu (001) film was epitaxially grown on Si (001) at I0 = 1.5 J/cm2 and Td = 20 °C. η-Cu3Si (001) epitaxial layer was formed on Si (111) at I0 = 1.5 J/cm2 and Td = 700 °C. The epitaxial relationships of Cu (001)[100]//Si (001)[110] and η-Cu3Si (001)[-110]//Si (111)[11-2] were identified.

  19. Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments.

    PubMed

    May-Smith, T C; Muir, A C; Darby, M S B; Eason, R W

    2008-04-10

    We report on the design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a continuous wave CO(2) laser beam in pulsed laser deposition experiments. We discuss here three potential designs for homogenizing prisms and use ray-tracing modeling to compare their operation to an alternative square-tapered beam-pipe design. A square-pyramidal tetra-prism design was found to be optimal and was subjected to modeling and experimental testing to determine the influence of interference and diffraction effects on the homogeneity of the resultant intensity profile produced at the substrate surface. A heat diffusion model has been used to compare the temperature distributions produced when using various different source intensity profiles. The modeling work has revealed the importance of substrate thickness as a thermal diffuser in producing a resultant homogeneous substrate temperature distribution. PMID:18404174

  20. Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes

    SciTech Connect

    Sanchez-Ake, C.; Camacho, R.; Moreno, L.

    2012-08-15

    Thin films of ZnO doped with manganese were deposited by double-beam, combinatorial pulsed laser deposition. The laser-induced plasmas were studied by means of fast photography and using a Langmuir probe, whereas the films were analyzed by x-ray-diffraction and energy-dispersive x-ray spectroscopy. The effect of the relative delay between plasma plumes on the characteristics of the films was analyzed. It was found that using this parameter, it is possible to control the dopant content keeping the oriented wurtzite structure of the films. The minimum content of Mn was found for plume delays between 0 and 10 {mu}s as the interaction between plasmas scatters the dopant species away from the substrate, thus reducing the incorporation of Mn into the films. Results suggest that for delays shorter than {approx}100 {mu}s, the expansion of the second plume through the region behind the first plume affects the composition of the film.

  1. The investigation of Ni-Al and Co-Al based layered double hydroxides and their derived mixed oxides thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Birjega, R.; Matei, A.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Colceag, D.; Zavoianu, R.; Pavel, O. D.; Dinescu, M.

    2013-08-01

    Layered Double Hydroxides (LDHs) are host-guest materials consisting of positively charged metal/hydroxides sheets with intercalated anions and water molecules. LDHs can be described by the generic formula [[ṡmHO and their structure is formed by layers containing divalent cations (M2+: Mg, Zn, Ni, Co,…) and trivalent cations (M3+: Al, Ga, Cr,…) with an octahedral coordination. LDH films with well-oriented structure and controlled thickness are needed for numerous applications like sensors, protective coatings, catalysts, components for optoelectronics etc. In this work, we report on the deposition of Ni-Al and Co-Al based LDHs and their derived mixed oxides by pulsed laser deposition as a new approach to fabricate oriented LDHs or highly dispersed metallic mixed oxides. The influence of the laser characteristics, such as wavelength and fluence, on the films properties was studied. The films investigation techniques were X-Ray Diffraction, Atomic Force Microscopy, Scanning Electron Microscopy combined with energy dispersive X-ray analysis, and Secondary Ions Mass Spectrometry.

  2. Bulk heterojunction PCPDTBT:PC71BM organic solar cells deposited by emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Ge, Wangyao; McCormick, Ryan D.; Nyikayaramba, Gift; Stiff-Roberts, Adrienne D.

    2014-06-01

    Organic solar cells based on poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) were fabricated by emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE). Two different deposition modes, namely simultaneous deposition and sequential deposition, were investigated for fabricating bulk-heterojunction organic solar cells. This work demonstrates that the RIR-MAPLE sequential deposition mode provides precise ratio control for the fabrication of bulk-heterojunction organic solar cells.

  3. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    SciTech Connect

    Hunter, C. N.; Check, M. H.; Muratore, C.; Voevodin, A. A.

    2010-05-15

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  4. Coating of meso-porous metallic membranes with oriented channel-like fine pores by pulsed laser deposition.

    PubMed

    Mukherji, D; Lackner, J; Wanderka, N; Kardjilov, N; Näth, O; Jäger, S; Schmitz, F; Rösler, J

    2008-02-13

    There is increasing demand to functionalize meso- and nanoporous materials by coating and make the porous substrate biocompatible or environmentally friendly. However, coating on a meso-porous substrate poses great challenges, especially if the pore aspect ratio is high. We adopted the pulsed laser deposition (PLD) method to coat Ni(3)Al-based meso-porous membranes, which were fabricated from a single-crystal Ni-based superalloy by a unique selective phase dissolution technique. These membranes were about 250 µm thick and had channel-like pores (∼200 nm wide) with very high aspect ratio. Two different coating materials, i.e. diamond-like carbon (DLC) and titanium, were used to coat these membranes. High energy C or Ti ions, produced in the plasma plume by the PLD process, penetrated the channel-like pores and deposited coatings on the pore walls deep inside the membrane. The thickness and the quality of coatings on the pore walls were examined using the dual-beam system. The coating thickness, of the order of 50 nm, was adherent to the pore walls and was quite uniform at different depths. The carbon and the Ti deposition behaved quite similarly. The preliminary experiments showed that the PLD is an adequate method for coating fine open cavities of complex geometry. Simulations based on stopping and the range of ions in matter (SRIM) calculations helped in understanding the deposition processes on pore walls at great depths. PMID:21730712

  5. Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.

    2011-02-01

    Films based on oxides of transitional metals have semiconducting properties that make them up-to-date materials for functional electronics. The reactive pulsed laser deposition (RPLD) allows the control of thickness and stoichiometry of deposits in order to obtain semiconductor structures with accurately tailored thickness and band gap. It is very important to study electrical, structural and optical properties of these semiconducting nanometric films, as sensing characteristics strongly depend on these properties. We deposited iron oxide (Fe2O3-X; 0 <= x <= 1) and chromium oxide (Cr3-XO3-Y; 0 <= x <= 2; 0 <= y <= 2) films on <100> Si substrate by RPLD using a KrF laser. The deposited nanometric films (thickness 50-200 nm) of iron and chromium oxides have large thermo electromotive force (e.m.f.) coefficient (S). The S coefficient of iron oxide films varied in the range 0.8-1.65 mV/K in the temperature range 210-322 K. The maximum value of the S coefficient (1.65mV/K) was measured in the temperature range 270-290 K. The largest photosensitivity (F) of iron oxides films was about 44 Vc/W for white light at power density (I) of about 6×10-3 W/cm2. As regards chromium oxide films, the S coefficient varied in the range 0.30-4.5 mV/K in the temperature range 210-333 K, with the maximum of 3.5-4.5 mV/K in the temperature range 270-290 K. The largest photosensitivity of chromium oxide films was about 2.5 Vc/W at I≅6×10-3 W/cm2. Our results show that RPLD is a very simple procedure to synthesize of iron and chromium oxide nanometric films with variable stoichiometry and, consequently, with different values of their band gap result in variable the S coefficient and the photosensitivity (F). The deposited films present large thermo e.m.f. coefficient and high photosensitivity that make them up-to-date materials for photo-thermo sensors.

  6. Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.

    2010-07-01

    Films based on oxides of transitional metals have semiconducting properties that make them up-to-date materials for functional electronics. The reactive pulsed laser deposition (RPLD) allows the control of thickness and stoichiometry of deposits in order to obtain semiconductor structures with accurately tailored thickness and band gap. It is very important to study electrical, structural and optical properties of these semiconducting nanometric films, as sensing characteristics strongly depend on these properties. We deposited iron oxide (Fe2O3-X; 0 <= x <= 1) and chromium oxide (Cr3-XO3-Y; 0 <= x <= 2; 0 <= y <= 2) films on <100> Si substrate by RPLD using a KrF laser. The deposited nanometric films (thickness 50-200 nm) of iron and chromium oxides have large thermo electromotive force (e.m.f.) coefficient (S). The S coefficient of iron oxide films varied in the range 0.8-1.65 mV/K in the temperature range 210-322 K. The maximum value of the S coefficient (1.65mV/K) was measured in the temperature range 270-290 K. The largest photosensitivity (F) of iron oxides films was about 44 Vc/W for white light at power density (I) of about 6×10-3 W/cm2. As regards chromium oxide films, the S coefficient varied in the range 0.30-4.5 mV/K in the temperature range 210-333 K, with the maximum of 3.5-4.5 mV/K in the temperature range 270-290 K. The largest photosensitivity of chromium oxide films was about 2.5 Vc/W at I≅6×10-3 W/cm2. Our results show that RPLD is a very simple procedure to synthesize of iron and chromium oxide nanometric films with variable stoichiometry and, consequently, with different values of their band gap result in variable the S coefficient and the photosensitivity (F). The deposited films present large thermo e.m.f. coefficient and high photosensitivity that make them up-to-date materials for photo-thermo sensors.

  7. Growth and characterization of Cu(In,Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition

    PubMed Central

    2014-01-01

    In this work, CuIn1 - x Ga x Se2 (CIGS) thin films were prepared by nanosecond (ns)- and femtosecond (fs)-pulsed laser deposition (PLD) processes. Different film growth mechanisms were discussed in perspective of the laser-produced plasmas and crystal structures. The fs-PLD has successfully improved the inherent flaws, Cu2 - x Se, and air voids ubiquitously observed in ns-PLD-derived CIGS thin films. Moreover, the prominent antireflection and excellent crystalline structures were obtained in the fs-PLD-derived CIGS thin films. The absorption spectra suggest the divergence in energy levels of radiative defects brought by the inhomogeneous distribution of elements in the fs-PLD CIGS, which has also been supported by comparing photoluminescence (PL) spectra of ns- and fs-PLD CIGS thin films at 15 K. Finally, the superior carrier transport properties in fs-PLD CIGS were confirmed by fs pump-probe spectroscopy and four-probe measurements. The present results indicate a promising way for preparing high-quality CIGS thin films via fs-PLD. PMID:24959108

  8. Electronic transport in highly conducting Si-doped ZnO thin films prepared by pulsed laser deposition

    SciTech Connect

    Kuznetsov, Vladimir L.; Vai, Alex T.; Edwards, Peter P.; Al-Mamouri, Malek; Stuart Abell, J.; Pepper, Michael

    2015-12-07

    Highly conducting (ρ = 3.9 × 10{sup −4} Ωcm) and transparent (83%) polycrystalline Si-doped ZnO (SiZO) thin films have been deposited onto borosilicate glass substrates by pulsed laser deposition from (ZnO){sub 1−x}(SiO{sub 2}){sub x} (0 ≤ x ≤ 0.05) ceramic targets prepared using a sol-gel technique. Along with their structural, chemical, and optical properties, the electronic transport within these SiZO samples has been investigated as a function of silicon doping level and temperature. Measurements made between 80 and 350 K reveal an almost temperature-independent carrier concentration consistent with degenerate metallic conduction in all of these samples. The temperature-dependent Hall mobility has been modeled by considering the varying contribution of grain boundary and electron-phonon scattering in samples with different nominal silicon concentrations.

  9. Low temperature epitaxy of Ge-Sb-Te films on BaF2 (111) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Thelander, E.; Gerlach, J. W.; Ross, U.; Lotnyk, A.; Rauschenbach, B.

    2014-12-01

    Pulsed laser deposition was employed to deposit epitaxial Ge2Sb2Te5-layers on the (111) plane of BaF2 single crystal substrates. X-ray diffraction measurements show a process temperature window for epitaxial growth between 85 °C and 295 °C. No crystalline growth is observed for lower temperatures, whereas higher temperatures lead to strong desorption of the film constituents. The films are of hexagonal structure with lattice parameters consistent with existing models. X-ray pole figure measurements reveal that the films grow with one single out-of-plane crystal orientation, but rotational twin domains are present. The out-of-plane epitaxial relationship is determined to be Ge2Sb2Te5(0001) || BaF2(111), whereas the in-plane relationship is characterized by two directions, i.e., Ge2Sb2Te5 [-12-10] || BaF2[1-10] and Ge2Sb2Te5[1-210] || BaF2[1-10]. Aberration-corrected high-resolution scanning transmission electron microscopy was used to resolve the local atomic structure and confirm the hexagonal structure of the films.

  10. Low temperature epitaxy of Ge-Sb-Te films on BaF{sub 2} (111) by pulsed laser deposition

    SciTech Connect

    Thelander, E. Gerlach, J. W.; Ross, U.; Lotnyk, A.; Rauschenbach, B.

    2014-12-01

    Pulsed laser deposition was employed to deposit epitaxial Ge{sub 2}Sb{sub 2}Te{sub 5}-layers on the (111) plane of BaF{sub 2} single crystal substrates. X-ray diffraction measurements show a process temperature window for epitaxial growth between 85 °C and 295 °C. No crystalline growth is observed for lower temperatures, whereas higher temperatures lead to strong desorption of the film constituents. The films are of hexagonal structure with lattice parameters consistent with existing models. X-ray pole figure measurements reveal that the films grow with one single out-of-plane crystal orientation, but rotational twin domains are present. The out-of-plane epitaxial relationship is determined to be Ge{sub 2}Sb{sub 2}Te{sub 5}(0001) || BaF{sub 2}(111), whereas the in-plane relationship is characterized by two directions, i.e., Ge{sub 2}Sb{sub 2}Te{sub 5} [-12-10] || BaF{sub 2}[1-10] and Ge{sub 2}Sb{sub 2}Te{sub 5}[1-210] || BaF{sub 2}[1-10]. Aberration-corrected high-resolution scanning transmission electron microscopy was used to resolve the local atomic structure and confirm the hexagonal structure of the films.

  11. Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films

    NASA Astrophysics Data System (ADS)

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.; Raole, Prakash M.; Vala, Sudhirsinh; Jakhar, Shrichand; Basu, T. K.; Abhangi, Mitul; Makwana, Rajinikant J.

    2012-04-01

    The optical quality of the First Mirrors (FMs) of a fusion device (burning plasma experiments, ITER) deteriorates due to the erosion by charge exchange neutrals, re-deposition of the eroded material and the lattice damage by the bombardment of the high energetic particles. This degradation of the optical quality of the plasma facing components in such a harsh environment is a serious concern for the reliability of the spectroscopic based optical diagnostics using FM of a fusion device. In this paper, the effect of 8 keV Hydrogen ion beam irradiation onto the FIR reflectivity of Tungsten thin film mirror is presented. The Tungsten thin films were prepared via Pulsed Laser Deposition (PLD) technique. The Tungsten mirrors were subjected to X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for characterization. The specular reflectivities of the Tungsten mirrors before and after exposure to ion beam were recorded with Fourier Transform of Infra-Red (FTIR) technique. The ion penetration depth and straggle into Tungsten thin film and stainless steel (SS) substrate were estimated by Transport of Ions in Matter (TIRM) simulation code. The changes in post exposure IR reflectivity were interpreted in terms of these parameters.

  12. Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Kai; Jiang, Ming-Chien

    2016-09-01

    In this study, we investigated the microstructure and optical properties of hexagonal GaN (h-GaN) films grown by high-temperature pulsed laser deposition (PLD) on Si(100) and Si(111) substrates. The growth mechanism, crystallization, and surface morphology of h-GaN deposition on both Si(100) and Si(111) substrates were monitored by transmission electron microscopy (TEM) and scanning electron microscopy at various times in the growth process. Our results indicated that the h-GaN grown on Si(111) has better crystalline structure and optical properties than that on Si(100) owing to the smaller mismatch of the orientations of the Si(111) substrate and h-GaN film. On the Si(100) substrate, the growth principles of PLD and N2 plasma nitridation are the main contributions to the conversion of the cubic GaN into h-GaN. Moreover, no significant Ga–Si meltback etching was observed on the GaN/Si surface with the PLD operation temperature of 1000 °C. The TEM images also revealed that an abrupt GaN/Si interface can be obtained because of the suppression of substrate–film interfacial reactions in PLD.

  13. Improved performance of ceria-based solid oxide fuel cell using doped LaGaO3 films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhu, Zhiwen; Jiang, Guoshun; Liu, Wei

    2014-01-01

    A dense La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) film is fabricated using the pulsed laser deposition (PLD) technique on a Ce0.8Sm0.2O2-δ (SDC) electrolyte which is prepared using a co-pressing process on a NiO-SDC anode substrate. The LSGM/SDC bilayer electrolyte cell with Sm0.5Sr0.5CoO3-δ-Ce0.8Sm0.2O2-δ (SSC-SDC, 70:30 wt.%) cathode achieves significantly enhanced cell performance, yielding open circuit voltage (OCV) value of 0.89 V and maximum power density of 758 mW cm-2 at 700 °C. The electrical current leakage in the SDC single layer cell caused by the reduction of Ce4+ to Ce3+ in reducing environment has been eliminated by depositing the LSGM thin film as a blocking layer; besides, the reaction between NiO and LSGM can be prevented due to the dense SDC electrolyte layer. The influence of oxygen pressure and post-annealing temperature on the crystallinity, microstructure and surface roughness of the LSGM films are studied for obtaining a high quality film. Characterization analysis of the cell shows that the bilayer electrolyte deposited by the PLD technique have retained the chemical, mechanical and structural integrity of the cell.

  14. Pulse plating of nickel deposits

    SciTech Connect

    Stimetz, C.J.; Stevenson, M.F.

    1980-02-01

    Pulse plated and conventional nickel deposits have been compared for differences in morphology, mechanical properties, and microstructure. The deposits were obtained from nickel sulfamate, nickel chloride, and Watts nickel plating solutions. No significant differences were found in the direct and pulse current deposits from the sulfamate and chloride solutions; however, significant differences in microstructure, yield strength, and microhardness were observed in deposits from the Watts nickel solution.

  15. Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Verardi, P.; Dinescu, M.; Craciun, F.; Dinu, R.; Ciobanu, M. F.

    Oriented crystalline Pb(ZrxTi1-x)O3 (x=0.53) (PZT) thin films were deposited on metallized glass substrates by pulsed laser deposition (1060-nm wavelength Nd:YAG laser light, 10-ns pulse duration, 10-Hz repetition rate, 0.35-J/pulse and 25-J/cm2 laser fluence), from a commercial target at substrate temperatures in the range 380-400 °C. Thin films of 1-3 μm were grown on Au(111)/ Pt/NiCr/glass substrates with a rate of about 1 Å/pulse on an area of 1 cm2. The deposited PZT films with perovskite structure were oriented along the (111) direction, as was revealed from X-ray diffraction spectra. Fourier transform infrared spectroscopy (FTIR) was performed on different PZT films so that their vibrational modes could be determined. Piezoelectric d33 coefficients up to 30 pC/N were obtained on as-deposited films. Ferroelectric hysteresis loops at 100 Hz revealed a remanent polarization of 20 μC/cm2 and a coercive field of 100 kV/cm.

  16. Growth and microstructure of columnar Y-doped SrZrO{sub 3} films deposited on Pt-coated MgO by pulsed laser deposition

    SciTech Connect

    Luo, Sijun Riggs, Brian C.; Shipman, Joshua T.; Adireddy, Shiva; Sklare, Samuel C.; Chrisey, Douglas B.; Zhang, Xiaodong; Koplitz, Brent

    2015-07-21

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferred orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.

  17. In vitro dissolution and mechanical behavior of c-axis preferentially oriented hydroxyapatite thin films fabricated by pulsed laser deposition

    PubMed Central

    Kim, Hyunbin; Camata, Renato P.; Chowdhury, Shafiul; Vohra, Yogesh K.

    2010-01-01

    Owing to its resemblance to the major inorganic constituent of bone and tooth, hydroxyapatite is recognized as one of the most biocompatible materials and is widely used in systems for bone replacement and regeneration. In this study the pulsed laser deposition technique was chosen to produce hydroxyapatite with different crystallographic orientations in order to investigate some of the material properties, including its in vitro dissolution behavior, as well as mechanical properties. The crystallographic orientations of hydroxyapatite coatings can be carefully controlled, mainly by varying the energy density of the KrF excimer laser (248 nm) used for deposition. Nanoindentation results showed that highly c-axis oriented hydroxyapatite coatings have higher hardness and Young's modulus values compared with the values of randomly oriented coatings. After 24 h immersion in simulated physiological solution the overall surface morphology of the highly oriented coatings was dramatically altered. The porosity was drastically increased and sub-micron pores were formed throughout the coatings, whereas the average size of the grains in the coatings was not significantly changed. The composition of the textured hydroxyapatite coatings remained essentially unchanged. Their c-axis texture, on the other hand, was rather enhanced with an increase in immersion time. The c-axis oriented hydroxyapatite surfaces are likely to promote preferentially oriented growth through a cyclic process of dissolution and reprecipitation, followed by homoepitaxial growth. The remarkable morphological and microstructural changes after dissolution suggest a capability of highly textured hydroxyapatite as a tissue engineering scaffold with an interconnecting porous network that may be beneficial for cellular activity. PMID:20188868

  18. Interfacial Properties of Organic Semiconductor-Inorganic Magnetic Oxide Hybrid Spintronic Systems Fabricated Using Pulsed Laser Deposition.

    PubMed

    Majumdar, Sayani; Grochowska, Katarzyna; Sawczak, Miroslaw; Śliwiński, Gerard; Huhtinen, Hannu; Dahl, Johnny; Tuominen, Marjukka; Laukkanen, Pekka; Majumdar, Himadri S

    2015-10-14

    We report fabrication of a hybrid organic semiconductor-inorganic complex oxide interface of rubrene and La0.67Sr0.33MnO3 (LSMO) for spintronic devices using pulsed laser deposition (PLD) and investigate the interface structure and chemical bonding-dependent magnetic properties. Our results demonstrate that with proper control of growth parameters, thin films of organic semiconductor rubrene can be deposited without any damage to the molecular structure. Rubrene, a widely used organic semiconductor with high charge-carrier mobility and spin diffusion length, when grown as thin films on amorphous and crystalline substrates such as SiO2-glass, indium-tin oxide (ITO), and LSMO by PLD at room temperature and a laser fluence of 0.19 J/cm2, reveals amorphous structure. The Raman spectra verify the signatures of both Ag and Bg Raman active modes of rubrene molecules. X-ray reflectivity measurements indicate a well-defined interface formation between surface-treated LSMO and rubrene, whereas X-ray photoelectron spectra indicate the signature of hybridization of the electronic states at this interface. Magnetic measurements show that the ferromagnetic property of the rubrene-LSMO interface improves by >230% compared to the pristine LSMO surface due to this proposed hybridization. Intentional disruption of the direct contact between LSMO and rubrene by insertion of a dielectric AlOx layer results in an observably decreased ferromagnetism. These experimental results demonstrate that by controlling the interface formation between organic semiconductor and half-metallic oxide thin films, it is possible to engineer the interface spin polarization properties. Results also confirm that by using PLD for consecutive growth of different layers, contamination-free interfaces can be obtained, and this finding is significant for the well-controlled and reproducible design of spin-polarized interfaces for future hybrid spintronics devices. PMID:26402298

  19. Deposition head for laser

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  20. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  1. Magnetic Properties and Structure of Iron-Nickel Nanoparticles and Thin Films Synthesized by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sally Ahmed

    The study of new combinations of self-assembled magnetic materials in nanoparticle and thin film form is becoming increasingly important with the continuous shrinking of data storage device size with higher densities. The work presented in this dissertation is focused towards synthesis, structural characterizations, and magnetic properties of an L10 iron-nickel (Fe50Ni50) phase that has a potential to replace noble metals based L10 magnetic materials, such as Ni-Pt, Fe-Pt, being used as recording media. Fe50Ni50 was fabricated using a pulsed laser disposition (PLD) method under various deposition conditions, the most important among which was the substrate temperature. The substrate temperature was varied all the way from liquid nitrogen boiling temperature of 77K (-196 ºC) to high temperatures up to 600 ºC. In order to understand and optimize the formation of L10 phase, the PLD method was used to fabricate FeNi in three distinct ways: (i) FeNi films were prepared using a FeNi composite (alloy) target, (ii) FeNi films were fabricated in a multilayered structure using sequential ablation of Fe and Ni targets, and (iii) FeNi thin films were fabricated in alumina (Al2O3)/FeNi/Al2O 3 sandwich structures. To promote the stabilization of L10 FeNi phase, a thin film layer of gold catalyst was deposited prior to the deposition of FeNi films. FeNi films deposited in the presence or absence of gold catalyst were annealed at 600°C for 1 hour to study effect of annealing that has been found to bring about significant alterations in structural and magnetic properties. The substrate materials such as silicon and sapphire were also found to play a significant role in the microstructural and magnetic properties of the FeNi films. The FeNi samples deposited at liquid nitrogen temperature were found to be completely glassy (amorphous), and they exhibited a perfect superparamagnetic behavior, making them good candidates for magnetic biomedical devices.

  2. The influence of oxygen partial pressure on material properties of Eu3+-doped Y2O2S thin film deposited by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Ali, A. G.; Dejene, B. F.; Swart, H. C.

    2016-01-01

    Eu3+-doping has been of interest to improve the luminescent characteristics of thin-film phosphors. Y2O2S:Eu3+ films have been grown on Si (100) substrates by using a Pulsed Laser Deposition technique. The thin films grown under different oxygen deposition pressure conditions have been characterized using structural and luminescent measurements. The X-ray diffraction patterns showed mixed phases of cubic and hexagonal crystal structures. As the oxygen partial pressure increased, the crystallinity of the films improved. Further increase of the O2 pressure to 140 mtorr reduced the crystallinity of the film. Similarly, both scanning electron microscopy and Atomic Force Microscopy confirmed that an increase in O2 pressure affected the morphology of the films. The average band gap of the films calculated from diffuse reflectance spectra using the Kubelka-Munk function was about 4.75 eV. The photoluminescence measurements indicated red emission of Y2O2S:Eu3+ thin films with the most intense peak appearing at 619 nm, which is assigned to the 5D0-7F2 transition of Eu3+. This most intense peak was totally quenched at higher O2 pressures. This phosphor may be a promising material for applications in the flat panel displays.

  3. Mn-doped 0.15BiInO3-0.85PbTiO3 piezoelectric films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sun Young; Ko, Song Won; Lee, Soonil; Trolier-McKinstry, Susan

    2012-05-01

    Undoped, 0.5 and 1.0 mol. % Mn-doped 0.15BiInO3-0.85PbTiO3 films were grown on PbTiO3/Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Phase-pure perovskite films were obtained at a substrate temperature of 585 °C irrespective of Mn doping level. The 0.5 mol. % Mn-doped films showed a room temperature permittivity of 480 and a dielectric loss tangent of 0.015 at 100 kHz after 650 °C post-deposition annealing. The coercive field and remanent polarization were 80 kV/cm and 29 µC/cm2, respectively. The ferroelectric transition temperature of the films ranged from 535 to 585 °C. The e31,f piezoelectric coefficient was -7.1 C/m2. X-ray diffraction and phase transition temperature data showed that the Mn atoms substitute on the Ti-site as Mn3+; the resulting films have p-type conduction characteristics.

  4. Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Panareo, M.; Monteduro, A. G.; Maruccio, G.; Broitman, E.; Perrone, A.

    2015-12-01

    We report a design of photocathode, which combines the good photoemissive properties of lead (Pb) and the advantages of superconducting performance of niobium (Nb) when installed into a superconducting radio-frequency gun. The new configuration is obtained by a coating of Nb thin film grown on a disk of Pb via pulsed laser deposition. The central emitting area of Pb is masked by a shield to avoid the Nb deposition. The nanomechanical properties of the Nb film, obtained through nanoindentation measurements, reveal a hardness of 2.8±0.3 GPa, while the study of the electrical resistivity of the film shows the appearance of the superconducting transitions at 9.3 K and 7.3 K for Nb and Pb, respectively, very close to the bulk material values. Additionally, morphological, structural and contamination studies of Nb thin film expose a very low droplet density on the substrate surface, a small polycrystalline orientation of the films and a low contamination level. These results, together with the acceptable Pb quantum efficiency of 2×10-5 found at 266 nm, demonstrate the potentiality of the new concept photocathode.

  5. Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control.

    PubMed

    Serna, Martha I; Yoo, Seong H; Moreno, Salvador; Xi, Yang; Oviedo, Juan Pablo; Choi, Hyunjoo; Alshareef, Husam N; Kim, Moon J; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A

    2016-06-28

    A scalable and catalyst-free method to deposit stoichiometric molybdenum disulfide (MoS2) films over large areas is reported, with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation, including single-crystal (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2) substrates. The films are deposited using carefully designed MoS2 targets fabricated with excess sulfur and variable MoS2 and sulfur particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 10(4) Ω cm(-1), were achieved. The MoS2 stoichiometry was confirmed by high-resolution Rutherford backscattering spectrometry. With the method reported here, in situ graded MoS2 films ranging from ∼1 to 10 monolayers can be deposited. PMID:27219117

  6. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  7. Production of high-performance and improved-durability Pt-catalyst /support for proton-exchange-membrane fuel cells with pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Wei; Qayyum, Hamza; Lin, Guan-Ren; Chen, Szu-yuan; Tseng, Chung-Jen

    2016-06-01

    Pulsed laser deposition in Ar atmosphere is used to deposit Pt nanoparticles onto gas diffusion layer, and its application to proton-exchange-membrane fuel cell is optimized and characterized. When used at anode side, with a Pt loading of 17 μg cm‑2 the fuel-cell current density at 0.6 V reaches 1.08 A cm‑2, which is close to that of a cell with the anode made by conventional slurry process using E-TEK Pt /C of 200 μg cm‑2 Pt loading. The usage of Pt is decreased by 12 fold. Such a low usage of Pt prepared by pulsed laser deposition can be ascribed to the prevention of forming isolated regions that occurs with Pt /C slurry, good dispersion of Pt particles on support, and small particle sizes of 2–3 nm. Furthermore, using accelerated degradation test, it is found that the pulsed laser deposition sample retains 60% of its initial electrochemical surface area after 5000 potential cycles, much higher than that with E-TEK Pt /C, which retains only 7% of its initial electrochemical surface area. The higher electrochemical durability can be attributed to the higher degree of graphitization in the gas diffusion layer used as compared with the carbon black in E-TEK Pt /C, which leads to stronger binding of the Pt nanoparticles onto the carbon support and stronger corrosion resistance of the carbon support.

  8. Growth of Zinc Phosphide (Zn3P2) and Iron Disulfide (FeS2) using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vaddi, Rajesh

    The growing energy needs of society have triggered tremendous interest in the development of photovoltaics formed from earth abundant materials. Zinc Phosphide (Zn3P2) and Iron Pyrite (FeS2) are two materials formed from elements with large Earth crustal abundances that have nearly ideal band gap energies (1.5eV and 0.96 eV, respectively) and optical absorption coefficients (~104 /cm) for use as absorber layers in solar cells. In this work, the structural, optical, and electronic properties of these materials produced in thin film form using pulsed laser deposition have been explored. Stoichiometric Zn3P2 thin films were obtained at a laser energy density of 3 J/cm2. However, these films were found to be amorphous. Crystallization of these highly resistive amorphous thin films was possible after rapid thermal annealing (RTA). A near optimal band gap of 1.6 eV and a high absorption coefficient of >104/cm were observed for samples annealed at 500 C for 60 seconds when high ramp rates of 150 °C/sec were used for annealing. XPS studies showed the presence of a trace amount of oxygen in the samples upon depth profiling. Schottky barrier heights were extracted for samples annealed at 350 °C and 500 °C with different metals. Al and Mg showed higher barrier heights with good diode rectification behavior. Fermi level pinning was shown to be a significant concern in both cases due to the large values of interface states observed (> 1013/cm2-eV). A Schottky barrier solar cell was fabricated using these films and showed low efficiency with a low Voc of 410 mV that was impacted by Fermi level pinning. Growth of Iron pyrite thin films from an FeS target was demonstrated for the first time using pulsed laser deposition. For the different laser energy densities and substrate temperatures explored, amorphous FeS (Pyrrhotite) was mainly produced. Conversion of FeS to FeS2 was obtained by sulfurization of thin films at 350 °C for times of 30 minutes at a N2 flow rates of 200

  9. Influence of a TiN interlayer on the microstructure and mechanical properties of hydroxyapatite films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nelea, Valentin D.; Ristoscu, Carmen; Colis, Silviu; Arens, Simona; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre

    2001-04-01

    Crystalline hydroxyapatite (HA) thin films grown on metallic substrates is the best choice for bone restoration. This is due to the good biological compatibility of the hydroxyapatite material combined with the good mechanical characteristics of the substrates. We deposit HA thin films by Pulsed Laser Deposition (PLD) in vacuum at room temperature using a KrF* excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). The depositions were performed directly on Ti-5Al-2.5Fe or on substrates previously coated with a TiN buffer layer. The HA deposited structures were characterized by complementary techniques: GIXRD, SEM, TEM, SAED, EDS and nanoindentation. Properties of the HA films grown with and without the TiN buffer were discussed in term of microstructure and mechanical behavior. The films with interlayer preserve the stoichiometry, are completely recrystallized and present better mechanical characteristics as compared with those without buffer.

  10. Deposition of high quality YBa2Cu3O(7-delta) thin films over large areas by pulsed laser ablation with substrate scanning

    NASA Technical Reports Server (NTRS)

    Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.

    1991-01-01

    The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.

  11. Photoluminescence of nanocrystalline silicon films formed by pulsed laser-assisted deposition with the introduction of carbon

    SciTech Connect

    Kaganovich, E. B. Lisovskii, I. P.; Manoilov, E. G.; Zlobjn, S. A.

    2006-04-15

    The effect of carbon on the photoluminescent properties of films consisting of quantum-dimensional Si nanocrystals in the SiO{sub x} (x {sup {yields}} 2) matrix is studied. The spectra of time-resolved photoluminescence in the photon-energy range of 1.4-3.2 eV and the infrared-absorption spectra in the wave-number range of 650-1500 cm{sup -1} were measured. It is established that the introduction of carbon in the presence of oxygen in the course of the pulsed laser-assisted deposition of the films brings about the white-blue emission spectrum and also an increase in the intensity and stability of photoluminescence. The effect of carbon on the photoluminescent properties of the films is related to the formation of the SiO{sub 2} barrier phase instead of SiO{sub x} (1 < x < 2), saturation of silicon dangling bonds at the surface of Si nanocrystals with larger sizes, and mechanical strengthening of Si nanocrystals with smaller sizes.

  12. Epitaxial growth of Sc2O3 films on Gd2O3-buffered Si substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Paulraj, Joseph; Wang, Rongping; Sellars, Matthew; Luther-Davies, Barry

    2016-04-01

    We investigated the optimal conditions to prepare high-quality Sc2O3 films on Gd2O3-buffered Si wafers using pulsed laser deposition technique with an aim at developing waveguide devices that can transform the performance of the gradient echo quantum memory based on bulk crystals. Under the optimal conditions, only oxide and Si (2 2 2) peaks appeared in the X-ray diffraction pattern. The Sc2O3 (2 2 2) diffraction peak was located at 2 θ = 31.5° with a full width at half maxima (FWHM) of 0.16°, and its rocking curve had a FWHM of 0.10°. In-plane epitaxial relationship was confirmed by X-ray pole figure where Sc2O3 (1 1 1) was parallel to Si (1 1 1). High-resolution TEM images indicated clear interfaces and perfect lattice images with sharp electron diffraction dots. All these results confirm that the oxide films on Si were single crystalline with high quality.

  13. Temperature dependent photoluminescence from ZnO/MgZnO multiple quantum wells grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Misra, P.; Sharma, T. K.; Kukreja, L. M.

    2007-07-01

    We have studied temperature dependent photoluminescence (PL) from ZnO Multiple Quantum Wells (MQWs) of different well layer thicknesses in the range ˜1-4 nm grown on (0001) sapphire by a novel in-house developed buffer assisted pulsed laser deposition. At 10 K the PL peak shifted toward blue with decreasing well layer thickness and at constant well layer thickness the PL peak shifted towards red with increasing temperature. To the best of our knowledge we have observed for the first time an efficient room temperature (RT) PL emanating from such MQWs. The red shift of the PL peak with increasing temperature has been found to be due to the band gap shrinkage in accordance with the Varshni's empirical relation. The spectral linewidth was found to increase with increasing temperature due to the scattering of excitons with acoustic and optical phonons in different temperature regimes. Both at RT and at 10 K the PL peak shifted with respect to the well layer thickness in the range of ˜3.35-˜3.68 eV with decreasing thickness in agreement with the calculated values.

  14. Strain effects in epitaxial FeV2O4 thin films fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolan; Wang, Yuhang; Zhao, Kehan; Lai, Xubo; Zhang, Liuwan

    2015-06-01

    The epitaxial c-axis orientated FeV2O4 films with different thicknesses on SrTiO3, LaAlO3 and MgAl2O4 (001) substrates were fabricated for the first time by pulsed laser deposition, and strain effects on the structure and magnetic anisotropy were investigated. The X-ray diffraction analysis shows that the lattice constants of the FeV2O4 films behave differently on different substrates. The compressive strain in the films on MgAl2O4 is dominantly controlled by the in-plane lattice mismatch. By contrast, the strain states in the films on LaAlO3 and SrTiO3 substrates can be explained by the difference in the thermal expansion coefficients between the films and substrates. In the temperature range investigated from 20 K to 300 K the fully relaxed FeV2O4 thick film is tetragonal with c>a, whereas its bulk is cubic. The magnetic easy axis of all the films is normal to the film plane, independent of substrates, film thickness, and strain states. The out-of-plane magnetic anisotropy is attributed to the high tetragonality with c>a due to the strong spin-lattice coupling.

  15. Microstructure and magnetic properties of La-Co substituted strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ebrahimi, S. A. Seyyed; Ong, C. K.

    2013-09-01

    Microstructure and magnetic properties of La-Co substituted strontium hexaferrite films (Sr1-xLaxFe12-xCoxO19) fabricated by pulsed laser deposition on Si(100)/Pt(111) substrate were investigated. The coercivities of the films in perpendicular direction were higher than those in in-plane direction which confirms the perpendicular magnetic anisotropy of the films. Atomic force microscopy images of the films revealed decreasing of the plate-like grains size, from 300 to 110 nm with increasing the La-Co contents. The saturation magnetization increased slightly till x=0.2 and then decreased from x=0.2 to x=0.4. However, the coercivity increased from 2.3 kOe for the SrFe12O19 film to 4.1 kOe for the Sr0.6La0.4Fe11.6Co0.4O19 film, because of the decrease of the grain size and increase of the magnetic anisotropy field.

  16. 3-D matrix template-assisted growth of oriented oxide nanowire arrays using glancing angle pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.

    Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.

  17. Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition

    SciTech Connect

    Gbordzoe, S. Kotoka, R.; Craven, Eric; Kumar, D.; Wu, F.; Narayan, J.

    2014-08-14

    The current work reports on the growth and microstructural characterization of titanium nitride (TiN) nanowires on single crystal silicon substrates using a pulsed laser deposition method. The physical and microstructural properties of the nanowires were characterized using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The corrosion properties of the TiN nanowires compared to TiN thin film were evaluated using Direct Current potentiodynamic and electrochemical impedance spectroscopy. The nanowires corroded faster than the TiN thin film, because the nanowires have a larger surface area which makes them more reactive in a corrosive environment. It was observed from the FESEM image analyses that as the substrate temperature increases from 600 °C to 800 °C, there was an increase in both diameter (25 nm–50 nm) and length (150 nm–250 nm) of the nanowire growth. There was also an increase in spatial density with an increase of substrate temperature. The TEM results showed that the TiN nanowires grow epitaxially with the silicon substrate via domain matching epitaxy paradigm, despite a large misfit.

  18. Growth of highly oriented γ- and α-Al2O3 thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Babu, R. Venkatesh; Shin, K. S.; Song, J. I.

    2014-03-01

    Highly oriented aluminum oxide (Al2O3) thin films were grown on SrTiO3 (100), α-Al2O3 (11¯02), α-Al2O3 (0001) and MgO (100) single crystal substrates at an optimized oxygen partial pressure of 3.5×10-3 mbar and 700 °C by pulsed laser deposition. The films were characterized by X-ray diffraction and atomic force microscopy. The X-ray diffraction studies indicated the highly oriented growth of γ-Al2O3 (400) ǁ SrTiO3 (100), α-Al2O3 (024) ǁ α-Al2O3 (11¯02), α-Al2O3 (006) ǁ α-Al2O3 (0001) and α-Al2O3 (006) ǁ MgO (100). Formation of nanostructures with dense and smooth surface morphology was observed using atomic force microscopy. The root mean square surface roughness of the films were 0.2 nm, 0.5 nm, 0.7 nm and 0.3 nm on SrTiO3 (100), α-Al2O3 (11¯02), α-Al2O3 (0001) and MgO (100) substrates, respectively.

  19. Growth of epitaxial AlN films on (Mn,Zn)Fe 2O 4 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ohta, J.; Fujioka, H.; Takahashi, H.; Oshima, M.

    2002-09-01

    We have grown AlN on (Mn,Zn)Fe 2O 4 substrates by pulsed laser deposition (PLD) and investigated their structural properties using high resolution X-ray diffraction (HRXRD), reflection high energy electron diffraction (RHEED), and atomic force microscopy (AFM). We have observed the transition of the RHEED pattern from sharp streaks into clear spots at the early stage of the film growth, which indicates that the growth mode of AlN changed from the two-dimensional mode to the three-dimensional mode due to the stress buildup. RHEED and XRD observations have revealed that hexagonal AlN (0 0 0 1) grows on (Mn,Zn)Fe 2O 4 (1 1 1) with the in-plane epitaxial relationship of [1 1 -2 0]AlN//[0 1 -1](Mn,Zn)Fe 2O 4. The lattice mismatch for this alignment is calculated to be 6%. The FWHM value of the AlN (0 0 0 2) X-ray rocking curve is as low as 77 arcsec, which indicates that the density of the threading screw dislocations in the AlN film is quite low.

  20. Semiconductor-insulator transition in VO{sub 2} (B) thin films grown by pulsed laser deposition

    SciTech Connect

    Rúa, Armando; Díaz, Ramón D.; Lysenko, Sergiy; Fernández, Félix E.

    2015-09-28

    Thin films of B-phase VO{sub 2} were grown by pulsed-laser deposition on glass and (100)-cut MgO substrates in a temperature range from 375 to 425 °C and at higher gas pressures than usual for this technique. The films were strongly oriented, with ab-planes parallel to the substrate surface. Detailed study of surface morphology through Atomic Force Microscopy images suggest significant differences in evolution as a function of growth temperature for films on the two types of substrates. Measurements of electrical conductivities through cooling-heating cycles from room temperature to 120 K showed changes of five orders of magnitude, with steeper changes between room temperature and ∼150 K, which corresponds with the extended and reversible phase transition known to occur for this material. At lower temperatures conductivities exhibited Arrhenius behavior, indicating that no further structural change was occurring and that conduction is thermally activated. In this lower temperature range, conductivity of the samples can be described by the near-neighbor hopping model. No hysteresis was found between the cooling and heating braches of the cycles, which is at variance with previous results published for VO{sub 2} (B). This apparent lack of hysteresis for thin films grown in the manner described and the large conductivity variation as a function of temperature observed for the samples suggests this material could be of interest for infrared sensing applications.

  1. Optical, ferroelectric, and piezoresponse force microscopy studies of pulsed laser deposited Aurivillius Bi₅FeTi₃O₁₅ thin films

    SciTech Connect

    Kooriyattil, Sudheendran; Pavunny, Shojan P. E-mail: shojanpp@gmail.com; Barrionuevo, Danilo; Katiyar, Ram S. E-mail: shojanpp@gmail.com

    2014-10-14

    Bi₅FeTi₃O₁₅ (BFTO) based Aurivillius ferroelectric thin films were fabricated on strontium ruthanate coated amorphous fused silica substrates using pulsed laser deposition technique. Optical, ferroelectric, and piezoresponse properties of these thin films were investigated. The estimated refractive index (n) and extinction coefficient (k) for these films were in the range from 2.40 to 2.59 and 0.012 to 0.19, respectively. The bandgap of the BFTO thin layers was estimated to be 2.88 eV. Domain switching and hysteresis loops of BFTO films were studied utilizing piezoresponse force microscopy (PFM). The measured apparent polarization (P{sub r}) and coercive field (E{sub c}) for the samples were 20 μC/cm² and 250 kV/cm, respectively. The amplitude and phase hysteresis curves obtained from PFM characterization reveal that these films can be switched below 5 V. These results suggest that BFTO in thin film form is a promising material for photo ferroelectric and optoelectronic devices applications.

  2. Ga-doped ZnO grown by pulsed laser deposition in H2: the roles of Ga and H

    SciTech Connect

    Look, David; Droubay, Timothy C.; McCloy, John S.; Zhu, Zihua; Chambers, Scott A.

    2011-01-11

    Highly conductive thin films of ZnO doped with Ga were grown by pulsed-laser deposition (PLD) with 10 mTorr of H2 in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O2 followed by annealing in forming gas (5% H2 in Ar), the H2 method requires no post-growth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm2/V-s, a concentration of 6.8 x 1020 cm-3, and a resistivity of 2.9 x 10^-4 ohm-cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 x 1020 and 2.1 x 10^20 cm-3, respectively, as compared to the Ga and H concentrations of 11 x 10^20 and 1 x 10^20 cm-3. Thus, H does not play a significant role as a donor in this type of ZnO

  3. The effect of strain on the microstructure and superconductivity of pulsed laser deposited LaSrCuO films

    NASA Astrophysics Data System (ADS)

    Cieplak, Marta Z.; Berkowski, M.; Abal'oshev, A.; Guha, S.; Wu, Q.

    2006-06-01

    X-ray diffraction, atomic force microscopy, resistivity and susceptibility measurements are used to examine the microstructure and superconducting properties of La1.85Sr0.15CuO4 films grown by pulsed laser deposition on LaSrAlO4 substrates. The films grow with different degrees of built-in strain, ranging from large compressive in-plane strain to large tensile in-plain strain. While the compressive strain may be attributed to the lattice parameter mismatch between the substrate and the film, the observation of tensile strain is surprising, and the possible origins of the tensile strain are discussed. Films with small built-in compressive or tensile strain, not larger than about 0.02%, grow in quasi two-dimensional (2D) fashion and show sharp superconducting transitions and high transition temperatures. Larger compressive strain induces three-dimensional (3D)-like growth with gradual strain relief across the thickness of the film, and larger tensile strain is observed in the films with columnar growth. Large strain of both types deteriorates superconducting properties.

  4. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Maksimova, K. Yu.; Grunin, A. I.; Bursian, V. E.; Lutsev, L. V.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  5. Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth

    NASA Astrophysics Data System (ADS)

    Ravi Chandra Raju, N.; Jagadeesh Kumar, K.; Subrahmanyam, A.

    2009-07-01

    Silver oxide thin films have potential applications in ultra-high density optical non-volatile memories and in fluorescence imaging. In this paper, the physical properties of silver oxide thin films prepared at room temperature by the pulsed laser deposition (PLD) technique with varying oxygen pressure during growth are reported. The oxygen pressure in the growth chamber is varied between 9 and 50 Pa. The x-ray diffraction (XRD) analysis showed that all the films were polycrystalline. With increasing oxygen pressure in the growth chamber, it is observed that (i) the hexagonal Ag2O transforms to monoclinic AgO, (ii) the grain size in the film increases from 59 to 200 nm, (iii) the surface roughness of the film increases from 9 to 42 nm, (iv) the resistivity of the films increases from 1 to 4 × 104 Ω m, (v) the surface work function of the films increases from 5.47 to 5.61 eV and (vi) the optical band gap of AgO thin films decreases from 1.01 to 0.93 eV. Raman spectroscopy on AgO thin films shows low wave number peaks corresponding to the stretching vibration of Ag-O bonds. This study shows that single phase AgO thin films, a requirement for plasmonic devices, can be prepared at room temperature by the PLD technique with an oxygen pressure of 20 Pa.

  6. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2005-10-31

    Using a dual molecular-beam epitaxy (MBE)-pulsed laser deposition (PLD) ultrahigh vacuum chamber, we have conducted the first experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE. We find that in PLD with low kinetic energy and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along the <100> directions; the film roughness and mound separation increase with film thickness. In PLD with high kinetic energy, well-defined pyramidal mounds are not observed and the morphology rather resembles that of an ion-etched Ge(001) surface. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. We attribute these differences to the higher yield of defect generation by energetic species in PLD.

  7. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Coutinho, Decio Heringer

    2001-07-01

    Hexagonal mesoporous DAM-1 (Dallas Amorphous Material-1) was prepared using Vitamin E TPGS as the structure-directing agent. Depending upon the temperature and gel composition, highly ordered and hydrothermally stable DAM-1 with various morphologies could be achieved including spheres, gyroids, discoid, hexagonal plates and rods. This synthesis was modified to prepare hybrid organic-inorganic amine and thiol bifunctionalized DAM-1 by direct co-condensation under acidic conditions. Patterned DAM-1 thin films were prepared on patterned transparencies utilizing pulsed laser deposition (PLD) and line patterning techniques. DAM-1 laser ablation onto the patterned substrate followed by hydrothermal treatment resulted in a densely packed film. Removal of the patterned lines by sonication revealed patterned DAM-1 films. Thin films of zeolite type X were also prepared using the PLD technique. Laser ablation of zeolite X onto TiN-coated silicon wafers followed by a hydrothermal treatment resulted in partially oriented, crystalline membranes. Hydrothermal treatment of PLD films on stainless steel mesh produced a coated wire mesh with a 3-mum thick zeolite X film. A novel strategy for imprinting mesoporous SBA-15 that combines a triblock copolymer template and a chiral ruthenium complex is reported. A chiral PEO helix was formed by the chiral ruthenium complex interaction with the block copolymer during the synthesis of SBA-15. Upon removal of the chiral ruthenium complex, a stereospecfic cavity was created. Preliminary results indicated stereoselective absorption of Delta or Λ-Ru(phen)3 2+ isomer from a racemic mixture could be achieved depending on the chirality of the PEO chain. Practicum Two. The industrial practicum report describes the process development unit (PDU) 3-pentenenitrile (3PN) refining operation. This distillation works was operated to refine crude 3PN product, which contained 3PN, 2-methyl-3-butenenitrile (2M3BN), and other byproducts. This report also

  8. Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals

    SciTech Connect

    Marla, Deepak; Bhandarkar, Upendra V.; Joshi, Suhas S.

    2011-01-15

    This paper presents a review on the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals. The ablation of a target is the key process that determines the amount of material to be deposited; while, the plasma expansion governs the characteristics of the deposited material. The modeling of ablation process involves a study of two complex phenomena: (i) laser-target interaction and (ii) plasma formation and subsequent shielding of the incoming radiation. The laser-target interaction is a function of pulse duration, which is captured by various models that are described in this paper. The plasma produced as a result of laser-target interaction, further interacts with the incoming radiation, causing the shielding of the target. The shielding process has been modeled by considering the various photon absorption mechanisms operative inside the plasma, namely: inverse Bremsstrahlung, photoionization, and Mie absorption. Concurrently, the plasma expands freely until the ablated material gets deposited on the substrate. Various models describing the plasma expansion process have been presented. The ability of the theoretical models in predicting various ablation and plasma characteristics has also been compared with the relevant experimental data from the literature. The paper concludes with identification of critical issues and recommendations for future modeling endeavors.

  9. Pulsed DF laser effects study

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Maher, W. E.; Nichols, D. B.

    1981-07-01

    This study of DF laser interaction with materials investigated the amount of energy coupled to targets. Large focal spot dimensions were obtained with the Boeing photo-initiated 50-1 pulsed chemical laser with a stable resonator. Effects experiments emphasized metallic targets, especially aluminum. The single pulse coupling results yielded absorbed fluence values greater than those obtained with comparable energies at 10.6 micrometer wavelength. Ambient pressure and angle of incidence were varied. Research results also showed multiple-pulse effect at DF wavelength. Multiple-pulse thermal coupling experiments with aluminum demonstrated that, after 10 shots on the same spot, the coupled fluence per pulse doubled. Because of target melting and vaporization, both the intrinsic absorptivity and the plasma enhanced coupled fluence of succeeding pulses is greatly increased. In general, the multiple pulse effect is intensity-dependent and is small at either low or high intensities. Energy deposition was tested for uniformity by measuring the rises in temperature at five locations within the focal spot with an array of thermocouples.

  10. Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition

    SciTech Connect

    Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthélémy, A.; Bibes, M.; Zhao, H. J.; Chen, X. M.; Bellaiche, L.

    2014-10-27

    We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C} = 31.8 K with a saturation magnetization of 4.2 μ{sub B} per formula unit at 10 K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ∼0.7 eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

  11. Nanofabrication with Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Delaporte, Ph.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, Th.; Sentis, M.

    2010-03-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  12. Efficient CH3 NH3 PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition.

    PubMed

    Park, Jong Hoon; Seo, Jangwon; Park, Sangman; Shin, Seong Sik; Kim, Young Chan; Jeon, Nam Joong; Shin, Hee-Won; Ahn, Tae Kyu; Noh, Jun Hong; Yoon, Sung Cheol; Hwang, Cheol Seong; Seok, Sang Il

    2015-07-15

    Highly transparent and nanostructured nickel oxide (NiO) films through pulsed laser deposition are introduced for efficient CH3 NH3 PbI3 perovskite solar cells. The (111)-oriented nanostructured NiO film plays a key role in extracting holes and preventing electron leakage as hole transporting material. The champion device exhibits a power conversion efficiency of 17.3% with a very high fill factor of 0.813. PMID:26038099

  13. Nanoscale monoclinic domains in epitaxial SrRuO3 thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ghica, C.; Negrea, R. F.; Nistor, L. C.; Chirila, C. F.; Pintilie, L.

    2014-07-01

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO3 layers used as bottom electrodes in multiferroic coatings onto SrTiO3 substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO3 thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO3 orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence of structurally disordered nanometric domains in the SrRuO3 bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (-4% ÷ -5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO6 octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO3 structure.

  14. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device.

    PubMed

    Liu, Meng; Cai, Ze-Rong; Hu, Song; Luo, Ai-Ping; Zhao, Chu-Jun; Zhang, Han; Xu, Wen-Cheng; Luo, Zhi-Chao

    2015-10-15

    We reported on the generation of dissipative rogue waves (DRWs) induced by long-range chaotic multi-pulse interactions in a fiber laser based on a topological insulator (TI)-deposited microfiber photonic device. By virtue of the simultaneous saturable absorption effect and high nonlinearity provided by the TI-deposited microfiber, a localized, chaotic multi-pulse wave packet with strong long-range nonlinear interactions could be obtained, which gives rise to the formation of DRWs. The results might enhance the understanding of DRWs in optical systems, and further demonstrated that the TI-deposited microfiber could be considered as an excellent photonic device with both saturable absorption and highly nonlinear effects for the application field of nonlinear optics. PMID:26469615

  15. Growth of different phases of yttrium manganese oxide thin films by pulsed laser deposition

    SciTech Connect

    Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2012-06-05

    Various phases of yttrium manganese oxide (YMO) thin films have been synthesized on different substrates from a single target of h-YMnO{sub 3}. It is observed that the phase stability and crystallinity of YMO thin films depend on the substrate used and oxygen partial pressure (OPP). (110) oriented and polycrystalline growth of h-YMnO{sub 3} are observed on the Al{sub 2}O{sub 3} (0001) and NGO (110) substrates respectively, when grown in OPP {approx_equal} 10{sup -6} Torr. While for similar OPP value, growth of mixed phases (h-YMnO{sub 3} and o-YMn{sub 2}O{sub 5}) is observed on Si (001) substrate. Oriented growth of O-YMn{sub 2}O{sub 5} phase film on Si (001) substrate is observed first time, when deposited at OPP value of 225 and 350 mTorr. +3 and mixed oxidation states (+3 and +4) of Mn were confirmed by x-ray photoelectron spectroscopy in pure YMnO{sub 3} phase and YMn{sub 2}O{sub 5} phase respectively.

  16. Surface photovoltage spectroscopy of pulsed laser deposited undoped ZnSe/n+GaAs

    NASA Astrophysics Data System (ADS)

    Ganguli, Tapas; Kumar, Shailendra; Kukreja, L. M.; Rustagi, K. C.

    2002-03-01

    We report surface photovoltage (SPV) spectra of ZnSe thin films deposited on n+GaAs substrates in the wavelength range of 400-800 nm. In the above bandgap region of ZnSe (below 450 nm), we find that the major contribution to SPV comes from trapping and re-emission from the slow states at the ZnSe surface and ZnSe/GaAs interface. The effect of interference of light on the SPV spectra, has been analysed for subbandgap wavelength excitation of ZnSe (470-800 nm). In spite of the presence of a large number of subbandgap states in ZnSe, the major contribution to SPV in this wavelength range comes from the substrate. The difference in the magnitudes of the SPV between the bare n+GaAs and the ZnSe/n+GaAs is due to the reduction of surface recombination velocity (SRV) of the minority carriers in n+GaAs.

  17. Enhanced dielectric properties of multilayered BiFeO3/BaTiO3 capacitors deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Savita; Tomar, Monika; Puri, Nitin K.; Gupta, Vinay

    2016-04-01

    We report on dielectric studies of BiFeO3(BFO)/BaTiO3(BTO) multilayer structure fabricated by pulsed laser deposition technique. Multilayered capacitors were prepared by increasing number of alternating individual layers from 2 to 7 while maintaining the total thickness of the layered structure as 350 nm. The dielectric constant of the BFO/BTO multilayer structure was significantly increased to 772 (at 1 kHz) and the dielectric loss decreased to 1.08 (at 1 kHz) in comparison to that of bare BFO and BTO thin films of 350 nm thickness. Further the dielectric constant increased with increasing number of individual layers. The increase in dielectric constant is related to the enhancement of ferroelectricity and reduced leakage current which is due to the induced stress at the interface of BFO and BTO layer in the multilayer capacitor. A high value of ferroelectric polarization (˜ 99.80 µC/cm2) was obtained for 6-layer BFO/BTO structure. The multilayer structure exhibited superior dielectric properties and can be undeniably used as the dielectric layer in silicon-based capacitors and tunable microwave device applications.

  18. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  19. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  20. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  1. Nonlinear optical dynamics and Eu3+ spectral holeburning in strontium barium niobate thin film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, G. K.; Li, S. T.; Beitz, J. V.; Fernandez, F. E.

    2002-01-01

    Optical quality SrxBa1-xNb2O6 (SBN) thin films, both undoped and Eu3+-doped, of thickness less than 0.5 μm have been successfully grown on fused quartz substrates using a pulsed laser deposition technique. Optical properties of these films were characterized in high-resolution spectroscopic experiments in time and frequency domains. For undoped SBN thin films, broadband emission in the UV region extending to the visible was observed following excitation at 355 nm. This emission is attributed to exciton luminescence of the SBN film. Nonlinear optical response in the picosecond regime and the third-order nonlinear susceptibility, χ(3), were studied using degenerate four-wave-mixing methods. In transverse alignment, χ(3) is enhanced by two orders of magnitude in comparison with its bulk counterpart. A thermal annealing process, monitored via changes in spectral properties of Eu3+, was employed to convert the as-grown amorphous film into a polycrystalline film. High-resolution spectroscopic measurements in the frequency domain were conducted on a 200-nm-thick film of Eu3+-doped SBN. Our spectroscopic results suggest that Eu3+ ions may substitute for Nb, thereby occupying a normally six-fold coordinated lattice site. At liquid helium temperature, spectral holes in the 7F0-5D0 optical transition were burned in the thermally annealed films. Typical observed hole widths were 70-100 MHz and hole depths were as large as 30% of the peak fluorescence intensity.

  2. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  3. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    SciTech Connect

    Shibuya, Keisuke Sawa, Akihito

    2015-10-15

    We systematically examined the effects of the substrate temperature (T{sub S}) and the oxygen pressure (P{sub O2}) on the structural and optical properties polycrystalline V O{sub 2} films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O{sub 2} phase was formed at a T{sub S} ≥ 450 °C at P{sub O2} values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O{sub 2} films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O{sub 2} on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O{sub 2} films grown at a T{sub S} of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the T{sub S} and P{sub O2}, and was maximal for a V O{sub 2} film grown at 450 °C under 20 mTorr. Based on the results, we derived the P{sub O2} versus 1/T{sub S} phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O{sub 2} films on silicon platforms.

  4. Advances in pulsed-laser-deposited AIN thin films for high-temperature capping, device passivation, and piezoelectric-based RF MEMS/NEMS resonator applications

    NASA Astrophysics Data System (ADS)

    Hullavarad, S. S.; Vispute, R. D.; Nagaraj, B.; Kulkarni, V. N.; Dhar, S.; Venkatesan, T.; Jones, K. A.; Derenge, M.; Zheleva, T.; Ervin, M. H.; Lelis, A.; Scozzie, C. J.; Habersat, D.; Wickenden, A. E.; Currano, L. J.; Dubey, M.

    2006-04-01

    In this paper we report recent advances in pulsed-laser-deposited AIN thin films for high-temperature capping of SiC, passivation of SiC-based devices, and fabrication of a piezoelectric MEMS/NEMS resonator on Pt-metallized SiO2/Si. The AlN films grown using the reactive laser ablation technique were found to be highly stoichiometric, dense with an optical band gap of 6.2 eV, and with a surface smoothness of less than 1 nm. A low-temperature buffer-layer approach was used to reduce the lattice and thermal mismatch strains. The dependence of the quality of AlN thin films and its characteristics as a function of processing parameters are discussed. Due to high crystallinity, near-perfect stoichiometry, and high packing density, pulsed-laser-deposited AlN thin films show a tendency to withstand high temperatures up to 1600°C, and which enables it to be used as an anneal capping layer for SiC wafers for removing ion-implantation damage and dopant activation. The laser-deposited AlN thin films show conformal coverage on SiC-based devices and exhibit an electrical break-down strength of 1.66 MV/cm up to 350°C when used as an insulator in Ni/AlN/SiC metal-insulator-semiconductor (MIS) devices. Pulsed laser deposition (PLD) AlN films grown on Pt/SiO2/Si (100) substrates for radio-frequency microelectrical and mechanical systems and nanoelectrical and mechanical systems (MEMS and NEMS) demonstrated resonators having high Q values ranging from 8,000 to 17,000 in the frequency range of 2.5-0.45 MHz. AlN thin films were characterized by x-ray diffraction, Rutherford backscattering spectrometry (in normal and oxygen resonance mode), atomic force microscopy, ultraviolet (UV)-visible spectroscopy, and scanning electron microscopy. Applications exploiting characteristics of high bandgap, high bond strength, excellent piezoelectric characteristics, extremely high chemical inertness, high electrical resistivity, high breakdown strength, and high thermal stability of the pulsed-laser-deposited

  5. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  6. Effect of oxygen partial pressure on microstructural and optical properties of titanium oxide thin films prepared by pulsed laser deposition

    SciTech Connect

    Balakrishnan, G.; Bandi, Vengala Rao; Rajeswari, S.M.; Balamurugan, N.; Babu, R. Venkatesh; Song, J.I.

    2013-11-15

    Graphical abstract: - Highlights: • Microstructural and optical properties are studied systematically. • The optical properties are studied by UV–visible and photoluminescence. • The PL spectra shows two peaks correspond to bandgap of anatase and rutile. • The maximum refractive index of 2.73 is obtained for rutile phase of titania. - Abstract: Nanocrystalline titanium oxide (TiO{sub 2}) thin films were deposited on silicon (1 0 0) and quartz substrates at various oxygen partial pressures (1 × 10{sup −5} to 3.5 × 10{sup −1} mbar) with a substrate temperature of 973 K by pulsed laser deposition. The microstructural and optical properties were characterized using Grazing incidence X-ray diffraction, atomic force microscopy, UV–visible spectroscopy and photoluminescence. The X-ray diffraction studies indicated the formation of mixed phases (anatase and rutile) at higher oxygen partial pressures (3.5 × 10{sup −2} to 3.5 × 10{sup −1} mbar) and strong rutile phase at lower oxygen partial pressures (1 × 10{sup −5} to 3.5 × 10{sup −3} mbar). The atomic force microscopy studies showed the dense and uniform distribution of nanocrystallites. The root mean square surface roughness of the films increased with increasing oxygen partial pressures. The UV–visible studies showed that the bandgap of the films increased from 3.20 eV to 3.60 eV with the increase of oxygen partial pressures. The refractive index was found to decrease from 2.73 to 2.06 (at 550 nm) as the oxygen partial pressure increased from 1.5 × 10{sup −4} mbar to 3.5 × 10{sup −1} mbar. The photoluminescence peaks were fitted to Gaussian function and the bandgap was found to be in the range ∼3.28–3.40 eV for anatase and 2.98–3.13 eV for rutile phases with increasing oxygen partial pressure from 1 × 10{sup −5} to 3.5 × 10{sup −1} mbar.

  7. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  8. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  9. SrFeO amorphous underlayer for fabrication of c-axis perpendicularly orientated strontium hexaferrite films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ong, C. K.

    2013-09-01

    A thin amorphous SrFeO underlayer on Si(100) substrate was pulse laser deposited as an underlayer for the growth of c-axis perpendicularly oriented strontium hexaferrite (SrFe12O19) films. The amorphous SrFeO underlayer was deposited at different temperatures in the range from room temperature to 700 °C, while the SrFe12O19 film was deposited at 700 °C. The SrFe12O19 films exhibited slightly perpendicular magnetic anisotropy by the rather higher coercivities in perpendicular direction (Hc⊥) than those for the in-plane direction (Hc||), due to the c-axis perpendicular orientation. The magnetization and coercivities of the SrFe12O19 film increase, but the magnetic anisotropy (ΔHc=Hc⊥-Hc||) increases firstly and then decreases, as the SrFeO underlayer deposition temperature increases.

  10. Surface Chemistry, Friction, and Wear Properties of Untreated and Laser-Annealed Surfaces of Pulsed-Laser-Deposited WS(sub 2) Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wheeler, Donald R.; Zabinski, Jeffrey S.

    1996-01-01

    An investigation was conducted to examine the surface chemistry, friction, and wear behavior of untreated and annealed tungsten disulfide (WS2) coatings in sliding contact with a 6-mm-diameter 440C stainless-steel ball. The WS2 coatings and annealing were performed using the pulsed-laser-deposition technique. All sliding friction experiments were conducted with a load of 0.98 N (100 g), an average Hertzian contact pressure of 0.44 GPa, and a constant rotating speed of 120 rpm. The sliding velocity ranged from 31 to 107 mm/s because of the range of wear track radii involved in the experiments. The experiment was performed at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7X(exp -10) Pa), dry nitrogen (relative humidity, less than 1 percent), and humid air (relative humidity, 15 to 40 percent). Analytical techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), x-ray photo electron spectroscopy (XPS), surface profilometry, and Vickers hardness testing, were used to characterize the tribological surfaces of WS2 coatings. The results of the investigation indicate that the laser annealing decreased the wear of a WS2 coating in an ultrahigh vacuum. The wear rate was reduced by a factor of 30. Thus, the laser annealing increased the wear life and resistance of the WS2 coating. The annealed WS 2 coating had a low coefficient of friction (less than O.1) and a low wear rate ((10(exp -7) mm(exp 3)/N-m)) both of which are favorable in an ultrahigh vacuum.

  11. Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.; Sayir, A.

    2006-01-01

    Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.

  12. Effect of the pulsed laser deposition conditions on the tribological properties of thin-film nanostructured coatings based on molybdenum diselenide and carbon

    NASA Astrophysics Data System (ADS)

    Fominskii, V. Yu.; Grigor'ev, S. N.; Romanov, R. I.; Nevolin, V. N.

    2012-04-01

    The structural state and tribological properties of gradient and composite antifriction coatings produced by pulsed laser codeposition from MoSe2(Ni) and graphite targets are studied. The coatings are deposited onto steel substrates in vacuum and an inert gas, and an antidrop shield is used to prevent the deposition of micron-size particles from a laser jet onto the coating. The deposition of a laser jet from the graphite target and the application of a negative potential to the substrate ensure additional high-energy atom bombardment of growing coatings. Comparative tribological tests performed at a relative air humidity of ˜50% demonstrate that the "drop-free" deposition of a laser-induced atomic flux in the shield shadow significantly improves the antifriction properties of MoSe x coatings, decreasing the friction coefficient from 0.07 to 0.04. The best tribological properties, which combine a low friction coefficient and high wear resistance, are detected in drop-free MoSe x coatings additionally alloyed with carbon (up to ˜55 at %) and subjected to effective bombardment by high-energy atoms during growth. Under these conditions, a dense nanocomposite structure containing the self-lubricating MoSe2 phase and an amorphous carbon phase with a rather high concentration of diamond bonds forms.

  13. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  14. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  15. Pulsed-laser deposition and growth studies of Bi{sub 3}Fe{sub 5}O{sub 12} thin films

    SciTech Connect

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-12-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi{sub 3}Fe{sub 5}O{sub 12} (BIG) thin films on (100) and (111) Gd{sub 3}Ga{sub 5}O{sub 12} substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films.

  16. Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: effect of heat treatment on structure and properties.

    PubMed

    Dinda, G P; Shin, J; Mazumder, J

    2009-06-01

    Hydroxyapatite (HA) is an attractive biomaterial that has been widely used as a coating for dental and orthopedic metal implants. In this work, HA coatings were deposited on Ti-6Al-4V substrates by laser ablation of HA targets with a KrF excimer laser. Deposition was performed at ambient temperature under different working pressures that varied from 10(-4) to 10(-1) torr of oxygen. The as-deposited films were amorphous. They were annealed at 290-310 degrees C in ambient air in order to restore the crystalline structure of HA. The coatings morphology, composition and structure were investigated by scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction techniques. Mechanical and adhesive properties were examined using nanoindentation and scratch tests, respectively. The stability of the HA coatings was tested under simulated physiological conditions. This study reveals that the combination of pulsed laser deposition and post-deposition annealing at 300 degrees C have the potential to produce pure, adherent, crystalline HA coatings, which show no dissolution in a simulated body fluid. PMID:19269271

  17. Investigation of damage threshold of ion beam deposited oxide thin film optics for high-peak-power short-pulse lasers

    NASA Astrophysics Data System (ADS)

    Fitzgerald Dummer, Ann M.; Brizuela, Fernando; Duskis, Charissa; Luther, Brad; Larotonda, Miguel; Rocca, Jorge J.; George, Jason; Kohli, Sandeep; McCurdy, Pat; Menoni, Carmen S.

    2004-09-01

    In this work we report on the damage threshold of ion beam deposited oxide films designed for high peak power short pulse laser systems. Single layers of ZrO2, SiO2, Al2O3, TiO2, and Ta2O5 and multilayers of Al2O 3/TiO2, SiO2/Ta2O5, and SiO2/ZrO2 were grown on polished borosilicate glass substrates using ion beam sputter deposition. Deposition conditions were optimized to yield fully oxidized films as determined from x-ray photoelectron spectroscopy (XPS). Damage threshold testing was performed using an amplified Ti:Sapphire laser producing a train of 120 picosecond pulses at a wavelength of 800 nm. The laser output was focused with a lens to generate fluences ranging from 0.1 to 24 J/cm2. The highest damage threshold of 15.4 J/cm2 was measured for a single layer film of SiO2. The damage threshold of high reflectance and anti-reflection multilayer coatings fabricated for 800 nm applications was evaluated using the same procedure as for the single layer films. Highest damage thresholds of 2.5 and 3.5 J/cm2 were measured for a 6-pair ZrO2/SiO2 high reflectance coating and a 5 layer anti-reflection coating of the same materials.

  18. Pulsed laser deposited porous nano-carpets of indium tin oxide and their use as charge collectors in core-shell structures for dye sensitized solar cells.

    PubMed

    Garvey, Timothy R; Farnum, Byron H; Lopez, Rene

    2015-02-14

    Porous In2O3:Sn (ITO) films resembling from brush carpets to open moss-like discrete nanostructures were grown by pulsed laser deposition under low to high background gas pressures, respectively. The charge transport properties of these mesoporous substrates were probed by pulsed laser photo-current and -voltage transient measurements in N719 dye sensitized devices. Although the cyclic voltammetry and dye adsorption measurements suggest a lower proportion of electro-active dye molecules for films deposited at the high-end background gas pressures, the transient measurements indicate similar electron transport rates within the films. Solar cell operation was achieved by the deposition of a conformal TiO2 shell layer by atomic layer deposition (ALD). Much of the device improvement was shown to be due to the TiO2 shell blocking the recombination of photoelectrons with the electrolyte as recombination lifetimes increased drastically from a few seconds in uncoated ITO to over 50 minutes in the ITO with a TiO2 shell layer. Additionally, an order of magnitude increase in the electron transport rate in ITO/TiO2 (core/shell) films was observed, giving the core-shell structure a superior ratio of recombination/transport times. PMID:25563519

  19. Pulsed laser deposition of hydroxyapatite thin films on Ti-5Al-2.5Fe substrates with and without buffer layers

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Ristoscu, C.; Chiritescu, C.; Ghica, C.; Mihailescu, I. N.; Pelletier, H.; Mille, P.; Cornet, A.

    2000-12-01

    We present a method for processing hydroxyapatite (HA) thin films on Ti-5Al-2.5Fe substrates. The films were grown by pulsed laser deposition (PLD) in vacuum at room temperature, using a KrF∗ excimer laser. The amorphous as-deposited HA films were recrystallized in ambient air by a thermal treatment at 550°C. The best results have been obtained when inserting a buffer layer of ceramic materials (TiN, ZrO2 or Al2O3). The films were characterized by complementary techniques: grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), cross-section transmission electron microscopy (XTEM), SAED, energy dispersive X-ray spectroscopy (EDS) and nanoindentation. The samples with buffer interlayer preserve the stoichiometry are completely recrystallized and present better mechanical characteristics as compared with that without buffer interlayer.

  20. Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process.

    PubMed

    Daghrir, R; Drogui, P; Dimboukou-Mpira, A; El Khakani, M A

    2013-11-01

    The objective of the present work is to evaluate the potential of photoelectrocatalytic oxidation (PECO) process using Ti/TiO2 for the degradation of carbamazepine (CBZ). Ti/TiO2 prepared by pulsed laser deposition (PLD) has been used as a photo-catalyst in a photoelectrocatalytic cell. The PLD TiO2 coatings were found to be of anatase structure consisting of nanocrystallites of approximately 15nm in diameter. Factorial and central and extreme composite design methodologies were successively employed to define the optimal operating conditions for CBZ degradation. Several factors such as current intensity, treatment time, pollutant concentration and cathode material were investigated. Using a 2(4) factorial matrix, the best performance for CBZ degradation (53.5%) was obtained at a current intensity of 0.1 A during 120min of treatment time and when the vitreous carbon (VC) was used at the cathode in the presence of 10mgL(-1) of CBZ. Treatment time and pollutant concentration were found to be very meaningful for CBZ removal. The PECO process applied under optimal conditions (at current intensity of 0.3A during 120min in the presence of 10mgL(-1) of CBZ with VC at the cathode) is able to oxidize around 73.5% ±2.8% of CBZ and to ensure 21.2%±7.7% of mineralization. During PECO process, CBZ was mainly transformed to acridine and anthranilic acid. Microtox biotests (Vibrio fisheri) showed that the treated - effluent was not toxic. The pseudo-second order kinetic model (k2=6×10(-4)Lmg(-1)min(-1)) described very well the oxidation of CBZ. PMID:24144463

  1. Preparation of superconducting YBa2Cu3O7-xfilms on metallic substrates by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, You-qing; Su, Biao; Huang, Xintang; Wang, Qiulang; An, Chengwu; Fan, Yongchang; Lu, Dongsheng

    1998-08-01

    The YBa2Cu3O7-x (YBCO) superconducting thin films with Tc(R equals 0) of 84 K and Jc of 2 X 103 A/cm2 at 77 K, on polycrystalline Ni-based alloys with buffer layers of Yttria-Stabilized-Zirconia (YSZ), have been prepared in situ by excimer laser. The orientation of laser-deposited YSZ buffer layers on NiCr alloys can be improved by choosing the suitable preparing parameters. The microstructure of YBCO thin films, investigated with a scanning tunneling microscopy, shows that the spiral growth structure may be an important characteristic of the high quality YBCO superconducting thin films.

  2. The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sloyan, Katherine A.; May-Smith, Timothy C.; Eason, Robert W.; Lunney, James G.

    2009-08-01

    We report the effects of relative time delay of plasma plumes on thin garnet crystal films fabricated by dual-beam, combinatorial pulsed laser deposition. Relative plume delay was found to affect both the lattice constant and elemental composition of mixed Gd 3Ga 5O 12 (GGG) and Gd 3Sc 2Ga 3O 12 (GSGG) films. Further analysis of the plasmas was undertaken using a Langmuir probe, which revealed that for relative plume delays shorter than ˜200 μs, the second plume travels through a partial vacuum created by the first plume, leading to higher energy ion bombardment of the growing film. The resulting in-plane stresses are consistent with the transition to a higher value of lattice constant normal to the film plane that was observed around this delay value. At delays shorter than ˜10 μs, plume propagation was found to overlap, leading to scattering of lighter ions from the plume and a change in stoichiometry of the resultant films.

  3. CW-pulsed laser

    SciTech Connect

    Wert, J. C.

    1981-09-01

    An apparatus for generating a spatially coherent laser beam having both CW and pulsed modes is disclosed. The modes are generated in differing volumetric regions of a single gain medium excited by a continuous energy pump. The CW portion of the output beam passes from the gain medium through a partially transmissive output coupling. The pulsed modes in the output beam are created in the respective region of the gain medium when transition materials from a selected group are stimulated to undergo an abrupt change between their reflective and transmissive states. Either cavity dumped or Q-switched configurations can be created by selective and patterned location of the transition materials at the ends of the gain medium. Symmetric organization of the volumetric regions within the gain medium allows temporal superposition of the two modes while maintaining spatial distinctiveness within the laser beam generated.

  4. Pulsed laser microtomograph

    NASA Astrophysics Data System (ADS)

    Antonov, V. B.; Bonch-Bruevich, A. M.; Vasil'Ev, V. I.; Ionov, L. N.; Nikolaev, S. D.; Starobogatov, I. O.

    1994-12-01

    This paper describes a pulsed laser tomographic apparatus that has been implemented in practice and has a spatial resolution of 2-5 microns in the transverse direction and approximately 70 microns in the probe-radiation propagation direction. Experiments have been performed with model objects. Results have been obtained that confirm the possibility of early diagnosis of skin mycoses that cannot be diagnosed by existing methods.

  5. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    SciTech Connect

    Reade, R.P.; Mao, X.L.; Russo, R.E. )

    1991-08-05

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily {ital c}-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001) oriented YSZ intermediate layers and have {ital T}{sub {ital c}} ({ital R}=0) = 86.0 K and {ital J}{sub {ital c}} {similar to} 3{times}10{sup 3} A/cm{sup 2} at 77 K.

  6. Effects of postdeposition annealing on the dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films derived from pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yao, Yingbang; Lu, S. G.; Chen, Haydn; Wong, K. H.

    2004-11-01

    Lanthanum-doped lead zirconate stannate titanate antiferroelectric thin films were deposited onto Pt-buffered silicon substrates using the pulsed laser deposition method. The deposition temperature was 570°C. The postdeposition annealing process was carried out in an oxygen-flow tube furnace at temperatures ranging from 650 to 800°C for a duration of 30min; its effects were studied through the variations of the microstructure as well as the electrical and dielectric properties. It was found that an appropriate annealing process at temperatures above 700°Ccould substantially improve the dielectric properties. However, annealing beyond 800°C caused the film properties to deteriorate severely. Explanations were given with regard to the microstructure-property relationship.

  7. Superconducting MgB2 thin films grown by pulsed laser deposition on Al2O3(0001) and MgO(100) substrates

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Dai, S. Y.; Zhou, Y. L.; Chen, Z. H.; Cui, D. F.; Xu, J. D.; He, M.; Lu, H. B.; Yang, G. Z.; Fu, G. S.; Han, L.

    2001-11-01

    Superconducting MgB2 thin films were fabricated on Al2O3(0001) and MgO(100) substrates by a two-step method. Boron thin films were deposited by pulsed laser deposition followed by an ex-situ annealing process. Resistance measurements of the deposited MgB2 films show a Tc of 38.6 K for MgB2/Al2O3 and 38.1 K for MgB2/MgO. Atomic force microscopy, scanning electron microscopy and x-ray diffraction were used to study the properties of the films. The results indicate that the MgB2/Al2O3 films consist of well-crystallized grains with a highly c-axis-oriented structure while the MgB2/MgO films have a dense uniform appearance with an unfixed orientation.

  8. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  9. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  10. The effect of argon gas pressure on structural, morphological and photoluminescence properties of pulsed laser deposited KY3F10:Ho3+ thin films

    NASA Astrophysics Data System (ADS)

    Debelo, N. G.; Dejene, F. B.; Roro, Kittessa; Pricilla, M. P.; Oliphant, Clive

    2016-06-01

    KY3F10:Ho3+ thin films were deposited by a pulsed laser deposition technique with Nd-YAG laser radiation ( λ = 266 nm) on (100) silicon substrate. The XRD and FE-SEM results show improved crystalline structure for the film deposited at a pressure of 1 Torr. The AFM results show that the RMS roughness of the films increases with rise in argon gas pressure. The EDS elemental mapping shows Y-excess for all the films deposited under all pressures, and this is attributed to its higher mass and low volatility as compared to K and F. XPS analysis further confirmed Y-excess in the deposited films. Green PL emission at 540 nm was investigated at three main excitation wavelengths, namely 362, 416 and 454 nm. The PL emission peaks increase with rise in background argon gas pressure for all excitation wavelengths. The highest PL intensity occurred at excitation of 454 nm for all the thin films. In addition, faint red (near infrared) emission was observed at 750 nm for all the excitations. The green emission at 540 nm is ascribed to the 5F4-5I8 and 5S2-5I8 transitions, and the faint red emission at 750 nm is due to the 5F4-5I7 and 5S2-5I7 transitions of Ho3+.

  11. Adjusting island density and morphology of the SrTiO3(110)-(4 × 1) surface: Pulsed laser deposition combined with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Gerhold, Stefan; Riva, Michele; Yildiz, Bilge; Schmid, Michael; Diebold, Ulrike

    2016-09-01

    The first stages of homoepitaxial growth of the (4 × 1) reconstructed surface of SrTiO3(110) are probed by a combination of pulsed laser deposition (PLD) with in-situ reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Considerations of interfacing high-pressure PLD growth with ultra-high-vacuum surface characterization methods are discussed, and the experimental setup and procedures are described in detail. The relation between RHEED intensity oscillations and ideal layer-by-layer growth is confirmed by analysis of STM images acquired after deposition of sub-monolayer amounts of SrTiO3. For a quantitative agreement between RHEED and STM results one has to take into account two interfaces: the steps at the circumference of islands, as well as the borders between two different reconstruction phases on the islands themselves. Analysis of STM images acquired after one single laser shot reveals an exponential decrease of the island density with increasing substrate temperature. This behavior is also directly visible from the temperature dependence of the relaxation times of the RHEED intensity. Moreover, the aspect ratio of islands changes considerably with temperature. The growth mode depends on the laser pulse repetition rate, and can be tuned from predominantly layer-by-layer to the step-flow growth regime.

  12. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Wang, Haiyan

    2015-11-01

    Recently, pulsed laser deposition (PLD) technology makes viable the epitaxial growth of group III-nitrides on thermally active substrates at low temperature. The precursors generated from the pulsed laser ablating the target has enough kinetic energy when arriving at substrates, thereby effectively suppressing the interfacial reactions between the epitaxial films and the substrates, and eventually makes the film growth at low temperature possible. So far, high-quality group III-nitride epitaxial films have been successfully grown on a variety of thermally active substrates by PLD. By combining PLD with other technologies such as laser rastering technique, molecular beam epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD), III-nitride-based light-emitting diode (LED) structures have been realized on different thermally active substrates, with high-performance LED devices being demonstrated. This review focuses on the epitaxial growth of group III-nitrides on thermally active substrates by PLD and their use in the development of LED devices. The surface morphology, interfacial property between film and substrate, and crystalline quality of as-grown group III-nitride films by PLD, are systematically reviewed. The corresponding solutions for film homogeneity on large size substrates, defect control, and InGaN films growth by PLD are also discussed in depth, together with introductions to some newly developed technologies for PLD in order to realize LED structures, which provides great opportunities for commercialization of LEDs on thermally active substrates.

  13. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  14. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence

    NASA Astrophysics Data System (ADS)

    Patil, Ranjit A.; Wei, Mao-Kuo; Yeh, P.-H.; Liang, Jyun-Bo; Gao, Wan-Ting; Lin, Jin-Han; Liou, Yung; Ma, Yuan-Ron

    2016-02-01

    We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes (LEDs) and laser diodes (LDs).We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes

  15. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  16. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  17. Nanoporous Ni-Ce0.8Gd0.2O1.9-x thin film cermet SOFC anodes prepared by pulsed laser deposition.

    PubMed

    Infortuna, Anna; Harvey, Ashley S; Muecke, Ulrich P; Gauckler, Ludwig J

    2009-05-21

    Nickel oxide-gadolinia-doped ceria thin films with a ceria composition of 80 at% Ce and 20 at% Gd were grown by pulsed laser deposition on sapphire and SiO2/Si wafers as well as on yttria stabilized zirconia polycrystalline substrates. Upon reduction of the NiO phase in a H2/N2 atmosphere at 600 degrees C, a stable three-phase, 3-D interconnecting microstructure was obtained of metallic Ni, ceramic, and pores. Coarsening and segregation of the Ni to the surface of the film was observed at higher temperatures. The kinetics of this process depend strongly on the microstructures that can be developed in situ during deposition or post-deposition heat treatments. In situ minimization of Ni-coarsening can be achieved at temperatures as low as 500 degrees C when the deposition pressure does not exceed 0.02 mbar. For films deposited at higher pressure and at temperatures below 800 degrees C, coarsening can be minimized post deposition by annealing in air at 1000 degrees C. The films showed very good metallic conductivity and stability upon thermal cycling in a reducing atmosphere. Redox cycles performed at 600 degrees C between air and H2 induced a loss of connectivity of the metallic phase and consequent degradation of the conductivity. After 16 cycles, corresponding to 65 hrs, the conductivity is reduced by one order of magnitude. PMID:19421477

  18. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  19. Photoluminescence properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} thin phosphor films grown by pulsed laser deposition

    SciTech Connect

    Ntwaeaborwa, O. M.; Nsimama, P. D.; Pitale, Shreyas; Nagpure, I. M.; Kumar, Vinay; Coetsee, E.; Terblans, J. J.; Swart, H. C.; Sechogela, P. T.

    2010-07-15

    Thin films of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} phosphor were deposited on silicon [Si (100)] substrates using a 248 nm KrF pulsed laser. Deposition parameters, such as substrate temperature, pulse repetition rate, number of laser pulses, and base pressure, were varied during the film deposition process. Based on the x-ray diffraction data, all the films were amorphous but were emitting visible light when excited by a monochromatic xenon lamp. The chemical composition and the stoichiometry of the films determined by the Rutherford backscattering spectroscopy were consistent with the commercial SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} powder used to prepare the films. Photoluminescence (PL) emission spectra of the films were characterized by major green emission with a maximum at {approx}520 nm and minor red emission with a maximum at 630 nm. The green and red photoluminescence at 520 and 630 nm are associated with the 4f{sup 6}5d{yields}4f{sup 7}({sup 8}S{sub 7/2}) and {sup 5}D{sub 0}-{sup 7}F{sub 2} transitions of Eu{sup 2+} and residual Eu{sup 3+} ions, respectively. Brighter films were shown to have relatively higher values of the root mean square surface roughness, which were determined from the atomic force microscopy data. The effects of processing parameters on the PL intensity are discussed.

  20. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10{sup −4} millibars

    SciTech Connect

    Premper, J.; Sander, D.; Kirschner, J.

    2015-03-15

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10{sup −4} millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs.

  1. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10(-4) millibars.

    PubMed

    Premper, J; Sander, D; Kirschner, J

    2015-03-01

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10(-4) millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs. PMID:25832240

  2. Narrow growth window for stoichiometric, layer-by-layer growth of LaAlO3 thin films using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Golalikhani, M.; Lei, Q. Y.; Wolak, M. A.; Davidson, B. A.; Xi, X. X.

    2016-06-01

    We study the structure and surface morphology of the 100 nm homoepitaxial LaAlO3 films grown by pulsed laser deposition in a broad range of growth parameters. We show that there is a narrow window of growth conditions in which the stoichiometric, bulk-like structure is obtained while maintaining a 2-dimensional (2D) layer-by-layer growth mode. In our system, these optimum growth conditions are 100 mTorr background pressure with laser energy density 1.5-2 J/cm2. The sensitivity to growth conditions of the stoichiometry and structure of LaAlO3 films can have a crucial role in the 2-D electron gas formed at the LaAlO3/SrTiO3 interface.

  3. Thickness-dependent optical properties in compressively strained BiFeO{sub 3}/LaAlO{sub 3} films grown by pulsed laser deposition

    SciTech Connect

    Duan, Zhihua; Jiang, Kai; Wu, Jiada; Sun, Jian; Hu, Zhigao; Chu, Junhao

    2014-03-01

    Graphical abstract: - Highlights: • BFO with various thicknesses was grown on LAO substrates by pulsed laser deposition. • The structure and compressive strains were clarified via Raman scattering. • The charge transfer excitation was blue shifted with increasing compressive strain. • The compressive strain affects the distortion of Fe{sup 3+} local environment and O 2p states. - Abstract: Bismuth ferrite (BiFeO{sub 3}) films with various thicknesses were epitaxially grown on LaAlO{sub 3} substrates by pulsed laser deposition. The X-ray diffraction and Raman scattering spectra reveal that the films were highly (11{sup ¯}1) oriented with the single phase. With increasing the thickness, the compressive strain decreases and the strain ratios between the film and bulk crystal are evaluated to be 1.75, 1.57, and 1. Moreover, the compressive strain induces band gap shrinkage from 2.7 to 2.65 eV, while the charge transfer transition energy increases from 3.5 to 4.1 eV. It could be due to the shift of O 2p states and the variation of local Fe{sup 3+} crystal field.

  4. Deep level defect correlated emission and Si diffusion in ZnO:Tb(3+) thin films prepared by pulsed laser deposition.

    PubMed

    Kumar, Vinod; Ntwaeaborwa, Odireleng M; Swart, Hendrik C

    2016-03-01

    Terbium (Tb(3+)) doped zinc oxide (ZnO) or (ZnO:Tb(3+)) thin films were grown on silicon substrates by the pulsed laser deposition technique at different growth temperatures that were varied from room temperature (RT) to 400°C. The effects of substrate temperature on the structural and optical properties of the ZnO:Tb(3+) films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and RT photoluminescence spectroscopy. The band to band and deep level defect emissions were observed for all substrate temperatures. The silicon that has diffused from the substrate has occupied the position of the Zn vacancies in the ZnO:Tb(3+) thin films at the higher substrate temperatures (400°C). A blue emission was observed for all the ZnO:Tb(3+) thin films deposited at the different substrate temperatures. PMID:26688121

  5. Spin wave and percolation studies in epitaxial La2/3Sr1/3MnO3 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ettayfi, A.; Moubah, R.; Hlil, E. K.; Colis, S.; Lenertz, M.; Dinia, A.; Lassri, H.

    2016-07-01

    We investigate the magnetic and transport properties of high quality La2/3Sr1/3MnO3 thin films grown by pulsed laser deposition. X-ray diffraction shows that the deposited films are epitaxial with the expected pseudo-cubic structure. Using the spin wave theory, the temperature dependence of magnetization was satisfactory modeled at low temperature, in which several fundamental magnetic parameters were obtained (spin wave stiffness, exchange constants, Fermi wave-vector, Mn-Mn interatomic distance). The transport properties were studied via the temperature dependence of electrical resistivity [ρ(T)], which shows a peak at Curie temperature due to metal to insulator transition. The percolation theory was used to simulate ρ(T) in both the ferromagnetic and paramagnetic phases. Reasonable agreement with the experimental data is reported.

  6. Sapphire substrate-induced effects in VO{sub 2} thin films grown by oxygen plasma-assisted pulsed laser deposition

    SciTech Connect

    Skuza, J. R. E-mail: apradhan@nsu.edu; Scott, D. W.; Pradhan, A. K. E-mail: apradhan@nsu.edu

    2015-11-21

    We investigate the structural and electronic properties of VO{sub 2} thin films on c-plane sapphire substrates with three different surface morphologies to control the strain at the substrate-film interface. Only non-annealed substrates with no discernible surface features (terraces) provided a suitable template for VO{sub 2} film growth with a semiconductor-metal transition (SMT), which was much lower than the bulk transition temperature. In addition to strain, oxygen vacancy concentration also affects the properties of VO{sub 2}, which can be controlled through deposition conditions. Oxygen plasma-assisted pulsed laser deposition allows favorable conditions for VO{sub 2} film growth with SMTs that can be easily tailored for device applications.

  7. Band offset studies in pulse laser deposited Zn{sub 1−x}Cd{sub x}O/ZnO hetero-junctions

    SciTech Connect

    Devi, Vanita; Kumar, Ravindra; Joshi, B. C.; Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2015-06-14

    The valence and conduction band offsets of Zn{sub 1−x}Cd{sub x}O/ZnO hetero-junctions deposited by pulsed laser deposition technique were estimated by X-ray photoelectron, valence band, and UV-visible spectroscopy. Type-II band alignment (staggered gap) with ratios of conduction band to valence band offsets (ΔE{sub C}/ΔE{sub V}) was found to be 0.77 and 0.59 for Zn{sub 0.95}Cd{sub 0.05}O/ZnO and Zn{sub 0.90}Cd{sub 0.10}O/ZnO hetero-structures, respectively, which can be used in longer wavelength regime optoelectronic devices. The higher value of valence band offset as compared to conduction band offset suggests that the transport at interface is mainly due to electrons.

  8. Photoresponse and photocapacitor properties of Au/AZO/p-Si/Al diode with AZO film prepared by pulsed laser deposition (PLD) method

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Tataroğlu, A.; El Mir, L.; Al-Ghamdi, Ahmed A.; Dahman, H.; Farooq, W. A.; Yakuphanoğlu, F.

    2016-04-01

    The electrical and photoresponse properties of Au/nanostructure AZO/p-Si/Al diode were investigated. Al-doped ZnO (AZO) thin films were deposited via pulsed laser deposition method on silicon substrate. Structural properties of the films were performed by using transmission electron microscopy and X-ray powder diffraction (XRD). The XRD patterns showed that the AZO films are polycrystalline with hexagonal wurtzite structure preferentially oriented in (002) direction. Electrical and photoresponse properties of the diode were analyzed under in a wide range of frequencies and illumination intensities. It is observed that the reverse current of the diode increases with increasing illumination intensity. This result confirms that the diode exhibits both photoconducting and photovoltaic behavior. Also, the transient photocurrent, photocapacitance and photoconductance measured as a function of time highly depend on transient illumination. In addition, the frequency dependence of capacitance and conductance is attributed to the presence of interface states.

  9. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence.

    PubMed

    Patil, Ranjit A; Wei, Mao-Kuo; Yeh, P-H; Liang, Jyun-Bo; Gao, Wan-Ting; Lin, Jin-Han; Liou, Yung; Ma, Yuan-Ron

    2016-02-14

    We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes (LEDs) and laser diodes (LDs). PMID:26804935

  10. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    SciTech Connect

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul; Wiedwald, Ulf

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  11. Fabrication of transparent p-type conductive BaCuSeF films by pulsed laser deposition and their application to CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koichi; Okamoto, Hirokazu; Sakakima, Hiroshi; Hayashi, Ryoji; Ogawa, Yohei; Okamoto, Tamotsu; Wada, Takahiro

    2014-01-01

    Transparent p-type conductive BaCuSeF films prepared by pulsed laser deposition (PLD) were studied for application to tandem configuration solar cells. The BaCuSeF films were deposited at low substrate temperatures (TS) of 150, 200, 250, and 300 °C. The films prepared at TS ≥ 200 °C showed considerably high transmittance in the visible light region. The highest transmittance of 63% was obtained for the film deposited at TS = 300 °C. All of the films showed p-type conductivities of more than 1 S/cm. These BaCuSeF films were deposited on the CdTe surface of CdS/CdTe solar cells. A high conversion efficiency of 2.82% was obtained for the solar cell with the transparent p-type conductive BaCuSeF film deposited at TS = 200 °C. The higher efficiency of 3.12% was obtained by inserting a thin Ni0.97Li0.03O buffer layer between the BaCuSeF and CdTe layers.

  12. Fabrication of epitaxial CrO{sub 2} nanostructures directly on MgO(100) by pulsed laser deposition

    SciTech Connect

    Heinig, N. F.; Jalili, H.; Leung, K. T.

    2007-12-17

    Single-phase CrO{sub 2} nanostructured thin films have been grown directly on MgO(100) by pulsed laser ablation of a metallic Cr target in an O{sub 2} environment. X-ray diffraction shows that these films are strained and consist of CrO{sub 2} crystallites with two possible epitaxial relationships to the substrate; either CrO{sub 2}(110) or CrO{sub 2}(200) is parallel to MgO(100). Scanning electron microscopy and atomic force microscopy reveal orthogonally arranged nanoneedles and platelike structures (both 30-50 nm thick). X-ray photoemission confirms that the films are primarily CrO{sub 2} covered with a thin CrO{sub 3} overlayer and indicates its complete synthesis without any residual metallic Cr.

  13. Effect of deposition method and substrate surface quality on laser-induced damage threshold for repetitive 13-ns and 130-fs pulses

    NASA Astrophysics Data System (ADS)

    Melninkaitis, Andrius; Rakickas, Tomas; Miksys, Darius; Grigonis, Rimantas; Sirutkaitis, Valdas; Skrebutenas, Alfridas; Buzelis, Rytis; Drazdys, Ramutis; Abromavicius, Giedrius; Juskenas, Remigijus; Selskis, Algirdas

    2005-02-01

    A comparison of laser induced damage thresholds (LIDT) of ion assisted deposition (IAD) and standard electron beam deposition dielectric coatings on BK7 glass with different surface roughness was performed. Five types of high reflectance mirrors at 800 nm and two types of high reflectance mirrors at 1064 nm were tested. Mirror coatings were made of ZrO2 and SiO2. Automated LIDT measurements were performed according to the requirements of current ISO 11254-2 standard. Two lasers were used for the measurements: Nd:YAG (l = 1064 nm, t = 13 ns) and Ti:Sapphire (l = 800 nm, t = 130 fs ). All measurements were performed at 1-kHz pulse repetition rate (S-on-1 test). A fixed spot size was used for each laser. For 1064 nm it was ~ 70 um and for 800 nm ~ 500 um. The damage morphology and structure of coatings were characterized by an atomic force microscopy (AFM), Nomarski microscopy and X-ray diffraction (XRD).

  14. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate. PMID:26445021

  15. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  16. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    NASA Astrophysics Data System (ADS)

    Qayyum, Hamza; Lu, Chieh-Hsun; Chuang, Ying-Hung; Lin, Jiunn-Yuan; Chen, Szu-yuan

    2016-05-01

    The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm-2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  17. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  18. Laser system using ultra-short laser pulses

    SciTech Connect

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  19. Pulsed laser deposition of epitaxial YBa2Cu3O7-y / oxide multilayers onto textured NiFe substrates for coated conductor applications

    NASA Astrophysics Data System (ADS)

    Tomov, R. I.; Kursumovic, A.; Majoros, M.; Kang, D.-J.; Glowacki, B. A.; Evetts, J. E.

    2002-04-01

    Pulsed laser depositions of double-buffer and triple-buffer YBa2Cu3O7-y (YBCO)/Y2O3(YSZ)/CeO2 heterostructures have been performed in situ onto commercially available biaxially textured NiFe 50%/50% tape. The deposition in the forming gas (4% H2/Ar) from a CeO2 target and the deposition in vacuum from a CeO2:Pd composite target have been explored as two possible routes for cube-on-cube growth of the first buffer layer. The influence of the critical processing parameters on the texture is investigated and some of the issues involved in the reduction of NiO (111) and the formation of cube-on-cube NiO (200) growth are discussed. X-ray diffraction has been used for texture evaluation of the substrate and subsequent deposited layers. The substrate-buffer interface region has been studied by focused ion beam cross section electron microscopy. Both the buffers and YBCO layers show biaxial alignment with ω and φ scans having optimum YBCO full width at half maximum (FWHM) values of 4.3° and 8.8°, respectively. The morphology has been characterized using atomic force microscopy and scanning electron microscopy. The value of Tc (onset) has been measured at 90 K (ΔTc = 10 K). The critical current density, Jc, has been measured by transport measurements and magnetic measurements performed in a dc SQUID magnetometer.

  20. Pressure effect on the magnetization of Sr{sub 2}FeMoO{sub 6} thin films grown by pulsed laser deposition

    SciTech Connect

    Fix, T.; Versini, G.; Loison, J.L.; Colis, S.; Schmerber, G.; Pourroy, G.; Dinia, A.

    2005-01-15

    Thin films of Sr{sub 2}FeMoO{sub 6} (SFMO) are grown on SrTiO{sub 3} (001) substrates by pulsed laser deposition. The best films provide 3.2{mu}{sub B}/f.u. at 5 K, a Curie temperature above 400 K, low roughness, high crystallinity, and low splashing. Therefore, the use of such SFMO electrodes in magnetic tunnel junctions patterned with conventional lithography is promising. Pseudomorphic epitaxial growth is obtained for thicknesses under 50 nm. Above this thickness the films do not relax homogeneously. A coherent and systematic variation of the magnetization with the deposition conditions is obtained, which highlights a high reproducibility. Under a reasonable O{sub 2} partial pressure to avoid parasite phases, the limiting factor for high magnetization is the total pressure or the deposition rate. Therefore, the deposition rate is suspected to have a strong influence on the Fe/Mo ordering. Highly magnetic samples are obtained under a low gas flow of either a 20% O{sub 2}+N{sub 2} or a 0.3% O{sub 2}+Ar.

  1. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba3Zr2O7 from a BaZrO3 target by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Butt, Shariqa Hassan; Rafique, M. S.; Siraj, K.; Latif, A.; Afzal, Amina; Awan, M. S.; Bashir, Shazia; Iqbal, Nida

    2016-07-01

    Ruddlesden-Popper Ba3Zr2O7 thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba3Zr2O7 phase from BaZrO3 target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba3Zr2O7 thin films were annealed at 500, 600 and 800 °C. X-ray diffraction (XRD) reveals the formation of Ba3Zr2O7 phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 °C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba3Zr2O7 Ruddlesden-Popper-type perovskite structure.

  2. Effect of oxygen pressure on microstructure and magnetic properties of strontium hexaferrite (SrFe 12O 19) film prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-04-01

    The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.

  3. Enhanced transmittance properties in Pb0.865La0.09(Zr0.65Ti0.35)O3 thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yi, Jinqiao; Zhang, Xue; Shen, Meng; Jiang, Shenglin; Xia, Jinsong

    2015-09-01

    Transparent Pb0.865La0.09(Zr0.65Ti0.35)O3 (PLZT) ferroelectric films have been deposited on Si (100) substrate by the pulsed laser deposition (PLD), and the influence of different deposition temperatures (600-700 °C) on crystalline state, microstructure, and optical properties has been investigated. When the deposition temperature increases from 600 to 700 °C, X-ray diffraction analysis shows that a pyrochlore-to-perovskite phase transition occurs in PLZT thin films, and PLZT target is proved to have the pure perovskite structure. As the deposition temperature increases, particles on the surface of PLZT thin films gradually disappear, the density of the sample increases obviously, and the roughness is reduced from 14 to 7.5 nm. Meanwhile, the average transmittance rate of PLZT thin films increases from 91.86 to 92.84 %, and the maximum transmittance rate 97.69 % is obtained at the temperature of 700 °C. At the incident light wavelength of 632.8 nm, the refractive index changes from 2.43 to 2.47 with the increase in the deposition temperature, and the extinction coefficients maintain at 0. These results indicate that properly increasing the deposition temperature is not only beneficial for enhancing the density of, but also can improve optical properties of PLZT thin films fabricated by the PLD method.

  4. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures

    SciTech Connect

    Verma, Shweta Rao, B. T.; Detty, A. P.; Kukreja, L. M.; Ganesan, V.; Phase, D. M.; Rai, S. K.; Bose, A.; Joshi, S. C.

    2015-04-07

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles of increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.

  5. Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Wang, Haiyan; Wen, Lei; Li, Guoqiang

    2015-01-01

    High-quality AlN epitaxial films have been grown on Si substrates by pulsed laser deposition (PLD) by effective control of the interfacial reactions between AlN films and Si substrates. The surface morphology, crystalline quality and interfacial property of as-grown AlN/Si hetero-interfaces obtained by PLD have been systemically studied. It is found that the amorphous SiAlN interfacial layer is formed during high temperature growth, which is ascribed to the serious interfacial reactions between Si atoms diffused from the substrates and the AlN plasmas produced by the pulsed laser when ablating the AlN target during the high temperature growth. On the contrary, abrupt and sharp AlN/Si hetero-interfaces can be achieved by effectively controlling the interfacial reactions at suitable growth temperature. The mechanisms for the evolution of interfacial layer from the amorphous SiAlN layer to the abrupt and sharp AlN/Si hetero-interfaces by PLD are hence proposed. This work of obtaining the abrupt interfaces and the flat surfaces for AlN films grown by PLD is of paramount importance for the application of high-quality AlN-based devices on Si substrates. PMID:26089026

  6. Lasers for ultrashort light pulses

    SciTech Connect

    Herrmann, J.; Wilhelmi, B.

    1987-01-01

    The present rapid expansion of research work on picosecond lasers and their application makes it difficult to survey and comprehend the large number of publications in this field. This book aims to provide an introduction to the field starting with the very basic and moving on to an advanced level. Contents: Fundamentals of the interaction between light pulses and matter; Fundamentals of lasers for ultrashort light pulses; Methods of measurement; Active modelocking; Synchronously pumped lasers; Passive modelocking of dye lasers; Passive modelocking of solid state lasers; Nonstationary nonlinear optical processes; Ultrafast spectroscopy.

  7. Refinement of nano-structured fibroin thin films by near-IR pulsed laser deposition from targets consolidated with autogenous binder.

    PubMed

    Nakayama, S; Nozaki, R; Senna, M

    2008-01-01

    Silk fibroin (SF) powders were mixed with an autogenous binder from a natural cocoon after degumming with Na(2)CO(3) and liquefied with LiBr. An all-fibroin ablation target, SLT, obtained from the mixture after compression at ambient temperature, was compared with those without autogenous binder, SWT, or with a simple, non-autogenous binder, hydroxypropyl methylcellulose, SHT. The targets were then irradiated by a 1064 nm laser beam to obtain nano-structured thin films of fibroin by pulsed laser deposition (PLD) on Si (100). The properties of PLD films were examined mainly by atomic force microscope (AFM) or scanning electron microscope (SEM) for microstructures and morphology. By using an autogenous binder, significant increase was observed in the rate of nanofilm deposition with simultaneous decrease in the fraction of large debris. Size reduction of smallest protein units (SPUs) was also recognized by AFM. The autogenous binder turned out to be significantly superior over conventional, non-autogenous ones. PMID:18544238

  8. Mechanical properties of pulsed laser-deposited hydroxyapatite thin film implanted at high energy with N + and Ar + ions. Part I: nanoindentation with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    We report here a comparison between the effects of ion beam implantation treatment using nitrogen and argon ions, on the mechanical characteristics of HA films grown by pulsed laser deposition, using a KrF ∗ excimer laser. Crystalline and stoichiometric HA films were grown on Ti-5Al-2.5Fe alloy substrate, previously coated with a TiN buffer layer. After deposition, the film were implanted with ions of N + and Ar + of high energy (1-1.5 MeV range) and dose set at 10 16 at cm -2. From the load-displacement curves determined by nanoindentation tests using a spherical tipped nanoindenter ( R=5 μm), we put into evidence an enhancement of the mechanical characteristics (hardness and elastic modulus) of the HA films after implantation, especially for those implanted with N + ions. Moreover, using various applied normal loads (ranging from 1 to 100 mN) in different implanted areas, a good reproducibility of nitrogen implantation effect are observed.

  9. Pulsed laser deposition of CuInS2 quantum dots on one-dimensional TiO2 nanorod arrays and their photoelectrochemical characteristics

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Chen, Wenyuan; Guo, Hongjian; Yu, Limin; Li, Bo; Jia, Junhong

    2016-06-01

    In the typical solution-based synthesis of colloidal quantum dots (QDs), it always resorts to some surface treatment, ligand exchange processing or post-synthesis processing, which might involve some toxic chemical regents injurious to the performance of QD sensitized solar cells. In this work, the CuInS2 QDs are deposited on the surface of one-dimensional TiO2 nanorod arrays by the pulsed laser deposition (PLD) technique. The CuInS2 QDs are coated on TiO2 nanorods without any ligand engineering, and the performance of the obtained CuInS2 QD sensitized solar cells is optimized by adjusting the laser energy. An energy conversion efficiency of 3.95% is achieved under one sun illumination (AM 1.5, 100 mW cm-2). The improved performance is attributed to enhanced absorption in the longer wavelength region, quick interfacial charge transfer and few chance of carrier recombination with holes for CuInS2 QD-sensitized solar cells. Moreover, the photovoltaic device exhibits high stability in air without any specific encapsulation. Thus, the PLD technique could be further applied for the fabrication of QDs or other absorption materials.

  10. Epitaxial Ba{sub 2}IrO{sub 4} thin-films grown on SrTiO{sub 3} substrates by pulsed laser deposition

    SciTech Connect

    Nichols, J. Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.

    2014-03-24

    We have synthesized epitaxial Ba{sub 2}IrO{sub 4} (BIO) thin-films on SrTiO{sub 3} (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr{sub 2}IrO{sub 4}. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

  11. The magnetic properties and characterization of Co 1-x-yCr yC x films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhao; Zhang, X.

    2007-02-01

    Nanogranular cobalt-chromium-carbon thin films have been fabricated by pulsed-laser deposition on glass substrates at different temperatures. The structural characterization and magnetic properties of these films were investigated. The transmission electron microscope images with selected area diffraction and X-ray diffraction showed that the as-prepared films consist of cobalt grains, Co 3C phase, a small amount of Cr, and carbon. The hexagonal close-packed or face centered cubic cobalt nanograins with average size less than 20 nm, were separated by graphite-like or amorphous carbon. It was found that the coercivity and saturation magnetization of the films were highly dependent on the substrate temperature and carbon concentration. At room temperature the films have a maximum in-plane coercivity of 718 Oe and a maximum out-of-plane coercivity of 485 Oe, indicating a possibility of fabricating adjustable high coercivity cobalt-carbon based materials.

  12. Positive magnetoresistance in ferromagnetic Nd-doped In{sub 2}O{sub 3} thin films grown by pulse laser deposition

    SciTech Connect

    Xing, G. Z. Yi, J. B.; Li, S.; Yan, F.; Wu, T.

    2014-05-19

    We report the magnetic and magnetotransport properties of (In{sub 0.985}Nd{sub 0.015}){sub 2}O{sub 2.89} thin films grown by pulse laser deposition. The clear magnetization hysteresis loops with the complementary magnetic domain structure reveal the intrinsic room temperature ferromagnetism in the as-prepared films. The strong sp-f exchange interaction as a result of the rare earth doping is discussed as the origin of the magnetotransport behaviours. A positive magnetoresistance (∼29.2%) was observed at 5 K and ascribed to the strong ferromagnetic sp-f exchange interaction in (In{sub 0.985}Nd{sub 0.015}){sub 2}O{sub 2.89} thin films due to a large Zeeman splitting in an external magnetic field of 50 KOe.

  13. Structural and Dielectric Properties of Epitaxial CaCu_3T_4O_12 Thin Films Prepared by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Tselev, A.; Anlage, Steven; Ramesh, R.

    2002-03-01

    Recently, it was found that the perovskite-related oxide CaCu_3Ti_4O_12 (CCTO) possesses a giant dielectric constant - ~10^5 below ~ 20 kHz ( M. A. Subramanian, et al., J. Solid State Chem. 151), 323 (2000). ( P. Ramirez et al., Solid State Commun. 115), 217 (2000). ( C. C. Homes, et al., Science 293), 673 (2001). in bulk at room temperature - and it is almost constant between 100 and 600 K. This extraordinary permittivity may make this material a very attractive candidate for applications in memory devices based on capacitive components. We have made first attempt to grow epitaxial thin films of CCTO utilizing Pulsed Laser Deposition. We will report on results of investigation of structure and properties of the CCTO films.

  14. Structural, optical and magnetic properties of Zn 1- xCo xO dilute magnetic semiconductors thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yang, Shanying; Man, B. Y.; Liu, M.; Chen, C. S.; Gao, X. G.; Wang, C. C.; Hu, B.

    2010-09-01

    We fabricated Zn 1- xCo xO ( x=0.05) thin films on sapphire (0 0 0 1) substrates by the pulsed laser deposition (PLD) method at various temperatures in an oxygen-deficient ambient. X-ray diffraction (XRD) spectra, UV-vis transmittance spectra, X-ray photoelectron spectroscopy and photoluminescence (PL) were used for charecterization. All samples possessed the wurtzite structure with the preferential c-axis orientation; PL located at about 418, 450 and 471 nm was observed; Co 2+ ions incorporated into the ZnO lattice with substitution for Zn 2+ ions, oxygen vacancies, oxygen antisites and Zn interstitials existed in the as-samples. Results of magnetic property of the films investigated by an alternating gradient magnetometer (AGM) indicated that all samples take on room temperature ferromagnetism. It suggested that the ferromagnetism originated from the Co 2+-Co 2+ exchange interaction related to oxygen vacancies, oxygen antisites and Zn interstitials.

  15. Sr{sub 2}MgMoO{sub 6−δ} thin films fabricated using pulsed-laser deposition with high concentrations of oxygen vacancies

    SciTech Connect

    Shigematsu, K.; Chikamatsu, A. Fukumura, T.; Toyoda, S.; Ikenaga, E.

    2014-06-30

    We fabricated epitaxial thin films of oxygen-vacant Sr{sub 2}MgMoO{sub 6−δ} using pulsed laser deposition. The films showed low resistivity of the order of 10{sup −2} Ω cm at 300 K. X-ray diffraction analyses revealed that Mg and Mo ions in the Sr{sub 2}MgMoO{sub 6−δ} films were considerably disordered, compared to those in bulk Sr{sub 2}MgMoO{sub 6−δ}. The proportion of oxygen vacancies estimated through hard x-ray photoemission measurements was as large as 0.37, and correlated well with the Mg/Mo ordering.

  16. Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in microbatteries

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Lu, Li; Meng, Ying Shirley

    2008-01-01

    LiNi0.5Mn0.5O2 films were prepared by pulsed laser deposition on stainless steel (SS) and Au substrates. The substrate was found to play an important role in determining the growth of films. Although similar x-ray diffraction spectra were observed for both types of substrates, Raman spectra exhibited different features. The charge-discharge behavior of the film on the SS substrate indicates a spinel structure while the charge-discharge behavior of the film on the Au substrate indicates a layered structure. The secondary ion mass spectrometry depth-profiling results indicate interdiffusion between the film and the substrate, which inhibits the formation of pure layered LiNi0.5Mn0.5O2 phase.

  17. The effects of oxygen pressure on disordering and magneto-transport properties of Ba2FeMoO6 thin films grown via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong-Won; Ghosh, Siddhartha; Buvaev, Sanal; Mhin, Sungwook; Jones, Jacob L.; Hebard, Arthur F.; Norton, David P.

    2015-07-01

    Epitaxial Ba2FeMoO6 thin films were grown via pulsed laser deposition under low oxygen pressure and their structural, chemical, and magnetic properties were examined, focusing on the effects of oxygen pressure. The chemical disorder, off-stoichiometry in B site cations (Fe and Mo) increased with increasing oxygen pressure and thus magnetic properties were degraded. Interestingly, in contrast, negative magneto-resistance, which is the characteristics of this double perovskite material, was enhanced with increasing oxygen pressure. It is believed that phase segregation of highly disordered thin films is responsible for the increased magneto-resistance of thin films grown at high oxygen pressure. The anomalous Hall effect, which behaves hole-like, was also observed due to spin-polarized itinerant electrons under low magnetic field below 1 T and the ordinary electron-like Hall effect was dominant at higher magnetic fields.

  18. Strain Relaxation in Thin Films of La1.85Sr0.15CuO4 Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Zaytseva, I.; Cieplak, M. Z.; Abal'Oshev, A.; Berkowski, M.; Domukhovski, V.; Paszkowicz, W.; Shalimov, A.

    2007-01-01

    X-ray diffraction, resistivity, and susceptibility measurements are used to examine the effects of film thickness d (from 17 to 250 nm) on the structural and superconducting properties of La1.85Sr0.15CuO4 films grown by pulsed laser deposition on SrLaAlO4 substrates. For each d the film sgrow with a variable strain, ranging from a large compressive strain in the thinnest films to a negligible or tensile strain in thick films. Our results indicate that the tensile strain is not caused by the off-stoichiometric layer at the substrate-film interface. Instead, it may be caused by the extreme oxygen deficiency in some of the films.

  19. Influence of oxygen pressure and aging on LaAlO{sub 3} films grown by pulsed laser deposition on SrTiO{sub 3} substrates

    SciTech Connect

    Park, Jihwey; Aeppli, Gabriel; Soh, Yeong-Ah; David, Adrian; Lin, Weinan; Wu, Tom

    2014-02-24

    The crystal structures of LaAlO{sub 3} films grown by pulsed laser deposition on SrTiO{sub 3} substrates at oxygen pressure of 10{sup −3} millibars or 10{sup −5} millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show that the interface between LaAlO{sub 3} and SrTiO{sub 3} is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO{sub 3} layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.

  20. Detection of Fe2+ valence states in Fe doped SrTiO3 epitaxial thin films grown by pulsed laser deposition.

    PubMed

    Koehl, Annemarie; Kajewski, Dariusz; Kubacki, Jerzy; Lenser, Christian; Dittmann, Regina; Meuffels, Paul; Szot, Kristof; Waser, Rainer; Szade, Jacek

    2013-06-01

    We present an X-ray absorption spectroscopy study on Fe-doped SrTiO3 thin films grown by pulsed laser deposition. The Fe L2,3 edge spectra are recorded for doping concentrations from 0-5% after several annealing steps at moderate temperatures. The Fe valence state is determined by comparison with an ilmenite reference sample and calculations according to the charge transfer multiplet model. We found clear evidence of Fe(2+) and Fe(3+) oxidation states independently of the doping concentration. The Fe(2+) signal is enhanced at the surface and increases after annealing. The Fe(2+) configuration is in contrast to the mixed Fe(3+)/Fe(4+) valence state in bulk material and must be explained by the specific defect structure of the thin films due to the kinetically limited growth which induces a high concentration of oxygen vacancies. PMID:23615619