Science.gov

Sample records for pulsed laser fluorometry

  1. Pulsed laser fluorometry for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.

  2. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  3. Second All-Union School on Applications of Lasers in Biology, Tbilisi, November 24-29, 1980 (Pulsed fluorometry of primary photosynthesis processes in higher plants)

    NASA Astrophysics Data System (ADS)

    Pashchenko, V. Z.; Rubin, L. B.

    1981-12-01

    The principles of pulsed fluorometry are presented and an experimental apparatus in which fluorescence is excited by single optical pulses of ~2 psec duration at λ = 530, 353, and 265 nm is described. Fluorescence is recorded using two image-converter cameras with a temporal resolution of 2 and 20 psec. Luminescence from the camera screen is detected by a vidicon and then processed in an analyzer-computer system. The results of experimental investigations of primary photosynthesis processes are presented. It is established that energy transfer within the light-gathering assembly is achieved by localized excitons having the following parameters: diffusion coefficient D~2×10-2 cm2/sec, diffusion length L~90 nm, and transfer probability W~1012 sec-1. Evolution of excitation in focusing antennas of photosystems and long-wavelength pigment-protein complexes is studied. The fluorescence lifetime and quantum yield of photoactive chlorophyll are determined, these being ~60 psec and 3×10-3 (P680) and 5-7 psec and 3×10-4 (P700).

  4. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    PubMed

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching. PMID:25893897

  5. Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments.

    PubMed

    Chekalyuk, Alexander; Hafez, Mark

    2013-06-17

    The new optical design allows single- or multi-wavelength excitation of laser-stimulated emission (LSE), provides optimized LSE optical collection for spectral and temporal analyses, and incorporates swappable modules for flow-through and small-volume sample measurements. The basic instrument configuration uses 510 nm laser excitation for assessments of chlorophyll-a, phycobiliprotein pigments, variable fluorescence (F(v)/F(m)) and chromophoric dissolved organic matter (CDOM) in CDOM-rich waters. The three-laser instrument configuration (375, 405, and 510 nm excitation) provides additional Fv/Fm measurements with 405 nm excitation, CDOM assessments in a broad concentration range, and potential for spectral discrimination between oil and CDOM fluorescence. The new measurement protocols, analytical algorithms and examples of laboratory and field measurements are discussed. PMID:23787609

  6. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry.

    PubMed

    Wang, Rui; Hua, Ming; Yu, Yang; Zhang, Min; Xian, Qi-Ming; Yin, Da-Qiang

    2016-03-01

    We investigated the effects of allelochemical ferulic acid (FA) on a series of physiological and biochemical processes of blue-green algae Microcystis aeruginosa, in order to find sensitive diagnostic variables for allelopathic effects. Algal cell density was significantly suppressed by FA (0.31-5.17 mM) only after 48 h exposure. Inhibitions of photosynthetic parameters (F(v)/F(m) and F(v)'/F(m)') occurred more rapidly than cell growth, and the stimulation of non-photochemical quenching was observed as a feed-back mechanisms induced by photosystem II blockage, determining by PAM fluorometry. Inhibitions on esterase activity, membrane potential and integrity, as well as disturbance on cell size, were all detected by flow cytometry with specific fluorescent markers, although exhibiting varied sensitivities. Membrane potential and esterase activity were identified as the most sensitive parameters (with relatively lower EC50 values), and responded more rapidly (significantly inhibited only after 8 h exposure) than photosynthetic parameters and cell growth, thus may be the primary responses of cyanobacteria to FA exposure. The use of PAM fluorometry and flow cytometry for rapid assessment of those sensitive variables may contribute to future mechanistic studies of allolepathic effects on phytoplankton. PMID:26766364

  7. Monitoring and identifying genetically-engineered microorganisms in the environment by time-resolved laser fluorometry

    SciTech Connect

    Basile, F.

    1992-01-01

    A large percentage of the applications of Genetically Engineered Microorganisms (GEMs) involve their release into the environment. At the present time there is no rapid analytical method that can accurately identify and quantify the number of microorganisms and their foreign genes. In the past several years the author's laboratory has used successfully laser-based enzymatic assays to identify and differentiate pathogens, microorganisms, and genetically modified microorganisms. This work focused on the use of the above technology to track and identify agricultural beneficially GEMs that have been released into the environment. The first stage of this work dealt with the detection of the marker gene, the lactose operon. It was successfully demonstrated that the laser-based enzymatic assay can detect enzymatic activity in E. coli after 5 minutes of induction. Moreover, the author has achieved quantitation of GEMs in the laboratory down to 10[sup 4] cells with only a 30 minute incubation time. The second stage of this work dealt with the characterization of the analytical blank present in environmental samples. Strategies were devised to circumvent this interference and new substrates were synthesized that improved the S/B of the analysis. The last stage of this research dealt with devising new instrumental methods to detect small number (single cell) of microorganisms. These included incorporation of time-resolved detection in flow cytometry, Capillary Electrophoresis of microorganisms, and two-photon spectroscopy of centrosymmetric probes. The results found here will complement the large array of techniques available for monitoring and identifying GEMs in the environment. Ultimately, the technique chosen will depend heavily on the type of gene being monitored, the sensitivity required, and the environmental conditions.

  8. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  9. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  10. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  11. Autoregressive-model-based fluorescence-lifetime measurements by phase-modulation fluorometry using a pulsed-excitation light source and a high-gain photomultiplier tube.

    PubMed

    Iwata, Tetsuo; Ito, Ritsuki; Mizutani, Yasuhiro; Araki, Tsutomu

    2009-11-01

    We propose a novel method for measuring fluorescence lifetimes by use of a pulsed-excitation light source and an ordinary or a high-gain photomultiplier tube (PMT) with a high-load resistor. In order to obtain the values of fluorescence lifetimes, we adopt a normal data-processing procedure used in phase-modulation fluorometry. We apply an autoregressive (AR)-model-based data-analysis technique to fluorescence- and reference-response time-series data obtained from the PMT in order to derive plural values of phase differences at a repetition frequency of the pulsed-excitation light source and its harmonic ones. The connection of the high-load resistor enhances sensitivity in signal detection in a certain condition. Introduction of the AR-model-based data-analysis technique improves precision in estimating the values of fluorescence lifetimes. Depending on the value of the load resistor and that of the repetition frequency, plural values of fluorescence lifetimes are obtained at one time by utilizing the phase information of harmonic frequencies. Because the proposed measurement system is simple to construct, it might be effective when we need to know approximate values of fluorescence lifetimes readily, such as in the field of biochemistry for a screening purpose. PMID:19891834

  12. Nanofabrication with Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Delaporte, Ph.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, Th.; Sentis, M.

    2010-03-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  13. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  14. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  15. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  16. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  17. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  18. Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis.

    PubMed

    Ritchie, Raymond J; Mekjinda, Nutsara

    2016-10-01

    Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0). PMID:27318559

  19. Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry.

    PubMed

    Miao, Ai-Jun; Wang, Wen-Xiong; Juneau, Philippe

    2005-10-01

    The toxic effects of Cd, Cu, and Zn on four different marine phytoplankton, Dunaliella tertiolecta, Prorocentrum minimum, Synechococcus sp., and Thalassiosira weissflogii, were examined by comparing the cell-specific growth rate, pulse-amplitude-modulated (PAM) parameters (maximum photosystem II quantum yield phiM and operational quantum yield phi'M, chlorophyll a content, and cellular metal concentration, over a 96-h period. The calculated no-observed-effect concentration (NOEC) based on both cell-specific growth rate and two PAM parameters (phiM and phi'M) were mostly identical. Thus, these PAM parameters and cell-specific growth rate were comparable in their sensitivities as the biomarkers for trace metal toxicity to marine phytoplankton. The cyanobacteria Synechococcus sp. was the most sensitive species among the four algal species tested because of its higher cell surface to volume ratio. The toxicity of the three tested metals followed the order of Cd > Cu > Zn based on the cellular metal concentration of the four algae at the NOEC. The cellular metal bioaccumulation followed the same Freundlich isotherm for each metal regardless of the algal species, indicating that the metal accumulation was a nonmetabolic process under high ambient metal concentrations and that the cell surface metal binding was comparable among the different species. For all the algae examined in our study, the bioaccumulation potentials of Cu and Zn were similar to each other, while the Cd bioaccumulation was much lower under environmentally realistic metal concentration. PMID:16268163

  20. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  1. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  2. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  3. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  4. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  5. CW-pulsed laser

    SciTech Connect

    Wert, J. C.

    1981-09-01

    An apparatus for generating a spatially coherent laser beam having both CW and pulsed modes is disclosed. The modes are generated in differing volumetric regions of a single gain medium excited by a continuous energy pump. The CW portion of the output beam passes from the gain medium through a partially transmissive output coupling. The pulsed modes in the output beam are created in the respective region of the gain medium when transition materials from a selected group are stimulated to undergo an abrupt change between their reflective and transmissive states. Either cavity dumped or Q-switched configurations can be created by selective and patterned location of the transition materials at the ends of the gain medium. Symmetric organization of the volumetric regions within the gain medium allows temporal superposition of the two modes while maintaining spatial distinctiveness within the laser beam generated.

  6. In Vivo and in Vitro Chlorophyll-a and Pheophytin-a Concentration Measurements by Laser Fluorometry

    NASA Technical Reports Server (NTRS)

    Demidov, A. A.; Baulin, E. V.; Chernyavskaya, E. A.

    1992-01-01

    Discussed here is the application of a laser fluorescent technique in in vivo and in vitro phyto- and zooplankton analysis involving popular lasers, an impulse YAG laser (lambda = 532 nm) and a steady state He-Cd (lambda = 440 nm). The YAG laser is widely used in laser remote sensing of seawater photoplankton in situ mode, but here we give special attention to its use in the precise estimation of phytoplankton pigments using laser induced fluorescence. The He-Cd laser is a novice in this field and, we believe, very promising. Our methods enable one to detect, in viro, chlorophyll-a (Chl-a) concentration in the water probe up to 10 nanograms per liter, and to measure, in vitro, Chl-a and pheophytin-a (Ph-a) concentrations in acetone extracts of phyto- and zooplankton up to 1 nanogram per liter.

  7. Pulsed laser microtomograph

    NASA Astrophysics Data System (ADS)

    Antonov, V. B.; Bonch-Bruevich, A. M.; Vasil'Ev, V. I.; Ionov, L. N.; Nikolaev, S. D.; Starobogatov, I. O.

    1994-12-01

    This paper describes a pulsed laser tomographic apparatus that has been implemented in practice and has a spatial resolution of 2-5 microns in the transverse direction and approximately 70 microns in the probe-radiation propagation direction. Experiments have been performed with model objects. Results have been obtained that confirm the possibility of early diagnosis of skin mycoses that cannot be diagnosed by existing methods.

  8. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  9. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  10. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  11. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  12. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  13. Laser system using ultra-short laser pulses

    SciTech Connect

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  14. Lasers for ultrashort light pulses

    SciTech Connect

    Herrmann, J.; Wilhelmi, B.

    1987-01-01

    The present rapid expansion of research work on picosecond lasers and their application makes it difficult to survey and comprehend the large number of publications in this field. This book aims to provide an introduction to the field starting with the very basic and moving on to an advanced level. Contents: Fundamentals of the interaction between light pulses and matter; Fundamentals of lasers for ultrashort light pulses; Methods of measurement; Active modelocking; Synchronously pumped lasers; Passive modelocking of dye lasers; Passive modelocking of solid state lasers; Nonstationary nonlinear optical processes; Ultrafast spectroscopy.

  15. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  16. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  17. Pulsed Single Frequency Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin

    2016-06-01

    Pulsed single frequency fiber lasers with mJ level near 1 micron, 1.55 micron and 2 micron wavelengths were demonstrated by using our proprietary highly doped fibers. These fiber lasers exhibit excellent long term stable operation with M2<1.2.

  18. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  19. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  20. Pulsed DF laser effects study

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Maher, W. E.; Nichols, D. B.

    1981-07-01

    This study of DF laser interaction with materials investigated the amount of energy coupled to targets. Large focal spot dimensions were obtained with the Boeing photo-initiated 50-1 pulsed chemical laser with a stable resonator. Effects experiments emphasized metallic targets, especially aluminum. The single pulse coupling results yielded absorbed fluence values greater than those obtained with comparable energies at 10.6 micrometer wavelength. Ambient pressure and angle of incidence were varied. Research results also showed multiple-pulse effect at DF wavelength. Multiple-pulse thermal coupling experiments with aluminum demonstrated that, after 10 shots on the same spot, the coupled fluence per pulse doubled. Because of target melting and vaporization, both the intrinsic absorptivity and the plasma enhanced coupled fluence of succeeding pulses is greatly increased. In general, the multiple pulse effect is intensity-dependent and is small at either low or high intensities. Energy deposition was tested for uniformity by measuring the rises in temperature at five locations within the focal spot with an array of thermocouples.

  1. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  2. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  3. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  4. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  5. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  6. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  7. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  8. Ultrashort-pulse laser calligraphy

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  9. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  10. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  11. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  12. Short-pulse photolytic iodine laser

    NASA Astrophysics Data System (ADS)

    Tate, Ralph F.; Harris, Melvin; Anderson, Brian T.; Hager, Gordon D.

    2000-08-01

    A compact, short pulse photolytic iodine laser (PIL) system designed for use as a source in Raman conversion experiments is described. The single-shot, flashlamp-pumped laser outputs 10 Joules in a 3 microsecond(s) FWHM pulse at a wavelength of 1.315 micrometer and uses n-C3F7I as the renewable laser fuel. Laser design and performance characteristics are presented.

  13. Dynamic pulsing of a MOPA fiber laser

    NASA Astrophysics Data System (ADS)

    Romero, Rosa; Guerreiro, Paulo T.; Hendow, Sami T.; Salcedo, José R.

    2011-05-01

    Dynamic Pulsing is demonstrated using a pulsed MOPA fiber laser at 1064nm. The output of the MOPA laser is a pulsed profile consisting of a burst of closely spaced pulses. Tests were performed under several materials with pulse bursts ranging from 10ns to 1μs and operating from 500kHz down to single shot. In particular, percussion drilling in stainless steel is demonstrated showing improvements in quality and speed of the process. These profiles allow high flexibility and optimization of the process addressing the specificity of the end application. Dynamic Pulsing allows the same MOPA fiber laser to be used in diverse materials as well as different processes such us marking, drilling, scribing and engraving. The pulsed fiber laser used in this study is a MOPA-DY by Multiwave Photonics. It is based on a modulated seed laser followed by a series of fiber amplifiers and ending with an optically isolated collimator. This pulsed laser model has an output in such a way that each trigger produces a fast burst of pulses, with a repetition frequency within the burst of the order of tens of MHz. Within the burst it is possible to change the number of pulses, the individual pulse profile, burst pulse period and even to generate non-periodic burst pulse separations. The laser allows full freedom for all these combinations. The study here reported compares the impact of pulse peak power, number of pulses within a burst and the pulse burst period, on process quality (heat affected zone, debris, hole uniformity) and drilling yield.

  14. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  15. Ultrashort Laser Pulses in Physics and Chemistry

    SciTech Connect

    Naskrecki, Ryszard

    2007-11-26

    Study of physical and chemical events accompanying light-matter interaction in pico- and femtosecond time scale have become possible with the use of ultrashort laser pulses. With the progress in generation of ultrashort laser pulses, the ultrafast optical spectroscopy, as a tool for dynamic study, is still evolving rapidly.

  16. Flexible pulse-controlled fiber laser.

    PubMed

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  17. Flexible pulse-controlled fiber laser

    PubMed Central

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  18. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  19. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  20. Stimulated light forces using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bloch, Immanuel; Goepfert, A.; Haubrich, D.; Lison, F.; Schuetze, R.; Wynands, Robert; Meschede, Dieter

    1997-05-01

    Using the stimulated force exerted by counterpropagating picosecond laser pulses from a mode-locked Ti:Sapphire laser we were able to focus a beam of laser-cooled cesium atoms along one dimension to about 57% of its original width in the detection zone. The force profile was measured outside and inside the overlap region of the pulses and found to be in agreement with an earlier theoretical prediction. A brief theoretical account of the interaction of atoms with pulsed laser light based on the optical Bloch equations is given.

  1. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  2. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  3. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Krausz, Ferenc; Yu, Wei; Tsakiris, George D.; Veisz, Laszlo

    2015-03-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ˜100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  4. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  5. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  6. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  7. Relativistic plasma shutter for ultraintense laser pulses

    PubMed Central

    Reed, Stephen A.; Matsuoka, Takeshi; Bulanov, Stepan; Tampo, Motonobu; Chvykov, Vladimir; Kalintchenko, Galina; Rousseau, Pascal; Yanovsky, Victor; Kodama, Ryousuke; Litzenberg, Dale W.; Krushelnick, Karl; Maksimchuk, Anatoly

    2009-01-01

    A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations. PMID:19654882

  8. Patch-Clamp Fluorometry: Electrophysiology meets Fluorescence

    PubMed Central

    Kusch, Jana; Zifarelli, Giovanni

    2014-01-01

    Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research. PMID:24655500

  9. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  10. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  11. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  12. Laser lithotripsy using double pulse technique

    NASA Astrophysics Data System (ADS)

    Helfmann, Juergen; Doerschel, Klaus; Mueller, Gerhard J.

    1990-07-01

    There are currntly several methods in the field of laser lithotripsy which operate not only at different wavelengths and pulse lengths but also with various types of optical front ends and various irrigation fluids'6. The methods can be divided into two main groups: First, those which utilize stone absorption and plasma formation on the stone surface to initiate stone fragmentation, such as dye lasers. Second, those which generate shock waves and caviatation in the surrounding fluid and which require additional means to produce aplasma (e.g. irrigation, focussing fiber end or metal surfaces). The pulsed Nd:YAG laser belongs to this group. The method presented here is the double pulse technique which is a combination of both methods. It uses two laser pulses with a short time delay transmitted by means of a fiber to destroy body concrements. The first pulse is the first harmonic of the Nd:YAG laser (532nm) which improves the coupling efficiency of the laser radiation with the stone. The second pulse is in the fundamental mode of the laser (1064 nm) delivering the high energy for the stone disruption.

  13. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  14. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  15. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cormier-Michel, E.

    2010-11-04

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  16. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    NASA Astrophysics Data System (ADS)

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Cormier-Michel, E.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2010-11-01

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse [3, 4, 5, 6, 7]. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations [8]. The accelerator length was mapped by scanning the collision point.

  17. The dynamics of compact laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-07-01

    We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium in terms of an effective quantum Hamiltonian.

  18. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  19. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  20. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  1. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  2. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  3. Feedback control of pulsed laser deposition processes

    NASA Astrophysics Data System (ADS)

    Laube, S. J. P.; Stark, E. F.

    1993-10-01

    Implementation of closed loop feedback on PLD (pulsed laser deposition) requires actuators and sensors. Improvements in quality and reproducibility of material depositions are achieved by actuating the process towards desired operating regions. Empirical relationships are experimentally determined for describing the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder.

  4. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  5. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  6. Modeling of pulsed lasers for remote sensing

    NASA Astrophysics Data System (ADS)

    Walsh, Brian M.; Barnes, Norman P.; Petros, Mulugeta; Yu, Jirong; Singh, Upendra N.

    2005-01-01

    Pulsed lasers are useful for remote sensing of wind and greenhouse gases to better understand the atmosphere and its impact on weather patterns and the environment. It is not always practical to develop and optimize new laser systems empirically due to the time and expense associated with such endeavors. A practical option is to use a laser model to predict various performance parameters and compare these with the needs required for a particular remote sensing application. This approach can be very useful in determining the efficacy of potential laser systems, saving both time and money before proceeding with the actual construction of a laser device. As a pedagogical example, the modeling of diode pumped Tm:Ho:YLF and Tm:Ho:LuLF lasers are examined. Tm:Ho lasers operating around 2.0 μm have been used for wind measurements such as clear air turbulence and wake vortices. The model predictions for the laser systems examined here are compared to the actual laser performance, validating the usefulness of the modeling approach. While Tm:Ho fluoride lasers are used as a pedagogical example, the model is applicable to any lanthanide series pulsed laser system. This provides a useful tool for investigating potential laser systems that meet the requirements desired for a variety of remote sensing applications.

  7. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  8. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  9. Pulse-to-pulse polarization-switching method for high-repetition-rate lasers

    NASA Astrophysics Data System (ADS)

    Hahne, Steffen; Johnston, Benjamin F.; Withford, Michael J.

    2007-02-01

    We report a method that enables dynamic switching of the pulse-to-pulse linear polarization orientation of a high-pulse-rate laser. The implications for laser micromachining, where polarization direction can be important, are also discussed.

  10. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  11. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  12. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  13. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  14. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  15. Overview of repetitively pulsed photolytic iodine lasers

    NASA Astrophysics Data System (ADS)

    Schlie, L. A. V.

    1996-02-01

    The performance of a repetitively pulsed, 70 joule, closed cycle 1.3 (mu) M photolytic atomic iodine laser with excellent beam quality (BQ equals 1.15) is presented. This BQ was exhibited in the fundamental mode from a M equals 3.1 confocal unstable resonator at a 0.5 Hz repetition rate. A closed cycle scrubber/laser fuel system consisting of a condensative- evaporative section, two Cu wool I2 reactor regions, and an internal turbo-blower enabled the laser to operate very reliably with low maintenance. The fuel system provided C3F7I gas at 10 - 60 torr absent of the photolytic quenching by-product I2. Using a turbo- molecular blower longitudinal flow velocities greater than 10 m/s were achieved through the 150 cm long by 7.5 multiplied by 7.5 cm2 cross sectional photolytic iodine gain region. In addition to the high laser output and excellent BQ, the resulting 8 - 12 microsecond laser pulse had a coherence length greater than 45 meters and polarization extinction ratio better than 100:1. Projections from this pulsed photolytic atomic iodine laser technology to larger energies, higher repetition rates, and variable pulse widths are discussed.

  16. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  17. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  18. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  19. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  20. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  1. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  2. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  3. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  4. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  5. Polyethylene welding by pulsed visible laser irradiation

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Caridi, F.; Visco, A. M.; Campo, N.

    2011-01-01

    Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as “through transmission visible laser welding”. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part. In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.

  6. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  7. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  8. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  9. Trident Pair Production in Strong Laser Pulses

    SciTech Connect

    Ilderton, Anton

    2011-01-14

    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse durations, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.

  10. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  11. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  12. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  13. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  14. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated. PMID:26617364

  15. Thomson scattering in short pulse laser experiments

    SciTech Connect

    Hill, E. G.; Rose, S. J.

    2012-08-15

    Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

  16. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  17. Plasma mirrors for short pulse lasers

    SciTech Connect

    Yanovksy, V.P.; Perry, M.D.; Brown, C.G.; Feit, M.D.; Rubenchik, A.

    1997-06-11

    We show experimentally and theoretically that plasmas created by a sufficiently (1014 1015 2 short (<500 fs) intense W/cm ) laser pulse on the surface of dielectric material act as nearly perfect mirrors: reflecting p to 90% of the incident radiation with a wavefront quality equal to that of the initial solid surface.

  18. Pulse solid state lasers in aesthetic surgery

    NASA Astrophysics Data System (ADS)

    Dobryakov, Boris S.; Greben'kova, Ol'ga B.; Gulev, Valerii S.

    1996-04-01

    The emission of a pulse-periodic laser on alumo-ittrium garnet applied for preventive and medical treatment of a capsule contracture round implanted prostheses in xenoplastics is described in the present paper. The results obtained testify to a high efficiency of suggested method.

  19. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  20. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  1. Laser zona dissection using short-pulse ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  2. Pulse distortion and modulation instability in laser plasma interaction

    SciTech Connect

    Jha, Pallavi; Singh, Ram Gopal; Upadhyay, Ajay K.

    2009-01-15

    The present paper deals with the propagation of a short, intense, Gaussian laser pulse in plasma. Using a one dimensional model, a wave equation including finite pulse length and group velocity dispersion is set up and solved to obtain the intensity distribution across the laser pulse. It is shown that the pulse profile becomes asymmetric as it propagates through plasma. Further, the growth rate of modulation instability and range of unstable frequencies across the laser pulse have been derived and graphically analyzed.

  3. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  4. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (ESTSC)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  5. Coiled Fiber Pulsed Laser Simulator

    SciTech Connect

    Hadley, G. Ronald

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a data file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.

  6. Enhanced subthreshold e+ e- production in short laser pulses.

    PubMed

    Titov, A I; Takabe, H; Kämpfer, B; Hosaka, A

    2012-06-15

    The emission of e+ e- pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g., laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in the case of moderate laser pulse intensities. PMID:23004244

  7. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Tilborg, J. van; Leemans, W. P.

    2011-08-15

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in a plasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatched propagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of a mismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance and significantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage is examined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown to be in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasma channel diagnostics are discussed.

  8. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  9. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  10. Investigation of laser temporal pulse duration on Rayleigh scattering

    SciTech Connect

    Nee, T.A.; Roberts, J.R.

    1982-02-01

    Relative Rayleigh-scattering cross sections from nitrogen have been measured for various pulse durations and wavelengths of incident laser radiation. No pulse-duration dependence has been observed for laser pulses as short as 5 ns, and classical theory is found to be still valid over the pulse-width range (5< or =..delta..t< or =110 ns) of our observations.

  11. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  12. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  13. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  14. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  15. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  16. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  17. Optical limiting of short laser pulses

    SciTech Connect

    Liu, J.-C.; Wang, C.-K.; Gel'mukhanov, Faris

    2007-11-15

    The dynamics of pulse propagation accompanied by harmonic generation, stimulated Raman scattering, amplified spontaneous emission, and superfluorescence is studied near the two-photon resonance. We explore the optical limiting of intense and short laser pulses. The numerical solutions of the coupled Bloch and Maxwell's equations for the 4,4{sup '}-bis(dimethylamino) stilbene molecule are compared with the two-photon area theorem. It is shown that the area theorem explains qualitatively the major dynamical properties of pulse propagation even if the propagation is accompanied by the generation of new fields. In agreement with the area theorem, we see that the conventional dependence of the transmittance on the propagation depth is not valid for intense pulses.

  18. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  19. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  20. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  1. Graphene in Ultrafast and Ultrastrong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Koochakikelardeh, Hamed; Apalkov, Vadym; Stockman, Mark

    2015-03-01

    We have shown that graphene subjected to an ultrafast (near-single-oscillation pulse) and strong (F ~ 1-3 V/Å) pulse exhibits fundamental behavior dramatically different from both insulators and metals. In such an ultrafast and ultrastrong field, the electron dynamics is coherent, in contrast to relatively long pulses (τ>100 fs) where the electron's dephasing becomes important leading to incoherent dynamics. Electron transfer from the valence band (VB) to the conduction band (CB) is deeply irreversible i.e., non-adiabatic, in which the residual CB population (after pulse ends) is close to the maximum one. The residual CB population as a function of wave vector is nonuniform with a few strongly localized spots near the Dirac points, at which the CB population is almost 100%. Furthermore, it is shown the direction of charge transfer depends on the pulse amplitude. Namely, at small pulse amplitude, <=1V/Å, the charge is transferred in the direction of the pulse maximum (positive transferred charge), while at large amplitude, >=1 V/Å, it is in opposite direction of the pulse maximum (negative transferred charge). Consequently, in terms of charge transport, graphene at small pulse intensities behaves as a dielectric while at large intensities acts as a metal. These femtosecond currents and charge transfer in graphene may provide fundamental basis for detection and calibration of ultrashort intense laser pulses and are promising for petahertz information processing. This work was supported by U.S. Office of Naval Research No. N00014-13-1-0649 and NSF Grant No. ECCS-1308473.

  2. Evaporation of solids by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  3. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  4. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  5. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  6. Detector nonlinearity in frequency-domain fluorometry.

    PubMed

    Wirth, M J; Burbage, J D; Zulli, S L

    1993-02-20

    Frequency-domain fluorometry relies on the measurement of the phase and amplitudes of the Fourier components of the time-dependent fluorescence signal. Experimental results that show that a conventional photomultiplier is subject to intensity-dependent phase shifts are presented. The measurements indicate that this is a problem well below the maximum linear current of the photomultiplier response. These results have important implications in frequency-domain fluorescence anisotropy experiments, in which the parallel and the perpendicular components of the emission intensity are inherently different from one another: a phase shift can be introduced by the photomultiplier. PMID:20802776

  7. Laser cutting of titanium with pulsed and modulated pulsed Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Maher, Warren; Tong, Kwok-On

    1998-05-01

    Recent test results demonstrate the differences between laser cutting of Ti with different pulsed formats at 1.06 micrometer wavelength. The precision Laser Machining (PLM) consortium is dedicated to investigating improved processing obtained with the use of diode-pumped Nd:YAG lasers having high beam quality and high average power. One of the PLM lasers developed at TRW was used to determine the best parameters for laser cutting 0.034' Ti. Average power was available up to 340 W. Pulse repetition rates were 322 Hz with pulse lengths of 454 microseconds, while the modulated laser output had a 142 kHz micropulse train within the pulse envelope. Beam quality was sufficient to permit a 100 micrometer spot size to be used with f/10 focusing. Ar assist gas was used. At each setting of the laser average power the cutting tests usually were tried at 11 different speeds, up to 3'/second. The highest speed for which cutting is possible at a given average power is the threshold speed for that power. The cut specimens were evaluated for dross for a variety of rear surface Ar cross flow conditions. Each cut specimen also was evaluated for excess heating indicated by metallurgical and/or surface chemistry changes. Cutting at speeds above a critical minimum speed for each setting of laser average power greatly reduces degradation due to excess heating. Good cutting is possible between the threshold speed and this minimum speed (both a function of average power). Data for threshold and minimum speed were obtained for the pulsed and the modulated pulsed laser output. These tests also determined evidence of optimum conditions for cutting with a rear cross flow of Ar that substantially eliminates rear surface dross on the edge of the kerf. The quality of the cut edge was evaluated by inspection of its polished cross-section.

  8. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  9. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  10. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  11. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  12. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  13. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  14. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  15. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  16. Photoswitches operating upon ns pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Athanassiou, A.; Lakiotaki, K.; Kalyva, M.; Georgiou, S.; Fotakis, C.

    2005-07-01

    We present a potential photoswitch, which undergoes reversible mechanical actuation induced exclusively by photons. The photoswitch is a polymer-based film doped with spiropyran photochromic molecules. It undergoes repeatable mechanical cycles controlled by ns laser pulses of specific wavelengths. The polymer matrix is mechanically activated due to particular photoisomerization processes of the incorporated photochromic molecules, resulting in its contraction and lengthening in a highly controllable manner. We present herein the way that the switching time of this novel photoswitch depends on different laser parameters such as the energy and the repetition rate.

  17. Pulsed laser deposition of pseudowollastonite coatings.

    PubMed

    Fernández-Pradas, J M; Serra, P; Morenza, J L; De Aza, P N

    2002-05-01

    Pseudowollastonite (alpha-CaSiO3) is a bioactive ceramic material that induces direct bone growth. A process to obtain pseudowollastonite coatings that may be applied to implants is described and evaluated in this work. The coatings were first deposited on titanium alloy by laser ablation with a pulsed Nd:YAG laser tripled in frequency. After deposition, they were submitted to a soft laser treatment with a continuous wave Nd:YAG infrared laser. Coatings were characterised by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy before and after the laser treatment. As-deposited coatings are composed of pseudowollastonite and amorphous material. They have a porous structure of gathered grains and poor cohesion. After the laser treatment the coatings crystallinity and cohesion are improved. The laser treatment also makes the coatings dense and well adhered to the substrate. Therefore, this two-step process has been demonstrated as a valuable method to coat titanium implants with pseudowollastonite. PMID:11996047

  18. High voltage pulse generators for use in laser systems

    SciTech Connect

    Dymoke-Bradshaw, A.K.L.; Hares, J.D.; Kellett, P.A.

    1995-12-31

    Solid state pulse generators with controlled multi-kilovolt outputs are now production items. The range of applications within the field of lasers has increased so that they can control laser pulse width and shape, cavity dumping and seeding, stage isolation and coherence reduction for smoothing irradiation. Such pulse generators can now be built with embedded computer systems for remote control, interrogation and diagnosis of pulser parameters. Diagnostic equipment to monitor laser beam profiles with respectable time resolution also employs these pulse generators.

  19. Short-pulse Laser Capability on the Mercury Laser System

    SciTech Connect

    Ebbers, C; Armstrong, P; Bayramian, A; Barty, C J; Bibeau, C; Britten, J; Caird, J; Campbell, R; Chai, B; Crane, J; Cross, R; Erlandson, A; Fei, Y; Freitas, B; Jovanovic, I; Liao, Z; Molander, B; Schaffers, K; Stuart, B; Sutton, S; Ladran, T; Telford, S; Thelin, P; Utterback, E

    2006-06-22

    Applications using high energy ''petawatt-class'' laser drivers operating at repetition rates beyond 0.01 Hz are only now being envisioned. The Mercury laser system is designed to operate at 100 J/pulse at 10 Hz. We investigate the potential of configuring the Mercury laser to produce a rep-rated, ''petawatt-class'' source. The Mercury laser is a prototype of a high energy, high repetition rate source (100 J, 10 Hz). The design of the Mercury laser is based on the ability to scale in energy through scaling in aperture. Mercury is one of several 100 J, high repetition rate (10 Hz) lasers sources currently under development (HALNA, LUCIA, POLARIS). We examine the possibility of using Mercury as a pump source for a high irradiance ''petawatt-class'' source: either as a pump laser for an average power Ti:Sapphire laser, or as a pump laser for OPCPA based on YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), ideally producing a source approaching 30 J /30 fs /10 Hz--a high repetition rate petawatt. A comparison of the two systems with nominal configurations and efficiencies is shown in Table 1.

  20. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  1. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  2. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  3. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  4. Magnetic Colloids By Pulsed Laser Ablation

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Singh, M. K.; Agarwal, A.; Gopal, R.

    2011-06-01

    Colloidal magnetic nanoparticles have been successfully synthesized by nano second pules laser ablation of a cobalt slice immersed in liquid (distilled water) medium. The focused output of 1064 nm wavelength of pulsed Nd: YAG laser operating at 40 mJ/pulse is used for ablation. The liquid enviorment allows formation of colloids with nanoparticles in uniform particle diameter. Synchrotron X-ray powder diffraction (XRD) is used for the study of structural property of synthesized nanoparticles. The magnetic properties of cobalt nanoparticles are also investigated. The coercivity of is found to be 73 Oe. The optical properties have been determined by UV-visible absorption spectroscopy and band gap found to be 2.16 and 3.60 eV.

  5. Pulsed laser damage to optical fibers

    SciTech Connect

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-10-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace.

  6. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  7. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  8. Fragmentation process induced by microsecond laser pulses during lithotripsy

    NASA Astrophysics Data System (ADS)

    Rink, K.; Delacrétaz, G.; Salathé, R. P.

    1992-07-01

    A fiber optic stress sensing technique is applied to evaluate the fragmentation mechanism for pulsed dye-laser lithotripsy. We demonstrate for the first time that the fragmentation process with microsecond laser pulses originates from the shock wave induced by the cavitation bubble collapse. This shock occurs some hundreds of microseconds after the laser pulse. The shock induced by the plasma expansion, which occurs during laser irradiation, has a minor effect.

  9. Observation of Laser-Pulse Shortening in Nonlinear Plasma Waves

    SciTech Connect

    Faure, J.; Glinec, Y.; Santos, J.J.; Ewald, F.; Rousseau, J.-P.; Malka, V.; Kiselev, S.; Pukhov, A.; Hosokai, T.

    2005-11-11

    We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38{+-}2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations.

  10. Observation of laser-pulse shortening in nonlinear plasma waves.

    PubMed

    Faure, J; Glinec, Y; Santos, J J; Ewald, F; Rousseau, J-P; Kiselev, S; Pukhov, A; Hosokai, T; Malka, V

    2005-11-11

    We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38 +/- 2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations. PMID:16384066

  11. Generation of ultrahigh intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.; Malkin, V. M.

    2003-05-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 1025 W/cm2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  12. Laser pulse modulation instabilities in plasma channels

    PubMed

    Sprangle; Hafizi; Penano

    2000-04-01

    In this paper the modulational instability associated with propagation of intense laser pulses in a partially stripped, preformed plasma channel is analyzed. In general, modulation instabilities are caused by the interplay between (anomalous) group velocity dispersion and self-phase modulation. The analysis is based on a systematic approach that includes finite-perturbation-length effects, nonlinearities, group velocity dispersion, and transverse effects. To properly include the radial variation of both the laser field and plasma channel, the source-dependent expansion method for analyzing the wave equation is employed. Matched equilibria for a laser beam propagating in a plasma channel are obtained and analyzed. Modulation of a uniform (matched) laser beam equilibrium in a plasma channel leads to a coupled pair of differential equations for the perturbed spot size and laser field amplitude. A general dispersion relation is derived and solved. Surface plots of the spatial growth rate as a function of laser beam power and the modulation wave number are presented. PMID:11088236

  13. Short Pulse Experimental Capability at the Nike Laser Facility

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Chan, Y.; Gardner, J.; Giuliani, J.; Karasik, M.; Kehne, D.; Mostovych, A.; Obenschain, S.; Velikovich, A.; Schmitt, A.; Serlin, V.; Aglitskiy, Y.; Metzler, N.; Smyth, Z.; Terrell, S.

    2004-11-01

    Recent simulations demonstrated high gain for direct drive pellets compressed by a laser pulse incorporating a short pulse prior to the main pulse. Theoretical work has also shown that a short prepulse can create a tailored density profile that reduces the initial instability growth due to laser imprinting. A new short pulse (0.35-0.75 ns FWHM)is being added to the Nike KrF laser system to facilitate hydrodynamic experiments with short prepulses. This capability has been incorporated into the initial stages of the laser system and the propagation of these pulses through the angularly multiplexed amplifiers is being studied. Measurements of pulse shape and energy will be compared to simulations using the KrF physics code Orestes for the next to last amplifier of the laser system, the 20 cm x 20 cm e-beam pumped laser cell. The effects of amplified spontaneous emission (ASE) upon individual output pulses will be also discussed.

  14. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  15. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  16. [Effect of pulsed CO2-laser irradiation on bone tissue].

    PubMed

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  17. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  18. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  19. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    PubMed

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review. PMID:22747717

  20. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  1. Generation of intense 25-fsec pulses by a pulsed laser system

    SciTech Connect

    Angel, G.; Gagel, R.; Laubereau, A. )

    1989-09-15

    A pulsed femtosecond dye laser is demonstrated with relaxed stability requirements, improved output reproducibility, and significant pulse shortening. Starting with a sequence of {approx}350 pump pulses of a Nd:glass laser (repetition rate 6 Hz, duration 1.3 psec), pulses of 25 fsec and 10 nJ are generated at 566 nm. A non-colliding-pulse, mode-locked ring laser is used with dispersion compensation and the dyes Rhodamine 6G, DQOCI, and DTCI. The evolution of the pulse parameters as a function of cavity round trips is investigated.

  2. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  3. Laser wakefield acceleration by petawatt ultrashort laser pulses

    SciTech Connect

    Gorbunov, L.M.; Kalmykov, S.Yu.; Mora, P.

    2004-12-07

    An ultra-short (about 30 fs) petawatt laser pulse focused in a wide focal spot (about 100{mu}m) in rarefied plasma (n0 {approx} 1017cm-3) excites a nonlinear plasma wakefield which can accelerate injected electrons up to a GeV energy without pulse channelling. In these conditions, the laser pulse with an over-critical power for relativistic self-focusing propagates as in vacuum. The nonlinear quasi-plane wake plasma wave, whose amplitude and phase velocity vary along the laser path, effectively traps and accelerates injected electrons with a wide range of initial energies. Electrons accelerated along two Rayleigh lengths (about eight centimeters) gain the energy up to 1 GeV. In particular, the electrons trapped from quite a long ({tau}b {approx} 330 fs) non-resonant electron beamlet of 1 MeV particles eventually form a low emittance bunch with the energies in the range 900 {+-} 50 MeV. All these conclusions follow from the two-dimensional simulations performed in cylindrical geometry by fully relativistic time-averaged particle code WAKE.

  4. Controlling electron injection in laser plasma accelerators using multiple pulses

    SciTech Connect

    Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.

    2012-12-21

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  5. Pulsed thrust measurements using laser interferometry

    NASA Astrophysics Data System (ADS)

    Cubbin, E. A.; Ziemer, J. K.; Choueiri, E. Y.; Jahn, R. G.

    1997-06-01

    An optical interferometric proximeter system (IPS) for measuring thrust and impulse bit of pulsed electric thrusters was developed. Unlike existing thrust stands, the IPS-based thrust stand offers the advantage of a single system that can yield electromagnetic interference-free, high accuracy (<2% error) thrust measurements within a very wide range of impulses (100 μN s to above 10 N s) covering the impulse range of all known pulsed plasma thrusters. In addition to pulsed thrusters, the IPS is theoretically shown to be capable of measuring steady-state thrust values as low as 20 μN for microthrusters such as the field emission electric propulsion thruster. The IPS-based thrust stand relies on measuring the dynamic response of a swinging arm using a two-sensor laser interferometer with 10 nm position accuracy. The wide application of the thrust stand is demonstrated with thrust measurements of an ablative pulsed plasma thruster and a quasi-steady magnetoplasmadynamic thruster.

  6. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  7. Laser generation of subnanosecond sound pulses in liquids

    NASA Astrophysics Data System (ADS)

    Vodopianov, K. L.; Kulevskii, L. A.; Mikhalevich, V. G.; Rodin, A. M.

    1986-07-01

    Laser generation of intense sound pulses of subnanosecond duration is observed for the first time. Use is made of hydroxyl-containing liquids with hydrogen bonds such as water, ethanol and glycerine which possess very high light absorption coefficients at the laser wavelength of 2.94 microns. When using ultrashort laser pulses (tau = 80 ps) with energies reaching 60 microjoules, sound pressure pulses 0.75 ns in duration with amplitudes reaching 20 kbar (in water) were obtained.

  8. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  9. Laser Doppler and Pulsed Laser Velocimetry in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Coupland, Jeremy M.

    Since the introduction of the laser in the late 1960s, optical metrology has made a major impact in many branches of engineering. This is nowhere more apparent than in the field of fluid mechanics where laser technology has revolutionised the way in which fluid flows are studied. The light scattered from small seeding particles following the flow contains information relating to the particle position and velocity. The coherence characteristics and high power densities achievable with a laser source allow well-defined regions of flow to be investigated in a largely non-intrusive manner and on a spatial and temporal scale commensurate with he flow field of interest. This review outlines the laser-based methods of velocimetry that are now available to the fluid dynamicist and discusses their practical application. Laser Doppler velocimetry provides a means to produce time-resolved measurements of fluid velocity at a single point in the flow. The optical design of instruments of this type is addressed with reference to spatial resolution and light gathering performance. Typical Doppler signals produced at both high and low particle concentrations are analysed and signal processing techniques are briefly discussed. Pulsed laser velocimeters use imaging optics to record the position of seeding particles at two or more instants and provide information concerning the instantaneous structure of the flow field. The optical configurations and analysis procedures used for planar velocity measurements are described and whole-field three-dimensional velocity measurements using holographic techniques are introduced.

  10. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  11. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  12. Uncooled pulsed zinc oxide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Bogdankevich, O. V.; Darznek, S. A.; Zverev, M. M.; Kostin, N. N.; Krasavina, E. M.

    1985-02-01

    An optimized ZnO laser which operates at ambient temperature without cooling is reported, along with extension of the design to form a multielement high-power laser. ZnO single crystal plane-parallel wafers 0.22 mm thick, covered with total and semi-transparent coatings, were exposed to a 200 keV electron beam with a 10 nsec pulse and a current density up to 1 kA/sq cm. No damage was observed in the crystals at saturation. A 7 percent maximum efficiency at a reflection coefficient (RC) of 0.4 was associated with a maximum output of 25 kW and a light power density of 3 MW/sq cm. Cementing a ZnO wafer to a sapphire substrate, applying the same type of coatings and working with a RC of 0.6 yielded a maximum power of 300 kW/sq cm.

  13. Development of short pulse soft x-ray lasers

    SciTech Connect

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.

  14. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  15. Noncontact microsurgery of living cell membrane using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ilina, I. V.; Ovchinnikov, A. V.; Sitnikov, D. S.; Chefonov, O. V.; Agranat, M. B.; Mikaelyan, A. S.

    2013-06-01

    Near-infrared femtosecond laser pulses were applied to initiate reversible permeabilization of cell membrane and inject extrinsic substances into the target cells. Successful laser-based injection of a membrane impermeable dye, as well as plasmid DNA was demonstrated.

  16. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  17. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  18. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  19. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  20. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    SciTech Connect

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  1. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  2. Pulse-burst operation of standard Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Ambuel, J. R.; Borchardt, M. T.; Reusch, J. A.; Robl, P. E.; Yang, Y. M.

    2010-05-01

    Two standard commercial flashlamp-pumped Nd:YAG lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to study the dynamic evolution of the electron temperature.

  3. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  4. A Pulse-Burst Laser System for Thomson Scattering

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Yang, Y. M.; Ambuel, J. R.; Holly, D. J.; Mattison, H. E.; Robl, P. E.

    2008-11-01

    A ``pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the MST reversed-field pinch. This laser will produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition rates 5--250 kHz. The laser will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.1--20 ms) of the flashlamps is accomplished by IGBT switching of large electrolytic capacitor banks. In the near term, these flashlamp power supplies will be adapted to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on the MST RFP. This will enable these lasers to produce a burst of up to 40 pulses at repetition frequencies <= 1 kHz. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot.

  5. Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses.

    PubMed

    Trines, R M G M; Fiúza, F; Bingham, R; Fonseca, R A; Silva, L O; Cairns, R A; Norreys, P A

    2011-09-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion. PMID:21981507

  6. Pulse-stretched Alexandrite laser for improved optical fiber reliability for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Simons, David; Koschmann, Eric C.

    1992-06-01

    Clinical data shows that short pulse duration lasers used in laser induced shock wave lithotripsy severely damage optical fibers on both the proximal and distal ends which is unsuitable for clinical use. An Alexandrite laser system has been developed that uses dynamic pulse stretching of the Q-switched laser pulse and improved optical fiber coupling to eliminate the fiber damage. The method of pulse stretching presented controls the laser output pulse energy from 50 to 150 millijoules and temporal shape from 0.5 to 1.5 microseconds. This yields effective fragmentation of calculi without damage to the optical fiber.

  7. Pulse-Burst Laser Systems for Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Harris, W. S.; Reusch, J. A.; Yang, Y. M.

    2009-11-01

    A new purpose-built ``pulse-burst'' laser system is being constructed for the Thomson scattering diagnostic on the MST reversed-field pinch. This new laser will produce a burst of 1--2 J Q-switched pulses at repetition rates 5--250 kHz. It will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.15--20 ms) of the flashlamps in this laser will be accomplished by IGBT switching of large electrolytic capacitor banks. A subset of these power supplies has already been constructed and is currently being used to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on MST. Each of these upgraded lasers now produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1--12.5 kHz. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are currently being used to study the dynamic evolution of electron temperature in MST. The new purpose-built ``pulse-burst'' laser system will further expand this capability.

  8. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543

  9. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  10. Amplifier similariton laser with extra-broad bandwidth output pulse

    NASA Astrophysics Data System (ADS)

    Korobko, D. A.; Okhotnikov, O. G.; Zolotovskii, I. O.

    2016-03-01

    We propose an advanced scheme of amplifier similariton laser providing an output pulse spectrum much wider than the gain bandwidth. The upgrade is an additional dispersive element introduced into the cavity to locally increase the peak pulse power. The proposed scheme demonstrates a drastic increase in the output pulse spectrum width, reduction of the pulse duration, and an increase in the output peak pulse power after compression.

  11. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  12. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  13. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C. B.; Lee, P. B.; Wurtele, J. S.; Esarey, E.; Leemans, W. P.

    1999-07-12

    A proposed laser-plasma based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  14. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. PMID:11969588

  15. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications. PMID:27044306

  16. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  17. Solitary Nanostructures Produced by Ultrashort Laser Pulse

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Khokhlov, Viktor A.; Petrov, Yury V.; Migdal, Kirill P.

    2016-04-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  18. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  19. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers. PMID:26367595

  20. Pulse laser ablation at water-air interface

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  1. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  2. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  3. Controlling plasma channels through ultrashort laser pulse filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Seleznev, Leonid V.; Sunchugasheva, Elena S.

    2013-10-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk (Siberia) on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding electric discharge is discussed.

  4. Laser-generated ultrasonic pulse shapes at solid wedges.

    PubMed

    Pupyrev, Pavel D; Lomonosov, Alexey M; Mayer, Andreas P

    2016-08-01

    Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges. PMID:27135188

  5. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  6. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  7. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  8. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state. PMID:25606901

  9. Electron acceleration by a laser pulse in a plasma

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1996-08-01

    The acceleration of an electron by a circularly polarized laser pulse in a plasma is studied. It appears possible to increase significantly the energy of a preaccelerated electron. Although the pulse tends to generate a plasma wake, to which it loses energy, one can eliminate the wake by choosing the duration of the pulse judiciously. {copyright} {ital 1996 The American Physical Society.}

  10. Pulsed FM mode locking of a Nd:BEL laser.

    PubMed

    Godil, A A; Li, K D; Bloom, D M

    1991-08-15

    A novel but simple and practical mode locker was built and demonstrated for a diode-pumped Nd:BEL laser. Fast electrical pulses from a comb generator drive a LiNbO(3) crystal, which produces pulsed electro-optic phase modulation in the laser cavity. Stable mode-locked pulses of 7.5-ps duration were obtained at a repetition rate of 250 MHz. PMID:19776932

  11. Additive-pulse modelocking of non-cw neodymium lasers

    NASA Astrophysics Data System (ADS)

    Heinz, P.; Reuther, A.; Laubereau, A.

    1993-03-01

    Passive modelocking of several flash-lamp pumped neodymium lasers with electro-optic amplitude stabilization is demonstrated using a nonlinear Michelson interferometer. Improved performance is reported for the GSGG- YLF- and glass-laser as compared to the nonlinear absorber, with shorter pulse durations and smaller amplitude fluctuations, e.g. 5 μJ pulses for 460 ± 20 fs for Nd:glass. Evidence is obtained for multi-selfstability of the pulse energy.

  12. Tailoring the plasma channel generated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Fan, Chengyu; Zhang, Pengfei; Jia, Wei

    2015-02-01

    By investigating the spatial and temporal variations of the propagating pulses, we have shown for the first time that the lattice waveguides can induce nonlinear effects to tailor the plasma channel generated by a femtosecond laser pulse. Different types of the spatiotemporal localized nonlinear light bullet’s propagating configurations have been predicted. By adjusting the parameters of the modulation potential, longer continuum filaments and reshaped laser pulses can be obtained, due to the focusing nonlinearity of the lattice modulation index.

  13. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  14. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  15. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  16. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  17. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  18. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  19. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  20. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  1. Controlled electron injection into laser wakefields with a perpendicular injection laser pulse

    SciTech Connect

    Wang, W.-M.; Sheng, Z.-M.; Zhang, J.

    2008-11-17

    Electron injection into laser wakefields for acceleration by two orthogonally directed laser pulses is investigated theoretically. It is found that efficient injection occurs provided the two pulses are collinearly polarized, even if the injection pulse is much weaker than the pump pulse driving wakefields. Compared with the head-on colliding injection geometry, this scheme allows for a shorter propagation distance less than a Rayleigh length for the injection pulse, before its overlapping with the pump pulse. Moreover, it can generate electron beams stably with comparable low energy spread and emittance, as demonstrated by particle-in-cell simulations. The optimization of laser parameters is also investigated.

  2. Precision ablation of dental enamel using a subpicosecond pulsed laser.

    PubMed

    Rode, A V; Gamaly, E G; Luther-Davies, B; Taylor, B T; Graessel, M; Dawes, J M; Chan, A; Lowe, R M; Hannaford, P

    2003-12-01

    In this study we report the use of ultra-short-pulsed near-infrared lasers for precision laser ablation of freshly extracted human teeth. The laser wavelength was approximately 800nm, with pulsewidths of 95 and 150fs, and pulse repetition rates of 1kHz. The laser beam was focused to an approximate diameter of 50microm and was scanned over the tooth surface. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain below 5 degrees C when the tooth was air-cooled during laser treatment. The surface preparation of the ablated teeth, observed by optical and electron microscopy, showed no apparent cracking or heat effects, and the hardness and Raman spectra of the laser-treated enamel were not distinguishable from those of native enamel. This study indicates the potential for ultra-short-pulsed lasers to effect precision ablation of dental enamel. PMID:14738125

  3. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents. PMID:20128746

  4. Creation and control of single attosecond XUV pulse by few-cycle intense laser pulse

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.

    2006-05-01

    We present a theoretical investigation of the mechanisms responsible for the production of single atto-second pulse by using few-cycle intense laser pulses. The atto-second XUV spectral is calculated by accurately integrating the time- dependent Schr"odinger equation. The detailed mechanism for the production of the XUV pulse are also corroborated by analyzing the classical trajectories of the electron. Our study shows that the first return of the rescattering electron is responsible for the high energy atto-second pulse. Furthermore, we can optimize the production of atto-second XUV pulses by modifying the trajectory of the rescattering electron by tuning the laser field envelope.

  5. Material micromachining using a pulsed fiber laser platform with fine temporal nanosecond pulse shaping capability

    NASA Astrophysics Data System (ADS)

    Deladurantaye, Pascal; Gay, David; Cournoyer, Alain; Roy, Vincent; Labranche, Bruno; Levesque, Marc; Taillon, Yves

    2009-02-01

    We report on recent advances in laser material processing using a novel pulsed fiber laser platform providing pulse shape agility at the nanosecond time scale and at high repetition rates. The pulse shapes can be programmed with a time resolution of 2.5 ns and with an amplitude resolution of 10 bits. Depending on the desired laser performances, the pulses are generated either by directly modulating the drive current of a seed laser diode or by modulating the output of a seed laser diode operated in CW with electro-optic modulators. The pulses are amplified in an amplifier chain in a MOPA configuration. Advanced polarization maintaining LMA fiber designs enable output energy per pulse up to 60 μJ at 1064 nm at a repetition rate of 200 kHz with excellent beam quality (M2< 1.1) and narrow line widths suitable for efficient frequency conversion. Micro-milling experiments were carried out with stainless steel, in which processing microstructures of a few tens of microns in size usually represents a challenge, and aluminum, whose thermal conductivity is about 20 times higher than stainless steel. The results obtained with two metals having very different thermal properties using different pulse shapes with durations varying between 3 ns and 80 ns demonstrate the benefits of using lasers offering flexible pulse durations and controllable pulse intensity profiles for rapidly optimizing a process in different applications while using the same laser with respect to conventional methods based on pulsed laser with fixed pulse shapes. Numerous applications are envisioned in a near future, like the micromachining of multi-layered structures, in particular when working with the harmonics of the laser.

  6. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  7. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  8. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  9. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  10. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  11. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  12. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  13. Dephasing time of an electron accelerated by a laser pulse

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1997-08-01

    The trajectory and dephasing time of an electron accelerated by a circularly polarized laser pulse are determined analytically. The dephasing time is proportional to {gamma}{sub P}{sup 2}l, where {gamma}{sub P} is the Lorentz factor associated with the pulse speed and l is the pulse length. The residual dependence of the dephasing time on pulse intensity and electron injection energy is studied in detail. {copyright} {ital 1997} {ital The American Physical Society}

  14. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  15. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses. PMID:19649091

  16. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  17. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  19. Response of silicon solar cell to pulsed laser illumination

    NASA Technical Reports Server (NTRS)

    Willowby, D.; Alexander, D.; Edge, T.; Herren, K.

    1993-01-01

    The response of silicon solar cell(s) to pulsed laser illumination is discussed. The motivation was due to the interest of Earth to space/Moon power beaming applications. When this work began, it was not known if solar cells would respond to laser light with pulse lengths in the nanosecond range and a repetition frequency in the kHz range. This is because the laser pulse would be shorter than the minority carrier lifetime of silicon. A 20-nanosecond (ns) full width half max (FWHM) pulse from an aluminum-gallium/arsenide (Al-Ga-As) diode laser was used to illuminate silicon solar cells at a wavelength of 885 nanometers (nm). Using a high-speed digital oscilloscope, the response of the solar cells to individual pulses across various resistive loads was observed and recorded.

  20. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  1. Investigation on a field description of the chirped laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Huang, S. J.; Song, Q.; Wang, P. X.

    2016-02-01

    Starting from a first-order approximate field description function for laser pulses, the method currently used to approximate chirped laser pulse (CLP) substitutes frequency and wave vector related variables with spatiotemporally varying functions. We investigated the error involved by calculating the relative deviation from Maxwell equations. Errors for the electric and magnetic fields are analyzed separately, and behaviors related to parameter changes (that is, in laser width, pulse duration and chirp parameter) were studied. Results show that aberration associated with currently used field-description functions for CLP increases monotonically with chirp parameter, and the deviation introduced by chirping is proportional to the relative frequency span of the laser. Simulations based on these functions will lead to considerable error, especially for laser pulses with large chirping.

  2. Ponderomotive acceleration of electrons by a self focused laser pulse

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.

    2010-12-15

    Ponderomotive acceleration of electrons by a short laser pulse undergoing relativistic self-focusing in a plasma is investigated. The saturation in nonlinear plasma permittivity causes periodic self-focusing of the laser. The periodicity lengths are different for different axial segments of the pulse. As a result, pulse shape is distorted. An electron initially on the laser axis and at the front of the self-focusing pulse gains energy from the pulse until it is run over by the pulse peak. By the time electron reaches the tail, if pulse begins diverging, the deceleration of the electron is slower and the electron is left with net energy gain. The electrons slightly off the laser axis see a radial ponderomotive force too. Initially, when they are accelerated by the pulse front the acceleration is strong as they are closer to the axis. When they see the tail of the pulse (after being run by the pulse), they are farther from the axis and the retardation ponderomotive force is weaker. Thus, there is net energy gain.

  3. Laser detection of remote targets applying chaotic pulse position modulation

    NASA Astrophysics Data System (ADS)

    Du, Pengfei; Geng, Dongxian; Wang, Wei; Gong, Mali

    2015-11-01

    Chaotic pulse position modulation (CPPM) has been successfully used in robust digital communication for years. We propose to adapt CPPM for laser detection of remote targets to address the issue of noise. Specified in a time-of-flight (TOF) consecutive laser ranging application scenario, the feasibility of laser detection applying CPPM for laser detection is experimentally investigated. The scheme including the adaptive design for laser detection and parameter settings with validation is introduced. Lab-based electrical experiment and a proof-of-concept outdoor TOF experiment are further conducted to verify the feasibility of laser ranging and detection using CPPM through comparison with traditional Lidar detection and other pulse interval patterns. According to experiments and the following analysis, laser ranging using CPPM is feasible and more robust than traditional laser ranging.

  4. Highly efficient pulse-periodic XeCl lasers

    SciTech Connect

    Dudarev, V V; Ivanov, N G; Konovalov, I N; Losev, V F; Pavlinskii, A V; Panchenko, Yu N

    2011-08-31

    The parameters of electric-discharge pulse-periodic XeCl lasers with a pulse duration of 25 - 40 ns, an energy of 0.2 - 0.7 J, and a pulse repetition rate up to 100 Hz have been investigated. It is shown that the total laser efficiency of 2.6 % and the maximum efficiency with respect to the stored energy of 3.8 % are obtained at a specific pump power of 2.8 - 3.3 MW cm{sup -3} and a discharge circuit inductance of 3.5 - 4 nH. (lasers)

  5. Research on intelligent detection and processing technology of laser pulse

    NASA Astrophysics Data System (ADS)

    Zhao, Haili; Jiang, Huilin

    2005-01-01

    Aimed at the influence of turbulent atmosphere effect on laser pulse detection, it discusses the key factors that affect the signal test in this paper. Based on it, the article also discusses two key techniques, namely, floating threshold value and AGC (Automatic Gain Control) technology in detail, especially about the technique of floating threshold value. According to discussion about intelligent detection technology of laser pulse, the system designs a low noise detecting unit of laser pulse, tests its performance by the experiment, and validates correctness of the results.

  6. Photon kinetic modeling of laser pulse propagation in underdense plasma

    SciTech Connect

    Reitsma, A. J. W.; Trines, R. M. G. M.; Bingham, R.; Cairns, R. A.; Mendonca, J. T.; Jaroszynski, D. A.

    2006-11-15

    This paper discusses photon kinetic theory, which is a description of the electromagnetic field in terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is applied to the interaction of laser pulses with underdense plasma and the transfer of energy and momentum between the laser pulse and the plasma is described in photon kinetic terms. A comparison is made between a one-dimensional full wave and a photon kinetic code for the same laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce the pulse envelope evolution for photon frequencies down to the plasma frequency.

  7. High-charge energetic ions generated by intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-01

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  8. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses.

    PubMed

    Hidding, B; Amthor, K-U; Liesfeld, B; Schwoerer, H; Karsch, S; Geissler, M; Veisz, L; Schmid, K; Gallacher, J G; Jamison, S P; Jaroszynski, D; Pretzler, G; Sauerbrey, R

    2006-03-17

    Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime. PMID:16605744

  9. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  10. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3ω) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3ω laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  11. Micromachining soda-lime glass by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  12. The multiple-pulse driver line on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Dorrer, C.; Waxer, L. J.; Donaldson, W. R.

    2015-02-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separate pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics (LLE). The two co-propagating pulse shapes would typically be (1) a series of 100-ps "picket" pulses followed by (2) a longer square or shaped "drive" pulse. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes. Therefore, MPD allows for dynamic bandwidth reduction, where the bandwidth is applied only to the picket portion of a pulse shape. Since the use of SSD decreases the efficiency of frequency conversion from the IR to the UV, dynamic bandwidth reduction provides an increase in the drive-pulse energy. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last grating used for SSD. This new driver-line flexibility is built into the OMEGA front end as one component of the initiative to mitigate cross-beam energy transfer on target and to demonstrate hydro-equivalent ignition on the OMEGA laser at LLE.

  13. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    PubMed Central

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-01-01

    We experimentally investigate generation of nitrogen molecular ion () lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the laser. PMID:26888182

  14. Deformation of ultra-short laser pulses by optical systems for laser scanners.

    PubMed

    Büsing, Lasse; Bonhoff, Tobias; Gottmann, Jens; Loosen, Peter

    2013-10-21

    Current experiments of processing glass with ultra-short laser pulses (< 1 ps) lead to scan angle depending processing results. This scan angle depending effect is examined by simulations of a common focusing lens for laser scanners. Due to dispersion, focusing lenses may cause pulse deformations and increase the pulse duration in the focal region. If the field angle of the incoming laser beam is variable, the pulse deformation may also vary as a function of the field angle. By ray tracing as well as wave optical simulations we investigate pulse deformations of optical systems for different scan angles. PMID:24150292

  15. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  16. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  17. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  18. High-pulse-repetition-rate HF laser with plate electrodes

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2006-03-31

    A high-pulse-repetition-rate electric-discharge HF laser with inductive-capacitive discharge stabilisation in the active H{sub 2}-SF{sub 6}-He mixture is studied. The multisectional discharge gap with a total length of 250 mm is formed by pairs of anode-cathode plates arranged in a zigzag pattern. The width of the discharge gap between each pair of plates is {approx}1 mm and its height is {approx}12 mm. The laser-beam cross section at the output cavity mirror is {approx}9 mm x 11 mm. The maximum laser pulse energy and the maximum laser efficiency for the H{sub 2}-SF{sub 6} mixture are 14.3 mJ and 2.1%, respectively. The addition of He to the mixture reduced the laser pulse energy by 10%-15%. The maximum gas velocity in the gap between the electrodes achieves 20 m s{sup -1}. The limiting pulse repetition rate f{sub lim} for which a decrease in the laser pulse energy is still not observed is {approx}2kHz for the H{sub 2}-SF{sub 6} mixture and {approx}2.4kHz for the H{sub 2}-SF{sub 6}-He mixture. The average output power {approx}27 W is obtained for a pulse repetition rate of 2.4 kHz. (lasers)

  19. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  20. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  1. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  2. Terahertz generation in plasmas using two-color laser pulses.

    PubMed

    Peñano, Joseph; Sprangle, Phillip; Hafizi, Bahman; Gordon, Daniel; Serafim, Philip

    2010-02-01

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omega approximately 1/tau(L), where tau(L) is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I(1) square root I(2), where I(1) and I(2) are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters. PMID:20365665

  3. Terahertz generation in plasmas using two-color laser pulses

    SciTech Connect

    Penano, Joseph; Sprangle, Phillip; Gordon, Daniel; Hafizi, Bahman; Serafim, Philip

    2010-02-15

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omegaapprox1/tau{sub L}, where tau{sub L} is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I{sub 1}sq root(I{sub 2}), where I{sub 1} and I{sub 2} are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters.

  4. Continuous and Pulsed THz generation with molecular gas lasers and photoconductive antennas gated by femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cruz, Flavio C.; Nogueira, T.; Costa, Leverson F. L.; Jarschel, Paulo F.; Frateschi, Newton C.; Viscovini, Ronaldo C.; Vieira, Bruno R. B.; Guevara, Victor M. B.; Pereira, Daniel

    2008-04-01

    We report THz generation based on two systems: 1) continuous-wave (cw) laser generation in molecular gas lasers, and 2) short pulse generation in photoconductive antennas, gated by femtosecond near-infrared Ti:sapphire lasers. With the first system, we have generated tens of monochromatic cw laser lines over the last years, extending roughly from 40 microns to several hundred microns. This is done by optical pumping of gas lasers based on polar molecules such as methanol and its isotopes. In the second system, under development, pulsed THz radiation is generated by a photoconductive antenna built in a semi-insulating GaAs substrate excited by femtosecond pulses from a near-infrared (800 nm) Ti:sapphire laser.

  5. Pulse shape effect on rotational excitation and 2-D alignment alternation by elliptic laser pulses

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-04-01

    We examine theoretically the time-evolution of NAREX (non-adiabatic rotational excitation) and molecular 2-D alignment (2DA) interacting with a pair of elliptically polarized laser pulses. The pulse shapes taken are half-cycle pulse (HCP) and square pulse (SQP). By choosing the proper value of elliptically polarized field parameters, we demonstrate that efficient field-free 2DA alignment can be achieved. It is also shown that NAREX can be controlled by various laser parameters, out of which pulse shape plays the most significant role. The effect of pulse width along with elliptic parameter on probabilities of rotational states is also under concern. The delay time between the two pulses decides the maximum in 2DAs.

  6. The interaction of intense femtosecond laser pulses with solid targets

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1992-12-30

    The absorption of 800 fsec Nd-glass laser pulses obliquely incident on solid targets is measured at intensities up to 10[sup 18] W/cm[sup 2]. The associated production of hard x-rays is also measured.

  7. The interaction of intense femtosecond laser pulses with solid targets

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1992-12-30

    The absorption of 800 fsec Nd-glass laser pulses obliquely incident on solid targets is measured at intensities up to 10{sup 18} W/cm{sup 2}. The associated production of hard x-rays is also measured.

  8. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  9. Femtosecond laser pulse train interaction with dielectric materials

    NASA Astrophysics Data System (ADS)

    Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; Duchateau, G.

    2015-11-01

    The interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model is investigated. Theoretical predictions are directly confronted with experimental observations in soda-lime glass. It is shown that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in the simulations correspond very well to zones of permanent material modifications observed in the experiments. It turns out that pulse-to-pulse variations of the laser absorption are negligible and of minor influence to permanent material modifications.

  10. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  11. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  12. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  13. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  14. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM)

    PubMed Central

    Reshak, Ali Hussain

    2008-01-01

    Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF). Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images. PMID:18710492

  15. Short pulse dynamics in a linear cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2016-04-01

    New suitable numerical scheme is proposed for simulation of dynamics of oppositely running pulses in a fiber laser with linear cavity. The proposed model allows to include various temporal and spatial effects which affect the laser dynamics. The pulse evolution in the fiber cavity with perfect reflectors at the fiber ends with accounting of fiber group velocity dispersion and self-phase modulation is demonstrated.

  16. Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Tong, X. M.; Zhao, Z. X.; Lin, C. D.

    2003-12-01

    The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15fs).

  17. Dynamic model of target charging by short laser pulse interactions.

    PubMed

    Poyé, A; Dubois, J-L; Lubrano-Lavaderci, F; D'Humières, E; Bardon, M; Hulin, S; Bailly-Grandvaux, M; Ribolzi, J; Raffestin, D; Santos, J J; Nicolaï, Ph; Tikhonchuk, V

    2015-10-01

    A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments. PMID:26565356

  18. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  19. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  20. Dynamic model of target charging by short laser pulse interactions

    NASA Astrophysics Data System (ADS)

    Poyé, A.; Dubois, J.-L.; Lubrano-Lavaderci, F.; D'Humières, E.; Bardon, M.; Hulin, S.; Bailly-Grandvaux, M.; Ribolzi, J.; Raffestin, D.; Santos, J. J.; Nicolaï, Ph.; Tikhonchuk, V.

    2015-10-01

    A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.

  1. Filamentation of ultrashort laser pulses propagating in tenuous plasmas

    SciTech Connect

    Andreev, N. E.; Gorbunov, L. M.; Mora, P.; Ramazashvili, R. R.

    2007-08-15

    The filamentation of ultrashort laser pulses (shorter than a plasma period) propagating in tenuous plasmas is studied. In this regime relativistic and ponderomotive nonlinearities tend to cancel each other. Time-dependent residual nonlinear plasma response brings about the dynamical filamentation with the maximum unstable transverse wave number decreasing in the course of laser pulse propagation. Dynamics of a hot spot that seeds the filamentation instability is studied numerically and reveals a good agreement with the analytical results.

  2. Studies of a repetitively-pulsed laser powered thruster

    NASA Astrophysics Data System (ADS)

    Rosen, D. I.; Kemp, N. H.; Miller, M.

    1982-01-01

    In this report we present results of continuing analytical and experimental investigations carried out to evaluate the concept of pulsed laser propulsion. This advanced propulsion scheme, which has been the subject of several previous studies, involves supplying propellant energy by beaming short, repetitive laser pulses to a thruster from a remote laser power station. The concept offers the advantages of a remote power source, high specific impulse, high payload to total mass ratio (a consequence of the first two features) and moderate to high thrust (limited primarily by the average laser power available). The present research addresses questions related to thruster performance and optical design. In the thruster scheme under consideration, parabolic nozzle walls focus the incoming laser beam to yield breakdown in a propellant at the focal point of the parabola. The resulting high pressure plasma is characteristic of a detonation wave initiation by high power laser-induced breakdown. With a short laser pulse, the detonation wave quickly becomes a blast wave which propagates to the nozzle exit plane converting the high pressure of the gas behind it to a force on the nozzle wall. Propellant is fed to the focal region from a plenum chamber. The laser-induced blast wave stops the propellant flow through the throat until the pressure at the throat decays to the sonic pressure; then the propellant flow restarts. The process is repeated with each successive laser pulse.

  3. Monoenergetic Electronic Beam Production Using Dual Collinear Laser Pulses

    SciTech Connect

    Thomas, A. G. R.; Mangles, S. P. D.; Dangor, A. E.; Kamperidis, C.; Krushelnick, K.; Najmudin, Z.; Murphy, C. D.; Foster, P.; Lancaster, K. L.; Norreys, P. A.; Gallacher, J. G.; Jaroszynski, D. A.; Viskup, R.

    2008-06-27

    The production of monoenergetic electron beams by two copropagating ultrashort laser pulses is investigated both by experiment and using particle-in-cell simulations. By proper timing between guiding and driver pulses, a high-amplitude plasma wave is generated and sustained for longer than is possible with either of the laser pulses individually, due to plasma waveguiding of the driver by the guiding pulse. The growth of the plasma wave is inferred by the measurement of monoenergetic electron beams with low divergence that are not measured by using either of the pulses individually. This scheme can be easily implemented and may allow more control of the interaction than is available to the single pulse scheme.

  4. Nonsequential Double Ionization of Atoms in Strong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Prauzner-Bechcicki, J. S.; Sacha, K.; Eckhardt, B.; Zakrzewski, J.

    2007-10-01

    It is now possible to produce laser pulses with reproducible pulse shape and controlled carrier envelope phase. It is discussed how that can be explored in double ionisation studies. To this end we solve numerically the Schrödinger equation for a limited dimensionality model which nevertheless treats electron repulsion qualitatively correctly and allows to study correlation effects due to the Coulomb repulsion.

  5. Nonlinear longitudinal compression of short laser pulses in the atmosphere

    SciTech Connect

    Yedierler, Burak

    2009-05-15

    Propagation of short and intense laser beams in the atmosphere is considered for the purpose of identifying the temporal compression. The conditions and validity of linear and nonlinear compression theories are discussed. The effects of chirping and pulse power in the preionization regime are deliberated. The fact that the linear theory cannot explain the pulse compression in the atmosphere is presented.

  6. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  7. Production, preparation, and performance of shaped ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Davis, Jennifer Case

    1999-09-01

    In the following pages, the current state-of-the art in the method and implementation of acousto-optic modulator (AOM) ultrafast laser pulse shaping is discussed. Since ultrafast laser technologies are relatively recent, many aspects of these pulses and their interaction with material systems (and in particular, optically dense systems) have yet to be well- characterized. Here, we make some headway in understanding the interaction between intense, shaped ultrafast pulses and optically dense media via computer simulations in which the Maxwell-Bloch coupled equations are solved numerically using a recursive algorithm. In one set of experiments, we studied the propagation of shaped ultrafast laser pulses through a cell filled with an optically dense sample of rubidium vapor. We soon found that the excited state dynamics in atomic rubidium change non-intuitively as different pulse shapes are applied. In this case, characterization of the excited state dynamics is important for illuminating the mechanisms involved in the commercial preparation of the spin-polarized noble gases used in MRI lung studies. Thus, theoretical modeling of the laser- material interaction via the Maxwell-Bloch coupled equations allows us to predict the interaction effects on both the material system and the propagating laser pulses. In other experiments we show (via computer simulations) that a series of shaped Raman pulses can excite arbitrary vibrational transitions in homonuclear diatomics. In these calculations, a blue-to-red frequency-swept (off- resonant) pump pulse and a red-to-blue Stokes pulse are employed to sequentially excite Δ v = 1 vibrational transitions in an anharmonic potential. Use of increasingly complicated models shows that despite rotational effects, such a pulse sequence should be effective in exciting certain diatomics into high vibrational states. Since highly (vibrationally) excited oxygen is a critical reagent in upper atmosphere energy transfer reactions with

  8. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation.

    PubMed

    Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kohno, Nanase; Mori, Michiaki; Sugiyama, Akira

    2015-06-01

    We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal. PMID:26072862

  9. The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS)

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lin, Yanqing; Liu, Jing; Fan, Shuang; Xu, Zhuopin; Huang, Qing; Wu, Yuejin

    2016-05-01

    The pulsed lasers at wavelengths of 532 nm and 1064 nm were used as two beams of light for collinear double pulse laser induced breakdown spectroscopy (DP-LIBS). By changing the time sequence of two beams of different lasers, we studied the effect of the interval of two pulses of DP-LIBS on spectral signals compared with single pulsed (SP) LIBS.

  10. Laser cutting of carbon fiber reinforced plastics (CFRP) by UV pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kurosaki, Ryozo

    2011-03-01

    In this paper, we report on a micro-cutting of carbon fiber reinforced plastics (CFRP) by nanosecond-pulsed laser ablation with a diode-pumped solid state UV laser (DPSS UV laser, λ= 355nm). A well-defined cutting of CFRP which were free of debris and thermal-damages around the grooves, were performed by the laser ablation with a multiple-scanpass irradiation method. CFRP is a high strength composite material with a lightweight, and is increasingly being used various applications. UV pulsed laser ablation is suitable for laser cutting process of CFRP materials, which drastically reduces a thermal damage at cut regions.

  11. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output. PMID:24150378

  12. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  13. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  14. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  15. Investigation of a pulsed dye laser under various pumping conditions

    SciTech Connect

    Nechaev, S.Y.

    1983-08-01

    An investigation was made of the influence of bilateral laser pumping in an almost longitudinal arrangement on the spectral and energy characteristics of a short-pulse laser utilizing rhodamine 6G. A considerable increase in efficiency over that for unilateral pumping was observed, together with a narrowing of the spectrum, in a dispersive resonator having a prism telescope and a grating.

  16. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  17. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  18. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  19. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  20. Fluorometry - an evolving methodology for range animal ecologists

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorometry is an optically based technique that has only recently (1996) been shown to be useful in identifying pre-as well as post-digested plant material found in free-ranging animal diets. This article traces the evolution of this methodology as a tool to determine the botanical composition, a ...

  1. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  2. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    PubMed

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  3. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  4. Note: external multipass optical trap for counterpropagating pulsed laser applications.

    PubMed

    Graul, J S; Ketsdever, A D; Andersen, G P; Lilly, T C

    2013-07-01

    Pulses from a 12 mJ, frequency doubled, 5 ns FWHM, pulsed Nd:YAG laser were split and injected into opposing sides of a symmetric 2.44 m (96 in.) optical ring trap. Using a Pockels cell, the counterpropagating pulses were "locked" into the trap for ≥50 round trips. This optical trap has potential applications ranging from established cavity processes, e.g., laser-based absorption spectroscopy and x-ray production, to new processes such as non-resonant optical lattice gas heating and time-resolved coherent Rayleigh-Brillouin scattering diagnostic studies. PMID:23902119

  5. Note: External multipass optical trap for counterpropagating pulsed laser applications

    NASA Astrophysics Data System (ADS)

    Graul, J. S.; Ketsdever, A. D.; Andersen, G. P.; Lilly, T. C.

    2013-07-01

    Pulses from a 12 mJ, frequency doubled, 5 ns FWHM, pulsed Nd:YAG laser were split and injected into opposing sides of a symmetric 2.44 m (96 in.) optical ring trap. Using a Pockels cell, the counterpropagating pulses were "locked" into the trap for ≥50 round trips. This optical trap has potential applications ranging from established cavity processes, e.g., laser-based absorption spectroscopy and x-ray production, to new processes such as non-resonant optical lattice gas heating and time-resolved coherent Rayleigh-Brillouin scattering diagnostic studies.

  6. Pulse Selection Control for the IR FEL Photocathode Drive Laser

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Evans, R.; Garza, O.; Hill, R.; Shinn, M.; Song, J.; Venhaus, D.

    1997-05-01

    The method for current control of the photocathode source is described. This device allows remote control of drive laser output pulses for resulting beam currents of less than 1 microamp to full current of 5 milliamps. The low current modes are accomplished by counting discrete micropulses and gating electro-optical cells. The higher current modes are done by varying both the photons per pulse and the frequency of the laser output pulses. Programmable Logic Devices (PLDs) provide the choice in micropulses per macropulse and the macropulse frequency. All macropulses are line locked to 60 Hz and have the ability to be slewed through a line cycle in discrete steps.

  7. Toward attosecond electron pulses using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    2008-06-01

    In many countries around the world, ultra-intense laser facilities are being built. These state-of-the-art lasers are intended for innovative medical and technological applications, as well as for basic experiments at the frontiers of fundamental science. Laser particle acceleration is a promising new endeavor. Recently developed schemes using radially polarized beams could help in reaching unprecedentedly short electron pulse durations, well in the attosecond range and potentially in the subattosecond range.

  8. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    NASA Astrophysics Data System (ADS)

    Schultze, M.; Goulielmakis, E.; Uiberacker, M.; Hofstetter, M.; Kim, J.; Kim, D.; Krausz, F.; Kleineberg, U.

    2007-07-01

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 106 photons/pulse at ~100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum silicon (Mo/Si) mirror.

  9. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  10. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  11. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  12. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  13. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-01

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion. PMID:23215393

  14. Energy Losses Estimation During Pulsed-Laser Seam Welding

    NASA Astrophysics Data System (ADS)

    Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana

    2014-06-01

    The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.

  15. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  16. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  17. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  18. Sudden perturbation of hydrogen atoms by intense ultrashort laser pulses

    SciTech Connect

    Lugovskoy, A. V.; Bray, I.

    2005-12-15

    We study theoretically how hydrogen atoms respond to intense ultrashort laser pulses of duration {tau} shorter than the inverse of the initial-state energy {epsilon}{sub i}{sup -1}. An analytical expression for the evolution operator S is derived up to the first order of the sudden perturbation approximation. This approximation treats the laser-atom interaction beyond the dipole approximation and yields S as a series in the small parameter {epsilon}{sub i}{tau}. It is shown that the effect of realistic laser pulses on atoms begins at the first order of {epsilon}{sub i}{tau}. Transitions between atomic (nlm) states of different m become possible due to the action of the pulse's magnetic field. Transitions between states of same m and arbitrary l become possible if the static Coulomb potential is taken into account during the pulse.

  19. Electrostrictive counterforce on fluid microdroplet in short laser pulse.

    PubMed

    Ellingsen, S Å; Brevik, I

    2012-06-01

    When a micrometer-sized fluid droplet is illuminated by a laser pulse, there is a fundamental distinction between two cases. If the pulse is short in comparison with the transit time for sound across the droplet, the disruptive optical Abraham-Minkowski radiation force is countered by electrostriction, and the net stress is compressive. In contrast, if the pulse is long on this scale, electrostriction is cancelled by elastic pressure and the surviving term of the electromagnetic force, the Abraham-Minkowski force, is disruptive and deforms the droplet. Ultrashort laser pulses are routinely used in modern experiments, and impressive progress has moreover been made on laser manipulation of liquid surfaces in recent times, making a theory for combining the two pertinent. We analyze the electrostrictive contribution analytically and numerically for a spherical droplet. PMID:22660076

  20. Electroporation visualized under a multishot pulsed laser fluorescence microscope system

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroyasu; Yu, Irene I. K.; Hibino, Masahiro; Hayakawa, Tsuyoshi; Kinosita, Kazuhiko, Jr.

    1993-10-01

    We describe a new fluorescence microscope system, which is the third generation of our pulsed-laser microscope systems developed for the purpose of capturing rapid cellular phenomena. Time resolution of this latest version is supported by the combination of a Q- switched Nd:YAG laser producing a burst of 4 pulses and a large format framing camera. We obtain series images at intervals on the order of 10 microsecond(s) with exposure times of 30 ns. With this multi-shot pulsed laser fluorescence microscope system, we examined the behavior of the transmembrane potential in a sea urchin egg under an intense electric field. Irreversible process of cell electroporation was revealed in serial images taken under a single electric pulse of microsecond duration.

  1. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  2. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  3. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  4. The simulation of behaviors of photodetectors under pulsed laser irritation

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Cheng, Xiang-ai; Yu, Xiangyang; Qian, Le; Jiang, Tian

    2013-05-01

    Precise simulation of transient electrical behaviors of photodetectors under laser irradiation is becoming an increasingly concern. It not only can allow a detailed study and analysis of complex phenomena that cannot be carried out by experiments, but gives valuable information about the physical mechanisms which ultimately determine the response of the photodetectors. Finite difference numerical technique is adopted in the simulation to calculate the current response of photodetectors under pulsed laser irritation in this paper. To simulation the behaviors of photodetectors under pulsed laser irritation, the transport and trapping of carries and external circuit effects, including load resistance, junction capacitance, and parasitic capacitance, are considered. The basic equations governing the carrier behaviors are solved, including Poisson's equation, the carrier motion equations, and the carrier continuity equations. The simulated transient carrier density and velocities are present, as well as corresponding transient electric field distributions. The behaviors of electrons and holes and its contributions to the external current response are analyzed. Then a general and brief image of the transient progress of photodetectors under pulsed laser irritation is established. How the carrier is induced, transported, and trapped and whether they make any significant contribution to the external current response are discussed. Besides, bias dependent response is also studied. Higher bias will improver the behaviors of photodetectors under pulsed laser irritation. The simulated results and theory analysis will show valuable clue for future research on the behaviors of photodetectors irradiated by pulsed laser.

  5. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  6. Laser hazard analysis for various candidate diode lasers associated with the high resolution pulsed scanner.

    SciTech Connect

    Augustoni, Arnold L.

    2004-10-01

    A laser hazard analysis and safety assessment was performed for each various laser diode candidates associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. A theoretical laser hazard analysis model for this system was derived and an Excel{reg_sign} spreadsheet model was developed to answer the 'what if questions' associated with the various modes of operations for the various candidate diode lasers.

  7. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  8. Cluster ion control by simultaneous irradiations of femtosecond laser and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Hiratani, Y.; Toyoda, K.

    2002-09-01

    Generation of multiply charged ions and molecular ions have been investigated using simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets [Morimoto et al., in: Proceedings of the 13th International Conference on High-Power Particles Beams (BEAMS2000),Vol. PB-89, Nagaoka, 2000, p. 359; Toyoda et al., in: Proceedings of the 8th International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference (GCL-HPL2000), Vol. P1.60, 2000, p. 101]. The ion current waveforms have been analyzed by means of time-of-flight (tof) mass measurement. Simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets was found to generate molecular ions of carbon.

  9. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  10. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  11. Envelope evolution of a laser pulse in an active medium

    SciTech Connect

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v{sub env}, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v{sub env}. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique.

  12. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  13. Intracavity frequency doubling of {mu}s alexandrite laser pulses

    SciTech Connect

    Brinkmann, R.; Schoof, K.

    1994-12-31

    Intracavity second harmonic generation (SHG) with a three mirror folded cavity configuration was investigated with a flashlamp pumped, Q-switched Alexandrite laser. The authors therefore used different nonlinear optical crystals to convert the fundamental 750 nm radiation into the near UV spectral ,range (3 75 nm). The laser pulses were stretched into the {mu}s time domain by an electronic feedback system regulating the losses of the resonator. They investigated the conversion efficiency for different pulse lengths as well as the effect of pulse-lengthening due to the nonlinearity of the intracavity losses introduced by the optical crystal used. Working with BBO-crystals, they were able to achieve a second harmonic output of 25 mJ per pulse at 375 mn with a temporal rectangular pulse of 1 {mu}s in length and a stable nearly gaussian shaped beam profile.

  14. Femtosecond pulsed laser ablation of GaAs

    NASA Astrophysics Data System (ADS)

    Trelenberg, T. W.; Dinh, L. N.; Saw, C. K.; Stuart, B. C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed.

  15. Non-linear Compton Scattering in Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, Katarzyna; Kamiński, Jerzy

    2012-06-01

    The generation of short X-ray laser pulses attracts a great deal of attention. One of mechanisms to achieve this goal is the non-linear Compton scattering at very high laser powers. The majority of previous works on the non-linear Compton scattering have been devoted to the case when the incident laser field is treated as a monochromatic plane wave. There is, however, recent interest in analyzing the effect of a pulsed laser field on the non-linear Compton scattering [1-4]. We study the process for different durations of the incident laser pulse and compare it with the results for both a plane wave laser field and a laser pulse train. [4pt] [1] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).[0pt] [2] M. Boca and V. Florescu, Eur. Phys. J. D 61, 446 (2011).[0pt] [3] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).[0pt] [4] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106 (2011).

  16. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C.B.; Lee, P.B.; Wurtele, J.S.; Esarey, E.; Leemans, W.P.

    1999-07-01

    A proposed laser-plasma based relativistic electron source [E. Esarey {ital et al.}, Phys. Rev. Lett. {bold 79}, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. {copyright} {ital 1999 American Institute of Physics.}

  17. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C.B.; Lee, P.B.; Wurtele, J.S.; Esarey, E.; Leemans, W.P.

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey {ital et al}., Phys. Rev. Lett. {bold 79}, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. {copyright} {ital 1999} {ital The American Physical Society}

  18. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  19. Multiple pulse thresholds in live eyes for ultrashort laser pulses in the near infrared

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Cain, Clarence P.; Toth, Cynthia A.; Noojin, Gary D.; Rockwell, Benjamin A.

    1999-06-01

    Damage thresholds using multiple laser pulses to produce minimum visible lesions (MVL) in rhesus monkey eyes are reported for near-infrared (800 nm) at 130 femtoseconds. Previous studies by our research group using single pulses in the near-infrared (1060 nm) have determined damage thresholds and retinal spot size dependence. We report the first multiple pulse damage thresholds using femtosecond pulses. MVL thresholds at 1 hour and 24 hours postexposure were determined for 1, 100 and 1,000 pulses and we compare these with other reported multiple pulse thresholds. These new data will be added to the databank for retinal MVL's as a function of pulse repetition rate for this pulsewidth and a comparison will be made with the ANSI standard for multiple pulse exposures. Our measurements show that the retinal ED50 threshold/pulse in the paramacula decreases for increasing number of pulses. The MVL-ED50 at the threshold/pulse decreased by a factor of 4 (0.55 (mu) J to 0.13 (mu) J/pulse) for an increase from 1 to 100 pulses.

  20. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  1. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  2. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. PMID:26827143

  3. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target. PMID:20517369

  4. Pulse-to-pulse interaction analysis and parameter optimization for future-generation ophthalmic laser systems

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Kaune, B.; Bleeker, S.; Lubatschowski, H.; Krüger, A.; Ripken, T.

    2014-02-01

    The immediate pulse-to-pulse interaction becomes more and more important for future-generation high-repetition rate ophthalmic laser systems. Therefore, we investigated the interaction of two laser pulses with different spatial and temporal separation by time-resolved photography. There are various different characteristic interaction mechanisms which are divided into 11 interaction scenarios. Furthermore, the parameter range has been constricted regarding the medical application; here, the efficiency was optimized to a maximum jet velocity along the scanning axis with minimum applied pulse energy as well as unwanted side effects at the same time. In conclusion, these results are of great interest for the prospective optimization of the ophthalmic surgical process with future-generation fs-lasers.

  5. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  6. Intense isolated few-cycle attosecond XUV pulses from overdense plasmas driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Xiao-Ya; Chen, Li-Ming; Li, Yu-Tong; Zhu, Wen-Jun

    2014-06-01

    A method to generate an intense isolated few-cycle attosecond XUV pulse is demonstrated using particle-in-cell simulations. When a tailored laser pulse with a sharp edge irradiates a foil target, a strong transverse net current can be excited, which emits a few-cycle XUV pulse from the target rear side. The isolated pulse is ultrashort in the time domain with a duration of several hundred attoseconds. It also has a narrow bandwidth in the spectral domain compared to other XUV sources of high-order harmonics. It has most energy confined around the plasma frequency and no low-harmonic orders below the plasma frequency. It is also shown that XUV pulse of peak field strength up to $ 8\\times 10^{12} $ V$\\mathrm{m}^{-1}$ can be produced. Without the need for pulse selecting and spectral filtering, such an intense few-cycle XUV pulse is better suited to a number of applications.

  7. Pulsed mononode dye laser developed for a geophysical application

    NASA Technical Reports Server (NTRS)

    Jegou, J. P.; Pain, T.; Megie, G.

    1986-01-01

    Following the extension of the lidar technique in the study of the atmosphere, the necessity of having a high power pulsed laser beam with a narrowed bandwidth and the possibility of selecting a particular wavelength within a certain spectral region arises. With the collaboration of others, a laser cavity using the multiwave Fizeau wedge (MWFW) was developed. Using the classical method of beam amplification with the aid of different stages, a new pulsed dye laser device was designed. The originality resides in the use of reflecting properties of the MFWF. Locally a plan wave coming with a particular angular incidence is reflected with a greater than unity coefficient; this is the consequence of the wedge angle which doubles the participation of every ray in the interferometric process. This dye laser operation and advantages are discussed. The feasibility of different geophysical applications envisageable with this laser is discussed.

  8. Pathogen reduction in human plasma using an ultrashort pulsed laser.

    PubMed

    Tsen, Shaw-Wei D; Kingsley, David H; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  9. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  10. Precisely tunable, narrow-band pulsed dye laser

    SciTech Connect

    Bhatia, P.S.; Keto, J.W.

    1996-07-01

    A narrow-band, precisely tunable dye laser pumped by an injection-seeded YAG laser is described. The laser achieves an output of 100 mJ/pulse and 40{percent} efficiency when one uses Rhodamine 6G dyes. The output pulse is Gaussian both in time and spatial profile. The laser oscillator employs an intracavity {acute e}talon that is repetitively pressure scanned over one free spectral range while the grating successively steps to consecutive {acute e}talon modes. We pressure scanned the {acute e}talon under computer control using a bellows. Methods are described for calibrating the tuning elements for absolute precision. We demonstrated that the laser has an absolute precision of {plus_minus}0.4 pm over a 1.0-nm scan. This accuracy is achievable over the wavelength range of a dye. {copyright} {ital 1996 Optical Society of America.}

  11. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  12. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  13. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  14. Computational modeling of laser-plasma interactions: pulse self-modulation and energy transfer between intersecting laser pulses.

    PubMed

    Kupfer, Rotem; Barmashenko, Boris; Bar, Ilana

    2013-07-01

    The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics. PMID:23944583

  15. Computational modeling of laser-plasma interactions: Pulse self-modulation and energy transfer between intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Kupfer, Rotem; Barmashenko, Boris; Bar, Ilana

    2013-07-01

    The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics.

  16. Temporal pulse cleaning by a self-diffraction process for ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Na; Zhou, Kainan; Sun, Li; Wang, Xiaodong; Guo, Yi; Li, Qing; Su, Jingqin

    2014-11-01

    Applying the self-diffraction process to clean ultrashort laser pulses temporally is a recently developed effective way to temporal contrast enhancement. In this paper, we attempt to clean ultrashort laser pulses temporally by the self-diffraction process. Experiments were carried out to study the temporal contrast improvement in the front-end system of an ultraintense and ultrashort laser facility, i.e. the super intense laser for experiment on the extremes (SILEX-I). The results show that the maximum conversion efficiency of the first-order self-diffraction (SD1) pulse is 11%. The temporal contrast of the SD1 signal is improved by two orders of magnitude, i.e. to 103, for a 2.4-ns prepulse with initial contrast of ~10. For a 5.5 -ns prepulse with initial contrast of 2×103, the temporal contrast of the SD1 signal is improved by more than three orders of magnitude.

  17. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  18. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  19. Short-pulse laser removal of organic coatings

    NASA Astrophysics Data System (ADS)

    Walters, Craig T.

    2000-08-01

    A major problem in the regular maintenance of aerospace systems is the removal of paint and other protective coatings from surfaces without polluting the atmosphere or endangering workers. Recent research has demonstrated that many organic coatings can be removed from surfaces efficiently using short laser pulses without the use of any chemical agents. The lasers employed in this study were repetitively-pulsed neodymium YAG devices operating at 1064 nm (15 - 30 ns, 10 - 20 Hz). The efficiency of removal can be cast in terms of an effective heat of ablation, Q* (kJ of laser energy incident per g of paint removed), although, for short pulses, the mechanism of removal is believed to be dominated more by thermo- mechanical or shock effects than by photo-ablation. Q* data were collected as a function of pulse fluence for several paint types. For many paint types, there was a fairly sharp threshold fluence per pulse near 1 J/cm2, above which Q* values dropped to levels which were a factor of four lower than those observed for long- pulse or continuous laser ablation of paint. In this regime, the coating is removed in fairly large particles or, in the case of one paint, the entire thickness of the coating was removed over the exposed area in one pulse. Hardware for implementing short-pulse laser paint stripping in the field is under development and will be highlighted in the presentation. Practical paint stripping rates achieved using the prototype hardware are presented for several paint types.

  20. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  1. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2009-10-09

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  2. Electron yield enhancement in a laser wakefield accelerator driven by asymmetric laser pulses

    SciTech Connect

    Leemans, W.P.; Catravas, P.; Esarey, E.; Geddes, C.G.R.; Toth, C.; Trines, R.; Schroeder, C.B.; Shadwick, B.A.; van Tilborg, J.; Faure, J.

    2002-08-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using > 10{sup 19} cm{sup -3} plasmas and a 10 TW, > 45 fs, Ti:Al{sub 2}O{sub 3} laser. Laser pulse shape was controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability and that frequency chirp is of minimal importance for the experimental parameters.

  3. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  4. Monolithic hybrid optics for focusing ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-03-01

    Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.

  5. Modeling of High-Energy Pulsed Laser Interactions with Coupons

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2003-02-06

    We describe a computational model of laser-materials interactions in the regime accessed by the solid state heat capacity lasers (SSHCLs) built at LLNL. We show that its predictions compare quite favorably with coupon experiments by the 10 kW SSHCL at LLNL. The body of this paper describes the following topics, listed by section number: (2) model in quiescent air, (3) comparison with experiments in quiescent air, (4) effects of air flow, (5) comparison with experiments involving air flow, (6) importance of material properties, (7) advantage of pulsed lasers over CW lasers, and (8) conclusions and recommendations.

  6. CARS microscopy using linearly chirped ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Rocha-Mendoza, Israel; Langbein, Wolfgang; Borri, Paola

    2009-02-01

    We have developed a home-built CARS microscope which exploits linearly-chirped ultrafast laser pulses. By using glass of high group-velocity dispersion, Stokes and Pump pulses of 150 fs duration Fourier-limited are equally chirped to pulse durations in the 0.5 ps-2.8 ps range. In this way we reduce the spectral width of the instantaneous frequency difference to the Fourier limit of the chirped pulse duration (spectral focussing). As a proof of principle, CARS spectroscopy with high spectral resolution is demonstrated on polystyrene beads. We also show, both theoretically and experimentally, that for chirped pulse durations shorter than or comparable to the Raman coherence time, maximum CARS signal occurs for a Pump arriving after the Stokes pulse. Furthermore, we demonstrate the applicability of our CARS microscope to biological sciences by performing CARS microspectroscopy on different live cells and fixed tissue samples.

  7. Modelling of noise-like pulses generated in fibre lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Kobtsev, Sergey

    2016-03-01

    The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of `random' pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it's possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.

  8. Effect of laser pulse duration in picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Dehoux, T.; Perton, M.; Chigarev, N.; Rossignol, C.; Rampnoux, J.-M.; Audoin, B.

    2006-09-01

    An optical grating has been introduced in a picosecond ultrasonics experiment, in order to vary continuously the duration of the laser beam pulse from 0.1to150ps. The evolution of the measured signal has been observed and analyzed through the comparison with a theoretical approach based on a two-temperature model. The latter allows matching the acoustic echoes together with the thermal background and the coincidence peak, for each pulse duration and at any time scale. The broadening of the acoustic echoes and the disappearing of its Brillouin component, along with the diminishing of the thermal coincidence peak, have been demonstrated when increasing the pulse duration. For a constant incident pulse energy, the efficiency of acoustic generation is optimum for the shortest pulses. Nevertheless, for longer pulses designed to obtain thermal conditions below the ablation threshold, acoustic generation could be enhanced.

  9. Ultra-short pulsed laser tissue ablation using focused laser beam

    NASA Astrophysics Data System (ADS)

    Jaunich, Megan K.; Raje, Shreya; Mitra, Kunal; Grace, Michael S.; Fahey, Molly; Spooner, Greg

    2008-02-01

    Short pulse lasers are used for a variety of therapeutic applications in medicine. Recently ultra-short pulse lasers have gained prominence due to the reduction in collateral thermal damage to surrounding healthy tissue during tissue ablation. In this paper, ultra-short pulsed laser ablation of mouse skin tissue is analyzed by assessing the extent of damage produced due to focused laser beam irradiation. The laser used for this study is a fiber-based desktop laser (Raydiance, Inc.) having a wavelength of 1552 nm and a pulse width of 1.3 ps. The laser beam is focused on the sample surface to a spot size on the order of 10 microns, thus producing high peak intensity necessary for precise clean ablation. A parametric study is performed on in vitro mouse tissue specimens and live anaesthetized mice with mammary tumors through variation of laser parameters such as time-averaged laser power, repetition rate, laser scanning rate and irradiation time. Radial temperature distribution is measured using thermal camera to analyze the heat affected zone. Temperature measurements are performed to assess the peak temperature rise attained during ablation. A detailed histological study is performed using frozen section technique to observe the nature and extent of laser-induced damages.

  10. Pulse compression techniques to improve modulated pulsed laser line scan systems

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Nash, Justin K.; Cochenour, Brandon M.; Mullen, Linda J.

    2015-05-01

    A modulated pulse laser imaging system has been developed which utilizes coded/chirped RF modulation to mitigate the adverse effects of optical scattering in degraded visual underwater environments. Current laser imaging techniques employ either short pulses or single frequency modulated pulses to obtain both intensity and range images. Systems using short pulses have high range resolution but are susceptible to scattering due to the wide bandwidth nature of the pulse. Range gating can be used to limit the effects of backscatter, but this can lead to blind spots in the range image. Modulated pulse systems can help suppress the contribution from scattered light in generated imagery without gating the receiver. However, the use of narrowband, single tone modulation results in limited range resolution where small targets are camouflaged within the background. This drives the need for systems which have high range resolution while still suppressing the effects of scattering caused by the environment. Coded/chirped modulated pulses enable the use of radar pulse compression techniques to substantially increase range resolution while also providing a way to discriminate the object of interest from the light scattered from the environment. Linearly frequency chirped waveforms and phase shift keyed barker codes were experimentally investigated to determine the effects that pulse compression would have on intensity/range data. The effect of modulation frequency on the data produced with both wideband and narrowband modulation was also investigated. The results from laboratory experiments will be presented and compared to model predictions.

  11. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  12. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  13. Deterministic processing of alumina with ultra-short laser pulses

    SciTech Connect

    Furmanski, J; Rubenchik, A M; Shirk, M D; Stuart, B C

    2007-06-27

    Ultrashort pulsed lasers can accurately ablate materials which are refractory, transparent, or are otherwise difficult to machine by other methods. The typical method of machining surfaces with ultrashort laser pulses is by raster scanning, or the machining of sequentially overlapping linear trenches. Experiments in which linear trenches were machined in alumina at various pulse overlaps and incident fluences are presented, and the dependence of groove depth on these parameters established. A model for the machining of trenches based on experimental data in alumina is presented, which predicts and matches observed trench geometry. This model is then used to predict optimal process parameters for the machining of trenches for maximal material removal rate for a given laser.

  14. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGESBeta

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  15. Exact transient photon correlation with arbitrary laser pulses

    SciTech Connect

    Ooi, C. H. Raymond

    2011-11-15

    We present a full quantum theory to study the transient evolution of photon pairs. We introduce a method which gives exact time-dependent solutions of the coupled quantum Langevin equations for a multilevel quantum particle driven by arbitrary time-dependent laser fields. The analytical solutions are used to develop a numerical code for computing exact time evolution of the two-photon correlation function. We analyze the effects of laser pulses sequence, pulse duration, chirping, and initial internal quantum states on the nonclassicality of the photon correlation through the violation of the Cauchy-Schwarz inequality. The results provide a promising possibility of controlling the generation of highly correlated photon pairs using tailored short laser pulses.

  16. Plasma shape control by pulsed solenoid on laser ion source

    SciTech Connect

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.

  17. Multiple Filamentation of Laser Pulses in a Glass

    NASA Astrophysics Data System (ADS)

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.

    2016-03-01

    Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.

  18. Optically pumped pulsed Li/sub 2/ laser

    SciTech Connect

    Kaslin, V.; Yakushev, O.

    1982-02-01

    Pulsed lasing was obtained for the first time from Li/sub 2/ molecules by optical pumping with radiation from a pulsed copper vapor laser (578.2 nm, pulse repetition frequency 5 kHz). The laser transitions, with wavelengths in the range 867--907 nm, belong to the electronic A/sup 1/..sigma../sup +//sub u/--X/sup 1/..sigma../sup +//sub g/ system. With a pump power of 190 mW, an average output power of 8 mW was achieved with an efficiency for the conversion of the optical pumping energy of 7%. A number of Li/sub 2/ laser emission lines were observed in the superradiant regime.

  19. Microbunching and coherent acceleration of electrons by subcycle laser pulses

    SciTech Connect

    Rau, B.; Tajima, T.; Hojo, H.

    1997-05-01

    The pick up and acceleration of all plasma electrons irradiated by an intense, subcyclic laser pulse is demonstrated via analytical and numerical calculations. It is shown that the initial low emittance of the plasma electrons is conserved during the process of acceleration, leading to an extremely cold, bunched electron beam. Compression of the electron bunch along the longitudinal coordinate is naturally achieved due to the interaction of electrons and laser pulse. In this paper, the authors find the localized solutions to Maxwell`s equations of a subcyclic laser pulse and use these to determine the acceleration of charged particles and they suggest future application for this acceleration mechanism as low energy particle injector and as electron source for coherent x-ray generation.

  20. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  1. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system

    SciTech Connect

    Kim, G H; Yang, J; Kulik, A V; Sall, E G; Chizhov, S A; Kang, U; Yashin, V E

    2013-08-31

    We have studied self-action effects (self-focusing and self-phase modulation) and stimulated Raman scattering in an Yb : KGW chirped-pulse amplification laser system. The results demonstrate that self-focusing in combination with thermal lensing may significantly limit the chirped pulse energy in this system (down to 200 μJ) even at a relatively long pulse duration (50 ps). Nonlinear lenses in the laser crystals in combination with thermal lenses bring the regenerative amplifier cavity in the laser system to the instability zone and limit the average output power at pulse repetition rates under 50 kHz. Self-phase modulation, a manifestation of self-action, may significantly distort a recompressed femtosecond pulse at energies near the self-focusing threshold. Stimulated Raman scattering in such a laser has a weaker effect on output parameters than do self-focusing and thermal lensing, and Raman spectra are only observed in the case of pulse energy instability. (nonlinear optical phenomena)

  2. Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique

    SciTech Connect

    Volfbeyn, P.; Leemans, W.P.

    1998-07-01

    The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

  3. Boron distribution in silicon after multiple pulse excimer laser annealing

    SciTech Connect

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-08-22

    We have studied B redistribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted with energies of 1 and 10 keV and doses of 1x10{sup 14} and 1x10{sup 15} cm{sup -2}. ELA with the number of pulses from 1 to 100 was performed at room temperature and 450 deg. C in vacuum. Irrespective of the implantation parameters and the ELA conditions used, a pile-up in the B concentration is observed near the maximum melting depth after ten pulses of ELA. Moreover, a detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. Besides, an increase in the carrier concentration is observed at the maximum melt depth, suggesting electrical activity of the accumulated B. Formation of Si-B complexes and vacancy accumulation during multiple ELA are discussed as possible mechanisms for the B build-up.

  4. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma.

    PubMed

    Sharma, A; Misra, S; Mishra, S K; Kourakis, I

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. PMID:23848793

  5. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  6. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  7. Laser bandwidth interlock capable of single pulse detection and rejection

    DOEpatents

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  8. Monitoring of Ethylene by a Pulsed Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Weidmann, Damien; Kosterev, Anatoliy A.; Roller, Chad; Curl, Robert F.; Fraser, Matthew P.; Tittel, Frank K.

    2004-06-01

    We report on the development and performance of a gas sensor based on a quantum cascade laser operating at a wavelength of ~10 µm to measure ethylene (C2H4) concentrations by use of a rotational component of the fundamental nu_7 band. The laser is thermoelectrically cooled and operates in a pulsed mode. The influence of pulse-to-pulse fluctuations is minimized by use of a reference beam and a single detector with time discriminating electronics. Gas absorption is recorded in a 100-m optical path-length astigmatic Herriott cell. With a 10-kHz pulse repetition rate and an 80-s total acquisition time, a noise equivalent sensitivity of 30 parts per billion has been demonstrated. The sensor has been applied to monitor C2H4 in vehicle exhaust as well as in air collected in a high-traffic urban tunnel.

  9. Spectrotemporal Shaping of Seeded Free-Electron Laser Pulses

    NASA Astrophysics Data System (ADS)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît.; Penco, Giuseppe

    2015-09-01

    We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  10. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  11. The effect of laser pulse tailored welding of Inconel 718

    NASA Technical Reports Server (NTRS)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  12. Hydrodynamic simulation of ultrashort pulse laser ablation of gold film

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Shi, Xuesong; Qu, Liangti; Lu, Yongfeng

    2015-06-01

    The electron collision frequency in a hydrodynamic model was improved to match the laser energy absorbed with experimental data. The model calculation was used to investigate the ablation depth and the dependence of the threshold fluence of gold film on pulse width and wavelength. Two methods for estimating the ablation depth are introduced here with their respective scope of application. The dependence of the threshold fluence of gold film on the pulse width of the laser with a 1053 nm center wavelength agreed well with the experimental data. It was also observed that for pulses shorter than ~200 ps, the threshold fluence showed linear dependence on the logarithm of pulse width and increased with the wavelength, which was different from previous results.

  13. Recycle Rate in a Pulsed, Optically Pumped Rubidium Laser

    SciTech Connect

    Miller, Wooddy S.; Sulham, Clifford V.; Holtgrave, Jeremy C.; Perram, Glen P.

    2010-10-08

    A pulsed, optically pumped rubidium laser operating in analogy to the diode pumped alkali laser (DPAL) system at pump intensities as high as 750 kW/cm{sup 2} has been demonstrated with output energies of up to 13 {mu}J/pulse. Output energy is dramatically limited by spin-orbit relaxation rates under these high intensity pump conditions. More than 250 photons are available for every rubidium atom in the pumped volume, requiring a high number of cycles per atom during the 2-8 ns duration of the pump pulse. At 550 Torr of ethane, the spin-orbit relaxation rate is too slow to effectively utilize all the incident pump photons. Indeed, a linear dependence of output energy on pump pulse duration for fixed pump energy is demonstrated.

  14. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  15. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.

    PubMed

    Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C

    2011-04-25

    Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results. PMID:21643098

  16. Plasmas and Short-Pulse, High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Clark, Thomas

    1999-11-01

    Many of the applications of short-pulse, high-intensity laser systems, including coherent UV and X-ray generation, compact particle accelerators, and non-perturbative nonlinear optics as well as the study of laser-matter interaction physics, require large intensity-interaction length products. In recent years, plasma structures resulting from the hydrodynamic evolution of laser-produced plasma filaments have proven to be attractive media for guiding pulses with peak powers approaching the terawatt level over lengths many times the vacuum Rayleigh range. The hydrodynamics of plasma waveguides have been characterized using time- and space-resolved interferometry measurements of electron density profiles. The laser-driven ionization and heating phase of the plasma filament creation is followed by hot electron driven plasma expansion. Density profiles suitable for optical guiding develop within the first few hundred picoseconds after plasma creation, during which rapid cooling occurs. At longer times the plasma expansion closely follows that of a cylindrical blast wave, with further cooling due to expansion work. The observed guided intensity profiles of end-coupled and tunnel-coupled pulses compare favorably with calculations of the quasi-bound waveguide modes based on the measured electron density profiles. Time- and space-resolved electron density measurements of a laser-driven concentric implosion were also performed. The implosion is the result of the interaction of a second laser pulse with an existing plasma waveguide. The two-pulse absorption and ionization significantly exceed that due to a single pulse of the same total energy. The author would like to acknowledge the significant contributions of Prof. Howard M. Milchberg to the work being presented.

  17. Transient photoacoustic effects induced in liquids by pulsed erbium lasers

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Pratisto, Hans; Ith, Michael; Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Romano, Valerio; Salathe, Rene-Paul; Weber, Heinz P.

    1994-08-01

    The intense interest in the investigation of erbium laser radiation in medicine is due to the fact that radiation at 3 micrometers is very strongly absorbed by water, which is present in all biological tissue. As a consequence of this high absorption the interaction of pulsed radiation is characterized by an explosive process with a low ablation threshold and a thin coagulation zone along the laser incisions. Erbium lasers, therefore, have a wide field of potential medical applications which become even more attractive with the availability of reliable delivery systems. An interesting situation arises in orthopaedics and angioplasty, where a precise cutting instrument is needed in a liquid environment. For this reason, we experimentally investigated the interaction mechanism of fiber transmitted, pulsed, free-running and Q- switched Erbium:YSGG ((lambda) equals 2.79 micrometers ) and Erbium:YAG ((lambda) equals 2.94 micrometers ) laser radiation with liquid water. The dynamics of the bubble formation and the propagation of shockwaves in water was studied and visualized by flash photography. Acoustic transients of a few hundreds of bars accompanying the ablation process were measured with a needle hydrophone. A clear correlation between the spikes of the laser pulse and those of the pressure signal was observed. Additionally, strong pressure transients were measured after the end of the laser pulse, which could be associated with the collapse of the vapor bubble and further collapses after multiple rebounds. The influence of pulse energy, fiber size and pulse duration on the formation and the amplitude of the pressure waves is demonstrated.

  18. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  19. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-09-15

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  20. Two-pulse ionization injection into quasilinear laser wakefields.

    PubMed

    Bourgeois, N; Cowley, J; Hooker, S M

    2013-10-11

    We describe a scheme for controlling electron injection into the quasilinear wakefield driven by a guided drive pulse via ionization of a dopant species by a collinear injection laser pulse with a short Rayleigh range. The scheme is analyzed by particle-in-cell simulations which show controlled injection and acceleration of electrons to an energy of 370 MeV, a relative energy spread of 2%, and a normalized transverse emittance of 2.0 μm. PMID:24160608

  1. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    SciTech Connect

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  2. Pulsed laser ablation and deposition of niobium carbide

    NASA Astrophysics Data System (ADS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  3. Laser-Pulse/Fiber-Optic Liquid-Leak Detector

    NASA Technical Reports Server (NTRS)

    Padgett, M. E.

    1986-01-01

    Several potential leak sites monitored using single sensing fiber. Fluid systems monitored quickly for leaks in remote, hazardous, or inaccessible locations by system of compact, lightweight fiber-optic leak sensors presently undergoing development. Sensors installed at potential leak sites as joints, couplings, and fittings. Sensor read by sending laser pulse along fiber, then noting presence or relative amplitude of return pulse. Leak-monitoring technique applicable to wide range of fluid systems and minimizes human exposure to toxic or dangerous fluids.

  4. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    PubMed Central

    Wang, Tianheng; Kumavor, Patrick D.

    2012-01-01

    Abstract. High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse. PMID:22734748

  5. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  6. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-06-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  7. Patterning of silica microsphere monolayers with focused femtosecond laser pulses

    SciTech Connect

    Cai Wenjian; Piestun, Rafael

    2006-03-13

    We demonstrate the patterning of monolayer silica microsphere lattices with tightly focused femtosecond laser pulses. We selectively removed microspheres from a lattice and characterized the effect on the lattice and the substrate. The proposed physical mechanism for the patterning process is laser-induced breakdown followed by ablation of material. We show that a microsphere focuses radiation in its interior and in the near field. This effect plays an important role in the patterning process by enhancing resolution and accuracy and by reducing the pulse energy threshold for damage. Microsphere patterning could create controlled defects within self-assembled opal photonic crystals.

  8. Pulse laser machining and particulate separation from high impact polystyrene

    NASA Astrophysics Data System (ADS)

    Arif, Saira; Kautek, Wolfgang

    2014-01-01

    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1-2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  9. Instability-free ion acceleration by two laser pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Zhao, S.; Wang, H. Y.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Tajima, T.; He, X. T.; Chen, C. E.; Gu, Y. Q.; Yan, X. Q.

    2014-05-01

    We demonstrate the instability-free ion acceleration regime by introducing laser control with two parallel circularly polarized laser pulses at an intensity of I = 6.8 × 1021 W/cm2, normally incident on a hydrogen foil. The special structure of the equivalent wave front of those two pulses, which contains Gaussian peaks in both sides and a concavity in the centre (2D), can suppress the transverse instabilities and hole boring effects to constrain a high density ion clump in the centre of the foil, leading to an acceleration over a long distance and gain above 1GeV/u for the ion bunches.

  10. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  11. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  12. Local immunity in treating skin melanoma by neodymium pulsed laser

    NASA Astrophysics Data System (ADS)

    Moskalik, Konstantin G.

    1997-06-01

    The number and correlation of skin stroma cells was studied on mice C57B1 with the subcutaneously transplanted melanoma B16 which was exposed to neodymium pulsed laser radiation. Within 1-5 days after the exposure the total number of the free skin stroma cells was found to increase in the periphery from the radiation epicenter and the number of lymphocytes, macrophages and leucocytes tended to grow. Lymphoid infiltration was also revealed in the preparations of the epithelized wound and cicatrix on the skin melanoma sites in the patients who had undergone pulsed laser radiation therapy.

  13. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  14. Laser damage growth with picosecond pulses.

    PubMed

    Sozet, Martin; Neauport, Jérôme; Lavastre, Eric; Roquin, Nadja; Gallais, Laurent; Lamaignère, Laurent

    2016-05-15

    Laser-induced damage growth has been investigated in the subpicosecond regime at 1030 nm. We have herein studied the growth of damage sites initiated on a high-reflective dielectric coating under subsequent laser irradiations at a constant fluence. We show through an experimental approach that growth can be triggered for fluences as low as 50% of the intrinsic damage threshold of the mirror. Moreover, once growth starts, damage areas increase linearly with the number of laser shots. The behavior of defect-induced damage sites has been observed more extensively, and it appears that their growth probability depends on their initiation fluence. PMID:27176998

  15. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    SciTech Connect

    Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  16. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser. PMID:19404369

  17. Interaction of superintense laser pulses with relativistic ions.

    PubMed

    Chirilă, C C; Joachain, C J; Kylstra, N J; Potvliege, R M

    2004-12-10

    At high intensities, three-step recollision processes driven by low frequency laser pulses, such as high-order harmonic generation and high-order above-threshold ionization, are normally severely suppressed by the magnetic-field component of the laser field. It is shown that this suppression is not severe, even for ponderomotive energies well above 10 keV, for multicharged ions moving at a sufficiently high relativistic velocity against a counterpropagating infrared laser pulse. Numerical results are presented for high-order harmonic emission by a single Ne9+ ion moving with a Lorentz factor gamma=15 against a Nd:glass laser beam. The calculations are done within a Coulomb-corrected nondipole strong field approximation. The approximation is tested by comparing with accurate results. PMID:15697809

  18. Interaction of Superintense Laser Pulses with Relativistic Ions

    NASA Astrophysics Data System (ADS)

    Chirilă, C. C.; Joachain, C. J.; Kylstra, N. J.; Potvliege, R. M.

    2004-12-01

    At high intensities, three-step recollision processes driven by low frequency laser pulses, such as high-order harmonic generation and high-order above-threshold ionization, are normally severely suppressed by the magnetic-field component of the laser field. It is shown that this suppression is not severe, even for ponderomotive energies well above 10keV, for multicharged ions moving at a sufficiently high relativistic velocity against a counterpropagating infrared laser pulse. Numerical results are presented for high-order harmonic emission by a single Ne9+ ion moving with a Lorentz factor γ=15 against a Nd:glass laser beam. The calculations are done within a Coulomb-corrected nondipole strong field approximation. The approximation is tested by comparing with accurate results.

  19. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience.

    PubMed

    Dretler, S P; Watson, G; Parrish, J A; Murray, S

    1987-03-01

    The pulsed dye laser, emitting at wavelengths of 504 nm. for 1 microsecond. at a frequency of 5 Hz. transmitted via a 250 mu in diameter silicon-coated quartz fiber, was passed into the ureter through the working channel of a 9.5F rigid ureteroscope. Seventeen patients with ureteral calculi too large to be extracted directly, who were unable to be treated by extracorporeal shock wave lithotripsy or who otherwise would have required transureteral or percutaneous ultrasonic stone removal, underwent attempted stone fragmentation by pulsed dye laser application. Of the 17 calculi 16 were fragmented to spontaneously passable or easily extractable fragments. There was no significant ureteral injury, thermal or otherwise, attributable to laser energy action. At 3-month followup 15 of the 17 ureters had improved and 2 showed evidence of ureterscopic injury. The mechanism of stone fragmentation by laser is small volume "shock wave" formation. PMID:3820363

  20. Ultrafast pulses from a mid-infrared fiber laser.

    PubMed

    Hu, Tomonori; Jackson, Stuart D; Hudson, Darren D

    2015-09-15

    Ultrafast laser pulses at mid-infrared wavelengths (2-20 μm) interact strongly with molecules due to the resonance with their vibration modes. This enables their application in frequency comb-based sensing and laser tissue surgery. Fiber lasers are ideal to achieve these pulses, as they are compact, stable, and efficient. We extend the performance of these lasers with the production of 6.4 kW at a wavelength of 2.8 μm with complete electric field retrieval using frequency-resolved optical gating techniques. Contrary to the problems associated with achieving a high average power, fluoride fibers have now shown the capability of operating in the ultrafast, high-peak-power regime. PMID:26371902

  1. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    SciTech Connect

    Sun, Xinxing Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  2. Optical trapping of nanoparticles by ultrashort laser pulses.

    PubMed

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field. PMID:23738434

  3. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Smithers, Martin E.; Murty, Rom

    1991-01-01

    The experimental results will enable a comparison of the numerical code output with experimental data. This will ensure verification of the validity of the code. The measurements were made on a modified commercial CO2 laser. Results are listed as following. (1) The pulse shape and energy dependence on gas pressure were measured. (2) The intrapulse frequency chirp due to plasma and laser induced medium perturbation effects were determined. A simple numerical model showed quantitative agreement with these measurements. The pulse to pulse frequency stability was also determined. (3) The dependence was measured of the laser transverse mode stability on cavity length. A simple analysis of this dependence in terms of changes to the equivalent fresnel number and the cavity magnification was performed. (4) An analysis was made of the discharge pulse shape which enabled the low efficiency of the laser to be explained in terms of poor coupling of the electrical energy into the vibrational levels. And (5) the existing laser resonator code was changed to allow it to run on the Cray XMP under the new operating system.

  4. Nanosurgery in live cells using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Alexander; Maxwell, Iva Z.; Kumar, Sanjay; Underwood, J. M.; Nickerson, J. A.; Ingber, Donald E.; Mazur, Eric

    2005-04-01

    We selectively disrupted the cytoskeletal network of fixed and live bovine capillary endothelial cell using ultrashort laser pulses. We image the microtubules in the cytoskeleton of the cultured cells using green fluorescent protein. The cells are placed on a custom-built inverted fluorescence microscope setup, using a 1.4 NA oil-immersion objective to both image the cell and focus the laser radiation into the cell samples. The laser delivers 100-fs laser pulses centered at 800 nm at a repetition rate of 1 kHz; the typical energy delivered at the sample is 1-5nJ. The fluorescent image of the cell is captured with a CCD-camera at one frame per second. To determine the spatial discrimination of the laser cutting we ablated microtubules and actin fibers in fixed cells. At pulse energies below 2 nJ we obtain an ablation size of 200 nm. This low pulse energy and high spatial discrimination enable the application of this technique to live cells. We severed a single microtubule inside the live cells without affecting the cell's viability. The targeted microtubule snaps and depolymerizes after the cutting. This nanosurgery technique will further the understanding and modeling of stress and compression in the cytoskeletal network of live cells.

  5. Electron heating enhancement by frequency-chirped laser pulses

    SciTech Connect

    Yazdani, E.; Afarideh, H.; Sadighi-Bonabi, R.; Riazi, Z.; Hora, H.

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  6. High-energy Picosecond Laser Pulse Recirculation for Compton Scattering

    SciTech Connect

    Jovanovic, I; Anderson, S G; Betts, S M; Brown, C; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; McNabb, D P; Messerly, M; Pruet, J; Shverdin, M Y; Siders, C W; Tremaine, A M; Barty, C J

    2007-06-12

    Frequency upconversion of laser-generated photons by inverse Compton scattering for applications such as nuclear spectroscopy and gamma-gamma collider concepts on the future ILC would benefit from an increase of average source brightness. The primary obstacle to higher average brightness is the relatively small Thomson scattering cross section. It has been proposed that this limitation can be partially overcome by use of laser pulse recirculation. The traditional approach to laser recirculation entails resonant coupling of low-energy pulse train to a cavity through a partially reflective mirror. Here we present an alternative, passive approach that is akin to 'burst-mode' operation and does not require interferometric alignment accuracy. Injection of a short and energetic laser pulse is achieved by placing a thin frequency converter, such as a nonlinear optical crystal, into the cavity in the path of the incident laser pulse. This method leads to the increase of x-ray/gamma-ray energy proportional to the increase in photon energy in frequency conversion. Furthermore, frequency tunability can be achieved by utilizing parametric amplifier in place of the frequency converter.

  7. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    SciTech Connect

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  8. Laser ablation of GaAs in liquid: the role of laser pulse duration

    NASA Astrophysics Data System (ADS)

    De Bonis, Angela; Galasso, Agostino; Santagata, Antonio; Teghil, Roberto

    2016-01-01

    The synthesis of gallium arsenide (GaAs) nanoparticles has attracted wide scientific and technological interest due to the possibility of tuning the GaAs NP (nanoparticle) band gap across the visible spectrum and their consequent use in optoelectronic devices. In recent years, laser ablation in liquid (LAL) has been widely used for the preparation of colloidal solutions of semiconducting and metallic nanoparticles, thanks to its flexibility. With the aim of highlighting the key role played by laser pulse duration on the ablation mechanism and on the properties of the obtained materials, laser ablation of a gallium arsenide target in acetone was performed using laser sources operating in two different temporal regimes: Nd:glass laser (λ   =  527 nm, pulse duration of 250 fs and frequency repetition rate of 10 Hz) and Nd:YAG laser (λ   =  532 nm, pulse duration of 7 ns and frequency repetition rate of 10 Hz). The ablation process was studied following the dynamics of the laser induced shock waves (SWs) and cavitation bubbles (CBs) by fast shadowgraphy, showing that CB dimension and lifetime is related to the laser pulse length. A characterization of the obtained materials by TEM (transmission electron microscopy) and microRaman spectroscopy have shown that quite spherical gallium oxide/GaAs nanoparticles can be obtained by nanosecond laser ablation. On the other hand, pure polycrystalline GaAs nanoparticles can be produced by using an ultrashort laser source.

  9. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  10. Extensive angiokeratoma circumscriptum - successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser.

    PubMed

    Baumgartner, Ján; Šimaljaková, Mária; Babál, Pavel

    2016-06-01

    Angiokeratomas are rare vascular mucocutaneous lesions characterized by small-vessel ectasias in the upper dermis with reactive epidermal changes. Angiokeratoma circumscriptum (AC) is the rarest among the five types in the current classification of angiokeratoma. We present a case of an extensive AC in 19-year-old women with Fitzpatrick skin type I of the left lower extremity, characterized by a significant morphological heterogeneity of the lesions, intermittent bleeding, and negative psychological impact. Histopathological examination after deep biopsy was consistent with that of angiokeratoma. The association with metabolic diseases (Fabry disease) was excluded by ophthalmological, biochemical, and genetic examinations. Nuclear magnetic resonance imaging has not detected deep vascular hyperplasia pathognomic for verrucous hemangioma. The combined treatment with 595-nm variable-pulse pulsed dye laser (VPPDL) and 755-nm long-pulse pulsed alexandrite laser (LPPAL) with dynamic cooling device led to significant removal of the pathological vascular tissue of AC. Only a slight degree of secondary reactions (dyspigmentations and texture changes) occurred. No recurrence was observed after postoperative interval of 9 months. We recommend VPPDL and LPPAL for the treatment of extensive AC. PMID:26736060

  11. Resonant Infrared Pulsed-Laser Deposition of Polymers Using a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Bellmont, Ron; Bubb, Daniel; Haglund, Richard; Schriver, Ken

    2004-11-01

    Thin films of polyethylene glycol and polystyrene have been produced using resonant infrared pulsed-laser deposition (RIR-PLD). The laser used for the experiments was a tunable, high pulse-repetition rate free-electron laser operating in the mid-IR (2.9 - 3.5 im). Transfer of polymers with molecular weights up to 13,000 was accomplished at resonant vibrational frequencies without concomitant fragmentation or other photochemical degradation, in contrast to PLD techniques using ultraviolet lasers. Potential applications for this technique include drug delivery coatings and chemical and biological sensor construction.

  12. Pulsed laser-induced evaporation of liquids and its applications

    NASA Astrophysics Data System (ADS)

    Kim, Dongsik

    The interaction of laser irradiation with materials is very important in a variety of laser-based manufacturing processes and scientific studies. Particularly, the interaction of a short laser pulse with absorbing liquids or solid materials in contact with liquid is central to a number of applications, including laser cleaning of microcontaminants, pulsed laser deposition of thin film materials, laser tissue removal, and laser surface texturing. In this dissertation, experimental and theoretical works on the following topics are summarized: (1) physical mechanisms of pulsed laser induced ablation of absorbing liquids at laser fluence below the plasma ignition threshold, (2) analysis of rapid vaporization at the absorbing solid/transparent liquid interface, (3) laser cleaning of surface contaminates. Concerning the first topic, the near-threshold ablation process at low laser fluences and the high power explosive vaporization process accompanying subsequent ablation plume dynamics are elucidated. Acoustic-wave detection by a piezoelectric pressure transducer, visualization by laser flash photography, and optical reflection/transmission measurements are carried out for the in-situ diagnosis of the process. Quantification of the acoustic-field generation and detection of the bubble-nucleation dynamics in the rapid vaporization at the solid liquid interface are performed by photoacoustic beam deflection technique and optical interferometry, respectively. Finally, experiments are carried out for the development of a practical laser cleaning tool and the analysis of the contaminant-removal mechanism. The results show that the near-threshold ablation by a short laser pulse is initiated by the tensile component of the thermoelastic stress without significant increase of liquid temperature at low laser fluences. On the other hand, if the heating rate is rapid enough to achieve high degree of superheating of the liquid, explosive vaporization takes place due to the abrupt

  13. Self-directed control of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stark, E. F.; Laube, S. J. P.

    1993-10-01

    Implementation of self-directed control of pulsed laser deposition (PLD) requires actuators, sensors, and a materials and processing knowledge base. Improvements in quality and reproducibility of material deposits are achieved by driving the process toward desired operating regions. Empirical relationships are determined experimentally to describe the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder and effectively produce consistent coatings with desired properties.

  14. Laser pulse shaping for multi-bunches photoinjectors

    NASA Astrophysics Data System (ADS)

    Villa, F.; Cialdi, S.; Anania, M. P.; Gatti, G.; Giorgianni, F.; Pompili, R.

    2014-03-01

    Multi-bunch electron linac operation is required in many applications, like plasma wake field acceleration, narrow band THz generation and two color FEL. We present a short review of laser techniques employed in multi-bunch photoinjectors and propose a new scheme based on spectral phase manipulation of the laser pulse. In conclusion we show some application of multi-bunches electron beams done at SPARC_ LAB.

  15. Comparison of short-pulsed and long-pulsed 532 nm lasers in the removal of freckles.

    PubMed

    Vejjabhinanta, Voraphol; Elsaie, Mohamed L; Patel, Shalu S; Patel, Asha; Caperton, Caroline; Nouri, Keyvan

    2010-11-01

    The purpose of this study was to compare the efficacy and safety of the 532 nm long-pulsed laser (10 ms) with that of the 532 nm short-pulsed laser (10 ns) for freckle removal. Currently, the gold standard for treatment is the short-pulsed laser. Recently, several long-pulsed lasers have been introduced for both hair removal and the treatment of freckles. To our investigative team's knowledge, no controlled experiments have been performed to compare the safety and efficacy of long-pulsed versus short-pulsed lasers for the treatment of freckles. This was a 4-week trial, and all patients had three freckles that were randomly allocated to be treated with short-pulse laser, long-pulse laser, or to receive no treatment (control). All patients had three freckles that were randomly selected to be treated with short-pulse 532 nm Medlite IV laser (10 n, 1 J/cm(2)), or long-pulse 532 nm Aura laser (10 ms, 1 J/cm(2)) or to remain as a control (no treatment). The laser treatment was only performed once, followed by a 1-day and a 1-month follow-up visit. Freckle size was determined by a novel surface area measurement technique that was created by our research staff. The study included 17 sets of freckles (three in each set). All of the lesions which received the short-pulsed laser treatment had immediate whitening of the lesions, which turned into dry scabs the next day. None of the freckles treated in the long-pulsed group or control group developed immediate whitening or scabs. No blisters or ulcers developed. The average pain score in the short-pulsed laser group was 2-3 out of 10, while it was 0 out of 10 in the long-pulsed laser group. All scabs that developed in the short-pulsed laser group fell off between days 6 and 12 (average 8 days). The outcome of this study verified the appropriate treatment of freckles. The study confirmed that when the same energy settings, short-pulsed laser is the more effective laser treatment regimen (when compared with the long-pulsed laser

  16. Pulsed Nd:YAG laser beam profile analyse

    NASA Astrophysics Data System (ADS)

    Chmelickova, Hana; Lapsanska, Hana; Ctvrtlik, Radim

    2005-06-01

    Pulsed laser system LASAG with maximal average power 150 W is used in our laboratory for experiments with various kinds of materials, process parameters optimisation for cutting, welding, drilling and surface treatment. Alignment of optical elements and good laser beam quality is critical parameter for successful result of laser treatment. Active medium - crystal in solid state laser is warmed up during laser action, because only some percent of input electrical power is turn to optical energy. Warm crystal has properties like a thick lens, which optical power is dependent on process parameters and kind of resonator. Also some defects in optical system - dirty or damaged mirrors or lens must be detect. Properties of non-visible near infrared beam can be tested by means of laser beam analyzer SPIRICON. In our system there are movable and changeable end mirrors and diaphragms to obtain five different types of resonators - basic one for welding and fibre applications and four ones for fine cutting and drilling. Measurements of beam profile for all these resonators were made with safety values of pulse length, energy and frequency. Control of losses in optical system was made to inspect quality of optical elements. Also measurement of laser beam outputting from three different fibre processing heads was realised. Control measurements on continual industrial Nd:YAG laser system were made. All data and capture pictures are stored and practical lessons for students in next school years were prepared.

  17. Guiding of relativistic laser pulses by preformed plasmachannels

    SciTech Connect

    Geddes, C.G.R.; Toth, Cs.; van Tilborg, J.; Esarey, E.; Schroeder, C.B.; Cary, J.; Leemans, W.P.

    2004-12-10

    Guiding of relativistically intense (>1018 W/cm2) laser pulses over more than 10 diffraction lengths has been demonstrated using plasma channels formed by hydrodynamic shock. Pulses up to twice the self guiding threshold power were guided without aberration by tuning the guide profile. Transmitted spectra and mode images showed the pulse remained in the channel over the entire length. Experiments varying guided mode power and simulations show a large plasma wave was driven.Operating just below the trapping threshold produces a dark current free structure suitable for controlled injection.

  18. Light fan driven by a relativistic laser pulse.

    PubMed

    Shi, Yin; Shen, Baifei; Zhang, Lingang; Zhang, Xiaomei; Wang, Wenpeng; Xu, Zhizhan

    2014-06-13

    When a relativistic laser pulse with a high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or "light fan." Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As an important characteristic, the twisted relativistic light pulse has a strong torque and ultrahigh OAM density. PMID:24972214

  19. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses

    PubMed Central

    Lanvin, Thomas; Conkey, Donald B.; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-01-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal. PMID:26203381

  20. SPECTRAL AMPLITUDE AND PHASE EVOLUTION IN PETAWATT LASER PULSES

    SciTech Connect

    Filip, C V

    2010-11-22

    The influence of the active gain medium on the spectral amplitude and phase of amplified pulses in a CPA system is studied. Results from a 10-PW example based on Nd-doped mixed glasses are presented. In conclusion, this study shows that, by using spectral shaping and gain saturation in a mixed-glass amplifier, it is possible to produce 124 fs, 1.4 kJ laser pulses. One detrimental effect, the pulse distortion due to resonant amplification medium, has been investigated and its magnitude as well as its compensation calculated.

  1. Coupling effects of the number of pulses, pulse repetition rate and fluence during laser PMMA ablation

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Feng, Y.; Yi, X.-S.

    2000-10-01

    Poly(methyl methacrylate) (PMMA) was ablated using a 248-nm long-pulsed KrF excimer laser operating at a pulse repetition rate (PRR) of 2 and 10 Hz, and fluence varying from 0.4 to 2 J/cm 2. The coupling effects of multiple shots, PRR, and fluence are found and discussed on the etching depth data and topography of PMMA. An increase in either PRR, or fluence or the number of pulses can accelerate the etching efficiency in terms of ablation rate, as a result of strengthened thermal effects. Quality of the craters such as roughness, porosity and contamination is sensitively dependent on the specific laser operating conditions. Basically, increasing the PRR and the number of pulses gives rise to a crater with smoother and less porous bottom.

  2. A Bright Neutron Source Driven by a Short Pulse Laser

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2012-10-01

    Neutrons are a unique tool to alter and diagnose material properties, and to exciting nuclear reactions, for many applications. Accelerator based spallation sources provide high neutron fluxes for research, but there is a growing need for more compact sources with higher peak brightness, whether fast or moderated neutrons. Intense lasers promise such as source, readily linkable to other experimental facilities, or deployable outside a laboratory setting. We present experimental results on the first short-pulse laser-driven neutron source powerful enough for radiography. A novel laser-driven ion acceleration mechanism (Breakout Afterburner), operating in the relativistic transparency regime, is used. Based on the mechanism's advantages, a laser-driven deuteron beam is used to achieve a new record in laser-neutron production, in numbers, energy and directionality. This neutron beam is a highly directional pulse < 1 ns at ˜ 1 cm from the target, with a flux > 40/2̂, and thus suitable for imaging applications with high temporal resolution. The beam contained, for the first time, neutrons with energies of up to 150 MeV. Thus using short pulse lasers, it is now possible to use the resulting hard x-rays and neutrons of different energies to radiograph an unknown object and to determine its material composition. Our data matches the simulated data for our test samples.

  3. Interaction of femtosecond laser pulses with tempera paints

    NASA Astrophysics Data System (ADS)

    Gaspard, Solenne; Oujja, Mohamed; Moreno, Pablo; Méndez, Cruz; García, Ana; Domingo, Concepción; Castillejo, Marta

    2008-12-01

    For the implementation of femtosecond (fs) laser cleaning methodologies of light-sensitive substrates as those encountered in artistic paintings, the interaction between fs laser pulses and painting components has to be well characterized. In this work, the modifications induced by fs laser irradiation of paints are examined in unvarnished aged model temperas. Irradiation at fluences below or above the ablation thresholds by 120 fs pulses at 795 nm from a Ti:Sapphire laser of unpigmented and traditional artist's pigment temperas (cinnabar and chrome yellow) is shown to result in various degrees of discolouration and changes of the laser-induced fluorescence signal. Fourier transform FT-Raman (at 1064 nm) and micro-Raman (at 785 nm) spectroscopic measurements were carried out to assess the changes induced. Noticeable modifications of the Raman bands of the pigments are absent while build-up of extra bands of amorphous carbon (indicative of carbonization or charring) does not take place, in contrast with previous observations upon irradiation with 248 nm, 25 ns pulses. It is concluded that IR fs irradiation provides a high degree of control over the induced modifications, a feature of interest in the design of new laser restoration schemes.

  4. Lidar profiling by long rectangular-like chopped laser pulses

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar V.; Gurdev, Ljuan L.; Kolarov, Georgi; Vankov, O. I.

    2000-06-01

    A novel, simple method is developed and tested (experimentally and by simulations) for effective, high- resolution retrieving of time-resolved lidar profiles for long rectangular-like laser pulses with arbitrary shapes of their leading and trailing edges. Such pulses are typically created by chopping cw optical radiation. The processing algorithm is based on differentiation and iteration procedures and avoids the use of divisions or deconvolutions that are often responsible for some errors and increases in the noise. Comparisons with pulsed and pseudo-random noise modulation lidar methods are given. The method enables a simplification of the entire lidar hardware. No powerful pulsed supplies, high driving pulsed voltages, complicated optical modulations, etc. are required. It could be very attractive for high-resolution, wide-spectral-band lidar measurements in the atmosphere, ocean, etc., using arbitrary optical emitters, especially for closer distances.

  5. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  6. Modification of chirped laser pulses via delayed rotational nonlinearity

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Odhner, J. H.; Levis, R. J.

    2016-03-01

    To interpret single-shot measurements of rotational revival patterns in molecular gases excited by an ultrashort laser pulse, an analytical description of the probe pulse modulation by the impulsively excited medium is developed. A femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample, and the resulting periodic revivals are mapped into the frequency domain by using a substantially chirped continuum probe pulse. Since the standard approximate descriptions of probe pulse propagation are inapplicable (such as the slowly varying envelope approximation and the slowly evolving wave approximation), we propose an approach capable of incorporating both the substantial chirp of the pulse and the temporal dispersion of the medium response. Theory is presented for the case where the frequency change of the probe during the probe pulse duration is comparable with the carrier frequency. Analytical expressions are obtained for the probe signal modulation over the pump-probe interaction region and for the resulting heterodyned transient birefringence spectra. The approach is illustrated using the case of nitrogen gas.

  7. Laser induced damage in multilayer dielectric gratings due to ultrashort laser pulses. Revision 1

    SciTech Connect

    Shore, B.W.; Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    1995-07-11

    Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses. When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser, their susceptibility to laser induced damage constitutes a limitation on the peak intensities that can be reached. To obtain robust gratings, it is necessary to understand the causes of short-pulse damage, and to recognize the range of design options for high efficiency gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the inevitable light absorption that accompanies conductivity, we have developed designs for high efficiency rejection gratings that use only transparent dielectric materials. These combine the reflectivity of a multi-layer dielectric stack with a diffraction grating. We report here our present understanding of short-pulse laser induced damage, as it applies to dielectric gratings.

  8. Laser induced damage in multilayer dielectric gratings due to ultrashort laser pulses

    SciTech Connect

    Shore, B.W.; Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    1995-05-26

    Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses. When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser, their susceptibility to laser induced damage constitutes a limitation on the peak intensities that can be reached. To obtain robust gratings, it is necessary to understand the causes of short-pulse damage, and to recognize the range of design options for high efficiency gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the inevitable light absorption that accompanies conductivity, we have developed designs for high efficiency reflection gratings that use only transparent dielectric materials. These combine the reflectivity of a multilayer dielectric stack with a diffraction grating. We report here our present understanding of short-pulse laser induced damage, as it applies to dielectric gratings.

  9. Pulsed DF chain-laser breakdown induced by maritime aerosols

    NASA Astrophysics Data System (ADS)

    Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.

    1982-08-01

    Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.

  10. Pulse-to-pulse jitter measurement by photon correlation in high-β lasers

    SciTech Connect

    Lebreton, Armand; Abram, Izo; Belabas, Nadia; Sagnes, Isabelle; Robert-Philip, Isabelle Beveratos, Alexios; Braive, Rémy; Marsili, Francesco; Verma, Varun B.; Nam, Sae Woo; Gerrits, Thomas; Stevens, Martin J.

    2015-01-19

    The turn-on delay jitter in pulsed lasers in which a large fraction (β) of spontaneous emission is channeled into the lasing mode is measured by use of a photon correlation technique. This jitter is found to significantly increase with β, reaching values of the order of the pulse width at threshold. This is due to the increase in the relative value of the discretization noise when the number of photons at threshold becomes small, as is the case in high-β lasers.

  11. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  12. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, P.W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 {mu}m. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  13. Nonlinear 6-fold enhancement of laser drilling efficiency by double pulse mode: prospective in medicine application

    NASA Astrophysics Data System (ADS)

    Pershina, N. S.; Pershin, S. M.; Cech, M.; Prochazka, I.

    2009-05-01

    The efficiency of laser ablation drilling of metal and dielectric (ceramic, glasses, etc.) samples with single and multiple laser pulses per one laser shot was experimentally studied. The laser is operated on the fundamental (1064 nm) wavelength of Nd:YAG laser with 30 ns pulse length or its second (532 nm) and third (351 nm) harmonics, respectively. The laser shot repletion rate was 1 Hz. The pulses in train were separated by 25-45 μs interval. The crater depth and drilling speed dependence increasing on pulse number in multipulse train was studied. The laser ablation normalized per pulse energy in train dependence is not linear function. The strong ablation enhancement was observed. The optimal (in sense the total pulse energy using) drilling can be obtained with double pulse mode compared with 3 - 5 pulses. Nonlinear more than 6 fold increasing of crater depth produced by the second pulse in train was detected. The mechanism of selective increasing of the second pulse interaction efficiency with the hard target is discussed. Experimental results explained in terms of double pulse mode laser ablation model. Spectroscopy study of laser plasma was observed to confirm discussed model of high efficiency for two laser pulse laser ablation. Efficiency of double pulse mode compared with multipulse mode is discussed to be more perspective for various applications of laser ablation. The medicine (surgery, dentist, ophthalmology and so on) application is the most prospective, for instance, the teeth drilling or glaucoma perforation, can be done with smaller energy value.

  14. Generation of intense 3 ps pulses by Kerr lens mode-locking of a pulsed Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Lindenberger, F.; Stöckl, R.; Laenen, R.; Laubereau, A.

    1995-02-01

    We report on the generation of pulses as short as 3.1 ps from a flashlamp-pumped Nd:YLF laser by Kerr lens mode-locking with auxiliary active mode-locking and electrooptic feedback control. Long pulse trains and stable operation make this device well suited as a pump laser for pulsed operation of synchronously pumped dye lasers or optical parametric oscillators.

  15. Chirped-Pulse Inverse Free Electron Laser: A Tabletop, High-Gradient Vacuum Laser Accelerator

    SciTech Connect

    Hartemann, F V; Troha, A L; Baldis, H A

    2001-03-05

    The inverse free-electron laser (IFEL) interaction is studied both theoretically and numerically in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. We show that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. A computer code which takes into account the three-dimensional nature of the interaction is currently in development and results are expected this Spring.

  16. Automatic frequency control of pulsed CO2 lasers

    NASA Astrophysics Data System (ADS)

    Nordstrom, Robert J.

    1988-01-01

    Frequency agility in remote-sensor lasers permits differential absorption and differential scattering measurements to be conducted for quantitative studies of atmospheric molecules and aerosols. High spectral purity in laser transmitter pulses allows heterodyne detection to be used for improved SNR, and renders the study of small, Doppler-induced frequency shifts due to the relative motion between target and observer possible. Attention is presently given to a high spectral purity injection-locked CO2 laser transmitter for remote sensing and target ranging.

  17. Electron optical injection with head-on and countercrossing colliding laser pulses.

    PubMed

    Kotaki, H; Daito, I; Kando, M; Hayashi, Y; Kawase, K; Kameshima, T; Fukuda, Y; Homma, T; Ma, J; Chen, L-M; Esirkepov, T Zh; Pirozhkov, A S; Koga, J K; Faenov, A; Pikuz, T; Kiriyama, H; Okada, H; Shimomura, T; Nakai, Y; Tanoue, M; Sasao, H; Wakai, D; Matsuura, H; Kondo, S; Kanazawa, S; Sugiyama, A; Daido, H; Bulanov, S V

    2009-11-01

    A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse. The wakefield is generated by a laser pulse; the second laser pulse collides with the first pulse at 180 degrees and at 135 degrees realizing optical injection of an electron bunch. The electron bunch has high stability and high reproducibility compared with single pulse electron generation. In the case of 180 degrees collision, special measures have been taken to prevent damage. In the case of 135 degrees collision, since the second pulse is countercrossing, it cannot damage the laser system. PMID:20365929

  18. Electron Optical Injection with Head-On and Countercrossing Colliding Laser Pulses

    SciTech Connect

    Kotaki, H.; Daito, I.; Kando, M.; Hayashi, Y.; Kawase, K.; Kameshima, T.; Fukuda, Y.; Homma, T.; Ma, J.; Chen, L.-M.; Esirkepov, T. Zh.; Pirozhkov, A. S.; Koga, J. K.; Kiriyama, H.; Okada, H.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, H.; Wakai, D.

    2009-11-06

    A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse. The wakefield is generated by a laser pulse; the second laser pulse collides with the first pulse at 180 deg. and at 135 deg. realizing optical injection of an electron bunch. The electron bunch has high stability and high reproducibility compared with single pulse electron generation. In the case of 180 deg. collision, special measures have been taken to prevent damage. In the case of 135 deg. collision, since the second pulse is countercrossing, it cannot damage the laser system.

  19. Laser thermal response of a finite slab as a function of the laser pulse parameters

    NASA Astrophysics Data System (ADS)

    El-adawi, M. K.; Shalaby, S. A.; Mostafa, S. S.; Kotkata, M. F.

    2007-03-01

    This paper deals with the problem of heating a finite slab using laser radiation in relation to the parameters characterizing the laser pulse, namely: qmax(W/m 2), the maximum laser power density, t0 the time interval required to reach q and t, the pulse time duration. The pulse shape q(t) is suggested in the form: q(t)=βq(t/t)(1-(t/t))exp-B(t-t0/t), where β and B are parameters. Fitting with published experimental pulse [Ready JF. Effects due to absorption of laser radiation. J Appl Phys 1965;36:462-68] is made. Fourier series expansion technique is considered to solve the problem. The critical time required to initiate melting t is estimated for four metallic elements and five semiconductors, namely: Al, Cu, Ag, Au (aluminum, copper, silver, and gold), cadmium sulfide, germanium, silicon, alpha beryllium oxide, and silicon carbide. Five pulses with different characteristic parameters are considered. Computations revealed that the thermal response of the targets is highly affected by q and t, while the pulse time duration is less effective in determining the value of t. Moreover, it is revealed that the relation between t and the melting temperature for the same laser pulse is nonlinear for the considered targets under the indicated conditions.

  20. Experimental study on photodiode damage by millisecond pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Wei, Zhi; Jin, Guangyong; Tan, Yong; Wang, Di

    2015-10-01

    The photoelectric detector is a very significance part in laser and its application system, but when photoelectric detector irradiated by high energy laser, the laser may cause thermal damage to the photoelectric detector, when the temperature more than its melting point and vaporization point, there will be a permanent damage in PIN photodetector, leading to the failure of photoelectric detector. In order to study the photodiode damage mechanism by millisecond pulse laser irradiation, a set of experimental system has been built, choosing appropriate pulsed laser parameters to irradiate silicon-based PIN photodiode and monitoring the surface temperature in the process of irradiation, until the PIN photodiode complete failure. The measurement results of real-time temperature, responsivity change and damage morphology were analyzed to conclude the failure reason of the PIN photodiode. The results showed that with the increase of laser energy, the PIN photodiode surface temperature would be also increased accordingly. Before the laser irradiation, the responsivity of PIN photodiode was the same. But after the laser irradiation, the responsivity of the PIN photodiode would be changed and with the increase of laser energy, the decline extent of responsivity would be also increased. Judging from the ablation, crack and fold zone on the surface of PIN photodiode after the laser irradiation, the damage was for thermal stress effect. The continuity of material confined its free expansion. Therefore, the uneven thermal expansion induced the great thermal stress. At the same time, the silicon transited from brittle to ductile and the yield strength dramatically decreased. Once the maximum thermal stress exceeded the critical stress, the plastic deformation and the brittle cracks of silicon would be generated. With the increase of laser energy, the thermal stress damage extent of PIN photodiode would be also increased accordingly and the black area of laser ablation would be

  1. Laser cleaning of rust on ship steel using TEA CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Ke, Linda; Zhu, Haihong; Lei, Wenjuan; Cheng, Zuhai

    2009-08-01

    Ship is easy to rust because of its special working condition. Removal of the rust from the ship surface is generally required for maintaining ship. The feasibility of removing rust using pulsed laser has been confirmed by the past researches. However, the general utilized laser, e.g., pulsed Nd: YAG laser with narrow pulse duration and high peak power, suffers very low average power and throughput. TEA CO2 laser, which also has narrow pulse duration and high peak power, is expected to obtain high throughout because it is easy to obtain high average power. This paper investigated the feasibility and the efficiency of removal of rust from the ship steel using TEA CO2 pulsed laser. The results show that TEA CO2 pulsed laser can effectively clean the rust by using suitable parameters without damage the substrate. A cleaning threshold for stripping rust of power density exists. Also, the effect of the process parameters on the efficiency and performance as well as the removal mechanism were studied in this paper.

  2. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations

    SciTech Connect

    Zhu, W.; Palastro, J. P.; Antonsen, T. M.

    2013-07-15

    Spectral red-shifting of high power laser pulses propagating through underdense plasma can be a source of ultrashort mid-infrared (MIR) radiation. During propagation, a high power laser pulse drives large amplitude plasma waves, depleting the pulse energy. At the same time, the large amplitude plasma wave provides a dynamic dielectric response that leads to spectral shifting. The loss of laser pulse energy and the approximate conservation of laser pulse action imply that spectral red-shifts accompany the depletion. In this paper, we investigate, through simulation, the parametric dependence of MIR generation on pulse energy, initial pulse duration, and plasma density.

  3. Adiabatic quantum computing with phase modulated laser pulses

    PubMed Central

    Goswami, Debabrata

    2005-01-01

    Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865

  4. Efficient laser amplifier using sequential pulses of different wavelengths

    DOEpatents

    Stark, Jr., Eugene E.; Kephart, John F.; Leland, Wallace T.; Reichelt, Walter H.

    1980-01-01

    A laser oscillator output pulse is separated into a plurality of separate beams which are temporally or spatially individually amplified by a power amplifier. The beams may then be recombined to provide a more powerful output than conventional single beam amplification.

  5. Acoustical problems in high energy pulsed E-beams lasers

    NASA Technical Reports Server (NTRS)

    Horton, T. E.; Wylie, K. F.

    1976-01-01

    During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.

  6. Pulsed laser ablation of pepsin on an inorganic substrate

    NASA Astrophysics Data System (ADS)

    Cicco, N.; Lopizzo, T.; Marotta, V.; Morone, A.; Verrastro, M.; Viggiano, V.

    2009-03-01

    Pressed pepsin pellets used as targets were ablated with the pulses of the Nd-YAG laser. The activity of the pepsin thin layer, deposited on a glass substrate, was successfully detected by analyzing the proteolytic degradation areas on the polyacrylamide gel (PA-gel) copolymerized with albumin from the hen egg white (ovalbumin), used as an enzymatic substrate.

  7. Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch

    NASA Astrophysics Data System (ADS)

    König, Jens; Bauer, Thorsten

    2011-03-01

    Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.

  8. X-ray production with sub-picosecond laser pulses

    SciTech Connect

    Schappert, G.T.; Cobble, J.A.; Fulton, R.D.; Kyrala, G.A.

    1993-12-31

    The interaction of intense, sub-picosecond laser pulses with solid targets produces intense picosecond x-ray pulses. With focused laser pulses of several 10 {sup 18} W/cm{sup 2}, He-like and H-like line radiation from targets such as aluminum and silicon has been produced. The energy conversion efficiency from the laser pulse energy to the 1--2 keV line x-rays is nearly one percent. The duration of the line x-ray radiation is of the order of ten picoseconds, although this may be an upper estimate because of the temporal resolution of the x-ray streak camera. The spatial extent of the x-ray source region is only slightly larger than the laser focal spot, or about 10 {mu}m in diameter. With these characteristics, such x-ray sources emit an intensity of nearly 10{sup 14} W/cm{sup 2}. Experiments and modeling which led to the above conclusions will be discussed.

  9. Delay of explosive vaporization in pulsed laser-heated droplets.

    PubMed

    Park, B S; Biswas, A; Armstrong, R L; Pinnick, R G

    1990-02-15

    Measurements of time delays for explosion of pulsed CO(2) laser-heated droplets are presented. A simple model based on classical nucleation theory in superheated liquids, which neglects heat and mass transport, is used to interpret the data. The model shows good agreement with the experimental observations. PMID:19759758

  10. Pulse laser assisted optical tweezers for biomedical applications.

    PubMed

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate. PMID:23366922

  11. Vacuum electron acceleration by using two variable frequency laser pulses

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2013-12-15

    A method is proposed for producing a relativistic electron bunch in vacuum via direct acceleration by using two frequency-chirped laser pulses. We consider the linearly polarized frequency-chiped Hermit-Gaussian 0, 0 mode lasers with linear chirp in which the local frequency varies linearly in time and space. Electron motion is investigated through a numerical simulation using a three-dimensional particle trajectory code in which the relativistic Newton's equations of motion with corresponding Lorentz force are solved. Two oblique laser pulses with proper chirp parameters and propagation angles are used for the electron acceleration along the z-axis. In this way, an electron initially at rest located at the origin could achieve high energy, γ=319 with the scattering angle of 1.02{sup ∘} with respect to the z-axis. Moreover, the acceleration of an electron in different initial positions on each coordinate axis is investigated. It was found that this mechanism has the capability of producing high energy electron microbunches with low scattering angles. The energy gain of an electron initially located at some regions on each axis could be greatly enhanced compared to the single pulse acceleration. Furthermore, the scattering angle will be lowered compared to the acceleration by using laser pulses propagating along the z-axis.

  12. Model for nonequilibrium segregation during pulsed laser annealing

    SciTech Connect

    Wood, R.F.

    1980-08-01

    Highly nonequilibrium thermodynamic processes occur during the ultrarapid recrystallization characteristic of pulsed laser annealing. Values of interface segregation coefficients are observed to differ from equilibrium values by as much as three orders of magnitude and equilibrium solubility limits may be exceeded by similar magnitudes. In this letter, a model is developed which accounts quantitatively for these effects.

  13. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  14. Ferroelectric thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Dinu, Raluca; Vrejoiu, I.; Verardi, P.; Craciun, F.; Dinescu, Maria

    2001-06-01

    Influence of substrate and electrode on the properties of PbZr0.53Ti0.47O3 (PZT) thin films grown by pulsed laser deposition technique (1060 nm wavelength Nd:YAG laser light, 10 ns pulse duration, 10 Hz repetition rate, 0.35 J/pulse, 25 J/cm2 laser fluence, deposition rate about 1 angstrom/pulse) was studied. The substrate temperatures were in the range 380 degree(s)C-400 degree(s)C. Oriented crystalline PZT layers with 1-3 micrometers thickness were deposited on glass substrates plated with Au/Pt/NiCr electrodes, from a PZT commercial target in oxygen reactive atmosphere. The deposited PZT films with perovskite structure were preferentially oriented along the (111) direction as revealed from XRD spectra. Piezoelectric d33 coefficients up to 30 pC/N were obtained on as deposited films. Ferroelectric hysteresis loops at 100 Hz revealed a remanent polarization of 15 (mu) C/cm2 and a coercive field of 100 kV/cm. A comparison with properties of PZT films deposited using a KrF laser and with SrBi2Ta2O9 (SBT) films is reported.

  15. Implantation of Organic Molecules into Biotissue by Pulsed Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Ichinose, Nobuyuki; Kawanishi, Shunichi; Fukumura, Hiroshi

    1999-01-01

    Zinc tetraphenyl porphyrin (ZnTPP) molecules were implanted into a piece of chicken skin by irradiation with KrF laser pulses. The study of the implanted ZnTPP at the skin surface using a fluorescence microscope indicated that the molecules are space-selectively introduced at the irradiated area.

  16. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  17. Effects of pulsed lasers on hard biological tissue

    NASA Astrophysics Data System (ADS)

    Jahn, Renate; Bleckmann, Andreas; Duczynski, Edwin W.; von der Heide, Hans-Joachim; Huber, Guenter; Jungbluth, Karl-Heinz; Lierse, Werner; Neu, Walter; Struve, Bert

    1993-07-01

    The interaction of various pulsed lasers with meniscus and bone of freshly slaughtered bovines and pigs was examined. Our aim was to find lasers useful for accident surgical operations (e.g. bone or callus dystopy inside joints or nearby important vessels or nerves after fractures). Laser wavelengths of the UV- and infrared spectral range were investigated: XeCl- excimer lasers (wavelength 308 nm, pulse duration 28 ns, 60 ns, 300 ns) Nd:YAG (1.06 micrometers , 400 microsecond(s) ), Tm:YAG (2.01 micrometers , 400 microsecond(s) ), Ho:YAG (2.12 micrometers , 400 microsecond(s) ), CrEr:YSGG (2.79 micrometers , 400 microsecond(s) ), and Er:YAG (2.94 micrometers , 400 microsecond(s) ). The excimer laser radiation was guided by a tapered fused silica fiber, whereas for all other lasers the tissue samples were positioned in the focus of a lens with 100 mm focal length. Ablation rates were determined by perforating samples of defined thickness, and the effects of laser ablation on tissue were controlled macroscopically, by light microscopy and by scanning electron microscopy.

  18. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  19. [Peculiarity of pulsed dye laser lithotriptor and its clinical application].

    PubMed

    Matsumoto, T; Miki, M; Mamiya, Y; Hirata, T; Shimizu, H; Tochimoto, M; Ito, T; Aika, T

    1989-09-01

    Ultrasound lithotriptors (USL) and electrohydraulic lithotriptors (EHL) are representative lithotriptors for endoscopic elimination of upper urinary tract stones. However, they have some disadvantages. For example, USL can not be used with flexible scopes and EHL can cause unexpected tissue injury. To overcome these problems, the pulsed dye laser lithotriptor (MDL-1, Candera Co.) was developed. The characteristics of this laser lithotriptor and its direct effects on tissue was investigated. This pulsed dye laser lithotriptor generates a 504 nm wavelength green light beam by using a combination of a xenon flash lamp and the greenish dye composed of coumarin solution. The maximum output energy is 60 mJ/pulse and the pulse duration is 1.5 microsecond. The pulse rate can be varied from 1 to 20 Hz. First, the intensity of the shock wave was measured by using a combination of a piezoelectric element and an oscilloscope, and then, the results were compaired with those obtained by a similar experiment with an EHL. The average intensity of the shock wave was 54.4 mW under the conditions of 40 mJ/pulse of output energy and 10 Hz of pulse duration. On the other hand, the EHL generated an average of 54.7 W under the conditions of 400 mJ/pulse output energy. Then, fragmentation of various kinds of urinary stones in saline solution was performed. The results showed that this lithotriptor could fragment almost all kinds of stones except cystine stones. Then, hen's eggs were used to observe the effect if laser bean influenced on the organism immediately behind the photoradiated object. Only the egg shell was demolished but the egg membrane below the eggshell did not undergo any change. After these experiments, skin, liver, kidney and urinary bladder of nude mice and human prostatic urethral mucosa in case of TUR-P were irradiated by this laser. The results showed that laser energy caused slight penetration and localized hemorrhage from the surface of epithelium to subcutaneous

  20. Using short pulse lasers to drive X-ray lasers

    SciTech Connect

    Nilsen, J

    2009-07-27

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive. One challenge has been the difficulty of finding an adequate resonance between a strong pump line and a line in the laser plasma that drives the laser transition. Given a good resonance, a second challenge has been to create both the pump and laser plasma in close proximity so as to allow the pump line to transfer its energy to the laser material. With the advent of the X-FEL at LCLS we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of photo-pumped laser schemes. In this paper we model the Na-pumped Ne X-ray laser scheme that was proposed and studied many years ago by replacing the Na He-{alpha} pump line at 1127 eV with the X-FEL at LCLS. We predict gain on the 4f - 3d transition at 231 {angstrom}. We also examine the feasibility of photo-pumping He-like V and lasing on the 4f - 3d transition at 38.7 {angstrom}, which would be within the water-window. In addition we look at the possibility of photo-pumping Ne-like Fe and creating gain on the 4d - 3p transition at 53 {angstrom} and the 3p - 3s transition at 255 {angstrom}.